
C
O
M
P
U
T
E
R

E
N
G
IN
E
E
R
IN
G

G
ro

un
d

st
at

io
n

co
nt

ro
l f

or
 te

le
m

et
ry

 a
nd

 te
lc

on
tr

ol
 o

f C
ub

es
at

A
nt

on
io

 S
er

ra
no

 d
e

la
 C

ru
z

Pa
rr

a

Bachelor of Computer Engineering

UNIVERSITY OF GRANADA

Bachelor Thesis

Ground station control for
telemetry and telecontrol of Cubesat

2017/2018

Antonio Serrano de la Cruz Parra

Tutor: Andrés María Roldán Aranda

17/18

B
A

C
H

E
L

O
R

T

H
E

S
IS

This Bachelor Thesis is intended to develop a complex system made up of

hardware and software, specifically, a web-based Dashboard which aims to
control a ground station remotelly. The Dashboard integrates icom9100 radio,
Yaesu rotors and TNC (Direwolf) control, which allows to perform
communications (telecontrol and telemetry) with Cubesat by making use of
AX25 protocol.

Antonio Serrano de la Cruz Parra was born in La Solana
(Ciudad Real) in 1996. With this Bachelor Thesis
complements his education in others specialities and finalizes
his Bachelor's Degree in Computer Engineering at the
University of Granada (Spain).

Andrés María Roldán Aranda is the academic head of the
present project, and the student's tutor. He is professor in the
Departament of Electronics and Computers Technologies

U
n
iv

e
rsityof

Gr
a

n

a
d
a

A
e
r
o
s
p

a
c e

G r o u p
G
r a

n
a
S
A
T

Copy for the student / Copia para el alumno

Pablo Garrido Sánchez is engineer and Phd student in the
Department of Electronics and Computers Technologies at the
University of Granada. Currently he is collaborating with
GranaSAT Project regarding Groundstation aspects.

BACHELOR OF
COMPUTER ENGINEERING

Bachelor Thesis

“Ground station control for telemetry and
telecommand of Cubesat”

ACADEMIC COURSE: 2017/2018

Antonio Serrano de la Cruz Parra

BACHELOR OF COMPUTER ENGINEERING

“Ground station control for telemetry and
telecommand of Cubesat”

AUTHOR:

Antonio Serrano de la Cruz Parra

SUPERVISED BY:

Andrés María Roldán Aranda

Pablo Garrido Sánchez

DEPARTMENT:

Electronics and Computer Technologies

D. Andrés María Roldán Aranda, Profesor del departamento de Electrónica y Tecnología de
los Computadores de la Universidad de Granada, como director del Trabajo Fin de Grado
de D. Antonio Serrano de la Cruz Parra, y D. Pablo Garrido Sánchez, alumno de Doctorado
del departamento de Electrónica y Tecnología de los Computadores de la Universidad de
Granada, como cotutor del mismo

Informan:

Que el presente trabajo, titulado:

“Control de estación terrena para telecontrol y telemetría de
Cubesat”

ha sido realizado y redactado por el mencionado alumno bajo nuestra dirección, y con esta
fecha autorizan a su presentación.

Granada, a 10 de Junio de 2018

Fdo. Pablo Garrido Sánchez Fdo. Andrés María Roldán Aranda

Los abajo firmantes autorizan a que la presente copia de Trabajo Fin de Grado se ubique en
la Biblioteca del Centro y/o departamento para ser libremente consultada por las personas
que lo deseen.

Granada, a 10 de junio de 2018

Fdo. Pablo Garrido Sánchez Fdo. Andrés María Roldán Aranda

Fdo. Antonio Serrano de la Cruz Parra

Control de estación terrena para telecontrol y
telemetría de Cubesat

Antonio Serrano de la Cruz Parra

PALABRAS CLAVE:

Dashboard, Cubesat, Ground Station, AX25, TNC, Direwolf, satellite tracking, transceiver,
NodeJS, Javascript, Bootstrap, HTML, CSS

RESUMEN:

GranaSAT es un grupo aerospacial de la Universidad de Granada en el que se
desarrollan diferentes actividades relacionadas con los ámbitos de la electrónica y la
ingeniería aerospacial. Durante el desarrollo de actividades del grupo GranaSAT se
comenzó el desarrollo de un Dashboard web, con el propósito de controlar una estación
terrena (Ground Station) y todos sus componentes de forma remota, sin encontrarse
físicamente en contacto con la estación.

El objetivo del siguiente proyecto es integrar en la web un sistema que permita el
telecontrol y telemetría de un Cubesat haciendo uso de una Ground Station. De este modo,
el objetivo será implementar las funciones que permitan controlar remotamente la Ground
Station, de modo que se pueda realizar el envío de comandos (telecontrol) y obtención de
información (telemetría) hacia y desde un Cubesat, todo ello mediante el uso del protocolo
AX25. Por otro lado, se realizarán además algunas mejoras en el Dashboard (nuevas
funcionalidades, gestión de usuarios, mejoras de la interfaz, etc), todo de acuerdo a los
requisitos de GranaSAT.

Por tanto, el presente Trabajo Fin de Grado pretende emular un encargo profesional real
siguiendo una metodología orientada a producto. Toda decisión en referencia al desarrollo
será tomada en función de los requisitos del cliente (en este caso GranaSAT), teniendo en
cuenta en todo momento los costes.
A partir de los requisitos del cliente se realizará un proceso de análisis y comparativa de las
diferentes soluciones propuestas, de manera similar a como se haría en un proyecto profesional
final.

A pesar de que el alumno posee la especialidad en Computación y Sistemas Inteligentes, se
ha tratado de dar al proyecto un enfoque multidisciplinar, tratando tecnologías y aptitudes
que el alumno ha desarrollado durante la titulación, así como nuevas que se han adquirido
durante el desarrollo del proyecto.

Ground station control for telemetry and telecommand
of Cubesat

Antonio Serrano de la Cruz Parra

KEYWORDS:

Dashboard, Cubesat, Ground Station, AX25, TNC, Direwolf, satellite tracking, transceiver,
NodeJS, Javascript, Bootstrap, HTML, CSS

ABSTRACT:

GranaSAT is a group consisted of students of the University of Granada, specifically,
students who are willing to acquire new knowledge related to electronics and aerospace
fields. Throughout all the activities carried out within the GranaSAT project, a web-based
Dashboard was started, which aims to control a Ground Station and all its componentes
remotely.

The main purpose of this Project is integrating a web system that allows the remote
control of the Ground Station, thereby, by making use of the Ground Station it will be
possible to send commands (telecontrol) and receive telemetry from a Cubesat, all of this by
using the AX25 protocol. Furthermore, some other functionalities and improvements will be
developed in the Dashboard, everything according to GranaSAT requirements.

The present Final Project tries to simulate a professional assignment following a product-
oriented philosophy. Every decision regarding the development will be made taking into
account client requirements (GranaSAT in this case), taking into account economic costs as
well. Thus, from the client requirements, an analysis will be performed in order to determine
what are the suitable technologies and solutions, in a similar way as it would be done in a
professional work.

This Final Project is presented as “Trabajo Fin de Grado” within the Degree “Grado en
Ingeniería Informática” at “Universidad de Granada”. Although the student has acquired
his specialization in Computing and Intelligent Systems, the project is intended to have
a multidisciplinary approach, involving not only technologies and aptitudes that have been
already acquired by the student within the Degree, but also new ones that have been acquired
during the Final Project development.

Never stop walking,
no matter how hard it gets

Agradecimientos:

El desarrollo del presente proyecto nunca habría sido posible sin la colaboración de
numerosas personas. Muchas de ellas han contribuido de manera secundaria a través de sus
aportaciones en Internet y diversos manuales, a las cuáles les estoy muy agradecido. Por
otro lado, cabe agradecer expresamente en las siguientes líneas a todas las personas con las
que mantuve contacto directo y que hicieron posible el desarrollo de este proyecto.

A mi cotutor Pablo Garrido Sánchez, por sus mil y una explicaciones y sugerencias durante
el desarrollo de todo el proyecto, sin duda unas de las personas más competentes que he
conocido.

A Luis Sánchez, por su ayuda y por prestarme su Arduino.

A mis compañeros y amigos de facultad, sin los cuáles nunca habría llegado hasta aquí.

A mi familia, por su apoyo incondicional en todas las decisiones que he tomado a lo largo
de mi vida, siendo una de mis grandes motivaciones es el hecho de hacerles sentir orgullosos.

Y por último y no menos importante, a mi tutor de proyecto, Andrés María Roldán,
gracias al cual he podido adquirir conocimientos en el ámbito aerospacial, algo que no había
podido hacer antes durante mis cuatro años de carrera. Su afán de mejora y perfeccionismo
han sacado lo mejor de mí, sin duda su aparición en este trayecto ha sido determinante.

Muchísimas gracias a todos.

0 xvi

Acknowledgments:

The development of the presented project could have never been possible without the
collaboration of many people. Most of them were people from the Internet which I did not
have the pleasure of meeting but to which I am really thankful. On the other hand, I wanted
to thank sincerely all of the people I could contact and interact with during the development
of the project.

My co-supervisor Pablo Garrido Sánchez, who helped me whenever I needed it. He is one
of the most competent people I have ever known.

Luis Sánchez, for his help and for lending me his Arduino.

My friends, thanks to them I have improved as a person as well as a professional.

My family, always supporting me in every decision I have made in my life.

Finally, not in relevance order, my tutor, Andrés María Roldán, the one who introduced
me this project and thanks to whom I have learned tons of things related to aerospace and
electronics. He has been one of the most determinant professor I have ever had.

All in all, thank you all who made it possible.

Antonio Serrano de la Cruz Parra

INDEX

Autorización Lectura v

Autorización Depósito Biblioteca vii

Resumen ix

Dedicatoria xiii

Agradecimientos xv

Index xix

List of Figures xxv

List of Videos xxix

List of Tables xxxi

Glossary xxxiii

Ground station control for telemetry and telecommand of Cubesat xix

0 xx Index

Acronyms xxxv

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Project Goals and Objectives . 3

1.4 Project Structure . 4

2 System Requirements Definition 1

2.1 Functional Requirements Definition . 1

2.1.1 Primary . 1

2.1.2 Secondary . 2

2.2 Economics Requirements Definition . 2

3 System Analysis 1

3.1 Ground Station Definition . 1

3.1.1 GranaSAT Ground Station . 3

3.2 Review of Solutions for Ground Station Control 7

3.2.0.1 Type of application . 7

3.2.0.2 Front-end . 9

3.2.0.3 Server side . 11

3.3 Transceiver Telecontrol . 16

3.3.1 Back-end . 16

3.3.2 Front-end . 20

3.4 Transceiver’s Audio . 22

3.5 TNC . 24

3.6 Yaesu Rotors Telecontrol . 26

3.6.1 Back-end . 26

3.6.2 Front-end . 26

Antonio Serrano de la Cruz Parra

Index xxi 0
3.7 Satellite Tracking . 27

3.7.1 Extraction of satellite data . 27

3.7.2 Display over interactive map . 29

3.7.3 Integration within the system . 29

3.8 Other Improvements . 31

3.8.1 Tooltips definition . 31

3.8.2 Camera streaming on the server . 32

3.8.3 User account management . 33

4 System Design 1

4.1 Transceiver Telecontrol . 3

4.1.1 Back-end . 3

4.1.2 icom9100.js class . 4

4.1.3 Front-end . 6

4.1.4 Functions for graphical elements . 8

4.2 Transceiver’s Audio . 11

4.2.1 Back-end . 11

4.2.2 Front-end . 12

4.3 TNC . 14

4.3.1 Back-end . 15

4.3.2 Front-end . 17

4.4 Yaesu Rotors Telecontrol . 20

4.4.1 Front-end . 20

4.5 Satellite tracking . 21

4.5.1 Back-end . 21

4.5.2 Front-end . 23

4.6 Other improvements . 30

4.6.1 Tooltips design . 30

Ground station control for telemetry and telecommand of Cubesat

0 xxii Index

4.6.1.1 Model . 31

4.6.1.2 Controller . 31

4.6.1.3 View . 31

4.6.2 Webcam streaming design . 32

4.6.2.1 Back-end . 32

4.6.2.2 Front-end . 34

4.6.3 User account management . 35

4.6.3.1 Recovery password system 37

5 Test and Evaluation 1

5.1 Transceiver’s control verification . 1

5.2 Transceiver’s audio verification . 3

5.3 TNC (Direwolf) integration test . 4

5.3.1 Receiving and decoding AX25 packets 4

5.3.2 Sending AX25 packets . 6

5.4 Tracking satellite verification . 8

5.5 Other improvements . 9

5.6 Browser compatibility testing and performance 10

6 Conclusions and Future Lines 1

A AX25 protocol 1

B DarkIce and Icecast2: Installation 3

C Direwolf: Installation 5

D PM2: Installation and Use 7

E SSL certificate installation 9

F MotionEye: Installation and Configuration 11

Antonio Serrano de la Cruz Parra

Index xxiii 0
G Project Budget 13

G.1 Hardware Cost . 13

G.2 Software Cost . 14

G.3 Human Resources Cost . 14

References 15

Ground station control for telemetry and telecommand of Cubesat

0 xxiv Index

Antonio Serrano de la Cruz Parra

LIST OF FIGURES

1.1 AAUCubeSat, University of Aalborg (Denmark) [29] 2

1.2 GranaSAT Logo . 2

1.3 Waterfall model . 4

1.4 Gantt diagram for planning project . 6

3.1 Ground Station basic scheme . 2

3.2 antenna . 3

3.3 Yaesu rotors . 4

3.4 Icom9100 transceiver . 5

3.5 TNC (Terminal Node Controller) device [33] 5

3.6 GranaSAT Ground Station components scheme 6

3.7 Communication between Ground Station and Cubesat [35] 7

3.8 Most popular technologies during 2018 according to StackOverflow [26] . . . 9

3.9 Most popular frameworks, libraries and tools in 2018 according to
StackOverflow [26] . 11

3.10 Most utilized data bases during 2018 according to StackOverflow [26] 13

Ground station control for telemetry and telecommand of Cubesat xxv

0 xxvi List of Figures

3.11 GranaSAT Dashboard system architecture and technologies 14

3.12 Icom9100 data format [14] . 17

3.13 ICOM9100 command table [14] . 17

3.14 GPredict satellite tracking software . 27

3.15 TLE example [34] . 28

4.1 System architecture . 2

4.2 icom9100 transceiver final front-end . 6

4.3 icom9100 transceiver telecontrol process - example 8

4.4 Transceiver’s graphical elements updating process 10

4.5 Audio devices available with arecord command 11

4.6 Transceivers audio streaming design . 13

4.7 GranaSAT Ground Station final scheme . 14

4.8 Direwolf terminal output . 15

4.9 Decoding AX25 with Direwolf flowchart . 17

4.10 Sending AX25 packets with Direwolf flowchart 18

4.11 Decoding packets (concretely AX25/APRS) and displaying in Dashboard . . 19

4.12 Sending AX25 packets on the Dashboard . 19

4.13 Yaesu Rotors front-end . 20

4.14 Satellite tracking flowchart . 26

4.15 Satellite tracking in laptop screen . 27

4.16 Satellite tracking in mobile phone device . 27

4.17 Polar graph with satellites over Ground Station 29

4.18 Tooltips design diagram . 30

4.19 MotionEye FrontEnd . 32

4.20 MotionEye configuration . 33

4.21 Streaming video final design . 34

4.22 User account profile front-end . 35

Antonio Serrano de la Cruz Parra

List of Figures xxvii 0
4.23 User account management system flowchart 36

4.24 Recovery password e-mail . 37

4.25 Recovery password system flowchart . 38

5.1 Transceiver control response time test . 2

5.2 Transceiver’s audio time delay test . 3

5.3 Arduino AX25 transmitter [30] . 4

5.4 AX25 decoded frame transmitted from Arduino [30] 5

5.5 AX25 telemetry received from Arduino [30] 6

5.6 NOAA 15 tracking in GranaSAT Ground Station 8

5.7 NOAA 15 tracking in www.n2yo.com . 8

5.8 Dashboard CPU performance test . 11

5.9 Dashboard memory performance test . 11

5.10 Dashboard disk performance test . 12

A.1 AX25 frame structure [15] . 1

D.1 PM2 Execution . 8

Ground station control for telemetry and telecommand of Cubesat

www.n2yo.com

0 xxviii List of Figures

Antonio Serrano de la Cruz Parra

LIST OF VIDEOS

5.1 Direwolf decoding packets test (double click) 5
5.2 Direwolf sending packets test (double click) 6

Ground station control for telemetry and telecommand of Cubesat xxix

0 xxx List of Figures

Antonio Serrano de la Cruz Parra

LIST OF TABLES

3.1 Icom9100 transceiver specification . 4

3.2 GranaSAT server characteristics . 5

3.3 Application alternatives for Ground Station control 8

3.4 Front-end design frameworks comparison . 10

3.5 Javascript web frameworks comparison . 10

3.6 Javascript back-end technologies comparison 12

3.7 Databases comparison . 13

3.8 Javascript gauges analyzed possibilities . 20

3.9 Audio streaming from server to client analyzed possibilities 22

3.10 Virtual TNCs analyzed possibilities . 24

3.11 Javascript libraries for interactive maps analyzed possibilities 29

3.12 Tooltips analyzed possibilities . 31

3.13 Video streaming software analyzed possibilities 32

G.1 Hardware costs . 13

G.2 Software costs . 14

Ground station control for telemetry and telecommand of Cubesat xxxi

0 xxxii List of Tables

G.3 Human resources costs . 14

Antonio Serrano de la Cruz Parra

GLOSSARY

AngularJS Javascript client-side framework used for creating dynamic web applications.
It follows MVC pattern (https://angularjs.org/).

Arduino Open-source electronic prototyping platform enabling users to create interactive
electronic objects featuring single-board micro-controllers and microcontroller kits for
building digital devices and interactive objects that can sense and control objects in
the physical world.

AX25 AX.25 A data link layer protocol derived from the X.25 protocol suite and designed
for use by amateur radio operators..

azimuth Angle between a celestial body or satellite and the North, increasing this angle
clockwise around the observer’s horizon. If the body is in the North, azimuth is 0º, on
the other hand, if the body is in the East, azimuth is 90º.

Bootstrap Free and open source front-end library for responsive web design, including
HTML and CSS templates that provides different components such as buttons,
navigation bars, forms, etc.

Cubesat Miniaturized satellite normally for space research, with dimensions of 1 dm3 and
mass lower than 1.33 kg per unit.

Dashboard Graphical user interface that displays information to the user in a easy way so
that the user can interpret it and interact with the system.

Direwolf Direwolf is a "soundcard" AX.25 packet modem/TNC and APRS
encoder/decoder. It is connected to a terminal computer and it acts as virtual TNC.

Ground station control for telemetry and telecommand of Cubesat xxxiii

https://angularjs.org/

0 xxxiv Glossary

downlink Term referred to the link from the satellite down to the Ground Station.

elevation Up-down angle between the celestial body or satellite and the observer’s horizon.
When the body is exactly above the observer, elevation is 90º. On the other hand,
when the body is about to not to be visible by the observer, elevation is 0º.

GranaSAT GranaSAT is an academic project from the University of Granada consisting
in designing and developing a picosatellite (Cubesat). Coordinated by the Professor
Andrés María Roldán Aranda, GranaSAT is a multidisciplinary project with students
from different degrees, where they can acquire and enlarge the knowledge necessary to
face an actual aerospace project.

Ground Station Facilities in which instruments and devices necessary to establish a radio -
link communication are normally located. Also used to control and monitor antenna
system.

Inkscape Free and open-source professional vector-graphic editor
(https://inkscape.org/es/).

Javascript Interpreted programming language commonly used in the client side of web
applications, however, it is extensively used in the server side as well (https://www.
javascript.com/).

Leaflet JavaScript library for mobile-friendly interactive maps (http://leafletjs.com/).

Mapbox Open source mapping platform for designed maps (https://www.mapbox.com/).

Model-View-Controller Architectural pattern used for developing graphical interfaces
in which the application logic is divided into three components: model, view, and
controller.

Motion Free and open-source software motion detector for Linux. It can monitor video
signal from one or more cameras (https://motion-project.github.io/).

nginx Reverse high performance proxy and web server https://nginx.org/en/.

NodeJS Open source JavaScript run-time environment for application’s server-side (https:
//nodejs.org/es/).

Python Interpreted and multi-platform programming language commonly used for scientific
purposes(https://www.python.org/).

SGP4 Simplified perturbation model used to calculate orbital state of satellites..

transceiver Digital device that consists of both transceiver and receiver.

uplink Term referred to the link from a Ground Station up to the satellite.

Antonio Serrano de la Cruz Parra

https://inkscape.org/es/
https://www.javascript.com/)
https://www.javascript.com/)
http://leafletjs.com/
https://www.mapbox.com/
https://motion-project.github.io/
https://nginx.org/en/
https://nodejs.org/es/
https://nodejs.org/es/
https://www.python.org/

ACRONYMS

AFSK Frequency-Shift Keying.

ALSA Advanced Linux Sound Architecture.

API Application Programming Interface.

APRS Automatic Packet Reporting System.

CSS Cascade Style Sheet.

GUI Graphical User Inteface.

HTML HyperText Markup Language.

HTTP HyperText Tranfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

ISS International Space Station.

JSON JavaScript Object Notation.

KISS Keep It Simple, Stupid.

NASA National Aeronautics and Space Administration.

NORAD North American Aerospace Defense Command.

Ground station control for telemetry and telecommand of Cubesat xxxv

0 xxxvi Acronyms

PM2 Production Process Manager.

SSL Secure Socket Layer.

SVG Scalable Vector Graphics.

TLE Two-Line Element.

TNC Terminal Node Controller.

Antonio Serrano de la Cruz Parra

CHAPTER

1

INTRODUCTION

1.1 Context

The presented Project fits within GranaSAT, a multidisciplinary group made of students
from different fields, students who are willing to acquire knowledge related to Electronics
and Aerospace Engineering.

The main objective of GranaSAT is to develop a Cubesat, which is a miniaturized satellite,
measuring 10x10x10cm and weighing no more than 1.33Kg (an example of Cubesat can be
seen in figure 1.1). The purpose of a Cubesat is known as “payload” and this could be: taking
pictures of earth, collecting telemetry such as temperature, pressure, magnetism, radiation
measuring, etc.

Generally, they are usually intended for educational and space research purposes.
Currently there are about 800 cubesats in orbit, owned by different universities,
organizations or even private companies.

Ground station control for telemetry and telecommand of Cubesat 1

1

2 Chapter 1. Introduction

Figure 1.1 – AAUCubeSat, University of Aalborg (Denmark) [29]

The development of a Cubesat is a hard process that requires different modules and
systems working together, therefore, many different projects have been already done by
some students of GranaSAT. However, there is still a lot of work to do in order to achieve
the mentioned main objective. The presented Final Project aims to contribute to this general
purpose.

Andrés María Roldán Aranda is the academic head of GranaSAT, as well as the
coordinator of the presented Project (see GranaSAT logo in 1.2).

U
 n i v e r s i t y o f G

 r a
 n

 a
 d

 a

A
 e

 r
 o

 s
 p

 a
c e

 G
 r o u p G r a n a S A

 T

Figure 1.2 – GranaSAT Logo

The laboratory and equipment needed for the presented Project are located in the iMUDS
Building, next to “Parque Tecnológico de la Salud”, in Granada (Spain). The Project has
been mainly developed in this laboratory, besides some work that has been done at home
thanks to the possibility of working remotely with the server provided by GranaSAT.

1.2 Motivation

When thinking about my Final Project, I thought I would like to go further and do
something unusual, something that had nothing to do with the normal knowledge I had
got from the University courses. I definitely wanted a new challenge where I had to learn
new technologies, concepts and techniques that I had not seen before during the Degree.

Antonio Serrano de la Cruz Parra

1.3. Project Goals and Objectives 3

1
Therefore, I found in this Final Project a great opportunity to achieve my goal, since this
included things totally different from my specialization courses: hardware and software, web
programming, aerospace and electronic topics, etc.

During the development of this Project I got myself in many hard situations where I
have had to adapt myself and acquire a big amount of new concepts and techniques. I did
not know before web programming or any framework related to this, and much less all the
hardware, space communications and protocols that have been treated during this Project.

I realized that a good engineer is not the one who knows the most, but the one who knows
how to adapt themselves to any kind of situation and any kind of real problem. I consider
that during my Bachelor’s Degree in Computer Engineering, one of the most useful things
that I have learned is the ability to deal with problems and solve them somehow. This Final
Project is a proof of that.

The final web-based Dashboard that comes out of this Final Project is the result of a
careful process of study, analysis and comparison between different technologies regarding
when to use each one to solve certain problems.
I really hope this final product can be useful for the future development of GranaSAT
projects.

1.3 Project Goals and Objectives

The main objectives of this Final Project are the following:

• Studying and analyzing how to approach the Ground Station control

• Studying and understanding about how communications are performed with Cubesat

• Deducing the main and secondary requirements of the system

• Analyzing current technologies which may be used to solve the presented problem,
reasonably choosing the best one for each case

• Acquiring new hardware and software knowledge, getting the student closer to a real
problem related to the aerospace and electronics field

• Demonstrating the knowledge acquired during the Degree, not only at the
specialization coursed by the student, but also from a general point of view within
Computer Engineering

• Successfully overcome the subject of the Bachelor Thesis

Ground station control for telemetry and telecommand of Cubesat

1

4 Chapter 1. Introduction

1.4 Project Structure

From now on, the waterfall model will be followed in order to develop the presented
Project. The waterfall model sets different stages on the development process and once a
phase of development is completed, the development proceeds with the next phase, without
coming back.
This can be seen in 1.3.

Requirements

System analysis

System design

Tests and
verification

Maintenance

Figure 1.3 – Waterfall model

Based on this waterfall model, the Project is divided in six chapters and an appendix
which tries to describe each part of the Project development in a chronological and logical
way.

These chapters are:

• Chapter one: This chapter is intended to be an introduction, exposing objectives,
motivation and planing of the presented Project.

• Chapter two: Client requirements are exposed in this chapter, both primary and
secondary. These requirements mark the beginning of the later system analysis.

• Chapter three: The third chapter deals with analysis and development of different
ideas in order to meet the requirements given from the client. In this stage, a high level
of abstraction will be enough. Furthermore, different concepts will be analyzed and
explained so that all the process is completely understood. At the end of this chapter,
different alternatives will have been taken into account and the most suitable solution
will be chosen and eventually implemented during the design stage.

• Chapter four: This chapter deals with system design. It includes the
implementation of the different chosen solutions and aspects previously treated
during the analysis. In this stage the level of abstraction will be low and every aspect
regarding programming and source code will be treated.

• Chapter five: In this chapter, a number of tests and evaluations is performed
in order to check whether the system works as expected and consequently the given

Antonio Serrano de la Cruz Parra

1.4. Project Structure 5

1
requirements are met.

• Chapter six Finally, chapter six concludes with a brief reflection about the results
obtained and future lines for the Project, besides a personal consideration.

• In addition, an appendix has been included, which deals with secondary aspects
related to the Project, besides the Project costs.

A Final Project planning can be seen in figure 1.4.

Ground station control for telemetry and telecommand of Cubesat

1

6 Chapter 1. Introduction

1
st

2
n

d
1

st
2

n
d

1
st

2
n

d
1

st
2

n
d

1
st

2
n

d
1

st
2

n
d

1
st

2
n

d
1

st
2

n
d

1
st

2
n

d
1

st
2

n
d

G
ro

u
n

d
 statio

n
 co

n
tro

l fo
r te

le
m

e
try an

d
 te

le
co

m
m

an
d

 o
f C

u
b

e
sat - P

ro
je

ct stru
ctu

re

Feb
ru

ary
M

arch
A

p
ril

M
ay

Ju
n

e

P
ro

ject startin
g

C
lien

t m
ee

tin
gs, req

u
irem

en
t e

xtractio
n

First p
ro

b
lem

 ap
p

ro
ach

in
g

System
 an

alysis

Jan
u

ary
Sep

tem
b

er
O

cto
b

er
N

o
vem

b
er

D
ecem

b
er

R
eq

u
irem

en
t an

alysis

Evalu
atio

n
 o

f p
o

ssib
le so

lu
tio

n
s

A
n

alysis o
f p

ro
gram

m
in

g w
eb

 te
ch

n
o

lo
gies

A
n

alysis o
f G

ran
aSA

T G
ro

u
n

d
statio

n

Evalu
atio

n
 o

f tran
sce

ive
r im

p
lem

en
tatio

n

Evalu
atio

n
 o

f tran
sce

ive
r au

d
io

 e
xtractio

n

Evalu
atio

n
 o

f trackin
g im

p
lem

en
tatio

n

Evalu
atio

n
 o

f p
o

ssib
le im

p
ro

vem
en

ts

System
 d

esign

Evalu
tatio

n
 o

f TN
C

 im
p

lem
en

tatio
n

Im
p

lem
en

tatio
n

 o
f tran

sce
ive

r (b
ack-en

d
)

Im
p

lem
en

tatio
n

 o
f tran

sce
ive

r (fro
n

t-en
d

)

Im
p

lem
en

tatio
n

 o
f TN

C

Im
p

lem
en

tatio
n

 o
f sat. trackin

g (b
ack-en

d
)

Im
p

lem
en

tatio
n

 o
f sat. trackin

g (fro
n

t-en
d

)

Im
p

lem
en

tatio
n

 o
f tran

sceive
r au

d
io

In
fo

rm
atio

n
 an

d
 d

iagram
s gath

erin
g

Fin
al m

em
o

ry rep
o

rt

Fin
al p

rese
n

tatio
n

 p
rep

aratio
n

Im
p

lem
en

tatio
n

 o
f im

p
ro

vem
en

ts

Te
sts an

d
 evalu

atio
n

s

D
o

cu
m

en
tatio

n

Tran
sce

ive
r in

te
gratio

n
 tests

TN
C

 in
te

gratio
n

 tests

Tran
sceive

r au
d

io
 tests

Sate
llite trackin

g in
tegratio

n
 tests

Im
p

ro
vem

en
ts te

sts

F
igure

1.4
–
G
antt

diagram
for

planning
project

Antonio Serrano de la Cruz Parra

CHAPTER

2

SYSTEM REQUIREMENTS
DEFINITION

Since the presented Project follows a product-oriented philosophy, a set of system
requirements are defined from the client at the first stage of the development.

2.1 Functional Requirements Definition

As Requirements Engineering process defines, functional requirements reflect what the
system is expected to do. These will be given from the client (in this case GranaSAT),
therefore, they do not need to be technical but a brief description in natural language.
During the development, all of these requirements will be met and the system is expected
to comply with all of them at the end of the design stage.
According to its importance in the system, the requirements can be divided in primary and
secondary.

2.1.1 Primary

• a) The system will be able to control the transceiver Icom9100 remotely, in order to
control and adjust its parameters

• b) The system will be able to send commands (also known as telecommand) by making
use of a TNC that allows to use AX25 packets

Ground station control for telemetry and telecommand of Cubesat 1

2

2 Chapter 2. System Requirements Definition

• c) The system will be able to decode AX25 packets by using a TNC and shows the
proper data that these contain (also known as telemmetry)

• d) The system will receive the transceiver’s audio in live, so the users can listen remotely
what is actually sounding in the transceiver

• e) The system will have a satellite tracking in live so the users can see the satellite’s
position at every moment, in order to perform communications when this is visible
from the Ground Station

2.1.2 Secondary

• f) The system will allow users to modify and manage their profiles (username, password,
image...) as well as recovering their passwords

• g) The front end design will be modified with more functionalities (tooltips, gauges,
etc)

• h) The system will include a camera system in order to watch the antenna and the
Ground Station remotely

2.2 Economics Requirements Definition

Regarding economics requirements, the Project follows a cost-oriented philosophy,
therefore, during the analysis stage all the available options and technologies will be taken
into account, preferably choosing open-source alternatives.

Antonio Serrano de la Cruz Parra

CHAPTER

3

SYSTEM ANALYSIS

In this chapter, an analysis is done in order to meet the requirements described in chapter
2. At this point, the analysis will start at a high level of abstraction, reducing it progressively
until implementation in the system is defined in chapter 4.

To meet the requirements defined from the client, different technologies and solutions are
suggested, choosing the most suitable for the system.

3.1 Ground Station Definition

First of all, let us begin with explaining what a Ground Station is and what is intended
for.

Within the telecommunications field, a Ground Station is a terrestrial radio station
designed for telecommunications with spacecraft (satellites flying in outer space),
transmitting and receiving radio waves. The Ground Station provides a radio interface
between space and ground for telemetry and telecommand purposes (see image 3.1). [31]

• telecommand processing: commands are sent to satellites from the Ground Station,
via uplink. These commands are used to control the satellites remotely and they could
be used for example, to turn on/off certain parts of the satellite, or to activate certain
modules.
These commands are merely information that is encoded and modulated onto an
assigned radio frequency band. This radio frequency is eventually amplified an

Ground station control for telemetry and telecommand of Cubesat 1

3

2 Chapter 3. System Analysis

carried to an antenna for final transmission.

• telemetry processing: this is the opposite process. The satellite transmits signals via
downlink, signals that are received in the Ground Station, demodulated and eventually
decoded to extract the proper information. Telemetry is used to determine the status
of a satellite (temperature, batteries status, etc) or to get information collected by the
satellite (images, measurements, predictions, etc).

Telecommand and telemetry are usually encrypted in order to prevent unauthorized access
to the satellite and its data.

Ground
Station

Ground
Station

Downlink
 (telemetry)

Uplink
(telecommand)

satellite

Figure 3.1 – Ground Station basic scheme

Antonio Serrano de la Cruz Parra

3.1. Ground Station Definition 3

3

3.1.1 GranaSAT Ground Station

The final purpose of GranaSAT Ground Station is to perform the communications
described above (telecommand and telemetry) with a possible Cubesat. Therefore, the
Ground Station must be able to send/receive digital data.
In Cubesat projects, AX25 is the adopted protocol for this digital communication (see
appendix A for more information about AX25).

Having said this, let us describe in detail GranaSAT Ground Station:

Normally, a common Ground Station consists of an antenna, receiver, transmitter, a TNC,
a computer and operation software (e.g. satellite tracking) [35]. Specifically, the GranaSAT
Ground Station components will be described below:

• Antenna: its aim is to perform communication with satellites on the outer space,
as well as with other stations on earth. The antenna is capable of transmitting and
receiving radio waves in certain band frequencies (this bands depend on the antenna’s
characteristics).
These transmitted and received radio frequencies can contain different data (telemetry,
images, just voice, etc.) that needs to be demodulated and converted into human-
understood format, that is, digital format (audio, text, etc.).
At this level of abstraction, it is not necessary to know deeper characteristics about
the antenna. An image of the antenna can be seen in figure 3.2

Figure 3.2 – antenna

• Yaesu G5500 rotors: these rotors allow the antenna to aim towards a desired
direction. This direction is defined by two elements: azimuth and elevation.
The rotors have a controller device that allows to control the rotors remotely
provided the desired values of azimuth and elevation angles.
When performing satellite communications, the antenna needs to be pointed to the
current satellite’s position (which can be known with a satellite tracking software) in
order to receive/send radio waves from/to the satellite. Therefore, the anntenna’s

Ground station control for telemetry and telecommand of Cubesat

3

4 Chapter 3. System Analysis

position needs to be modified in order to follow the current satellite’s position.
An image of Yaesu rotors can be seen in figure 3.3.

Figure 3.3 – Yaesu rotors

• Icom9100 transceiver: this is the most important hardware device of the system,
which consists of a transmitter and receiver, both in a single device (see characteristics
in 3.1).
Connected to an antenna, its aim is to demodulate the radio frequency signals that
come from the antenna into audio and modulate the input signals before transmitting
them through radio frequencies.
The transceiver together with a TNC can be used for sending/receiving digital data
that is encapsulated over the mentioned above AX25 protocol.

Frequency bands Tx: 0.03-60.000MHz, 136-174MHz
420-480MHz, 1240-1320MHz

Frequency bands Rx 1.800-1.999 MHz, 3.500-3.999 MHz
5.3305, 5.3465, 5.3665, 5.3715
5.4035 MHz, 7.000-7.300 MHz

10.100-10.150 MHz, 14.000-14.350 MHz
18.068-18.168 MHz, 21.000-21.450 MHz
24.890-24.990 MHz, 28.000-29.700 MHz
50.000-54.000 MHz, 144.000-148.000 MHz

430.000-450.000 MHz, 1240.000-1300.000 MHz
Modes USB, LSB, CW, RTTY, AM, FM, (DV optional)

Antenna connector SO-239 x 3 and N (50 ohms)
Usable temperature range 0°C to +50°C; +32°F to +122°F

Frequency stability less than ±0.5 ppm
Power supply requirement 13.8 V DC (±15% negative ground)

Table 3.1 – Icom9100 transceiver specification

Antonio Serrano de la Cruz Parra

3.1. Ground Station Definition 5

3

Figure 3.4 – Icom9100 transceiver

• TNC: The TNC is used in Cubesat radio communications, where digital signals are
enabled to propagate using radio waves by using the AX25 packet protocol.
Concretely, the TNC is connected to a terminal (computer) and a transceiver. Data
from the computer (concretely, from an software application that provides a
command line interface) is formatted into AX25 packets/frames and modulated into
audio tones by the TNC in order to be transmitted by the radio (transceiver). On the
other hand, the received signals are demodulated by the radio and unformatted by
the TNC, which sends the text output to the computer for displaying in some
application. [32]

Figure 3.5 – TNC (Terminal Node Controller) device [33]

• Computer: it consists of the GranaSAT server, located in the “iMUDS Building”.
This, connected to the transceiver and TNC, allows to send/receive AX25 packets by
making use of a command line interface. Its characteristics can be seen in table 3.2.

Hostname: granasat2.ugr.es
Operative System: Debian Linux 9
Processor system: Intel(R) Xeon(R) CPU 5110 @ 1.60GHz, 4 cores

RAM: 17 GB
Local disk space: 207 GB
Kernel and CPU: Linux 4.9.06amd64 on x86_64

Table 3.2 – GranaSAT server characteristics

Ground station control for telemetry and telecommand of Cubesat

3

6 Chapter 3. System Analysis

Hence, while using a Ground Station, the basic procedure for communicating and send
commands to a Cubesat would be the following:
1. From the computer, in a command line interface that communicates with the TNC,
the user writes the desired message/command to be sent, which is interpreted by the
TNC as ASCII text.
2. The introduced text is formatted by the TNC using the AX25 protocol, transforming
the given data into audio tones.
3. These audio tones are modulated by the transceiver and sent through radio waves
in the desired frequency band.
4. The Cubesat receives these signals, decodes it and perform the operation that
corresponds with the command.
The opposite process (receiving information from the Cubesat) follows the same
philosophy, but on the opposite way:
1. The cubesat transmits the AX25 packets in a frequency band
2. The antenna of the Ground Station receives these signals
3. The transceiver demodulates these signals and convert them into audio
4. The TNC demodulates the audio that comes from the transceiver and decode the
AX25 frames
5. These decoded frames are displayed in the computer in a human-readable format,
containing the Cubesat telemetry
See figures 3.6 and 3.7 for a better understanding of Ground Station communication
components.

Transceiver

Computer (server)

TNC
COM
port

Application

antenna

Figure 3.6 – GranaSAT Ground Station components scheme

Antonio Serrano de la Cruz Parra

3.2. Review of Solutions for Ground Station Control 7

3

Figure 1. Application of a TNC in communication between ground station and CubeSat

Table 1. AX.25 Unnumbered Information (UI) frame [14]

Flag

AX.25 Transfer Frame Header (128 bits)
Information

Field

Frame-
Check

Sequence
Flag Destination

Address
Source
Address

Control
Bits

Protocol
Identifier

8 56 56 8 8 0-2048 16 8

3.1. Flag field
A flag is a specific number indicating start and end of a frame. It is one octet long, occurs at both the
starting and the end of each frame. Two frames may share one flag, which denotes the end of the first
frame and the start of the next frame. A flag consists of a zero, followed by six '1's and then another
zero (b01111110 or 0x7E) [15, 16]. To ensure that the flag bit sequence mentioned does not appear
accidentally anywhere else in a frame, bit stuffing is applied. The sender monitors the bit sequence for
a group of five or more contiguous '1' bits. Any time five contiguous '1' bits are sent, the sending
station inserts a '0' bit after the fifth '1' bit. During frame reception, any time five contiguous '1' bits is
received, a '0' bit immediately following five '1' bits is discarded [15, 16].

3.2. Address field
The address field identifies both source of the frame and also its destination. The destination address
consists of the callsign and the SSID of the destination, as shown in Table 2.

Table 2. Destination address frame field (56 bits) [14]

Callsign (48 bits) SSID
8 bits C1 (8 bits)

….
C6 (8 bits)

X XXXXXX 0 X XXXXXX 0 0 1 1 SSID 1

AEROTECH VI - Innovation in Aerospace Engineering and Technology IOP Publishing
IOP Conf. Series: Materials Science and Engineering 152 (2016) 012031 doi:10.1088/1757-899X/152/1/012031

3

Figure 3.7 – Communication between Ground Station and Cubesat [35]

As it was said before, the presented Project aims to control all of this hardware remotely
in order to perform communications with a Cubesat without being physically using the
Ground Station. Therefore, this needs to be achieved by making use of the different current
technologies, which will be reviewed below.

3.2 Review of Solutions for Ground Station Control

As described above, the objective is to develop an application for remote control of the
Ground Station, thus, in this section different solution will be analyzed, taking into account
type of application, programming languages, possible frameworks, etc.

3.2.0.1 Type of application

When talking about application development, it is important to define what type of
application is going to be developed. This election is not usually something trivial and
depends on many factors, such as available budget, possible deadline, target users, etc.

Let us take a look to the possible solutions:

• Native application: these are applications specifically made for one platform
(Android, iOS, Windows, etc). They are developed in languages such as Android,
Java, .NET, etc. and it is necessary to know the characteristics of the devices where
the applications are going to be working.

Ground station control for telemetry and telecommand of Cubesat

3

8 Chapter 3. System Analysis

• Web application: this includes applications that are accessible from the web browser
and require Internet connection to work properly. In this case, it is the web browser
the responsible of making the application work (and not the device itself).

• Hybrid application: these are a combination of the last two, taking advantage of
web development and device functionalities, basically like a native application itself,
but developed with web technologies.

A detailed comparison of these technologies can be seen in table 3.3

Pros Cons
Web Multi-platform Web server needed

No downloads needed Slower performance
Cheaper and faster development No access to device functionalities

Native Better user experience Higher development costs
Faster and more efficient More development time

Access to device functionalities It relies on App store
Hybrid Web development facilities Not as efficient as native apps

Table 3.3 – Application alternatives for Ground Station control

The chosen solution is expected to meet the following requirements:

• Multi-platform: the application must be accessible and functional from any device,
regardless device model, size or operative system

• The development must suit the Project schedule (no more than one academic year)
and the student budget

• The user should not have to download anything in order to use the application

• In principle, since the objective is to control Ground Station remotely, there is no need
of using the user’s device functionalities

Hence, analyzing the given options, it is clear that the most suitable and appropriate
option for the described problem is a web-based application, since this will work in every
device provided a browser that runs the application. Furthermore, no device will require
updates since once the source code of the application is modified and updated, every user
will see automatically the last version of the system, which makes it much more efficient that
a native/hybrid application.

Antonio Serrano de la Cruz Parra

3.2. Review of Solutions for Ground Station Control 9

3

During the development of GranaSAT projects, a web application prototype which
aimed to control the Ground Station was started in 2016 [10] [1] [20], referred as
GranaSAT Dashboard from now on.
Some modules were developed, such as the server database with different users and
satellites, the log-in system, or the Yaesu rotors remote control.
Hence, the presented Project will resume the above mentioned project, adding new
modules and improving the current system.

Web applications are built making use of standard technologies, which are divided in
those that are used on the client side (also known as front-end) and those that are used on
the server side (also known as back-end).

Since the web application was started in 2016, it has been two years. Therefore, it is
necessary to analyze the technologies that have emerged since then and eventually decide
whether it is worthy to continue the development with this technologies or otherwise, change
these and migrate the web application.

3.2.0.2 Front-end

When talking about the front-end, it refers to the part of the application that the users
interact with, that is, the GUI or the web itself.

Nowadays, HTML, CSS and Javascript are the most extended languages for the front-end
of web applications, furthermore, they are the most used programming languages according
to StackOverflow (see figure 3.8).

Figure 3.8 – Most popular technologies during 2018 according to StackOverflow [26]

Regarding the front-end development, tons of front-end frameworks are currently
available. These frameworks make the front-end development faster, easier and more
robust. They provide different useful widgets, tools and predefined HTML elements that
do not require great skills to be used.

Ground station control for telemetry and telecommand of Cubesat

3

10 Chapter 3. System Analysis

Before selecting an specific front-end framework, it is important to take into account
different aspects, such as the developer’s skills level, the desired design, whether the
framework allows responsive design, available documentation, etc.
Hence, some of the most used front-end frameworks during 2016 [18] are analyzed in table
3.4.

Pros Cons
Bootstrap Responsive design available Complex customization

Extensive documentation
Slight learning curve

Semantic-UI Minimal load times Very simple designs
Very large packages

Foundation Great flexibility Very complex for beginners
Table 3.4 – Front-end design frameworks comparison

It is clear that in this case, Bootstrap was the best possible solution due to the ease that
this requires in order to be used, besides the great responsive design that provides. As an
important fact, Bootstrap is the most used open-source front-end framework in the world,
what it provides an extensive and wide documentation, besides a great community.
On the other hand, different web frameworks are used in web development in order to provide
a standard way to build these. These frameworks provide libraries for database access,
session and loggin management, security aspects, code modularization, etc. Most of these
frameworks make use of the Model-View-Controller pattern, which makes the applications
more modular and its code more reusable.

As it has been said before, nowadays Javascript is the most extended and used
programming language, therefore, some Javascript web frameworks are reviewed in table
3.5.

Pros Cons
AngularJS High scalability Steep learning curve

A lot of libraries High size (143k)
Biggest community

ReactJS Very flexible Few libraries
Small size (43k)

Vue.js Lightly learning curve Few libraries
Very flexible Closed community

Small size (23k)
Table 3.5 – Javascript web frameworks comparison

Antonio Serrano de la Cruz Parra

3.2. Review of Solutions for Ground Station Control 11

3

When the presented web application was started in 2016, AngularJS was an innovate
framework designed by Google in 2009 and it was very popular and extended among the
developers community. Throughout the last years, more frameworks that follow a similar
philosophy that AngularJS are emerging, such as the above seen ReactJS or VueJS.

These are becoming more popular among the new developers, since these new frameworks
have a slightly learning curve. However, nowadays AngularJS is still one of the most extended
and utilized frameworks (with new versions launched, such as Angular2), as it is shown in
figure 3.9.

Figure 3.9 – Most popular frameworks, libraries and tools in 2018 according to StackOverflow [26]

Hence, nowadays AngularJS is considered an appropriate and optimal solution to continue
the development of the current system.

3.2.0.3 Server side

When talking about the back-end, it refers to the server part of the application where
all the components of the system work and interact with a data base. The back-end does
not necessarily need to have the same programming language as the front-end, however, this
would be something convenient for the application’s modularity and structure.

Before choosing a technology or framework for the back-end, it is necessary to take into
account different aspects, such as the programming language to be used and its ease to
learn it, the amount of libraries that are available in order to solve the presented problems,
performance taking into account the purpose of the desired system, etc.

A table with different technologies for the back-end can be seen in 3.6.

Ground station control for telemetry and telecommand of Cubesat

3

12 Chapter 3. System Analysis

Pros Cons
JavaScript (NodeJS) Largest library registry Use of callbacks (messy code)

Easy to learn Unsuitable for large applications
Active and huge community Low scalability
Javascript full stack allowed

Python (Django) Easy and fast development Monolithic
High scalability Much code for small projects
Security is key

Ruby on Rails Easy and fast development Slow performance
Very flexible Difficult to find good docs

High computer resources
PHP Simplicity Low performance

Tons of available frameworks It might be insecure
Large open source community

Table 3.6 – Javascript back-end technologies comparison

As it is seen in the table above, NodeJS was the best possible solution for the back-end and
nowadays it would have been as well, even with more reason, specially for its big amount of
available libraries, ease of use and potential. Actually, as it was seen in figure 3.9, nowadays
it is one of the most used technologies.

Before NodeJS was launched, it was strictly necessary to use a different language from
Javascript for the back-end. Nowadays, it is possible to program the front-end and back-end
in the same language thanks to the launch of NodeJS, which makes it definitely the future
in web programming.

Regarding the database management system that will be used in the back-end, many
options are currently available.
When choosing a specific data base, it is necessary to take into account factors such as size
of the data to be stored, speed and scalability, amount of people that will access the data,
security aspects, etc.

The most utilized data bases during 2018 is shown in 3.10.

Antonio Serrano de la Cruz Parra

3.2. Review of Solutions for Ground Station Control 13

3
Figure 3.10 – Most utilized data bases during 2018 according to StackOverflow [26]

Hence, a brief comparison of some of the most used databases is shown in table 3.7.

Pros Cons
MySQL High security level It is not community driven anymore

Standard in production system
PostgreSQL High scalability Slower performance

Many available interfaces Tricky documentation
MongoDB Flexible schemas It does not use SQL language

High scalability Less query flexibility
Easy to use Default setting not secure

SQLite Server independent Not recommended for large apps
Single file to store data

Cross-platform database file
Table 3.7 – Databases comparison

It is clear that MySQL has been always an standard in production systems, therefore,
this will be the used data base when the application is running on the server.

On the other hand, as it can be inferred from the table above, SQLite is a database that
works independently from the server, with a single file that stores the data. This means that
this data base can be used when developing locally, being able to transfer this file easily from
one computer to another, which makes the development really agile and efficient.

In summary, as a result of all the chosen technologies that will be used, a brief scheme
with the web application architecture and technologies is shown in figure 3.11.

Ground station control for telemetry and telecommand of Cubesat

3

14 Chapter 3. System Analysis

H
TT

P
 R

e
qu

e
sts

V
ie

w

U
pd

ates

Serialport

Serialp
ort

C
on

tro
ller

D
irective

s

C
on

tro
ller

m
ySQ

L

H
TT

P

R
e

sp
o

n
ses

B
a

ck-e
n

d

ICO
M

9100 tran
sceiver

Yaesu rotors

Fro
n

t-e
n

d
an

te
nn

a

D
eb

ian server

TN
C

F
igure

3.11
–
G
ranaSAT

D
ashboard

system
architecture

and
technologies

Antonio Serrano de la Cruz Parra

3.2. Review of Solutions for Ground Station Control 15

3

Having chosen the technologies that will be used in the system, the following sections
will try to analyze in detail how the different system requirements given in 2.1 will be met.
Specifically, different approaches will be treated and analyzed, eventually choosing the most
suitable for its later design.

Ground station control for telemetry and telecommand of Cubesat

3

16 Chapter 3. System Analysis

3.3 Transceiver Telecontrol

As described in requirement a), users should be able to control the transceiver remotely,
without being physically controlling it. In this case, the transceiver will be controlled from
the web-based application.

This telecontrol is possible thanks to the USB Icom CI-V Interface, which allows the
transceiver to be connected to a computer via serial port (in this case the GranaSAT server)
and so be programmable.

On the one hand, it will be necessary to design a transceiver GUI, that is, a front-end
that tries to simulate the real aspect and behavior of the transceiver.
From this front-end the user will interact remotely with the transceiver.

On the other hand, the back-end needs to be designed as well. The back-end is intended
to communicate with the hardware (in this case the transceiver) and be able to send the
proper commands to this via serial port, using the proper protocol described in [14].
Thus, the following analysis is performed in order to describe what technologies are
appropriate and how this problem can be approached.

3.3.1 Back-end

To begin with, it is necessary to know the communication protocol between the transceiver
and a computer (in this case the server) so that the transceiver is controllable from this.
This will allow later to control the transceiver from the Dashboard, since clients will perform
requests to the server, which will communicate with the transceiver.

As described in [14], a computer connected to the transceiver can send and receive byte
to byte to and from it. Specifically, the way these bytes are sent/received is specified in the
Icom9100 instruction manual and it is strictly necessary to follow its protocol.

A table with the data format that must be used is shown in 3.12.

Antonio Serrano de la Cruz Parra

3.3. Transceiver Telecontrol 17

3

18

183

CONTROL COMMAND

■ Remote jack (CI-V) information

Controller to IC-9100

FE FE 7C E0 Cn Sc Data area FD

P
re

am
bl

e
co

de
 (f

ix
ed

)

Tr
an

sc
ei

ve
r’s

de
fa

ul
t a

dd
re

ss

C
on

tr
ol

le
r’s

de
fa

ul
t a

dd
re

ss

C
om

m
an

d
nu

m
be

r
(s

ee
 th

e
co

m
m

an
d

ta
bl

e)

S
ub

 c
om

m
an

d
nu

m
be

r
(s

ee
 th

e
co

m
m

an
d

ta
bl

e)

B
C

D
 c

od
e

da
ta

 s
uc

h
as

fo
r

fr
eq

ue
nc

y,
 m

em
or

y
nu

m
be

r
en

tr
y

(s
ee

 th
e

da
ta

 c
on

te
nt

 d
es

cr
ip

tio
n)

E
nd

 o
f m

es
sa

ge
co

de
 (f

ix
ed

)

OK message to controller

FE FE E0 7C FB FD

FE FE E0 7C FA FD

P
re

am
bl

e
co

de
 (f

ix
ed

)

C
on

tr
ol

le
r’s

de
fa

ul
t a

dd
re

ss

Tr
an

sc
ei

ve
r’s

de
fa

ul
t a

dd
re

ss

O
K

 c
od

e
(f

ix
ed

)

E
nd

 o
f m

es
sa

ge
co

de
 (f

ix
ed

)

NG message to controller

N
G

 c
od

e
(f

ix
ed

)

IC-9100 to controller

q w e r t y u

FE FE E0 7C Cn Sc Data area FD

q w e r t y u

D CI-V connection example
�The transceiver can be connected through an optional
CT-17 ci-v level converter to a PC equipped with an
RS-232C port. The Icom Communications Interface-V
(CI-V) controls the transceiver.
Up to 4 Icom CI-V transceivers or receivers can be
connected to the PC. See page 167 for setting the
CI-V condition using the set mode.

D Data format
The CI-V system can be operated using the following
data formats. Data formats differ depending on com-
mand numbers. A data area or sub command is added
to some commands.

IC-9100

9−15V DC

PC

ct-17

mini-plug cable

RS-232C
cable

When the transceiver is connected to a PC with the
USB cable (purchased separately), the optional
CT-17 is not required.

Figure 3.12 – Icom9100 data format [14]

As it it shown above, the commands are sent with certain format, being the sections 4,5,6
the ones that need to be changed according to the commands that are used. To specify these
commands, it is necessary to look at the command table in [14] (pp 184-190).

A partial example of this table is shown in table 3.13

185

18 CONTROL COMMAND

D Command table (continued)

Cmd. Sub cmd. Data Description
15 01 00 Read squelch status (squelch close)

01 Read squelch status (squelch open)
02 0000 to

0255
Read S-meter level
(0000=S0, 0120=S9, 0240=S9+60 dB)

11 0000 to
0255

Read RF power meter
(0000=0%, 0141=50%, 0215=100%)

12 0000 to
0255

Read SWR meter
(�0000=SWR1.0, 0041=SWR1.5,
0081=SWR2.0, 0120=SWR3.0)

13 0000 to
0255

Read ALC meter
(0000=Min. to 0120=Max.)

14 0000 to
0255

Read COMP meter
(0000=0 dB, 0120=15 dB, 0240=30 dB)

16 02 00 Send/read Preamp OFF
01 Send/read Preamp ON (144/430/1200 MHz)

Send/read Preamp 1 ON (HF/50 MHz)
02 Send/read Preamp 2 ON (HF/50 MHz)

12 01 Send/read AGC FAST
02 Send/read AGC MID
03 Send/read AGC SLOW

22 00 Send/read Noise Blanker OFF
01 Send/read Noise Blanker ON

40 00 Send/read Noise Reduction OFF
01 Send/read Noise Reduction ON

41 00 Send/read Auto Notch function OFF
01 Send/read Auto Notch function ON

42 00 Send/read Repeater tone OFF
01 Send/read Repeater tone ON

43 00 Send/read Tone squelch OFF
01 Send/read Tone squelch ON

44 00 Send/read Speech compressor OFF
01 Send/read Speech compressor ON

45 00 Send/read Monitor function OFF
01 Send/read Monitor function ON

46 00 Send/read VOX function OFF
01 Send/read VOX function ON

47 00 Send/read BK-IN function OFF
01 Send/read Semi BK-IN function ON
02 Send/read Full BK-IN function ON

48 00 Send/read Manual notch function OFF
01 Send/read Manual notch function ON

4A 00 Send/read AFC function OFF
01 Send/read AFC function ON

4B 00 Send/read DTCS OFF
01 Send/read DTCS ON

4C 00 Send/read VSC function OFF
01 Send/read VSC function ON

4F 00 Send/read Twin Peak Filter OFF
01 Send/read Twin Peak Filter ON

50 00 Send/read Dial lock function OFF
01 Send/read Dial lock function ON

55 00 Send/read 1st IF filter 3 kHz
01 Send/read 1st IF filter 6 kHz
02 Send/read 1st IF filter 15 kHz

56 00 Send/read DSP filter type SHARP
01 Send/read DSP filter type SOFT

57 00 Send/read manual notch width WIDE
01 Send/read manual notch width MID
02 Send/read manual notch width NAR

58 00 Send/read SSB transmit bandwidth WIDE
01 Send/read SSB transmit bandwidth MID
02 Send/read SSB transmit bandwidth NAR

Cmd. Sub cmd. Data Description
16 59 00 Send/read Sub band OFF

01 Send/read Sub band ON
5A 00 Send/read Satellite mode OFF

01 Send/read Satellite mode ON
5B 00 Send/read DSQL/CSQL OFF (DV mode

only)
01 Send/read DSQL ON (DV mode only)
02 Send/read CSQL ON (DV mode only)

17 see p. 191 Send CW messages
19 00 Read the transceiver ID
1A 00 see p. 195 Send/read memory contents

01 see p. 191 Send/read band stacking register con-
tents

02 see p. 191 Send/read memory keyer contents*1

03 00 to 49 Send/read the selected filter width
(�AM: 00=200 Hz to 49=10 kHz;
other than AM modes: 00=50 Hz to
40/31=3600 Hz/2700 Hz)

04 00 to 13 Send/read the selected AGC time constant
(�00=OFF, AM: 01=0.3 sec. to 13=8.0 sec.
SSB/CW/RTTY: 01=0.1 sec. to 13=6.0 sec.)

05 0001 0000 to
0255

Send/read LCD contrast level
(0000=0% (low) to 0255=100% (high))

0002 0000 to
0255

Send/read LCD backlight brightness level
(0000=0% (dark) to 0255=100% (bright))

0003 0000 to
0255

Send/read beep level
(0000=0% to 0255=100%)

0004 00 Send/read beep level limit OFF
01 Send/read beep level limit ON

0005 00 Send/read confirmation beep OFF
01 Send/read confirmation beep ON

0006 00 Send/read band edge beep OFF
01 Send/read band edge beep ON

(Beep sounds with a default band)
02 Send/read band edge beep with user set-

ting ON
03 Send/read band edge beep with user set-

ting/TX limit ON
0007 0050 to

0200
Send/read beep audio frequency for MAIN
Band
(0050=500 Hz to 0200=2000 Hz)

0008 0050 to
0200

Send/read beep audio frequency for SUB
Band
(0050=500 Hz to 0200=2000 Hz)

0009 00 Send/read Auto selection for [RF/SQL]
01 Send/read SQL selection for [RF/SQL]
02 Send/read RF+SQL selection for [RF/SQL]

0010 00 Send/read Meter Peak Hold function OFF
01 Send/read Meter Peak Hold function ON

0011 00 Send/read FM/DV Center Error function
OFF

01 Send/read FM/DV Center Error function
ON

0012 00 Send/read Time-Out Timer OFF
01 Send/read 3 min. Time-Out Timer
02 Send/read 5 min. Time-Out Timer
03 Send/read 10 min. Time-Out Timer
04 Send/read 20 min. Time-Out Timer
05 Send/read 30 min. Time-Out Timer

0013 00 Send/read PTT Lock function OFF
01 Send/read PTT Lock function ON

0014 00 Send/read Quick Split function OFF
01 Send/read Quick Split function ON

0015 see p. 192 Send/read Split offset frequency

Figure 3.13 – ICOM9100 command table [14]

Ground station control for telemetry and telecommand of Cubesat

3

18 Chapter 3. System Analysis

Following the data format and command table described above, let us see a simple
example:

In the transceiver, the squelch is used in order to set the noise threshold, that is, squelch
removes noise output when no signal is received. Thus, in order to read the squelch status
(open/closed), it is necessary to send the command:

FEFE7CE0 15︸︷︷︸
command number

01︸︷︷︸
subcommand number

FD

On the other hand, if the squelch is open, it is expected to receive:

FEFEE07C1501 01︸︷︷︸
squelch open

FD

otherwise, if this is closed:

FEFEE07C1501 00︸︷︷︸
squelch closed

FD

This is how the Icom9100 transceiver can be controlled from a computer by using its
protocol. The transceiver has tons of functions, modes and parameters but logically, only
those that will be used will be implemented.

Specifically, the following functions will be implemented:

• Frequency: The Icom9100 can operate on the HF/50 MHz, 144 MHz, 430 MHz and
1200 MHz frequency bands. These frequency bands can be assigned to the MAIN (for
transmission/reception) and SUB Band (only reception) for operating convenience,
however, the frequency band, selected in either the MAIN or SUB band, cannot be
selected on the other band.
Users should be able to choose the operative frequency (Main or Sub), and change the
frequency bands by their convenience.

• S-meter: it indicates the signal strength while receiving signals. The user should be
able to see the s-meter indicator.

• RF power meter: it indicates input power while receiving. The user should be able
to see the RF power indicator.

• SWR: the SWR of the antenna of the antenna. The user should be able to see the
SWR indicator.

• ALC: it indicates the micro gain during transmission. The user should be able to see
the ALC indicator.

Antonio Serrano de la Cruz Parra

3.3. Transceiver Telecontrol 19

3

• Attenuator: in order to prevent desired signal from being distorted when very strong
signals area near the signal’s frequency. The user should be able to activate/deactivate
the attenuator.

• AF: in order to increase/decrease the audio output level. The user should be able to
adjust the AF level.

• RF power control: it indicates the transmit output power while transmitting, in
Watios. The user should be able to adjust the RF power.

• NR (Noise Reduction): function that reduces random noise components and
enhances audio signals which are buried in noise. The user should be able to
activate/deactivate noise reduction.

• Squelch: The squelch removes noise output to the speaker when no signal is received.
The user should be able to adjust the squelch threshold.

• Operating mode: the Icom9100 has different operative modes (CW,USB,LSB, AM,
FM, RTTY and DV). The user should be able to modify the operating mode.

• Satellite mode: the satellite mode allows to both downlink and uplink frequencies
simultaneously increase or decrease in the same steps when you change the frequency
band. The user should be able to activate/deactivate the satellite mode.

• Transmission: the Icom9100 turns into transmission mode when the user press the
PTT (Press To Talk, that is, the microphone) or when transmission mode is activated.
The user should be able to activate/deactivate the transmission mode.

• Duplex mode and duplex offset frequency: some repeaters can be accessed using
the duplex operation to set the frequency shift to the same value as the repeater’s
frequency offset. The user should be able to set the duplex mode and the duplex offset
frequency in order to access repeaters.

• Repeaters sub-tones: Some repeaters require a sub-audible tone to be accessed. Sub-
audible tones are superimposed on the normal signal and must be set first. Icom9100
has 50 tones from 67.0 Hz to 254.1 Hz. The user should be able to change the repeater
sub-tone in order to access repeaters.

As it was said before, the communication between server and transceiver is done via serial
port, therefore, some library will be needed in order to make use of the serial port from the
server.

As described in 3.2.0.3, the back-end of the system will be programmed in NodeJS,
therefore, the most suitable solution will be to use the standard NodeJS library that is
called Node-SerialPort [21], which provides a set of functions to open, write and read a
serial port.

Ground station control for telemetry and telecommand of Cubesat

3

20 Chapter 3. System Analysis

3.3.2 Front-end

Once it is known how the transceiver protocol works and how to communicate server
and transceiver, the next step is to analyze how to implement the front-end, that is, what
technologies will be used in order to define the aspect of the application, what the user will
see and what the user will interact with.

In summary, the client side will be basically a GUI that will simulate the transceiver
behavior in a simple and handy way for the user. Taking a look to the transceiver appearance
(see 3.4), it is noticeable that there is a main LCD screen, besides some buttons and rotors.
In order to make the front-end as real as possible, some graphical elements that will simulate
the real ones need to be defined.

• Rotors: while reviewing, some open-source Javascript graphic libraries that could be
used to design these were found. Some of them are:

– gauge.js: simple Javascript library that allow us to use gauges with needles. [11]
– justGauge: it is a handy Javascript plugin for generating and animating nice

and clean gauges. It is completely resolution independent and self-adjusting. [17]
– D3.js: this is a really complex Javascript library for manipulating documents

based on data. It has many graphical examples, among those, gauges. [8]

A brief comparison of these libraries is shown in table 3.8

Pros Cons
gauge.js All in one js file Very simple design

Flexible customization
Easy to use

justGauge High customization Poor documentation
SVG elements It might be deprecated

D3.js High customization Complex library
Huge community and documentation

SVG elements
Table 3.8 – Javascript gauges analyzed possibilities

Analyzing these options, gauge.js will be the chosen option, since justGauges seems to
be a little bit deprecated and therefore future problems could arise during the design
stage. On the other hand, D3.js gauges designs do not really fit with the expected
design idea and it would be really complex to adjust its designs, due to the complexity
of this library.

Antonio Serrano de la Cruz Parra

3.3. Transceiver Telecontrol 21

3

• LCD screen: since the LCD screen contains bars and some legends, Bootstrap default
bars provide an easy and straightforward solution for this purpose. Regarding the
legends, SVG images could be inserted. These could be designed with certain graphical
design software such Inkscape, taking advantage of its free license.

• Buttons: once again, native Bootstrap buttons could be used since there is no need of
anything else.

The implementation of the transceiver protocol on the back-end and proper GUI on the
front-end will be designed in section 4.1

Ground station control for telemetry and telecommand of Cubesat

3

22 Chapter 3. System Analysis

3.4 Transceiver’s Audio

As described in requirement d), the Dashboard is expected to receive and play the
transceiver’s audio in live, so that the user can listen the audio that is really coming out of
the transceiver remotely. An special section is necessary to analyze this problem, since
there is no specific protocol in the transceiver’s manual to approach this problem.

Specifically, the presented problem is how to send an audio stream from the server to the
client with an acceptable audio delay.
Hence, different alternatives were reviewed and some of them are described below, choosing
the most suitable for the system.

• audio websockets + web Audio API: this solution consist of getting the
transceiver’s audio stream output (raw data) and redirect it to the client by using a
websocket (for what an external library is needed). On the client, connecting to the
websocket and interpret the raw data with the web Audio API would be necessary, in
order to be able to play the desired audio with the proper format.

• VLC: the well known multimedia player allows to stream audio and video of any device
in the system with several methods, being the HTTP protocol among those.

• Icecast2 + Darkice: Icecast2 is an open-source streaming media server that supports
different audio formats. On the other hand, Darkice is a live audio streamer that can
capture audio from an audio interface, sending the captured audio to a streaming server
(Icecast2 in this case). It has been used since 2002 and it is very stable. [7] [13]

A brief comparison of these technologies is shown in table 3.9

Pros Cons
websockets Low audio delay (1/3s) Very complex

Tons of websockets libraries
Good documentation

VLC GUI available Tricky configuration
Icecast2+Darkice Very easy to use Some audio delay (3/5s)

Good documentation and community
Many clients at the same time

Table 3.9 – Audio streaming from server to client analyzed possibilities

An important aspect to take into account is the audio delay that the system will have.
Concretely, an audio delay bigger than 8-10 seconds could not be accepted, since this would
be really annoying for the user due to the lack of real and updated information that the user
would have.

Antonio Serrano de la Cruz Parra

3.4. Transceiver’s Audio 23

3

With the given solutions, almost a real time audio could be obtained with websockets,
nevertheless, this would be much more complex than using Icecast2 together with Darkice,
with what only couple of seconds more of delay are expected, something totally affordable.

Therefore, with the presented options, the most suitable solution for the presented
problem is to use the streaming server Icecast2 together with the Darkice client.

The specific implementation and integration of these software on the Dashboard will be
seen in section 4.2.

Ground station control for telemetry and telecommand of Cubesat

3

24 Chapter 3. System Analysis

3.5 TNC

As it has been seen before, the system will have to integrate a TNC in order to send/receive
AX25 packets, which will contain the telecommands/telemetry that will be sent/received to
and from a Cubesat.
Therefore, as specified in requirements b) and c), the user is expected to use the Dashboard
to send and receive AX25 frames/packets by making use of a TNC.

To approach this problem, two possible solutions are suggested:

• Using a physical TNC via serial port: as it was seen in the previous section,
the transceiver can be controlled remotely by making use of a serial port. Hence, this
approach could be used in the same way for controlling a physical TNC.

• Virtual TNC: Using a software that substitutes/simulates a real TNC, which would
be running on the terminal (GranaSAT server in this case). In this case, the physical
TNC is substituted by a software that takes advantage of the computer hardware in
order to perform the same operations that would be done by a real physical TNC.

Given these options, it is clear that using a physical TNC would be more complex than
using a substitute software, since the configuration would be probably more sophisticated
than using an up-to-date software. Furthermore, a virtual TNC will provide a much more
flexible configuration than a physical one.
Therefore, since everything must be done as simple as possible, the most suitable solution is
to use a software that substitutes a physical TNC.

While reviewing, it was found that this kind of software is not really popular and it is quite
difficult to find a stable and supported software. Specifically, two up-to-date alternatives were
found and they are reviewd in table 3.10.

Pros Cons
Direwolf Flexible configuration No GUI available

Frequent updates
Good and extensive documentation

Packet Engine Pro GUI available Available for Windows and MacOS
Requires a 30$ fee after 30 days

Table 3.10 – Virtual TNCs analyzed possibilities

With the comparison described above, it is clear that Direwolf is the best and unique
option, since this is the only available option for Linux, which is the server’s operative system.

Another aspect to take into account is that when communicating with a TNC (in this
case Direwolf), it is necessary to do it with an special protocol, which is known as KISS

Antonio Serrano de la Cruz Parra

3.5. TNC 25

3

protocol.
Physical TNC’s provide some line-command applications that implement this protocol and
make the communication with the TNC easier, users needing only to write the data
(normal ASCII text input) that they want to format into AX25 packet. These applications
communicate to the physical TNC via serial port.

In this case, the server will need to communicate with Direwolf. Hence, this
communication could be approached by making use of an external library that allows to
communicate with a TNC.
Two options were found while reviewing, one of them is a Python library that implements
the KISS protocol (https://github.com/ampledata/kiss), while the other option is a
Javascript library [9] that could be easily used in the NodeJS server and therefore, it will
be the chosen solution.

Lastly, since Direwolf will be running in background when the Dashboard is launched and
it is necessary to display its output on the Dashboard. The easiest approach for this is to
send the Direwolf output from the server to the client making use of websockets, sending the
Direwolf output to the client as a simple text/string.
This Direwolf output will be displayed on the Dashboard making use of a simulated terminal
that was developed by a GranaSAT colleague [10].

Direwolf integration and implementation on the Dashboard will be seen in section 4.3.

Ground station control for telemetry and telecommand of Cubesat

https://github.com/ampledata/kiss

3

26 Chapter 3. System Analysis

3.6 Yaesu Rotors Telecontrol

As it was said before, the Dashboard was started in 2016 and some of the parts that were
already designed was the Yaesu rotor’s remote control.
Nevertheless, in order to complete the system analysis and make everything make sense, a
brief description about the rotors implementation will be done.

As it has been seen in section 3.3, the transceiver is connected to the server and so it
can be programmable via serial port.
Hence, the Yaesu rotors are programmable via serial port as well, which allows to
synchronize the Yaesu rotors and some software satellite tracking in order to modify the
antenna’s position and point it to the desired current satellite’s position.

3.6.1 Back-end

Contrary to the transceiver telecontrol, which have many possible commands, Yaesu
Rotors protocol is much easier and it has the following commands:

• C2: it returns the current antenna position (elevation and azimuth).

• Waaa + eee: set the current antenna position to “aaa” azimuth (0-420º) and “eee”
elevation (0-90º)

• S: stop the rotors

3.6.2 Front-end

The current front-end to manipulate the Yaesu Rotors is quite simple (plain text),
therefore, this will be modified in order to show the current elevation and azimuth with
customized gauges.

As it was already analyzed in 3.3.2, there are many available option for implementing
gauges.
In this case, the most suitable option will be the D3.js library, due to its high customization
and because it is considered to provide the appropriate design to display the antenna’s
azimuth and elevation.

The implementation of these aspects will be seen in section 4.4.

Antonio Serrano de la Cruz Parra

3.7. Satellite Tracking 27

3

3.7 Satellite Tracking

Every Ground Station must have a satellite tracking software in order to allow users to
know what is the current position of the satellite. This is necessary since the satellite has a
limit coverage area and it would not be possible to perform communications with it if the
Ground Station is not inside the satellite’s coverage area.
Furthermore, the satellite tracking allow to aim the antennas to the current satellite’s
position, since current elevation and azimuth are provided.
Therefore, the current satellite’s position must be before attempting any communication.

Nowadays there are many available satellite tracking software, being GPredict (http:
//gpredict.oz9aec.net/) or JSatTrak (http://www.gano.name/shawn/JSatTrak/) some
of the most popular tools.

Figure 3.14 – GPredict satellite tracking software

Hence, as described in requirement d), the system is expected to have its own satellite
tracking in real-time so that the user can see what is the position of the Cubesat . In
addition, in order to not to have just a simple tracking, some parameters are expected to be
able for the user, such as the satellite’s longitude, latitude, altitude, azimuth and elevation
with respect to the Ground Station, coverage area of the satellite, etc.

Regarding how to develop the satellite tracking system, some aspects need to be taken
into account:

3.7.1 Extraction of satellite data

In order to extract all the satellite’s data, some library needs to be used. Currently there
are many open source libraries for this purpose, most of them written in Python due to its
scientific use. Some of these libraries are libpredict, orbit-predictor, PyOrbital, PyEphem or

Ground station control for telemetry and telecommand of Cubesat

http://gpredict.oz9aec.net/
http://gpredict.oz9aec.net/
http://www.gano.name/shawn/JSatTrak/

3

28 Chapter 3. System Analysis

SGP4.py. Furthermore, there are also Javascript libraries that are directly based on these
(for example satellite.js or jspredict), which is a good straightforward solution taking into
account that the application is running in NodeJS.

Some of these libraries have been analyzed and the chosen ones will be:

• satellite.js [25] : this library is really complete and it will provide most of the needed
data, such as velocity of the satellite, longitude, latitude, azimuth, elevation and height.

• jspredict.js [12] : this library will be used to get the coverage area of the satellite
and whether this is on light or night position.

• PyEphem [24] : the satellite’s orbit will be calculated with this library, since it is
really easy to perform, only needed couple of "‘for"’ iterations with N interval times
that define the satellite’s orbit in the future and in the past (where the satellite has
already been).

All of this information is calculated in these libraries by making use of the well-known
“two-line elements” developed by NASA and NORAD. Also called TLE, this is composed of
two lines with several parameters that define the orbit of a satellite [3]. These parameters
are: size and shape of the orbit, orientation, epoch year, etc. (an example of ISS TLE can
be seen in figure 3.15).

The described TLE is used as an input in the libraries described above for the algorithm
SGP4, which calculates future satellites orbits.

These TLEs need to be updated frequently, since these lose precision over time. TLEs of
public satellites are are available from pages such https://celestrak.com/, which provides
many available TLE’s in single .txt files.

Regarding the GranaSAT Cubesat, its TLE would be provided by the launch provider.
More accurately, a pre-launch TLE (calculation based on the expected orbit) would be
provided by the launch provider and it would be used until the post-launch TLE would be
released from the Department of Defense Joint Space Operations Center, based on
observations made with cameras and radars [15].

Figure 3.15 – TLE example [34]

Since there is no Cubesat yet in orbit, the satellite tracking will be tested with current real
satellites, such as ISS or other Cubesat such as e-ST@R-2 (Cubesat owned by the University
of Turin).

Antonio Serrano de la Cruz Parra

https://celestrak.com/

3.7. Satellite Tracking 29

3

3.7.2 Display over interactive map

Once the satellites data is retrieved, this needs to be displayed over a map on the
Dashboard. To do this, there are tons of different open source solutions that deal with
interactive maps making use of Javascript [4].

A comparison of some of these map libraries is shown in table 3.11.

Pros Cons
OpenLayers High flexibility Complex configuration

Maturity
Easy to use

GMaps High customization None
Good documentation
Google Maps API

Leaflet Basic use None
Good and extensive documentation

Mobile friendly
Small size (38K)

Table 3.11 – Javascript libraries for interactive maps analyzed possibilities

In summary, all of these libraries are quite similar, therefore, among these alternatives,
Leaflet [19] will be the chosen solution, due to its small size (38Kb)and ease of use, besides
being suitable for mobile devices.

Leaflet allows to use different map layers from different web pages, in this case, the map
layer is taken from Mapbox, for what a key-token will be needed in order to use its API. For
this, previously a user account has been created in Mapbox.
To define the satellite’s orbit, coverage area and satellite situation, it is possible define lines,
circles, polygons, etc. by making use of the Leaflet API.

Lastly, a light-night layer will be set over the map, so that the user can see which part
of the Earth is on light and night in every moment. For this, there is a open source and
straightforward solution [16] that can be used with Leaflet.

3.7.3 Integration within the system

Once the technologies are properly chosen, it is necessary to think about how everything
is going to be integrated within the system.

Regarding the client part of the system there is no need of a deep analysis, since with
AngularJS can deal with the map display, making use of Leaflet API. The client part of

Ground station control for telemetry and telecommand of Cubesat

3

30 Chapter 3. System Analysis

the system will ask for the satellites data to the server (making HTTP requests), which will
return a JSON object to the client as a response.
This will contain all the information, information that will be visually displayed on the client.

On the other hand, the back-end is developed in NodeJS and Python code needs to be
executed (in order to use PyPredict), therefore, some library needs to be used in order to do
this from NodeJS.

While reviewing, two different options were found:

• spawn childprocess: standard module in NodeJS that allows to run a Python script.

• PythonShell.py: external library that simulates a Python terminal in order to
execute its code.

Both are useful to execute the Python script that will collect all the data satellites,
therefore, the spawn module will be used since it does not require an external library.

Further details about implementation will be described in section 4.5

Antonio Serrano de la Cruz Parra

3.8. Other Improvements 31

3

3.8 Other Improvements

As described in requirements f), g) and h), different aspects of the Dashboard will be
improved adding several functionalities that will make a better system. To do this,
different available technologies are studied and finally, the most suitable will be chosen and
implemented in section 4.6.

3.8.1 Tooltips definition

A tooltip is a graphical element (a little box) that pops up when the user hovers the
pointer over an item (image, hyperlink, etc). Its function is to provide extra information to
the user.

There are many different available options and libraries to implement tooltips,
specifically, three possible solutions will be taken into account and eventually one of them
will be implemented.

• Default tooltips: it is the default tooltip in HTML, it is easy to use by adding “title”
attribute to a HTML tag.

• tooltips.js: this is a open-source library for tooltips implementation. It provides an
API to create, show, hide and toggle customized tooltips [27].

• Twitter Bootstrap tooltips: the well known framework Bootstrap allow us to
implement tooltips by using its already defined classes, besides giving the possibility
of customization. [28].

A brief comparison of these technologies is shown in table 3.12

Default tooltip tooltips.js Bootstrap tooltip
Pros Native in HTML High customization Framework already in use

Easy to implement Uniformity
Cons No customization Library needed

Table 3.12 – Tooltips analyzed possibilities

Taking into account the characteristics described above, Bootstrap tooltips will be the
chosen solution, specially for the consistency and uniformity that this provides to the system,
since Bootstrap is one of the frameworks that has been used in the system from the beginning
of the development.

The implementation of tooltips is seen in section 4.6.1.

Ground station control for telemetry and telecommand of Cubesat

3

32 Chapter 3. System Analysis

3.8.2 Camera streaming on the server

In this section different available tools are analyzed in order to set up a cameras system
on the server. Due to the complexity of the problem and the purpose that the cameras will
have, it is not extremely necessary to have complex cameras, therefore, simple webcams will
be used.

The purpose of the first camera will be to stream a video of the antenna, thereby, the user
will be able to see how this is changing its elevation and azimuth when the user is making
the proper changes on the Dashboard.

Regarding the second camera, this will be set up in the laboratory and its function will
be to watch the Ground Station and detect movement, recording video that will be saved
on the server.

Three possible applications that meet the given requirements are the following:

• VLC: the widely known multimedia player. This program is open source and it
includes the possibility of streaming video and movement detection, besides many
other options related to multimedia playing (DVD, audio, etc).

• Motion: this software is open-source and it allows streaming, recognition of movement
and video recording. It is highly configurable and it can be easily used and installed
in Linux from the terminal. Furthermore, it includes a GUI that can be displayed in
a server port.

• ZoneMinder: this is a really complex open source surveillance software. It includes
many options such as monitoring, recording, movement detection, scheduling, etc. This
software includes a GUI as well.

A brief comparison between their characteristics can be seen in table 3.13.

Software VLC Motion ZoneMinder
Size 200Mb 6Mb 8Mb
OS Windows, MacOS, Linux MacOS, FreeBSD, Linux FreeBSD, Linux

Multiple cameras Yes (multiple instances) Yes Yes
GUI on server port No Yes Yes

Table 3.13 – Video streaming software analyzed possibilities

Antonio Serrano de la Cruz Parra

3.8. Other Improvements 33

3

Given these options, the best considered option is Motion for several reasons:

• It is very flexible and provides easy configuration by .config files

• Easy to install from the terminal

• It allows multiple cameras without running multiple instances

• Small size suitable for the server

• Attractive GUI to be displayed in a server port

The implementation of these aspects are seen in section 4.6.2.

3.8.3 User account management

In the last version of the Dashboard it was only possible to create an user, not being able
to change their password, username, organization, etc. Therefore, the system is expected to
meet this requirements.

For this, it is only necessary to create a front-end with a form where users can modify
their profiles. After this, the controller (AngularJS) will verify that the data is correct and
will send the data to the server in order to modify the user’s data in the database.

In addition, the user is expected to have the possibility of changing their passwords,
receiving an e-mail with a new temporary password. This will be done with node-mailer,
a NodeJS module that allow us to send e-mails to several destinations.

Further design aspects will be seen in section 4.6.3.

Ground station control for telemetry and telecommand of Cubesat

3

34 Chapter 3. System Analysis

Antonio Serrano de la Cruz Parra

CHAPTER

4

SYSTEM DESIGN

In this chapter, all the parts of the system that were analyzed in chapter 3 will be
implemented, therefore, the level of abstraction at this stage of the development will be as
lowest as possible.

As it was explained during the analysis, on the client side HTML, CSS, Bootstrap and
AngularJS are used. NodeJS is used on the server side.
The application is divided in tabs, being every tab a directive of AngularJS, which is made
up of its HTML view and the script that defines the behaviour of the tab and acts as a
controller.
The main index.html file exchanges every tab according where user clicks whilst there is a
general controller (mainController.js) that controls the general behavior of the application
(logging status, tab selected, user information, etc.).

On the other hand, the app.js file will be the server logic, that is, here are defined the
NodeJS routes that handle the HTTP requests from the clients.
These requests are intended to access the data base, to control the transceiver, to control the
TNC, to request satellite’s data, etc. There is a “module_name”.js on the server for every
logic part of this, so for the transceiver control, there is a module, as well as for the rotors
control, satellite tracking, TNC communication, etc.

See image 4.1 to see the system architecture.

Ground station control for telemetry and telecommand of Cubesat 1

4

2 Chapter 4. System Design

Controller View

Server
Client

HTTP
Requests

HTTP
Responses

app.js

index.htmlmainController.js directives.js

updates

database.js

modules.js

Figure 4.1 – System architecture

Hence, in the following sections, when a new front-end is created, this means that a
directive of AngularJS is created, with a HTML view and its Javascript script (controller)
associated.
On the other hand, when the server needs to perform some operation, new NodeJS routes
are created, besides the proper modules .js to interact with within the server.

Antonio Serrano de la Cruz Parra

4.1. Transceiver Telecontrol 3

4

4.1 Transceiver Telecontrol

As described in section 3.3, the system will include functionalities and commands that will
allow to control the transceiver remotely. This is possible due to the possibility of sending
commands via serial port to the transceiver, using format tables described in sections 3.13
and 3.12.

Here, two parts are pointed out: the server part, where NodeJS makes the communication
with the transceiver by using the serial port and on the other hand, the client part, where the
user can make use of all the functions that are displayed by interacting with the front-end.

4.1.1 Back-end

First of all, a class is defined in order to represent the transceiver and its functions. Here
the library Node-SerialPort [21] is used in order to send and read commands to and from
the transceiver by using the physical serial port that is connected from the transceiver to
the server.

It is important to notice that the user can control the transceiver’s functions remotely
and this will be physically reflected in the transceiver, but it needs to be taken into account
the same process in the opposite direction, that is, if someone modifies the transceiver, the
Dashboard must reflects these changes.

Therefore, the Dashboard client will ask every second for the transceiver’s attributes.
Since Javascript is asynchronous, a problem araises while reading in the serial port, since
this can be only accessed by one thread at the same time. Therefore, the most suitable
solution is to define the transceiver parameters and update these every second by applying
the commands one by one.

To apply these one by one, Javascript promises can be used, which allow to execute these
functions in a way that the next function will not be executed until the previous one has
finished, therefore, the serial port will be accessed only once every time.
When these functions read the serial port and retrieved data from the transceiver, they
update the attributes of this. When the client asks for the parameters, they are just returned
with the common get functions. Therefore, from the server it is only necessary to consult
these attributes that will be updated every second.

Ground station control for telemetry and telecommand of Cubesat

4

4 Chapter 4. System Design

4.1.2 icom9100.js class

This class represents the transceiver behavior. The transceiver has some attributes that
define its behavior. These are the following:

1 var parameters = {
2 f r e q : null ,
3 s_meters : null ,
4 rf_meter : null ,
5 swr : null ,
6 a l c : null ,
7 comp : null ,
8 a t t : null ,
9 tone_squelch : null ,

10 tone_squelch_freq : null ,
11 repeater_tone : null ,
12 r epe ate r_t on e_f req : null ,
13 rf_power_posit ion : null ,
14 a f _ p o s i t i o n : null ,
15 r f _ g a i n _ l e v e l : null ,
16 sat_mode : null ,
17 s q l _ s t a t u s : null ,
18 s q l _ p o s i t i o n : null ,
19 nr : null ,
20 t r a n s c e i v e r _ s t a t u s : null ,
21 operating_mode : null ,
22 o f f s e t _ f r e q : null ,
23 } ;

The transceiver class has functions that access the serial port in order to write and read
commands. When writing or reading commands, the above parameters are updated so that
the server knows every moment the current state of the transceiver.

Every function receives a callback, which is a function that will be call back when the
operation finishes. This callback will contain the operation result: “Done” or “Error” in case
it is a SET function. On the other hand, if it is a GET function, the callback will contain
the proper result (Javascript is interpreted so there are not types, however these will always
return an String) or “Error” in case the GET functions fail.

Some of the most important functions are the following:

- getFrequency() : String: it returns in a callback the current frequency or an error,
if applicable

- setFrequency(freq : String) : String : it sets a new frequency and returns the
operation result in a callback

- getOperatingMode() : String : it returns in a callback the current operating mode
or an error, if applicable

- setOperatingMode(mode : String) : String : it sets new operating mode
(“USB,LSB,CW,AM,FM,RTTY,DV”) and returns the operation result in a callback

- getAttenuator() : String : it returns in a callback the current attenuator status
(“on/off”) or an error, if applicable

- setAttenuator(status : String) : String : it sets new attenuator status (“on/off”)
and returns the operation result in a callback

- getNoiseReduction() : String : it returns in a callback the current noise reduction

Antonio Serrano de la Cruz Parra

4.1. Transceiver Telecontrol 5

4

status (”on/off“) or an error, if applicable

- setRepeaterToneFreq(freq : String) : String : it sets new repeater tone frequency
and returns the operation result in a callback

- getRepeaterToneFreq() : String : it returns in a callback the repeater tone frequency
or an error, if applicable

- setDuplexOffset(freq : String) : String : it sets new duplex offset frequency and
returns the operation result in a callback

- getDuplexOffset() : String : it returns in a callback the duplex offset frequency or
an error, if applicable

- getRFPower() : String : it returns in a callback the rf power value, or an error, if
applicable

- setRFPower(value : String) : String: it sets new rf power value and returns the
operation result in a callback

- getAF() : String : it returns in a callback the af position value, or an error, if
applicable

- setAF(value : String) : String: it sets new af position value and returns the
operation result in a callback

- getRFGainLevel() : String : it returns in a callback the rf gain level value, or an
error, if applicable

- setRFGainLevel(value : String) : String: it sets new gain level value and returns
the operation result in a callback

- getSQLPosition() : String : it returns in a callback the squelch position value, or an
error, if applicable

- setSQLPosition(value : String) : String: it sets new squelch position value and
returns the operation result in a callback

- getTransceiverStatus() : String : it returns in a callback the current transceiver
status (“transmission(tx)/reception(rx))

- setTransceiverStatus(status : String) : String: it sets new transceiver status
(“tx/rx”)) value and returns the operation result in a callback

- setMainBand() : String: it sets the main band as the operative one and returns the
operation result in a callback

- setSubBand() : String: it sets the sub band as the operative one and returns the
operation result in a callback

- exchangeBands() : String: it exchanges main and sub bands and returns the

Ground station control for telemetry and telecommand of Cubesat

4

6 Chapter 4. System Design

operation result in a callback

4.1.3 Front-end

On the client part the front-end is defined, which looks like a control panel with all the
bars, gauges, bottoms, etc that define the transceiver behavior.

Depending on what the user manipulates in the view, the controller part will make the
proper HTML requests to the server in order to execute the above described transceiver
functions. Once the client gets the HTTP response, the controller will update the view
again.

The final front-end design can be seen in figure 4.2

Figure 4.2 – icom9100 transceiver final front-end

Let us see in detail how the implementation works, taking the attenuator function as an
example, that is, since the moment the user presses the attenuator button to activate, to the
moment the view is updated showing that the operation has been performed correctly:

1. The user sets ON the attenuator button in the front end, by clicking the proper button
(see button above in figure 4.2.

Antonio Serrano de la Cruz Parra

4.1. Transceiver Telecontrol 7

4

2. The AngularJS controller handles the click button and perform the HTTP POST
request to the server in order to set the attenuator ON in the transceiver.

1
2 /∗ ∗
3 ∗ I t s w i t c h e s on/ o f f the t r a n s c e i v e r ' s a t t e n u a t o r
4 ∗/
5 scope . attenuatorButton = function () {
6
7 // Checking a t t e n u a t o r button s t a t u s
8 var elem = document . getElementById (" a t t e n u a t o r ") ;
9

10 i f (elem . innerHTML == " A T T O F F ") {
11 elem . innerHTML = " A T T ON " ;
12 elem . s t y l e . background = " g r e e n "
13 scope . s e t A t t e n u a t o r (" on ") ; // Sending command
14
15 } e l s e {
16 elem . innerHTML = " A T T O F F " ;
17 elem . s t y l e . background = " r e d "
18 scope . s e t A t t e n u a t o r (" o f f ") ; // Sending command
19 }
20 } ;
21
22
23 scope . s e t A t t e n u a t o r = function (s t a t u s) {
24 return \ $http ({
25 method : ' P O S T ' ,
26 u r l : `` r a d i o s t a t i o n / a t t e n u a t o r ' ' ,
27 data : { o p t i o n : s t a t u s }
28 }) ;
29 } ;

3. The server gets the HTTP POST request under the route /radiostation/attenuator
and calls the function that is in the class “transceiver.js”, which is called setAttenuator.

1 app . post (' / r a d i o s t a t i o n / a t t e n u a t o r ' , function (req , r e s) {
2
3 r a d i o S t a t i o n . s e t A t t e n u a t o r (req . body . option , function (data) {
4 r e s . j s o n (data) ;
5 }) ;
6 }) ;

4. In the function setAttenuator, the command that sets the attenuator ON
(“FEFE7CE01120FD”) is sent to the transceiver using the serial port.

1
2 function s e t A t t e n u a t o r (s t a t u s , cb) {
3
4 var o p t i o n ;
5 i f (s t a t u s == " on ") {
6 o p t i o n = " 20 " ;
7 } e l s e i f (s t a t u s == " o f f ") {
8 o p t i o n = " 00 " ;
9 }

10 s e r i a l . w r i t e (B u f f e r (" F E F E 7 C E 0 1 1 " + o p t i o n + " FD " , " h e x ") , function (e r r) {
11 i f (e r r) {
12 c o n s o l e . l o g (" E r r o r w r i t i n g to I C O M 9 1 0 0 " , " e r r o r ")
13 cb ({
14 e r r o r : " S e r i a l W r i t e "
15 }) ;
16 } e l s e {
17 parameters . a t t = s t a t u s
18 cb ({
19 s t a t u s : " D o n e "
20 }) ;
21 }
22 })
23 }

5. The transceiver sets the attenuator ON and the server sends back an HTTP response
with an OK (“Done”) status, or an “Error” in case some error happens.

A flowchart of the process can be seen in figure 4.3.

Ground station control for telemetry and telecommand of Cubesat

4

8 Chapter 4. System Design

Front-End (HTML

view)
Back-End

(NodeJS app.js)
Transceiver

(icom9100.js)

Front-End

(AngularJS

controller)

user

Press ATT button

setAttenuator(on)

HTTP POST Request to

radiostation/attenuator route

setAttenuator(on)

Status response (done/

error)

HTTP Response (JSON object)

Update view

Figure 4.3 – icom9100 transceiver telecontrol process - example

4.1.4 Functions for graphical elements

As it was said during the analysis in section 3.3.2, the graphical elements of the transceiver
front-end are designed with Bootstrap elements and the gauge.js library.

The functions that update the graphical elements are located in a module which is called
graphicalElement.js.
Here the functions that set up the gauge.js gauges are located, besides the functions that
update the gauges and bar values (see example below).

1
2 function setAFGauge () {
3 var opts = {
4 l i n e s : 12 , // The number o f l i n e s to draw
5 a n g l e : 0 . 0 7 , // The l e n g t h o f each l i n e
6 l ineWidth : 0 . 4 4 , // The l i n e t h i c k n e s s
7 f o n t S i z e : 32 ,
8 p o i n t e r : {
9 l e n g t h : 0 . 9 , // The r a d i u s o f the i n n e r c i r c l e

10 strokeWidth : 0 . 0 4 6 , // The r o t a t i o n o f f s e t
11 c o l o r : ' # 4 2 4 2 4 2 ' // F i l l c o l o r
12 } ,
13 limitMax : ' f a l s e ' , // I f true , the p o i n t e r w i l l not go past the end o f the

gauge
14 g r a d i e n t s : [' #6 F A D C F ' , ' # B 6 D 0 D E '] ,
15 s t r o k e C o l o r : ' # F F F F F F ' , // to s e e which ones work b e s t f o r you
16 g e n e r a t e G r a d i e n t : true
17 } ;
18
19 var t a r g e t = document . getElementById (' a f _ g a u g e ') ; // your canvas element
20 gaugeAF = new Gauge (t a r g e t) . s e t O p t i o n s (opts) ; // c r e a t e sexy gauge !
21 gaugeAF . setMinValue (0) ; // P r e f e r s e t t e r over gauge . minValue = 0
22 gaugeAF . animationSpeed = 3 2 ; // s e t animation speed (32 i s d e f a u l t value)
23 gaugeAF . maxValue = 1 0 0 ;
24 gaugeAF . s e t T e x t F i e l d (document . getElementById (' t f D i s p l a y A F ')) ;
25 gaugeAF . s e t (1) ;
26
27 }
28
29

Antonio Serrano de la Cruz Parra

4.1. Transceiver Telecontrol 9

4

30 function updateAFGauge (value) {
31 gaugeAF . s e t (p a r s e I n t (value)) ; // s e t c u r r e n t value
32 gaugeAF . s e t T e x t F i e l d (document . getElementById (' t f D i s p l a y A F ')) ;
33 }

A flowchart that describes the process of updating the graphical elements is shown in
figure 4.4

Ground station control for telemetry and telecommand of Cubesat

4

10 Chapter 4. System Design

F
ro

n
t-E

n
d

 (H
T
M

L

v
ie

w
)

B
a
c
k-E

n
d

(N
o

d
e
JS

 a
p

p
.js)

T
ra

n
sc

e
iv

e
r

(ico
m

9
1

0
0

.js)

F
ro

n
t-E

n
d

(A
n

g
u
la

rJS

c
o

n
tro

lle
r)

u
se

r

U
p

d
a
te

s A
F
 g

a
u

g
e

se
tA

F
P

o
sitio

n
(v

a
lu

e
)

H
T
T
P

 P
O

S
T

 R
e
q

u
e
s
t to

ra
d

io
s
ta

tio
n
/a

f ro
u

te

se
tA

F
(v

a
lu

e
)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/

e
rro

r)

H
T
T
P

 R
e
sp

o
n

se
 (JS

O
N

 o
b

je
c
t)

U
p

d
a
te

 v
ie

w

g
ra

p
h

ic
a
lE

le
m

e
n
ts.js

se
tA

F
G

a
u
g

e
()

u
p
d

a
te

A
F
G

a
u
g

e
(v

a
lu

e
)

F
igure

4.4
–
Transceiver’s

graphicalelem
ents

updating
process

Antonio Serrano de la Cruz Parra

4.2. Transceiver’s Audio 11

4

4.2 Transceiver’s Audio

As it was explained in section 3.4, the transceiver’s audio will be streamed in-live making
use of Darkice and Icecast2 applications.

First of all, as it has been said before, the transceiver is connected to the server via serial
port, therefore, the server can access the transceiver’s audio card thanks to the ALSA sound
card API, a software framework that is part of the Linux kernel [2].

Executing the ALSA command “arecord -l” on the server will display the audio devices
available for capturing, including the transceiver audio card among those.

Figure 4.5 – Audio devices available with arecord command

Thus, the audio that is coming out of the transceiver could be easily accessed by selecting
the proper audio device from an external application (in this case Darkice). Specifically, as
it is shown in 4.5, the device that corresponds with the transceiver would be “hw:0,0”, which
corresonds with card 0, device 0.

4.2.1 Back-end

For this, first of all, the Icecast2 server needs to be running as a daemon in some port of
the server.

To start it up, it is necessary to execute:

$/etc/init.d/icecast2 start

This will start the streaming server on port 8000 (it is possible to modify it).

Icecast2 has a configuration file where some parameters are adjustable, such as te admin
user with its password, port where the application runs or the max. number of accepted
clients at the same time.
This file is in /etc/icecast2/icecast2.xml.

Once Icecast2 is running, DarkIce will capture the audio output of the transceiver and
afterward will send this to the server in order to be streamed in live.

Ground station control for telemetry and telecommand of Cubesat

4

12 Chapter 4. System Design

DarkIce is run with a specified configuration file, which is the following in this case:
1 # t h i s s e c t i o n d e s c r i b e s g e n e r a l a s p e c t s o f the l i v e streaming s e s s i o n
2 [g e n e r a l]
3 d u r a t i o n = 0
4 b u f f e r S e c s = 1
5 r e c o n n e c t = yes
6
7 [input]
8 d e v i c e = dsnoop : 0 , 0 # VERY IMPORTANT to use dsnoop p l u g i n in o r d e r to a l l o w
9 # two programs to use the same audio d e v i c e

10
11 sampleRate = 48000
12 bitsPerSample = 16
13 channel = 2
14
15 [i c e c a s t 2 −0]
16 bitrateMode = abr
17 format = v o r b i s
18 b i t r a t e = 256
19 s e r v e r = 0 . 0 . 0 . 0
20 port = 8000 #i c e c a s t 2 s e r v e r port
21 password = admin #i c e c a s t 2 s e r v e r password (you can change i t in / e t c / i c e c a s t 2 / i c e c a s t 2 . xml)
22 mountPoint = streaming #audio l o c a t i o n , in t h i s case : s e r v e r : 8 0 0 0 / streaming
23 name = Icom9100 streaming
24 d e s c r i p t i o n = Icom91000 t r a n s c e i v e r audio output
25 p u b l i c = yes
26 localDumpFile = / u t i l s /dump . ogg

It is important to notice that the audio output of the transceiver will be used from two
sources, Direwolf and Darkice, which is not possible since the following error is raised: “the
selected audio device is busy”. To solve this, the dsnoop ALSA plugin is used, which allows
several applications to record from the same device [22].
Therefore, in the configuration file (see above), dsnoop:0,0 is chosen as input device, which
is the transceiver audio card.

Hence, when the Dashboard starts up, DarkIce will be executed with this configuration
file (using the spawn NodeJS module), which will start automatically the audio streaming
under granasat2.ugr:8000/streaming

1 c o n s t audioStreaming = spawn (' d a r k i c e ' , [' - c ' , c o n f i g . a u d i o _ f i l e _ c o n f i g u r a t i o n]) ;

4.2.2 Front-end

Lastly, from the client (Dashboard), it is trivial to connect to this mount-point with the
HTML audio tag, so the user can listen to this live audio streaming.
Notice that the final URL is granasat2.ugr.es/audio instead of granasat2.ugr:8000/streaming.
This is because the latter is an insecure URL (not HTTP), therefore, making use of nginx
all the insecure URLS are redirected to secure ones (see appendix E).

1 <audio autoplay c o n t r o l s >
2 <s o u r c e s r c=" h t t p s : / / g r a n a s a t 2 . u g r . es / a u d i o " />
3 </audio>

A final scheme with the design can be seen in 4.6

Antonio Serrano de la Cruz Parra

4.2. Transceiver’s Audio 13

4

Server

USB

granasat2.ugr.es/audio

Dashboard

granasat2.ugr.es/audio

Icecast+darkice

icecast2 front-end

granasat2.ugr.es:8000

hw:0,0

audio streaming

HTML
audio

tag

Figure 4.6 – Transceivers audio streaming design

Ground station control for telemetry and telecommand of Cubesat

4

14 Chapter 4. System Design

4.3 TNC

As it was explained in 3.5, the TNC will be implemented in the system making use of
Direwolf, a virtual TNC.

Direwolf is a software "soundcard" AX.25 packet modem/TNC, that is, it is basically a
virtual TNC. Direwolf configuration file allows to define the audio input/output that the
program will take. In this case, once again thanks to the ALSA API the transceiver input
and output audio cards will be available, which will be defined as input/output of Direwolf.
This will simulate a phisical connection between the transceiver and the TNC (Direwolf),
since Direwolf is connected to the transceiver through the server audio interface.

Hence, with the inclusion of Direwolf, the Ground Station structure would be as follows:

Transceiver

Computer (server)

ALSA
sound
card

Direwolf (virtual
TNC)antenna

COM
Port

Dashboard

audio

telecontrol

Figure 4.7 – GranaSAT Ground Station final scheme

As described in section 3.5, in order to communicate with a TNC it is needed a serial
port. Since Direwolf is a virtual TNC, there is no physical serial port that allow a client
KISS application to communicate with the TNC (Direwolf in this case).
This is solved by Direwolf with the option “-p”, which creates a virtual serial port under the
path “/tmp/kisstnc”, allowing the chosen KISS [9] library to communicate with Direwolf
from the server.

Direwolf is executed in a Linux terminal, therefore, this will be executed it on the server
when the Dashboard application is started up. When executed in the terminal, Direwolf is
not an interactive application, that is, it only shows the received and decoded AX25 packets,
as well as the packets sent by the user.
An example of Direwolf normal output can be seen in figure 4.8, where the blue messages
are the decoded AX25 packets.

Antonio Serrano de la Cruz Parra

4.3. TNC 15

4

Figure 4.8 – Direwolf terminal output

4.3.1 Back-end

Direwolf needs to be executed every time the Dashboard starts up, so that the user can
send/receive AX25 packets from this.

Direwolf can be run with a specific configuration file, which in this case, will indicate the
source audio card where Direwolf will take the audio from and where it will send the audio
through. (similar to the configuration file for Darkice described in 4.2).

The audio input/output is defined in the configuration file as follows. (Notice once again
the use of dsnoop, as it was already explained in 4.2).

1 ADEVICE dsnoop : 1 , 0 plughw : 1 , 0

Hence, Direwolf will be run when the Dashboard application starts up, specifically by
making use of the spawn NodeJS module (in the same way Darkice was executed in the
previous section).

At the same time, as it was already explained, Direwolf will be running in background
and its output needs to be catch on the server and be sent to the client via websocket. The
following code makes this:

1
2 var privateKey = f s . r e a d F i l e S y n c (' / c e r t i f i c a d o s / g r a n a s a t 2 _ u g r _ e s . k e y ' , ' u t f 8 ') ;
3 var c e r t i f i c a t e = f s . r e a d F i l e S y n c (' / c e r t i f i c a d o s / b u n d l e . c r t ' , ' u t f 8 ') ;
4 var c r e d e n t i a l s = { key : privateKey , c e r t : c e r t i f i c a t e } ;
5
6 // pass i n your c r e d e n t i a l s to c r e a t e an h t t p s s e r v e r
7 var h t t p s S e r v e r = h t t p s . c r e a t e S e r v e r (c r e d e n t i a l s) ;
8 h t t p s S e r v e r . l i s t e n (8 0 0 3) ;
9

10 var WebSocketServer = r e q u i r e (' ws ') . S e r v e r ;
11 var wss = new WebSocketServer ({
12 s e r v e r : h t t p s S e r v e r
13 }) ;
14
15 // Executing d i r e w o l f
16 c o n s t d i r e w o l f = spawn (' d i r e w o l f ' , [' - n ' , ' 2 ' , ' - p ' , ' - t ' , ' 0 ' , ' - c ' , c o n f i g .

d i r e w o l f _ c o n f i g u r a t i o n]) ;
17
18 wss . on (' c o n n e c t i o n ' , function c o n n e c t i o n (ws) {

Ground station control for telemetry and telecommand of Cubesat

4

16 Chapter 4. System Design

19
20 var connected = true ;
21 ws . on (' m e s s a g e ' , function incoming (message) {
22 c o n s o l e . l o g (' r e c e i v e d : % s ' , message) ;
23 }) ;
24
25 ws . on (' c l o s e ' , function (c o n n e c t i o n) {
26 ws . c l o s e () ;
27 connected = f a l s e ;
28 }) ;
29
30 d i r e w o l f . s t do u t . on (' d a t a ' , function (data) {
31
32 // Saving content i n t o l o g f i l e
33 f s . appendFile (c o n f i g . a p r s _ l o g _ f i l e , data . t o S t r i n g () , (e r r) => {
34 i f (e r r) {
35 throw e r r ;
36 }
37 }) ;
38
39 t r y {
40 i f (connected) {
41 ws . send (data . t o S t r i n g ()) ;
42 }
43 }
44 catch (e r r) {
45 c o n s o l e . l o g (e r r . message)
46 }
47 }) ;
48 }) ;

When sending commands, the function that receives the desired text to be packed into
AX25 and communicates with Direwolf is the following (notice callsign of the GranaSAT
Ground Station and a supposed callsign for a Cubesat).

1 function s e n d _ s t r i n g (s t r) {
2
3 c o n s t packet = new AX25 . Packet () ;
4 packet . type = AX25 . Masks . c o n t r o l . frame_types . u_frame . subtypes . u i ;
5 packet . s o u r c e = { c a l l s i g n : ' E B 7 D Z P ' , s s i d : 0 } ;
6 packet . d e s t i n a t i o n = { c a l l s i g n : ' G R N S A T ' , s s i d : 0 } ;
7 packet . payload = B u f f e r . from (s t r , ' a s c i i ') ;
8 tnc . send_data (packet . assemble () , () => l o g (' S e n t A X 2 5 f r a m e : ' + s t r)) ;
9

10 }

When the user writes the desired text to be packed into AX25 packets, the client makes
an HTTP POST request to the server, concretely to the NodeJS route which is called
“/radiostation/send_packet”.
This function sets the transceiver into transmission mode before communicating with
Direwolf. After this, the command is sent by using the function described above.
Once the command has been sent, the transceiver is set back to reception mode, in order to
not to saturate this.
The described function is as follows:

1 app . post (' / r a d i o s t a t i o n / s e n d _ p a c k e t ' , isMember , function (req , r e s) {
2 r a d i o S t a t i o n . s e t T r a n s c e i v e r S t a t u s (" tx " , function (data) {
3 i f (data . s t a t u s == " D o n e ") {
4 p r o c e s s . on (' S I G T E R M ' , tnc . c l o s e) ;
5 tnc . on (' e r r o r ' , c o n s o l e . l o g) ;
6 tnc . open (() => {
7 l o g (' T N C o p e n e d ') ;
8 s e n d _ s t r i n g (req . body . command) ;
9 setTimeout (function () {

10 // S e t t i n g t r a n s c e i v e r back to RX
11 r a d i o S t a t i o n . s e t T r a n s c e i v e r S t a t u s (" rx " , function (data) {
12 r e s . j s o n (data)
13 }) ;
14 } , ((1 / 1 2 0 0) ∗8∗ req . body . command . l e n g t h) + c o n f i g . d e l a y _ e r r o r) ;
15 }
16) ;
17 } // i f
18 e l s e { r e s . j s o n ({ e r r o r : " E r r o r " }) }
19 }) ;
20 }) ;

Antonio Serrano de la Cruz Parra

4.3. TNC 17

4

4.3.2 Front-end

The client, in order to see the Direwolf output, will need to connect to the websocket
described above and display its content. In this case, it will be displayed on the Dashboard
terminal, where messages can be displayed by making use of its functions, in this case, with
the function “logHTML”.

1 // websocket f o r d i r e w o l f output
2 c o n s t ws = new WebSocket (' w s s : / / g r a n a s a t 2 . u g r . es : 8 0 0 3 ') ;
3
4 // Reading web s o c k e t content
5 ws . binaryType = ' a r r a y b u f f e r ' ;
6 ws . onmessage = function (e) {
7
8 // Showing AX25 message decoded
9 i f (d i r e w o l f E n a b l e d) {

10 con . logHTML(
11 " < p s t y l e = ' c o l o r : b l u e ' > " + e . data + " </ p > "
12) ;
13 }
14 }

As a result of the described design, there are two processes that come out of the Direwolf
implementation:

On the one hand, Direwolf automatically decodes the received signals and displays it on
the Dashboard, without any user interaction (see figure 4.9).

Front-End (HTML

view)
Back-End

(NodeJS app.js)

Front-End

(AngularJS

controller)

user

Open terminal

New Websocket

(granasat2.ugr.es:8003)

Websocket.onmessage()

Websocket.send(data)

Displays decoded packets

WebSocketServer (port 8003)

spawn(‘Direwolf’,parameters)

TNC Direwolf

Status operation (done/error)

Figure 4.9 – Decoding AX25 with Direwolf flowchart

On the other hand, the user interaction is needed in order to send AX25 packets making
use of the previously chosen library [9], which allows us to communicate with Direwolf see
figure 4.10).

Ground station control for telemetry and telecommand of Cubesat

4

18 Chapter 4. System Design

F
ro

n
t-E

n
d

 (H
T
M

L

v
ie

w
)

B
a
c
k-E

n
d

(N
o

d
e
JS

 a
p

p
.js)

T
ra

n
sc

e
iv

e
r

(ico
m

9
1

0
0

.js)

F
ro

n
t-E

n
d

(A
n

g
u
la

rJS

c
o

n
tro

lle
r)

u
se

r

W
rite

s co
m

m
a
n
d

se
n
d

C
o
m

m
a
n

d
(d

a
ta

)

H
T
T
P

 P
O

S
T

 R
e
q

u
e
s
t to

ra
d

io
s
ta

tio
n
/se

n
d

_p
a
ck

e
t ro

u
te

se
tT

ra
n

sc
e
iv

e
rS

ta
tu

s(“tx”)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

H
T
T
P

 R
e
sp

o
n

se
 (JS

O
N

 o
b

je
c
t)

O
p

e
ra

tio
n

 re
su

lt

K
IS

S
 lib

ra
ry

(a
x2

5
.js)

T
N

C
 D

ire
w

o
lf

se
n
d

S
trin

g
(c

o
m

m
a
n

d
)

se
n
d

D
a
ta

(p
a
ck

e
d
_c

o
m

a
n

d
)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

se
tT

ra
n

sc
e
iv

e
rS

ta
tu

s(“rx”)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

F
igure

4.10
–
Sending

A
X
25

packets
with

D
irewolfflowchart

Antonio Serrano de la Cruz Parra

4.3. TNC 19

4

Hence, as a result of the described processes, in the terminal are displayed the packets
that are being decoded by Direwolf (see figure 4.11), as well as being able to pack commands
into AX25 packets and send it (see figure 4.12).

Figure 4.11 – Decoding packets (concretely AX25/APRS) and displaying in Dashboard

Figure 4.12 – Sending AX25 packets on the Dashboard

Ground station control for telemetry and telecommand of Cubesat

4

20 Chapter 4. System Design

4.4 Yaesu Rotors Telecontrol

4.4.1 Front-end

As it was seen in section 3.6, in this case, since the back-end was already developed, only
the front-end for the Yaesu telecontrol will be modified with customized gauges that will
display azimuth and elevation of the antenna by making use of the D3.js library.
These azimuth and elevation values are retrieved by an AngularJS directive that performs
the proper HTTP requests to the server.
Therefore, it is only necessary to display these provided values on the gauges.

To do this, a function is defined within the AngularJS directive. This function updates
the gauge every second, showing the current values of azimuth and elevation.

1 scope . updateGauges = function () {
2
3 // R e t r i e v i n g v a l u e s o f azimuth and e l e v a t i o n
4 var v a l u e _ e l e v a t i o n = scope . y a e s u P o s i t i o n . e l e ;
5 var value_azimuth = scope . y a e s u P o s i t i o n . a z i ;
6
7 // In c a s e v a l u e s a re lower than 1 or n u l l (only happens i n Local) , we s e t i t to

0
8 i f (v a l u e _ e l e v a t i o n < 0 | | v a l u e _ e l e v a t i o n == null) { v a l u e _ e l e v a t i o n = 0}
9 i f (value_azimuth < 0 | | value_azimuth == null) { value_azimuth = 0}

10
11 // Redrawing gauges
12 gauges [" e l e v a t i o n "] . redraw (v a l u e _ e l e v a t i o n) ; // Gauge f o r e l e v a t i o n
13 gauges [" a z i m u t h "] . redraw (value_azimuth) ; // Gauge f o r azimuth
14
15 } ;

The result can bee seen in figure 4.13.

Figure 4.13 – Yaesu Rotors front-end

Antonio Serrano de la Cruz Parra

4.5. Satellite tracking 21

4

4.5 Satellite tracking

As described in section 3.7, the satellite tracking will be implemented making use of
Leaflet on the client side, and some libraries for satellites orbit prediction on the server, in
order to get all the satellite information to be displayed in the maps provided by Leaflet.

4.5.1 Back-end

Here the NodeJS routes are defined so that the server handles the HTTP requests from
the client. Specifically, these requests will be made in order to send the satellites data back
to the client, as a JSON object, which will contain information about the satellites
following the JSON format, e.g. longitude: [156.13248,-20.14638], latitude:
[175.21547,24.21348], footprint: 4500, etc

As described in section 3.7, satellites data will be retrieved from different libraries (two
Javascript libraries and one Python library), therefore, two routes will be defined in the
app.js file.

These routes are getSatellitesData and getSatellitesOrbit and are briefly described
below:

• getSatellitesData : This function will call a Javascript module called “Propagator”,
which gets name, tle1, tle2 of the satellite and Ground Station coordinates in order to
make use of the satellite libraries described in section 3.7.

1 app . ge t (' / g e t S a t e l l i t e s D a t a ' , function (req , r e s) {
2
3 // Getting s a t e l l i t e ' s name from http r e q u e s t
4 var s a t e l l i t e _ n a m e = req . query . sat_name ;
5 var t l e 1 = req . query . t l e 1 ;
6 var t l e 2 = req . query . t l e 2 ;
7
8 // Getting s a t e l l i t e s data
9 new Propagator (t l e 1 , t l e 2 , s a t e l l i t e _ n a m e , c o n f i g . ground_station_lng , c o n f i g .

ground_station_lat , c o n f i g . ground_stat ion_alt) . then (function (p) {
10 r e s . j s o n (p . getStatusNow ()) ; // sending r e s p o n s e
11 }) ;
12 }) ;

This “Propagator” module has a function getStatusNow, which will return the
following JSON object with all the satellite’s information:

1 return {
2 a z i : lo o kA ng le s . azimuth ∗ s a t e l l i t e . c o n s t a n t s . rad2deg ,
3 e l e : lo ok An g le s . e l e v a t i o n ∗ s a t e l l i t e . c o n s t a n t s . rad2deg ,
4 d o p p l e r F a c t o r : dopplerFactor ,
5 h e i g h t : posit ionGd . height ,
6 l a t i t u d e : s a t e l l i t e . d e g r e e s L a t (posit ionGd . l a t i t u d e) ,
7 l o n g i t u d e : s a t e l l i t e . degreesLong (posit ionGd . l o n g i t u d e) ,
8 f o o t p r i n t : f o o t p r i n t ,
9 l i g h t : l i g h t ,

10 v e l o c i t y : Math . s q r t (Math . pow(v e l o c i t y E c i . x , 2) +
11 Math . pow(v e l o c i t y E c i . y , 2) + Math . pow(v e l o c i t y E c i . z , 2))
12 }

Ground station control for telemetry and telecommand of Cubesat

4

22 Chapter 4. System Design

• getSatellitesOrbit: this function will use the child_process defined in section 3.7
and will execute the Python script that gets the satellite’s orbit prediction.
This script calculates N interval times of past and future and then, by using the library
PyEphem, computes the satellites orbit taking into account the previous calculated
times. The main part of the script looks like:

1 #−−
2 # CALCULATING SATELLITE ORBIT
3 #−−
4 f o r date in t imes :
5 s a t = ephem . r e a d t l e (name , l1 , l 2)
6 s a t . compute (date) # c a l c u l a t e
7 c = (np . rad2deg (s a t . s u b l a t) , np . rad2deg (s a t . sublong)) # g et c o o r d i n a t e s
8 data [" c o o r d i n a t e s "] . append (c) # save

Lastly, this information is saved in a JSON object, which is returned as a response by
the server route:

1 app . g et (' / g e t S a t e l l i t e s O r b i t ' , function (req , r e s) {
2
3 // Getting s a t e l l i t e ' s name and TLE
4 var s a t e l l i t e _ n a m e = req . query . sat_name ;
5 var t l e 1 = req . query . t l e 1 ;
6 var t l e 2 = req . query . t l e 2 ;
7
8 // Executing s c r i p t
9 var p a t h _ s a t e l l i t e s= spawn (' p y t h o n 3 ' , [' s a t _ l i b r a r y / g e t S a t O r b i t . py ' , s a t e l l i t e _ n a m e ,

t l e 1 , t l e 2])
10
11 p a t h _ s a t e l l i t e s . on (' c l o s e ' , function (code) {
12 i f (code === 0) {
13
14 // Reading f i l e c r e a t e d by the s c r i p t above
15 var c o n t s = f s . r e a d F i l e S y n c (" ./ s a t _ l i b r a r y / d a t a . j s o n ") ;
16
17 // D e f i n i t i o n to the JSON type
18 var jsonCont = JSON . p a r s e (c o n t s) ;
19
20 r e s . j s o n (jsonCont) ; // sending r e s p o n s e
21
22 }
23 e l s e {
24 r e s . j s o n ({
25 e r r o r : " E r r o r w h i l e e x e c u t i n g p y t h o n "
26 }) ;
27 }
28
29 }) ;
30
31 }) ;

Antonio Serrano de la Cruz Parra

4.5. Satellite tracking 23

4

4.5.2 Front-end

Regarding the client side, there are several functions that control the map display:

• followSatellite: this function calls the function that moves the antenna, providing
azimuth and elevation that is available in the satellite’s information. This function was
already programmed, therefore it is not going to be explained in detail.

• updateTLE: this function updates the satellites TLE’s, making an HTTP request to
the server in order to execute a script that updates the TLE in the data base,
downloading them from https://celestrak.com. This function was already
programmed on the server, therefore, it is not going to be explained in detail.

• setUpMap: this function sets up the Leaflet map, setting the proper layer from
Mapbox, adding a marker that points to the Ground Station and setting the terminator
layer.

1
2 // Map elements
3 var mymap = null ; // map
4 var marker = null ; // s a t e l l i t e marker
5 var path = [] ; // s a t e l l i t e o r b i t
6 var f o o t = [] ; // s a t e l l i t e f o o t p r i n t
7 var t e r m i n a t o r = null ; // t e r m i n a t o r
8 var myIcon = null ; // s a t e l l i t e i c o n
9

10 function setUpMap () {
11
12 // S e t t i n g up map
13 mymap = L . map(' m a p i d ' , {
14
15 c e n t e r : [0 , 0] ,
16 minZoom : 0 ,
17 maxBounds : bounds ,
18 worldCopyJump : fa lse ,
19 noWrap : true ,
20 continuousWorld : fa lse ,
21 }) . setView ([0 , 0] , 1) ;
22
23 // Adding Groundstation marker
24 L . marker ([3 7 . 1 7 9 6 4 0 , − 3 . 6 0 9 5] , { t i t l e : " G r o u n d s t a t i o n " }) . addTo (mymap) ;
25
26 // Adding map l a y e r (s a t e l l i t e l a y e r)
27 L . t i l e L a y e r (' h t t p s : / / a p i . t i l e s . m a p b o x . c o m / v4 /{ id } / { z } / { x } / { y }. p n g ? a c c e s s _ t o k e n = pk .

e y J 1 I j o i Y W 5 0 c 2 V y c m F u b y I s I m E i O i J j a m U 4 Z X F 6 b m 0 w Y T M 5 M n l w Z T F 0 N W N h b W p r I n 0 .
i s c Z V w b C j S m z Z D 1 G D V 6 z Y g ' , {

28 maxZoom : 8 ,
29 a t t r i b u t i o n : ' M a p d a t a & c o p y ; < a h r e f =" h t t p : / / o p e n s t r e e t m a p . o r g " > O p e n S t r e e t M a p

</ a > c o n t r i b u t o r s , ' +
30 ' < a h r e f =" h t t p : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / by - sa / 2 . 0 / " > CC - BY - SA </ a > , ' +
31 ' I m a g e r y < a h r e f =" h t t p : / / m a p b o x . c o m " > M a p b o x </ a > ' ,
32 i d : ' m a p b o x . s a t e l l i t e ' ,
33 }) . addTo (mymap) ;
34
35 // Adding t e r m i n a t o r
36 t e r m i n a t o r = L . t e r m i n a t o r () . addTo (mymap)
37 }

• updateMap: this function updates the map with the satellites data gotten from the
server. To do this, Leaflet functions are used to display the satellite’s orbit, current
position and footprint over the map, besides updating the terminator.

1 function updateMap (coord , f o o t p r i n t) {
2
3 var c o o r d i n a t e s = coord . data [" c o o r d i n a t e s "] ;
4 var c u r r e n t _ p o s i t i o n = coord . data [" n o w "] ;
5
6 // Removing what i t was b e f o r e
7 i f (marker != null) {
8 mymap . removeLayer (marker) ;
9 }

Ground station control for telemetry and telecommand of Cubesat

https://celestrak.com

4

24 Chapter 4. System Design

10
11 i f (path != null) {
12 var total_path = path . l e n g t h ;
13 f o r (var i =0; i<total_path ; i ++) {
14 mymap . removeLayer (path [i]) ;
15 }
16 }
17
18 i f (f o o t != null) {
19 mymap . removeLayer (f o o t) ;
20 }
21
22 // Adding s a t e l l i t e marker
23 marker = L . marker (c u r r e n t _ p o s i t i o n , { i c o n : myIcon }) . addTo (mymap) ;
24
25 // Drawing f o o t p r i n t (r a d i u s needs to be i n meters)
26 f o o t = L . c i r c l e (c u r r e n t _ p o s i t i o n , { r a d i u s : f o o t p r i n t ∗1000/2}) . addTo (mymap) ;
27
28 // Drawing s a t e l l i t e o r b i t
29 var t o t a l M a r k e r s = c o o r d i n a t e s . l e n g t h ;
30 f o r (var i = 0 ; i<t o t a l M a r k e r s ; i ++){
31 var datos = (c o o r d i n a t e s [i])
32
33 var x = L . c i r c l e ([datos [0] , datos [1]] , { r a d i u s : 0 . 1 , c o l o r : " r e d " }) . addTo (mymap) ;
34 path . push (x)
35 }
36
37 // Updating t e r m i n a t o r
38 t e r m i n a t o r . setLatLngs (t e r m i n a t o r . getLatLngs ()) ;
39 t e r m i n a t o r . redraw () ;
40 }

• getSatellitesOrbit: it performs the HTML request to the server in order to get the
coordinates of the satellite’s orbit. Once it gets it, it call the above defined updateMap
function in order to redraw the orbit.

1 scope . g e t S a t e l l i t e s O r b i t = function (sat_name) {
2 return $http ({
3 method : ' G E T ' ,
4 u r l : " / g e t S a t e l l i t e s O r b i t " ,
5 params : {sat_name : sat_name}
6 }) . then (function (r e s) {
7
8 i f (! r e s . data . e r r o r) {
9 updateMap (res , scope . f o o t p r i n t)

10 }
11 }) ;
12
13 } ;

• getSatellitesData : similar to the previous function, but getting more satellite’s data
that will be displayed in a Bootstrap table.

1 scope . g e t S a t e l l i t e s D a t a = function (sat_name) {
2 return $http ({
3 method : ' G E T ' ,
4 u r l : " / g e t S a t e l l i t e s D a t a " ,
5 params : {sat_name : sat_name}
6 }) . then (function (r e s) {
7 i f (! r e s . data . e r r o r) {
8 scope . e l e v a t i o n = r e s . data [" e l e "] . toFixed (4) ;
9 scope . a l t i t u d e = r e s . data [" h e i g h t "] . toFixed (4) ;

10 scope . azimuth = r e s . data [" a z i "] . toFixed (4) ;
11 scope . l o n g i t u d e = r e s . data [" l o n g i t u d e "] . toFixed (4) ;
12 i f (r e s . data [" l i g h t "] == 1) {
13 scope . l i g h t = " Y e s "
14 } e l s e {
15 scope . l i g h t = " No "
16 }
17 scope . f o o t p r i n t = r e s . data [" f o o t p r i n t "] . toFixed (4) ;
18 scope . l a t i t u d e = r e s . data [" l a t i t u d e "] . toFixed (4) ;
19 i f (scope . e l e v a t i o n > 0) {
20 scope . over_groundstat ion = " Y e s "
21 } e l s e {
22 scope . over_groundstat ion = " No "
23 }
24 scope . v e l o c i t y = r e s . data [" v e l o c i t y "] . toFixed (4) ;
25 }
26 }) ;
27 } ;

Antonio Serrano de la Cruz Parra

4.5. Satellite tracking 25

4

The two latter functions will be called every two seconds, so the satellite information
is updating all the time with the current available data.

A flowchart with the whole the process followed is shown in figure 4.14

Ground station control for telemetry and telecommand of Cubesat

4

26 Chapter 4. System Design

F
ro

n
t-E

n
d

(A
n

g
u
la

rJS
 co

n
tro

lle
r)

B
a
c
k-E

n
d

(a
p

p
.js)

u
p
d

ateM
ap

 (JSO
N

 d
ata

)

B
a
c
k-E

n
d

(P
ro

p
a
g

a
to

r.js)

B
a
c
k-E

n
d

(g
e
tS

a
tO

rb
it.p

y
)

setU
p
M

ap
()

H
TT

P
 G

ET
 R

e
q
u
e
st to

/g

e
tS

a
te

llite
sO

rb
it ro

u
te

w

ith
 p

a
ra

m
s =

selected

Sa
te

llite

H
TT

P
 G

ET
 R

e
q
u
e
st to

/g

e
tS

a
te

llite
sD

ata ro
u
te

w
ith

 p
a
ra

m
s =

selected

Sa
te

llite
g
e
tS

tatu
sN

o
w

(selected
S

ate
llite

)

H
TT

P
 R

e
sp

o
n
se

s
(JSO

N
 d

ata
)

sp
aw

n
 (selected

Sa
te

llite
)

d
a
ta

d
a
ta

e
very 2

s

u
se

r

S
e
le

ct s
a
te

llite

F
ro

n
t-E

n
d

(H
T
M

L vie
w

)

se
le

cte
d

S
a
te

llite

B
a
c
k-E

n
d

(p
y
E
p

h
e
m

.p
y
)

selected
Sa

te
llite

.co
m

p
u
te

()

B
a
c
k-E

n
d

(sa
te

llite
.js a

n
d

jsp
re

d
ic

t)

selected
Sa

te
llite

.g
e
tP

a
ram

e
te

rs()

d
a
ta

d
a
ta

F
igure

4.14
–
Satellite

tracking
flowchart

Antonio Serrano de la Cruz Parra

4.5. Satellite tracking 27

4

The obtained results can be seen in figures 4.15 and 4.16 (notice responsive design in the
latter)

Figure 4.15 – Satellite tracking in laptop screen

Figure 4.16 – Satellite tracking in mobile phone device

Ground station control for telemetry and telecommand of Cubesat

4

28 Chapter 4. System Design

In addition, a polar graph that indicates the current satellites over Ground Station has
been added (see figure 4.17), making use of the polar graph designed by [1]. This polar graph
will be updating every second, therefore, in every moment, the user will know what are the
satellites over the Ground Station. When elevation is higher than 0, the satellite is over the
Ground Station, therefore, with the retrieved data, those satellites whose elevation is higher
than 0 are filtered, displaying them on the polar graph.

1
2 s e t I n t e r v a l (scope . updatePolarGraph = function () {
3
4 i f (scope . s a t e l l i t e s O v e r G r o u n d != null) {
5
6 f o r (var i = 0 ; i < scope . s a t e l l i t e s O v e r G r o u n d . l e n g t h ; i ++) {
7
8 // S e t t i n g parameters
9 var name = scope . s a t e l l i t e s O v e r G r o u n d [i] . name

10 var e l e v a t i o n = scope . s a t e l l i t e s O v e r G r o u n d [i] . e l e ;
11 var azimuth = scope . s a t e l l i t e s O v e r G r o u n d [i] . a z i ;
12 var c o l o r s = [" r e d " , " b l u e " , " p u r p l e " , " b l a c k " , " o r a n g e " , " b r o w n "]
13
14 var data = [] ;
15 data . push ({ e l e : e l e v a t i o n , a z i : azimuth })
16
17 // Drawing s a t e l l i t e s as a c i r c l e i f e l e v a t i o n >0
18 svg . append (" c i r c l e ")
19 . a t t r (" id " , " s a t e l l i t e " + i)
20 . data (data)
21 . a t t r (" r " , 4)
22 . a t t r (" f i l l " , c o l o r s [i])
23 . a t t r (" cx " , function (d) {
24 return Math . s i n (d . a z i ∗ conv) ∗ r a d i u s ∗ ((−d . e l e + 90) / 90)
25 })
26 . a t t r (" cy " , function (d) {
27 return −(Math . cos (d . a z i ∗ conv) ∗ r a d i u s ∗ ((−d . e l e + 90) / 90))
28 }) ;
29
30 // S a t e l l i t e name
31 svg . append (" t e x t ")
32 . a t t r (" id " , " n a m e " + i)
33 . a t t r (" x " , +r a d i u s − 340)
34 . a t t r (" y " , −r a d i u s − 10 + (15∗ i)) ; // 15∗ i a l l o w s to s e t more than

one l e g e n d c o r r e c t l y , one under another
35
36 svg . s e l e c t (" # n a m e " + i)
37 . t e x t (name) ;
38
39 // S a t e l l i t e red c i r c l e i n l e g e n d
40 svg . append (" c i r c l e ")
41 . a t t r (" id " , " s a t _ l e g e n d " + i)
42 . a t t r (" r " , 4)
43 . a t t r (" f i l l " , c o l o r s [i])
44 . a t t r (" cx " , +r a d i u s − 345)
45 . a t t r (" cy " , −r a d i u s − 15 + (15∗ i)) ; // 15∗ i a l l o w s to s e t more than

one l e g e n d c o r r e c t l y , one under another
46
47 // Removing f o r next i t e r a t i o n (so s a t e l l i t e s don ' t s t a y when they
48 // ar e not anymore over ground)
49 d3 . s e l e c t (" # s a t e l l i t e " + i) . remove () ;
50 d3 . s e l e c t (" # n a m e " + i) . remove () ;
51 d3 . s e l e c t (" # s a t _ l e g e n d " + i) . remove () ;
52 }
53 }
54
55 } , 1000)

Antonio Serrano de la Cruz Parra

4.5. Satellite tracking 29

4

Figure 4.17 – Polar graph with satellites over Ground Station

Ground station control for telemetry and telecommand of Cubesat

4

30 Chapter 4. System Design

4.6 Other improvements

In this section, some secondary aspects of the system have been implemented. They are
not as important as the primary requirements but it is necessary to point them out as well.

4.6.1 Tooltips design

As it was described in section 3.8.1, the tooltips will be developed with Twitter
Bootstrap.
For the tooltip’s display there is no need of making HTTP requests to the server, rather
these are stored on the client side.
All the tooltips will be defined in a single file in order to provide modularity, scalability
and ease of modification to the system. This file is called mainTooltips.js.
The Model-View-Controller pattern will be followed, making use of AngularJS, that is,
tooltips will be saved in a file (model) and the controller will be showing the different
tooltips to the client (view).
A simple scheme with the logic of the implementation can be seen in figure 4.18.

Front-End (HTML

view) mainTooltips.js

Front-End

(AngularJS

controller)

user

Hover tooltip

{{scope.mainTooltips}}

accessing tooltips file

Display tooltip

Figure 4.18 – Tooltips design diagram

Antonio Serrano de la Cruz Parra

4.6. Other improvements 31

4

4.6.1.1 Model

The model stores all the tooltip’s texts in a file by using a simple Array.
Since it is important to identify where the tooltip is going to be displayed, it is necessary to
name them with recognizable names.

1 var mainToolt ips = {
2
3 mainMenu : {
4 rotorsTab : " < sub > Set </ sub > e l e v a t i o n a n d a z i m u t h " ,
5 antennasTab : " S e t t h e f r e q u e n c y of t h e r a d i o " ,
6 terminalTab : " S a m e o p t i o n s v i a t e r m i n a l " ,
7 passesTab : " C h o o s e a n d s c h e d u l e y o u r p a s s e s " ,
8 managementTab : " U s e r s m a n a g e m e n t " ,
9 s a t e l l i t e s T a b : " A v a i l a b l e s a t e l l i t e s " ,

10 recordingsTab : " A v a i l a b l e r e c o r d i n g s " ,
11 t r a c k i n g S a t e l l i t e s T a b : " S a t e l l i t e t r a c k i n g " ,
12 r o t o r s Y a e s u : " C u r r e n t e l e v a t i o n a n d a z i m u t h " ,
13 r a d i o S t a t i o n : " C u r r e n t f r e q u e n c y " ,
14 s c h e d u l e d P a s s e s : " < sub > Cur </ sub > r e n t s c h e d u l e d p a s s e s "
15 } ,
16 // r e s t o f t o o l t i p s

4.6.1.2 Controller

The controller (mainController.js) merely needs to retrieve the information provided by
the model, in this case, this is made by adding a variable to the controller scope, which gets
the Array object already described above.

1 // With t h i s we i n c l u d e a l l the t o o l t i p s from mainToolt ips . j s
2 scope . mainToolt ips = mainToolt ips

4.6.1.3 View

The view makes use of the tooltip text provided from the controller by using
{{name_tooltip}} (AngularJS syntax).

To include it within HTML, the proper jQuery function of Bootstrap is used (using "‘data-
toggle=’tooltip’"’), besides some CSS classes that that are defined (in case customization is
wanted).
Some other parameters are adjustable (such as relative position of tooltip). For example:

1 <h3 c l a s s=" r e d " data−t o g g l e=" t o o l t i p " data−placement=" b o t t o m "
2 \\ t i t l e ={{mainToolt ips . mainMenu . r o t o r s Y a e s u}}>

Ground station control for telemetry and telecommand of Cubesat

4

32 Chapter 4. System Design

4.6.2 Webcam streaming design

4.6.2.1 Back-end

As described in section 3.8.2, Motion will be the software that will be used to develop the
streaming video part of the system. Specifically, MotionEye has been used [5], which is the
GUI of the Motion daemon.
The installation of MotionEye can be seen in F .

Once MotionEye is installed and running on the server as a daemon, its web front-end
can be accessed from the default port 8765 as it is shown in figure 4.19.

Figure 4.19 – MotionEye FrontEnd

Once the user loggs in, this can easily define two cameras by using the GUI displayed.
(by clicking on Add Camera tab). Some simple parameters are adjustable via GUI, such
as: name of the cameras, schedule recording, video streaming enabler, etc. as it is shown in
figure 4.20

Antonio Serrano de la Cruz Parra

4.6. Other improvements 33

4
Figure 4.20 – MotionEye configuration

In addition, if necessary, it is possible to adjust more parameters for MotionEye from the
file /etc/motioneye/motioneye.conf:

This configuration includes, among other parameters:
1
2 \# path to the c o n f i g u r a t i o n d i r e c t o r y (must be w r i t a b l e by motionEye)
3 c o n f _path \/ e t c \/ motioneye
4
5 \# path to the d i r e c t o r y where pid f i l e s go (must be w r i t a b l e by motionEye)
6 run_path \/var\/ run
7
8 \# path to the d i r e c t o r y where l o g f i l e s go (must be w r i t a b l e by motionEye)
9 l o g _path \/var\/ l o g

10
11 \# d e f a u l t output path f o r media f i l e s (must be w r i t a b l e by motionEye)
12 media_path \/var\/ l i b \/ motioneye
13
14 \# the l o g l e v e l (use quiet , e r r o r , warning , i n f o or debug)
15 l o g \ _ l e v e l i n f o
16
17 \# the IP a d d r e s s to l i s t e n on
18 \# (0 . 0 . 0 . 0 f o r a l l i n t e r f a c e s , 1 2 7 . 0 . 0 . 1 f o r l o c a l h o s t)
19 l i s t e n 0 . 0 . 0 . 0
20
21 \# the TCP port to l i s t e n on
22 port 8765

Furthermore, once a camera is defined, a .conf file will be created with the name
thread-<id>.conf. In this case, two cameras have been defined, therefore, the files
/etc/motioneye/thread-1.conf and /etc/motioneye/thread-2.conf have been created.
In this files, the specific parameters of each camera can be defined. This includes:

1
2 \# S p e c i f y whether you want to r e c o r d video when motion i s d e t e c t e d or not \\
3 ffmpeg _output_movies o f f \/on \\
4
5 \# S p e c i f y whether you want to take p i c t u r e s when motion i s d e t e c t e d or not \\
6 output \ _ p i c t u r e s o f f \/on \\
7
8 \# Camera b r i g h t n e s s \\

Ground station control for telemetry and telecommand of Cubesat

4

34 Chapter 4. System Design

9 b r i g h t n e s s 0−100 \\
10
11 \# Port where the video stream w i l l be showed \\
12 stream _port 8082 \\
13
14 \# Text to be d i s p l a y e d in the video \\
15 t e x t \ _ l e f t " t e x t " \\

In summary, two cameras have been set up: the first one will be pointing the antenna and
the stream video will be seen from the Dashboard so that the users can see how the antenna
changes its position. Regarding the second camera, this will be watching out the Ground
Station and when motion is detected, a video will be saved in the folder /var/lib/motioneye.

4.6.2.2 Front-end

Once the video of the antenna is streaming in some port of the server (specifically in
port 8081), this needs to be accessed from the client side so that the users can see the
Ground Station in live.

This is easily made by pointing the server port within an tag in the html file.

To sum up, in figure 4.21 is shown how the implementation has been designed.

Server

USB

USB

granasat2.ugr.es/8081

Dashboard

Video streaming
(antenna camera)

MotionEye

MotionEye front-end

granasat2.ugr.es:8765

Video surveillance
(Groundstation)

Figure 4.21 – Streaming video final design

Antonio Serrano de la Cruz Parra

4.6. Other improvements 35

4

4.6.3 User account management

The user is expected to modify their profile (username, organization, password, photo).
For this, the user can introduce the information that will be updated in the front-end, data
that will be verified by the controller before sending this to the server, which eventually will
access the data base and will update the user’s information.
A flow chart with the process is shown in 4.23.

This updating is made by the following function:
1
2 function modUser (req , r e s) {
3
4 var s a l t = c r e a t e S a l t () ;
5
6 var post = [
7 req .USR_NAME,
8 req .USR_ORGANIZATION,
9 req .USR_MAIL,

10 s a l t + " : " + hashPassword (req .USR_PASSWORD, s a l t) ,
11 req .USR_TYPE,
12 req .USR_BLOCKED,
13 req .USR_IMG,
14 req . USR_ID
15
16] ;
17
18
19 database . query (' U P D A T E U S E R S S E T U S R _ N A M E = ? , U S R _ O R G A N I Z A T I O N = ? , U S R _ M A I L =

? , U S R _ P A S S W O R D = ? , U S R _ T Y P E = ? , U S R _ B L O C K E D = ? , U S R _ I M G = ? W H E R E U S R _ I D = ?
' , post , function (e r r) {

20 i f (e r r) {
21 l o g (e r r . t o S t r i n g () , " e r r o r ") ;
22 r e s ({
23 e r r o r : " D a t a b a s e e r r o r "
24 })
25 } e l s e {
26
27 r e s ({
28 s t a t u s : " D o n e "
29 })
30 }
31 }) ;
32 }

The front-end with the form that allows to modify profiles can be seen in 4.22

Figure 4.22 – User account profile front-end

Ground station control for telemetry and telecommand of Cubesat

4

36 Chapter 4. System Design

Front-End (HTML

view)
Back-End

(NodeJS app.js)
Database

(database.js)

Front-End

(AngularJS

controller)

user

Introduces new info

verifyInformation(info)

HTTP POST Request to

/modOwnUser route

modUser(info)

Status response (done/

error)

HTTP Response (JSON object)

Status operation (done/

error)

Figure 4.23 – User account management system flowchart

Antonio Serrano de la Cruz Parra

4.6. Other improvements 37

4

4.6.3.1 Recovery password system

When the user forgets their passwords, they can recover it with a recovery e-mail. The
procedure is as follows:

1. The user introduce their e-mail in order to recovery their passwords. If the e-mail does
not belong to the system, the user will see an error message.

2. A random password is created with crypto module.

3. A recovery e-mail with a temporary password is sent to the user (see figure 4.24).
At the same tame, the user’s password is modified in the database with this temporary
password.

Figure 4.24 – Recovery password e-mail

4. The user checks their e-mail and gets the new password.

5. The user loggs in the system with the new password and change it again by their
convenience.

A flow chart with the process is shown in 4.25.

Ground station control for telemetry and telecommand of Cubesat

4

38 Chapter 4. System Design

F
ro

n
t-E

n
d

 (H
T
M

L

v
ie

w
)

B
a
c
k-E

n
d

(N
o

d
e
JS

 a
p

p
.js)

T
ra

n
sc

e
iv

e
r

(ico
m

9
1

0
0

.js)

F
ro

n
t-E

n
d

(A
n

g
u
la

rJS

c
o

n
tro

lle
r)

u
se

r

W
rite

s co
m

m
a
n
d

se
n
d

C
o
m

m
a
n

d
(d

a
ta

)

H
T
T
P

 P
O

S
T

 R
e
q

u
e
s
t to

ra
d

io
s
ta

tio
n
/se

n
d

_p
a
ck

e
t ro

u
te

se
tT

ra
n

sc
e
iv

e
rS

ta
tu

s(“tx”)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

H
T
T
P

 R
e
sp

o
n

se
 (JS

O
N

 o
b

je
c
t)

O
p

e
ra

tio
n

 re
su

lt

K
IS

S
 lib

ra
ry

(a
x2

5
.js)

T
N

C
 D

ire
w

o
lf

se
n
d

S
trin

g
(c

o
m

m
a
n

d
)

se
n
d

D
a
ta

(p
a
ck

e
d
_c

o
m

a
n

d
)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

se
tT

ra
n

sc
e
iv

e
rS

ta
tu

s(“rx”)

S
ta

tu
s
 re

sp
o

n
s
e
 (d

o
n

e
/e

rro
r)

F
igure

4.25
–
Recovery

password
system

flowchart

Antonio Serrano de la Cruz Parra

CHAPTER

5

TEST AND EVALUATION

This chapter introduces a number of tests that have been performed in order to validate
the different designed solutions that have been seen in 4. Once all the test are passed and
everything works as expected, the system is expected to go into production so that the real
user can use it.

5.1 Transceiver’s control verification

All the implemented commands have been progressively tested in both directions, that
is, modifying the Dashboard and checking that the transceiver responds and adjust its
parameters correctly; and other way around, modifying manually the transceiver
parameters and verifying that the Dashboard updates the front-end (gauges, bars, buttons)
correctly and synchronously with the transceiver.

During the development it was very clear that the response time (time between changing
something on the Dashboard and being reflected in the transceiver and viceversa) should
be as short as possible. This has been properly tested and relatively short times has been
achieved, with no more than one second of retard (see graphic 5.1).

Ground station control for telemetry and telecommand of Cubesat 1

5

2 Chapter 5. Test and Evaluation

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
 (

se
co

n
d

s)

Number of commands excuted

Transceiver telecontrol time response

Figure 5.1 – Transceiver control response time test

Hence, a remote control of the transceiver has been correctly designed with virtually real
time control, thereby meeting this client’s requirement.

Antonio Serrano de la Cruz Parra

5.2. Transceiver’s audio verification 3

5

5.2 Transceiver’s audio verification

To verify that the transceiver’s audio works correctly, the delay time was checked with
ten different connections and this was always between 2-4 seconds (see figure 5.2), which is
an appropriate time regarding its purpose.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 D

e
la

y
(s

)

Connections

Transceiver's audio delay test

Figure 5.2 – Transceiver’s audio time delay test

Furthermore, it is important that the audio streaming does not shut down after many
hours running. This was correctly verified, being the audio streaming up during more than
5 days without any problem.

From the client’s perspective, all the requirements have been met, since the audio can be
heard perfectly from the Dashboard with a minimal time delay.

Ground station control for telemetry and telecommand of Cubesat

5

4 Chapter 5. Test and Evaluation

5.3 TNC (Direwolf) integration test

5.3.1 Receiving and decoding AX25 packets

Once Direwolf is running on the server, it is necessary to verify that this is working and
decoding AX25 packets as expected.

Since there is no real Cubesat transmitting these packets, some device needs to be used
in order to simulate this. Therefore, an Arduino project will be used, being borrowed from
one of our GranaSAT colleagues. [30]

This Arduino has several sensors (temperature, barometer, magnetometer, accelerometer
and gyroscope). The device measures all of this parameters and transmits it through the
AX25 protocol over the 144.800MHz frequency (see figure 5.5).

Figure 5.3 – Arduino AX25 transmitter [30]

Thus, in summary, the system will retrieve the signal that comes from the Arduino
transmitter, signals that will be demodulated by the transceiver, being converted into
audio tones, which will be piped to Direwolf and decoded in order to get the telemetry that
will be displayed on the Dashboard terminal (see demonstration video 5.1).

Antonio Serrano de la Cruz Parra

5.3. TNC (Direwolf) integration test 5

5

Video 5.1 – Direwolf decoding packets test (double click)

When setting the transceiver to the proper frequency where Arduino is transmitting, in
this case 144.800MHz, the system is capable of decoding the signals.

Concretely, Direwolf, which is connected to the audio card of the server, is getting the
audio that comes from the transceiver and demodulating this audio.

The output is the decoded AX25 frame sent from the Arduino, which contains the
destination and source callsigns, besides the data information (telemetry) itself separated
by “/” (see A to see AX25 frame content).

Figure 5.4 – AX25 decoded frame transmitted from Arduino [30]

Once the frame is decoded, this can parse it in order to get a more human-readable output
with the Arduino telemetry.

Ground station control for telemetry and telecommand of Cubesat

direwolf1.mp4
Media File (video/mp4)

5

6 Chapter 5. Test and Evaluation

Figure 5.5 – AX25 telemetry received from Arduino [30]

5.3.2 Sending AX25 packets

On the other hand, it is necessary to verify that commands are being sent correctly, that
is, commands sent by the user are really packed by Direwolf and sent through the transceiver
over radio waves. For this, a walkie-talkie has been used (which is basically a transmitter-
receiver) in order to verify that the packets are being sent through radio frequencies (it is
important to set the walkie-talkie in the same frequency as the one that the transceiver will
transmit to).

See demonstration video 5.2.

Video 5.2 – Direwolf sending packets test (double click)

Antonio Serrano de la Cruz Parra

direwolf2.mp4
Media File (video/mp4)

5.3. TNC (Direwolf) integration test 7

5

As it is shown in the above video, the packets are being sent correctly. The user introduces
on the Dashboard the command to be sent and this is automatically packed by Direwolf and
transmitted by the radio. Everything works as a black box for the user since this introduces
the command to be sent.

The point is that these packets will be received some day by a Cubesat receiver, instead
of being received by a simple walkie-talkie.

In summary, the TNC has been integrated in the system correctly and it works as
expected, hence complying with the client’s requirements.

Ground station control for telemetry and telecommand of Cubesat

5

8 Chapter 5. Test and Evaluation

5.4 Tracking satellite verification

In order to verify that the tracking satellite works as expected and it shows the satellites
orbits and parameters correctly, this have been compared with current real-time developed
trackings, such as http://www.n2yo.com, where many satellites can be tracked with several
parameters, such as current speed, altitude, latitude, etc.

Several tests were performed with different satellites in order to verify that the system
always works. In figures 5.6 and 5.7 it can be seen a comparison between the satellite tracking
developed on the Dashboard and the satellite tracking available at http://www.n2yo.com.

For this example, the NOAA 15 satellite was selected.

Figure 5.6 – NOAA 15 tracking in GranaSAT Ground Station

Figure 5.7 – NOAA 15 tracking in www. n2yo. com

Antonio Serrano de la Cruz Parra

http://www.n2yo.com
http://www.n2yo.com
www.n2yo.com

5.5. Other improvements 9

5

As it is shown in the above images, the system works and shows the satellites position
similarly as other well known programs do. Hence, the satellite tracking complies with the
specified client’s requirements and works as expected from the client’s perspective.

5.5 Other improvements

• Cameras system: as it has been seen during the design stage, a camera system
has been deployed over the port 8765 of GranaSAT server. Here the Motion GUI is
available and it allows to set several cameras, provided their configuration files. In this
case, the two required web-cams were correctly installed and they are working properly.
With the system deployed, anyone could add a new camera very easily making use of
the Motion GUI, which definitely makes Motion the best solution that could have been
chosen.
Hence, this secondary requirement has been achieved.

• Tooltips design: from the client’s perspective, it was expected a tooltip’s module
that was easily scalable, allowing in the future the inclusion of more tooltips, in order
to make easier the use of the system for amateur users.
Therefore, this secondary requirement has been correctly met since all the tooltips have
been included in a single file, which complies with the system modularity and ease of
scalability

• User profile management: something that the system lacked was the possibility
of modifying the user’s profiles, something really important taking into account that
nowadays this is possible in almost every web page. With the implemented design, the
users are now able to modify their username, organization, profile photo and passwords.
It was verified that when the user updates their information, this is updated in the data
base as well. On the other hand, all the possible errors that the users could introduce
while modifying their information is handled as well.
Therefore, this secondary requirements complies with the client’s requirements.

• Recovery password e-mail: in the last version of the system, it was no possible to
recover the user password, therefore, when the users forgot their passwords, they were
no longer available to access the system. This is something clearly inadmissible.
With the new implementation, when the user forgets their password, they can easily
introduce their e-mail and instantly receive a new temporary password for the system.
It was properly verified with different e-mail accounts that the e-mails are received
correctly in less than 10 seconds since they introduce their e-mail. On the other hand,
if the introduced e-mail does not belong to the system, no e-mail is sent, being displayed
an error instead.
Hence, this secondary requirement has been met as well.

Ground station control for telemetry and telecommand of Cubesat

5

10 Chapter 5. Test and Evaluation

5.6 Browser compatibility testing and performance

The final version of the Dashboard was tested and it has a correct user experience with
the following browsers:

- Google Chrome 66.0.3359.139 (64 bits)

- Mozilla Firefox 60.0 (32 bits)

- Safari 11

- Microsoft Edge 41.16299.402.0

Regarding the application performance, this has been tested in Microsoft Edge v.41
(considered slower than its competitors) in Windows 10, with a medium/high-end
computer, concretely a Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz.

The results are reasonable good taking into account that the system is constantly
making requests to the server in order to obtain the current transceiver status, rotor’s
status, transceiver’s audio, information of the satellite tracking, etc.
The obtained results are the following:

- CPU: the CPU performance oscillates between 5 and 20%, which is a good performance
taking into account that there are more processes in the computer than the Dashboard.
See figure 5.8 for further details.

- RAM: the RAM keeps stable most of the time the application is running, which is
around the 40-50%, something reasonable.
See figure 5.9 for further details.

-Disk: the disk performance is about 30%, having some peaks when the satellite tracking
was active, something reasonable taking into account the amount of calculations. See figure
5.10 for further details.

Antonio Serrano de la Cruz Parra

5.6. Browser compatibility testing and performance 11

5

Figure 5.8 – Dashboard CPU performance test

Figure 5.9 – Dashboard memory performance test

Ground station control for telemetry and telecommand of Cubesat

5

12 Chapter 5. Test and Evaluation

Figure 5.10 – Dashboard disk performance test

Lastly, once all the mentioned tests have been successfully verified, the system is expected
to go into production, that is, being definitely running on the server for its usage.
Therefore, the application will be running in granasat2.ugr.es and it will be managed by
PM2 (see appendix D).

On the other hand, an SSL certificate provided by GranaSAT has been installed (see
appendix E) so all the traffic of the web application is safe.

Antonio Serrano de la Cruz Parra

granasat2.ugr.es

CHAPTER

6

CONCLUSIONS AND FUTURE
LINES

During this document has been displayed the analysis, design and verification of a web-
based system (Dashboard) that allows to control the GranaSAT Ground Station remotely.
The project was intended to follow a product-oriented philosophy, where the final system
is not the result of a simple programming process, but from a deep analysis of the client’s
requirements and how to approach the later design and implementation.
This philosophy has allowed the student to get closer to a real and professional problem.

Hence, from the student’s perspective, the presented project has supposed a big challenge.
During the project development, a vast amount of problems had to be solved and therefore,
a big amount of new knowledge had to be acquired.
The first problem came with the fact that all the project relies on the web programming,
something that the student had not seen before during his Bachelor’s Degree. Furthermore,
other electronics aspects related to different devices that are used in satellite communications
were totally new for the student. All in all, the student acquired new concepts related to
Aerospace and Electronics, besides Computer Engineering itself.

As final conclusion, it must be specially remarked that this Final Project has contributed
to arouse the student’s interest about Aerospace Engineering, a field that the student did
not have the opportunity to research about during his Degree.
This final system contributes to the GranaSAT project and its purpose of developing a
Cubesat, which makes all the faced problems and difficulties worth it.

Ground station control for telemetry and telecommand of Cubesat 1

6

2 Chapter 6. Conclusions and Future Lines

Regarding future lines for this project, there is still work to do in future projects, for
instance:

• Developing a native application for Linux, Windows or iOS, making use of tools such
as Electron

• Developing a complete mission control with defined commands and telemetry, (once
the Cubesat is developed) similar to FUNCube Telemetry Dashboard

• Developing different modules on the Dashboard that allow communication with other
satellites, such as ISS

• Integrating other hardware devices on the Dashboard, such as other radios

• Improving the transceiver’s audio streaming, achieving real time

• Developing a module that allow users to transmit voice remotely, as though they were
using physically the microphone in the Ground Station

• Developing a social media module that allow possible organizations and users to
interact with each other (possible Cubesat community)

Antonio Serrano de la Cruz Parra

APPENDIX

A

AX25 PROTOCOL

AX25 (Amateur X.25) is a data link layer protocol derived from the X.25 protocol suite
and designed for use by amateur radio operators. It is used extensively on amateur packet
radio networks. AX25 is basically an amateur radio specification that describes how to
encode digital data in order to transmit it over radio frequencies. This specification mandates
a bit rate of 1200 baud and uses AFSK in order to represent binary values 0 and 1 with
tones of 1200Hz and 2200Hz, respectively. [35]

AX25 packets are sent in small blocks of data called frames, which are made up of 9
fields (see figure A.1). AX25 have different frames format but specifically, the Unnumbered
Information (UI) frame format is utilized in most Cubesat communications schemes. [35].

Figure A.1 – AX25 frame structure [15]

• Flag: it identifies the beginning and end of a frame so that the receiver can detect and
identify each received frame. This is made of the bit sequence 0x7e

• Destination Address: this field contains the destination station (six upper-case letters,

Ground station control for telemetry and telecommand of Cubesat 1

1

2 Appendix A. AX25 protocol

also known as CALLSIGN) and SSID (four-bit integer, extra identification in case
there is more than one station using the same CALLSIGN).

• Source Address: this field contains the CALLSIGN and SSID of the transmitting
station. Specifically, GranaSAT Ground Station CALLSIGN is D70DZP.

• Digipeater Addresses: from zero to 8 digipeater callsigns may be included in this field
(digipeaters are stations that repeat the frames over other stations)

• Control Field — this field is set to 0x03

• Protocol ID — this field is set to 0xf0 (no layer 3 protocol).

• Information Field — this is the most important field, since it contains the information
(message) to be sent (no more than 256 bytes). Here the telecommands are introduced,
as well as the telemmetry is contained in this field.

• Frame Check Sequence: this a sequence of 16 bits used for checking the integrity of a
received frame.

In summary, this set of bytes (0’s and 1’s all in all) are codified into tones of 1200Hz and
2200Hz, which allows to transmit this data over radio frequencies.

Antonio Serrano de la Cruz Parra

APPENDIX

B

DARKICE AND ICECAST2:
INSTALLATION

Icecast2 can be easily installed in Linux with the following command:

$sudo apt-get install icecast2

After this, open the file /etc/default/icecast2 and change the last line to:

ENABLE=true

If necessary, modify the server admin user and password, besides the port where it will
run and other parameters from the file /etc/icecast2/icecast2.xml

Once everything is ready, start Icecast2:

$/etc/init.d/icecast2 start

To stop it:

$/etc/init.d/icecast2 stop

Regarding Darkice, this is installed with the following command:

$sudo apt-get install darkice

Ground station control for telemetry and telecommand of Cubesat 3

2

4 Appendix B. DarkIce and Icecast2: Installation

Antonio Serrano de la Cruz Parra

APPENDIX

C

DIREWOLF: INSTALLATION

In Linux, Direwolf can be easily installed from the git repository with the following
command:

$git clone https://www.github.com/wb2osz/direwolf

$cd direwolf

It might be necessary to install the following sound library:

$sudo apt-get install libasound2-dev

After this, compile the application:

$cd /direwolf

$make

$sudo make install

$make install-conf

This will install Direwolf in the system. Concretely, while running Direwolf on the
Dashboard, the following options are used:

• -p: It creates a virtual serial port (/tmp/kisstnc) in order to let KISS applications
connect

• -n 2: It sets number of channels, in our case 2, one for output and one for input

Ground station control for telemetry and telecommand of Cubesat 5

3

6 Appendix C. Direwolf: Installation

• -c direwolf.cfg: It specifies the configuration file to be taken

• -t 0: Direwolf output is displayed with colors, this option removes any color and displays
the output as a plain text

Antonio Serrano de la Cruz Parra

APPENDIX

D

PM2: INSTALLATION AND USE

Once the web application is finished, the production environment needs to be set up so
that the NodeJS application is always running on our server, attending the users requests.
To do this, PM2 has been used [23], an open source production process manager for Node.js.
With this software all the services of our server can be monitored.

The last version of PM2 can be installed from the terminal:

$npm install pm2@latest -g

To start our application and assign it a recognizable name ("‘dashboard"’ in this case):

$pm2 start app.js –name dasdhboard

Hereinafter, the application will be running on the server and it can be monitored and
managed with PM2 commands:

• $pm2 list: Display all processes status

• $pm2 monit: Monitor all processes

• $pm2 describe 0: Display all informations about a specific process

• $pm2 stop all: Stop all processes

• $pm2 restart all: Restart all processes

• $pm2 reload all: Will 0s downtime reload (for NETWORKED apps)

Ground station control for telemetry and telecommand of Cubesat 7

4

8 Appendix D. PM2: Installation and Use

• $pm2 stop 0: Stop specific process id

• $pm2 restart 0: Restart specific process id

• $pm2 delete 0: Will remove process from pm2 list

• $pm2 delete all: Will remove all processes from pm2 list

Figure D.1 – PM2 Execution

Antonio Serrano de la Cruz Parra

APPENDIX

E

SSL CERTIFICATE INSTALLATION

Another important aspect of our application is that this should allow user access it making
use of the HTTPS protocol (over port 443), allowing secure connections. This certificate has
been provided by the University of Granada.

The installation is made along with nginx, an open-source high performance web server.
First of all, the server configuration is defined in the file /etc/nginx/sites-availables/default:

1
2 s e r v e r {
3
4 l i s t e n 8 0 ;
5 return 301 h t t p s : // $ h o s t $ r e q u e s t _ u r i ;
6 }
7
8 s e r v e r {
9

10 server_name g r a n a s a t 2 . ugr . e s ;
11
12 l i s t e n 443 ;
13
14 s s l on ;
15 s s l _ c e r t i f i c a t e / c e r t i f i c a d o s / bundle . c r t ;
16 s s l _ c e r t i f i c a t e _ k e y / c e r t i f i c a d o s / granasat2_ugr_es . key ;
17
18
19 s s l _ s e s s i o n _ c a c h e b u i l t i n : 1 0 0 0 shared : SSL : 2 0m;
20 s s l _ s e s s i o n _ t i m e o u t 180m;
21 s s l _ p r o t o c o l s TLSv1 TLSv1 . 1 TLSv1 . 2 ;
22 s s l _ p r e f e r _ s e r v e r _ c i p h e r s on ;
23 s s l _ c i p h e r s HIGH : ! aNULL : ! eNULL : !EXPORT: ! CAMELLIA : ! DES : ! MD5 : ! PSK : ! RC4 ;
24
25 l o c a t i o n / {
26 #t r y _ f i l e s $ u r i $ u r i / =404;
27
28 proxy_set_header Host $host ;
29 proxy_set_header X−Real−IP $remote_addr ;
30 proxy_set_header X−Forwarded−For $proxy_add_x_forwarded_for ;
31 proxy_set_header X−Forwarded−Proto $scheme ;
32
33 proxy_pass http : // g r a n a s a t 2 . ugr . e s : 8 0 0 2 ;
34 proxy_read_timeout 9 0 ;
35
36 p r o x y _ r e d i r e c t http : // g r a n a s a t 2 . ugr . e s : 8 0 0 2 h t t p s : / / g r a n a s a t 2 . ugr . e s ;

Ground station control for telemetry and telecommand of Cubesat 9

5

10 Appendix E. SSL certificate installation

37
38 }
39
40
41 l o c a t i o n / camera {
42 proxy_pass http : // l o c a l h o s t : 8 0 8 1 ;
43 }
44
45 l o c a t i o n / d i r e w o l f {
46 proxy_pass h t t p s : // l o c a l h o s t : 8 0 0 3 ;
47 proxy_http_version 1 . 1 ;
48 proxy_set_header Upgrade $http_upgrade ;
49 proxy_set_header Connection " u p g r a d e " ;
50 }
51
52 l o c a t i o n / audio {
53 proxy_pass http : // l o c a l h o s t : 8 0 0 0 / streaming ;
54 }
55
56 }

Here the SSL certificate location must be defined, besides the configuration that redirect
the HTTP traffic to HTTPS (including the cameras, audio and Direwolf websocket).

After modifying this file, restart nginx:

$/etc/init.d/nginx restart

Antonio Serrano de la Cruz Parra

APPENDIX

F

MOTIONEYE: INSTALLATION
AND CONFIGURATION

To install MotionEye on our server (Debian 9) [6], the following steps are followed (notice
that these commands need sudo mode).

• 1. Install motion, ffmpeg and v4l-utils (packages needed for handling media devices,
recording, etc.

$apt-get install motion ffmpeg v4l-utils

• 2. Install dependencies from repositories:

$apt-get install python-pip python-dev curl libssl-dev libcurl4-openssl-dev libjpeg-dev

Note: python 2.7 is required.

• 3. Install motion eye:

$pip install motioneye

• 4. Prepare the configuration directory:

$mkdir -p /etc/motioneye
$cp /usr/local/share/motioneye/extra/motioneye.conf.sample
/etc/motioneye/motioneye.conf

Ground station control for telemetry and telecommand of Cubesat 11

6

12 Appendix F. MotionEye: Installation and Configuration

• 5. Prepare the media directory (folder where videos will be saved):
$mkdir -p /var/lib/motioneye

• 6. Add an init script, configure it to run at startup:
$cp /usr/local/share/motioneye/extra/motioneye.systemd-unit-local
/etc/systemd/system/motioneye.service
$systemctl daemon-reload
$systemctl enable motioneye

After this, it is possible to:

• Start motioneye: $systemctl start motioneye

• Stop motioneye: $systemctl stop motioneye

• Restar motioneye: $systemctl restart motioneye

• Upgrade motioneye: $pip install motioneye –upgrade

Antonio Serrano de la Cruz Parra

APPENDIX

G

PROJECT BUDGET

G.1 Hardware Cost

Regarding hardware costs, as detailed during the project, the Ground Station is made up
of several devices, besides the connectors needed between these devices and the server. In
addition, some cameras were bought.

The costs of all the hardware components are detailed in table G.1.

Hardware Costs (€)
Intel(R) Xeon(R) CPU 5110 @ 1.60GHz, 4 cores 199

Icom IC-9100 transceiver HF/VHF/UHF 3486
Yaesu G5500 Rotors 650

HUB USB 7.99
USB wires 5m 10

Logitech webcam 9.99
LG webcam 12.99

TOTAL 4375.97 €
Table G.1 – Hardware costs

Ground station control for telemetry and telecommand of Cubesat 13

6

14 Appendix G. Project Budget

G.2 Software Cost

This project has required the use of many different software, frameworks and applications.
The prices of these are detailed in table G.2.

Software License Owner Cost (€)
IntelliJ IDEA Author Student License (Free)

NodeJS (express) Author Free
Twitter Bootstrap Author Free

AngularJS Author Free
MotionEye Author Free

TeXnicCenter Author Free
Miktex Author Free

SumatraPDF Author Free
Visio Author Trial (Free)

Direwolf Author Free
Inkscape Author Free

icecast2, darkice Author Free
Microsoft Excel 2016 Author Trial (Free)

TOTAL 0 €
Table G.2 – Software costs

G.3 Human Resources Cost

Regarding human resources costs, the presented project has required hiring two people.
The first one is a junior engineer, (10 €/h), hired as a part-time worker (3h/day) during
ten months. Secondly, as project supervisor a senior engineer is hired, (50 €/h), computing
2 hours per week. Therefore, human resources amounts to 10160 €, as detailed in table
G.3.

Position Time (hours) Cost (€)
Junior Engineer 600 6000
Senior Engineer 80 4160

TOTAL 10160 €
Table G.3 – Human resources costs

Antonio Serrano de la Cruz Parra

REFERENCES

[1] Acién, F. Github account. https://github.com/acien101.

[2] ALSA. Advanced linux sound architecture. Available at: https://www.alsa-project.
org/main/index.php/Main_Page.

[3] AMSAT. Keplerian “two line element” set format. Available at: https://www.amsat.
org/keplerian-elements-formats/.

[4] Aulaformativa. Javascript libraries for interactive
maps. Available at: http://blog.aulaformativa.com/
librerias-de-javascript-plugin-para-crear-mapas-interactivos/.

[5] Ccrisan. Motioneye github. Available at: https://github.com/ccrisan/motioneye.

[6] Ccrisan. Motioneye installation on debian. Available at: https://github.com/
ccrisan/motioneye/wiki/Install-On-Debian.

[7] DarkIce. Darkice audio streamer. Available at: http://www.darkice.org/.

[8] Doron, T. Google style gauges using d3.js. Available at: http://tomerdoron.
blogspot.com.es/2011/12/google-style-gauges-using-d3js.html.

[9] echicken. A kiss and ax.25 stack for node.js. Available at: https://github.com/
echicken/node-ax25.

[10] Garrido, P. Github account. Available at: https://github.com/pablogs9.

Ground station control for telemetry and telecommand of Cubesat 15

https://github.com/acien101
https://www.alsa-project.org/main/index.php/Main_Page
https://www.alsa-project.org/main/index.php/Main_Page
https://www.amsat.org/keplerian-elements-formats/
https://www.amsat.org/keplerian-elements-formats/
http://blog.aulaformativa.com/librerias-de-javascript-plugin-para-crear-mapas-interactivos/
http://blog.aulaformativa.com/librerias-de-javascript-plugin-para-crear-mapas-interactivos/
https://github.com/ccrisan/motioneye
https://github.com/ccrisan/motioneye/wiki/Install-On-Debian
https://github.com/ccrisan/motioneye/wiki/Install-On-Debian
http://www.darkice.org/
http://tomerdoron.blogspot.com.es/2011/12/google-style-gauges-using-d3js.html
http://tomerdoron.blogspot.com.es/2011/12/google-style-gauges-using-d3js.html
https://github.com/echicken/node-ax25
https://github.com/echicken/node-ax25
https://github.com/pablogs9

References

[11] gauge.js. Javascript gauge library. Available at: http://bernii.github.io/gauge.
js/.

[12] Github, J. A javascript port of the popular predict satellite tracking library. Available
at: https://github.com/nsat/jspredict.

[13] Icecast. Icecast streaming media server. Available at: http://www.icecast.org/
docs/icecast-2.4.1/.

[14] ICOM. Ic-9100 instruction manual. Available at: http://www.icom-australia.com/
products/amateur/ic-9100/Amateur_IC-9100_Instruction_Manual.pdf.

[15] Joe Fitzgerald, A. Available at: https://www.amsat.org/
why-is-there-so-much-tle-confusion-when-new-cubesats-are-launched/.

[16] joergdietrich. Leaflet terminator. Available at: https://github.com/
joergdietrich/Leaflet.Terminator.

[17] JustGauge. Javascript plugin for gauges. Available at: http://justgage.com/.

[18] Keycdn. Top 10 front-end frameworks of 2016. Available at: https://www.keycdn.
com/blog/front-end-frameworks/.

[19] Leaflet. Javascript library for interactive maps. Available at: http://leafletjs.
com/.

[20] Marín, A. Github account. Available at: https://github.com/albertomn86.

[21] Node-Serialport. Serial-port library. Available at: https://www.npmjs.com/
package/serialport#opening-a-port.

[22] org, A. O. Dsnoop. Available at: https://alsa.opensrc.org/Dsnoop.

[23] PM2. Pm2 webpage. Available at: http://pm2.keymetrics.io/.

[24] PyEphem. Astronomical algorithms library in python. Available at: http://
rhodesmill.org/pyephem/.

[25] satellite.js Github. A library to make satellite propagation via tle’s possible in the
web. Available at: https://github.com/shashwatak/satellite-js.

[26] StackOverflow. Developer survey results 2018. Available at: https://insights.
stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted.

[27] tooltips.js. tooltips.js website. Available at: https://popper.js.org/
tooltip-examples.html.

[28] Twitter. Tooltips bootstrap documentation. Available at: https://v4-alpha.
getbootstrap.com/components/tooltips/.

16 Ground station control for telemetry and telecommand of Cubesat

http://bernii.github.io/gauge.js/
http://bernii.github.io/gauge.js/
https://github.com/nsat/jspredict
http://www.icecast.org/docs/icecast-2.4.1/
http://www.icecast.org/docs/icecast-2.4.1/
http://www.icom-australia.com/products/amateur/ic-9100/Amateur_IC-9100_Instruction_Manual.pdf
http://www.icom-australia.com/products/amateur/ic-9100/Amateur_IC-9100_Instruction_Manual.pdf
https://www.amsat.org/why-is-there-so-much-tle-confusion-when-new-cubesats-are-launched/
https://www.amsat.org/why-is-there-so-much-tle-confusion-when-new-cubesats-are-launched/
https://github.com/joergdietrich/Leaflet.Terminator
https://github.com/joergdietrich/Leaflet.Terminator
http://justgage.com/
https://www.keycdn.com/blog/front-end-frameworks/
https://www.keycdn.com/blog/front-end-frameworks/
http://leafletjs.com/
http://leafletjs.com/
https://github.com/albertomn86
https://www.npmjs.com/package/serialport#opening-a-port
https://www.npmjs.com/package/serialport#opening-a-port
https://alsa.opensrc.org/Dsnoop
http://pm2.keymetrics.io/
http://rhodesmill.org/pyephem/
http://rhodesmill.org/pyephem/
https://github.com/shashwatak/satellite-js
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://popper.js.org/tooltip-examples.html
https://popper.js.org/tooltip-examples.html
https://v4-alpha.getbootstrap.com/components/tooltips/
https://v4-alpha.getbootstrap.com/components/tooltips/

References

[29] University, A. Aau cubesat. Available at: http://www.space.aau.dk/cubesat/.

[30] Velasco, L. S. Design of an embedded camera with an ax.25 transmitter.

[31] Wikipedia. Ground station and ground segment. Available at: https://en.
wikipedia.org/wiki/Ground_station#Telecommunications_port & https://en.
wikipedia.org/wiki/Ground_segment#Ground_stations.

[32] Wikipedia. Terminal node controller (tnc). https://es.wikipedia.org/wiki/
Protocolo_AX.25.

[33] Wikipedia. Packet radio. Available at: https://es.wikipedia.org/wiki/Packet_
(Radio).

[34] Wikipedia. Two-line element set. Available at: https://en.wikipedia.org/wiki/
Two-line_element_set.

[35] Y. A. Ahmad1, N. J. N., and Yuhaniz, S. S. Design of a terminal node controller
hardware for cubesat tracking applications. Available at: http://iopscience.iop.
org/article/10.1088/1757-899X/152/1/012031/pdf.

Ground station control for telemetry and telecommand of Cubesat 17

http://www.space.aau.dk/cubesat/
https://en.wikipedia.org/wiki/Ground_station#Telecommunications_port
https://en.wikipedia.org/wiki/Ground_station#Telecommunications_port
https://en.wikipedia.org/wiki/Ground_segment#Ground_stations
https://en.wikipedia.org/wiki/Ground_segment#Ground_stations
https://es.wikipedia.org/wiki/Protocolo_AX.25
https://es.wikipedia.org/wiki/Protocolo_AX.25
https://es.wikipedia.org/wiki/Packet_(Radio)
https://es.wikipedia.org/wiki/Packet_(Radio)
https://en.wikipedia.org/wiki/Two-line_element_set
https://en.wikipedia.org/wiki/Two-line_element_set
http://iopscience.iop.org/article/10.1088/1757-899X/152/1/012031/pdf
http://iopscience.iop.org/article/10.1088/1757-899X/152/1/012031/pdf

	Autorización Lectura
	Autorización Depósito Biblioteca
	Resumen
	Dedicatoria
	Agradecimientos
	Index
	List of Figures
	List of Videos
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Project Goals and Objectives
	1.4 Project Structure

	2 System Requirements Definition
	2.1 Functional Requirements Definition
	2.1.1 Primary
	2.1.2 Secondary

	2.2 Economics Requirements Definition

	3 System Analysis
	3.1 Ground Station Definition
	3.1.1 GranaSAT Ground Station

	3.2 Review of Solutions for Ground Station Control
	3.2.0.1 Type of application
	3.2.0.2 Front-end
	3.2.0.3 Server side

	3.3 Transceiver Telecontrol
	3.3.1 Back-end
	3.3.2 Front-end

	3.4 Transceiver's Audio
	3.5 TNC
	3.6 Yaesu Rotors Telecontrol
	3.6.1 Back-end
	3.6.2 Front-end

	3.7 Satellite Tracking
	3.7.1 Extraction of satellite data
	3.7.2 Display over interactive map
	3.7.3 Integration within the system

	3.8 Other Improvements
	3.8.1 Tooltips definition
	3.8.2 Camera streaming on the server
	3.8.3 User account management

	4 System Design
	4.1 Transceiver Telecontrol
	4.1.1 Back-end
	4.1.2 icom9100.js class
	4.1.3 Front-end
	4.1.4 Functions for graphical elements

	4.2 Transceiver's Audio
	4.2.1 Back-end
	4.2.2 Front-end

	4.3 TNC
	4.3.1 Back-end
	4.3.2 Front-end

	4.4 Yaesu Rotors Telecontrol
	4.4.1 Front-end

	4.5 Satellite tracking
	4.5.1 Back-end
	4.5.2 Front-end

	4.6 Other improvements
	4.6.1 Tooltips design
	4.6.1.1 Model
	4.6.1.2 Controller
	4.6.1.3 View

	4.6.2 Webcam streaming design
	4.6.2.1 Back-end
	4.6.2.2 Front-end

	4.6.3 User account management
	4.6.3.1 Recovery password system

	5 Test and Evaluation
	5.1 Transceiver's control verification
	5.2 Transceiver's audio verification
	5.3 TNC (Direwolf) integration test
	5.3.1 Receiving and decoding AX25 packets
	5.3.2 Sending AX25 packets

	5.4 Tracking satellite verification
	5.5 Other improvements
	5.6 Browser compatibility testing and performance

	6 Conclusions and Future Lines
	A AX25 protocol
	B DarkIce and Icecast2: Installation
	C Direwolf: Installation
	D PM2: Installation and Use
	E SSL certificate installation
	F MotionEye: Installation and Configuration
	G Project Budget
	G.1 Hardware Cost
	G.2 Software Cost
	G.3 Human Resources Cost

	References

