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Abstract 

Bayesian problem situations are well known as being difficult for people to judge 

adequately. Teachers in school are confronted with the question what can be done on the 

long run to support their students in coping with Bayesian situations. In this regard the 

paper refers to the learning about mathematizing Bayesian situations in school, especially 

focused on using the unit square in settings of learning with multiple representations. 

Firstly, the topic of Bayesian reasoning will be analysed from the different perspectives of 

mathematical, modelling, and mathematizing structure. Afterwards, potentials of theories of 

learning with multiple representations will be reflected within the topic of Bayesian 

reasoning. Bringing both together yields in in a 2x2 matrix which allows for categorizing 

task types about Bayesian situations.  
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Resumen 

Se conocen bien las dificultades de las personas para juzgar adecuadamente las situaciones- 

problemas Bayesianas. Los profesores se enfrentan en la escuela a la cuestión de qué se 

puede hacer a largo plazo para apoyar a sus estudiantes en la resolución de situaciones 

Bayesianas. A este respecto este artículo refiere al aprendizaje de la matematización de 

situaciones Bayesianas en la escuela, especialmente centrado en el uso del cuadrado unidad 

en entornos de aprendizaje con múltiples representaciones. En primer lugar, se analizará el 

tema del razonamiento Bayesiano desde las diferentes perspectivas de matematización y 

modelización de la estructura matemática. Seguidamente, el potencial de teorías del 

aprendizaje que tienen en cuenta el uso de múltiples representaciones será reflejado dentro 

del tópico del razonamiento Bayesiano. Conjuntando ambos campos se elabora una matriz 

de 2x2 que permite la categorización de tipos de tareas sobre situaciones Bayesianas.  

Palabras claves: Situaciones Bayesianas, aprendizaje, representacionesmúltiples, 

categorización de tareas.  

1. Introduction 

It is well known in fields of research as well as of practice in classrooms that people 

have difficulties in adequately probabilistic reasoning within Bayesian reasoning 

situations. This kind of reasoning requires high demanding mental processes in which 

intuition plays a key role (cf. Batanero, 2015). However, intuition and probability are 

not always going well together, which gets Cosmides and Tooby (1996) to speak of 

“clashes between intuition and probability”. Even medicine experts have difficulties in 

diagnosing a Bayesian situation in fields of medicine like e.g. a Bayesian situation 

referring to a health test (Fig. 1).  

http://www.ugr.es/local/fqm126/civeest.html
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Figure 1. A Bayesian situation referring to a health test 

For example, in their studies Eddy (1982) or Hoffrage and Gigerenzer (1998) found that 

only 5% resp. 10% of the participating physicians were able to interpret the given 

information of comparable tasks in the right way. Because misinterpretations in such 

situations of decision making could have serious consequences huge efforts in research 

have been made to identify difficulties in Bayesian reasoning situations and to look for 

strategies how to overcome them. In the meanwhile, psychological and educational 

research found out that the question of the Bayesian problems’ representation is crucial 

with regard to the kind of numerical information on the one hand, and to the kind of 

visualization on the other (McDowell & Jacobs, 2017). This refers not only to the 

training of experts but also to the training of students in school on the long run. Thus, in 

the following section the mathematical and the modelling structure of Bayesian problem 

situations will be analysed in short only regarding the case of two events usually being 

most relevant in school. Afterwards the mathematising process which is at the very 

heart of the modelling process will be focussed on and discussed concerning the 

representation formats of the contextual as well as mathematical information given to 

describe Bayesian problem situations. 

2. Mathematizing Bayesian situations in school 

Mathematical aspects: Bayes situations are standing for that kind of problems which 

could be solved by using the Bayes formula. The Bayes formula in turn is an algebraic 

expression for the Bayes theorem which describes the probability of an event, based on 

prior knowledge of conditions that might be related to the event being of interest. 

Spoken generally, there are two events A and B which are related to each other in sense 

of that one event (e.g. event A) is conditioning the outcome of the other event (e.g. 

event B) and the question is about the probability of occurring this conditioned event B 

given A. More formally in sense of mathematics: Given there are two events A and B 

(from the sigma-field of a probability space) with the unconditional probability of A 

which is the probability P(A) of the event A occurring (with P(A) > 0). Then, the 

conditional probability of B given A is defined as the quotient of the probability of the 

joint of events A and B, and the probability of B, i.e. 𝑃(𝐵|𝐴) =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
, where 𝑃(𝐴 ∩ 𝐵) 

is the probability of the joint event 𝐴 ∩ 𝐵. Correspondingly, the conditional probability 

of A given B equals to the quotient of the probability of the joint of events A and B, and 

the probability of A, i.e. 𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
. Using some algebra for bringing both 

equations together one yields the Bayesian formula for 𝑃(𝐵|𝐴) with  

 𝑃(𝐵|𝐴) =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
=

𝑃(𝐴|𝐵)∙𝑃(𝐵)

𝑃(𝐴)
     (1) 

Keeping in mind that the probability of 𝑃(𝐴) can be specified regarding the cases of 

occurring or not occurring of event B by 𝑃(𝐴) =  𝑃(𝐴|𝐵) ∙ 𝑃(𝐵) + 𝑃(𝐴|�̅�) ∙ 𝑃(�̅�) 

(with �̅� = Ω\𝐵 being the complementary event and 𝑃(�̅�) = 1 − 𝑃(𝐵)) one gets the 

extended version of the Bayesian formula for 𝑃(𝐵|𝐴) with 
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𝑃(𝐵|𝐴) =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
=

𝑃(𝐴|𝐵)∙𝑃(𝐵)

𝑃(𝐴|𝐵)∙𝑃(𝐵)+𝑃(𝐴|�̅�)∙𝑃(�̅�)
   (2) 

which proves often to be useful for inserting numerical information typically given 

within Bayesian tasks into the Bayesian formula. Given all information would be 

directly available and correspondingly labelled according to the formula’s variables the 

solution of a Bayesian problem would be a question of pure calculation. However, 

usually it is not comfortable like this. 

Modelling aspects: Keeping a typical medical Bayesian situation (Fig. 1) in mind there 

arise some questions which must be answered before being able to apply Bayesian 

formula, like e.g. “what is a conditioning event?”, “what is a conditioned event?”, “how 

must the numerical information given in the text be translated in the formula’s 

parameter?”, “is it a Bayesian situation at all and thus, is the Bayesian formula 

applicable at all?”, etc. Answering questions like this is at the core of coping with 

Bayesian situations and decision making under uncertainty and fits the main aspects of 

modelling in school (cf. Eichler & Vogel, 2015). Modelling is an important competency 

for the thinking and teaching of statistics and probability (e.g. Wild & Pfannkuch, 1999; 

Eichler & Vogel, 2014; Eichler & Vogel, 2015; Pfannkuch, Ben-Zvi, & Budgett, 2018) 

and describes an overarching conception of mathematics education (e.g. OECD, 2003) 

referring to the four modelling phases which are arranged in the modelling cycle (Blum, 

Galbraith, Henn, & Niss, 2007). Figure 2 exemplifies the modelling process in the 

Bayesian situation context. 

 

Figure 2. Bayesian reasoning as a modelling process 

By analysing the Bayesian problem situation and the coping with it within the terms of 

the modelling approach it becomes obvious that there are many potential traps on the 

way from the real situation problem to the result and its interpretation (Fig. 2) including 

the counterintuition of the result which might be one explanation for the devastating 

findings of Eddy (1982) or Hoffrage and Gigerenzer (1998) mentioned in the 

introduction. On the other hand, the modelling cycle is also applicable for locating 

useful strategies in supporting people by better coping with Bayesian situations, 

especially in school, where the modelling approach is at the core of different curricula 

of different countries all over the world since the PISA studies of the OECD. 

Bridging real world and mathematical world – mathematizing: The transition processes 

between the “real” world, i.e. here the empirical world of data, and the mathematical 

world, i.e. here the theoretical world of probabilities, are at the very heart of the 

modelling processes. They are estimated to be very demanding and they are always 

endangered to be shortened inappropriately (Schupp, 2004, p. 3). Especially the sub-

process of organizing in mathematical terms is crucial but it is also considered as being 
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the most complex one (Klieme, Neubrand, & Lüdtke, 2001, p. 144). For the reason of 

taking into account this complexity and of reducing risk of inappropriate shortening the 

process of mathematizing has to be considered as a unit which consists of the two 

complementary subprocesses of abstraction one the one hand (model construction: 

constituting a mathematical model based on the real model) and of contextualizing 

(model inspection: checking the mathematical model’s structural and contextual 

adequateness in terms of the real model) on the other hand (Pfannkuch et al., 2018; 

Vogel, 2006). The subprocess of contextualizing has an important meaning in terms of 

mathematics or sciences learning in school: Students are often confronted with 

readymade models, like for example mathematical, chemical, biological or physical 

laws given in graphs or formulas, like e.g. the law of falling bodies with 𝑑 = 0,5 ∙ 𝑔 ∙ 𝑡2 

(d for distance, g for gravity, t for time). If students do not reconstruct the structural as 

well as the contextual meaning of the formulas, they are endangered to operate only on 

a sub-semantic level. Of course, this general aspect of mathematizing also touches the 

point in Bayesian reasoning. In general, the interpretation of a representation is an 

inherently contextualised activity (Roth and Bowen, 2001). Thus, learners must come to 

understand the relation between the representation, which refers in this case to the 

Bayes formula, and the domain that it represents, i.e. the Bayesian situation. According 

to these considerations the process of mathematizing can be specified and displayed as 

in Figure 3. 

 

Figure 3. Process of mathematizing (in Bayesian situations) 

3. Multiple representations in mathematizing Bayesian situations 

Fundamentals about learning with multiple representations  

According to Kaput (1987a) the root phenomena of mathematics learning and 

application are concerned with dealing with multiple representations. Following OECD 

(2003, p. 41) the representation competence involves “[…] the choosing and switching 

between different forms of representation of mathematical objects and situations, and 

translating and distinguishing between different forms of representation.” The empirical 

findings regarding the learners’ benefit from using multiple representations is two-fold: 

On the one hand there is empirical evidence that multiple representations can effectively 

support learners in their success of problem solving (DeBellis & Goldin, 2006; Kaput, 

1987b; van Someren, Reimann, & Boshuzien, 1998).  

However, on the other hand, research findings also yielded that sometimes the usage of 

multiple representations can hinder learning (e.g., Ainsworth, 2006; English & Halford, 

1995; Yerushalmy, 1991). By Following Ott, Brünken, Vogel, and Malone (2018) two 

main factors, i.e. learner characteristics, such as their prior knowledge, and the 

characteristics of the provided representations, might be accountable for positive 

learning effects of using multiple learning in mathematics. Concerning the factor 

characteristics of the provided representations there have to be two theoretical 

frameworks taken into account which found the discussion of learning with multiple 

representations: the Cognitive Theory of Multimedia Learning (CTML, Mayer, 2009) 
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and the Integrated Model of Text and Picture Comprehension (ITPC, Schnotz & 

Bannert, 2003). Instead of discussing specific theoretical details of these psychological 

models of information processing the common theoretical issues are sufficient for 

describing the central principles here (cf. Vogel, Girwidz, & Engel, 2007). These 

principles can be used for deriving didactical implications about the learning of 

mathematizing Bayesian situations afterwards. 

Both the CTML and the ITPC are basing on Paivio’s dual coding theory (Paivio, 1986), 

Wittrock’s view of learning as a generative process (Wittrock, 1974), and on Baddeley’s 

assumptions about the dual-channel working memory model (Baddeley, 1992). 

According to the dual-channel-approach two different kinds of external representations, 

i.e. descriptive and depictive representations (Schnotz & Bannert, 2003), are processed 

in two different channels by each being translated step by step into internal 

representations (and vice versa). Descriptive representations are composed of symbols 

like e. g. a certain text or the Bayesian formula. Depictive representations (e.g. pictures 

or diagrams, like the unit square or a tree diagram) are analogous to the represented 

phenomenon, as they include iconic signs and often express contextual relations without 

the use of symbols. By further processing in working memory internal representations, 

whether of homogeneous or heterogenous kind (cf. Ott et al., 2018), are related to each 

other on pre-knowledge-based processes of conceptual organization. Schnotz and 

Bannert (1999) speak of mutual supplementation via the construction of mental models 

and model inspection.  

A necessary prerequisite of benefitting from multiple representations is coherence 

formation (Seufert, 2003). Gentner (1983) is speaking of processes of structure 

mapping. Brünken, Seufert, & Zander (2005) distinguish between local coherence 

formation which refers to each one of the focused multiple representations and global 

coherence formation which refers to the conceptually mapping of the focused multiple 

representations and integrating them in a coherent mental representation. Thus, it 

becomes clear that the use of multiple representations does not per se lead to a benefit of 

the learners but need to be reflected on a theoretical base. 

Using multiple representations in mathematizing Bayesian situations  

The students’ learning goals of mathematizing Bayesian situations in school can be 

specified within the process model of Figure 3: On the one hand, it is about learning of 

abstracting a Bayesian task’s data in that way that the Bayesian formula’s ratio can be 

derived which allows for calculating the right (mathematical) solution afterwards. 

However, school learning about Bayesian situation is not only about Bayesian 

reasoning, but also about flexible Bayesian reasoning which means by following 

Borovcnik (2012) the understanding of parameter dependency in Bayesian reasoning 

situations (Böcherer-Linder, Eichler, & Vogel, 2017). More general, it is also about the 

conceptual understanding of the mathematical structure in terms of the problem 

situation beyond pure calculating probabilities, it is also about contextualization and 

model inspection of mathematical terms representing Bayesian situations. 

The basic idea of using multiple representations in mathematizing Bayesian situations 

is: If a certain representation proves not to be sufficient (like the task’s representation of 

the data of the Bayesian situation of Fig. 1) for different reasons like e.g. missing pre-

knowledge or a bad „performance of matching the nature of the problem representation 

to the nature of the task.“ (Vessey, 1991, p. 220) then it seems to be promising to 

provide an alternative representation matching better the prerequisites of the learner or 
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of the task, or, a combination of an alternative representation with the original 

representation.  

People can be effectively supported in a Bayesian reasoning situation when the 

numerical information is provided via so-called natural frequencies instead of using 

probabilities given in percentages (e.g. Hoffrage & Gigerenzer, 1998; Binder, K., 

Krauss, & Bruckmaier, 2015). Gigerenzer & Hoffrage (1995, p. 697) explain the 

facilitating effect of natural frequencies by using an evolutionary argument: "An 

evolutionary point of view suggests that the mind is tuned to frequency formats, which 

is the information format humans encountered long before the advent of probability 

theory.” This quotation fits that point what Salomon (1979, p. 137) calls “cognitive 

make-up”. From a mathematical point of view the most important thing for getting the 

right solution is not necessarily to apply the Bayesian formula in a narrow sense of the 

symbolic expression but to find the crucial numerical information defining the 

numerator and denominator of the ratio which represents the result of the Bayesian 

problem. In concrete, the result of 30,1% for the health task given in Figure 1 can not 

only derived by calculating a single-event-probability using the probabilities 

𝑃(𝐷), 𝑃(+|𝐷), 𝑃(�̅�), 𝑃(𝐷|+) given by percentages. In case of interpreting probabilities 

as relative frequencies the same result can be calculated by representing the numerical 

information of the data via natural numbers instead of percentages, so-called natural 

frequencies (Johnson & Tubau, 2015, p. 5). In terms of this approach, the problem of 

Figure 1 could be correspondingly given by those versions of Figure 4.  

 

Figure 4. Bayesian health test situation represented via single-event-probability and via 

natural frequencies 

In case of using natural frequencies the computation becomes easier (cf. Johnson 

& Tubau, 2015): When comparing both terms for the same ratio in equation (3) only 

three absolute numbers instead of six percentages must be processed in the term. The 

correct solution, which is the so-called positive predictive value of the test, can be 

calculated by Bayes’ rule either by using probabilities or natural frequencies:  

 𝑃(𝐷|+) =
80% ∙10%

80%∙10%+20%∙90%
=

8

8+18
= "8 𝑜𝑢𝑡 𝑜𝑓 26"    (3) 

However, some issues have to be discussed regarding this problem approach in school 

because there are several steps to go from the wording and numbering of the original 

task to the application of the Bayes formula (cf. Johnson & Tubau, 2015). The 

following aspects teachers should have in mind in teaching this way of abstraction: 

 The format of the numerical information must be distinguished from the number of 

events. The numerical format of percentages can be used as normalized 

measurement of either a single-event-probability, e.g. given in the task (10% chance 

of having a disease) or of a proportion of a set (10% of the persons are expected to 

have the disease). In the same way, whole numbers can be used to express relative 

frequencies (10 out of 100 persons are expected to have the disease) or single events 

(in 10 out of 100 chances having the disease is expected). 
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 Both the format of the numerical information and the number of events have to be 

distinguished from the sampling structure. The sampling structure could be given by 

the base-rate 𝐷, the test sensitivity (+|𝐷), test specificity (+|�̅�) or via the joint 

events (+ ∩ 𝐷), (+ ∩ �̅�). The same information could be represented either via the 

normalized or frequency formats. 

 From a pure mathematical point of view the two versions are algebraically not 

equivalent (probabilities are functions of events) but they are functionally 

equivalent. Thus, teachers have to decide what is at the forefront of their teaching 

interest: Using and applying probabilities in the field of Bayesian situations or 

training of Bayesian reasoning abilities in sense of problem solving or even both. 

All these learning goals are valuable, but they are different.  

Consequently, in the following scenarios of using multiple representations in the two-

folded process of mathematizing are discussed: abstraction and contextualization 

regarding coherence formation. Because of the huge amount of available depictional 

representations in the field of Bayesian reasoning (cf. Khan, Breslav, Glueck, & 

Hornbæk, 2015) the focus will be reduced on the unit square. The unit square is 

comparably unknown in regard to the more common tree diagram. However, there are 

some issues concerning the psychological models of processing multiple representations 

which makes the unit square interesting from a theoretical point of view (e.g. Eichler & 

Vogel, 2010; Eichler & Vogel, 2013, 2015). 

Descriptive coherence formation 

Given there are these two tasks’ representations of Figure 4 to describe the Bayesian 

situation then the local coherence formation in sense of Seufert and Brünken (2003) 

would mean to extract the given data of each task’s text, label them with regard to their 

contextual meaning, and relate the data to each other in the right order. This is the most 

crucial issue in Bayesian situations because there are conditioning information and 

conditioned information which are known as often being mistaken one for another. With 

regard to the medical setting of the Bayesian situations the constituting information of 

the real-model’s data are the base-rate, the true-positive-rate and the false-positive rate. 

With regard to the mathematical structure of the having-to-find ratio which yield into 

the solution of the Bayesian situation the relevant information is to be separated into the 

conditioning information (base-rate 𝐷) and the conditioned information (true-positive-

rate (+|𝐷), false-positive rate (+|�̅�)); Fig. 5).  

Via natural frequencies all numerical information are absolutely quantified to a single 

reference class (i.e. the superordinate set of 100 persons), where categories are naturally 

classified into (in terms of probability theory) expected values of the compounded 

events 𝐷 ∩ +, 𝐷 ∩ −, �̅� ∩ +, �̅� ∩ −. In this case, the conditional distribution does not 

depend on the between-group (having the disease, not having the disease) base rates, but 

only on the within-group frequencies (true-positive-rate, false-positive rate). According-

ly, the base rates can be ignored, numbers are on the same scale and can be directly 

compared and (additively) integrated, and the required computations are reduced to a 

simpler form of Bayes rule (cf. equation (3)). Correspondingly, in the natural frequency 

version also the structure of the nested sets of the Bayesian situation becomes more 

transparent. 

The next step after having extracted the crucial numerical out of the tasks’ wording 

forward to “the having-to-find ratio” is bridging the gap between the sequential ordering 
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of the numerical information in the tasks’ wording (in sense of the natural language) and 

the relational setting of the numerical information in the tasks’ formula structure (in 

sense of the mathematical language of algebra). In a representational point of view this 

step from the natural language to what Vollrath (2003) calls “formula language” has to 

be seen at the core of the abstraction process leading from the real-model world to the 

mathematical model world. In a theoretical point of view this step should be expected 

being supportable by using representations of both worlds and bring them together in an 

artificial notion of what in analogy to Eichler and Vogel (2010) can be called a “word-

formula” (Fig. 5; the analogue case of a “picture-formula” will be discussed afterwards). 

 

Figure 5. Bayesian health test situation represented via single-event-probability and via natural 

frequencies 

The “word-formula”-notion uses the common fraction-notation and combines it with 

text being inserted as numerator and denominator. There is some empirical evidence 

given by Ott et al. (2018) on which the “word-formula”-idea can be based on: When 

looking for effective multimedia support in coping with propositional logic tasks text in 

sense of natural wording proved to be constantly the reference representation 

throughout different treatment groups either working within a purely descriptive mode 

or a mixed mode including depictive representations. Thus, the students who are not 

feeling familiar enough with the formal notation Bayesian formula can make an 

intermediate step by thinking only about the ratio but not the formal notation first. 

Afterwards, when having defined the Bayes’ ratio by using wording of natural language 

both the denominator and numerator can be translated in the mathematical terms given 

by the task. Going this way, the abstracting process can be displayed schematically like 

in Figure 5. 

The idea of using „word-formulas“ is not a new one, it can be already found being 

implicitly used by e.g. Gigerenzer and Hoffrage (1995), Eichler and Vogel (2010), or 

Eichler and Vogel (2015). Of course, this kind of formula-notation is formally lacking 

the syntactical rules of the usual algebraic notation. However, this kind of notation 

represents an intermediate step of translation between real-world representations and 

mathematical world representations and thus, it must not be judged in an algebraic but 

in a pedagogical respect: Students should be supported in their learning about applying 

mathematical language (and their representations) to real-world affairs like e.g. 

Bayesian situations.  

Further, regarding the two-folded process of mathematizing (Fig. 3) it is not only about 
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abstracting towards the mathematical world. It is also about going backwards from a 

given Bayesian formula towards the real-world model: In this perspective the ratio 

being a ready-made mathematical model for the Bayesian situation either given via 

single-event-probabilities or via natural frequencies must be reflected concerning the 

mathematical structure and the contextual meaning of the situation. This refers to the 

contextual meaning of the parameters (𝐷, (𝐷|+), … ) as well as to the meaning of their 

position within the Bayesian formula. The “word-formula”-approach is expected as also 

being useful in this turn-around of mathematizing.  

Depictive coherence formation  

By mainly focusing on tree diagrams Spiegelhalter and Gage (2014) emphasize the need 

of visualizing Bayesian situations for facilitating a specific situation’s interpretation and 

allowing people to estimate a risk adequately. Whereas there is a considerable amount 

of different visualizations for communicating Bayesian situations (Khan, Breslav, 

Glueck, & Hornbæk, 2015), research on visualizations of Bayesian situations for 

students’ learning is mainly restricted firstly to pure calculating the right solution of the 

problem situation given in percentages and, secondly, restricted to the tree diagram (as 

well as to 2x2-tables, cf. Veaux, Velleman, & Bock, 2011) but not to the unit square 

(Fig. 6).  

The unit square allows for a depictional way of studying probability problems because, 

unlike Venn diagrams, it is semantically consistent with the rules of probability. 

Referring to the diagnosis task represented either in the probability or the frequency 

format, the unit square is partitioned into four areas (Fig. 6) concerning the events 

having the disease (D), not having the disease (�̅�), getting a positive test result (+) or a 

negative test result (−). 

The vertical partitioning is determined by the event of having the disease which 

corresponds to the probability P(D) = 20% of having the disease and accordingly to the 

probability P(�̅�) = 80% of not having the disease. The horizontal partitioning depends 

on the vertical partitioning and, thus, represent conditional events, which correspond to 

the probability that a healthy person gets wrongly a positive test result (P(+|�̅�) (Fig. 6, 

length of the vertical side right above) and accordingly to the probability that a person 

having the disease gets correctly a positive test result (P(+|D) (Fig. 6, length of the 

vertical side left above). The areas represent joint probabilities, i.e. P(D ∩ +),  

P(D ∩ −), P(�̅� ∩ +) and P(�̅� ∩ −). The natural frequencies shown in Figure 6 on the 

right represent from the perspective of probability theory the expected values for the 

compounded events, i.e. 8 (D∩ +), 2 (D∩ −), 18 (�̅� ∩ +) and 72 (�̅� ∩ −).  

 

Figure 6. Health test situation represented in the unit square via single-event-probability 

(left) and via natural frequencies (right) 

Because of its characteristics there are theoretical arguments suggesting that the unit 

square is especially suited to address mathematizing Bayesian situations: The unit 
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square is a statistical graph (Tufte, 2015), which means, that the sizes of the partitioned 

areas are proportional to the sizes of the represented data. Therefore, because of this 

characteristic of area-proportionality the proportions of incidences, like e.g. the base-

rate, in a population are represented numerically as well as geometrically. Thus, the 

benefit in a mathematical regard is that the unit square can be used to calculate the 

numerical value of probabilities and to determine the Bayes ratio (cf. Oldford, 2003, 

p. 1). From a theoretical point of view of multimedia learning (cf. above) the benefit of 

using the unit square is that it represents the depictive information principle. Thus, the 

numerical descriptively represented information gets an analogues depictive counterpart 

which may lead to a deeper elaboration of the Bayesian situation’s mental model via 

mutual supplementation (cf. above; Schnotz & Bannert, 1999). 

Furthermore, the characteristic of area-proportionality allows for using the unit square 

in the abstracting step forward to “the having-to-find ratio”: By bridging the gap 

between the sequential ordering of the numerical information in the tasks’ wording and 

the relational setting of the numerical information in the tasks’ formula structure the so-

called “picture-formula of Bayes” (Eichler & Vogel, 2010) can be applied (Fig. 7).  

One essential issue of the unit square is that the numerically represented products of 

conditioning probabilities and conditioned probabilities (e.g. 𝑃(+|𝐷) ∙ 𝑃(𝐷)) which 

determine the denominator and the numerator of the Bayes formula correspond to the 

calculation of the rectangular subareas (length multiplied with width) of the unit square. 

With this kind of calculation, the students are usually very familiar when learning about 

conditional probabilities and Bayesian situations. Thus, the in the novices’ eyes 

complex looking Bayesian formula gets potentially better accessible for school students 

because its parts are based on well-known mathematical subroutines.  

Because of the area-proportional characteristic of this depictive representation it is even 

possible to estimate qualitatively the approximate value of the Bayes ratio: relating the 

subareas of denominator and numerator of the “picture-formula” of Figure 7 to each 

other with a good eye yield into nearly one third because the white rectangular seems 

approximately twice as large as the grey one. This fits roughly the exact value of 30,1% 

(cf. above). Furthermore, it becomes obvious that conjoint probabilities representing the 

subareas of the unit square derive from multiplying conditioning and conditioned 

probabilities like 𝑃(+ ∩ 𝐷) = 𝑃(+|𝐷) ∙ 𝑃(𝐷) (of course, also 𝑃(+ ∩ 𝐷) = 𝑃(𝐷|+) ∙
𝑃(+) which fits contextually another problem situation).  

Going beyond, the unit square even suites to support the studying of parameter 

dependency of flexible Bayesian reasoning (in sense of Borovcnik, 2012 and Böcherer-

Linder et al., 2017): If there would be, for example, a base-rate of a probability of 80% 

of having the disease in this articles working example the “picture-formula” of Figure 7 

allows for predicting the resulting probability as becoming nearly 1 without calculating 

exact values by upsizing mentally the width of the grey rectangular and correspondingly 

downsizing the width of the white rectangular. Concerning the nested sets hypothesis 

which is “[…] the general claim that making nested-set relations transparent will 

increase the coherence of probability judgment.” (Sloman, Over, Slovak, & Stibel, 

2003, p. 307) it could be stated that unit square fits the transparency criterion by directly 

neighboring the decisive subareas of the Bayesian situation (fig, 7 in the middle). 

These considerations about the representation characteristic of the unit square and the 

“picture-formula” are not depending on the two-folded direction of the mathematizing 

process, they can become relevant in the process of abstraction as well as in the process 
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of contextualization. Given for example a Bayesian formula representing a single-event 

probability is given within a certain problem context it is possible to reconstruct all 

information via the descriptive way and/or the depictive way of representation. In the 

psychological point of view of processing multiple representations, the potential of 

depictional coherence formations must be seen in the combination of depictive and 

descriptive representations (Fig. 7). This potential should be made useful for teaching 

about mathematizing Bayesian situations in school via systematic tasks. 

 

Figure 7. Depictional coherence formation via the “picture-formula of Bayes” 

4. Task variations of mathematizing Bayesian situations in school 

With regard to the mathematizing of Bayesian situations learning goals in school can be 

differentiated by the subprocesses of abstracting and contextualization. With regard to 

the use of multiple descriptional and depictional representations these learning goals can 

be specified according to their use of reception and of translation which are essential 

elements of coherence formation (cf. above; Seufert, 2003; Seufert & Brünken, 2003). 

Thus, task variations addressing these processes can be structurally located in the 2x2-

matrix of Figure 8 which exemplifies the case of single-event-probabilities. It should be 

remarked that the elements of the matrix cells display the typical intended state of each 

cell. The correctly applied Bayes formula, for example, represents the intended state of 

the mathematical model which allows for calculating the right solution in the next step 

of modelling (cf. above) or, with regard to mathematizing, it allows for asking for the 

structural as well as contextual meaning of the formula’s parameter. Or, the correctly 

marked unit square allows for deriving the right Bayes formula within the 

mathematizing step of abstraction.  

There are task variations of the reception type: These address questions about the 

interpretation of either a single representation or the combination of at least two 

combined representations. Potential examples for the interpretation of a single 

representation could be: “What is the meaning of each subarea of the completely labeled 

unit square?”, “Why is there the same term being part of the denominator as well as of 
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the numerator?”, “Which numerical information stands for base-rate, true-positive-rate, 

false-positive-rate, …, which information are conditioning, which one are conditioned, 

which wording in the task indicates what?” Correspondingly, reception type tasks for 

the case of two combined representations. This could be: “How do the rectangular relate 

to the numerical information of the Bayes formula?” (given picture-formula and Bayes 

formula) or “Where can the conditioning information, where the conditioned 

information be found in the text, where in the unit square?” (given unit square and text 

of the task). Task variations of the reception type aim for the students’ understanding of 

the different types of representations by which they are confronted when they work on 

Bayesian situations. 

There are also task variations of the translation type: These address questions for 

generating a representation based on a given one. Potential examples could be: “How 

does the Bayesian formula look like on base of the given numerical information of the 

unit square?”, “How can the numerical information of the task’s text be placed within 

the unit square?” or “Make up a story out of the given Bayesian formula.” Task 

variations of the translation type aim for the students’ learning to use flexibly different 

representations in different situations of Bayesian problem solving. Therefore, the 

students have to become more and more confident in handling these representations 

which trigger different mental perspectives on the Bayesian situation (cf. Schnotz 

& Bannert, 1999; Mayer, 2009). Especially in this point of view, it becomes obvious 

that it is one thing to support school students on demand via giving them alternative 

representations and it is another thing to enable them helping themselves on the long 

run. 

Both the reception type and the translation type are exemplified by the single-event-

probability version of Bayesian situations. Of course, these types can also be applied in 

the natural frequency version. Furthermore, they can be applied for the combination of 

both versions because students should also learn about the different perspectives of 

modelling of the same Bayesian problem structure. In this point of view, the students 

could for example be trained in translating the tasks’ wording of the single-event-

probability-version into the natural frequency-version and vice versa. Thus, they get an 

additional heuristic to cope with different demands of Bayesian situations.  

 

Figure 9. Elements of coherence formation in multimedia based mathematizing process 

Realizing the underlying abstract structure is also the learning goal of varying situations 

(Eichler & Vogel, 2015). Ainsworth (2006, p. 186) defines: “Abstraction is the process 
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by which learners create mental entities that serve as the basis for new procedures and 

concepts at a higher level of organization.” Thus, by confronting learners with 

contextually different Bayesian situations they should stimulated to construct across-

references that then expose the underlying structure of the domain represented as being 

a common structural element of all situations. The varying situations principle can not 

only be referred to the contextual side but also to the mathematical side: In general, the 

Bayesian structure is a certain case of building proportions of quantities which could be 

measured either via percentages but also via common fractions (percentages correspond 

to fractions with the denominator 100).  

Thus, the students in school should also being confronted with not-Bayesian problems 

of proportion-building to learn to distinguish between Bayesian and not-Bayesian 

situations. This corresponds to the fundamentals of learning via examples and 

counterexamples which is a central principle of acquiring conceptual mathematical 

knowledge (e.g. Ausubel, 1980). In this point of view learning about Bayesian ratios 

could be already addressed in in lower secondary or even primary schools when 

students learn about fractional arithmetic. Of course, in this case the contextual and 

mathematical setting of the problem’s presentation should fit the horizon of children’s 

development status (e.g. Binder & Vogel, 2018; Martignon, & Erickson, 2014).  

5. Discussion and conclusion 

The question of how to promote insight into Bayesian reasoning situations is a crucial 

issue for mathematics education and has practical consequences for the teaching and 

learning of statistics in school. However, this question is also a very complex and 

multifaceted one. Thus, it needs a tailored focus to come to conclusions which could 

shed some light on possible theoretical, empirical and practical answers. This paper’s 

approach about treating Bayesian situations in school is based on two columns which 

were integrated successively in the argumentation: the mathematizing process and the 

learning with multiple representations. The process of mathematizing is the essential 

part of the modeling cycle which turns out to be at the very heart of learning statistics 

and probability. It is argued that this mathematizing process is bridging the real-model 

world and the mathematical model world. Thereby, the subprocesses of abstraction on 

the one hand and contextualization on the other hand have to be distinguished. This 

process of mathematizing is reflected within the fundamentals of theories of processing 

multiple representations with a special focus on the unit square. As a consequence, a 

2x2-matrix of multimedia-based mathematizing of Bayesian situations was derived. 

This 2x2-matrix can be used as a diagnosis tool for teachers and allows for a 

systematical developing of task variations in school.  

This approach’s tailoring brings some limitations which should be discussed. Firstly, the 

referenced theories of multimedia learning focus on the process of information 

processing but not on theories about human cognitive dispositions. Thus, the “the 

standard ‘natural frequency vs. nested-sets’ debate” (Johnson & Tubau, 2015, p. 5) was 

left out. However, doing so doesn’t mean that these theoretical approaches and their 

debate would not be of great importance. It is simply a question of space and a question 

of self-limitation. Those readers who are interested in this regard are recommended to 

take the references of the introduction part into account. The referenced authors 

contributed seminal works to and around the mentioned debate.  

The same question of reducing refers to theories of semiotics: There is a huge amount of 
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fundamental and important works which reflect among others on the meaning of signs 

and sign processes, analogy, symbolism, signification, and communication. These 

aspects are all part of a representation debate in a wide sense. However, the question of 

representation is connected with many far-reaching questions (cf. Cuoco, 2001). This 

may explain why Kaput (1987a, p. 19) states that there is „the apparent lack of a 

comprehensive, systematic theoretical framework of symbol systems and representation 

systems capable of supporting the kinds of understandings necessary to solve the 

problems just alluded to.“  

However, in the meanwhile there has been some progress and by honoring Carmen 

Batanero and Juan D. Godino their great works about the Onto-Semiotic Approach in 

fields of research in mathematics education should be explicitly emphasized (e.g. 

Godino, Batanero, & Font, 2007; Godino, Batanero, & Roa, 2005; Godino & Batanero, 

2003). 

The theory-based development of task variations of mathematizing Bayesian situations 

in school asks for empirical evidences, especially concerning the unit square. This is 

one of the main goals in our ongoing research program that we called BAYES2. We 

research on potentials of the unit-square in supporting people to cope with Bayesian 

situations.  

In the meanwhile, we got some empirical evidence that the unit-square can be a useful 

representation in mathematizing Bayesian situations referring the visibility of the 

relevant mathematical structure of the problem situation. Recognizing this structure is 

crucial when computing set-subset relations in Bayesian situations, applying Bayes’ rule 

and estimating the effect of a changed base rate (e.g. Böcherer-Linder et al., 2017; 

Böcherer-Linder & Eichler, 2017; Böcherer-Linder, Eichler, & Vogel, 2018).  

A limitation of these studies must be seen in the level of the educational background of 

the participants. They all were students at university which reached university entrance 

level by having successfully finished the upper secondary school before. Accordingly, 

after having got these promising results we enlarged our research focus and ask for the 

possibility of transferring the unit square’s supporting effects into the level of secondary 

school. On this base, we firstly conducted a replication study with students of lower 

secondary level to research on potential effects of mathematical education (Vogel & 

Böcherer-Linder, 2018). A further study has been carried out in the upper secondary 

school, this study will be presented at this CIVEEST conference 2019 by Andreas 

Eichler. 

At the moment, there is a survey in classes of middle secondary level going on which is 

about the effects of different abstract levels of contents of different Bayesian situations. 

First results of this study are expected to be presentable at the conference. All these 

studies can be referenced to the 2x2-matrix which was theoretically derived in this 

contribution. Thus, this representational model of mathematizing Bayesian situations 

could not only be used for purposes of diagnosing and task variation developing (cf. 

above) but also for referencing our empirical studies in school. 
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