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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] has represented
a monumental step towards a deeper understanding of the mechanism of electroweak sym-
metry breaking in Nature. It has also implied a shift in the main physics goal of the LHC,
which has turned its focus onto the search of new physics beyond the Standard Model (SM).
Indeed, the LHC experimental collaborations have produced an impressive number of new
physics searches that cover almost every possible experimental signature at the LHC. The
few gaps still existing at the available energy are being closed thanks to the intense collab-
oration between the theoretical and experimental communities. Unfortunately, this effort
has produced no direct evidence of new physics, and the current experimental limits on the
masses of new particles are typically in the TeV range. Even if it is certainly possible that
new physics is waiting for us just around the corner and that it will be directly produced at
the LHC in the near future, it seems quite likely that it will stay beyond kinematic reach
in the next decades.

If such a scenario, with a significant gap between the mass of any new particle and
the energies probed by experiment, is realized in Nature, the effective field theories con-
structed with the SM fields become the most efficient tool to analyze experimental data.
The framework of effective theories provides a smart way of splitting in two steps the prob-
lem of comparing experimental data with theoretical predictions to obtain information on
possible extensions of the SM. In the first one, experimental (pseudo)-observables are en-
coded in terms of the Wilson coefficients of the effective operators with minimal theoretical
bias. This allows for essentially model-independent parameterizations of different sets of
experimental data [3-19]. Furthermore, this task can be done once and for all, indepen-
dently of any choice of new physics models.! In a second step, the Wilson coefficients of
the effective operators can be connected to the parameters of specific new-physics models
through the process of matching. This reintroduces the model dependence in the process
of comparing experimental data to new physics. Both steps can actually be developed
simultaneously and almost independently. Put together, they allow us to use experimental
data to test theories beyond the SM, even when the new particles they bring about cannot
be produced.

To take full advantage of the model-independence of the low-energy effective theory
approach, it would be desirable to match it with a completely general class of new physics
models. This task looks hopeless, but effective theories come to our rescue in this too. First,
in view of the good agreement so far of data with the SM, it is plausible that any realistic
form of new physics can be well described in the multi-TeV regime by a local effective field
theory. This is certainly the case for almost all explicit models in the market. So, for
phenomenological purposes it is sufficient to consider this intermediate effective theory as
the high-energy theory. Second, when this ultraviolet (UV) theory is weakly interacting,
its contributions to the infrared (IR) Wilson coefficients can be classified according to the
canonical dimension of the corresponding induced operators and to their order in the loop

LGlobal fits have to be updated if there is new experimental data or new theoretical calculations within
the context of the effective theory.



expansion.? As we show in this paper, it turns out that the leading order, given by tree-
level contributions to operators up to dimension six, is restrictive enough that a complete
classification of the UV effective theories with contributions at this order is feasible. Once
such a classification is available, the Wilson coeflicients in the IR effective theory can be
computed in terms of the masses and couplings of the UV theory. This information will
constitute a complete UV/IR dictionary at the leading order, which provides a direct link
between experimental data and the parameters of any new physics model that can give
such contributions.

The goal of this article is to present the complete tree-level UV/IR dictionary up to
dimension six for the SM Effective Field Theory (SMEFT), in which the Higgs boson is
considered to be part of a doublet of the linearly realized SU(2) 1 x U(1)y symmetry (see [20]
for a recent review).? The classification of the new fields that are relevant for this dictionary
was presented before in a series of papers for new quarks [23], leptons [24], vectors [25] and
scalars [26], respectively. The explicit contributions to the Wilson coefficients were also
computed in each case, for renormalizable UV theories. The selected fields that contribute
at the leading order have the characteristic property of allowing for linear couplings to
the SM fields. Therefore, this classification is also useful beyond its direct application to
effective field theories, as it provides an exhaustive list of the new particles that can be singly
produced in particle colliders at the classical level and via renormalizable interactions. The
couplings that govern single production are the same as the ones required to generate the
corresponding SM effective operators, which connects direct and indirect constraints on
(singly-produced) particles at colliders. Pair production of new particles can be similarly
related to new particles that contribute to the effective-theory matching at one loop.

The presence of couplings with positive mass dimension in new-physics models has two
important implications for the IR effective field theory, already at the classical level and for
operators of dimension up to six. First, it allows for mixed contributions in which two or
more heavy particles with different spins can simultaneously contribute to certain operators.
These mixed contributions are computed for the first time with complete generality in
the present work. Second, non-renormalizable operators in the new physics model can
also contribute to the SMEFT at tree-level to dimension six. We also include these non-
renormalizable operators in the possible UV completions of the SM, which again give rise to
new contributions. In an effort to be complete, and once we have given up renormalizability
of the new physics models, we also consider the possibility of new heavy vectors that do
not arise as the gauge bosons of spontaneously broken gauge symmetries. This introduces
a new possible vector multiplet beyond the ones previously presented in the literature.

This completes the tree-level dictionary to dimension six. To keep it self-contained, we
provide here the full dictionary, including the previous results in renormalizable theories
in which only particles of the same spin contribute at a time. Even in that case, the
results presented here are not a direct transcription of the ones in the literature. We

2Note that the intermediate effective theory can be weakly interacting even if it arises from a strongly-
coupled theory. One example of this is provided by composite Higgs theories in the large- N limit.

3 A related effort for the case of the electroweak chiral Lagrangian, in which the Higgs boson is a scalar
singlet of the non-linearly realized electroweak symmetry is currently underway [21, 22].



provide the results for the first time in a real dictionary style, listing the contribution
to the Wilson coefficients both operator by operator and field by field. In this way it is
trivial to check which new physics can generate a specific contribution to certain Wilson
coefficients and subsequently analyze all the other physical effects of such an extension of
the SM. Furthermore we give all our results in the Warsaw basis [27], following the SM
conventions in ref. [28] for the relations between redundant operators.* This allows the
direct use of our results together with the anomalous dimensions computed in [28, 30-32]
(see also [33, 34]) to have a proper leading order calculation with possible large logarithms
resummed.®

The article is organized as follows. We describe our (minimal) hypotheses and provide
the complete list of new particles that contribute to the tree-level dimension-six dictionary
in section 2. The general contribution to the tree-level matching for effective operators up
to dimension six is computed in section 3. In section 4, we provide a guide to use our results
both in a bottom-up and in a top-down fashion. Then we give a specific example, using the
recently reported anomalies in certain B-meson observables in section 5 and we conclude
in section 6. Our results, unavoidably long, are given in several appendices for the reader
convenience. In appendix A, after setting our conventions and notation, we write down the
explicit Lagrangians for all possible extensions of the SM with new scalars, fermions and
vectors that contribute to the dimension-six SMEFT at the tree-level. For completeness,
we reproduce the operators in the Warsaw basis in appendix B. The top-down dictionary
is given in appendix C and finally the bottom-up one, which collects the expressions of the
Wilson coefficients as functions of the UV parameters, is reproduced in appendix D.

2 General extensions of the Standard Model

The SMEFT provides a simple and well-defined model-independent framework to study
new physics beyond the SM. Its main limitation is that it is only valid at energies below
the threshold of production of any extra degrees of freedom. To study the direct production
of new particles, it is mandatory to incorporate into the effective theory the extra fields
associated to them. Of course, the problem is that we do not know a priori which are the
particles and fields that are relevant at the energies that can be accessed now and in the
near future. So, in order to preserve model independence, we need to consider effective
theories with arbitrary field content and arbitrary interactions. This also helps in connect-
ing to particular models and hence in providing a rationale for the values of the low-energy
parameters. Such a general space of theories depends on an infinite number of free param-
eters and looks all but intractable. However, some well-motivated assumptions, together
with our aim of matching to the SMEFT at the leading non-trivial order, remarkably re-
duce it to a manageable subspace of finite dimension. Specifically, we assume here that,

4Our results can be easily translated into other popular bases by using publicly available codes [29].

5There has been an important progress recently towards the automation of one-loop matching calcu-
lations [35—42] which would allow for consistent one-loop calculations in the new models and, eventually,
next-to-leading order ones when the two-loop SMEFT anomalous dimensions are available.



at energy scales below a certain cutoff A, nature is well described by a four-dimensional
Poincaré-invariant local effective Lagrangian Lggy such that

1. Lpgm is invariant under the linearly-realized H = SU(3)¢ x SU(2)r x U(1)y gauge
group.

2. Lpsm contains only fields associated to particles of spin < 1.

3. Lpswm includes as a subset all the field multiplets in the SM. In particular, it contains
a scalar ¢ in the (1,2),/, representation of the gauge group.

4. The only fermion fields with chiral transformations under the gauge group H are the
ones in the SM. In other words, all the extra fermions are vector-like with respect to

H or Majorana. This ensures that the symmetry H is non-anomalous.

The first assumption is a requisite for the perturbative unitarity of a theory that contains
the SM gauge bosons (see, nevertheless, footnote 3). The second one is a restriction we
make to avoid subtle consistency issues with interacting particles of spin > 1 [43].5 The
third and fourth assumptions are partially justified by the experimental success of the
SM, including the discovery of the Higgs boson, precision electroweak data and Higgs
data. Importantly for our purposes, the first, third and fourth assumptions ensure that,
at energies much smaller than all the (gauge-invariant) masses of the extra particles, the
theory is well described by the SMEFT.

The operators of canonical dimension d > 4 in Lgsy have dimensionful coefficients,
which can be written as a; f4~%, with f some mass scale and «; dimensionless couplings,
which can be related with the cutoff A by power-counting arguments [45-51]. If all the
vector bosons in the theory are the additional gauge bosons of an extended gauge symmetry
G D H (spontaneously broken to H) and Lpgym is invariant under G, with no anomalies,
then Lpsnm describes a unitary effective quantum field theory that can be used to perform
perturbative calculations to arbitrary precision at energies below the cutoff A. However, in
agreement with our model-independent spirit, we will consider here general theories with
Proca vector bosons without enforcing any gauge invariance beyond H.” This class of
theories contains the ones with extended gauge invariance. All the covariant derivatives
we write are thus understood to be covariant with respect to H only.

The field content of the theory Lpgy can be conveniently classified into irreducible
representations of the Lorentz and gauge symmetry groups. In this paper, we concentrate
on the sector of Lgsy that can contribute at the classical level to the SMEFT operators
of canonical dimension up to six. As we show in the next section, this sector includes only
operators of canonical dimension up to six and only those extra fields that can have gauge-
invariant linear interactions with the SM fields of dimension d < 4. This last requirement
strongly restricts the quantum numbers of the extra fields to be considered, as the Lorentz

SLocal effective field theories involving higher-spin particles are possible, with a restricted region of
validity determined by their mass, spin and couplings [44].

"Spin-1 particles could alternatively be described by rank-2 antisymmetric tensor fields, which can be
related to our vector formulation by a field redefinition, see [21, 52].



Name S 81 82 2] = 51 @1 @3
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Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E A1 Asg 2, 1
mrep (LD, (LD, (L2, L2y (L3), (13)
Name U D Q1 Qs Q7 T, 75
rep  (3,1): (3,12 (32 (32 s (32): (33) 1 (33):

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

Name B B w 4%1 g g1 H Ly
Irrep (171)0 (171)1 (1a3)0 (153)1 (8?1)0 (871)1 (8a3)0 (152)%
Name Ls Uy Us 9 95 X R%1 Vs
Irep  (1,2) s (3,1): 1)z (3,21 (3,2 (3.3)z (62)1 (6,2) s

Table 3. New vector bosons contributing to the dimension-six SMEFT at tree level.

and gauge quantum numbers are given by the ones of the possible bosonic and fermionic
operators of dimension 2, 3 and 5/2, respectively, that can be built with SM fields. All these
irreducible representations, together with the notation we use for each of the corresponding
fields, are collected in tables 1, 2 and 3.

These new fields with linear couplings have been singled out and studied before,
in [23-26].% Besides the fact that they provide the leading contributions to the SMEFT, and
thus to indirect tests, they are also relevant for the resonant production of new particles, as
the only new particles that can be singly produced at the classical level in collisions of SM
particles are excitations of these fields. In fact, several subsets of the fields in tables 1, 2
and 3 have appeared in the literature in different contexts, see for instance [54-59].

8There is actually one exception: the vector field £1 was not included in [25]. There exists only one
gauge-invariant operator of dimension d < 4 that is linear in this vector and has no any other extra
field: the super-renormalizable operator LZJ{ HD“ ¢, which mixes the longitudinal part of £; with the Higgs
doublet. Such an operator will not appear, in the unitary gauge, if £; is the gauge boson of an extended,
spontaneously broken gauge invariance. Therefore, in a complete unitary theory, it will not contribute
to the SMEFT operators at the leading order. However, it could appear in other gauges and also in
phenomenological models, much as pion-vector resonance mixing is included in certain descriptions of low-
energy QCD [21, 52]. In these cases it can be eliminated by a field redefinition, which in general generates
local operators of dimension 4, 5 and 6 weighted by the vector mass and the dimensional coefficient of the
super-renormalizable operator [53]. At the end of the day, as far as low-energy physics is concerned, this is
equivalent to integrating the field out, which is our approach here.



The part of Lggym that contributes classically to the effective Lagrangian of dimension
six or smaller involves a finite number of fields and a finite number of operators. Therefore,
it can be written explicitly and in full generality, as a sum of all the possible independent
contributing operators with arbitrary coefficients. The complete Lagrangian can be split
in the following way:

Lesm=Lo+Ls+Lr+ Lv+ Liixed + -+ (2.1)

where Ly contains terms of dimension d < 6 with only SM fields, Ls v contains terms
of dimension d < 5 with extra scalars, fermions and vectors, respectively, but no products
of new fields of different spin, and Lixeq contains terms of dimension d < 4 involving
products of extra fields of different spin. In writing the dimension-five interactions with
the heavy particles we remove redundant operators by using the SM equations of motion.
The dots indicate terms that do not contribute in our approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if they
share the same quantum numbers. However, field rotations and rescalings can always be
performed in such a way that all the kinetic terms in Lpgy are diagonal and canonical
and all the mass terms are diagonal in the electroweak symmetric phase. All our equations
are written with this choice of fields (except for the mixing of ¢ and possible scalars ¢
with £y, see footnote 8). Furthermore, we assume that no fields get a non-trivial gauge-
invariant vacuum expectation value in the symmetric phase. This can always be achieved
by convenient shifts of the scalar singlets. To match models written in a different “field
basis”, the shift, diagonalization and canonical normalization must be performed prior to
using our formulas.

Working in this “field basis” not only fixes the precise meaning of the couplings in
Lpsm, but also allows to identify the SM fields that enter in L. The SM fermions and gauge
fields are the massless fermion and vector eigenstates, respectively, whereas we identify the
Higgs doublet ¢ with the (1,2), /2 scalar eigenstate associated to a negative eigenvalue of
the squared mass matrix. We assume that this eigenvalue is non-degenerate and that all
the other eigenvalues are positive. This is required if we want Lpsn to be described by the
SMEFT at low energies. The different pieces that appear in (2.1) are written explicitly in
appendix A.

3 Effective Lagrangian and tree-level matching

In order to study the physics of Lpgym at energy scales much smaller than all the masses
of the extra particles, the heavy fields can be integrated out to find the corresponding

effective Lagrangian, organized as a power series in the inverse masses:

Lo = Lo+ > LY. (3.1)

n=2

ES&) contain the Lorentz and gauge invariant local operators O™ of canonical dimension
n that can be constructed with the SM fields,

£y =S"cMow. (3.2)

J



This effective Lagrangian will be a SMEFT with particular Wilson coefficients C' ](n), of mass
dimension 4 — n. The dimensions are provided by the masses and other scales in Lpgm.-
Not all the operators O™ are independent. Making use of algebraic identities and

field redefinitions, certain linear combinations can be eliminated from Egg), at the price of

changing Ei;") .

Taking this redundance into account, several operator bases have been
defined to dimension n = 6. Here, we employ the Warsaw basis defined in [27]. The
operators in that basis are collected in appendix B. The main purpose of this paper is to
calculate the corresponding coefficients C(=6) in the classical approximation, as functions
of the couplings and masses in Lggm.

Note that the generated operators have the same form as the ones in L£y. The non-
trivial contributions we are interested in can be distinguished when there is sufficient in-
formation on L. This is the case if the coefficients of the non-renormalizable terms in L
are suppressed by a scale larger than the masses of the new particles, and also if they are
fixed by symmetries or are known functions of the parameters of a given UV completion
of Lpsm. The requirement of a soft UV behaviour also imposes some constraints [21, 52].

The individual contributions of heavy fields and the collective contributions of heavy
fields with the same spin (except for the ones involving the vector £1) have been calculated
before in [23-26]. Here, we also incorporate the mixed contributions of heavy particles of
different spin, the contributions of £; and the contribution of the operators of dimension
d=2>51in £BSM-

Let us explain the systematics of the integration procedure. With this aim, we first
write the part of Lgsnm involving new fields as

Lesm — Lo = n(i)Aj.A&)lAi +) A}l . .A}nwg;{j;{: AP A (3.3)
m,n

where A’ represent all possible extra fields in Lggm, A(;) is the covariant propagator for
A" and VVZJ1 1.‘_‘.'14]72 are operators constructed with the SM fields, including the identity opera-
tor. The factor 7; = 1 (1/2) yields canonical normalization for complex (real) fields (see
appendix A). Lorentz and Dirac indices are implicit. In general, these operators carry a
reducible representation of H, but the ones with a single index i belong to the same irre-
ducible representation as A’ or AZT. The integration at the classical level can be performed
by 1) using the equations of motion of Lpgy to eliminate the heavy fields and ii) expanding

the propagators of the heavy fields in inverse powers of D;)/M;):

1 Df;
Ay =——5 (1 -— |+ O(1/M®) (scalars), (3.4)
My MGy
iD ) + Mg ( Df) 5 -
Apy=——"5—"|(1-—F | +001/M) (fermions), (3.5)
My MGy
g DV,L DH — UNVDZZ.
Al = ]7\742 et (Zz)w ; @D 4 o(1/Mm") (vectors). (3.6)

(4) (4)
The result at any finite order in D;)/M;) is a local Lagrangian. We have performed the
calculations in this algebraic fashion, keeping only the operators of dimension n < 6. To



Figure 1. Feynman diagrams contributing to L.g to dimension n = 6. Non-equivalent permuta-
tions of the arrow directions shown here should be considered as well.

deal in an efficient manner with the large number of terms that appear in this process and
minimize the possibility of errors, we have employed the symbolic code MatchingTools [60],
where we have implemented the algebraic relations and field redefinitions necessary to ex-
press our results in terms of the Warsaw-basis operators in appendix B. All the calculations
have been double-checked by hand and against previous results in the literature.

Equivalently, step i) above can be performed in terms of Feynman diagrams. In figure 1,
we show the tree-level Feynman diagrams with heavy field propagators that contribute to
Lo to order n = 6. The blobs in this figure represent the SM operators W;f;;” with m
incoming and n outgoing lines, and the arrowed lines represent the covariant propagators
A(;).- The arrows have no significance for real representations. In order to see that these are
the only non-trivial tree-level diagrams contributing to Leg, note first that the canonical
dimension of each term in the expansion of the propagators is non-negative, while the
canonical dimension of each blob is equal to the canonical dimension of its corresponding
interaction in eq. (3.3) minus the one carried away by the bosonic or fermionic heavy fields.
Consider a particular connected tree-level diagram. Let Bjcl be the number of blobs in the
diagram with at least one fermionic index and corresponding to interactions of canonical
dimension d, and Bg be the number of blobs in the diagram with no fermionic indices and
corresponding to interactions of canonical dimension d. Let Ly and Ly be, respectively, the
number of fermionic and bosonic propagators in the diagram and let X; be the number of
blocks with uninterrupted heavy-fermion lines. The canonical dimensions n of each term



in the diagram, after the propagator expansions, obey

n > d(Bj+ Bf)— 2L, — 3L;. (3.7)
d

From the topological relations Ly+Ls+1 = Zd(Bgl—i-B?) and Ly+X¢ =3, B}l, the bound

nZ24Xp > [(d—2)B§+(d—3)Bj£ (3.8)
d

follows. Using the facts that B = 0if d < 3 and B¢ = 0 if d < 4, we find in particular that
n> B+2, (3.9)

with B =" d(Bgl + B?) the total number of blobs. Therefore, only diagrams with 4 blobs
or less can contribute to n < 6. We also see from (3.8) that only interactions of canonical
dimension d < 6 can contribute to n < 6. But the operators with d = 6 only give the
trivial contribution of a diagram with one blob and no propagators, which is nothing but
the term already present in Ly. This justifies our restriction to operators with d < 5 in
the explicit expression of Ly written in appendix A. Finally, we observe that both the
operators of dimension d = 5 and the ones involving more than one heavy field can only
contribute to n < 6 in the presence of super-renormalizable operators of dimension d = 3,
and that operators of dimension d = 5 with more than one heavy field do not contribute
to this order.

Note that in diagrams (a), (b) and (c) of figure 1, all the propagators are contracted
with one-index operators W; or W*, which arise from terms in Lpsy with only one heavy
field (A® or AI) In diagram (d), on the other hand, the propagator A is attached
only to operators with two indices, Wf and W,@ However, upon the covariant-derivative
expansion at finite order of the other two propagator, A(;) and A;, the blobs they connect
collapse into one-index local operators W* = Wf [Aj]W7 and Wy, = WEIA Wi, with []
indicating the derivative expansion. The operators W* and Wk are in the same Lorentz
and gauge representation as W* and W, respectively. Moreover, to allow for a dimension-
six contribution, both of them must have canonical dimension d = 4. Hence, the fields A*
(AL) associated to W, (Wk) must also belong to a representation that can couple linearly
to the SM fields to give a scalar gauge-invariant operator of dimension < 4. We conclude
that, as promised, only the heavy fields in the irreducible representations of tables 1, 2
and 3 contribute at the tree level to the effective Lagrangian to dimension six.

We can draw another interesting corollary from this discussion. Let us define tree-
level operators as those for which there exists a renormalizable UV theory that induces
them at the tree-level, when the effective Lagrangian is written in the Warsaw basis, and
loop operators as those for which no such theory exists.” As we have just argued, tree-
level operators of dimension six can only be generated by the diagrams in figure 1 and

9The requirement of renormalizability is crucial to make the distinction. Without constraints on the
dimension of the interactions, any gauge-invariant operator could be trivially induced at the tree level by
directly including it in the UV theory. Considering a complete basis gives definite physical meaning to
each operator. Of course, which operators are potentially generated at tree or loop level depends on the
particular choice of basis, but the implications for physical observables remain unchanged.

~10 -



only by extra fields that allow for linear couplings to SM operators. This is also true if,
instead of using the effective theory Lpsnm as a starting point, we directly integrate out at
the classical level all the fields beyond the SM in a renormalizable completion of Lggm.-
Therefore, our results in appendix D explicitly show which operators are tree-level: those
that (potentially) receive contributions in the absence of non-renormalizable interactions,
that is, when f — oo and v, — 0. Conversely, the operators that can only have, at most,
1/f or vz, contributions are loop operators.'’ Even if the latter are connected to Lpsym
by tree-level diagrams, they cannot be generated at the tree level in any renormalizable
completion of it. That is, the necessary dimension-five interactions are only generated by
loop diagrams in any such UV completion. If this completion is weakly coupled, their
coefficients will have a loop suppression that carries over to the Wilson coefficients in the
SMEFT. Of course, such a suppression will not occur if the UV completion is strongly
coupled. This classification agrees with the one in [62], as it should, since we employ the
same criteria.

4 Results of the matching: user guide

The tree-level integration of the 48 fields of spin 0, 1/2 and 1 that can contribute to the
dimension-six SMEFT, via the interactions in egs. (A.7)—(A.24), generates all the effective
operators in the basis of ref. [27], with the exception of the four operators OG,G‘,W,W' The
explicit expressions of the contributions to the different Wilson coefficients are collected
in appendix D. In this section we offer a basic guidance so that users can quickly find the
required entries of the UV/IR dictionary inside our long and numerous equations.

We present our results by writing, for each operator, all the possible contributions of
all the multiplets to its Wilson coefficient. The results for the different operators have been
organized in the following way:

e Pure four-fermion operators (appendix D.3), classified according to the structure of
chiralities of the fields in the operator, i.e. (EL) (EL), (RR) (RR), (EL) (RR),
(ER) (RL), (ER) (ER), and, separately, the baryon-number (B) violating inter-
actions.

e Pure bosonic interactions (appendix D.4). We follow the classification of ref. [27]
and include here the operators of the form ¢%, »*D? and X?2¢?, where X refers to a
field-strength tensor.

e Interactions between bosons and fermions (appendix D.5). We again follow the clas-
sification of ref. [27], and separate the operators of the form 12¢?, X2¢ and ¢2¢?D.

Unless otherwise stated, for each Wilson coefficient, the contributions of the different types
of fields are ordered in the following way:

1
f

10The possibility of generating operators of this type with tree-level diagrams involving higher-dimensional

Ci — C@Scalars + CiFermions + Crﬁf\/ectors + ClMixed + C;hm 5’ (41)

interactions was pointed out and emphasized in [61].
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where C’jD , P = Scalars, Fermions, Vectors, contains the information from the integration of
only one type of spin, in the same order as presented in tables 1, 2 and 3, respectively. Each
of these are further separated, with the contributions from one type of particle appearing
first, and mixing between particles of same spin, afterwards:

ch=Y cr+ > cm+ Y o (4.2)

meP m,neP m,n,peP

The contributions coming from Lagrangian interactions between particles of different spin,
eqs. (A.22)-(A.24), are contained in CM*ed, The coefficient C{§'™ 5 includes the dimension-
six interactions generated by the non-renomalizable couplings in egs. (A.8), (A.14), (A.15)
and (A.20). These can be easily distinguished noting the prefactor 1/f. Finally, some of
the new particles induce modifications on the kinetic term of the SM Higgs doublet in the
effective theory. Our results are given in a basis where all fields are canonically normalizled,

and we include such corrections into a renormalization of the Higgs doublet ¢ — Z;§¢,
_1 _I¢
with Z P 2 given in eq. (D.2). The corresponding factors of Z # 2 renormalizing operators

with ng scalar doublets are shown explicitly in the coefficients.

Finally, for those operators that are non-hermitian we only report the coefficient of the
interaction in tables 4, 5 and 6. The corresponding contributions to the coefficients of the
hermitian conjugates can be obtained by complex conjugation.

The results of the matching can be employed in both directions:

Top-down. To facilitate the matching of particular models with the SMEFT — for in-
stance to profit from the abundant model-independent constraints phrased in this language
(see, e.g. [3-19]) — we have collected in tables 7, 8 and 9, in appendix C, the different op-
erators resulting from the integration of each of the scalar, fermion and vector multiplets,
respectively. It turns out that all the operators that receive contributions involving cou-
plings between different types of extra fields (with the same or different spin) can always
be generated as well by at least one of the particles entering in the interaction individually.
Therefore, tables 7-9 contain all the information necessary to identify which operators can
be generated in any scenario.

In this way, these tables show all the operators that can be generated given the field
content of the model. One can then look at the corresponding Wilson coefficients in
appendix D and use eqs. (4.1) and (4.2) to find the explicit contributions in terms of the
masses and couplings of the new particles.

Bottom-up. Our results can also be used in a bottom-up fashion, to find the explicit
SM extensions that can give rise to a given set of effective interactions. To identify which
multiplets contribute to each dimension-six operator in the effective theory, one simply
needs to look at the labels of the masses in the denominators of each term in the expression
of the Wilson coefficient. For operators involving the SM scalar doublet, one must also
take into account that £; and ¢ can contribute to the renormalization of the scalar doublet
Zg. Finally, upon integration of the £y vector field, the effects of its interactions with the
vectors B, By, W and W) — parameterized by the (,, 1 couplings in the Lagrangian (A.19)
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— can be described in a compact form by using modified couplings of B, By, W and W,
to the corresponding SM scalar currents. Explicitly, they can be described by replacing

(98)r — (35)r zs<g2>r-—¢<<‘1i€§§ff‘1)5, (4.3)
() = @)r = (g — 2W (4.4
(9h)r = (3)r = (95)r +W (45)
(g ) — (6%)r ::(gibl)T+2i(<clvi;;;r(7zl)s‘ (4.6)

Li1s

Writing the solution in terms of the g@ couplings has the advantage of simplifying sig-
nificantly many of the expressions, but obscures a bit the origin of the contribution. So,
besides looking at the explicit masses, one should take into account that any §$ coupling

implicitly involves a dependence on the couplings and mass of the field(s) £;. For instance,

N (¢ s s
@2)r = (g0)r _Zuls&#
{ , (4.7)
(95)? (95)? (95)r(CeyB) (e (Coyn)in(vey)s(Coy )i (vey )t
AC = 35 » AC = i — 2B Rl — S e
By By Br Ly B L1s L1y

Remember, nevertheless, that the vector multiplets £ will not contribute at all if they are
the gauge bosons of an extended gauge invariance.

Similarly, the tree-level matching leads to a redefinition of the coeflicients of the SM
operators, see section D.1. Then there are indirect effects in the dimension-six coeflicients
when the original SM couplings, which wear a hat, are written in terms of the redefined ones,
without hat, as specified in egs. (D.7), (D.8) and (D.9). Moreover, the covariant kinetic
term of the Higgs doublet is modified in the presence of v.,, which leads to the Higgs-
field renormalization in eq. (D.2). Therefore, one should also keep track of the Yukawa

couplings ¢ ?

and the quartic coupling Ay in order to check which fields can contribute
to the Wilson coefficients.
We include reminders of all these implicit dependences, where appropriate, in ap-

pendix D.

5 Example: interpretation of LHCb anomalies

Our UV/IR dictionary is a tool that can be used for different phenomenological purposes,
such as finding indirect limits on the parameters of explicit models, constructing BSM
models consistent with existing data or analyzing deviations with respect to the SM in terms
of new physics. In this section we illustrate the latter application with a particular example:
explaining the recent hints in LHCDb data of a violation of lepton flavor universality (LFU)
in B-meson decays [63, 64]. We will first identify which heavy multiplets can generate the
necessary operators and then look at correlated effects that could constrain or test the
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different possibilities. Our schematic analysis is just intended as an illustration. Most of
the results in this section have in fact already appeared in the literature.

The measurement of the observables Rx = Br(Bt — K utu~)/Br(BT — Ktete™)
and Rg+ = Br(B — K*utp~)/Br(B — K*ete™) provides a particularly clean test of LFU
of the gauge interactions, since a large component of the SM theory uncertainties cancel
in the ratio. The LHCb collaboration has recently presented measurements of these ratios,
both of which deviate from the SM predictions by ~ 2.6 ¢ [63] and ~ 2.4 o [64], respectively.
These are not the only anomalies in b — s/~ processes, with some discrepancies also in
the angular distributions of B — K*u*pu~ [65-67], or in the differential branching fractions
of B— Kutu~ [65] and Bs — ¢u™pu~ [68]. At present, the different deviations follow a
pattern that can be consistently explained by the presence of new physics. Altogether, the
global fit to all flavour anomalies points to a deviation with respect to the SM hypotheses
of ~ 3-5 o, depending on the estimates assumed for the SM hadronic uncertainties in some
of the observables [69-74].

The observed deviations from LFU in B decays are well described by the following
four-fermion effective Hamiltonian, valid at energies E < Myy,

om 4G
st _ thVtstl =r Z CLOL + he., (5.1)

where

O;; = (37" Pib) (69, Py0) (5.2)

are the different chiral four-fermion operators that can be obtained from the product of two
vector currents, with Pr, g = %(1 Fv5). The fit to Rk i« favors an explanation where new
physics is present in left-handed leptons and, in particular, points to a sizable deviation
from the SM hypotheses in Cﬁ ;- For the purpose of this example, we focus the discussion
around these interactions. They can be either C}', < 0 or C§; > 0, although a global fit
to all B anomalies prefers new physics in the muon sector, with Cg .~ —1.240.3 [69-74].

Matching (’)fg ;, with the dimension-six SMEFT at the tree level results in the following
four-fermion contributions to C’f I

= " (e + ), (5.3)

where \; = Vi Vi 5 435, and we are working in a fermion basis with diagonal Yukawa
interactions for the down-type quarks. The operators O( ) and (9(1 3 also contribute,
via a modification of the couplings of the Z boson to the relevant quarks and leptons.
However, such non-universal anomalous couplings are strongly bounded by LEP data, so
we concentrate on the operators Ol(ql) and Ol(f;’).

The relevant entries of the UV /IR dictionary are egs. (D.14) and (D.15). A look at
the masses in the denominators of each term allows us to easily identify all the types of

multiplets that can contribute to Cl(ql ) and C’l(j) at the tree level:

3.3y L1o (L3 (3.1); (3.3)
{ g? B? W7 u2, X }.

(S1\)

(5.4)

— 14 —



Note that for w1, Cl(ql ) = —C’l(; ) and therefore C’,‘é ;, = 0. This list with one scalar and four
vector multiplets agrees with the classification in other studies, see, e.g. [70, 75-77]. From
egs. (D.14) and (D.15) we also see that there is no collective contribution with several
heavy propagators in the same diagram. Most importantly, we can pinpoint the relevant
couplings in Lggym. This is a simple example of looking at an IR entry of the dictionary to
find its UV translation.

For instance, we can readily check in egs. (D.14) and (D.15) that a product of lepto-
quark couplings is involved in the case of the scalar ¢ and the vector bosons X and U2,
while the vectors B and W contribute through a product of a diagonal lepton coupling and
a flavor-changing quark coupling.

With this information, one can proceed to investigate in a systematic way all the
different constraints (or signals) arising from other processes that involve the same cou-
plings and particles. Processes involving other couplings will also be of great interest if the
anomalies are confirmed. Direct searches with resonant production can be very relevant,

but here we focus mostly on indirect searches. They reduce essentially to an analysis of the
(1)
lg
integrated out. We can distinguish three kinds of contributions to the Wilson coefficients

different operators, besides O, ’ and 01(3)7 that are generated when the heavy particles are

of the other induced operators:

Type I: contributions that depend only on couplings that enter in Cﬁ ;- The corresponding
observable effects are then correlated with the ones entering in b — s¢™¢~, and can

be used to constrain or probe a given solution to the B-meson anomalies.

Type II: contributions that depend on these couplings but can be made arbitrarily small
by tuning an interaction not entering in C’f ;- In this case, the correlations require

extra information on that coupling.

Type III: contributions that do not depend on the couplings that appear in Cﬁ ;- These
are completely uncorrelated.

In this classification it is of course crucial to take flavor indices into account. Even if
contributions of type I are more relevant, an observation of the effects of contributions of
type II and III could also be used to support the new physics interpretation and for model
discrimination.

Let us examine along these lines the multiplets ¢, X and W, which have the compelling
feature of allowing only for the required left-handed couplings. In this case, we will use the
dictionary in the UV to IR direction. Tables 7 and 9 prove handy for this task, as they list
the operators we need to look at for each assumed multiplet.

Scalar leptoquark ¢. The interactions of ¢ can be found in eq. (A.7). We see that the
scalar ¢ has, up to flavor indices, two couplings (besides the gauge couplings, determined

by quantum numbers): the lepto-quark coupling ygl and the coupling to quarks ygq. A

1,3 1,3
l(q ), Oéq ) and Ogqq-

Then, we read the precise contributions to their Wilson coefficients from eqgs. (D.12)—(D.15)

glimpse at table 7 tells us that the following operators are induced: O
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and (D.38). Assuming only one ¢ multiplet,

! Ly«
3 (yg )i (y‘é )i

1
(Clg Vit = 3(C it = Mz (5.5)
3(y{ki (v
(CaVigm = =3(Ci)ins = %, (5.6)
¢
2(y29)*. (1,2
(Caqq)ijrl = —w .

2
Mg

Looking at the flavor structure of (5.5), we see that we need sizable couplings (ygl)gg and
at 3¢ to explain the anomalies. For sufficiently low mass M, these couplings can be

Y p y ¢ pling

probed by analyses of single and pair production of ¢ at the LHC [78]. The very same

couplings also contribute to other components of Cgé’g), and we conclude that

3/(y?
‘iMz‘ 0,

3|(yd")
(Cl(;))zzem = 3(01(;))6622 = | 4M2 ‘ # 0.

(C3 ) eess = 3(C1 ) evss =

CL, 40— (5.8)

These are contributions of type I. The corresponding effects in hadronic-flavor-preserving
processes are correlated with the B anomalies. From (5.8) it is also clear that in these
processes each of the two couplings can be measured, in principle, independently. Both the
flavor-preserving and flavor-violating effects in an electron explanation of the anomalies
can be tested in eTe™ colliders. The observed values of R i+ can be reproduced with
C’f ., ~ O(1), which corresponds to a new physics interaction scale of about 35 TeV, well
above the sensitivity of LEP2. Therefore, current e™e™ data do not provide significant
constraints on the relevant couplings. However, they could be tested at future lepton
colliders. Any other combination of flavor indices gives contributions of type III, with
effects that are uncorrelated with the anomalies. The same holds for the contributions to
the operators (’)gé’g), which involve the quark couplings ygq. Finally, the baryon-number
violating operator Oyqq receives contributions of type II or type III, depending on the
flavor indices. Note in particular that the quark couplings for the first family are strongly
constrained by the non-observation of proton decay.

Vector leptoquark X. The analysis of the vector multiplet X is similar, but as we can
see in eq. (A.19) in this case there is only one non-gauge coupling (up to flavor indices):

1,3)

the lepto-quark coupling gx. In table 9 we see that only the operators Ol(q are generated

in the effective theory below the mass My. Assuming only one replica of X, eq. (A.7) gives

3(9x)5k(92)it

1 3
(O3 )ignt = —=3(C)ijat = — SMZ

; : (5.9)

We see that the contribution of X to C’f 1, is proportional to the product of (gx)j;, and
(9x)es. Again, there are correlations with the coefficients of the corresponding hadronic
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flavor-conserving operators:

(Cieess = =30 eass = — sl 2 0,
1

(3) 3|9X)I2|

ClLL #0—
(Clg Jeezz = =3(Cy )ezz = = =55 # 0.

(5.10)

The same discussion in the paragraph below eq. (5.8) applies to this case, except for the
fact that now there are no purely-hadronic couplings.

Vector iso-triplet W. As we can check in eq. (A.19), the vector iso-triplet W has
couplings g{,v and g?,v to left-handed fermions and g{’j\, to the Higgs doublet. The latter
induces a mixing of the Z’ and W’ components with the Z and W bosons, respectively.
There are also couplings involving a possible vector doublet £, which we shall not consider.
For masses My light enough, the Z’ and W' bosons in W can be produced at hadron
colliders if the light-quark couplings are not too small. They then decay into di-leptons
(including lepton + MET) [79] and di-bosons [80] through the couplings to leptons and
to the Higgs, respectively. Regarding indirect effects, the operators that can be induced
are listed in the W entry of table 9. The most relevant ones in the context of the B
anomalies are (’)l(j), Oy and (’)((13), with Wilson coefficients given by (see egs. (D.15), (D.11)
and (D.13))

(gl )i'(gq )kl
O T (5.11)
LN (Al
(Cu)ijm = —%(gw)kl, (5.12)
W
(gq )z“(gq )kl
(Cég))ijkl = _—ngwzw . (5.13)
W

We see that to get the necessary Cﬁ 1, we need sizable couplings (g{/\,) ¢ and (gf/v)gg. The first
one must be non-universal, while the second one is explicitly flavor-changing. Schematically,
we have the following correlations:

(Cu)eeee = gﬁ%ﬁ #£0,
Clp #0— { (Cid)asas = gﬁﬁ # 0, (5.14)
(Cha )2z = gg;}";?" # 0.

Of particular importance is the contribution to (C’( ))2323, as it generates contributions
to B, — B, mixing amplitudes. Such contributions are tightly constrained, pushing the
new physical interaction scale to values of O(100) TeV [81, 82].!* This case shows that,
although AF =1 and AF = 2 bounds are uncorrelated in a low-energy operator analysis,
correlations may exist and be crucial in specific explanations of the B anomalies. Sim-
ilar considerations apply often to processes that may not appear to be connected in an

" These bounds, together with the ones discussed below, can be relaxed by reducing the (g1 )23 and gf,’v
couplings at the expense of increasing the corresponding (g{/\,)u ones [83, 84]. A similar comment applies
to the case of B. Such leptophilic vector bosons can be probed at colliders in multi-lepton searches [85, 86].
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effective low-energy description. Of course, the correlations become weaker as more par-
ticles (with the same or different quantum numbers) are included, but some of them are
unavoidable [87].

Again, other combinations of flavor indices give contributions of type II and III. The
contributions of W to 1/2¢%D operators,

Re {(glw)z’j ggv}

Gy _
(Cy)ij = 102, ; (5.15)
Lo Re { (g8))u 930 } .

are of type II for ij = £¢ and ij = 23,32, respectively, and of type III otherwise. These
operators modify the Z and W couplings to leptons and quarks, so they are constrained
by electroweak precision data, by observables sensitive to flavor-changing decays of the Z
boson, By— B, mixing and by non-resonant processes with di-lepton and di-jet final states
at the LHC. But these limits can always be made compatible with the lepton and quark
couplings that explain the anomalies by tuning the Higgs coupling gf/)\, to be small. This
coupling also induces type-I1I effects in Higgs physics, via the operators Ogp, Oy, Oy
and Oyy (f = e,d,u), with Wilson coefficients

2
]
C¢D:_Im{(gw)} Cqs:—M C¢D:_’9$V|2 (5.17)
202, M2, M3,
¢ 12 - ® \2
e(d)* wk ok _ 2‘9 ‘ +ZIm(<g ) )
(Cesiany)ii = ¥5 " a, (Cug)ij = —2yjia”, a=-— o

(Note that we have replaced 5\¢ and §&%"* by Ag and y©%ht respectively, as in the extension
we are considering there are no contributions to dimension-four operators.)

Before finishing this section let us point out another possible usage of the UV/IR
dictionary for model building. Say we are interested in a given class of models, including
one or more of the multiplets that contribute at the tree level to the dimension-six effective
Lagrangian. Then we can relax the indirect limits on the corresponding couplings by
including other multiplets that (partially) cancel the contributions to the Wilson coefficients
of interest. The different possibilities can be easily determined by a scan of our results in
appendix D. For instance, it is easy to see that the contributions of W to (Cy;)1111, which
could be tested at future eTe™ — eTe™ colliders, can be (partially) cancelled, with some
tuning, against the ones of a hypercharge 1 scalar singlet S; or triplet Z; [87].

6 Conclusions

The quest for new physics beyond the SM often takes the form of a detailed study of ex-
plicit models, or classes of models, which can be motivated by experimental, theoretical
or aesthetical puzzles, or designed to give new signatures in current experiments. The
models typically predict new particles, which could in principle be observed at colliders,
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and deviations in different observables from the indirect effects of those new particles. This
approach has many advantages, but it suffers from one obvious drawback: by definition
we do not know a priori which model has been chosen by Nature, so the possibilities are
infinite. At energies sufficiently lower than the production threshold of any new particle,
a model-independent and rigorous framework exists to study possible deviations of experi-
mental observations with respect to the SM theoretical predictions: effective field theories
built with the SM degrees of freedom. Their underlying power counting also provides a
rationale for the expected size of eventual corrections. In this case, the disadvantages are
the limitation in energy — which make them invalid to study direct production of the new
particles, the number of free parameters and the lack of obvious physical insight about the
nature of the new physics. These two approaches are complementary and relating one to
each other is essential to take advantage of their synergy. Actually, integrating the heavy
degrees of freedom of particular models to find the corresponding low-energy effective La-
grangian is common practice. But once again, it seems at first sight that this task must
be done model by model.

In this work we have shown, however, that the matching between the IR and UV
descriptions can be performed once and for all at the leading order, namely for operators
of canonical dimension up to six and at the classical level. The idea is to map the model-
independent low-energy effective theory approach to arbitrary models of new physics. With
this purpose, we have considered a completely general extension of the SM, subject only to
a few mild assumptions. This extension has an arbitrary number of new scalars, fermions
and vectors, with no restrictions on their gauge quantum numbers nor on their possible
interactions. In particular, we have made no assumption about renormalizability.

In order to construct explicitly the relevant part of this general extension of the SM, we
have first examined which new particles and which couplings can contribute to the SMEFT
at the tree level. The result is that we only have to consider new fields that can have linear
interactions with the SM fields and no other extra field. The origin of this property lies
in the fact that tree-level diagrams without external legs of heavy particles always end
in two or more vertices of this type. With our restriction to contributions to operators
of dimension up to six, power counting further shows that these linear interactions must
be of dimension < 4. The complete list of these selected extra fields comprises 19 scalar,
13 fermion and 16 vector irreducible representations of the SM gauge group. These field
multiplets are collected in tables 1, 2 and 3. After determining the relevant field content,
we have proceeded to write all the possible gauge-invariant terms that can be constructed
with these fields and the SM ones and that affect the tree-level matching. The resulting
Lagrangian provides a general parametrization, in terms of masses and coupling constants,
of essentially any kind of new physics with unsuppressed impact at low energies.

We emphasize that the fact that the new particles must have quantum numbers that
allow for such linear interactions does not mean that these are the only relevant couplings.
Couplings involving more than one heavy field can actually result in non-trivial contribu-
tions to the SMEFT. Also non-renormalizable interactions involving one new particle in
interactions up to canonical dimension five may be relevant. We have classified all these
couplings and reported them in appendix A.
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We have then integrated out the new heavy particles in this completely general exten-
sion of the SM at the tree-level and have computed the Wilson coefficients of the corre-
sponding SMEFT operators of dimension up to six in the Warsaw basis. This is the main
contribution of this work. We report our results in the form of a UV/IR dictionary. A
top-down approach to the analysis of new physics would first use our appendix C, where
we list all the operators that are generated for specific new particles. In appendix D, on
the other hand, we give our results organized from the bottom-up point of view, by writ-
ing the contribution to each Wilson coefficient from an arbitrary number of new particles.
This dictionary greatly simplifies the task of analyzing the low-energy implications of ex-
plicit models and obtaining the corresponding bounds on their parameters. It also helps
disentangle the origin of possible anomalies eventually observed in experiments. We have
included a short section to guide the reader through our results and have provided a simple
example to illustrate the use of this dictionary.

It is interesting that all operators in the Warsaw basis, except for the ones involving
three field strength tensors, are generated in our tree-level integration. This would naively
seem to contradict the arguments in ref. [62], which, up to the presence of L, share
our assumptions. In fact there is no contradiction since, as we have shown, tree level
contributions to operators that are classified as “loop generated” in [62] only arise due
to non-renormalizable, dimension-five operators in our SM extension, which can only be
generated in turn at the loop level in any weakly-coupled renormalizable UV completion of
that theory. (See [61] for a related discussion.) However, we have included these operators
in our dictionary because they could be unsuppressed in strongly-coupled completions.

We conclude by emphasizing that we have provided a complete classification of all pos-
sible extensions of the SM (with new particles up to spin 1) with low-energy implications at
the leading order. These implications are encoded in tree-level contributions to the Wilson
coeflicients of the dimension-six operators in the SMEFT, which we have computed explic-
itly in terms of the masses and couplings of the new particles. This result can in principle
be extended to operators of higher dimension: as long as the classical approximation is
used, the number of extra fields and extra couplings to be considered will be finite (even
if huge). On the other hand, at the loop level this endeavor faces an additional problem:
there are infinitely-many types of extra fields that can contribute, already at one loop, to
dimension-six operators. The reason is that fields without linear couplings to the SM need
also be considered in this case. So, a complete matching to general extensions beyond the
classical approximation will need to deal with this difficulty.

Acknowledgments

We thank Nuria Rius and Arcadi Santamaria for an interesting discussion that motivated
this work. We also thank Paco del Aguila and Toni Pich for useful comments. The work
of J.C.C., M.P.V. and J.S. has been supported by the Spanish MICINN project FPA2013-
47836-C3-2-P, the MINECO project FPA2016-78220-C3-1-P (Fondos FEDER) and the
Junta de Andalucia grant FQM101. The work of J.C.C. has also been supported by the
Spanish MECD grant FPU14. The work of M.P.V. and J.S. has also been supported by

—90 —



the European Commission through the contract PITN-GA-2012-316704 (HIGGSTOOLS).
J.C.C. is grateful for the hospitality of the Dipartimento di Fisica e Astronomia “Galileo
Galilei” of the University of Padova during part of this work. J.S. would like to thank
the Mainz Institute for Theoretical Physics (MITP) for its hospitality and partial support
during the completion of this work.

A Explicit BSM effective Lagrangian

In this appendix we present the explicit form of the different terms contributing to the BSM
Lagrangian in eq. (2.1). In these and the rest of the results in this paper we use a notation
where color indices are labeled by capital letters, A, B, C, running over the dimensionality
of the corresponding SU(3). representation. Whenever possible, objects in the fundamen-
tal representations of SU(2); and SU(3). have been written as row or column vectors,

with matrix products implied. The superscript symbol “T”

indicates transposition of the
SU(2)r, indices exclusively. When showing these indices explicitly, we use the following dif-
ferent labels, depending on the SU(2), representation: «, 5 = %, —% for SU(2)1 doublets;
a,b,c = 1,2,3 for the components of SU(2);, adjoints/triplets in Cartesian coordinates;
and I, J, K = %, %, —%, —% for the components of the SU(2), quadruplets.

The symbols T4 = %AA and fapc, A,B,C = 1,...,8, denote the SU(3). genera-
tors and structure constants, respectively, with A4 the Gell-Mann matrices. e€apc (€ape),
A,B,C =1,2,3 (a,b,c = 1,2,3) is the totally antisymmetric tensor in color (weak isospin)
indices; 0, or 0%, a = 1,2, 3 are the Pauli matrices; o, = %[vu,%]; and flw, = %EWPUAPU
is the Hodge-dual of the field strength A, .

In the construction of the different SU(2) invariants we also use the following:

e The isospin-1 product of two triplets is obtained through:
! €
ﬂ abc-

e Quadruplets are obtained from the product of an isospin-1 field and a doublet by

fabc =

means of
10 0 1
3/2 1 . 1/2 1 .
B = 5| 01, Caﬁ = — 00— |,
V2 00 Ve -2 0
10 01
- I —3/2 1 .
cP=——1io0 C =———101
af ’ afB
Ve 02 V2 00

e The singlet product of two quadruplets is obtained through the SU(2) product

0001
00-10
0100
-10 0 0

€rJ =

N
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Finally, for SU(3). indices, we use the following notation for the symmetric product of
colored fields:

IR (wl. 8 P ).

N

A.1 Standard Model Lagrangian

The renormalizable part of Ly in eq. (2.1) is just the SM Lagrangian Lgy. Let us write it
explicitly (up to total derivatives). In standard notation,'? it reads

Lov = — ZG;j‘VGA wo_ fW“ We m _ ZB L B" 4
+ i Pl + qri ZEC]Li +epiiPer; +upi i P ug; + dr; i P dri+
+ (Du0) D6 =V (6) = (5 eridliy + 5y dmicar; + 3y Gridtar; +hee.) . (A1)
As usual, ¢ = io9¢* denotes the iso-doublet of hypercharge —1 /2. Here and below, the
covariant derivatives acting on a field or operator P in the representation (C,I)y are

D,P = (0 +igsGnTE +igaWiT¢ +ig1Y By,) P, (A.2)

with T4 the SU(3) generators in the C representation and T¢ the SU(2) generators in the
I representation. Our normalization of the hypercharge is such that Y = @Q + T?, with @
the electric charge. The Higgs scalar potential is

V(9) = —pigl8l* + Ao lo]" - (A-3)
We will not need to write explicitly the non-renormalizable part of Lg.

A.2 New scalars

The Lagrangian Lg can be written as the sum of two pieces:
Lg = L3 4 cint (A.4)

The first one contains the kinetic terms (with covariant derivatives) and mass terms of the
new scalars:

quad Z%[ .0) ) Dro — M2oT ] (A.5)

Here, o are the different scalar fields in table 1. More than one scalar field in each rep-
resentation is allowed. The prefactor 7, takes the value 1 (%) when o is in a complex
(real) representation of the gauge group. The second piece in (A.4) contains the general
interactions of the new scalars with the SM fields and among themselves. We distinguish
the terms of dimension d < 4 and the ones of dimension d = 5:

£t =&Y 4 2, (A.6)

12Latin indices 4, j, k are used to label different generations. L, R indicate the chiral components of
spinors, written in Dirac’s four-component notation. We use the notation §¢%¢, flg and Ay to denote
couplings that will be renomalized by the effects of the heavy particles (see section D.1).
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where

_£é§4)

= (58)rSr D' + (A8)rsSrSsdTd + (K53 )rstSrSsSi

+ {(ysl)rl]SIrZLleQZEJ + hC}
(ySZ)rijS;kéRie%ij + h.c.}
(y;)”j‘pIéRile + (yg)rij@IJRiQLj + (yZ)rijgoiiog(jﬂuRj
+(Ao)r (pl¢) (¢7¢) +hic.}
(k2)rdT220%0 + (A2),s (2222) (¢79)

4
+ %Qal)m (z51=1) (o10) + i(xggmfabc (z11=2,) (s10%)
+ {(yal)rijE?IZLiaaiaglij + (kz, ) B9 (&Tgaqs) + h.c.}
+{0)r (#10°9) Clsdpers07, +hec.}

+ {()\ag)r ((Iﬁaaé) Clids€r,03, + h.c.}

+ {(yg)ll)”‘iijTQEiio—Qle + (Y1) ity eapcdriioagss

_ A
W rigeo] it + (W) i eapodBiusS +hee.}

+ {(ywz)rijw;ﬁmgccfﬁi ;5 + h.c.}

+ {(ym)m‘*’fr €ridr; + (ygg)rijwﬁmgcﬂgiu%? + h.c.}

+ {(ynl)mHLiaJ{ide + h.c.}

+ {(ylrﬁ)rin;TWJEUm + (yfﬁ)rijﬂ%émqm + h.c.}

+ {(ygl)ringTQEiiUzaale + (ygq)m-jC?TGAch’LBia“iangf + h.c.}
+ {(yﬂl)myQABT C(Ald‘B) (ygl)ijABqu(lA‘wgq Ly + h.c.}

+ {(yﬂz)rzyQABTdC(A'd‘B) + h.c.}

+ {(ym)mgQABTu(j{(flu'}g) + h.c.}

+ {(yT)T’ZjTA f C(Alw anl )+ h.c.}

+ {(y%u)rijq>;4TiU2qﬂTAuRj + (Ya) iy @A AR Taqr; + h.c.}

+ (As2)rsSrES (0T0%0) + (Ks2)rst S ELEY

+ (rsz)roeS,EES + { sz ), EH (61070) + b}

+ { (k0 )rsSriold + (2p)rsZi(010°0) + (h2,0)rs 1T ($l0%6) + e}
+ (K22, st fabe 202N 28, + {O\E =)rs fabe 21 E (qu c¢) +h.c. }
+ 1 (kze,)rsErClydper 07 + (“El@l)rsE(ficgg¢ﬁ€lJ@i]s

+ (kzy04)rsE1CLydper 107, + h.c.},
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and

|
5
w0 ot
o

(];g)TSTD/L(bTDM(b + (XS)’/‘ST‘(MAL

~

k&) Sy BB + (kY ) S, Wi, W + (k§), S8, G, G

!

2),8, B B + (R ), 8, We, W 1 (kS),S,Gb, A
(
£)rE8D, ¢ " D g + (A=), o2 pT 0%

P W, B + (R P) Ew, B

!

—_—

) rijSrerid Ly + (%), Srdridqry + (U%)rijSririd qr; + h-C-}

—~
k]
<

[1

R T T
[I]gZ

(52)rij2% Rid 0 r; + (§2)ri;20dRid 0 qr; + (§2)rij2lURid 0%qr; + h.c.}

(k=) E1I D6 0" D + Az, ) ET1 612610 + (32, )ris Eilerid o L,

+

PN

+(?7%1)m‘j5'11167m<73TUGQLj + (ﬂ%l)rijETléLiU%uRj + h-C-} ] (A.8)

A.3 New fermions

As indicated in section 2, we exclude the possibility of extra fermions with chiral trans-
formations under the gauge group H. Then, in the massive fermion sector, the complex
irreducible representations of H are carried by vector-like Dirac spinors, while the real ir-
reducible representations are carried by Majorana spinors 1, with ¢, = (¢Yr)¢ = ¢%. The
only instances of the latter possibility are the extra leptons N and ¥ in table 2. In our
“field basis”, the diagonal mass matrices are given by sums of Dirac mass terms (for the

complex representations) and Majorana mass terms (for the real representations).'?
The general Lagrangian L is given by
Ly = L3+ i, (A.9)
where
d - 7
LA = "y (i — Myy] (A.10)
¥

with ¢ labelling the different fields in table 2, with an arbitrary number of fields in each
irreducible representation, and 1y, =1 (ny = 1/2) when ® is Dirac (Majorana), and

T S o A ) (A.11)

quarks leptons quarks’

E%lt — [:(4)

leptons

13Note that the particular case of a Dirac fermion ¥ of mass My in a real representation of H is
equivalent to our description with two degenerate Majorana fields ¥; and 2 of mass My, with Vp =

1/V2 (1r +itpor) and Wp = 1/V2 (Y5g + i5g).
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_ﬁl(jgtons = (AN)riNped'lLi + (Ap)riErrTlL;

+ (Aa)riBirder; + (Aa,)rilsrrder;
+ = (A2)riSh b 0%l + %(Azl)rii?m@fﬁﬂalu
+ (ANay)rs N 0 Atgs + (Apay )rs ELrd At gs

_ o~ 1 _ ~
()\ Ag)TSELT¢TA3RS + 7()\ZA1)TSE§%?"¢TUGA1RS
1
2

N —

_l’_

1 _ ~
(AﬁlAl)rszlLrngO' Ale i(AﬂlAg)rsZ({Lr(ngaA&?s + h.C., (A12)

= (A\)riUrrd'qri + (Ap)riDrrd'qri
()\51 )rinLrg)uRi ()\%1 )rinLr¢dRi
Qs )riQs1rddRi + (\Q)riQrLrdUR;

_ ]_ _ -
Ar)riT{red o %qr: + 5()\Tz)riT2aRr¢TUQQLi

)\UQl )T‘SULT‘QNSTQlRS + ()\UQ7)TSULT¢TQ7RS
(ApQ1 )rsDrrd' Q1rs + (ADQs )rs Dir ' Qs ks

_ 1 .
(>‘T1Q1)T8T{ILT¢TUGQ1RS + Q(ATle)rsTfLrﬁsTaaQi‘)Rs

1 _
(/\T2Q1)T8T2Lr¢ g Qle i(ATgQ7)rsT§LLT¢TO’aQ7RS + h.C., (Al?))

_El(esgtons: (AN)riNg " ( pﬂﬁ) lpi

+ (AE)iEL.0" eriB,y + (0%)ri B¢l der

)ri (A1rro) <¢TlLi> + (M2 )ri (Atrelri) (¢T¢)
AR i rpo el W,

bY; 3) Aerlpcf)@Rz + (A, ( 3Rr¢> <¢Tlu)

0S5 (D) olus + ()85 610" e

+ (A )riSi " (Dud) 0%l + (0%, )21, 6 0 e

+ (Z\g’l)”ihraﬂ”emwgy] + h.c., (A.14)

1) AermeeRz ()\A

11,~ _ AT ~ _
—ﬁéi)arks =7 [()\qU)mULr’Y“ (Du¢> qzi + O8)riUrrd! pug;
+ A riULro"™ ugi By + (A riUr Tac™ upi G,
q
D

+ (ALY D™ (Do) qri + (A5)ri Dird! dd g
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> >

1 T‘ZQIRTEQSU‘RZ ( dQ )ererlD¢dRz

S > >

A
1 ngero"u T QLZGW/

> >
O OQ OW O O LW

>
S o8

>

+ o+ o+ o+ o+ 4+
<Ly

>
)ﬂ»@

+ (;\%lﬂQ)MTQaLT(;TUCL¢dRZ‘ + (S\ZVZ)MTQQLTUMVURiWSy] + h.c..

A.4 New vectors

For the extra vectors, we write

Ly = L2 4 ot

wherel?

£y = 3"y (DuVIDVE = DVIDVY - MEVIVE),
\%4

)T‘ZDL’I’O-M dRz uv + ( )riDLTTAUMVdRiGﬁy

)
Dri (Quard) (61ai) + O )i (Qumears) (670)
DriQ1rr0™ qLiBuy + (\G)riQ1rro" o qriW,
)
)

DriQsrr Dddri + (N, )ri <Q5Rr¢~5> (¢TQLi>
7)MQ7RTE¢URZ (xq(;h)m (Q?RT‘¢) (dsTQLz)
)ri T " (D u¢) oqri + (~§L“1)TiT1aLr¢To'a§5URi
DriTi, ¢ 0 ddr; + (N )ri Ty, 0 dpi W,
S

R (D/ﬂg) oqri + (S\%Q)TiTQGLT’¢TO—a¢uRi

(A.15)

(A.16)

(A.17)

with V on the right-hand side labelling the different fields in table 3, with an arbitrary
number of fields in each irreducible representation, and 7y =1 (ny = 1/2) when V isin a

complex (real) representation of H, and
in <4 5
gt =Y 4 £,
where

=D _

v (gg)mlﬁ le’YulLJ (g q)rijBﬁQLz"YMQLj + (9%)1«1‘;’37‘»‘@1'%6@
(g )MJB sz’YudL] (gg)rijB#ﬂLi"YuuLj + {(Qg)rBﬁd)TlDugﬁ + h.C.}

931 ijﬁ« drivuurj + (ggl)rBf:iDmTiaw + h.c.}
(

1 _
5 (G)rigWH Lo Yl +
n {

1
2
} pat . T: a
+ 2(QW1)TW1T iD,¢" ioa0"¢ + h.c.

_l’_

2
g0 WE Gt a%i D, b + h.c.}

1 _
() rigWEGrio Yuqr,

(A.18)

MFor each V, this covariant Proca Lagrangian describes a particle of spin 1 coupled to the SM gauge

fields. Other choices of the kinetic term would give rise to ghosts.
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(98)risGr arinuTaar; + (98)risGr arivuTaury + (98)ri Gt drivuTadr;
A —
(991)Mjg17«quRiTA’YuuRj + h.C.}

{

;(Q'H)MJH qrLivuo“Taqr;

+ {(’ml) cl,, D"¢ +hec. }

(92 s L, Lra B + (gl s, 0 Ly WM

ggl)rsﬁlmﬁuuB“” + z(gZ)rsﬁlma L1, WEH

+ () (£1,28,) (010) + (2 (£, (o724,)
B (£11,0) (€i0) + e}

”]‘C?)TGRZ’Y/LZLJ +h.c. }

s
U
~ ~

+{(

+{(

+ {( rijUay €Rz’YudRy (QL?Q)rijU§L:ZLi7#qu + h.c.}

+ {(91/15)7“ e RivutR; + hc. }

+ {( Irij Q” Ui YulLg + (ggql)m‘j QiqTMGABcJ%%Z'Uzﬁ]C + h'c'}
* {(g 8)ris Ol diivules + (93, )ri Qb iuar,

+(90. )rij Q5TMT€ABCT_L§¢WQE? + h.c.}
1
+ {2 (gX)”J ZLZ'Y;LU qr; + h.c. }

1
" {2(93’1)”73’1 Py ioags ) + . }

1 AB
+ {2(9375)er MTU&{J’YMUML‘J ) + h.c. }

+{(Ceam)rs (£1,,0) B + (Ceamy)roLl, 0B
H(Cerw)rs (£],0°0) Wor 4 (Ceom oLl %W 4 e | (A.19)
and
¢ = S8 GED ('Dus) 6+ G (Dus'6) &+ GED- (610) Do
32 Bu D" 6+ (32)) By D" 6
TED Wi, 0" DY 6 + (312), Wik, 0" D¢
g%?l)rijéRiDule + (ggfl)riijéRile + (Qﬁ?q)rijJRiD“qu
), i Dpdpiqr; + (gz?u)rijio’zqfiDuuRj + (§ff“)mﬂ02DmiEURj
)i ddrivuturj + (35, )rijderivuer; + (G2, )rijddrivudr;
Drij®UriVaurj + (G2 rijdlrivalng + (38, )rij (0°9) (ILivuo®lL;)
98, )ris 00 + (G (0°6) (@ivuoass) | + e (A.20)
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A.5 Mixed terms

Lnixed can be further decomposed as
Luixed = Lsr + Lsv + LyF, (A.21)

where the different pieces are given by

—Lsr = (AsE)rsiSrErseri + (Asa,)rsiSrAirslLi
+ (Ast)rsiSrULsuri + (AsD)rsiSrDrsdri + (AsQy )rsiSrQ1RsqLi
20, )rsiZe A1 rs0 Ui + (Azs, ) reiZe LY o€ Ri
201 )rsiZy Q1rs0%qri + (Aar) )rsiZp i1 sdri + (Aem, )rsiZy Toy s R

—at A —af
1A3)rsi:'1rA3Rsaale (AHlE)TSZHMEC & i{@

[1]

+ (A
+O
+
+ ()\ 1Q5)rsiEiLIQ5Rso-aQLz (>\”1Q7)rsz~—*1rQ7RsU qrLi

+ Az )rei 2 T sur: + (A2, 10)rsiZ5 oo dpi + e | (A.22)
_ESV = (6BS)TSBT;J,D'MS + (6WE)’!’SWT,/J,DMES

+{ @)Lt Dy + Gz, )WL D Er + e |
(6351)7“3158 Elsu‘ciﬁ ( _,Cl)rst'—* E-{sp, aﬁlltt
{ (ez1L0)rstETL ls,u aﬁlft +h.c. }
{as)rs0! (DuS)) L + (g, )rs (D) SoLE,
9= )r8¢ o ( ?) ﬁllis + (glEﬁl)rs (Du¢)T UQE?EQLS

.
.
.
¥ (g,2)0d 0" (DUEL) L8, + (g, )es (Dud) 0°ZiLh, 40}, (A23)

(
(9
and

—Lyr = (ZNﬁl)rsiNlc%r’Yu/jLulLi + (ZEﬁl)rsiELr'VuﬁJ{sulLi

+ (28,2 )rsiD1reY Lrsperi + (2852 )rsiD3ri" L1sueri
250, )rsiSpy “ﬁisu i + (22151)rsii(fLr’YuﬁLuaalLi
zuey )rsiUriy™ ELWQLi + (ZDﬁl)rsiDLr’Y“EJ{SHQLi

+(
(
(28,2, rsiQurrY" Lrsptirs + (285, £,)rsiQ1rr " L1sudRi
(20521 )rsiQsrReY" L1spdri + (20721 )rsiQrrRrV" L1y Ui
(

_l’_
_l’_
+
+ (21 )rsi Tip ™ Elsua qri + (ZTzﬁl)rsiTQQLr'YuZIqua(JLi +he.. (A.24)
No renormalizable operators exist that contain extra scalars, fermions and vectors
simultaneously.
Finally, in order to keep track of the dimensionality of the different contributions to

the operators in the effective Lagrangian presented in appendix D we collect here the mass
dimensions of the different types of couplings appearing in the new physics Lagrangians

~ 98 —



introduced above:

[x] =1, A =[\=0, ly] =0, (A.25)
(k] =0, [A] =0, [7] =0, (A.26)
l9] = [¢'] =0, =1, [l =0, [(J=1, (A.27)
[9] =0, (7] =0, (A.28)
[0] =1, [e] =1, 2] =0 (A.29)

B Dimension-six basis

In this appendix we present the complete basis of gauge-invariant operators O; that we use
in this paper in the analysis of the general SM effective Lagrangian to dimension six.

Table 4 defines our notation for those operators of mass dimension four that appear
in the integration of the heavy particles. These renormalize the SM interactions. The
table also presents the only possible dimension-five interaction: the Weinberg operator,
which gives Majorana masses to the SM neutrinos. Tables 5 and 6 contain the basis of
dimension-six operators as introduced in ref. [27].

The notation used in the tables is defined in appendix A. Flavor indices of the operators
and their coefficients are defined to appear in the same order as the correspondlng fermion

fields inside the operator. Finally, the hermitian derivatives D and D“ appearing in the
oW and (’);)1/3 operators in table 6 are defined by:

o]
<~ «—
D,=D,—-D,,
<~ «—
le = 04D, — D,o,.
Operator Notation
2
(¢79) Oga
éRnglL Oye
Dim. 4 drdtar O,
ﬂRgg]LQL Oy“
Dim. 5 I5¢*6tl, Os

Table 4. Operators of dimension four and five.
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Operator Notation Operator Notation
(ILvule) (Iy™L)  Ou

(LL) (LL)  (@rouar) @) Off (@7u0001) (@7 00qr) Ol
(levulr) (@y"qr) Ol(ql) (lLvuoalL) (qry*oaqr) Ol(,?)
(€ruer) (€rVer) Oee
(RR) (FR) (urypur) (UrRY*uR) Ouu (dryudr) (dry*dr)  Ouaq
(irVuur) (dry"dg) oll) (urvuTaur) (dpy*Tadr) o
(ervuer) (UrY uR) Oey (ervuer) (dry"dr) Ocq
(ILvulr) (e ’Y“GR) Ole (qLyuar) (BrYer) Oge
(LL) (RR) (Iyulr) (apy*ur) Ol(zi) (leule) (dry*dr) Ol(c;)
(qryvuar) (ﬂRV“UR) Oqui (v Taqr) (Wry"Taur)  Ogqu
(qyuar) (dry*dr) Q(](li) (q7uTaqr) (dry*Tadr) Oéfl)
(LR) (RL)  (izer) (draL)  Oedq
(ir) (Lr) (TR) o2 @ndn) O @Taun)io @Tadn)" Oy
(Tzer) ioa (GLur)” O, (ILouwer) ios (GLo™ur)” OF),
eapc (diuf) (75%021L) Ogug
eanc (6%Yio2q?) (W5Cer) Ogqu

B-violating

)
)

eape (d5ul) (SCer) Oguu
1)

BB\ [ cC
eanc(io2)as(io2) gy (54 LB)( L

Table 5. Basis of dimension-six operators: four-fermion interactions. Flavor indices are omitted.
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Operator Notation Operator Notation
i e WV WLPWEH Oy Eae WIVWL WS O,
fABoG,‘?”GEpGg“ Oc fABcéﬁ”Gpr,?” O
¢° (6'9)" O
¢'D*  (67¢)O(6T¢)  Oun (6'Dug) (D"$)'6)  Oyp
22 (wa) (Z_L‘ZSGR) Oeg )
(¢7¢) (qrodr) Ouag (¢70) (Grour) Oue
¢' ¢ By B Oy ¢' ¢ By B 0,5
X242 PTOWiL, W O ¢*¢WQVW“ H Oy
$loadWi, B  Ogwp SloadWi, B Ouip
¢TOGL,GA Oy oloGH, G Oy
(ILo"er) By Oep (ILo"eR) o"¢W Oew
e (GLo*ur) ¢Bu,  Oup (GLo"™ug) o%¢pW, Ouw
(qro*dr) $Bu,  Ogp (qro*dg) o®pW, Oaw
(Lo Taug) $G4,  Oug (Lot Tadr) 9G1,  Ouac
(¢1iD,e) (Irtir) O (¢1iDgg) (Iyouls) OF
(¢*1Du¢) (eryter)  Oge
0D (44iD,6) (@ ) O (61iD26) (@7 ouas) O
($1i5,0) rrun) O (61iD,9) (drr"dr) O
(6'iD,¢) (ry"dr)  Ogud

Table 6. Basis of dimension-six operators: operators other than four-fermion interactions. Flavor
indices are omitted.
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C Operators generated by each field multiplet

In this appendix we provide the representation of each heavy multiplet introduced in sec-
tion 2 in terms of operators of dimension n < 6 in the low energy effective Lagrangian. The
results for the corresponding coefficients are given in appendix D. See section 4 for details.

Fields Operators
S Ops, O, O Og, Ouisy Ogws Oy Oss Oyy Oegy Oagy Oug

S Oy
82 Oee
o O, O, O, O, 0%, Ocagy Oy Ot O, O Ousy Oug
2 Og Og; Ogp, Opr, Osws Oy izs Ocgs Odgr Oug
El O¢4a 057 Olla O¢a O¢D7 O¢|:|7 Oe¢7 Od(f)a OU(b
o 0,
0; 0,

1 3 1 3 1 8 1 8
w0, 00, 0, 01, 0., 04), 05, ), 08 .,

1 3

Ol(eq)u Ol(eq)w Odug> Oqqus Ogaqr Oduu
wo Odd
Wy Ouu7 Oeda Oduu
Iy  Ow
1 3

H7 Olua qu O[(eq)uv Ol(egu

1 3 1 3
¢ 0,0, 0)), 01, Oy
1 3 1 8 1 8
o oy, o0, o), o o) o
Qo Oda
Q4 Ouu
1 3
T oW, o

1 8 1 8 8
v ol of. o). o, o,

Table 7. Operators generated by the heavy scalar fields introduced in table 1.
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Fields Operators
N 0504, 08
E  Ou, O, 0), 0
Aq Ocg, OcBy Oew, Oge
Az Ocgp, Oge
S 05, 0, 05, 08
S Oc Oy, O, OFF
U Ous, Oup, Ouc, OV, 0

$q 7~ dq
D Ou, Oap, O4c, O, O
Q1 Oag, Oups Oan, Oaw, Oac, Ou, Ouw, Oucs Opds Opu, Ogud
Q5 Ouag, Opa
Q7 Oug, Ogu

v Ouags Oug, Oaw, Oélq), 0((25?;)

T Oags Oug, Ouw, qu)y 0531)

Table 8. Operators generated by the heavy vector-like fermions in table 2.

Fields Operators

B Ou 04, 0, Oce, Oud, Ouuy Oct, Ocur 0L, Ote, Ota, Oty Oge, O, 08
041, 0411, Oy Oy Ougy O, O Oy, O, O

Bi O, 04, O5), 04, Oy, Oy, Ocs, Oas, Ougy Opua

W Ops, Ou, O, O, 04, O4p, Oy, Oc, Ous, Oug, O, OF)

Wi Opt, Op, Opp, Oyrty Ocs, Oy Oug

G O, 0, Ou, Ou, 05, OF), OF)

G 0L, 0

"o O, 05

Ly Opt, Oye, Opa, Oy, Op, O1), OF), 0L, 0% Oreq, OL) 1, O
Op; Ogps Opms Oy Oy Opws Oyyirs Oswps Oy s Ocs Odgy Ougs
0.5, Ocw, Oan, Oaw, Oug, Ouw, 05, 05), 0% 0P 04, Osa, Oy,

Ly O

U 0, 0 O, Oregy

Us Oeu

Q1 O, 04, 08, O4uq

Qs O, O, OF), Otedg, Odug, Ogqu

1) HB)
X 0, 9
v ol o)

Vs 04, 0%

Table 9. Operators generated by the heavy vector bosons presented in table 3.
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D Complete contributions to Wilson coefficients

In this appendix we present the contributions to the dimension-six SMEFT induced by the
heavy scalars, fermions and vectors introduced in section 2. See section 4 for details.

D.1 Redefinitions of Standard Model interactions

Upon integrating the heavy fields £; and ¢ out, the kinetic term of the SM Higgs doublet
receives extra contributions, yielding a non-canonically normalized field:

Liin,g = ZyDyu' D, (D.1)
where
7. =1 (Y2 )i(ve,)r ﬂé(‘sﬁwﬁsw&)t(6£1<p)r8(7£1): (D.2)
¢ = - - . .
ler MglrMLgS Mglt

1/2

In what follows, we renormalize ¢ — Z(; ¢ and present our results in a basis where all

fields have canonical kinetic terms (in the electroweak exact phase). The operators with n,
doublets are therefore renormalized with Z(;%/ 2, (This includes also the operators in Ly.)
We will show these factors explicitly wherever they are needed, such that all the Wilson
coefficients C; in this appendix are defined as the coefficients multiplying the corresponding
operators with canonical fields in the effective Lagrangian. Let us make two observations
about Z,. First, the effect of the second term in eq. (D.2) on the Wilson coefficients of
dimension-six operators will have have an extra suppression of the form i 7! /M?, with M
a heavy mass scale, comparable to the one of the typical Wilson coefficients of dimension-
eight operators with respect to the dimension-six ones. Hence, even if we include it for
completeness of the dimension-six results, for most practical purposes this second term can
be neglected. The first term, on the other hand, will not be suppressed if the dimensionful
coupling 7., is of order M,,. Second, Z, is non-trivial only when ~., # 0, so it can be
ignored in perturbative unitary extensions of the SM.

The contributions to the renormalizable SM interactions in table 4 are given by
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These contributions can be absorbed into redefinitions of the SM Yukawa and quartic Higgs
couplings:

] 7d 3 5 7Cl
yzu = Z(; (yze]u - (Cye’%d)ij)? (D?)

Ao = Z3(Ap — Cga). (D-8)

Due to the Higgs-field renormalization, the coefficient of the Higgs mass term is also
redefined:

0% = Zy 13 (D.9)
We remind the reader that the hatted couplings on the left-hand side of the last three
equations are the coefficients of the corresponding operators — with the original Higgs-
field normalization — in the SM part of Lggym. The corresponding unhatted couplings are
the coefficients of these operators — built with canonically-normalized fields — in L.g.
Note that the right-hand sides depend linearly on the explicit hatted couplings on the
left-hand sides. Solving this linear system is straightforward.

In terms of the renormalized Higgs field and the redefined couplings ,ui, y©*4 and Ad
all the heavy-field contributions appear in the Wilson coefficients of higher-dimensional
operators. In order to keep our results as compact and clear as possible, we write the
dimension-six operators in terms of the original, hatted couplings. They can be readily
substituted by the solutions to egs. (D.7), (D.8) and (D.9) to get the expressions in terms
of the redefined couplings. In practice, these expressions can be greatly simplified. Indeed,
all the contributions to Ce.u.q, except the one inside Z,, and most of the contributions to
Cy4 are not O(1) but carry an extra suppression ui /M?. For calculations to order E2/M?,
with E a low-energy scale, all these contributions can be neglected. In this approximation,
the hatted couplings do not appear on the right-hand sides of egs. (D.7), (D.8) and (D.9),
which thus give explicitly their expressions in terms of the redefined ones.

D.2 Dimension five

The only dimension-five operator in the basis receives the following contributions:
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D.3.3 (LL) (RR)

Recall that §¢™? are defined in equation (D.7).
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D.3.4 (LR)(RL) and (LR) (LR)
Recall that ¢ are defined in equation (D.7).

* l *
WD)k W) 2098 )rit (952 )i B 2090 )t (98, Virs

(Cledq) i1 = 2 2 2
“ M‘)OT‘ MMQT MQST

gﬁ@&@)ﬂ@h):(yg)rkl n le(éﬁw):r('ml)s(y&):ﬁ

2 2

MgT‘Mﬁls M‘%rM»C
leﬁf*(%wﬁs(%l)t(5£1<p)rs(751)i

2 2 2
MEMM‘PSMCU

~ ~dD ~ ~Dd
L 955 @G, Dem(ve)r 05 (G, Dew(e)y
2ML2:17* 2le'r

f
le(gi?l):ji(Vﬁl)r B @gl(ggfl):jiwﬁl)r}

2 2
2M7 2M7

+

1s

+

, (D.31)

( 1) ) L (W) ri (YD) 0k _’_4(ygg)rki(yg?):lj (Y8 )i (Wi
ijkl M2, 3M2 3MG,

Wir

@ldlj((sﬁw)sr(')’&)z(yg)rij i yA;'Li*((SEW);T('YQ)S(yg):lk
2 2 2 2
M‘P”‘Mﬁls MQOTM»CIS

G550t a0t (Yo )t (O210) s (v )i
Mz, MZ MZ,
~ ~qD ~ds ( ~D
L1 O @E Vi (ve)s UG i (v )i
2Mg17~ 2Mg17‘

+

f

AUk ~dD * AUk ~Dd, *
9 @G, D (ve)e 95 (G, q)rlk(wl)r}
2 2 )
2M£1T 2M£1T
du\ * * d dg *
<C<8) ) I VLAY i 20y ek W it (v s (W Iris
ijkl M2 Mg Mg, ’

Wir

(D.32)

(D.33)

i M2, 2M2, 2ME
N U571 Orap)sr (e )i Wgdrmt i Orag)sr (120)s (06) 0
2 2 2 2
M‘»D’I‘Mﬁls MSOTMLLQ
05 Ora)is (ve) (O o)rs (V2,7

2 2 2
MEMMQOSML

(0(1) ) (Y )kt (V)15 N (W)t (8 ) N (Wit ) (it )it

1t
~ex [ ~qD ~ex (~D
. 955G, rn(ve)s 95 G Ve (e, )7
f

gﬁc*@z?l):ji(’}’&)r ?)ﬁ:(éf’fl)?ﬁ(wl)r}

2 2
2M7 2M7

D.34
212, 2012, : (D-34)
L\ *
( (3) ) _ (yglf)le(ngl)rki 4 (yﬁi)rjk(y%7)ril
ijkl

tequ 8M2 8MZ

wir

(D.35)

40 —



D.3.5 B-violating
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D.4 Bosonic operators
D.4.1 ¢% and ¢*D?
Recall that Q3 contains contributions from £; (see equations (4.3)~(4.6)) and that A4 is
defined in equation (D.8).

Due to the length of the contributions to the coefficient of the Oy operator we have
separated them as follows:

Z3Cy=Cy+CY +C5Y, (D.40)

where C;, C;)/, and Cg’v are given below.
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D.5 Operators with bosons and fermions

There are three types of operators coupling bosonic and fermionic fields: the operators of
the form 2¢? represent couplings between scalars and fermions only, while those of the
form X1)2¢ and 1> D¢? contain covariant interactions between the SM scalar, fermions and
gauge fields.

D.5.1 ?%¢?

Due to the length of the contributions to the coefficients of the different ¢2¢? operators
(Oeg, Oy and O,g), we have separated them as follows:

3
3 s gd | d
3
Z2 (Cug)yy = Gira” + b+ b, (D.56)

where the coefficients a, b?’j and c?)j are defined below (equations (D.57)—(D.63)). (The
coefficients b;@ and C;@ refer to the contributions from only one type of particle and mixed
contributions, respectively.)

Recall also that g$ contains contributions from £; (see equations (4.3)—(4.6)) and that
g);f;d’u and A are defined in equations (D.7) and (D.8).
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D.5.3 ¢%¢’D

Recall that g{‘; contains contributions from L1 (see equations (4.3)—(4.6)) and that §*™?

are defined in equation (D.7).
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