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Abstract

This Bachelor Thesis introduces a Theoretical Description and Simulink
implementation of different ADCS (Attitude Determination and Control
System), a fundamental feature of spacecrafts. As it makes possible to
control the orientation and stabilize the satellite within its orbit. Which is
as complex as fascinating. Mathematical Formalism and Physical Model
are presented in order to fully understand this phenomenon and build it
to make it work in Simulink, creating a simulation of a Digital Dynamical
System that would be present at the on board computer of the satellite
GranaSAT-I. In this context, the Aerospace GranaSAT Group at UGR is
building the GranaSAT-I.

Este Trabajo de Final de Grado presenta una descripcion teérica y su
implementaciéon Simulink de diferentes ADCS (sistema de control y deter-
minacién de la orientacion), una caracteristica fundamental de las naves
espaciales. Ya que hace posible controlar la orientacién y estabilizar el
satélite dentro de su orbita. Algo que resulta tan complejo como fasci-
nante. El formalismo matematico y el modelo fisico se presentan para
comprender completamente este fenémeno y construir un modelo para
hacerlo funcionar en Simulink, creando una simulacién de un sistema dig-
ital dindmico que estard presente en el ordenador a bordo del satélite
GranaSAT-I. En este contexto, el Grupo Aeroespacial GranaSAT de la
UGR esté construyendo el GranaSAT-I.
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3x1 vector

vector transpose

vector expressed in b (body) frame

3x3 rotation matrix from frame a to b

matrix transpose

4x1 quaternion from frame a to b

angular velocity from body to inertia expressed in body frame

angular velocity from body to orbit expressed in body frame

angular velocity from orbit to inertia expressed in orbit frame

angular velocity from orbit to inertia expressed in body frame

3x3 inertia tensor

3x3 identity matrix
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1 INTRODUCTION

1 Introduction

1.1 Attitude control for GranaSAT-I

The attitude of a spacecraft is its orientation in space. [I]

The attitude of the satellite tends to vary under the action of couples, which
may be external, due to radiation pressure or atmospheric drag on solar panels,
or internal, due to mechanical motion of the instrument motors. A stabilization
system is thus required to maintain the satellite in the right position relative to
the local orbital frame.

(o]
Granada

Figure 1: GranaSAT-I pointing ground station. Potential implementation of a
LED matrix and a camera in the cubesat.

1.2 TImportance of ADCS

The attitude determination and control system (ADCS) plays an indispensable
part in satellite on-orbit operation which could greatly affect the satellite’s per-
formance.

When the satellite is dropped by its launcher, e.g. ISS, it certainly will not be
stable but it will twist upon itself. The first mission of this system is thus to
stabilize the satellite.



1.3 Structure of this work 1 INTRODUCTION

All in all, ADCS allows us performing precise measurements or observing to-
wards Earth’s surface in orbit, which requires the satellite to be stable, as well
as for receiving or transmitting telemetry data or collecting sun’s energy.

1.3 Structure of this work

For a proper understanding of the movement and orientation of the spacecraft,
with GranaSAT-I characteristics , is natural to define, firstly, a Refer-
ence Frame in which to study Kinematic (equations that express how position
changes for a given velocity) and Dynamic (equations describing how velocity
changes for a given force) properties of the satellite.

Throughout this work there will be defined five different reference frames, being
of special importance Orbital frame and Body Frame, B (2.1)), and from where
most of equations are defined.

In the Satellite Model section, using Euler’s Equations for rigid body dynam-
ics in B for computing Attitude Dynamics results to be useful for small ma-
neuvers, but has singularities, therefore Quaternions are introduced. (2.3).
Then, environmental torques are introduced, important to notice that aerody-
namic pressure/drag and solar radiation pressure are not modeled in Simulink.

In Mathematical Model section, environmental and actuators torques are mod-
eled, thus obtaining the equations necessary for Attitude Determination and
Stabilization through Lyapunov’s Stability (2.4).

Finally, using Simulink @ environment to perform various simulations in order
to test three different Attitude Control Algorithms , yields consistent
results that lead to Conclusions about energy, applied torque and stabi-
lization. Additionally, Recommendations @ for future work are presented.

Appendix @ is mot mecessary to read in order to understand this work.



2 MATHEMATICAL FORMALISM

2 Mathematical Formalism

2.1 Reference Frames

This section introduces different reference frames for representing satellite po-
sition and attitude. Essentially, we have:

Inertial frame (ECI): The Earth-centered inertial frame is an inertial frame for
terrestrial navigation, which means that it is a non-accelerated reference frame
in which Newton’s laws of motion apply. The origin of the frame is located at
the center of the Earth. Here sub-index i is used.

Orbit frame (O): The orbit frame has it’s origin in the satellites center of
mass. The x,-axis points in the normal direction of the orbital plane, while
the z,-axis points to the Earth center and the y,-axis completes the right-hand
orthogonal system. It is a non-inertial reference frame.

Body frame (B): The body-fixed reference frame is a moving coordinate frame
which is fixed on the vessel. The axes are locked in the satellite, x,-axis is for-
ward, zp-axis is downwards and the y-axis completes the right-hand orthogonal
system. The origin is situated at the center of mass. This coordinate system
rotates with the satellite, xp, y» and z;, coincide with principal axes of the
moment of inertia tensor.

X, Y,

Figure 2: Inertial frame (I), Orbit frame (O) and Body frame (B) representa-
tions.
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2.2 Vector Transformations

This section contains the main principles when transforming between different
reference frames, and introduces unit quaternions and the inertia matrix.

Rotation Matrix

In terms of generic angles between each axes from one reference frame to the
other, 6, the rotation matrix may be written:

) cos(0yrg) €08(0zry) cos(8y2)
Ry = | cos(8yz) cos(Byy) cos(fy) (1)
cos(0.5) cos(0.y) cos(0.2)

Cross product operator

The vector cross product is defined by [22] :

Axa=5SNa (2)
where S is defined as:
0 —A3 g A1
S()\) == —S(A)T == )\3 O —/\1 3 )\ ES )\2 (3)
X A1 0 A3

The super-index T means the transpose of the matrix. The angle-axis parame-
terization of the rotation matrix, Ry ¢, corresponding to a rotation 6 about the
A-axis:

Ry.g = Izx3 + sin(0)S(A\) + (1 — cos(6))S?(\) (4)

is an useful parameterization.

Rotation matrix differential equation
The time derivative of the rotation matrix between a frame a and a frame b is:
Ry = Ry S(wil,) (5)

wy, is the angular velocity of a with respect to b expressed in a.



2.3 Euler angles and Quaternions 2 MATHEMATICAL FORMALISM

2.3 Euler angles and Quaternions
Attitude (Euler angles)

The attitude of a satellite can be represented by the roll, pitch and yaw angles
[4].
2

e=| 0 (6)
(0

where roll ¢ is the rotation about the z-axis, along the velocity vector, com-
pleting a right-handed orthonormal base there is pitch 6 about the y-axis and
yaw 1 about the z-axis.

Quaternions

Quaternions, represented by, ¢, which is a complex number with one real part
n and three imaginary parts given by the € vector, where 6 is a rotation about
the unit vector A [10]:

q1 n

0 c1 . 0 q2 €1
17 = cos (2> , €= zz = Asin (2> , ¢= P Il (7)
q4 €3

unit quaternion satisfies g7 ¢ = 1, which also means that: 7 + ¢ + 2 + 3 = 1.

Conversions Between Unit Quaternions and Euler Angles

Rotations in three dimensions can be represented using both Euler angles and
unit quaternions. An unit quaternion can be described as:

cos(2) g3 = sin(5)cos(By) (8)

o = sin(2)ccs(B) g1 — sin(3)cos(8)

where « is a simple rotation angle and S are the direction of cosines locating
the axis of rotation.

2.4 Lyapunov stability

In order to introduce stability as a mathematical concept in order to formulate
a control system, the most natural approach would be using Lyapunov stabil-
ity, which concerns the stability of a system’s equilibrium points [I, 22] . An
autonomous system is defined:

10



2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

= f(z) (9)
A non autonomous system, where f(-,z) is continuous and f(¢,-) is locally
Lipschitz uniformly in ¢:

= f(t,x) (10)

2.4.1 Positive definite function

A function V(z) is positive definite if V(0) = 0 and V(x) > 0 for « # 0, and
it is positive semidefinite if V(z) > 0 for « # 0. A function is negative definite
and negative semidefinite if —V (z) is positive definite or positive semidefinite,
respectively. A function V(¢,x) is positive semidefinite if V(¢,2) > 0. It is
positive definite if V(t,x) > Wi(x) for some positive definite function Wi (x)
and it is radially unbounded if W1 (z) is so, and decrescent if V (¢, z) > Wa(x) .

2.4.2 Stability of autonomous systems
Definition 1

The equilibrium point = 0 of (9) is stable in D C R" (the domain containing
x), if the continuously differentiable function V' : D — R"

V(0) =0 and V(z) > 0 in D — {0} (11)

V(x)<0in D — {0} (12)
And asymptotically sable if:

V(z)<0 in D — {0} (13)

A Xz A Xz
/~ \S_\?’ é *7\‘\ ' Xy \ s.;_‘,\r]\ pu \ \
— = ” — y
\ \ e /] X \ { e
N\ | N S22 .
\\\ // \\'7 4

stability asymptotic stability

Figure 3: Illustration on both concepts of stability and asymptotic stability.

11



2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

2.4.3 Uniform global stability
Definition 2

A continuous function « : [0,a) — [0,00) is said to belong to class x if it is
strictly increasing and «(0) = 0. It is said to belong to class ko if @ = co and
a(r) — oo as r — oo.

Definition 3

The origin of a non autonomous system as (10) is said to be uniformly globally
stable (UGS) if there existsa € koo such that, for each (t,,2,) € R x R™ each
solution (-, t,, x,) satisfies the following condition:

|z(t, to, o) < a(|zo]|) Vit >to (14)

2.4.4 Energy of the satellite

The total energy of the satellite is divided into kinetic and potential energy.
The kinetic energy is principally a result of the rotation in the inertial and orbit
frame. These expressions are obtained in [6].

Kinetic Energy

The expression for the kinetic energy is revolved in body frame with respect to
the orbit frame, and assuming a near circular orbit,

1
Eyin = §(ng)TIW2b (15)

Potential Energy

The potential energy due to the gravity gradient Ey, and the potential energy
due to revolution of the satellite about Earth, Egy.0,

3

Eqg = 5“3((C§)Tlcg —1.) (16)
1

Egyro = 5‘”3(11 - (CI{)TICI{) (17)

The total energy can be expressed as,

1 3 1
Eior = 5(ng)TIWI;b"F*W?)((I:r_IZ)C%S"‘(Iy_IZ)c%:S'F*Ws((Ix_ly)c§1+(jx_IZ)C:%
(18)

12



2.4 Lyapunov stability 2 MATHEMATICAL FORMALISM

2.4.5 Lyapunov Function

For studying Lyapunov stability, explained above in this section, we need to
define a function known as Lyapunov function. But before, the Lyapunov candi-
date, a potential Lyapunov function, that has to fulfill some special requirements
is presented in the next proposition,

Proposition 1

Lyapunov candidate,
V($> = Etot (19)

where Ey; is defined in satisfies,

V(©0)=0 (20)
V(z) >0 Vz#0 (21)
Proof
From is clear,
x = Wb, co1, €31, C13, C23] T (22)

so if z = 0 then V(0) = 0. To ensure that V(z) is positive, the requirement is
then,

I, >1,> 1, (23)

so the energy function is positive definite. This is a very important result
for model implementation in Simulink, otherwise the system might be uncon-
trollable.

13



3 SATELLITE MODEL

3 Satellite Model

3.1 Orbital Mechanics
Defining the Frame of Reference

Consider a satellite in periodic motion around the Earth. Let us define the
frame (O; x, y, z). The origin O is the center of the Earth, which is taken to be
a sphere .

The axis Oz is the axis joining the poles, oriented from the south to the north.
The plane xOy is the equatorial plane of the Earth, denoted E, which cuts the
terrestrial sphere at the equator.

The axis Ox is chosen arbitrarily to point towards a distant star.

The axis Oy is deduced from the other two axes in such a way as to obtain a
right-handed orthonormal frame.

The frame associated with this coordinate system is considered to be Galilean
and will be denoted by R.

The motion of the satellite is Keplerian, i.e., it occurs on a Keplerian orbit.

In R, the trajectory is a conic section, in this case an ellipse, with one focus at
the center of attraction O, and lying in a plane P, the orbital plane.

In this Galilean frame, the orbital plane P is fixed.

Let OZ denote the straight line perpendicular to P at O. The intersection of the
planes P and E is a straight line through O, called the line of nodes.

14



3.1 Orbital Mechanics 3 SATELLITE MODEL

Figure 4: Ground track and orbital elements. The point S, is the projection
of the point S (satellite) and the point P, is the projection of the perigee P
onto the ground track. The point N is the projection of the ascending node
and N’ is the projection of the descending node. The equatorial plane of the
Earth is (xOy,N,N’), normal to Oz. Orbital plane: (P,, S,, N, N’), normal to
OZ. Three of the orbital elements are the Euler angles: the longitude of the
ascending node (2),the inclination (i), and the argument of the perigee (w).
The fourth, here the true anomaly (v), specifies the point on the ellipse. The
two other parameters (a and e), semi-major axis and eccentricity, serve to define
the shape of the ellipse and are not shown here.

Specifying a Point on an Orbit

In order to specify a point in Keplerian motion in space, the first step is to
identify the orbit, and then the point on the orbit. We thus define successively:

(a) the location of the orbital plane in this frame,
(b) the position of the elliptical orbit in this plane,

(
(

c) the characteristics of the ellipse,

d) the position of the moving point (i.e., the satellite) on the orbit.

We shall find that six parameters are necessary and sufficient to determine the
position of the satellite in R.

15



3.2 Dynamics 3 SATELLITE MODEL

Keplerian Elements

The parameters discussed above define the orbit and the position of the satellite
on the orbit. These parameters constitute the six orbital elements, also known
as the Keplerian elements. They are generally organized in the following order:

a, e, i, Q, w, M

The parameter a has dimensions of length, whilst the five others (e and the four
angles) are dimensionless.

We should ask why there are 6 parameters. Here are two equivalent reasons:

e Three points define the position of a solid in space. Once the point O is fixed,
6 parameters (2 times 3 position coordinates) define the two other points.

e The position of a point (3 position coordinates) and its velocity (3 velocity
components) at a given time can provide the initial conditions required to in-
tegrate the equations of motion, thereby defining the position of a point on its
trajectory.

Since its axes are specified (OP orients the ellipse), the ellipse is characterized
by two parameters:

e Length of the semi-major axis and eccentricity, respectively: a and e
Using standard astronomical notation, the three Euler angles are :

e ), called here the right ascension of the ascending node or the longitude of
the ascending node: 2 = (Ox,0N) .

e i, called here the inclination. This is the dihedral angle i = (E,P) between
the equatorial and orbital planes, ¢ = (Oz,0Z) .

e w, called here the argument of the perigee: w = (ON,OP,) .

3.2 Dynamics

A satellite can be regarded as an ideal rigid body. The dynamic model of
the satellite is derived using a Newton-Euler formulation, where the angular
momentum change is related to applied torque.

Euler’s second law states that the rate of change of angular momentum L about
a point that is fixed in an inertial reference frame (often the mass center of the

16



3.2 Dynamics 3 SATELLITE MODEL

body), is equal to the sum of the external moments of force (torques) acting on
that body about that point:

dL
=7 24
ikl (24)
Angular momentum can be expressed as:
Lo = I, (25)

Therefore, the rate of change of angular momentum vector is broken up in two
parts. Change in angular momentum due to angular acceleration I and change
in angular momentum due to inertia tensor rotation (considering a generic ro-
tation matrix R = R(t)) which using rotation matrix differential equation (5),
R =RS(w), S(w)R =w x R, results in : & x (I).

. dL d(I&) .. d(RIRTY. . . . i
= o &+ T &+ (RIR" + RIR" )& (26)
Using anticommutativity of cross product a x b = —(b x a) and a property of
skew-symmetric operator (S = —S7T):
IS + (RIRT + RIRT)& = 1& + S(@)RIRTG + RIRT ST (&)@ = (27)
=104+ 3 X (IS) + I8 x & = I+ & x (Ia) (28)
Having:
7=10+a x (I3) (29)
The satellite model is:
16, + b, x (1a3h) = 7 (30)

where [ is the moment of inertia, @fb is the angular velocity from body to

inertia decomposed in body frame and 7° are the torques acting on the satellite
also decomposed in body frame (such as gravitational torque). Another way of
representing the previous equation is :

I3Y + S(@h) sk, = (31)

The angular velocity of the satellite relative to the inertial frame is expressed
in the body frame according to:

-b __ =b -b __ pb-o —b
Wip = Wio + Wob = Rowio + Wob (32)

Where &% angular velocity from orbit to inertia decomposed in body frame.

17



3.3 Kinematics 3 SATELLITE MODEL

3.3 Kinematics

The kinematics describes the satellite’s orientation in space and is derived by
integration of the angular velocity. First, is presented the most general case of a
rotation matrix. A rotation matrix may also be referred to as a direction cosine
matrix, because the elements of this matrix are the cosines of the unsigned
angles between both reference frames.

Let a be a reference frame with unitary vectors ( €z, €y, € ) and a’ other
reference frame with unitary vectors ( €;', ¢,’, €.’ ). Then orientation from
a to a’ is completely determined by transformation matrix Rgl, this is the di-
rection cosine matrix (DCM):

— — —/ -/ =
€r "€x €x-€y €3 €,
o -1 - -1 S —/ -
R =| €/ € Cy €y €y e (33)
€€y €. € € €
In terms of generic angles between each axes from one reference frame to the
other, 0, the rotation matrix may be written:

cos(0yry)  €08(0zry) cos(8y:2)
R = | cos(8yz) cos(Byy) cos(fy ) (34)
cos(0.5) cos(0.y) cos(.2)

Euler’s Theorem:

Any two independent orthonormal coordinate frames may be related by a min-
imum sequence of rotations (less than four) about coordinate axes, where no
two successive rotations may be about the same axis.

Then, it is possible to bring a rigid body into an arbitrary orientation by per-
forming three successive rotations. The composition of three rotations, one over
each (x, y, z) axes, also suppose 6 = 6(¢):

cos(f3)  sin(f3) 0O cos(f2) 0 —sin(fz) 1 0
R(t)= | —sin(83) cos(fs) O 0 1 0 0 cos(by)
0 0 1 sin(f3) 0  cos(6s) 0 —sin(by)
35

where 6; is a rotation over z-axis (roll usually represented by ¢), 62 is a rotation
over y-axis (pitch, 6) and 63 is a rotation over z-axis (yaw, ).

Finally, kinematics in this matrix form yields:

0 —Ws w2
dR(t
% = R(t) w3 0 —w1 (36)
—Wwo w1 0
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Euler angles representation of kinematics:

0, 1 cos(03) sin(01)sin(fz)  cos(01)sin(f2) w1

b | = cos(03) 0 cos(61)cos(02) —sin(61)cos(02) wa

03 2 0 sin(61) cos(67) ws
(37)

Euler angles representation is useful for small maneuvers, but has singularities
at cos(6s).

This is the reason we use quaternions, applying a conversion from Euler angles
to quaternions:

g1 0 w3  —w2 wi Q1

Go 1 —ws 0O w1 wa q2

! = Z 38
qs 2 wy —wi 0  ws qs3 (38)
qa —wp —wy —ws 0 qa

Simplified:

i=(2) =3 (anarsia ) )

To find the rotation velocity for the body frame relative to the orbit frame:
—b b o~ b _ b b~
Wop = Wiy — Wolp = Wip — Rowfo (40)

Where ¢ are columns in R? = (c} c§ ).

3.4 Environmental and Actuators Torques
3.4.1 Environmental Torques

In order to design the attitude control and prediction system, environmental
disturbance torques acting on the spacecraft shall be modeled sufficiently. The
torques must be modeled as a function of time, the spacecraft’s position and
attitude so that they can be integrated to Euler’s equations and any other
mathematical models.

The dominant sources of environmental disturbance torques on the spacecraft
attitude are the solar radiation pressure, aerodynamic drag and Earth’s gravi-
tational and magnetic fields.

19
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EXTERNAL DISTURBANCES

— Solar Radiation Torque

105 -
i —————— Geostationary Altitude
E 104k \ Gravity Torque
@
E Magnetic torque
< 103}
107 = /_Aerodynamic Torque
102

11 1 1 J
10 105 104 1073 102 10"

Torgue (N m)

Figure 5: Environmental disturbance torques as a function of altitude. Diagrams
like this are strongly dependent on the mass and geometry of the spacecraft,
although proves to be useful for having an idea of the typical order of magnitude
of these torques. The solar radiation pressure is effective on attitude of the
satellite for altitudes higher than 1000 km. The gravity gradient disturbance are
most significant below 1000 km. Aerodynamic perturbations are most effective
below 500 km and negligible over 1000 km altitudes.

Gravity Gradient

There are many mathematical models for gravity gradient torque. The most
common one can be derived (careful derivation is explained in [1] p. 530-533)
assuming homogeneous mass distribution of the Earth, the gravity gradient is:

— e x (It,) (41)

where £=3.986-10m3.s72 is the Earth‘s gravitational coefficient, R, is the
distance from Earth’s center (m), I is the inertia tensor and finally, . is the unit
vector towards nadir, i.e., downward-facing viewing geometry, usually pointing
the center of Earth (its opposite is the zenith).

For example, a spacecraft in a low earth orbit (LEO: altitude between 200 km

and 1500 km) has 24 =~ 4.107%2 with the moments of inertia of the Space

20



3.4 Environmental and Actuators Torques 3 SATELLITE MODEL

Shuttle are on the order of 10°%kg-m~2, so the gravitational torques on this large
vehicle are on the order of 1N-m.

In body frame:

- H©
Tyrav = 3w, x (I83) ; W) = i (42)
(o}
where ¢} is, again, the third column of the rotation matrix, R2, which transforms
2p into z,, using quaternions:

2(5153 - 7752)
c3 = 2(e9e3 + ne1) (43)
1 —2(e2 + €3)

Thus:
2(1. — 1)) (e2e3 + me1) (1 — 2(e3 + €3))
Foraw = 3wl | 2(Le — L) (e183 — nea) (1 — 2(F + €3)) (44)
2(1, — I,)(e1e3 — me2) (€263 + ner)

Solar Radiation Pressure

Radiation pressure is the pressure exerted upon any surface exposed to electro-
magnetic radiation.

For example, if the effects of the sun’s radiation pressure on the spacecraft of
the Viking program had been ignored, the spacecraft would have missed Mars
orbit by about 15,000 kilometers being the average distance between Earth and
Mars about 225 million km.

The intensity of the solar radiation varies over time, this makes the determina-
tion of its energy and frequencies difficult. Most analysis uses the solar radiation
constant SF[2:

W
SF=1353_3 (45)

the force of solar pressure per unit area is then given by:

SF
psp =~ =451 107 °N.m ™2 (46)

The expression of the force due to solar radiation on the satellite then becomes:
Fsrp=—psr-Cr" Ao Teo (47)
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3.4 Environmental and Actuators Torques 3 SATELLITE MODEL

where Ag is the exposed area to the Sun. (® is the symbol for the sun, @&
for Earth) The reflectivity, Cg, indicates how the satellite reflects incoming

radiation, and its value is between 0.0 and 2.0. Because Cg is time variant and

the constant change in orientation of the object to the sun!®.

The resulting magnitude of the torque can be expressed as:

Tsr = Fsr(cpsn — ¢q) (48)
where ¢, is the center of solar radiation pressure and c, the center of gravity.
For more information on this topic, see [22] [].

Aerodynamic Pressure

Satellites orbiting the Earth at low altitude will be influenced by the air density.
This disturbance is most effective on satellites orbiting below 400-500 km. This
may reduce the velocity of the satellite, and the result will be lower altitude for
the satellite. The torque is written [12]:

- 1 . ~

Taero — §pVQCdAinc(uv X ((Cp - Cg)uv)) (49)
where p is the atmospheric density, Cy is the drag coefficient, A;,. is the area
perpendicular to u,, which is the unit vector in velocity, V', direction.

1 2
Faero = ipmv CdAinc (50)

this force is known as “lift force” and can be easily obtained from basic fluid
dynamics.
Magnetic Disturbance

This torque is resulted from the interaction of Earth’s magnetic field and space-
craft’s residual magnetic field. If 7 is the sum of all magnetic moments in the
satellite, the torque acting on the satellitel?!:

F=1mxB (51)

where B is Earth’s magnetic field vector can be described using IGRF or Dipole
Model, see [3, 4]. m is caused by satellite-generated current loops, permanent
magnets or induced magnets which should be computed.

3.4.2 Actuators Torques

Reaction wheels, momentum wheels, or magnetic torquers are devices used for
the changing satellite’s angular momentum. They are simply used on spacecraft
for several aims: to add stability against disturbance torques, to absorb cyclic
torques, and to transfer momentum to the satellite body for slewing maneuvers.
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Magnetic Torquers

Of special interest, as GranaSAT-I will use this type of torquer. Torque pro-
duced by the magnetic torquers in body frame is :

™ = mb x B (52)

m

mb is the magnetic dipole moment generated by the torquer, BY is the local
geomagnetic field vector, relative to the satellite.

It is interesting to mention that these kind of magnetic actuators can only create
a torque within a plane (perpendicular to the local magnetic field), which may
represent a limitation as for ADCS with these torquers.

Magnetic dipole moment is given by :

Nyi Ay mg
mt=| NyiyA, | = m? (53)
N,i A, mg

where, Ny is the number of windings in the torquer, Ay is the span area of the
coil, and 7 the torquerer current.

Using skew-symmetric operator :

Bb Bb b
7, = 507" B = %’ B§ ’ (54)
Bb Bb b
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4 Simulation Results

GranaSAT-I is going to be a nanosatellite (10x10x10 cm cube) with approx-
imately 1 kg mass, supposed to carry a camera as the payload, which should
take pictures of the city of Granada.

It will also have a very powerful LED matrix that must be seen from Earth
surface and follow a LEO (Low Earth Orbit), that is typically consider from
200 km to 1500 km.

As well as having an (diagonal) inertia matrix:

I, = 0.0018, I,,, = 0.0017, I, = 0.0015 (m?kg)

which is given by a Solidworks 3D model prototype.

This simulated satellite follows a LEO orbit, typical in cubesats, at h = 750 km
with very small eccentricity e = 0.005 as well as an inclination of i = 17.22.

Magnetorquers physical properties in each axis are,

Coil Resistances 50 2
Coil Areas 88 cm?
Intesity Limits 100 mA

Inputs of the simulations, are essentially the quaternion ¢, and @’fb, angular
velocity from body to inertia decomposed in body frame.

Various initial values haven been tested, as we would not know them until the
satellite in orbit starts measuring, they are chosen randomly, those represented
in the following figures are the result of,

Orientation : Quaternion q = [—0.0010.9570.0928 — 0.275]
Orientation : Euler Angles [p 0] = [176.688° — 31.769° — 12.020°)
Angular Velocity @b =421 rad-s7?

The different controllers are tested on the Simulink model of this project. Hence-
forth, a comparative and detailed study as well as a latter discussion is given in
this section. All graphs represent time in orbits, in this scenario, Typ; = 5940 s.
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4.1 Angular Velocity Feedback Controller

The angular velocity feedback controller or Wisniewski controller [6],

mb = Haby x B° (55)
with a gain H = 500.

x10°  Applied magnetic moment by Angular Velocity Feedback Controller
T T T T

1.5

—m
x
m
Y
- m
1 z
0s 'ﬁ
-«
£
< o i
B
£
|
05 ’)‘
-1
1.5 i I i L L |
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Figure 6: Angular Velocity Feedback Controller. Topmost, applied torque.
Down, energy consumed.
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Quaternions. Angular Velocity Feedback Controller
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Figure 7: Angular Velocity Feedback Controller. Attitude control. Quaternions
and Euler Angles are represented.
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4.2 Attitude Feedback Controller

A known controller in bibliography [12] is the attitude feedback controller, sim-
ilarly built to the previous one,

mb = Hab, x B' —a-£x BY (56)

where is &= [e1 £2 €3] is the vectorial part of the quaternion.
with a gain H = 500, a = 0.9.

x10° Applied magnetic moment by Attitude Feedback Controller
15 T T T T T
—m,
m
v
—m,
1 H
0.5 ‘ al
’h
—
£
< o W
“E
}\
05 P
-1
-1.5 i i i i i |
0 0.1 02 03 0.4 0.5 0.6
t (orbits)
x10° Energy consumed by Attitude Feedback Controller
4F T T T T
35
3k
25
=)
3
5 2
2
w
1.5
1k
0.5
0 I I I I
0.1 0.2 0.3 0.4 0.5 0.6

t (orbits)

Figure 8: Attitude Feedback Controller. Topmost, applied torque. Down, en-
ergy consumed.
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Quaternions. Attitude Feedback Controller
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Figure 9: Attitude Feedback Controller. Attitude control. Quaternions and
Euler Angles are represented. Important to notice how this controller slowly
deviates from equilibrium after reaching it.

28



4.3 B dot Controller 4 SIMULATION RESULTS

4.3 B dot Controller

Probably one of the most popular controllers is this one, due to its simplicity
and robustness [18§].

BY
—-b __ 7]{7
IR (7
with a gain k = 1.25-1078.
x10° Applied magnetic moment by B dot Controller
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Figure 10: B dot Controller. Topmost, applied torque. Down, energy consumed.
This controller has the highest energy consumption.
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Quaternions. B dot Controller
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Figure 11: B dot Controller. Attitude control. Quaternions and Euler Angles
are represented.
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5 Conclusions

A Mathematical Formalism along with a Physical Model of the satellite GranaSAT-
T has been implemented in Simulink in order to create a Attitude Control and De-
termination System. For this purpose, some previous considerations have taken
place. For instance, this model only considers two main perturbations (Earth’s
magnetic field and gravity gradient[with WGS84]) all through the satellite’s or-
bit, propagated with a simple version of SPG4 propagator. In this framework,
and having in consideration the physical characteristics of this future spacecraft,
simulations gave the previous section results, which at first glance, seem to be
consistent and logical in accordance to the references of this work.

From the known physics problem of the two bodies attracted gravitationally,
Kepler laws can be obtained and thus build an orbit in which GranaSAT-I
would move. Also, a clear explanation of different reference frames is written.

Control Theory deserves an obvious important place in this work, as it provides
the mathematical tools to ensure the system is stabilizable and can reach a
stable state, being specially important, Lyapunov Stability. This part of the
thesis has been of special hardship, as my initial knowledge of it was limited
and lots of information, more than here presented, have been processed. In the
end, a stable system and convergent results are obtained.

GranaSAT-I is considered as a rigid body thus Euler’s equations (for rigid body
dynamics) are applied and a first fundamental equation of this work is obtained,
as it will allow us to get the angular velocity. The attitude or orientation control
needs of quaternions for internal computation, despite being unintuitive, they
are useful. Using quaternions we can figure out the orientation of the satellite
and if it reaches a stable state (unitary quaternion ¢ = [£1000]).

Applying all of this, a Simulink model was built. And different controllers were
introduced. Results were presented and the following discussion is presented.
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5.1 Energy

Energetic efficiency is of capital importance in a spacecraft.

These controllers consume generally, in the order of some mJ, not B dot con-
troller, that presents a higher energy consumption, about one order of magnitude
higher. It is a result that makes sense looking a the magnetic moment generated
by the coils. Additionally, the angular velocity and attitude controller present
similar results, as their mathematical expression are analogous. Nevertheless,
the most efficient controller turns out to be the attitude feedback controller, but
as it will be explained is not as reliable for stabilization than the others.

Total Energy

18} ‘ ! 1

16 - b

12 b

-
o
I

Energy [J]

o
I

0 i i i
0 0.1 0.2 0.3 0.4 0.5

time (orbits)

Figure 12: Total Energy (expressed in equation of the satellite in orbit
dissipates over time.
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5.2 Magnetic Moment

The applied magnetic moment by the controller makes possible to obtain the
desired satellite’s orientation.

At first, torque is applied with higher intensity, as an initial impulse, is inter-
esting to notice how it is particularly higher for the B dot. As well, as how it is
applied in different axis to reach stabilization.

Magnetic moment is applied until the satellite is stable and with much less
intensity when is stabilized, this allows the angular velocity to be aligned with
Earth’s local magnetic field.

Typical values shows it ranges from [-1.5-1073 to 1.5:1073] A-m? .

X 10’5 Earth's Magnetic Field from Body Frame

o

Magnetic Field [T]

M WA |

i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (orbits)

Figure 13: Earth Magnetic Field components as seen from body frame. Before
stabilization and the mentioned alignment of the angular velocity, the satellite
measures higher variations due to its own rotation.
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5.3 Stability

A fundamental requirement for controllers is for them to be able to reduce angu-
lar speed and align body and orbital frames, that means R’ = I3,3. According
to equation (32),

b _ b o, ~b _ pboo 4 ~b
Wy, = Wy, + Wy, = ROW7, + Wy,

0“7 10
Therefore,
b _ b b —b
Wi = Wi T Way, = Wy, + Way
with RY deduced in [6],
% €3 —E&9
b 1
Ro =2 —E3 3 511
13} —&1 5

For stability to be studied, quaternions, or equivalently, Euler angles are shown.

Euler angles, to reach stability, need to tend to [0 0 0], simultaneously, quater-
nions to ¢ = [£1000].

The three controllers give an acceptable result, angular speed is reduce to less
than 0.001 rad/s. But total alignment is not fully reached. Not only that, but
the attitude feedback controller tends to be unstable and after convergence to
q = [£1000], starts to deviate slowly with small angular velocity. Therefore,
this last controller is not recommended, in spite of its power efficiency.

After an orbit, and a slight difference, the most stable controller is

the Wisniewski controller as it gives ¢ = [—0.99150.1258 0.0122 — 0.03015]
while B dot presents ¢ = [—0.98230.18100.0182 — 0.0521].
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Figure 14: Convergence of components of &J'gb, angular ve10c1ty of the body frame
with respect to orbit frame (expressed in body frame), to &% = [0 0 0] rad/s.
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6 Future Work and Recommendations

This work is possible due to the maintained effort of the Aerospace GranaSAT
Group carried out by my colleagues and, to some extent, to my previous col-
laborations to GranaSAT-I project, as in designing a 3D model in Solidworks
of a prototype first small rocket (it measured around 50 cm high), or such as
simple launching tests or study of groundtrack control and finally this ADCS.
This is a first approximation of a attitude control system that will be some day
controlling a real spacecraft.

Continuing this work means having in consideration all the results given and
improvements that can be added.

A more accurate model can be created, for example, adding aerodynamic drag to
the Simulink model, an easy implementable task. Or changing World Magnetic
Model to IGRF. A more precise propagator, could be a good idea, although
through references can be found not to be of paramount importance (providing
a decent propagator). One practical idea would be to implement a function
to read TLE (two-line element set) automatically so the propagator would not
need to be introduced keplerian elements and more data, of course modifications
to the Simulink model shall be added in that scenario, for example regarding
aerodynamic drag, that stronlgy depends on altitude.

More complex enhancements, are the complete migration of the simulinlk code
to C (for microcontroller) or HDVL (for FPGA), as the program is itself a feed-
back loop system and that can represent some complications, none the less, to
encourge people that will follow this path, a migration to C of the propagator is
given in the appendix. This, however, might be more doable, with less difficulty
than implementing a linearized system with a linear quadratic estimator, like
Kalman filter. Again, in the appendix, the linearized model is written.
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ADCS Budget Estimation

Although a nanosatellite budget can range from $2.000 to $20.000, more af-
fordable options are taking place due to cheaper high performance electronics,
making possible to design a low cost ADCS.

Therefore, based on [27, 25] [16], 17, 18], a rough estimation on building this
attitude control system is given:

\ Magnetorquers \ Gyroscope \ Coils \ Microcontroller \ GPS \ Total
High estimate $9,256.95! $71.87 3 | $4,976.88° $112.207 $9,495° | $23,912.90
Low estimate $22.442 $55.67 1 $12.45° $9.46° $99.0010 | $199.02

1 ISIS Magnetorquer Board 2 Honeywell HMC 1052L 2 ADXRS453BEYZ Ana-
log Devices * ADXRS453BRGZ Analog Devices ® CubeWheel Small Cube Sat
Shop ¢ MilliBird50 Didel “ TE0887-03M Trenz Electronic GmbH ® PIC24FJ256GA110
9 OEM4-G2L NovAtel °Venus838FLPx-L Navspark

Further information of an overall cost a this type of mission can be found in [27]

NASA Cost Symposium AMES.
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Gantt Chart of this Project

ACTIVITY PERIDDS

517 017 N17 D17 J18 F13 M18 A18 M13 J18 J18 A1
Thesis and articles
reading

Propagator
Implementation
ACDS
Implementation

Algorithms
Performance

Controller Design .

Learning Simulink

Groundtrack test .

Migration to C

Budget Estimation

Memory Writing _

38



REFERENCES REFERENCES

References

[1] James R. Wertz. Spacecraft Attitude Determination and Control. Kluwer
Academic, 2002.

[2] Fundamentals of Spacecraft Attitude Determination and Control. F. Landis
Markley, John L. Crassidis. Springer, 2014.

[3] Orbital Mechanics for Engineering Students. Howard D. Curtis. Elsevier,
2005.

[4] Satellites Orbits and Missions. Michel Capderou. Springer, 2005.

[5] Introduction to Simulink@®) with Engineering Applications. Orchard Pub-
lications. 2006.

[6] Satellite Attitude Control Using Only Electromagnetic Actuation Ph.D.
Thesis Rafal Wisniewski 1996.

[7] Rotaciones, secuencia aeroespacial y cuaterniones. Una revision de las rela-
ciones fundamentales. Eduardo Serrano, Ricardo Oscar Sirne y Guillermo
La Mura.

[8] AstroNet-II: The Astrodynamics Network. Attitude dynamics and control.
University of Roma Tor Vergata. James Biggs, 2013.

[9] Mathematical Model of the Solar Radiation Force and Torques Acting on
the Components of a Spacecraft. R. M. Georgevic. NASA | 1971.

[10] Attitude Determination and Control Systems Scott R. Starin, NASA God-
dard Space Flight Center John Eterno, Southwest Research Institute, 2011.

[11] Attitude control for the Norwegian student satellite nCube. Master Thesis.
Eli Jerpseth @verby, 2004.

[12] LEO Satellites: Attitude Determination and Control Components: Some
Linear Attitude Control Techniques Graduate School of Natural and Ap-
plied Sciences Of Middle East Technical University. Ceren Kaplan, 2006.

[13] Controls Algorithm For A Satellite Using Earth’s Magnetic Field: Orbit
Maneuvers And Attitude Positioning Karthik Ganesh University of Central
Florida, 2007.

[14] NASA Cost Symposium AMES Cost Model Ames Micro/Nanosatellites
Cost Model, 2015.

[15] Satellite Attitude Determination with Low-Cost Sensors by John C. Spring-
mann, 2013.

[16] Hardware Review of an On Board Controller for a Cubesat Norwegian
University of Science and Technology Trondheim Magne Alver Normann,
2015.

39



REFERENCES REFERENCES

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

Review of the hardware description of the camera module prototype for
NTNU Test Satellite (NUTS) By Jon Kalevi Oltedal Fall Semester, 2015.

Attitude Determination and Control System design of KufaSat. Mohammed
Chessab Mahdi and Abdal-Razak Shehab, 2014.

Useful to visulize Euler to Quaternions: http://quaternions.online
http://www .kostasalexis.com /frame-rotations-and-representations.html

Comunicaciones por Satélite Curso 2009/10 Comunicaciones por Satélite.
(©Ramon Martinez, Miguel Calvo UPM. Parametros orbitales Formato
TLE de NORAD.

Spacecraft Attitude Dynamics and Control Christopher D. Hall January
12, 2003

Astronautica y Vehiculos Espaciales. Rafael Vazquez Valenzuela Departa-

mento de Ingeniera Aeroespacial Escuela Superior de Ingenieros, Universi-
dad de Sevilla. 2012.

Satellite Dynamics and Control in a Quaternion Formulation - Lecture note
for course 31365 Spacecraft Dynamics and Control at DTU. 2010.

Pose Estimation using Linearized Rotations and Quaternion Algebra. Tim-
othy Barfoota, James R. Forbesa, Paul T. Furgalea .University of Toronto
Institute for Aerospace Studies.

Basic Navigational Mathematics, Reference Frames and the Earth’s Geom-
etry. Springer-Verlag Berlin Heidelberg, 2013.

Modeling and Simulation for Automatic Control Olav Egeland and Jan
Tommy Gravdahl. Norwegian University of Science and Technology Trond-
heim, Norway. 2002.

40



REFERENCES REFERENCES

APPENDIX

Linearization of the Satellite Model (for future im-
plementation)

What Is Linearization? (Brief Explanation)

Linearization is a linear approximation of a nonlinear system that is valid in a
small region around the operating point, using a Taylor series.

For example, suppose that the nonlinear function is y = 2. Linearizing this

nonlinear function about the operating point x = 1, y = 1 results in a linear
function y = 2z—1. Near the operating point, y = 2x—1 is a good approximation
to y = 2. Away from the operating point, the approximation is poor. The
actual region of validity depends on the nonlinear model.

Extending the concept of linearization to dynamic systems, we can write continuous-
time nonlinear differential equations in this form :

i(t) = f(z(t),u(t), )
y(t) = g(x(t),u(t),t) (58)

In these equations, x(t) represents the system states, u(t) represents the inputs
to the system, and y(t) represents the outputs of the system. A linearized
model of this system is valid in a small region around the operating point we
linearize. To represent the linearized model, define new variables centered about
the operating point :

ox(t) = x(t)—x,
ou(t) = u(t) — uo (59)
oy(t) = y(t)—vo

The linearized model in terms of dx(t), du(t), and dy(t) is valid when the values
of these variables are small :

5@((75) = Adx(t) + Bou(t) (60)

oy(t) = Cdx(t) + Dou(t)

Kinematics

The kinematics of the satellite is already described :
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i= (1) =3 (onarse )b oy

We linearize the system around the points n = 1 and € = 0 which results in the

system[3]:
. ] 0 .
i=(1)=( s, )b (62
2o

Rotation Matrix

The linearization of the rotation matrix between body and orbit frame around
the points 7 = 1 and ¢ = 0 results inl3):

Rg = .[3><3 + 25(8) (63)
Angular Velocity
First,
Ry = (RY)" (64)
R = I3y3 — 25(¢) (65)
% €3 —E&9
RE=2( - L o (66)
g2 —& %

The angular velocity in body frame relative to inertial frame :

b _ b b _ pb o b
Wip = Wio + Wob = Rowio + Wob (67)

Using w?, = 2¢:
2(¢1 — woes)

wh =1 2(é2+ 2w,) (68)
2(<§3 +woé1)

the time derivative is :
2(51 — woég)

L'u?b = 262 (69)
2(53 + woél)
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Gravitational torque

In previous section, was derived :

2(1, — I)(eae3 +ne1)(1 — 2(e% + £3))
70 0 = 3w I )(

grav o ( =1L €1€3 — 7752)(1 - 2(5% + 6%)) (70)

2(I, — I)(e163 — me2) (€263 + Me1)

Linearized around n =1 and e =0,
grav — o

Magnetic Torquer Linearization

The torque from magnetic torquer is given as :

70 = S(m®)B® = S(m*)RY B = S(m®)[I3x3 — 2nS(e) +25%()|B°  (72)

m

Linearized around n =1 and e =0,

Bomb — Bgmg

b __ b b _ o g_ 0, b
Tm = S(m )B - Ba:mz Bzmz (73)

B; g — Bgmz

Linearization of the Satellite Mathematical Model with Mag-
netic Torquer as Actuator

This case has interest for GranaSAT-I as the spacecraft will use magnetic tor-
querers, coupled with Earth’s magnetic field, as actuators. Mathematical Linear
model of the satellite can be obtained as :

wab = _wfb X (wab) + S(mb)Bb + Tgl;rav (74)
where all terms have been explained before. Insterting them in this model yields:

21, (81 — woés) = (Iy — I.)(2w,és + 8w2eyr) + (Bom? — B;m{;)

1,(E2) = —6(1, — I )w2es + (Bam? — Bemb) (75)
2[2(53 — woél) = (L — I_t)(2w0€'3 + ngel) + (B;’mé’c — B;mg)

Then using :
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ky = "=
ky = Bopte (76)
k’z = Iy]_Im
Gives :
E1 = (1 — ka)woes — dkyw?ler + 57— (Bomb — Bomb)
£y = —3kywies + 57— (Bym? — BIm) (77)
€3 = _(1 - kz)woél - kzw3€3 + 2:[[2 (B;m?c - Bng)

The system can be represented by state-space representation in linear form given
by :

& = Ax(t) + B(t)u(t) (78)
if we define the states vectors tobe z =[ €1 €1 ey €3 &3 €5 ] and inputs
u=[my; my, m, |’ then, A matrix can be written as,

0 1 0 0 0 0
kw2 0 0 0 0 (1—k)w
0 0 0 1 0 0
A= 0 0 “3kw? 0 0 0 (79)
0 0 0 0 0 1
0 —(1—k,)w, 0 0 —k,w? 0
and
0 0 0
0 2},,33 —ﬁB{j
0 0 0
B(t) = o ° 80
(t) B 0 o B2 (80)
0 0 0
HBy By 0

Simulink Model (first iteration is represented)
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Migration to C (for future implementation)

Only the propagator turns out to yield 2044 lines of code, without .h or addi-

tional functions.

First lines are shown in the figure below.

Files can be found at:
https://consigna.ugr.es/f/gMet ADIIBY QicmiT /codigo pdf.pdf
https://consigna.ugr.es/f/ AxvXnqvlYOK5875L /sat propagator grt rtw.zip

/*
* sat_propagator.c

* Code generation for model "sat propagator".

* Model version :1.30

* gimulink Coder version : 8.6 (R2014a) 27-Dec-2013

* C source code generated on : Tue Aug 21 21:50:38 2018

* Target selection: ggk.tlg

* Note: GRT includes extra infrastructure and instrumentation for prototyping
* Embedded hardware selection: 32-bit Generic

* Code generation objectives: Unspecified

* Validation result: Not run

<

/* Block signals (auto storage) */
B_sat_propagator T sat propagator B;

/* Block states (auto storage) */
DW_sat_propagator_T sat_propagator DW;

/* Real-time model */
RT_MODEL_sat_propagator T sat_propagator M ;
RT_MODEL_sat_propagator_T

* output and update for action system:
* '<812>/1f Action Subsystem’

* '<520>/1f Action Subsystem'

*/

void sat_propagato_IfActionSubsystem(real T rtu_yin, real T rtu min,
rty mout, P IfActionSubsystem sat propa T *localP

rty yout, real T

/* Bias: '<Sld>/Biasl' */
*rty_yout = rtu_yin + localP->Biasl Bias;

/* Bias: '<S14>/Bias' */
“rty mout = rtu min + localP->Bias Bias;

e
* output and update for action system:
* 1<S12>/If Action Subsysteml'

- 1<820>/1f Action Subsysteml'

*/

void sat_propagat_IfActionSubsysteml(real T rtu_yin, real T rtu min,

*rty_yout, real T *rty mout

/* IRQEk: '<S15>/y in' */
“rty yout = rtu yin;

/* InRekk: '<S15>/m in' */
*rty mout = rtu min;

real T rt roundd snf(real T u

real T y;
if (fabs(u)
if (u >= 0.5
y = floor(u + 0.5);
else if (u > -
y=1u* 0.0;
| else
y = ceil(u - 0.5);

else |
y = u;

return y;

real T rt_modd_snf(real T u0, real T ul

real T y;

real T tmp;

if (ul == 0.0
y = u0;

else if “& (1rtIsInf(u0))

(1((!rtIsNaN (u0))
u {

61

const sat_propagator M = &sat_propagator M_;

((!rtIsNaN (ul))

real T

real T

(1rtIsInf


https://consigna.ugr.es/f/gMetADiIBYQicmfT/codigo_pdf.pdf
https://consigna.ugr.es/f/AxvXnqvlYOK5875L/sat_propagator_grt_rtw.zip
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