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Abstract: In this paper, using the concept of ω-admissibility, we prove some fixed point results for
interpolate Ćirić-Reich-Rus-type contraction mappings. We also present some consequences and
a useful example.
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1. Introduction and Preliminaries

In [1], the notion of an interpolative Kannan-type contraction was introduced and the following
fixed point theorem was stated:

A self-mapping T on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ λ [d (ξ, Tξ)]α · [d (η, Tη)]1−α , (1)

where λ ∈ [0, 1) and α ∈ (0, 1), and ξ, η ∈ X with ξ 6= Tξ, has a unique fixed point in X.
Very recently, the authors in [2] (see also [3]) pointed out a gap in [1], that is the guaranteed fixed

point in the theorem above need not be unique.
The next theorem and its invariants were considered and proven independently by L.B. Ćirić

(Serbia), S. Reich (Israel), and I.A. Rus (Romania); see, e.g., [4–11]. Regarding the contributions of
these authors, we shall call the following result the Ćirić-Reich-Rus theorem, by which our main result
is inspired.

Ćirić-Reich-Rus theorem: A self-mapping T on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ λ [d(ξ, η) + d(ξ, Tξ) + d(η, Tη)] , (2)

for all ξ, η ∈ X, where λ ∈
[
0, 1

3

)
, possesses a unique fixed point.

Denote by Ψ the set of all nondecreasing self-mappings ψ on [0, ∞) such that:

∞

∑
n=1

ψn(t) < ∞ for each t > 0.

Note that for ψ ∈ Ψ, we have ψ(0) = 0 and ψ(t) < t for each t > 0; see, e.g., [10,12].
The notion of ω-orbital admissible maps was introduced by Popescu as a refinement of the

concept of α-admissible maps of Samet et al. [13].

Mathematics 2019, 7, 57; doi:10.3390/math7010057 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-3896-3809
http://www.mdpi.com/2227-7390/7/1/57?type=check_update&version=1
http://dx.doi.org/10.3390/math7010057
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 57 2 of 8

Definition 1 ([14]). Let ω : X× X → [0, ∞) be a mapping and X 6= ∅. A self-mapping T : X → X is said
to be an ω-orbital admissible if for all s ∈ X, we have:

ω(s, Ts) ≥ 1⇒ ω(Ts, T2s) ≥ 1. (3)

Many papers used and generalized this above concept in order to prove variant (common)
fixed point results (see, for instance, [15–24]). In this setting, the following condition has often been
considered in order to avoid the continuity of the involved contractive mappings.

(H) If {ηn} is a sequence in X such that ω(ηn, ηn+1) ≥ 1 for each n and ηn → η ∈ X as n → ∞,
then there exists {ηn(k)} from {ηn} such that ω(ηn(k), η) ≥ 1 for each k.

In this paper, using the notion of ω-admissibility, we initiate the idea of ω-interpolative
Ćirić-Reich-Rus-type contraction. We also present some consequences and an example in support of
our obtained result.

2. Main Results

First, we initiate the concept of ω-interpolative Ćirić-Reich-Rus-type contractions.

Definition 2. Let (X, d) be a metric space. The map T : X → X is said to be an ω-interpolative
Ćirić-Reich-Rus-type contraction if there exist ψ ∈ Ψ, ω : X × X → [0, ∞) and positive reals γ, β > 0,
verifying γ + β < 1, such that:

ω(ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, η)]β · [d (ξ, Tξ)]γ · [d (η, Tη)]1−γ−β

)
(4)

for all ξ, η ∈ X�Fix(T), where Fix(T) denotes the set of all fixed points of T (that is, points a ∈ X such that
Ta = a).

The essential main result is given as follows.

Theorem 1. Suppose a continuous self-mapping T : X → X is ω-orbital admissible and forms an
ω-interpolative Ćirić-Reich-Rus-type contraction on a complete metric space (X, d). If there exists ξ0 ∈ X such
that ω(ξ0, Tξ0) ≥ 1, then T possesses a fixed point in X.

Proof. Let ξ0 ∈ X be a point such that ω(ξ0, Tξ0) ≥ 1. Let {ξn} be the sequence defined by
ξn = Tn(ξ0), n ≥ 0. If for some n0, we have ξn0 = ξn0+1, then ξn0 is a fixed point of T, which
ends the proof. Otherwise, ξn 6= ξn+1 for each n ≥ 0. We have ω(ξ0, ξ1) ≥ 1. Since T is ω-orbital
admissible,

ω(ξ1, ξ2) = ω(Tξ0, Tξ1) ≥ 1.

Continuing as above, we obtain that:

ω(ξn, ξn+1) ≥ 1 for all n ≥ 0. (5)

Taking ξ = ξn and η = ξn−1 in (4), we find that:

d (ξn+1, ξn) ≤ ω (ξn, ξn−1) d (Tξn, Tξn−1)

≤ ψ
(
[d (ξn, ξn−1)]

β [d (ξn, Tξn)]
γ · [d (ξn−1, Tξn−1)]

1−γ−β
)

= ψ
(
[d (ξn, ξn−1)]

β · [d (ξn, ξn+1)]
γ · [d (ξn−1, ξn)]

1−γ−β
)

= ψ
(
[d (ξn−1, ξn)]

1−γ · [d (ξn, ξn+1)]
γ
)

. (6)



Mathematics 2019, 7, 57 3 of 8

In particular, as ψ (t) < t for each t > 0,

d (ξn+1, ξn) ≤ ψ
(
[d (ξn−1, ξn)]

1−γ · [d (ξn, ξn+1)]
γ
)

< [d (ξn−1, ξn)]
1−γ · [d (ξn, ξn+1)]

γ . (7)

We derive:
[d (ξn, ξn+1)]

1−γ < [d (ξn−1, ξn)]
1−γ . (8)

Therefore:
d (ξn, ξn+1) < d (ξn−1, ξn) for all n ≥ 1. (9)

Hence, the positive sequence {d (ξn−1, ξn) is decreasing. Eventually, there is a real ` ≥ 0 in order
that lim

n→∞
d (ξn−1, ξn) = `. Taking into account (9),

[d (ξn−1, ξn)]
1−γ · [d (ξn, ξn+1)]

γ ≤ [d (ξn−1, ξn)]
1−γ · [d (ξn−1, ξn)]

γ

= d (ξn−1, ξn) ,

so (6) together with the nondecreasing character of ψ lead to:

d (ξn+1, ξn) ≤ ψ
(
[d (ξn−1, ξn)]

1−γ · [d (ξn, ξn+1)]
γ
)
≤ ψ

(
d (ξn−1, ξn)

)
.

By repeating this argument, we get:

d (ξn, ξn+1) ≤ ψ
(

d (ξn−1, ξn)
)
≤ ψ2

(
d (ξn−2, ξn−1)

)
≤ . . . ≤ ψn

(
d (ξ0, ξ1)

)
. (10)

Taking n → ∞ in (10) and using the fact lim
n→∞

ψn(t) = 0 for each t > 0, we deduce that ` = 0,

that is,
lim

n→∞
d(ξn, ξn+1) = 0.

We assert that {ξn} is a Cauchy sequence, that is lim
n→∞

d(ξn, ξn+p) = 0 for all p ∈ N. On account of

the triangle inequality together with (10), we find:

d(ξn, ξn+p) ≤ ψn
(

d (ξ0, ξ1)
)
+ · · ·+ ψn+r−1

(
d (ξ0, ξ1)

)
≤

∞

∑
i=n

ψi
(

d (ξ0, ξ1)
)

.

Letting n→ ∞ in the inequality above, we conclude that the right-hand side tends to zero. Thus,
{ξn} is a Cauchy sequence. Regarding the completeness of the metric space (X, d), we deduce that
there is some ξ ∈ X so that:

lim
n→∞

d(ξn, ξ) = 0. (11)

Since T is continuous, we have ξ = lim
n→∞

ξn+1 = lim
n→∞

Tξn = T
(

lim
n→∞

ξn

)
= Tξ.

In what follows, we replace the continuity criteria by a weakened condition (H).

Theorem 2. Suppose a self-mapping T : X → X is ω-orbital admissible and forms an ω-interpolative
Ćirić-Reich-Rus-type contraction on a complete metric space (X, d). Suppose also that the condition (H)

is fulfilled. If there exists ξ0 ∈ X such that ω(ξ0, Tξ0) ≥ 1, then T possesses a fixed point in X.

Proof. By the proof of Theorem 1 verbatim, we conclude that the constructed sequence {ξn} is Cauchy
and (11) holds. Suppose the condition (H) holds. We argue by contradiction by assuming that ξ 6= Tξ.
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Recall that ξn(k) 6= Tξn(k) for each k ≥ 0. Due to (H), there is a partial subsequence {ξn(k)} of {ξn}
such that ω

(
ξn(k), ξ

)
≥ 1 for all k. Since {d

(
ξn(k), ξ

)
} → 0, {d

(
ξn(k), Tξn(k)

)
} → 0 and d (ξ, Tξ) > 0,

there is N ∈ N such that, for each k ≥ N,

d
(

ξn(k), ξ
)
≤ d (ξ, Tξ) and d

(
ξn(k), Tξn(k)

)
≤ d (ξ, Tξ) .

Taking ξ = ξn(k) and η = ξ in (4), we get that:

d
(

ξn(k)+1, Tξ
)
≤ ω

(
ξn(k), ξ

)
d
(

Tξn(k), Tξ
)

≤ ψ
( [

d
(

ξn(k), ξ
)]β
·
[
d
(

ξn(k), Tξn(k)

)]γ
· [d (ξ, Tξ)]1−γ−β

)
.

(12)

As ψ is nondecreasing, it follows from (12) that:

d
(

ξn(k)+1, Tξ
)
≤ ψ

(
[d (ξ, Tξ)]β · [d (ξ, Tξ)]γ · [d (ξ, Tξ)]1−γ−β

)
= ψ

(
d (ξ, Tξ)

)
.

Letting k→ ∞, we find that:

0 < d (ξ, Tξ) ≤ ψ
(

d (ξ, Tξ)
)
< d (ξ, Tξ) ,

which is a contradiction. Thus, ξ = Tξ.

In what follows, we introduce the notion of ω-interpolative Kannan-type contractions.

Definition 3. The self-mapping T on the metric space (X, d) is called an ω-interpolative Kannan-type
contraction if there exist ψ ∈ Ψ, ω : X× X → [0, ∞) and β ∈ (0, 1) such that:

ω(ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, Tξ)]β · [d (η, Tη)]1−β

)
, (13)

for all ξ, η ∈ X�Fix(T).

The following one is our second main result.

Theorem 3. Let T : X → X be an ω-orbital admissible and ω-interpolative Kannan-type contraction mapping
on a complete metric space (X, d). Assume also that either T is continuous on (X, d) or (H) holds. If there
exists ξ0 ∈ X so that ω(ξ0, Tξ0) ≥ 1, then there exists a fixed point of T in X.

We skipped the proof due to the verbatim proof of Theorem 1.
By considering ω(x, y) = 1 in Theorem 1, we state the following.

Corollary 1. Let T be a self-mapping on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ ψ
(
[d (ξ, η)]β · [d (ξ, Tξ)]γ · [d (η, Tη)]1−γ−β

)
, (14)

for all ξ, η ∈ X�Fix(T), where γ, β > 0 are positive reals satisfying γ + β < 1. Then, T admits a fixed point.

Corollary 2. Let T be a self-mapping on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ ψ
(
[d (ξ, Tξ)]β · [d (η, Tη)]1−β

)
, (15)
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for all ξ, η ∈ X�Fix(T), where 0 < β < 1. Then, T admits a fixed point in X.

Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 1, we state:

Corollary 3. Let T be a self-mapping on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ λ [d (ξ, η)]β · [d (ξ, Tξ)]γ · [d (η, Tη)]1−γ−β , (16)

for all ξ, η ∈ X�Fix(T), where γ, β are positive reals verifying γ + β < 1 and λ ∈ [0, 1). Then, T has a fixed
point in X.

Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 2, we state:

Corollary 4. Let T be a self-mapping on a complete metric space (X, d) such that:

d (Tξ, Tη) ≤ λ · [d (ξ, Tξ)]β · [d (η, Tη)]1−β , (17)

for all ξ, η ∈ X�Fix(T), where 0 < β < 1 and λ ∈ [0, 1). Then, there exists a fixed point of T.

Remark 1. Corollary 3 corresponds to Corollary 2.1 in [2].

Let (X, d,�) be a partially-ordered metric space. Let us consider the following condition.

(G) If {ξn} is a sequence in X such that ξn � ξn+1 for each n and ξn → ξ ∈ X as n → ∞, then there
exists a subsequence {ξn(k)} of {ξn} such that ξn(k) � ξ for each k.

Following [23], we may state the following consequences of Theorem 1.

Corollary 5. Let (X, d,�) be a complete partially-ordered metric space. Let T : X → X be the mapping
such that:

ω (ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, η)]β · [d (ξ, Tξ)]γ · [d (η, Tη)]1−γ−β

)
,

for all ξ, η ∈ X�Fix(T) with ξ � η, where ψ ∈ Ψ and γ, β > 0 are positive reals such that γ + β < 1.
Assume that:

(i) T is nondecreasing with respect to �;
(ii) there exists ξ0 ∈ X such that ξ0 � Tξ0;
(iii) either T is continuous on (X, d) or (G) holds.

Then, T has a fixed point in X.

Proof. It suffices to take, in Theorem 1,

ω(x, y) =

{
1 if (x � y) or (y � x),

0 otherwise.

Corollary 6. Let (X, d,�) be a complete partially-ordered metric space and T : X → X be a given
mapping satisfying:

ω (ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, Tξ)]β · [d (η, Tη)]1−β

)
,

for all ξ, η ∈ X�Fix(T) with ξ � η, where ψ ∈ Ψ and 0 < β < 1. Assume that:

(i) T is nondecreasing with respect to �;
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(ii) there exists ξ0 ∈ X such that ξ0 � Tξ0;
(iii) either T is continuous on (X, d) or (G) holds.

Then, T has a fixed point in X.

Proof. We take in Theorem 3,

ω(x, y) =

{
1 if (x � y) or (y � x),

0 otherwise.

Corollary 7. Suppose that the subsets A1 and A2 of a complete metric space (X, d) are closed. Suppose also
that T : A1 ∪ A2 → A1 ∪ A2 satisfies:

ω (ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, η)]β · [d (ξ, Tξ)]γ · [d (η, Tη)]1−γ−β

)
for all ξ ∈ A1 and η ∈ A2, such that ξ, η /∈ Fix(T), where ψ ∈ Ψ and γ, β > 0 are positive reals such that
γ + β < 1. If T(A1) ⊆ A2 and T(A2) ⊆ A1, then there exists a fixed point of T in A1 ∩ A2.

Proof. It suffices to take, in Theorem 1,

ω(x, y) =

{
1 if (A1 × A2) ∪ (A2 × A1),

0 otherwise.

Corollary 8. Let A1 and A2 be two nonempty closed subsets of a complete metric space (X, d). Suppose that
T : A1 ∪ A2 → A1 ∪ A2 satisfies:

ω (ξ, η) d (Tξ, Tη) ≤ ψ
(
[d (ξ, Tξ)]β · [d (η, Tη)]1−γ−β

)
for all ξ ∈ A1 and η ∈ A2 such that ξ, η /∈ Fix(T), where ψ ∈ Ψ and 0 < β < 1. If T(A1) ⊆ A2 and
T(A2) ⊆ A1, then there exists a fixed point of T in A1 ∩ A2.

Proof. It suffices to take, in Theorem 3,

ω(x, y) =

{
1, if (A1 × A2) ∪ (A2 × A1),

0, otherwise.

Theorem 1 is supported by the following.

Example 1. Let us consider the set X = [0, 2] endowed with d(x, y) = |x− y|. Let T be a self-mapping on X
defined by:

Tx =

{
3
2 , if x ∈ [1, 2]
1
3 , if x ∈ [0, 1).

Take:

ω(x, y) =

{
1, if x, y ∈ [1, 2]

0, otherwise.
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Let x, y ∈ X be such that x 6= Tx, y 6= Ty and ω(x, y) ≥ 1. Then, x, y ∈ [1, 2] and x, y /∈ { 3
2}. We have

Tx = Ty =
3
2

. Hence, (4) holds. For x0 = 2, we have:

ω(2, T2) = ω

(
2,

3
2

)
= 1.

Now, let x, y ∈ X be such that ω(x, y) ≥ 1. It yields that x, y ∈ [1, 2], so Tx = Ty ∈ [1, 2].
Hence, ω(Tx, Ty) ≥ 1, that is T is ω-orbital admissible. Notice that T is not continuous. We shall show that
(H) holds. Let {xn} be a sequence in X such that ω(xn, xn+1) ≥ 1 for each n ∈ N. Then, {xn} ⊂ [1, 2].
If {xn} → u as n → ∞, we have |xn − u| → 0 as n → ∞. Hence, u ∈ [1, 2], and so, ω(xn, u) = 1.
All conditions of Theorem 1 hold. Note that 1

3 and 3
2 are two fixed points of T.
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