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Abstract

This Bachelor Thesis introduces a Theoretical Description and Simulink
implementation of di�erent ADCS (Attitude Determination and Control
System), a fundamental feature of spacecrafts. As it makes possible to
control the orientation and stabilize the satellite within its orbit. Which is
as complex as fascinating. Mathematical Formalism and Physical Model
are presented in order to fully understand this phenomenon and build it
to make it work in Simulink, creating a simulation of a Digital Dynamical
System that would be present at the on board computer of the satellite
GranaSAT-I. In this context, the Aerospace GranaSAT Group at UGR is
building the GranaSAT-I.

Este Trabajo de Final de Grado presenta una descripción teórica y su
implementación Simulink de diferentes ADCS (sistema de control y deter-
minación de la orientación), una característica fundamental de las naves
espaciales. Ya que hace posible controlar la orientación y estabilizar el
satélite dentro de su órbita. Algo que resulta tan complejo como fasci-
nante. El formalismo matemático y el modelo físico se presentan para
comprender completamente este fenómeno y construir un modelo para
hacerlo funcionar en Simulink, creando una simulación de un sistema dig-
ital dinámico que estará presente en el ordenador a bordo del satélite
GranaSAT-I. En este contexto, el Grupo Aeroespacial GranaSAT de la
UGR está construyendo el GranaSAT-I.
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1 INTRODUCTION

1 Introduction

1.1 Attitude control for GranaSAT-I

The attitude of a spacecraft is its orientation in space. [1]

The attitude of the satellite tends to vary under the action of couples, which
may be external, due to radiation pressure or atmospheric drag on solar panels,
or internal, due to mechanical motion of the instrument motors. A stabilization
system is thus required to maintain the satellite in the right position relative to
the local orbital frame.

Figure 1: GranaSAT-I pointing ground station. Potential implementation of a
LED matrix and a camera in the cubesat.

1.2 Importance of ADCS

The attitude determination and control system (ADCS) plays an indispensable
part in satellite on-orbit operation which could greatly a�ect the satellite's per-
formance.

When the satellite is dropped by its launcher, e.g. ISS, it certainly will not be
stable but it will twist upon itself. The �rst mission of this system is thus to
stabilize the satellite.
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1.3 Structure of this work 1 INTRODUCTION

All in all, ADCS allows us performing precise measurements or observing to-
wards Earth's surface in orbit, which requires the satellite to be stable, as well
as for receiving or transmitting telemetry data or collecting sun's energy.

1.3 Structure of this work

For a proper understanding of the movement and orientation of the spacecraft,
with GranaSAT-I characteristics (4), is natural to de�ne, �rstly, a Refer-
ence Frame in which to studyKinematic (equations that express how position
changes for a given velocity) and Dynamic (equations describing how velocity
changes for a given force) properties of the satellite.

Throughout this work there will be de�ned �ve di�erent reference frames, being
of special importance Orbital frame and Body Frame, B (2.1), and from where
most of equations are de�ned.

In the Satellite Model section, using Euler's Equations for rigid body dynam-
ics in B for computing Attitude Dynamics results to be useful for small ma-
neuvers, but has singularities, therefore Quaternions are introduced. (2.3).
Then, environmental torques are introduced, important to notice that aerody-
namic pressure/drag and solar radiation pressure are not modeled in Simulink.

In Mathematical Model section, environmental and actuators torques are mod-
eled, thus obtaining the equations necessary forAttitude Determination and
Stabilization through Lyapunov's Stability (2.4).

Finally, using Simulink (6) environment to perform various simulations in order
to test three di�erent Attitude Control Algorithms (4.1), yields consistent
results that lead to Conclusions (5) about energy, applied torque and stabi-
lization. Additionally, Recommendations (6) for future work are presented.

Appendix (6) is not necessary to read in order to understand this work.
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2 MATHEMATICAL FORMALISM

2 Mathematical Formalism

2.1 Reference Frames

This section introduces di�erent reference frames for representing satellite po-
sition and attitude. Essentially, we have:

Inertial frame (ECI): The Earth-centered inertial frame is an inertial frame for
terrestrial navigation, which means that it is a non-accelerated reference frame
in which Newton's laws of motion apply. The origin of the frame is located at
the center of the Earth. Here sub-index i is used.

Orbit frame (O): The orbit frame has it's origin in the satellites center of
mass. The xo-axis points in the normal direction of the orbital plane, while
the zo-axis points to the Earth center and the yo-axis completes the right-hand
orthogonal system. It is a non-inertial reference frame.

Body frame (B): The body-�xed reference frame is a moving coordinate frame
which is �xed on the vessel. The axes are locked in the satellite, xb-axis is for-
ward, zb-axis is downwards and the yb-axis completes the right-hand orthogonal
system. The origin is situated at the center of mass. This coordinate system
rotates with the satellite, xb, yb and zb coincide with principal axes of the
moment of inertia tensor.

Figure 2: Inertial frame (I), Orbit frame (O) and Body frame (B) representa-
tions.
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2.2 Vector Transformations 2 MATHEMATICAL FORMALISM

2.2 Vector Transformations

This section contains the main principles when transforming between di�erent
reference frames, and introduces unit quaternions and the inertia matrix.

Rotation Matrix

In terms of generic angles between each axes from one reference frame to the
other, θ, the rotation matrix may be written:

Ra
′

a =

 cos(θx′x) cos(θx′y) cos(θx′z)
cos(θy′x) cos(θy′y) cos(θy′z)
cos(θz′x) cos(θz′y) cos(θz′z)

 (1)

Cross product operator

The vector cross product is de�ned by [22] :

λ× a = S(λ)a (2)

where S is de�ned as:

S(λ) = −S(λ)T =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 ; λ =

 λ1
λ2
λ3

 (3)

The super-index T means the transpose of the matrix. The angle-axis parame-
terization of the rotation matrix, Rλ,θ, corresponding to a rotation θ about the
λ-axis:

Rλ,θ = I3×3 + sin(θ)S(λ) + (1− cos(θ))S2(λ) (4)

is an useful parameterization.

Rotation matrix di�erential equation

The time derivative of the rotation matrix between a frame a and a frame b is:

Ṙab = RabS(ωaba) (5)

ωaba is the angular velocity of a with respect to b expressed in a.
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2.3 Euler angles and Quaternions 2 MATHEMATICAL FORMALISM

2.3 Euler angles and Quaternions

Attitude (Euler angles)

The attitude of a satellite can be represented by the roll, pitch and yaw angles
[4].

Θ =

 ϕ
θ
ψ

 (6)

where roll ϕ is the rotation about the x-axis, along the velocity vector, com-
pleting a right-handed orthonormal base there is pitch θ about the y-axis and
yaw ψ about the z-axis.

Quaternions

Quaternions, represented by, q, which is a complex number with one real part
η and three imaginary parts given by the ε vector, where θ is a rotation about
the unit vector λ [10]:

η = cos

(
θ

2

)
, ε =

 ε1
ε2
ε3

 = λsin

(
θ

2

)
, q =


q1
q2
q3
q4

 =


η
ε1
ε2
ε3

 (7)

unit quaternion satis�es qT q = 1, which also means that: η2 + ε21 + ε22 + ε23 = 1.

Conversions Between Unit Quaternions and Euler Angles

Rotations in three dimensions can be represented using both Euler angles and
unit quaternions. An unit quaternion can be described as:

q1 = cos(α2 ) q3 = sin(α2 )cos(βy)
q2 = sin(α2 )cos(βx) q4 = sin(α2 )cos(βz)

(8)

where α is a simple rotation angle and βk are the direction of cosines locating
the axis of rotation.

2.4 Lyapunov stability

In order to introduce stability as a mathematical concept in order to formulate
a control system, the most natural approach would be using Lyapunov stabil-
ity, which concerns the stability of a system's equilibrium points [1, 22] . An
autonomous system is de�ned:
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2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

ẋ = f(x) (9)

A non autonomous system, where f(·, x) is continuous and f(t, ·) is locally
Lipschitz uniformly in t:

ẋ = f(t, x) (10)

2.4.1 Positive de�nite function

A function V (x) is positive de�nite if V (0) = 0 and V (x) > 0 for x 6= 0, and
it is positive semide�nite if V (x) ≥ 0 for x 6= 0. A function is negative de�nite
and negative semide�nite if −V (x) is positive de�nite or positive semide�nite,
respectively. A function V (t, x) is positive semide�nite if V (t, x) ≥ 0. It is
positive de�nite if V (t, x) ≥ W1(x) for some positive de�nite function W1(x)
and it is radially unbounded if W1(x) is so, and decrescent if V (t, x) ≥W2(x) .

2.4.2 Stability of autonomous systems

De�nition 1

The equilibrium point x = 0 of (9) is stable in D ⊂ <n (the domain containing
x), if the continuously di�erentiable function V : D → <n

V (0) = 0 and V (x) > 0 in D − {0} (11)

V̇ (x)≤0 in D − {0} (12)

And asymptotically sable if:

V̇ (x)≤0 in D − {0} (13)

Figure 3: Illustration on both concepts of stability and asymptotic stability.
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2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

2.4.3 Uniform global stability

De�nition 2

A continuous function α : [0, a) → [0,∞) is said to belong to class κ if it is
strictly increasing and α(0) = 0. It is said to belong to class κ∞ if a = ∞ and
α(r)→∞ as r →∞.

De�nition 3

The origin of a non autonomous system as (10) is said to be uniformly globally
stable (UGS) if there existsα ∈ κ∞ such that, for each (to, xo) ∈ < × <n each
solution x(·, to, xo) satis�es the following condition:

|x(t, to, xo)| ≤ α(|xo|) ∀t ≥ to (14)

2.4.4 Energy of the satellite

The total energy of the satellite is divided into kinetic and potential energy.
The kinetic energy is principally a result of the rotation in the inertial and orbit
frame. These expressions are obtained in [6].

Kinetic Energy

The expression for the kinetic energy is revolved in body frame with respect to
the orbit frame, and assuming a near circular orbit,

Ekin =
1

2
(ωbob)

T Iωbob (15)

Potential Energy

The potential energy due to the gravity gradient Egg and the potential energy
due to revolution of the satellite about Earth, Egyro,

Egg =
3

2
ω2
o((cb3)T Icb3 − Iz) (16)

Egyro =
1

2
ω2
o(Ix − (cb1)T Icb1) (17)

The total energy can be expressed as,

Etot =
1

2
(ωbob)

T Iωbob+
3

2
ω2
o((Ix−Iz)c213+(Iy−Iz)c223+

1

2
ω2
o((Ix−Iy)c221+(Ix−Iz)c23

(18)
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2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

2.4.5 Lyapunov Function

For studying Lyapunov stability, explained above in this section, we need to
de�ne a function known as Lyapunov function. But before, the Lyapunov candi-
date, a potential Lyapunov function, that has to ful�ll some special requirements
is presented in the next proposition,

Proposition 1

Lyapunov candidate,
V (x) = Etot (19)

where Etot is de�ned in (18) satis�es,

V (0) = 0 (20)

V (x) > 0 ∀x 6= 0 (21)

Proof

From (18) is clear,

x = [ωbob, c21, c31, c13, c23]T (22)

so if x = 0 then V (0) = 0. To ensure that V (x) is positive, the requirement is
then,

Ix > Iy > Iz (23)

so the energy function is positive de�nite. This is a very important result
for model implementation in Simulink, otherwise the system might be uncon-
trollable.
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3 SATELLITE MODEL

3 Satellite Model

3.1 Orbital Mechanics

De�ning the Frame of Reference

Consider a satellite in periodic motion around the Earth. Let us de�ne the
frame (O; x, y, z). The origin O is the center of the Earth, which is taken to be
a sphere Σ.

The axis Oz is the axis joining the poles, oriented from the south to the north.
The plane xOy is the equatorial plane of the Earth, denoted E, which cuts the
terrestrial sphere at the equator.

The axis Ox is chosen arbitrarily to point towards a distant star.

The axis Oy is deduced from the other two axes in such a way as to obtain a
right-handed orthonormal frame.

The frame associated with this coordinate system is considered to be Galilean
and will be denoted by R.

The motion of the satellite is Keplerian, i.e., it occurs on a Keplerian orbit.

In R, the trajectory is a conic section, in this case an ellipse, with one focus at
the center of attraction O, and lying in a plane P, the orbital plane.

In this Galilean frame, the orbital plane P is �xed.

Let OZ denote the straight line perpendicular to P at O. The intersection of the
planes P and E is a straight line through O, called the line of nodes.

14



3.1 Orbital Mechanics 3 SATELLITE MODEL

Figure 4: Ground track and orbital elements. The point So is the projection
of the point S (satellite) and the point Po is the projection of the perigee P
onto the ground track. The point N is the projection of the ascending node
and N' is the projection of the descending node. The equatorial plane of the
Earth is (xOy,N,N'), normal to Oz. Orbital plane: (Po, So, N, N'), normal to
OZ. Three of the orbital elements are the Euler angles: the longitude of the
ascending node (Ω),the inclination (i), and the argument of the perigee (ω).
The fourth, here the true anomaly (υ), speci�es the point on the ellipse. The
two other parameters (a and e), semi-major axis and eccentricity, serve to de�ne
the shape of the ellipse and are not shown here.

Specifying a Point on an Orbit

In order to specify a point in Keplerian motion in space, the �rst step is to
identify the orbit, and then the point on the orbit. We thus de�ne successively:

(a) the location of the orbital plane in this frame,

(b) the position of the elliptical orbit in this plane,

(c) the characteristics of the ellipse,

(d) the position of the moving point (i.e., the satellite) on the orbit.

We shall �nd that six parameters are necessary and su�cient to determine the
position of the satellite in R.

15



3.2 Dynamics 3 SATELLITE MODEL

Keplerian Elements

The parameters discussed above de�ne the orbit and the position of the satellite
on the orbit. These parameters constitute the six orbital elements, also known
as the Keplerian elements. They are generally organized in the following order:

a, e, i, Ω, ω, M

The parameter a has dimensions of length, whilst the �ve others (e and the four
angles) are dimensionless.

We should ask why there are 6 parameters. Here are two equivalent reasons:

� Three points de�ne the position of a solid in space. Once the point O is �xed,
6 parameters (2 times 3 position coordinates) de�ne the two other points.

� The position of a point (3 position coordinates) and its velocity (3 velocity
components) at a given time can provide the initial conditions required to in-
tegrate the equations of motion, thereby de�ning the position of a point on its
trajectory.

Since its axes are speci�ed (OP orients the ellipse), the ellipse is characterized
by two parameters:

� Length of the semi-major axis and eccentricity, respectively: a and e

Using standard astronomical notation, the three Euler angles are :

� Ω, called here the right ascension of the ascending node or the longitude of
the ascending node: Ω = (Ox,ON) .

� i, called here the inclination. This is the dihedral angle i = (E,P) between
the equatorial and orbital planes, i = (Oz,OZ) .

� ω, called here the argument of the perigee: ω = (ON,OPo) .

3.2 Dynamics

A satellite can be regarded as an ideal rigid body. The dynamic model of
the satellite is derived using a Newton-Euler formulation, where the angular
momentum change is related to applied torque.

Euler's second law states that the rate of change of angular momentum L about
a point that is �xed in an inertial reference frame (often the mass center of the

16



3.2 Dynamics 3 SATELLITE MODEL

body), is equal to the sum of the external moments of force (torques) acting on
that body about that point:

d~L

dt
= ~τ (24)

Angular momentum can be expressed as:

~Lo = Io ~ωo (25)

Therefore, the rate of change of angular momentum vector is broken up in two
parts. Change in angular momentum due to angular acceleration I~̇ω and change
in angular momentum due to inertia tensor rotation (considering a generic ro-
tation matrix R = R(t)) which using rotation matrix di�erential equation (5),
Ṙ = RS(ω), S(ω)R = ω ×R, results in : ~ω × (I~ω).

~τ =
d~L

dt
=
d(I~ω)

dt
= I~̇ω +

d(RIRT )

dt
~ω = I~̇ω + (ṘIRT +RIṘT )~ω (26)

Using anticommutativity of cross product a × b = −(b × a) and a property of
skew-symmetric operator (S = −ST ):

I~̇ω + (ṘIRT +RIṘT )~ω = I~̇ω + S(~ω)RIRT ~ω +RIRTST (~ω)~ω = (27)

= I~̇ω + ~ω × (I~ω) + I~ω × ~ω = I~̇ω + ~ω × (I~ω) (28)

Having:

~τ = I~̇ω + ~ω × (I~ω) (29)

The satellite model is:

I~̇ωbib + ~̇ωbib × (I~̇ωbib) = ~τ b (30)

where I is the moment of inertia, ~ωbib is the angular velocity from body to
inertia decomposed in body frame and ~τ b are the torques acting on the satellite
also decomposed in body frame (such as gravitational torque). Another way of
representing the previous equation is :

I~̇ωbib + S(~ωbib)I~ω
b
ib = ~τ b (31)

The angular velocity of the satellite relative to the inertial frame is expressed
in the body frame according to:

~ωbib = ~ωbio + ~ωbob = Rbo~ω
o
io + ~ωbob (32)

Where ~ωbio angular velocity from orbit to inertia decomposed in body frame.
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3.3 Kinematics 3 SATELLITE MODEL

3.3 Kinematics

The kinematics describes the satellite's orientation in space and is derived by
integration of the angular velocity. First, is presented the most general case of a
rotation matrix. A rotation matrix may also be referred to as a direction cosine
matrix, because the elements of this matrix are the cosines of the unsigned
angles between both reference frames.

Let a be a reference frame with unitary vectors
(
~ex, ~ey, ~ez

)
and a′ other

reference frame with unitary vectors
(
~ex
′, ~ey

′, ~ez
′ ) . Then orientation from

a to a′ is completely determined by transformation matrix Ra
′

a , this is the di-
rection cosine matrix (DCM):

Ra
′

a =

 ~ex
′ · ~ex ~ex

′ ~·ey ~ex
′ ~·ez

~ey
′ · ~ex ~ey

′ · ~ey ~ey
′ ~·ez

~ez
′ ~·ex ~ez

′ · ~ey ~ez
′ · ~ez

 (33)

In terms of generic angles between each axes from one reference frame to the
other, θ, the rotation matrix may be written:

Ra
′

a =

 cos(θx′x) cos(θx′y) cos(θx′z)
cos(θy′x) cos(θy′y) cos(θy′z)
cos(θz′x) cos(θz′y) cos(θz′z)

 (34)

Euler's Theorem:

Any two independent orthonormal coordinate frames may be related by a min-
imum sequence of rotations (less than four) about coordinate axes, where no
two successive rotations may be about the same axis.

Then, it is possible to bring a rigid body into an arbitrary orientation by per-
forming three successive rotations. The composition of three rotations, one over
each (x, y, z) axes, also suppose θ = θ(t):

R(t) =

 cos(θ3) sin(θ3) 0
−sin(θ3) cos(θ3) 0

0 0 1

 cos(θ2) 0 −sin(θ2)
0 1 0

sin(θ2) 0 cos(θ2)

 1 0 0
0 cos(θ1) sin(θ1)
0 −sin(θ1) cos(θ1)


(35)

where θ1 is a rotation over x-axis (roll usually represented by φ), θ2 is a rotation
over y-axis (pitch, θ) and θ3 is a rotation over z-axis (yaw, ψ).

Finally, kinematics in this matrix form yields:

dR(t)

dt
= R(t)

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (36)
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3.4 Environmental and Actuators Torques 3 SATELLITE MODEL

Euler angles representation of kinematics:

 θ̇1
θ̇2
θ̇3

 =
1

cos(θ2)

 cos(θ3) sin(θ1)sin(θ2) cos(θ1)sin(θ2)
0 cos(θ1)cos(θ2) −sin(θ1)cos(θ2)
0 sin(θ1) cos(θ1)

 ω1

ω2

ω3


(37)

Euler angles representation is useful for small maneuvers, but has singularities
at cos(θ2).

This is the reason we use quaternions, applying a conversion from Euler angles
to quaternions:

q̇1
q̇2
q̇3
q̇4

 =
1

2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0




q1
q2
q3
q4

 (38)

Simpli�ed:

q̇ =

(
η̇
ε̇

)
=

1

2

(
−εT

ηI3×3 + S(ε)

)
ωbob (39)

To �nd the rotation velocity for the body frame relative to the orbit frame:

~ωbob = ~ωbib − ~ωocb1 = ~ωbib −Rbo~ωoio (40)

Where c are columns in Rbo = (cb1 c
b
2 c
b
3).

3.4 Environmental and Actuators Torques

3.4.1 Environmental Torques

In order to design the attitude control and prediction system, environmental
disturbance torques acting on the spacecraft shall be modeled su�ciently. The
torques must be modeled as a function of time, the spacecraft's position and
attitude so that they can be integrated to Euler's equations and any other
mathematical models.

The dominant sources of environmental disturbance torques on the spacecraft
attitude are the solar radiation pressure, aerodynamic drag and Earth's gravi-
tational and magnetic �elds.
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Figure 5: Environmental disturbance torques as a function of altitude. Diagrams
like this are strongly dependent on the mass and geometry of the spacecraft,
although proves to be useful for having an idea of the typical order of magnitude
of these torques. The solar radiation pressure is e�ective on attitude of the
satellite for altitudes higher than 1000 km. The gravity gradient disturbance are
most signi�cant below 1000 km. Aerodynamic perturbations are most e�ective
below 500 km and negligible over 1000 km altitudes.

Gravity Gradient

There are many mathematical models for gravity gradient torque. The most
common one can be derived (careful derivation is explained in [1] p. 530-533)
assuming homogeneous mass distribution of the Earth, the gravity gradient is:

~τgrav =
3µ

R3
o

~ue × (I~ue) (41)

where µ=3.986·1014m3·s−2 is the Earth`s gravitational coe�cient, Ro is the
distance from Earth's center (m), I is the inertia tensor and �nally, ~ue is the unit
vector towards nadir, i.e., downward-facing viewing geometry, usually pointing
the center of Earth (its opposite is the zenith).

For example, a spacecraft in a low earth orbit (LEO: altitude between 200 km
and 1500 km) has 3µ

R3
o

∼= 4 · 10−6s−2 with the moments of inertia of the Space
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Shuttle are on the order of 106kg·m−2, so the gravitational torques on this large
vehicle are on the order of 1N·m.

In body frame:

~τgrav = 3ω2
o~c
b
3 × (I~cb3) ; ω2

o =
µ

R3
o

(42)

where cb3 is, again, the third column of the rotation matrix, Rbo, which transforms
zb into zo, using quaternions:

c3 =

 2(ε1ε3 − ηε2)
2(ε2ε3 + ηε1)
1− 2(ε21 + ε22)

 (43)

Thus:

~τ bgrav = 3ω2
o

 2(Iz − Iy)(ε2ε3 + ηε1)(1− 2(ε21 + ε22))
2(Ix − Iz)(ε1ε3 − ηε2)(1− 2(ε21 + ε22))

2(Iy − Ix)(ε1ε3 − ηε2)(ε2ε3 + ηε1)

 (44)

Solar Radiation Pressure

Radiation pressure is the pressure exerted upon any surface exposed to electro-
magnetic radiation.

For example, if the e�ects of the sun's radiation pressure on the spacecraft of
the Viking program had been ignored, the spacecraft would have missed Mars
orbit by about 15,000 kilometers being the average distance between Earth and
Mars about 225 million km.

The intensity of the solar radiation varies over time, this makes the determina-
tion of its energy and frequencies di�cult. Most analysis uses the solar radiation
constant SF[2]:

SF = 1353
W

m2
(45)

the force of solar pressure per unit area is then given by:

pSR =
SF

c
= 4.51 · 10−6N·m−2 (46)

The expression of the force due to solar radiation on the satellite then becomes:

FSR = −pSR · CR ·A� · r�� (47)
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where A� is the exposed area to the Sun. (� is the symbol for the sun, �
for Earth) The re�ectivity, CR, indicates how the satellite re�ects incoming
radiation, and its value is between 0.0 and 2.0. Because CR is time variant and
the constant change in orientation of the object to the sun[6].

The resulting magnitude of the torque can be expressed as:

τSR = FSR(cpSR
− cg) (48)

where cpSR
is the center of solar radiation pressure and cg the center of gravity.

For more information on this topic, see [22, 4].

Aerodynamic Pressure

Satellites orbiting the Earth at low altitude will be in�uenced by the air density.
This disturbance is most e�ective on satellites orbiting below 400-500 km. This
may reduce the velocity of the satellite, and the result will be lower altitude for
the satellite. The torque is written [12]:

~τaero =
1

2
ρV 2CdAinc(~uv × ((cp − cg)~uv)) (49)

where ρ is the atmospheric density, Cd is the drag coe�cient, Ainc is the area
perpendicular to uv, which is the unit vector in velocity, V , direction.

Faero =
1

2
ρmV

2CdAinc (50)

this force is known as �lift force� and can be easily obtained from basic �uid
dynamics.

Magnetic Disturbance

This torque is resulted from the interaction of Earth's magnetic �eld and space-
craft's residual magnetic �eld. If ~m is the sum of all magnetic moments in the
satellite, the torque acting on the satellite[3]:

~τ = ~m× ~B (51)

where ~B is Earth's magnetic �eld vector can be described using IGRF or Dipole
Model, see [3, 4]. ~m is caused by satellite-generated current loops, permanent
magnets or induced magnets which should be computed.

3.4.2 Actuators Torques

Reaction wheels, momentum wheels, or magnetic torquers are devices used for
the changing satellite's angular momentum. They are simply used on spacecraft
for several aims: to add stability against disturbance torques, to absorb cyclic
torques, and to transfer momentum to the satellite body for slewing maneuvers.
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Magnetic Torquers

Of special interest, as GranaSAT-I will use this type of torquer. Torque pro-
duced by the magnetic torquers in body frame is :

~τ bm = ~mb × ~Bb (52)

~mb is the magnetic dipole moment generated by the torquer, ~Bb is the local
geomagnetic �eld vector, relative to the satellite.

It is interesting to mention that these kind of magnetic actuators can only create
a torque within a plane (perpendicular to the local magnetic �eld), which may
represent a limitation as for ADCS with these torquers.

Magnetic dipole moment is given by :

~mb =

 NxixAx
NyiyAy
NzizAz

 =

 mb
x

mb
y

mb
z

 (53)

where, Nk is the number of windings in the torquer, Ak is the span area of the
coil, and ik the torquerer current.

Using skew-symmetric operator :

~τ bm = S(~mb) ~Bb =

 Bbzm
b
y −Bbymb

z

Bbxm
b
z −Bbzmb

x

Bbym
b
x −Bbxmb

y

 (54)
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4 Simulation Results

GranaSAT-I is going to be a nanosatellite (10x10x10 cm cube) with approx-
imately 1 kg mass, supposed to carry a camera as the payload, which should
take pictures of the city of Granada.

It will also have a very powerful LED matrix that must be seen from Earth
surface and follow a LEO (Low Earth Orbit), that is typically consider from
200 km to 1500 km.

As well as having an (diagonal) inertia matrix:

Ixx = 0.0018, Iyy = 0.0017, Izz = 0.0015 (m2·kg)

which is given by a Solidworks 3D model prototype.

This simulated satellite follows a LEO orbit, typical in cubesats, at h = 750 km
with very small eccentricity e = 0.005 as well as an inclination of i = 17.2º.

Magnetorquers physical properties in each axis are,
Coil Resistances 50Ω

Coil Areas 88 cm2

Intesity Limits 100 mA

Inputs of the simulations, are essentially the quaternion q, and ~ωbib, angular
velocity from body to inertia decomposed in body frame.

Various initial values haven been tested, as we would not know them until the
satellite in orbit starts measuring, they are chosen randomly, those represented
in the following �gures are the result of,

Orientation : Quaternion q = [−0.001 0.957 0.0928 − 0.275]

Orientation : Euler Angles [ϕθ ψ] = [176.688º − 31.769º − 12.020º]

Angular V elocity ~ωbib = [4 2 1] rad·s−1

The di�erent controllers are tested on the Simulink model of this project. Hence-
forth, a comparative and detailed study as well as a latter discussion is given in
this section. All graphs represent time in orbits, in this scenario, Torbit = 5940 s.
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4.1 Angular Velocity Feedback Controller

The angular velocity feedback controller or Wisniewski controller [6],

~mb = H~ωbob × ~Bb (55)

with a gain H = 500.
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Figure 6: Angular Velocity Feedback Controller. Topmost, applied torque.
Down, energy consumed.
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Figure 7: Angular Velocity Feedback Controller. Attitude control. Quaternions
and Euler Angles are represented.
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4.2 Attitude Feedback Controller

A known controller in bibliography [12] is the attitude feedback controller, sim-
ilarly built to the previous one,

~mb = H~ωbob × ~Bb − α · ~ε× ~Bb (56)

where is ~ε = [ε1 ε2 ε3] is the vectorial part of the quaternion.

with a gain H = 500, α = 0.9.
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Figure 9: Attitude Feedback Controller. Attitude control. Quaternions and
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deviates from equilibrium after reaching it.
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4.3 B dot Controller

Probably one of the most popular controllers is this one, due to its simplicity
and robustness [18].

~mb = −k
~̇Bb

||Bb||2
(57)

with a gain k = 1.25 · 10−8.
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5 Conclusions

AMathematical Formalism along with a Physical Model of the satellite GranaSAT-
I has been implemented in Simulink in order to create a Attitude Control and De-
termination System. For this purpose, some previous considerations have taken
place. For instance, this model only considers two main perturbations (Earth's
magnetic �eld and gravity gradient[with WGS84]) all through the satellite's or-
bit, propagated with a simple version of SPG4 propagator. In this framework,
and having in consideration the physical characteristics of this future spacecraft,
simulations gave the previous section results, which at �rst glance, seem to be
consistent and logical in accordance to the references of this work.

From the known physics problem of the two bodies attracted gravitationally,
Kepler laws can be obtained and thus build an orbit in which GranaSAT-I
would move. Also, a clear explanation of di�erent reference frames is written.

Control Theory deserves an obvious important place in this work, as it provides
the mathematical tools to ensure the system is stabilizable and can reach a
stable state, being specially important, Lyapunov Stability. This part of the
thesis has been of special hardship, as my initial knowledge of it was limited
and lots of information, more than here presented, have been processed. In the
end, a stable system and convergent results are obtained.

GranaSAT-I is considered as a rigid body thus Euler's equations (for rigid body
dynamics) are applied and a �rst fundamental equation of this work is obtained,
as it will allow us to get the angular velocity. The attitude or orientation control
needs of quaternions for internal computation, despite being unintuitive, they
are useful. Using quaternions we can �gure out the orientation of the satellite
and if it reaches a stable state (unitary quaternion q = [±1 0 0 0]).

Applying all of this, a Simulink model was built. And di�erent controllers were
introduced. Results were presented and the following discussion is presented.
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5.1 Energy

Energetic e�ciency is of capital importance in a spacecraft.

These controllers consume generally, in the order of some mJ, not B dot con-
troller, that presents a higher energy consumption, about one order of magnitude
higher. It is a result that makes sense looking a the magnetic moment generated
by the coils. Additionally, the angular velocity and attitude controller present
similar results, as their mathematical expression are analogous. Nevertheless,
the most e�cient controller turns out to be the attitude feedback controller, but
as it will be explained is not as reliable for stabilization than the others.
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Figure 12: Total Energy (expressed in equation 18) of the satellite in orbit
dissipates over time.

32



5.2 Magnetic Moment 5 CONCLUSIONS

5.2 Magnetic Moment

The applied magnetic moment by the controller makes possible to obtain the
desired satellite's orientation.

At �rst, torque is applied with higher intensity, as an initial impulse, is inter-
esting to notice how it is particularly higher for the B dot. As well, as how it is
applied in di�erent axis to reach stabilization.

Magnetic moment is applied until the satellite is stable and with much less
intensity when is stabilized, this allows the angular velocity to be aligned with
Earth's local magnetic �eld.

Typical values shows it ranges from [-1.5·10−3 to 1.5·10−3] A·m2 .
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Figure 13: Earth Magnetic Field components as seen from body frame. Before
stabilization and the mentioned alignment of the angular velocity, the satellite
measures higher variations due to its own rotation.
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5.3 Stability

A fundamental requirement for controllers is for them to be able to reduce angu-
lar speed and align body and orbital frames, that means Rbo = I3x3. According
to equation (32),

~ωbib = ~ωbio + ~ωbob = Rbo~ω
o
io + ~ωbob

Therefore,

~ωbib = ~ωbio + ~ωbob = ~ωoio + ~ωbob

with Rbo deduced in [6],

Rbo = 2

 1
2 ε3 −ε2
−ε3 1

2 ε1
ε2 −ε1 1

2


For stability to be studied, quaternions, or equivalently, Euler angles are shown.

Euler angles, to reach stability, need to tend to [0 0 0], simultaneously, quater-
nions to q = [±1 0 0 0].

The three controllers give an acceptable result, angular speed is reduce to less
than 0.001 rad/s. But total alignment is not fully reached. Not only that, but
the attitude feedback controller tends to be unstable and after convergence to
q = [±1 0 0 0], starts to deviate slowly with small angular velocity. Therefore,
this last controller is not recommended, in spite of its power e�ciency.

After an orbit, and a slight di�erence, the most stable controller is

the Wisniewski controller as it gives q = [−0.9915 0.1258 0.0122 − 0.03015]

while B dot presents q = [−0.9823 0.1810 0.0182 − 0.0521].
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6 Future Work and Recommendations

This work is possible due to the maintained e�ort of the Aerospace GranaSAT
Group carried out by my colleagues and, to some extent, to my previous col-
laborations to GranaSAT-I project, as in designing a 3D model in Solidworks
of a prototype �rst small rocket (it measured around 50 cm high), or such as
simple launching tests or study of groundtrack control and �nally this ADCS.
This is a �rst approximation of a attitude control system that will be some day
controlling a real spacecraft.

Continuing this work means having in consideration all the results given and
improvements that can be added.

A more accurate model can be created, for example, adding aerodynamic drag to
the Simulink model, an easy implementable task. Or changing World Magnetic
Model to IGRF. A more precise propagator, could be a good idea, although
through references can be found not to be of paramount importance (providing
a decent propagator). One practical idea would be to implement a function
to read TLE (two-line element set) automatically so the propagator would not
need to be introduced keplerian elements and more data, of course modi�cations
to the Simulink model shall be added in that scenario, for example regarding
aerodynamic drag, that stronlgy depends on altitude.

More complex enhancements, are the complete migration of the simulinlk code
to C (for microcontroller) or HDVL (for FPGA), as the program is itself a feed-
back loop system and that can represent some complications, none the less, to
encourge people that will follow this path, a migration to C of the propagator is
given in the appendix. This, however, might be more doable, with less di�culty
than implementing a linearized system with a linear quadratic estimator, like
Kalman �lter. Again, in the appendix, the linearized model is written.
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ADCS Budget Estimation

Although a nanosatellite budget can range from $2.000 to $20.000, more af-
fordable options are taking place due to cheaper high performance electronics,
making possible to design a low cost ADCS.

Therefore, based on [27, 25, 16, 17, 18], a rough estimation on building this
attitude control system is given:

Magnetorquers Gyroscope Coils Microcontroller GPS Total

High estimate $9,256.951 $71.87 3 $4,976.885 $112.207 $9,4959 $23,912.90
Low estimate $22.442 $55.67 4 $12.456 $9.468 $99.0010 $199.02

1 ISIS Magnetorquer Board 2 Honeywell HMC 1052L 3 ADXRS453BEYZ Ana-
log Devices 4 ADXRS453BRGZ Analog Devices 5 CubeWheel Small Cube Sat
Shop 6 MilliBird50 Didel 7 TE0887-03M Trenz Electronic GmbH 8 PIC24FJ256GA110
9 OEM4-G2L NovAtel 10Venus838FLPx-L Navspark

Further information of an overall cost a this type of mission can be found in [27]
NASA Cost Symposium AMES.
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Gantt Chart of this Project
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APPENDIX

Linearization of the Satellite Model (for future im-
plementation)

What Is Linearization? (Brief Explanation)

Linearization is a linear approximation of a nonlinear system that is valid in a
small region around the operating point, using a Taylor series.

For example, suppose that the nonlinear function is y = x2. Linearizing this
nonlinear function about the operating point x = 1, y = 1 results in a linear
function y = 2x−1. Near the operating point, y = 2x−1 is a good approximation
to y = x2. Away from the operating point, the approximation is poor. The
actual region of validity depends on the nonlinear model.

Extending the concept of linearization to dynamic systems, we can write continuous-
time nonlinear di�erential equations in this form :

ẋ(t) = f(x(t), u(t), t)
y(t) = g(x(t), u(t), t)

(58)

In these equations, x(t) represents the system states, u(t) represents the inputs
to the system, and y(t) represents the outputs of the system. A linearized
model of this system is valid in a small region around the operating point we
linearize. To represent the linearized model, de�ne new variables centered about
the operating point :

δx(t) = x(t)=xo
δu(t) = u(t)− uo
δy(t) = y(t)=yo

(59)

The linearized model in terms of δx(t), δu(t), and δy(t) is valid when the values
of these variables are small :

δẋ(t) = Aδx(t) +Bδu(t)
δy(t) = Cδx(t) +Dδu(t)

(60)

Kinematics

The kinematics of the satellite is already described :
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q̇ =

(
η̇
ε̇

)
=

1

2

(
−εT

ηI3×3 + S(ε)

)
ωbob (61)

We linearize the system around the points η = 1 and ε = 0 which results in the
system[3]:

q̇ =

(
η̇
ε̇

)
=

(
0

1
2ω

b
ob

)
; ωbbo = 2ε̇ (62)

Rotation Matrix

The linearization of the rotation matrix between body and orbit frame around
the points η = 1 and ε = 0 results in[3]:

Rob = I3×3 + 2S(ε) (63)

Angular Velocity

First,

Rbo = (Rob)
T (64)

Rbo = I3×3 − 2S(ε) (65)

Rbo = 2

 1
2 ε3 −ε2
−ε3 1

2 ε1
ε2 −ε1 1

2

 (66)

The angular velocity in body frame relative to inertial frame :

ωbib = ωbio + ωbob = Rboω
o
io + ωbob (67)

Using ωbob = 2ε̇:

ωbib =

 2(ε̇1 − ωoε3)
2(ε̇2 + 1

2ωo)
2(ε̇3 + ωoε̇1)

 (68)

the time derivative is :

ω̇bib =

 2(ε̈1 − ωoε̇3)
2ε̈2

2(ε̈3 + ωoε̈1)

 (69)
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Gravitational torque

In previous section, was derived :

τ bgrav = 3ω2
o

 2(Iz − Iy)(ε2ε3 + ηε1)(1− 2(ε21 + ε22))
2(Ix − Iz)(ε1ε3 − ηε2)(1− 2(ε21 + ε22))

2(Iy − Ix)(ε1ε3 − ηε2)(ε2ε3 + ηε1)

 (70)

Linearized around η = 1 and ε = 0 ,

τ bgrav = 3ω2
o

 2(Iz − Iy)ε1
2(Ix − Iz)ε2

0

 (71)

Magnetic Torquer Linearization

The torque from magnetic torquer is given as :

τ bm = S(mb)Bb = S(mb)RobB
o = S(mb)[I3×3 − 2ηS(ε) + 2S2(ε)]Bo (72)

Linearized around η = 1 and ε = 0 ,

τ bm = S(mb)Bb =

 Bozm
b
y −Boymb

z

Boxm
b
z −Bozmb

x

Boym
b
x −Boxmb

y

 (73)

Linearization of the Satellite Mathematical Model with Mag-

netic Torquer as Actuator

This case has interest for GranaSAT-I as the spacecraft will use magnetic tor-
querers, coupled with Earth's magnetic �eld, as actuators. Mathematical Linear
model of the satellite can be obtained as :

Iω̇bib = −ωbib × (Iωbib) + S(mb)Bb + τ bgrav (74)

where all terms have been explained before. Insterting them in this model yields:

2Ix(ε̈1 − ωoε̇3) = (Iy − Iz)(2ωoε̇3 + 8ω2
oε1) + (Bozm

b
y −Boymb

z)
Iy(ε̈2) = −6(Ix − Iz)ω2

oε2 + (Boxm
b
z −Bozmb

x)
2Iz(ε̈3 − ωoε̇1) = (Iy − Ix)(2ωoε̇3 + 2ω2

oε1) + (Boym
b
x −Boxmb

y)
(75)

Then using :
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kx =
Iy−Iz
Ix

ky = Ix−Iz
Iy

kz =
Iy−Ix
Iz

(76)

Gives :

ε̈1 = (1− kx)ωoε̇3 − 4kxω
2
oε1 + 1

2IX
(Bozm

b
y −Boymb

z)

ε̈2 = −3kyω
2
oε2 + 1

2IY
(Boxm

b
z −Bozmb

x)

ε̈3 = −(1− kz)ωoε̇1 − kzω2
oε3 + 1

2IZ
(Boym

b
x −Boxmb

y)
(77)

The system can be represented by state-space representation in linear form given
by :

ẋ = Ax(t) +B(t)u(t) (78)

if we de�ne the states vectors to be x = [ ε1 ε̇1 ε2 ε̇2 ε3 ε̇3 ] and inputs
u = [ mx my mz ]T , then, A matrix can be written as,

A =


0 1 0 0 0 0

−4kxω
2
o 0 0 0 0 (1− kx)ωo

0 0 0 1 0 0
0 0 −3kyω

2
o 0 0 0

0 0 0 0 0 1
0 −(1− kz)ωo 0 0 −kzω2

o 0

 (79)

and

B(t) =



0 0 0
0 1

2Ix
Boz − 1

2Ix
Boy

0 0 0
− 1

2Iy
Boz 0 1

2Iy
Box

0 0 0
1

2Iz
Boy − 1

2Iz
Box 0

 (80)

Simulink Model (�rst iteration is represented)
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Migration to C (for future implementation)

Only the propagator turns out to yield 2044 lines of code, without .h or addi-
tional functions.

First lines are shown in the �gure below.

Files can be found at:

https://consigna.ugr.es/f/gMetADiIBYQicmfT/codigo_pdf.pdf

https://consigna.ugr.es/f/AxvXnqvlYOK5875L/sat_propagator_grt_rtw.zip
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