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Abstract 

Randomization tests offer an access to inference statistics, which is regarded as particularly 

simple in the didactic literature. Above all, the logic of the inferential reasoning should 

become particularly clear. Nevertheless, in order to carry out a randomization test, some 

elements are needed that must be understood in order to successfully draw statistical 

conclusions. In this article, various elements from the literature are collected and compiled 

in order to create a scheme for the hand of learners to carry out a randomization test. 

Keywords: Inference, randomization test 

Resumen 

Las pruebas de aleatorización ofrecen un acceso a las estadísticas de inferencia, lo que se 

considera particularmente sencillo en la literatura didáctica. Sobre todo, la lógica del 

razonamiento inferencial debería ser particularmente clara. Sin embargo, para llevar a cabo 

una prueba de aleatorización, se necesitan algunos elementos que deben ser comprendidos 

para poder sacar conclusiones estadísticas con éxito. En este artículo, se recogen y 

compilan varios elementos de la literatura, con el fin de crear un esquema para que  ayude a 

los alumnos a llevar a cabo una prueba de aleatorización. 

Keywords: Inferencia, prueba de aleatorización 

1. Introduction 

Inferential reasoning is a cornerstone on which the practice of statistics is based. Data 

and conclusions drawn from data play an important role in daily life. Computer-based 

methods and evaluations are part of the daily repertoire of statistics. Every day we 

encounter news in the media in which “a study has shown” or it is concluded that “the 

effect of A is B”. Frequently, however, it is not mentioned that these results are subject 

to a certain degree of uncertainty.  

The process of reasoning required for this is seen as an important skill of every adult. 

“Drawing inferences from data is part of everyday life and critically reviewing results of 

statistical inferences from research studies is an important capability for all adults” 

(Garfield & Ben-Zvi, 2008, p. 262). In order to be able to draw such conclusions or to 

reflect critically on drawn conclusions, it is necessary to understand the logic of 

inferential reasoning. However, many (learning) difficulties are known about this (e.g. 

Haller & Krauss, 2002; Thompson, Liu, & Saldanha, 2012).  

To provide a simple introduction to inference statistics, Cobb (2007) and others (e. g. 

Rossman (2008)) pointed out the randomization test method, which should be central in 

a newly created curriculum “whose center is the core logic of inference” (Cobb, 2007, 

p. 11). In doing so, he is taking up a demand formulated almost ten years earlier in the 

fundamental article by Wild and Pfannkuch (1999).  

Statistics education should really be telling students something every scientist knows, ‘The quest 

for causes is the most important game in town.’ It should be saying: ‘Here is how statistics helps 

you in that quest’. (Wild & Pfannkuch, 1999, p. 238) 

http://www.ugr.es/local/fqm126/civeest.html
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Since the suggestions of Cobb (2007) and Rossman (2008) to use randomization tests to 

introduce inference statistics, some curricula and learning units have emerged that build 

on them. In addition, there are a few empirical studies that investigate how learners 

perform a randomization test.  

This article synthesizes the various elements found in the literature to be addressed in a 

randomization test by novices. For this purpose, the diverse literature is reviewed and 

synthesized in order to comply with the suggestions of Cobb and Rossman.  

2. Didactic aspects of the randomization test method 

A randomization test is a non-parametric procedure almost without formal calculations 

because of the use of computer-based simulation. This makes it more flexible than 

traditional statistical tests and more intuitive to understand for beginners (Pfannkuch & 

Budgett, 2014; Tintle, Topliff, Vanderstoep, Holmes, & Swanson, 2012). 

Randomization testing allows conclusions to be drawn from data, even from small 

samples or non-random collection methods, as is often the case in empirical research 

(Zieffler, Harring, & Long, 2011). 

An advantage of the randomization test is that the design of an experiment is 

represented by the inference procedure. This makes it more accessible for beginners.  

One advantage of this procedure [simulation-based randomization tests] for introducing 

introductory students to the reasoning process of statistical inference is that it makes clear the 

connection between the random assignment in the design of the study and the inference 

procedure. It also helps to emphasize the interpretation of a p-value as the long-term proportion 

of times that a result at least as extreme as in the actual data would have occurred by chance 

alone under the null model. (Rossman, 2008, p. 10) 

An important component of the simplicity of the approach is the use of stochastic 

simulations (Batanero & Borovcnik, 2016). Simulations do not require formal 

calculations and therefore can focus on the logic of reasoning. In addition to the 

content-related advantages mentioned by Rossman (2008), randomization tests offers a 

further advantage, because they reduce the cognitive load (Chandler & Sweller, 1991) 

of learners: 

Norm-based and randomization methods have the same reasoning process but the norm-based 

methods rely on many invisible concepts behind mathematical manipulations. The randomization 

method will decrease cognitive load by reducing the number of concepts that need to be 

activated simultaneously. (Pfannkuch et al., 2011, p. 911) 

Finally, a third advantage is mentioned at statistical level. In general, statistical 

significance is a difficult concept for learners (e.g. Batanero, 2000; Garfield & Ben-Zvi, 

2008; Haller & Krauss, 2002), but some authors also see randomization tests as an 

easier approach. Chance and Rossman (2006, p. 5) emphasize, for example, that “a 

randomization test can lead students to a deeper understanding of the concepts of 

statistical significance and p-value” and Holcomb, Chance, Rossman, Tietjen, and Cobb 

(2010) even say that there is nearly no need for prior knowledge to carry out a 

simulation-based randomization test. 

While the elaborated perspectives highlight the simplicity of the method and the low 

entry to statistical inference, for example Batanero (2000) has a critical look at 

statistical testing in general and difficulties in teaching about it.  
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3. Towards a scheme for randomization testing 

Conducting a randomization test requires certain procedures and the use of certain 

elements. In this section, I will present the sequence of steps and their description in 

literature
1
. At the end of the section, a general scheme will be developed that can be 

used to structure the learners’ process of randomization testing. 

3.1. Normative approaches to randomization tests 

Cobb (2007) has proposed a three-step scheme consisting of the “three Rs of inference: 

randomize, repeat, reject” (Cobb, 2007, p. 12) to elementarize a randomization test. The 

first step of randomize data production is to describe how the observed data of an 

experiment may be collected in order to check which conclusions may be drawn later 

(see also Ramsey & Shafer, 2013). Behind the second step repeat by simulation to see 

what’s typical, which appears to be simple with the explanation “randomized data 

production lets you re-randomize, over and over, to see which outcomes are typical, 

which are not” (Cobb, 2007, p. 12), stands the entire creation of a simulation and thus of 

a null model, which must be expressed in a null hypothesis. For the user of a 

randomization test, this second step therefore involves much more (and more 

difficulties) than Cobb initially seems to briefly present in this one sentence. Finally, in 

the third step reject any model that puts your data in its tail, a conclusion must be 

drawn. The most important thing in this formulation is “reject”, which implies that a 

model can be rejected, but not necessarily confirmed. Cobb uses a metaphor commonly 

used in American English for the p-value. In the “tail” or at the edge of a distribution 

are the results that are just as extreme or even more extreme than the observed value, 

i.e. the results that the p-value includes. As a basic framework for the introduction to 

hypothesis testing, Cobb’s scheme seems to be well suited, the logic of inferential 

reasoning is well represented, but on the other hand, the whole process is very briefly 

summarized.  

Building on the ideas of Cobb (2007), Rossman, Chance, Cobb, and Holcomb (2008) 

have developed a number of modules on randomization tests to provide access to 

inferential reasoning. In order to make it easier for learners to access this way of 

thinking, they propose a four-step scheme that clarifies the logic. In addition to the four 

main steps “Observed Data, Null Model, Statistical Test and Scientific Inference” 

(Rossman et al., 2008, p. 6f), there are between two and five explanatory sub-steps, each 

of which provides further help in the form of questions or instructions on what exactly 

to do. These explanatory sub-steps seem to be very helpful for the use of learners, as it 

becomes very clear which steps are to be carried out. Thus, this scheme seems to be 

suitable as a direct template for use in a teaching situation. 

Tintle, VanderStoep, and Swanson (2009) have developed a complete curriculum that 

introduces statistical inference through randomization tests and focuses on 

randomization tests based on Cobb’s demand. They first develop a six-step scheme for 

the general statistical investigation process, which can be seen in Figure 1, and is 

appropriate for randomization tests as well. This scheme is strongly reminiscent of the 

PPDAC cycle of Wild and Pfannkuch (1999) and, like the PPDAC cycle, it is cyclical. 

                                                 
1 The following description is abridged from my dissertation (Podworny, 2018). 
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Figure 1. The “six step statistical investigation process” of Tintle et al. (2009, p. 2, 

own representation) 

In contrast to the previous schemes, the authors here begin with a research question 

from which all further steps result. In the sense of the PPDAC cycle (Wild & 

Pfannkuch, 1999), the complete run-through of a cycle is stimulated. The schemes 

considered so far ultimately start with the performance of a randomization test if an 

experiment has already been carried out. A desirable situation for a learning situation 

would of course be to start with a research question and to carry out all further steps by 

oneself. In reality, however, the schemes that start two steps later, i.e. with the 

exploration of existing data, seem to be much more frequent and can be realized in the 

classroom with much less effort by using existing data. 

Another framework for the realization of a randomization test can be found in Biehler, 

Frischemeier, and Podworny (2015) where a distinction is made between three “worlds” 

which are embedded in each other and which should be addressed in the respective step.  

 

Figure 2. Framework for randomization testing (taken from Biehler et al., 2015, p. 

139) 
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The first step in Figure 2 is the “observation” in the context world, which is followed in 

the statistics world by the “null hypothesis” and next, within the software world 

“sampler in tinkerplots” that corresponds to the null model. it remains in the software 

world with “p-value”, switches back to the statistics world with “evidence/significance” 

and finally turns to the context world with “Inferences for the real problem”. This 

embedding in the three worlds can be a useful addition to the previous schemes since 

the steps are quite alike. 

3.2. Selected results of empirical research 

Specific analyses of learners performing a randomization test are still rare. Budgett, 

Pfannkuch, Regan, and Wild (2012) conducted a half-day session on randomization 

tests with students in the last year of high school and with students in the first year of 

college. Of these, they conducted interviews with ten selected participants who 

performed a randomization test with the VIT software (VIT: Visual Inference Tools, 

https://www.stat.auckland.ac.nz/~wild/VIT/). For the interviews they used the example of 

the “fish oil and blood pressure study” (Budgett et al., 2012, p. 5) and investigated some 

selected aspects, e.g. which possible explanations for observed differences were given 

by learners and how the VIT software supported the implementation of a randomization 

test. They highlight the importance of giving possible explanations for observed 

differences in the experiment and using these explanations for the further reasoning 

process. Using the software was not a difficulty for learners in this study. 

Biehler et al. (2015) have investigated which steps preservice teachers for mathematics 

at university courses can take successfully during a randomization test along three 

worlds (context, statistics, software) in which learners move. Above all, they identified 

learning difficulties in establishing the null hypothesis, its transfer into a simulation 

model and in finding the p-value. The use of the software (in this case TinkerPlots), 

though, was not a problem. However, they conclude that the relationship between the 

statistical world and the context world should be established more strongly in a teaching 

unit, as this was a hurdle for the participants of their study. 

Noll and Kirin (2017) used the framework of Biehler et al. (2015) to investigate how 

learners link the null hypothesis with the sampler of TinkerPlots and how they reason 

with it. The authors report that the required random assignment of the experimental 

units to the new groups represented a difficulty in understanding. For this, there were 

also problems to transfer the independent assignment of observed values to two groups 

into the simulation model. In the end, Noll and Kirin (2017) insist that more research is 

needed on how learners interpret simulation models (here with the TinkerPlots sampler). 

Justice, Zieffler, Huberty, and delMas (2018) took up on the research of Noll and Kirin 

(2017) and examined the argumentation process of four teachers in an AP statistics 

program regarding different simulation models and the related data generating process. 

The authors suggested some questions about the data generating process that can 

promote understanding, such as “‘is it essential that it happens in the same order?’ or, 

when the sampler devices are swapped, ‘will this affect the resulting distribution of 

statistics?’” (Justice et al., 2018, p. 10). One of their main outcomes is that the 

participants of their study regarded decision-making as the primary goal of statistical 

reasoning. As a further result, they formulated that participants valued the design of the 

original experiment in order to transfer it into a simulation model. However, if they did 

not understand that the design was needed to model variation, it hindered the ability to 
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draw statistical conclusions. Justice et al. (2018) highlighted the need to refer to 

important elements of the context for a problem in the reasoning process to understand 

the randomization test method.  

3.3. Synthesis of elements for randomization tests 

In the schemes and studies presented here, certain elements can be found for conducting 

a randomization test that seem to be necessary for the reasoning process. Some of them 

are set up as normative steps, others are used as evaluation categories. In Table 1, the 

various elements are extracted and arranged for a synopsis.  

Table 1. Synopsis of elements for conducting a randomization test 

Element Description Reference 

Ask or 

reconstruct a 

research question  

The question that led to the experiment is named.  

 

Tintle et al. 

(2009); Wild 

and Pfannkuch 

(1999) 

Explain the 

random 

assignment in the 

experiment 

The design of the experiment is determined or explained 

retrospectively with regard to whether a random 

allocation of experimental units to groups has actually 

taken place and what meaning this has with regard to the 

randomization test 

Budgett et al. 

(2012); Justice 

et al. (2018) 

Analyse observed 

data 

The observed data of the experiment are analyzed. For 

example, a group comparison based on the mean values 

or a comparison of certain proportions can take place 

and be noted as Xobserved. According to Biehler et al. 

(2015) this takes place at the context level 

Biehler et al. 

(2015); 

Rossman et al. 

(2008); Tintle et 

al. (2009) 

Give possible 

explanations for 

observed 

differences 

Two possible explanations are to be found for the 

observed differences, as these provide the motivation for 

a randomization test. One possible explanation can be 

the random assignment of the experimental units to the 

groups, the other possible explanation can be the 

effectiveness of a procedure 

Budgett et al. 

(2012); Justice 

et al. (2018) 

Set up the null 

modell 

Null and alternative hypotheses are to be formulated. In 

the null hypothesis, the random assignment to the groups 

is expressed as an explanation for the observed 

differences. In the following, the null hypothesis is 

assumed to be true and modelled. According to Biehler 

et al. (2015) this connects the context level with the 

statistics level 

Biehler et al. 

(2015); Noll 

and Kirin 

(2017); 

Rossman et al. 

(2008) 

Set up the 

simulation modell 

Based on the null hypothesis, the randomization of the 

data for the randomization test is explained. This must 

be transferred to software, where the model is expressed 

and tested. According to Biehler et al. (2015) this takes 

place at the software level and it should be strongly 

connected with the context level according to Noll and 

Kirin (2017) 

Biehler et al. 

(2015); Cobb 

(2007); Noll 

and Kirin 

(2017); 

Visualize test 

statistic and 

sampling 

distribution 

The test statistic X is defined for the simulated data 

according to the value in the observed data. A frequent 

repetition of the simulation takes place and the sampling 

distribution is generated from the collection of the test 

statistics. According to Biehler et al. (2015) this takes 

place at the software level 

Cobb (2007); 

Rossman et al. 

(2008) 
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Table 2. Synopsis of elements for conducting a randomization test (continuation) 

Element Description Reference 

Identify the p-

value 

The p-value P(X≥XObserved|H0 applies) is estimated from 

the simulation as the probability of obtaining a value 

such as the observed or an even more extreme one, 

assuming that the null hypothesis applies. According to 

Biehler et al. (2015) this takes place at the software level 

Biehler et al. 

(2015); 

Rossman et al. 

(2008) 

Draw conclusions Conclusions are drawn from the results. Here it is 

checked whether the p-value is small enough, e.g. 

p < 5%, to reject the null hypothesis. Remaining 

uncertainties are discussed. Furthermore, reference is 

made to the design of the experiment and corresponding 

causal conclusions are drawn. It is also discussed 

whether the results can be generalized, which is only 

possible if a random sample was used. According to 

Biehler et al. (2015) this takes place at the statistics and 

the context level 

Biehler et al. 

(2015); Cobb 

(2007); Justice 

et al. (2018); 

Rossman et al. 

(2008); Tintle et 

al. (2009) 

 

From the synopsis of Table 1, a scheme for teaching purposes can be developed that 

brings together the elements that are necessary for performing a randomization test 

(Figure 3). Such a scheme structures the process of a randomization test and can be 

helpful for learners (Biehler et al., 2015; Rossman et al., 2008).  

 

Figure 3. Scheme for conducting a randomization test 
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4. Conclusion 

In this article, theory-driven elements were identified that should be addressed during 

the implementation of a randomization test in learning contexts. From this synopsis, a 

scheme was developed that is intended for the hand of learners to structure the 

reasoning process. An initial evaluation of this scheme took place in the study of 

Podworny (2018) with promising results. For the scheme itself, these results are in line 

with other studies in which schemes were also used successfully. 

In general, it can be said in the words of Batanero (2000) that “statistics is not a way of 

doing, but a way of thinking that helps us solve problems in science and everyday life, 

teaching statistics should begin with real problems” (Batanero, 2000, p. 94). From this 

perspective, randomization tests offer an access to inference statistics, since they are 

always assumed to solve a real problem. Moreover, in didactic literature they are 

regarded as particularly suitable for introducing the way of thinking in inference 

statistics or to the logic of inference. At the same time, randomization tests play the 

“most important game in town” (Wild & Pfannkuch, 1999, p. 238) and thus certainly 

satisfy a need for the question of causality. However, as appears in some articles, 

randomization testing should not be seen as a panacea by which everyone is now able to 

understand the logic of inference statistics. As shown above, many elements are 

included (and must be understood) in the randomization test procedure in order to draw 

meaningful conclusions from data. An essential element here is the importance of the 

design of an experiment, which makes or makes not conclusions possible in the first 

place. However, it should not be overlooked that certain designs and thus possibly entire 

branches of research (e.g. empirical educational research) are completely questioned by 

some authors (e.g. Saint-Mont, 2011) or at least viewed very critically (Batanero & 

Borovcnik, 2016). 

Despite all the simplicity, this approach “may be seen as an intermediate step before 

students can learn more formal inference” (Batanero & Borovcnik, 2016, p. 192). This 

opinion is shared by the author of this article in the sense that randomization tests 

provide a good approach to introduce the logic of inference statistics, but should not be 

the endpoint. Randomization tests, as described by most of the authors mentioned here, 

certainly offer a good first (informal) approach to inference statistics. However, this 

should not be stopped at, but, as already demanded almost 20 years ago (Batanero, 

2000), further statistical methods should be explored and possible shortcomings and 

difficulties pointed out. 

References 

Batanero, C. (2000). Controversies around the role of statistical tests in experimental 

research. Mathematical Thinking and Learning, 2(1-2), 75-97.  

Batanero, C., & Borovcnik, M. (2016). Statistics and probability in high school. 

Rotterdam, Boston, Taipei: Sense Publishers. 

Biehler, R., Frischemeier, D., & Podworny, S. (2015). Preservice teachers' reasoning 

about uncertainty in the context of randomization tests. In A. Zieffler & E. Fry 

(Eds.), Reasoning about uncertainty: Learning and teaching informal inferential 

reasoning. Minneapolis, Minnesota: Catalyst Press. 

Budgett, S., Pfannkuch, M., Regan, M., & Wild, C. (2012). Dynamic visualizations for 

inference. Paper presented at the The International Association for Statistical 



Susanne Podworny 

  

9       

 

 

Education Roundtable Conference: Technology in statistics education: 

Virtualities and Realities, Cebu City, The Philippines.  

Chance, B., & Rossman, A. (2006). Using simulation to teach and learn statistics. In B. 

Phillips (Ed.), Proceedings of The Sixth International Conference On teaching 

of Statistics (CD-ROM). Voorburg, The Netherlands: International Statistical 

Institute. 

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. 

Cognition and Instruction, 8(4), 293-332.  

Cobb, G. (2007). The introductory statistics course: A ptolemaic curriculum? 

Technology Innovations in Statistics Education, 1(1), 1-15. 

doi:https://escholarship.org/uc/item/6hb3k0nz 

Garfield, J., & Ben-Zvi, D. (2008). Developing students' statistical reasoning: 

Connecting research and teaching practice. Dordrecht, The Netherlands: 

Springer Science+Business Media. 

Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students 

share with their teachers? Methods of Psychological Research Online, 7(1), 1-

20.  

Holcomb, J., Chance, B., Rossman, A., Tietjen, E., & Cobb, G. (2010). Introducing 

concepts of statistical inference via randomization tests. In C. Reading (Ed.), 

Data and context in statistics education: Towards an evidence-based society. 

Proceedings of the Eighth International Conference on Teaching Statistics, 

Ljubljana, Slovenia. Voorburg, The Netherlands: International Statistical 

Institute. 

Justice, N., Zieffler, A., Huberty, M. D., & delMas, R. (2018). Every rose has its thorn: 

secondary teachers’ reasoning about statistical models. ZDM. 

doi:10.1007/s11858-018-0953-1 

Noll, J., & Kirin, D. (2017). TinkerPlots model construction approaches for comparing 

two groups: Student perspectives. Statistics Education Research Journal, 16(2), 

213-243.  

Pfannkuch, M., & Budgett, S. (2014). Constructing inferential concepts through 

bootstrap and randomization-test simulations: A case study. In K. Makar, B. de 

Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of 

the ninth international conference on teaching statistics, Flagstaff, USA. 

Voorburg, The Netherlands: International Statistical Institute. 

Pfannkuch, M., Regan, M., Wild, C., Budgett, S., Forbes, S., Harraway, J., & 

Parsonage, R. (2011). Inference and the introductory statistics course. 

International Journal of Mathematical Education in Science and Technology, 

42(7), 903-913.  

Podworny, S. (2018). Simulationen und Randomisierungstests mit der Software 

TinkerPlots. Theoretische Werkzeuganalyse zur stochastischen SImulation und 

explorative Fallstudie zum statistischen Schließen mit Randomisierungstests 

[Simulations and randomization tests with TinkerPlots]. Paderborn: Universität 

Paderborn. 

Ramsey, F. L., & Shafer, D. W. (2013). The Statistical Sleuth. A Course in Methods of 

Data Analysis. Boston, Massachusetts: Cengage Learning. 

Rossman, A. (2008). Reasoning about informal statistical inference: One statistician's 

view. Statistics Education Research Journal, 7(2), 5-19.  

Rossman, A., Chance, B., Cobb, G., & Holcomb, R. (2008). Concepts of statistical 

inference: Approach, scope, sequence and format for an elementary 

https://escholarship.org/uc/item/6hb3k0nz


10    Synthesis of elements for conducting a randomization test 

 

 

 

permutation-based first course.  Available from: 

http://statweb.calpoly.edu/bchance/csi/CSIcurriculumMay08.doc 

Saint-Mont, U. (2011). Statistik im Forschungsprozess. Berlin, Heidelberg: Springer. 

Thompson, P. W., Liu, Y., & Saldanha, L. (2012). Intricacies of Statistical Inference 

and Teachers' Understandings of Them. In M. C. Lovett & P. Shah (Eds.), 

Thinking with Data (pp. 207-231). New York: Psychology Press. 

Tintle, N., Topliff, K., Vanderstoep, J., Holmes, V.-L., & Swanson, T. (2012). 

Retention of statistical concepts in a preliminary randomization-based 

introductory statistics curriculum. Statistics Education Research Journal, 11(1), 

21-40.  

Tintle, N., VanderStoep, J., & Swanson, T. (2009). An active approach to statistical 

inference, preliminary edition. Holland, Michigan: Hope College Publishing. 

Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. 

International Statistical Review, 67(3), 223-265.  

Zieffler, A., Harring, J. R., & Long, J. D. (2011). Comparing groups. Randomization 

and bootstrap methods using R. Hoboken, New Jersy: John Wiley & Sons. 

 

http://statweb.calpoly.edu/bchance/csi/CSIcurriculumMay08.doc

