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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] has represented

a monumental step towards a deeper understanding of the mechanism of electroweak sym-

metry breaking in Nature. It has also implied a shift in the main physics goal of the LHC,

which has turned its focus onto the search of new physics beyond the Standard Model (SM).

Indeed, the LHC experimental collaborations have produced an impressive number of new

physics searches that cover almost every possible experimental signature at the LHC. The

few gaps still existing at the available energy are being closed thanks to the intense collab-

oration between the theoretical and experimental communities. Unfortunately, this effort

has produced no direct evidence of new physics, and the current experimental limits on the

masses of new particles are typically in the TeV range. Even if it is certainly possible that

new physics is waiting for us just around the corner and that it will be directly produced at

the LHC in the near future, it seems quite likely that it will stay beyond kinematic reach

in the next decades.

If such a scenario, with a significant gap between the mass of any new particle and

the energies probed by experiment, is realized in Nature, the effective field theories con-

structed with the SM fields become the most efficient tool to analyze experimental data.

The framework of effective theories provides a smart way of splitting in two steps the prob-

lem of comparing experimental data with theoretical predictions to obtain information on

possible extensions of the SM. In the first one, experimental (pseudo)-observables are en-

coded in terms of the Wilson coefficients of the effective operators with minimal theoretical

bias. This allows for essentially model-independent parameterizations of different sets of

experimental data [3–19]. Furthermore, this task can be done once and for all, indepen-

dently of any choice of new physics models.1 In a second step, the Wilson coefficients of

the effective operators can be connected to the parameters of specific new-physics models

through the process of matching. This reintroduces the model dependence in the process

of comparing experimental data to new physics. Both steps can actually be developed

simultaneously and almost independently. Put together, they allow us to use experimental

data to test theories beyond the SM, even when the new particles they bring about cannot

be produced.

To take full advantage of the model-independence of the low-energy effective theory

approach, it would be desirable to match it with a completely general class of new physics

models. This task looks hopeless, but effective theories come to our rescue in this too. First,

in view of the good agreement so far of data with the SM, it is plausible that any realistic

form of new physics can be well described in the multi-TeV regime by a local effective field

theory. This is certainly the case for almost all explicit models in the market. So, for

phenomenological purposes it is sufficient to consider this intermediate effective theory as

the high-energy theory. Second, when this ultraviolet (UV) theory is weakly interacting,

its contributions to the infrared (IR) Wilson coefficients can be classified according to the

canonical dimension of the corresponding induced operators and to their order in the loop

1Global fits have to be updated if there is new experimental data or new theoretical calculations within

the context of the effective theory.
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expansion.2 As we show in this paper, it turns out that the leading order, given by tree-

level contributions to operators up to dimension six, is restrictive enough that a complete

classification of the UV effective theories with contributions at this order is feasible. Once

such a classification is available, the Wilson coefficients in the IR effective theory can be

computed in terms of the masses and couplings of the UV theory. This information will

constitute a complete UV/IR dictionary at the leading order, which provides a direct link

between experimental data and the parameters of any new physics model that can give

such contributions.

The goal of this article is to present the complete tree-level UV/IR dictionary up to

dimension six for the SM Effective Field Theory (SMEFT), in which the Higgs boson is

considered to be part of a doublet of the linearly realized SU(2)L×U(1)Y symmetry (see [20]

for a recent review).3 The classification of the new fields that are relevant for this dictionary

was presented before in a series of papers for new quarks [23], leptons [24], vectors [25] and

scalars [26], respectively. The explicit contributions to the Wilson coefficients were also

computed in each case, for renormalizable UV theories. The selected fields that contribute

at the leading order have the characteristic property of allowing for linear couplings to

the SM fields. Therefore, this classification is also useful beyond its direct application to

effective field theories, as it provides an exhaustive list of the new particles that can be singly

produced in particle colliders at the classical level and via renormalizable interactions. The

couplings that govern single production are the same as the ones required to generate the

corresponding SM effective operators, which connects direct and indirect constraints on

(singly-produced) particles at colliders. Pair production of new particles can be similarly

related to new particles that contribute to the effective-theory matching at one loop.

The presence of couplings with positive mass dimension in new-physics models has two

important implications for the IR effective field theory, already at the classical level and for

operators of dimension up to six. First, it allows for mixed contributions in which two or

more heavy particles with different spins can simultaneously contribute to certain operators.

These mixed contributions are computed for the first time with complete generality in

the present work. Second, non-renormalizable operators in the new physics model can

also contribute to the SMEFT at tree-level to dimension six. We also include these non-

renormalizable operators in the possible UV completions of the SM, which again give rise to

new contributions. In an effort to be complete, and once we have given up renormalizability

of the new physics models, we also consider the possibility of new heavy vectors that do

not arise as the gauge bosons of spontaneously broken gauge symmetries. This introduces

a new possible vector multiplet beyond the ones previously presented in the literature.

This completes the tree-level dictionary to dimension six. To keep it self-contained, we

provide here the full dictionary, including the previous results in renormalizable theories

in which only particles of the same spin contribute at a time. Even in that case, the

results presented here are not a direct transcription of the ones in the literature. We

2Note that the intermediate effective theory can be weakly interacting even if it arises from a strongly-

coupled theory. One example of this is provided by composite Higgs theories in the large-N limit.
3A related effort for the case of the electroweak chiral Lagrangian, in which the Higgs boson is a scalar

singlet of the non-linearly realized electroweak symmetry is currently underway [21, 22].
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provide the results for the first time in a real dictionary style, listing the contribution

to the Wilson coefficients both operator by operator and field by field. In this way it is

trivial to check which new physics can generate a specific contribution to certain Wilson

coefficients and subsequently analyze all the other physical effects of such an extension of

the SM. Furthermore we give all our results in the Warsaw basis [27], following the SM

conventions in ref. [28] for the relations between redundant operators.4 This allows the

direct use of our results together with the anomalous dimensions computed in [28, 30–32]

(see also [33, 34]) to have a proper leading order calculation with possible large logarithms

resummed.5

The article is organized as follows. We describe our (minimal) hypotheses and provide

the complete list of new particles that contribute to the tree-level dimension-six dictionary

in section 2. The general contribution to the tree-level matching for effective operators up

to dimension six is computed in section 3. In section 4, we provide a guide to use our results

both in a bottom-up and in a top-down fashion. Then we give a specific example, using the

recently reported anomalies in certain B-meson observables in section 5 and we conclude

in section 6. Our results, unavoidably long, are given in several appendices for the reader

convenience. In appendix A, after setting our conventions and notation, we write down the

explicit Lagrangians for all possible extensions of the SM with new scalars, fermions and

vectors that contribute to the dimension-six SMEFT at the tree-level. For completeness,

we reproduce the operators in the Warsaw basis in appendix B. The top-down dictionary

is given in appendix C and finally the bottom-up one, which collects the expressions of the

Wilson coefficients as functions of the UV parameters, is reproduced in appendix D.

2 General extensions of the Standard Model

The SMEFT provides a simple and well-defined model-independent framework to study

new physics beyond the SM. Its main limitation is that it is only valid at energies below

the threshold of production of any extra degrees of freedom. To study the direct production

of new particles, it is mandatory to incorporate into the effective theory the extra fields

associated to them. Of course, the problem is that we do not know a priori which are the

particles and fields that are relevant at the energies that can be accessed now and in the

near future. So, in order to preserve model independence, we need to consider effective

theories with arbitrary field content and arbitrary interactions. This also helps in connect-

ing to particular models and hence in providing a rationale for the values of the low-energy

parameters. Such a general space of theories depends on an infinite number of free param-

eters and looks all but intractable. However, some well-motivated assumptions, together

with our aim of matching to the SMEFT at the leading non-trivial order, remarkably re-

duce it to a manageable subspace of finite dimension. Specifically, we assume here that,

4Our results can be easily translated into other popular bases by using publicly available codes [29].
5There has been an important progress recently towards the automation of one-loop matching calcu-

lations [35–42] which would allow for consistent one-loop calculations in the new models and, eventually,

next-to-leading order ones when the two-loop SMEFT anomalous dimensions are available.
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at energy scales below a certain cutoff Λ, nature is well described by a four-dimensional

Poincaré-invariant local effective Lagrangian LBSM such that

1. LBSM is invariant under the linearly-realized H ≡ SU(3)C × SU(2)L × U(1)Y gauge

group.

2. LBSM contains only fields associated to particles of spin ≤ 1.

3. LBSM includes as a subset all the field multiplets in the SM. In particular, it contains

a scalar φ in the (1, 2)1/2 representation of the gauge group.

4. The only fermion fields with chiral transformations under the gauge group H are the

ones in the SM. In other words, all the extra fermions are vector-like with respect to

H or Majorana. This ensures that the symmetry H is non-anomalous.

The first assumption is a requisite for the perturbative unitarity of a theory that contains

the SM gauge bosons (see, nevertheless, footnote 3). The second one is a restriction we

make to avoid subtle consistency issues with interacting particles of spin > 1 [43].6 The

third and fourth assumptions are partially justified by the experimental success of the

SM, including the discovery of the Higgs boson, precision electroweak data and Higgs

data. Importantly for our purposes, the first, third and fourth assumptions ensure that,

at energies much smaller than all the (gauge-invariant) masses of the extra particles, the

theory is well described by the SMEFT.

The operators of canonical dimension d > 4 in LBSM have dimensionful coefficients,

which can be written as αif
4−d, with f some mass scale and αi dimensionless couplings,

which can be related with the cutoff Λ by power-counting arguments [45–51]. If all the

vector bosons in the theory are the additional gauge bosons of an extended gauge symmetry

G ⊃ H (spontaneously broken to H) and LBSM is invariant under G, with no anomalies,

then LBSM describes a unitary effective quantum field theory that can be used to perform

perturbative calculations to arbitrary precision at energies below the cutoff Λ. However, in

agreement with our model-independent spirit, we will consider here general theories with

Proca vector bosons without enforcing any gauge invariance beyond H.7 This class of

theories contains the ones with extended gauge invariance. All the covariant derivatives

we write are thus understood to be covariant with respect to H only.

The field content of the theory LBSM can be conveniently classified into irreducible

representations of the Lorentz and gauge symmetry groups. In this paper, we concentrate

on the sector of LBSM that can contribute at the classical level to the SMEFT operators

of canonical dimension up to six. As we show in the next section, this sector includes only

operators of canonical dimension up to six and only those extra fields that can have gauge-

invariant linear interactions with the SM fields of dimension d ≤ 4. This last requirement

strongly restricts the quantum numbers of the extra fields to be considered, as the Lorentz

6Local effective field theories involving higher-spin particles are possible, with a restricted region of

validity determined by their mass, spin and couplings [44].
7Spin-1 particles could alternatively be described by rank-2 antisymmetric tensor fields, which can be

related to our vector formulation by a field redefinition, see [21, 52].
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Name S S1 S2 ϕ Ξ Ξ1 Θ1 Θ3

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Name ω1 ω2 ω4 Π1 Π7 ζ

Irrep (3, 1)− 1
3

(3, 1) 2
3

(3, 1)− 4
3

(3, 2) 1
6

(3, 2) 7
6

(3, 3)− 1
3

Name Ω1 Ω2 Ω4 Υ Φ

Irrep (6, 1) 1
3

(6, 1)− 2
3

(6, 1) 4
3

(6, 3) 1
3

(8, 2) 1
2

Table 1. New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E ∆1 ∆3 Σ Σ1

Irrep (1, 1)0 (1, 1)−1 (1, 2)− 1
2

(1, 2)− 3
2

(1, 3)0 (1, 3)−1

Name U D Q1 Q5 Q7 T1 T2

Irrep (3, 1) 2
3

(3, 1)− 1
3

(3, 2) 1
6

(3, 2)− 5
6

(3, 2) 7
6

(3, 3)− 1
3

(3, 3) 2
3

Table 2. New vector-like fermions contributing to the dimension-six SMEFT at tree level.

Name B B1 W W1 G G1 H L1

Irrep (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2) 1
2

Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrep (1, 2)− 3
2

(3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)− 5
6

(3, 3) 2
3

(6̄, 2) 1
6

(6̄, 2)− 5
6

Table 3. New vector bosons contributing to the dimension-six SMEFT at tree level.

and gauge quantum numbers are given by the ones of the possible bosonic and fermionic

operators of dimension 2, 3 and 5/2, respectively, that can be built with SM fields. All these

irreducible representations, together with the notation we use for each of the corresponding

fields, are collected in tables 1, 2 and 3.

These new fields with linear couplings have been singled out and studied before,

in [23–26].8 Besides the fact that they provide the leading contributions to the SMEFT, and

thus to indirect tests, they are also relevant for the resonant production of new particles, as

the only new particles that can be singly produced at the classical level in collisions of SM

particles are excitations of these fields. In fact, several subsets of the fields in tables 1, 2

and 3 have appeared in the literature in different contexts, see for instance [54–59].

8There is actually one exception: the vector field L1 was not included in [25]. There exists only one

gauge-invariant operator of dimension d ≤ 4 that is linear in this vector and has no any other extra

field: the super-renormalizable operator L†1µDµφ, which mixes the longitudinal part of L1 with the Higgs

doublet. Such an operator will not appear, in the unitary gauge, if L1 is the gauge boson of an extended,

spontaneously broken gauge invariance. Therefore, in a complete unitary theory, it will not contribute

to the SMEFT operators at the leading order. However, it could appear in other gauges and also in

phenomenological models, much as pion-vector resonance mixing is included in certain descriptions of low-

energy QCD [21, 52]. In these cases it can be eliminated by a field redefinition, which in general generates

local operators of dimension 4, 5 and 6 weighted by the vector mass and the dimensional coefficient of the

super-renormalizable operator [53]. At the end of the day, as far as low-energy physics is concerned, this is

equivalent to integrating the field out, which is our approach here.

– 6 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
9

The part of LBSM that contributes classically to the effective Lagrangian of dimension

six or smaller involves a finite number of fields and a finite number of operators. Therefore,

it can be written explicitly and in full generality, as a sum of all the possible independent

contributing operators with arbitrary coefficients. The complete Lagrangian can be split

in the following way:

LBSM = L0 + LS + LF + LV + Lmixed + . . . , (2.1)

where L0 contains terms of dimension d ≤ 6 with only SM fields, LS,F,V contains terms

of dimension d ≤ 5 with extra scalars, fermions and vectors, respectively, but no products

of new fields of different spin, and Lmixed contains terms of dimension d ≤ 4 involving

products of extra fields of different spin. In writing the dimension-five interactions with

the heavy particles we remove redundant operators by using the SM equations of motion.

The dots indicate terms that do not contribute in our approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if they

share the same quantum numbers. However, field rotations and rescalings can always be

performed in such a way that all the kinetic terms in LBSM are diagonal and canonical

and all the mass terms are diagonal in the electroweak symmetric phase. All our equations

are written with this choice of fields (except for the mixing of φ and possible scalars ϕ

with L1, see footnote 8). Furthermore, we assume that no fields get a non-trivial gauge-

invariant vacuum expectation value in the symmetric phase. This can always be achieved

by convenient shifts of the scalar singlets. To match models written in a different “field

basis”, the shift, diagonalization and canonical normalization must be performed prior to

using our formulas.

Working in this “field basis” not only fixes the precise meaning of the couplings in

LBSM, but also allows to identify the SM fields that enter in L0. The SM fermions and gauge

fields are the massless fermion and vector eigenstates, respectively, whereas we identify the

Higgs doublet φ with the (1, 2)1/2 scalar eigenstate associated to a negative eigenvalue of

the squared mass matrix. We assume that this eigenvalue is non-degenerate and that all

the other eigenvalues are positive. This is required if we want LBSM to be described by the

SMEFT at low energies. The different pieces that appear in (2.1) are written explicitly in

appendix A.

3 Effective Lagrangian and tree-level matching

In order to study the physics of LBSM at energy scales much smaller than all the masses

of the extra particles, the heavy fields can be integrated out to find the corresponding

effective Lagrangian, organized as a power series in the inverse masses:

Leff = L0 +
∞∑
n=2

L(n)
eff . (3.1)

L(n)
eff contain the Lorentz and gauge invariant local operators O(n) of canonical dimension

n that can be constructed with the SM fields,

L(n)
eff =

∑
j

C
(n)
j O

(n)
j . (3.2)

– 7 –
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This effective Lagrangian will be a SMEFT with particular Wilson coefficients C
(n)
j , of mass

dimension 4− n. The dimensions are provided by the masses and other scales in LBSM.

Not all the operators O(n) are independent. Making use of algebraic identities and

field redefinitions, certain linear combinations can be eliminated from L(n)
eff , at the price of

changing L(>n)
eff . Taking this redundance into account, several operator bases have been

defined to dimension n = 6. Here, we employ the Warsaw basis defined in [27]. The

operators in that basis are collected in appendix B. The main purpose of this paper is to

calculate the corresponding coefficients C(≤6) in the classical approximation, as functions

of the couplings and masses in LBSM.

Note that the generated operators have the same form as the ones in L0. The non-

trivial contributions we are interested in can be distinguished when there is sufficient in-

formation on L0. This is the case if the coefficients of the non-renormalizable terms in L0

are suppressed by a scale larger than the masses of the new particles, and also if they are

fixed by symmetries or are known functions of the parameters of a given UV completion

of LBSM. The requirement of a soft UV behaviour also imposes some constraints [21, 52].

The individual contributions of heavy fields and the collective contributions of heavy

fields with the same spin (except for the ones involving the vector L1) have been calculated

before in [23–26]. Here, we also incorporate the mixed contributions of heavy particles of

different spin, the contributions of L1 and the contribution of the operators of dimension

d = 5 in LBSM.

Let us explain the systematics of the integration procedure. With this aim, we first

write the part of LBSM involving new fields as

LBSM − L0 = η(i)A
†
i∆
−1
(i)A

i +
∑
m,n

A†j1 · · ·A
†
jn
W j1...jn
i1...im

Ai1 · · ·Aim , (3.3)

where Ai represent all possible extra fields in LBSM, ∆(i) is the covariant propagator for

Ai and W j1...jn
i1...im

are operators constructed with the SM fields, including the identity opera-

tor. The factor η(i) = 1 (1/2) yields canonical normalization for complex (real) fields (see

appendix A). Lorentz and Dirac indices are implicit. In general, these operators carry a

reducible representation of H, but the ones with a single index i belong to the same irre-

ducible representation as Ai or A†i . The integration at the classical level can be performed

by i) using the equations of motion of LBSM to eliminate the heavy fields and ii) expanding

the propagators of the heavy fields in inverse powers of D(i)/M(i):

∆(i) = − 1

M2
(i)

(
1−

D2
(i)

M2
(i)

)
+O(1/M6) (scalars), (3.4)

∆(i) = −
i��D (i) +M(i)

M2
(i)

(
1−

D2
(i)

M2
(i)

)
+O(1/M5) (fermions), (3.5)

∆µν
(i) =

ηµν

M2
(i)

+
Dν

(i)D
µ
(i) − η

µνD2
(i)

M4
(i)

+O(1/M6) (vectors). (3.6)

The result at any finite order in D(i)/M(i) is a local Lagrangian. We have performed the

calculations in this algebraic fashion, keeping only the operators of dimension n ≤ 6. To

– 8 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
9

W i
∆(i)

Wi W j

∆(i) ∆(j)

Wi

Wi W ijk

Wj

Wk

∆(i) ∆(j)

∆(k)

W i
k Wi

W jW k
j

∆(j)

∆(i)

∆(k)

W i
j

(a) (b)

(c) (d)

Figure 1. Feynman diagrams contributing to Leff to dimension n = 6. Non-equivalent permuta-

tions of the arrow directions shown here should be considered as well.

deal in an efficient manner with the large number of terms that appear in this process and

minimize the possibility of errors, we have employed the symbolic code MatchingTools [60],

where we have implemented the algebraic relations and field redefinitions necessary to ex-

press our results in terms of the Warsaw-basis operators in appendix B. All the calculations

have been double-checked by hand and against previous results in the literature.

Equivalently, step i) above can be performed in terms of Feynman diagrams. In figure 1,

we show the tree-level Feynman diagrams with heavy field propagators that contribute to

Leff to order n = 6. The blobs in this figure represent the SM operators W i1...im
j1...jn

with m

incoming and n outgoing lines, and the arrowed lines represent the covariant propagators

∆(i). The arrows have no significance for real representations. In order to see that these are

the only non-trivial tree-level diagrams contributing to Leff , note first that the canonical

dimension of each term in the expansion of the propagators is non-negative, while the

canonical dimension of each blob is equal to the canonical dimension of its corresponding

interaction in eq. (3.3) minus the one carried away by the bosonic or fermionic heavy fields.

Consider a particular connected tree-level diagram. Let Bd
f be the number of blobs in the

diagram with at least one fermionic index and corresponding to interactions of canonical

dimension d, and Bd
b be the number of blobs in the diagram with no fermionic indices and

corresponding to interactions of canonical dimension d. Let Lf and Lb be, respectively, the

number of fermionic and bosonic propagators in the diagram and let Xf be the number of

blocks with uninterrupted heavy-fermion lines. The canonical dimensions n of each term

– 9 –
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in the diagram, after the propagator expansions, obey

n ≥
∑
d

d(Bd
b +Bd

f )− 2Lb − 3Lf . (3.7)

From the topological relations Lb+Lf+1 =
∑

d(B
d
b +Bd

f ) and Lf+Xf =
∑

dB
d
f , the bound

n ≥ 2 +Xf +
∑
d

[
(d− 2)Bd

b + (d− 3)Bd
f

]
(3.8)

follows. Using the facts that Bd
b = 0 if d < 3 and Bd

f = 0 if d < 4, we find in particular that

n ≥ B + 2, (3.9)

with B =
∑

d(B
d
b +Bd

f ) the total number of blobs. Therefore, only diagrams with 4 blobs

or less can contribute to n ≤ 6. We also see from (3.8) that only interactions of canonical

dimension d ≤ 6 can contribute to n ≤ 6. But the operators with d = 6 only give the

trivial contribution of a diagram with one blob and no propagators, which is nothing but

the term already present in L0. This justifies our restriction to operators with d ≤ 5 in

the explicit expression of LBSM written in appendix A. Finally, we observe that both the

operators of dimension d = 5 and the ones involving more than one heavy field can only

contribute to n ≤ 6 in the presence of super-renormalizable operators of dimension d = 3,

and that operators of dimension d = 5 with more than one heavy field do not contribute

to this order.

Note that in diagrams (a), (b) and (c) of figure 1, all the propagators are contracted

with one-index operators Wi or W i, which arise from terms in LBSM with only one heavy

field (Ai or A†i ). In diagram (d), on the other hand, the propagator ∆(k) is attached

only to operators with two indices, W k
j and W i

k. However, upon the covariant-derivative

expansion at finite order of the other two propagator, ∆(i) and ∆(j), the blobs they connect

collapse into one-index local operators W̃ k = W k
j [∆(j)]W

j and W̃k = W i
k[∆(i)]Wi, with [.]

indicating the derivative expansion. The operators W̃ k and W̃k are in the same Lorentz

and gauge representation as W k and Wk, respectively. Moreover, to allow for a dimension-

six contribution, both of them must have canonical dimension d = 4. Hence, the fields Ak

(A†k) associated to W̃k (W̃ k) must also belong to a representation that can couple linearly

to the SM fields to give a scalar gauge-invariant operator of dimension ≤ 4. We conclude

that, as promised, only the heavy fields in the irreducible representations of tables 1, 2

and 3 contribute at the tree level to the effective Lagrangian to dimension six.

We can draw another interesting corollary from this discussion. Let us define tree-

level operators as those for which there exists a renormalizable UV theory that induces

them at the tree-level, when the effective Lagrangian is written in the Warsaw basis, and

loop operators as those for which no such theory exists.9 As we have just argued, tree-

level operators of dimension six can only be generated by the diagrams in figure 1 and

9The requirement of renormalizability is crucial to make the distinction. Without constraints on the

dimension of the interactions, any gauge-invariant operator could be trivially induced at the tree level by

directly including it in the UV theory. Considering a complete basis gives definite physical meaning to

each operator. Of course, which operators are potentially generated at tree or loop level depends on the

particular choice of basis, but the implications for physical observables remain unchanged.
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only by extra fields that allow for linear couplings to SM operators. This is also true if,

instead of using the effective theory LBSM as a starting point, we directly integrate out at

the classical level all the fields beyond the SM in a renormalizable completion of LBSM.

Therefore, our results in appendix D explicitly show which operators are tree-level: those

that (potentially) receive contributions in the absence of non-renormalizable interactions,

that is, when f →∞ and γL1 → 0. Conversely, the operators that can only have, at most,

1/f or γL1 contributions are loop operators.10 Even if the latter are connected to LBSM

by tree-level diagrams, they cannot be generated at the tree level in any renormalizable

completion of it. That is, the necessary dimension-five interactions are only generated by

loop diagrams in any such UV completion. If this completion is weakly coupled, their

coefficients will have a loop suppression that carries over to the Wilson coefficients in the

SMEFT. Of course, such a suppression will not occur if the UV completion is strongly

coupled. This classification agrees with the one in [62], as it should, since we employ the

same criteria.

4 Results of the matching: user guide

The tree-level integration of the 48 fields of spin 0, 1/2 and 1 that can contribute to the

dimension-six SMEFT, via the interactions in eqs. (A.7)–(A.24), generates all the effective

operators in the basis of ref. [27], with the exception of the four operators OG,G̃,W,W̃ . The

explicit expressions of the contributions to the different Wilson coefficients are collected

in appendix D. In this section we offer a basic guidance so that users can quickly find the

required entries of the UV/IR dictionary inside our long and numerous equations.

We present our results by writing, for each operator, all the possible contributions of

all the multiplets to its Wilson coefficient. The results for the different operators have been

organized in the following way:

• Pure four-fermion operators (appendix D.3), classified according to the structure of

chiralities of the fields in the operator, i.e.
(
L̄L
) (
L̄L
)
,
(
R̄R
) (
R̄R
)
,
(
L̄L
) (
R̄R
)
,(

L̄R
) (
R̄L
)
,
(
L̄R
) (
L̄R
)
, and, separately, the baryon-number (B) violating inter-

actions.

• Pure bosonic interactions (appendix D.4). We follow the classification of ref. [27]

and include here the operators of the form φ6, φ4D2 and X2φ2, where X refers to a

field-strength tensor.

• Interactions between bosons and fermions (appendix D.5). We again follow the clas-

sification of ref. [27], and separate the operators of the form ψ2φ3, Xψ2φ and ψ2φ2D.

Unless otherwise stated, for each Wilson coefficient, the contributions of the different types

of fields are ordered in the following way:

Ci = CScalars
i + CFermions

i + CVectors
i + CMixed

i +
1

f
Cdim 5
i , (4.1)

10The possibility of generating operators of this type with tree-level diagrams involving higher-dimensional

interactions was pointed out and emphasized in [61].
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where CPi , P = Scalars, Fermions, Vectors, contains the information from the integration of

only one type of spin, in the same order as presented in tables 1, 2 and 3, respectively. Each

of these are further separated, with the contributions from one type of particle appearing

first, and mixing between particles of same spin, afterwards:

CPi =
∑
m∈P

Cmi +
∑

m,n∈P
Cmni +

∑
m,n,p∈P

Cmnpi . (4.2)

The contributions coming from Lagrangian interactions between particles of different spin,

eqs. (A.22)–(A.24), are contained in CMixed
i . The coefficient Cdim 5

i includes the dimension-

six interactions generated by the non-renomalizable couplings in eqs. (A.8), (A.14), (A.15)

and (A.20). These can be easily distinguished noting the prefactor 1/f . Finally, some of

the new particles induce modifications on the kinetic term of the SM Higgs doublet in the

effective theory. Our results are given in a basis where all fields are canonically normalized,

and we include such corrections into a renormalization of the Higgs doublet φ → Z
− 1

2
φ φ,

with Z
− 1

2
φ given in eq. (D.2). The corresponding factors of Z

−
nφ
2

φ renormalizing operators

with nφ scalar doublets are shown explicitly in the coefficients.

Finally, for those operators that are non-hermitian we only report the coefficient of the

interaction in tables 4, 5 and 6. The corresponding contributions to the coefficients of the

hermitian conjugates can be obtained by complex conjugation.

The results of the matching can be employed in both directions:

Top-down. To facilitate the matching of particular models with the SMEFT — for in-

stance to profit from the abundant model-independent constraints phrased in this language

(see, e.g. [3–19]) — we have collected in tables 7, 8 and 9, in appendix C, the different op-

erators resulting from the integration of each of the scalar, fermion and vector multiplets,

respectively. It turns out that all the operators that receive contributions involving cou-

plings between different types of extra fields (with the same or different spin) can always

be generated as well by at least one of the particles entering in the interaction individually.

Therefore, tables 7–9 contain all the information necessary to identify which operators can

be generated in any scenario.

In this way, these tables show all the operators that can be generated given the field

content of the model. One can then look at the corresponding Wilson coefficients in

appendix D and use eqs. (4.1) and (4.2) to find the explicit contributions in terms of the

masses and couplings of the new particles.

Bottom-up. Our results can also be used in a bottom-up fashion, to find the explicit

SM extensions that can give rise to a given set of effective interactions. To identify which

multiplets contribute to each dimension-six operator in the effective theory, one simply

needs to look at the labels of the masses in the denominators of each term in the expression

of the Wilson coefficient. For operators involving the SM scalar doublet, one must also

take into account that L1 and ϕ can contribute to the renormalization of the scalar doublet

Zφ. Finally, upon integration of the L1 vector field, the effects of its interactions with the

vectors B, B1,W andW1 — parameterized by the ζL1V couplings in the Lagrangian (A.19)
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— can be described in a compact form by using modified couplings of B, B1, W and W1

to the corresponding SM scalar currents. Explicitly, they can be described by replacing

(gφB)r → (ĝφB)r ≡ (gφB)r − i
(ζL1B)∗sr(γL1)s

M2
L1s

, (4.3)

(gφW)r → (ĝφW)r ≡ (gφW)r − 2i
(ζL1W)∗sr(γL1)s

M2
L1s

, (4.4)

(gφB1
)r → (ĝφB1

)r ≡ (gφB1
)r + i

(ζL1B1
)sr(γL1)s
M2
L1s

, (4.5)

(gφW1
)r → (ĝφW1

)r ≡ (gφW1
)r + 2i

(ζL1W1
)sr(γL1)s

M2
L1s

. (4.6)

Writing the solution in terms of the ĝφV couplings has the advantage of simplifying sig-

nificantly many of the expressions, but obscures a bit the origin of the contribution. So,

besides looking at the explicit masses, one should take into account that any ĝφV coupling

implicitly involves a dependence on the couplings and mass of the field(s) L1. For instance,

(ĝφB)r ≡ (gφB)r − i
(ζL1B)∗rs(γL1 )s

M2
L1s

↓

∆C =
(ĝφB)2

r

M2
Br
−→ ∆C =

(gφB)2
r

M2
Br
− 2i

(gφB)r(ζL1B)∗sr(γL1
)s

M2
BrM

2
L1s

− (ζL1B)∗sr(γL1
)s(ζL1B)∗tr(γL1

)t

M2
BrM

2
L1s

M2
L1t

.

(4.7)

Remember, nevertheless, that the vector multiplets L1 will not contribute at all if they are

the gauge bosons of an extended gauge invariance.

Similarly, the tree-level matching leads to a redefinition of the coefficients of the SM

operators, see section D.1. Then there are indirect effects in the dimension-six coefficients

when the original SM couplings, which wear a hat, are written in terms of the redefined ones,

without hat, as specified in eqs. (D.7), (D.8) and (D.9). Moreover, the covariant kinetic

term of the Higgs doublet is modified in the presence of γL1 , which leads to the Higgs-

field renormalization in eq. (D.2). Therefore, one should also keep track of the Yukawa

couplings ŷe,u,d and the quartic coupling λ̂φ in order to check which fields can contribute

to the Wilson coefficients.

We include reminders of all these implicit dependences, where appropriate, in ap-

pendix D.

5 Example: interpretation of LHCb anomalies

Our UV/IR dictionary is a tool that can be used for different phenomenological purposes,

such as finding indirect limits on the parameters of explicit models, constructing BSM

models consistent with existing data or analyzing deviations with respect to the SM in terms

of new physics. In this section we illustrate the latter application with a particular example:

explaining the recent hints in LHCb data of a violation of lepton flavor universality (LFU)

in B-meson decays [63, 64]. We will first identify which heavy multiplets can generate the

necessary operators and then look at correlated effects that could constrain or test the

– 13 –



J
H
E
P
0
3
(
2
0
1
8
)
1
0
9

different possibilities. Our schematic analysis is just intended as an illustration. Most of

the results in this section have in fact already appeared in the literature.

The measurement of the observables RK ≡ Br(B+ → K+µ+µ−)/Br(B+ → K+e+e−)

and RK∗ ≡ Br(B → K∗µ+µ−)/Br(B → K∗e+e−) provides a particularly clean test of LFU

of the gauge interactions, since a large component of the SM theory uncertainties cancel

in the ratio. The LHCb collaboration has recently presented measurements of these ratios,

both of which deviate from the SM predictions by ∼ 2.6 σ [63] and ∼ 2.4 σ [64], respectively.

These are not the only anomalies in b→ s`+`− processes, with some discrepancies also in

the angular distributions of B → K∗µ+µ− [65–67], or in the differential branching fractions

of B → Kµ+µ− [65] and Bs → φµ+µ− [68]. At present, the different deviations follow a

pattern that can be consistently explained by the presence of new physics. Altogether, the

global fit to all flavour anomalies points to a deviation with respect to the SM hypotheses

of ∼ 3-5 σ, depending on the estimates assumed for the SM hadronic uncertainties in some

of the observables [69–74].

The observed deviations from LFU in B decays are well described by the following

four-fermion effective Hamiltonian, valid at energies E �MW ,

Hb→s``Eff = −VtbV ∗ts
αem

4π

4GF√
2

∑
C`ijO`ij + h.c., (5.1)

where

O`ij = (s̄γµPib)(¯̀γµPj`) (5.2)

are the different chiral four-fermion operators that can be obtained from the product of two

vector currents, with PL,R = 1
2(1∓ γ5). The fit to RK,K∗ favors an explanation where new

physics is present in left-handed leptons and, in particular, points to a sizable deviation

from the SM hypotheses in C`LL. For the purpose of this example, we focus the discussion

around these interactions. They can be either CµLL < 0 or CeLL > 0, although a global fit

to all B anomalies prefers new physics in the muon sector, with CµLL ≈ −1.2± 0.3 [69–74].

Matching O`LL with the dimension-six SMEFT at the tree level results in the following

four-fermion contributions to C`LL:

C`LL = λ−1
t

(
C

(1)
lq + C

(3)
lq

)
``23

, (5.3)

where λt ≡ VtbV
∗
ts
αem
4π

4GF√
2

, and we are working in a fermion basis with diagonal Yukawa

interactions for the down-type quarks. The operators O(1,3)
φq and O(1,3)

φl also contribute,

via a modification of the couplings of the Z boson to the relevant quarks and leptons.

However, such non-universal anomalous couplings are strongly bounded by LEP data, so

we concentrate on the operators O(1)
lq and O(3)

lq .

The relevant entries of the UV/IR dictionary are eqs. (D.14) and (D.15). A look at

the masses in the denominators of each term allows us to easily identify all the types of

multiplets that can contribute to C
(1)
lq and C

(3)
lq at the tree level:

(3, 3)− 1
3

(1, 1)0 (1, 3)0 (3, 1) 2
3

(3, 3) 2
3

{ ζ, B, W, U2, X } .
(5.4)
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Note that for ω1, C
(1)
lq = −C(3)

lq and therefore C`LL = 0. This list with one scalar and four

vector multiplets agrees with the classification in other studies, see, e.g. [70, 75–77]. From

eqs. (D.14) and (D.15) we also see that there is no collective contribution with several

heavy propagators in the same diagram. Most importantly, we can pinpoint the relevant

couplings in LBSM. This is a simple example of looking at an IR entry of the dictionary to

find its UV translation.

For instance, we can readily check in eqs. (D.14) and (D.15) that a product of lepto-

quark couplings is involved in the case of the scalar ζ and the vector bosons X and U2,

while the vectors B andW contribute through a product of a diagonal lepton coupling and

a flavor-changing quark coupling.

With this information, one can proceed to investigate in a systematic way all the

different constraints (or signals) arising from other processes that involve the same cou-

plings and particles. Processes involving other couplings will also be of great interest if the

anomalies are confirmed. Direct searches with resonant production can be very relevant,

but here we focus mostly on indirect searches. They reduce essentially to an analysis of the

different operators, besides O(1)
lq and O(3)

lq , that are generated when the heavy particles are

integrated out. We can distinguish three kinds of contributions to the Wilson coefficients

of the other induced operators:

Type I: contributions that depend only on couplings that enter in C`LL. The corresponding

observable effects are then correlated with the ones entering in b → s`+`−, and can

be used to constrain or probe a given solution to the B-meson anomalies.

Type II: contributions that depend on these couplings but can be made arbitrarily small

by tuning an interaction not entering in C`LL. In this case, the correlations require

extra information on that coupling.

Type III: contributions that do not depend on the couplings that appear in C`LL. These

are completely uncorrelated.

In this classification it is of course crucial to take flavor indices into account. Even if

contributions of type I are more relevant, an observation of the effects of contributions of

type II and III could also be used to support the new physics interpretation and for model

discrimination.

Let us examine along these lines the multiplets ζ, X andW, which have the compelling

feature of allowing only for the required left-handed couplings. In this case, we will use the

dictionary in the UV to IR direction. Tables 7 and 9 prove handy for this task, as they list

the operators we need to look at for each assumed multiplet.

Scalar leptoquark ζ. The interactions of ζ can be found in eq. (A.7). We see that the

scalar ζ has, up to flavor indices, two couplings (besides the gauge couplings, determined

by quantum numbers): the lepto-quark coupling yqlζ and the coupling to quarks yqqζ . A

glimpse at table 7 tells us that the following operators are induced: O(1,3)
lq , O(1,3)

qq and Oqqq.
Then, we read the precise contributions to their Wilson coefficients from eqs. (D.12)–(D.15)
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and (D.38). Assuming only one ζ multiplet,

(C
(1)
lq )ijkl = 3(C

(3)
lq )ijkl =

3

4

(yqlζ )lj(y
ql
ζ )∗ki

M2
ζ

, (5.5)

(C(1)
qq )ijkl = −3(C(3)

qq )ilkj =
3(yqqζ )ki(y

qq
ζ )∗lj

2M2
ζ

, (5.6)

(Cqqq)ijkl = −
2(yqqζ )∗ij(y

ql
ζ )kl

M2
ζ

. (5.7)

Looking at the flavor structure of (5.5), we see that we need sizable couplings (yqlζ )2` and

(yqlζ )3` to explain the anomalies. For sufficiently low mass Mζ , these couplings can be

probed by analyses of single and pair production of ζ at the LHC [78]. The very same

couplings also contribute to other components of C
(1,3)
qq , and we conclude that

C lLL 6= 0 −→


(C

(1)
lq )``33 = 3(C

(3)
lq )``33 =

3
∣∣∣(yqlζ )3`

∣∣∣2
4M2

ζ
6= 0,

(C
(1)
lq )``22 = 3(C

(3)
lq )``22 =

3
∣∣∣(yqlζ )2`

∣∣∣2
4M2

ζ
6= 0.

(5.8)

These are contributions of type I. The corresponding effects in hadronic-flavor-preserving

processes are correlated with the B anomalies. From (5.8) it is also clear that in these

processes each of the two couplings can be measured, in principle, independently. Both the

flavor-preserving and flavor-violating effects in an electron explanation of the anomalies

can be tested in e+e− colliders. The observed values of RK,K∗ can be reproduced with

C`LL ∼ O(1), which corresponds to a new physics interaction scale of about 35 TeV, well

above the sensitivity of LEP2. Therefore, current e+e− data do not provide significant

constraints on the relevant couplings. However, they could be tested at future lepton

colliders. Any other combination of flavor indices gives contributions of type III, with

effects that are uncorrelated with the anomalies. The same holds for the contributions to

the operators O(1,3)
qq , which involve the quark couplings yqqζ . Finally, the baryon-number

violating operator Oqqq receives contributions of type II or type III, depending on the

flavor indices. Note in particular that the quark couplings for the first family are strongly

constrained by the non-observation of proton decay.

Vector leptoquark X . The analysis of the vector multiplet X is similar, but as we can

see in eq. (A.19) in this case there is only one non-gauge coupling (up to flavor indices):

the lepto-quark coupling gX . In table 9 we see that only the operators O(1,3)
lq are generated

in the effective theory below the mass MX . Assuming only one replica of X , eq. (A.7) gives

(C
(1)
lq )ijkl = −3(C

(3)
lq )ijkl = −

3(gX )∗jk(gX )il

8M2
X

. (5.9)

We see that the contribution of X to C`LL is proportional to the product of (gX )∗`2 and

(gX )`3. Again, there are correlations with the coefficients of the corresponding hadronic
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flavor-conserving operators:

C lLL 6= 0 −→

 (C
(1)
lq )``33 = −3(C

(3)
lq )``33 = −3|(gX )`3|2

8M2
X
6= 0,

(C
(1)
lq )``22 = −3(C

(3)
lq )``22 = −3|gX )`2|2

8M2
X
6= 0.

(5.10)

The same discussion in the paragraph below eq. (5.8) applies to this case, except for the

fact that now there are no purely-hadronic couplings.

Vector iso-triplet W. As we can check in eq. (A.19), the vector iso-triplet W has

couplings glW and gqW to left-handed fermions and gφW to the Higgs doublet. The latter

induces a mixing of the Z ′ and W ′ components with the Z and W bosons, respectively.

There are also couplings involving a possible vector doublet L1, which we shall not consider.

For masses MW light enough, the Z ′ and W ′ bosons in W can be produced at hadron

colliders if the light-quark couplings are not too small. They then decay into di-leptons

(including lepton + MET) [79] and di-bosons [80] through the couplings to leptons and

to the Higgs, respectively. Regarding indirect effects, the operators that can be induced

are listed in the W entry of table 9. The most relevant ones in the context of the B

anomalies are O(3)
lq , Oll and O(3)

qq , with Wilson coefficients given by (see eqs. (D.15), (D.11)

and (D.13))

(C
(3)
lq )ijkl = −

(glW)ij(g
q
W)kl

4M2
W

, (5.11)

(Cll)ijkl = −
(glW)ij(g

l
W)kl

8M2
W

, (5.12)

(C(3)
qq )ijkl = −

(gqW)ij(g
q
W)kl

8M2
W

. (5.13)

We see that to get the necessary C`LL we need sizable couplings (glW)`` and (gqW)23. The first

one must be non-universal, while the second one is explicitly flavor-changing. Schematically,

we have the following correlations:

C lLL 6= 0 −→


(Cll)```` = − (glW )2

``

8M2
W
6= 0,

(C
(3)
qq )2323 = − (gqW )2

23

8M2
W
6= 0,

(C
(3)
qq )2332 = − |(g

q
W )23|2
8M2
B
6= 0.

(5.14)

Of particular importance is the contribution to (C
(3)
qq )2323, as it generates contributions

to Bs− B̄s mixing amplitudes. Such contributions are tightly constrained, pushing the

new physical interaction scale to values of O(100) TeV [81, 82].11 This case shows that,

although ∆F = 1 and ∆F = 2 bounds are uncorrelated in a low-energy operator analysis,

correlations may exist and be crucial in specific explanations of the B anomalies. Sim-

ilar considerations apply often to processes that may not appear to be connected in an

11These bounds, together with the ones discussed below, can be relaxed by reducing the (gqW)23 and gφW
couplings at the expense of increasing the corresponding (glW)`` ones [83, 84]. A similar comment applies

to the case of B. Such leptophilic vector bosons can be probed at colliders in multi-lepton searches [85, 86].
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effective low-energy description. Of course, the correlations become weaker as more par-

ticles (with the same or different quantum numbers) are included, but some of them are

unavoidable [87].

Again, other combinations of flavor indices give contributions of type II and III. The

contributions of W to ψ2φ2D operators,

(C
(3)
φl )ij = −

Re
{

(glW)ij g
φ
W

}
4M2
W

, (5.15)

(C
(3)
φq )ij = −

Re
{

(gqW)ij g
φ
W

}
4M2
W

, (5.16)

are of type II for ij = `` and ij = 23, 32, respectively, and of type III otherwise. These

operators modify the Z and W couplings to leptons and quarks, so they are constrained

by electroweak precision data, by observables sensitive to flavor-changing decays of the Z

boson, Bs−B̄s mixing and by non-resonant processes with di-lepton and di-jet final states

at the LHC. But these limits can always be made compatible with the lepton and quark

couplings that explain the anomalies by tuning the Higgs coupling gφW to be small. This

coupling also induces type-III effects in Higgs physics, via the operators OφD, Oφ, Oφ�
and Ofφ (f = e, d, u), with Wilson coefficients

CφD = −
Im
{

(gφW)
}2

2M2
W

, Cφ = −
λφ(gφW)2

M2
W

, Cφ� = −
|gφW |2

4M2
W
, (5.17)

(Ceφ(dφ))ij = y
e(d)∗
ji a, (Cuφ)ij = −2yu∗ji a

∗, a ≡ −
2|gφW |2 + i Im((gφW)2)

8M2
W

.

(Note that we have replaced λ̂φ and ŷe,d,u by λφ and ye,d,u, respectively, as in the extension

we are considering there are no contributions to dimension-four operators.)

Before finishing this section let us point out another possible usage of the UV/IR

dictionary for model building. Say we are interested in a given class of models, including

one or more of the multiplets that contribute at the tree level to the dimension-six effective

Lagrangian. Then we can relax the indirect limits on the corresponding couplings by

including other multiplets that (partially) cancel the contributions to the Wilson coefficients

of interest. The different possibilities can be easily determined by a scan of our results in

appendix D. For instance, it is easy to see that the contributions of W to (Cll)1111, which

could be tested at future e+e− → e+e− colliders, can be (partially) cancelled, with some

tuning, against the ones of a hypercharge 1 scalar singlet S1 or triplet Ξ1 [87].

6 Conclusions

The quest for new physics beyond the SM often takes the form of a detailed study of ex-

plicit models, or classes of models, which can be motivated by experimental, theoretical

or aesthetical puzzles, or designed to give new signatures in current experiments. The

models typically predict new particles, which could in principle be observed at colliders,
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and deviations in different observables from the indirect effects of those new particles. This

approach has many advantages, but it suffers from one obvious drawback: by definition

we do not know a priori which model has been chosen by Nature, so the possibilities are

infinite. At energies sufficiently lower than the production threshold of any new particle,

a model-independent and rigorous framework exists to study possible deviations of experi-

mental observations with respect to the SM theoretical predictions: effective field theories

built with the SM degrees of freedom. Their underlying power counting also provides a

rationale for the expected size of eventual corrections. In this case, the disadvantages are

the limitation in energy — which make them invalid to study direct production of the new

particles, the number of free parameters and the lack of obvious physical insight about the

nature of the new physics. These two approaches are complementary and relating one to

each other is essential to take advantage of their synergy. Actually, integrating the heavy

degrees of freedom of particular models to find the corresponding low-energy effective La-

grangian is common practice. But once again, it seems at first sight that this task must

be done model by model.

In this work we have shown, however, that the matching between the IR and UV

descriptions can be performed once and for all at the leading order, namely for operators

of canonical dimension up to six and at the classical level. The idea is to map the model-

independent low-energy effective theory approach to arbitrary models of new physics. With

this purpose, we have considered a completely general extension of the SM, subject only to

a few mild assumptions. This extension has an arbitrary number of new scalars, fermions

and vectors, with no restrictions on their gauge quantum numbers nor on their possible

interactions. In particular, we have made no assumption about renormalizability.

In order to construct explicitly the relevant part of this general extension of the SM, we

have first examined which new particles and which couplings can contribute to the SMEFT

at the tree level. The result is that we only have to consider new fields that can have linear

interactions with the SM fields and no other extra field. The origin of this property lies

in the fact that tree-level diagrams without external legs of heavy particles always end

in two or more vertices of this type. With our restriction to contributions to operators

of dimension up to six, power counting further shows that these linear interactions must

be of dimension ≤ 4. The complete list of these selected extra fields comprises 19 scalar,

13 fermion and 16 vector irreducible representations of the SM gauge group. These field

multiplets are collected in tables 1, 2 and 3. After determining the relevant field content,

we have proceeded to write all the possible gauge-invariant terms that can be constructed

with these fields and the SM ones and that affect the tree-level matching. The resulting

Lagrangian provides a general parametrization, in terms of masses and coupling constants,

of essentially any kind of new physics with unsuppressed impact at low energies.

We emphasize that the fact that the new particles must have quantum numbers that

allow for such linear interactions does not mean that these are the only relevant couplings.

Couplings involving more than one heavy field can actually result in non-trivial contribu-

tions to the SMEFT. Also non-renormalizable interactions involving one new particle in

interactions up to canonical dimension five may be relevant. We have classified all these

couplings and reported them in appendix A.
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We have then integrated out the new heavy particles in this completely general exten-

sion of the SM at the tree-level and have computed the Wilson coefficients of the corre-

sponding SMEFT operators of dimension up to six in the Warsaw basis. This is the main

contribution of this work. We report our results in the form of a UV/IR dictionary. A

top-down approach to the analysis of new physics would first use our appendix C, where

we list all the operators that are generated for specific new particles. In appendix D, on

the other hand, we give our results organized from the bottom-up point of view, by writ-

ing the contribution to each Wilson coefficient from an arbitrary number of new particles.

This dictionary greatly simplifies the task of analyzing the low-energy implications of ex-

plicit models and obtaining the corresponding bounds on their parameters. It also helps

disentangle the origin of possible anomalies eventually observed in experiments. We have

included a short section to guide the reader through our results and have provided a simple

example to illustrate the use of this dictionary.

It is interesting that all operators in the Warsaw basis, except for the ones involving

three field strength tensors, are generated in our tree-level integration. This would naively

seem to contradict the arguments in ref. [62], which, up to the presence of L1, share

our assumptions. In fact there is no contradiction since, as we have shown, tree level

contributions to operators that are classified as “loop generated” in [62] only arise due

to non-renormalizable, dimension-five operators in our SM extension, which can only be

generated in turn at the loop level in any weakly-coupled renormalizable UV completion of

that theory. (See [61] for a related discussion.) However, we have included these operators

in our dictionary because they could be unsuppressed in strongly-coupled completions.

We conclude by emphasizing that we have provided a complete classification of all pos-

sible extensions of the SM (with new particles up to spin 1) with low-energy implications at

the leading order. These implications are encoded in tree-level contributions to the Wilson

coefficients of the dimension-six operators in the SMEFT, which we have computed explic-

itly in terms of the masses and couplings of the new particles. This result can in principle

be extended to operators of higher dimension: as long as the classical approximation is

used, the number of extra fields and extra couplings to be considered will be finite (even

if huge). On the other hand, at the loop level this endeavor faces an additional problem:

there are infinitely-many types of extra fields that can contribute, already at one loop, to

dimension-six operators. The reason is that fields without linear couplings to the SM need

also be considered in this case. So, a complete matching to general extensions beyond the

classical approximation will need to deal with this difficulty.
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A Explicit BSM effective Lagrangian

In this appendix we present the explicit form of the different terms contributing to the BSM

Lagrangian in eq. (2.1). In these and the rest of the results in this paper we use a notation

where color indices are labeled by capital letters, A,B,C, running over the dimensionality

of the corresponding SU(3)c representation. Whenever possible, objects in the fundamen-

tal representations of SU(2)L and SU(3)c have been written as row or column vectors,

with matrix products implied. The superscript symbol “T” indicates transposition of the

SU(2)L indices exclusively. When showing these indices explicitly, we use the following dif-

ferent labels, depending on the SU(2)L representation: α, β = 1
2 ,−

1
2 for SU(2)L doublets;

a, b, c = 1, 2, 3 for the components of SU(2)L adjoints/triplets in Cartesian coordinates;

and I, J,K = 3
2 ,

1
2 ,−

1
2 ,−

3
2 for the components of the SU(2)L quadruplets.

The symbols TA = 1
2λA and fABC , A,B,C = 1, . . . , 8, denote the SU(3)c genera-

tors and structure constants, respectively, with λA the Gell-Mann matrices. εABC (εabc),

A,B,C = 1, 2, 3 (a, b, c = 1, 2, 3) is the totally antisymmetric tensor in color (weak isospin)

indices; σa or σa, a = 1, 2, 3 are the Pauli matrices; σµν = i
2 [γµ, γν ]; and Ãµν = 1

2εµνρσA
ρσ

is the Hodge-dual of the field strength Aµν .

In the construction of the different SU(2)L invariants we also use the following:

• The isospin-1 product of two triplets is obtained through:

fabc =
i√
2
εabc.

• Quadruplets are obtained from the product of an isospin-1 field and a doublet by

means of

C
3/2
aβ =

1√
2

 1 0

−i 0

0 0

 , C
1/2
aβ =

1√
6

 0 1

0 −i
−2 0

 ,

C
−1/2
aβ = − 1√

6

 1 0

i 0

0 2

 , C
−3/2
aβ = − 1√

2

 0 1

0 i

0 0

 .

• The singlet product of two quadruplets is obtained through the SU(2) product

εIJ =
1

2


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .
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Finally, for SU(3)c indices, we use the following notation for the symmetric product of

colored fields:

ψ
(A|
1 . . . ψ

|B)
2 ≡ 1

2

(
ψA1 . . . ψ

B
2 + ψB1 . . . ψA2

)
.

A.1 Standard Model Lagrangian

The renormalizable part of L0 in eq. (2.1) is just the SM Lagrangian LSM. Let us write it

explicitly (up to total derivatives). In standard notation,12 it reads

LSM =− 1

4
GAµνG

A µν − 1

4
W a
µνW

a µν − 1

4
BµνB

µν+

+ l̄Li i��D lLi + q̄Li i��D qLi + ēRi i��D eRi + ūRi i��DuRi + d̄Ri i��DdRi+

+ (Dµφ)†Dµφ− V (φ)−
(
ŷeij ēRiφlLj + ŷdij d̄RiφqLj + ŷuij ūRiφ̃

†qLj + h.c.
)
. (A.1)

As usual, φ̃ = iσ2φ
∗ denotes the iso-doublet of hypercharge −1/2. Here and below, the

covariant derivatives acting on a field or operator P in the representation (C, I)Y are

DµP =
(
∂µ + ig3G

A
µTA

C + ig2W
a
µTa

I + ig1Y Bµ
)
P, (A.2)

with TA
C the SU(3) generators in the C representation and Ta

I the SU(2) generators in the

I representation. Our normalization of the hypercharge is such that Y = Q+ T3
I , with Q

the electric charge. The Higgs scalar potential is

V (φ) = −µ̂2
φ |φ|

2 + λ̂φ |φ|4 . (A.3)

We will not need to write explicitly the non-renormalizable part of L0.

A.2 New scalars

The Lagrangian LS can be written as the sum of two pieces:

LS = Lquad
S + Lint

S . (A.4)

The first one contains the kinetic terms (with covariant derivatives) and mass terms of the

new scalars:

Lquad
S =

∑
σ

ησ

[
(Dµσ)†Dµσ −M2

σσ
†σ
]
. (A.5)

Here, σ are the different scalar fields in table 1. More than one scalar field in each rep-

resentation is allowed. The prefactor ησ takes the value 1 ( 1
2) when σ is in a complex

(real) representation of the gauge group. The second piece in (A.4) contains the general

interactions of the new scalars with the SM fields and among themselves. We distinguish

the terms of dimension d ≤ 4 and the ones of dimension d = 5:

Lint
S = L(≤4)

S + L(5)
S , (A.6)

12Latin indices i, j, k are used to label different generations. L,R indicate the chiral components of

spinors, written in Dirac’s four-component notation. We use the notation ŷe,u,d, µ̂φ and λ̂φ to denote

couplings that will be renomalized by the effects of the heavy particles (see section D.1).
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where

−L(≤4)
S = (κS)rSrφ†φ+ (λS)rsSrSsφ†φ+ (κS3)rstSrSsSt

+
{

(yS1)rijS†1r l̄Liiσ2l
c
Lj + h.c.

}
+
{

(yS2)rijS†2kēRie
c
Rj + h.c.

}
+
{

(yeϕ)rijϕ
†
r ēRilLj + (ydϕ)rijϕ

†
rd̄RiqLj + (yuϕ)rijϕ

†
riσ2q̄

T
LiuRj

+(λϕ)r
(
ϕ†rφ

) (
φ†φ

)
+ h.c.

}
+ (κΞ)rφ

†Ξarσ
aφ+ (λΞ)rs (ΞarΞas)

(
φ†φ

)
+

1

2
(λΞ1

)rs

(
Ξa†1rΞ

a
1s

) (
φ†φ

)
+

1

2
(λ′Ξ1

)rsfabc

(
Ξa†1rΞ

b
1s

) (
φ†σcφ

)
+
{

(yΞ1
)rijΞ

a†
1r l̄Liσ

aiσ2l
c
Lj + (κΞ1

)rΞ
a†
1r

(
φ̃†σaφ

)
+ h.c.

}
+
{

(λΘ1
)r
(
φ†σaφ

)
CIaβφ̃βεIJΘJ

1r + h.c.
}

+
{

(λΘ3
)r

(
φ†σaφ̃

)
CIaβφ̃βεIJΘJ

3r + h.c.
}

+
{

(yqlω1
)rijω

†
1r q̄

c
Liiσ2lLj + (yqqω1

)rijω
A†
1r εABC q̄

B
Liiσ2q

cC
Lj

+(yeuω1
)rijω

†
1r ē

c
RiuRj + (yduω1

)rijω
A†
1r εABC d̄

B
Riu

cC
Rj + h.c.

}
+
{

(yω2
)rijω

A†
2r εABC d̄

B
Rid

cC
Rj + h.c.

}
+
{

(yedω4
)rijω

A†
4r ē

c
RidRj + (yuuω4

)rijω
A†
4r εABC ū

B
Riu

cC
Rj + h.c.

}
+
{

(yΠ1
)rijΠ

†
1riσ2 l̄

T
LidRj + h.c.

}
+
{

(yluΠ7
)rijΠ

†
7riσ2 l̄

T
LiuRj + (yeqΠ7

)rijΠ
†
7r ēRiqLj + h.c.

}
+
{

(yqlζ )rijζ
a†
r q̄

c
Liiσ2σ

alLj + (yqqζ )rijζ
a†
r εABC q̄

B
Liσ

aiσ2q
cC
Lj + h.c.

}
+
{

(yudΩ1
)rijΩ

AB†
1r ū

c(A|
Ri d

|B)
Rj + (yqqΩ1

)rijΩ
AB†
1r q̄

c(A|
Li iσ2q

|B)
Lj + h.c.

}
+
{

(yΩ2
)rijΩ

AB†
2r d̄

c(A|
Ri d

|B)
Rj + h.c.

}
+
{

(yΩ4
)rijΩ

AB†
4r ū

c(A|
Ri u

|B)
Rj + h.c.

}
+
{

(yΥ)rijΥ
AB†
r q̄

c(A|
Li iσ2σ

aq
|B)
Lj + h.c.

}
+
{

(yquΦ )rijΦ
A†
r iσ2q̄

T
LiTAuRj + (ydqΦ )rijΦ

A†
r d̄RiTAqLj + h.c.

}
+ (λSΞ)rsSrΞas

(
φ†σaφ

)
+ (κSΞ)rstSrΞasΞat

+ (κSΞ1)rstSrΞa†1sΞa1t +
{

(λSΞ1)rsSrΞa†1s
(
φ̃†σaφ

)
+ h.c.

}
+
{

(κSϕ)rsSrϕ†sφ+ (κΞϕ)rsΞ
a
r(ϕ†sσ

aφ) + (κΞ1ϕ)rsΞ
a†
1r

(
ϕ̃†sσ

aφ
)

+ h.c.
}

+ (κΞΞ1)rstfabcΞ
a
rΞb†1sΞ

b
1t +

{
(λΞ1Ξ)rsfabcΞ

a†
1rΞ

b
s

(
φ̃†σcφ

)
+ h.c.

}
+
{

(κΞΘ1)rsΞ
a
rC

I
aβφ̃βεIJΘJ

1s + (κΞ1Θ1)rsΞ
a†
1rC

I
aβφβεIJΘJ

1s

+ (κΞ1Θ3)rsΞ
a†
1rC

I
aβφ̃βεIJΘJ

3s + h.c.
}
, (A.7)
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and

−L(5)
S =

1

f

[
(k̃φS)rSrDµφ

†Dµφ+ (λ̃S)rSr|φ|4

+ (k̃BS )rSrBµνBµν + (k̃WS )rSrW a
µνW

aµν + (k̃GS )rSrGAµνGAµν

+ (k̃B̃S )rSrBµνB̃µν + (k̃W̃S )rSrW a
µνW̃

aµν + (k̃G̃S )rSrGAµνG̃Aµν

+
{

(ỹeS)rijSrēRiφ†lLj + (ỹdS)rijSrd̄Riφ†qLj + (ỹuS)rijSrūRiφ̃†qLj + h.c.
}

+ (k̃φΞ)rΞ
a
rDµφ

†σaDµφ+ (λ̃Ξ)rΞ
a
r |φ|2φ†σaφ

+ (k̃WB
Ξ )rΞ

a
rW

a
µνB

µν + (k̃WB̃
Ξ )rΞ

a
rW

a
µνB̃

µν

+
{

(ỹeΞ)rijΞ
a
r ēRiφ

†σalLj + (ỹdΞ)rijΞ
a
r d̄Riφ

†σaqLj + (ỹuΞ)rijΞ
a
r ūRiφ̃

†σaqLj + h.c.
}

+
{

(k̃Ξ1)rΞ
a†
1rDµφ̃

†σaDµφ+ (λ̃Ξ1)rΞ
a†
1r|φ|

2φ̃†σaφ+ (ỹeΞ1
)rijΞ

a†
1rēRiφ̃

†σalLj

+(ỹdΞ1
)rijΞ

a†
1rd̄Riφ̃

†σaqLj + (ỹuΞ1
)rijΞ

a†
1r q̄Liσ

aφuRj + h.c.
}]

. (A.8)

A.3 New fermions

As indicated in section 2, we exclude the possibility of extra fermions with chiral trans-

formations under the gauge group H. Then, in the massive fermion sector, the complex

irreducible representations of H are carried by vector-like Dirac spinors, while the real ir-

reducible representations are carried by Majorana spinors ψ, with ψL = (ψR)c ≡ ψcR. The

only instances of the latter possibility are the extra leptons N and Σ in table 2. In our

“field basis”, the diagonal mass matrices are given by sums of Dirac mass terms (for the

complex representations) and Majorana mass terms (for the real representations).13

The general Lagrangian LF is given by

LF = Lquad
F + Lint

F , (A.9)

where

Lquad
F =

∑
ψ

ηψ
[
ψ̄ i��Dψ −Mψψ̄ψ

]
, (A.10)

with ψ labelling the different fields in table 2, with an arbitrary number of fields in each

irreducible representation, and ηψ = 1 (ηψ = 1/2) when ψ is Dirac (Majorana), and

Lint
F = L(4)

leptons + L(4)
quarks + L(5)

leptons + L(5)
quarks, (A.11)

13Note that the particular case of a Dirac fermion Ψ of mass MΨ in a real representation of H is

equivalent to our description with two degenerate Majorana fields ψ1 and ψ2 of mass MΨ, with ΨR =

1/
√

2 (ψ1R + iψ2R) and ΨL = 1/
√

2 (ψc1R + iψc2R).
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where

−L(4)
leptons = (λN )riN̄Rrφ̃

†lLi + (λE)riĒRrφ
†lLi

+ (λ∆1)ri∆̄1LrφeRi + (λ∆3)ri∆̄3Lrφ̃eRi

+
1

2
(λΣ)riΣ̄

a
Rrφ̃

†σalLi +
1

2
(λΣ1)riΣ̄

a
1Rrφ

†σalLi

+ (λN∆1)rsN̄
c
Rrφ

†∆1Rs + (λE∆1)rsĒLrφ
†∆1Rs

+ (λE∆3)rsĒLrφ̃
†∆3Rs +

1

2
(λΣ∆1)rsΣ̄

c a
Rrφ̃

†σa∆1Rs

+
1

2
(λΣ1∆1)rsΣ̄

a
1Lrφ

†σa∆1Rs +
1

2
(λΣ1∆3)rsΣ̄

a
1Lrφ̃

†σa∆3Rs + h.c., (A.12)

−L(4)
quarks = (λU )riŪRrφ̃

†qLi + (λD)riD̄Rrφ
†qLi

+ (λuQ1
)riQ̄1Lrφ̃uRi + (λdQ1

)riQ̄1LrφdRi

+ (λQ5)riQ̄5Lrφ̃dRi + (λQ7)riQ̄7LrφuRj

+
1

2
(λT1)riT̄

a
1Rrφ

†σaqLi +
1

2
(λT2)riT̄

a
2Rrφ̃

†σaqLi

+ (λUQ1)rsŪLrφ̃
†Q1Rs + (λUQ7)rsŪLrφ

†Q7Rs

+ (λDQ1)rsD̄Lrφ
†Q1Rs + (λDQ5)rsD̄Lrφ̃

†Q5Rs

+
1

2
(λT1Q1)rsT̄

a
1Lrφ

†σaQ1Rs +
1

2
(λT1Q5)rsT̄

a
1Lrφ̃

†σaQ5Rs

+
1

2
(λT2Q1)rsT̄

a
2Lrφ̃

†σaQ1Rs +
1

2
(λT2Q7)rsT̄

a
2Lrφ

†σaQ7Rs + h.c., (A.13)

−L(5)
leptons =

1

f

[
(λ̃N )riN̄

c
Rrγ

µ
(
Dµφ̃

)†
lLi

+ (λ̃lE)riĒLrγ
µ (Dµφ)† lLi + (λ̃BE)riĒLrσ

µνeRiBµν + (λ̃eE)riĒLrφ
†φeRi

+ (λ̃e∆1
)ri∆̄1Rr /DφeRi + (λ̃l∆1

)ri
(
∆̄1Rrφ

) (
φ†lLi

)
+ (λ̃l′∆1

)ri
(
∆̄1RrlLi

) (
φ†φ

)
+ (λ̃B∆1

)ri∆̄1Rrσ
µν lLiBµν + (λ̃W∆1

)ri∆̄1Rrσ
µνσalLiW

a
µν

+ (λ̃e∆3
)ri∆̄3Rr /Dφ̃eRi + (λ̃l∆3

)ri

(
∆̄3Rrφ̃

)(
φ†lLi

)
+ (λ̃lΣ)riΣ̄

c a
Rrγ

µ
(
Dµφ̃

)†
σalLi + (λ̃eΣ)riΣ̄

c a
Rrφ̃

†σaφeRi

+ (λ̃lΣ1
)riΣ̄

a
1Lrγ

µ (Dµφ)† σalLi + (λ̃eΣ1
)riΣ̄

a
1Lrφ

†σaφeRi

+ (λ̃WΣ1
)riΣ̄

a
1Lrσ

µνeRiW
a
µν

]
+ h.c., (A.14)

−L(5)
quarks =

1

f

[
(λ̃qU )riŪLrγ

µ
(
Dµφ̃

)†
qLi + (λ̃uU )riŪLrφ

†φuRi

+ (λ̃BU )riŪLrσ
µνuRiBµν + (λ̃GU )riŪLrTAσ

µνuRiG
A
µν

+ (λ̃qD)riD̄Lrγ
µ (Dµφ)† qLi + (λ̃dD)riD̄Lrφ

†φdRi
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+ (λ̃BD)riD̄Lrσ
µνdRiBµν + (λ̃GD)riD̄LrTAσ

µνdRiG
A
µν

+ (λ̃uQ1
)riQ̄1Rr /Dφ̃uRi + (λ̃dQ1

)riQ̄1Rr /DφdRi

+ (λ̃qQ1
)ri
(
Q̄1Rrφ

) (
φ†qLi

)
+ (λ̃q′Q1

)ri
(
Q̄1RrqLi

) (
φ†φ

)
+ (λ̃BQ1

)riQ̄1Rrσ
µνqLiBµν + (λ̃WQ1

)riQ̄1Rrσ
µνσaqLiW

a
µν

+ (λ̃GQ1
)riQ̄1Rrσ

µνTAqLiG
A
µν

+ (λ̃dQ5
)riQ̄5Rr /Dφ̃dRi + (λ̃qQ5

)ri

(
Q̄5Rrφ̃

)(
φ†qLi

)
+ (λ̃uQ7

)riQ̄7Rr /DφuRi + (λ̃qQ7
)ri
(
Q̄7Rrφ

) (
φ̃†qLi

)
+ (λ̃qT1

)riT̄
a
1Lrγ

µ (Dµφ)† σaqLi + (λ̃uT1
)riT̄

a
1Lrφ

†σaφ̃uRi

+ (λ̃dT1
)riT̄

a
1Lrφ

†σaφdRi + (λ̃WT1
)riT̄

a
1Lrσ

µνdRiW
a
µν

+ (λ̃qT2
)riT̄

a
2Lrγ

µ
(
Dµφ̃

)†
σaqLi + (λ̃uT2

)riT̄
a
2Lrφ

†σaφuRi

+ (λ̃dT2
)riT̄

a
2Lrφ̃

†σaφdRi + (λ̃WT2
)riT̄

a
2Lrσ

µνuRiW
a
µν

]
+ h.c. . (A.15)

A.4 New vectors

For the extra vectors, we write

LV = Lquad
V + Lint

V , (A.16)

where14

Lquad
V =

∑
V

ηV

(
DµV

†
νD

νV µ −DµV
†
νD

µV ν +M2
V V
†
µV

µ
)
, (A.17)

with V on the right-hand side labelling the different fields in table 3, with an arbitrary

number of fields in each irreducible representation, and ηV = 1 (ηV = 1/2) when V is in a

complex (real) representation of H, and

Lint
V = L(≤4)

V + L(5)
V , (A.18)

where

−L(≤4)
V = (glB)rijBµr l̄LiγµlLj + (gqB)rijBµr q̄LiγµqLj + (geB)rijBµr ēLiγµeLj

+ (gdB)rijBµr d̄LiγµdLj + (guB)rijBµr ūLiγµuLj +
{

(gφB)rBµr φ†iDµφ+ h.c.
}

+
{

(gduB1
)rijBµ†1r d̄RiγµuRj + (gφB1

)rBµ†1r iDµφ
T iσ2φ+ h.c.

}
+

1

2
(glW)rijWµa

r l̄Liσ
aγµlLj +

1

2
(gqW)rijWµa

r q̄Liσ
aγµqLj

+

{
1

2
(gφW)rWµa

r φ†σaiDµφ+ h.c.

}
+

{
1

2
(gW1)rWµa†

1r iDµφ
T iσ2σ

aφ+ h.c.

}
14For each V , this covariant Proca Lagrangian describes a particle of spin 1 coupled to the SM gauge

fields. Other choices of the kinetic term would give rise to ghosts.
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+ (gqG)rijGµAr q̄LiγµTAqLj + (guG)rijGµAr ūLiγµTAuRj + (gdG)rijGµAr d̄RiγµTAdRj

+
{

(gG1)rijGAµ†1r d̄RiTAγµuRj + h.c.
}

+
1

2
(gH)rijHµaAr q̄Liγµσ

aTAqLj

+
{

(γL1)rL†1rµD
µφ+ h.c.

}
+ i(gBL1

)rsL†1rµL1sνB
µν + i(gWL1

)rsL†1iµσ
aL1jνW

aµν

+ i(gB̃L1
)rsL†1rµL1sνB̃

µν + i(gW̃L1
)rsL†1rµσ

aL1sνW̃
aµν

+ (h
(1)
L1

)rs

(
L†1rµL

µ
1s

)(
φ†φ

)
+ (h

(2)
L1

)rs

(
L†1rµφ

)(
φ†Lµ1s

)
+
{

(h
(3)
L1

)rs

(
L1†

1rµφ
)(
L†µ1sφ

)
+ h.c.

}
+
{

(gL3)rijLµ†3r ē
c
RiγµlLj + h.c.

}
+
{

(gedU2
)rijUµ†2r ēRiγµdRj + (glqU2

)rijUµ†2r l̄LiγµqLj + h.c.
}

+
{

(gU5)rijUµ†5r ēRiγµuRj + h.c.
}

+
{

(gulQ1
)rijQµ†1r ū

c
RiγµlLj + (gdqQ1

)rijQAµ†1r εABC d̄
B
Riγµiσ2q

cC
Lj + h.c.

}
+
{

(gdlQ5
)rijQµ†5r d̄

c
RiγµlLj + (geqQ5

)rijQµ†5r ē
c
RiγµqLj

+(guqQ5
)rijQAµ†5r εABC ū

B
Riγµq

cC
Lj + h.c.

}
+

{
1

2
(gX )rijX aµ†r l̄Liγµσ

aqLj + h.c.

}
+

{
1

2
(gY1)rijYABµ†1r d̄

(A|
Ri γµiσ2q

c|B)
Lj + h.c.

}
+

{
1

2
(gY5)rijYABµ†5r ū

(A|
Ri γµiσ2q

c|B)
Lj + h.c.

}
+
{

(ζL1B)rs

(
L†1rµφ

)
Bµs + (ζL1B1)rsL̃†1rµφB

µ†
1s

+(ζL1W)rs

(
L†1rµσ

aφ
)
Waµ
s + (ζL1W1)rsL̃†1rµσ

aφWaµ†
1s + h.c.

}
, (A.19)

and

−L(5)
V =

1

f
Lµ†1r

[
(γ̃

(1)
L1

)r

(
φ†Dµφ

)
φ+ (γ̃

(2)
L1

)r

(
Dµφ

†φ
)
φ+ (γ̃

(3)
L1

)r

(
φ†φ

)
Dµφ

+ (γ̃BL1
)rBµνD

νφ+ (γ̃B̃L1
)rB̃µνD

νφ

+ (γ̃WL1
)rW

a
µνσ

aDνφ+ (γ̃W̃L1
)rW̃

a
µνσ

aDνφ

+ (g̃eDlL1
)rij ēRiDµlLj + (g̃DelL1

)rijDµēRilLj + (g̃dDqL1
)rij d̄RiDµqLj

+ (g̃DdqL1
)rijDµd̄RiqLj + (g̃qDuL1

)rijiσ2q̄
T
LiDµuRj + (g̃DquL1

)rijiσ2Dµq̄
T
LiuRj

+ (g̃duL1
)rijφ̃d̄RiγµuRj + (g̃eL1

)rijφēRiγµeRj + (g̃dL1
)rijφd̄RiγµdRj

+ (g̃uL1
)rijφūRiγµuRj + (g̃lL1

)rijφl̄RiγµlLj + (g̃l′L1
)rij (σaφ)

(
l̄Liγµσ

alLj
)

+ (g̃qL1
)rijφq̄LiγµqLj + (g̃q′L1

)rij (σaφ) (q̄Liγµσ
aqLj)

]
+ h.c. . (A.20)
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A.5 Mixed terms

Lmixed can be further decomposed as

Lmixed = LSF + LSV + LVF, (A.21)

where the different pieces are given by

−LSF = (λSE)rsiSrĒLseRi + (λS∆1)rsiSr∆̄1RslLi

+ (λSU )rsiSrŪLsuRi + (λSD)rsiSrD̄LsdRi + (λSQ1)rsiSrQ̄1RsqLi

+ (λΞ∆1)rsiΞ
a
r∆̄1Rsσ

alLi + (λΞΣ1)rsiΞ
a
rΣ̄

a
1LseRi

+ (λΞQ1)rsiΞ
a
rQ̄1Rsσ

aqLi + (λΞT1)rsiΞ
a
r T̄

a
1LsdRi + (λΞT2)rsiΞ

a
r T̄

a
2LsuRi

+ (λΞ1∆3)rsiΞ
a†
1r∆̄3Rsσ

alLi + (λΞ1Σ)rsiΞ
a†
1rΣ̄

c a
Rs e

c
Ri

+ (λΞ1Q5)rsiΞ
a†
1rQ̄5Rsσ

aqLi + (λΞ1Q7)rsiΞ
a
1rQ̄7Rsσ

aqLi

+ (λΞ1T1)rsiΞ
a†
1rT̄

a
1LsuRi + (λΞ1T2)rsiΞ

a
1rT̄

a
2LsdRi + h.c. , (A.22)

−LSV = (δBS)rsBrµDµSs + (δWΞ)rsWr,µD
µΞs

+
{

(δL1ϕ)rsL1†
1rµD

µϕs + (δW1Ξ1
)rsW1†

1rµD
µΞ1s + h.c.

}
+ (εSL1)rstSrL†1sµL

µ
1t + (εΞL1)rstΞ

a
rL
†
1sµσ

aLµ1t
+
{

(εΞ1L1)rstΞ
a
1iL
†
1sµσ

aL̃µ1t + h.c.
}

+
{

(gSL1)rsφ
† (DµSr)Lµ1s + (g′SL1

)rs (Dµφ)† SrLµ1s
+ (gΞL1)rsφ

†σa (DµΞar)L
µ
1s + (g′ΞL1

)rs (Dµφ)† σaΞarL
µ
1s

+ (gΞ1L1)rsφ̃
†σa (DµΞa1r)

† Lµ1s + (g′Ξ1L1
)rs

(
Dµφ̃

)†
σaΞa†1rL

µ
1s + h.c.

}
, (A.23)

and

−LVF = (zNL1)rsiN̄
c
Rrγ

µL̃†1sµlLi + (zEL1)rsiĒLrγ
µL†1sµlLi

+ (z∆1L1)rsi∆̄1Rrγ
µL1sµeRi + (z∆3L1)rsi∆̄3Rrγ

µL̃1sµeRi

+ (zΣL1)rsiΣ̄
c a
Rr γ

µL̃†1sµσ
alLi + (zΣ1L1)rsiΣ̄

a
1Lrγ

µL†1sµσ
alLi

+ (zUL1)rsiŪLrγ
µL̃†1sµqLi + (zDL1)rsiD̄Lrγ

µL†1sµqLi
+ (zuQ1L1

)rsiQ̄1Rrγ
µL̃1sµuRi + (zdQ1L1

)rsiQ̄1Rrγ
µL1sµdRi

+ (zQ5L1)rsiQ̄5Rrγ
µL̃1sµdRi + (zQ7L1)rsiQ̄7Rrγ

µL1sµuRi

+ (zT1L1)rsiT̄
a
1Lrγ

µL†1sµσ
aqLi + (zT2L1)rsiT̄

a
2Lrγ

µL̃†1sµσ
aqLi + h.c. . (A.24)

No renormalizable operators exist that contain extra scalars, fermions and vectors

simultaneously.

Finally, in order to keep track of the dimensionality of the different contributions to

the operators in the effective Lagrangian presented in appendix D we collect here the mass

dimensions of the different types of couplings appearing in the new physics Lagrangians
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introduced above:

[κ] = 1, [λ] = [λ′] = 0, [y] = 0, (A.25)

[k̃] = 0, [λ̃] = 0, [ỹ] = 0, (A.26)

[g] = [g′] = 0, [γ] = 1, [h] = 0, [ζ] = 1, (A.27)

[g̃] = 0, [γ̃] = 0, (A.28)

[δ] = 1, [ε] = 1, [z] = 0. (A.29)

B Dimension-six basis

In this appendix we present the complete basis of gauge-invariant operators Oi that we use

in this paper in the analysis of the general SM effective Lagrangian to dimension six.

Table 4 defines our notation for those operators of mass dimension four that appear

in the integration of the heavy particles. These renormalize the SM interactions. The

table also presents the only possible dimension-five interaction: the Weinberg operator,

which gives Majorana masses to the SM neutrinos. Tables 5 and 6 contain the basis of

dimension-six operators as introduced in ref. [27].

The notation used in the tables is defined in appendix A. Flavor indices of the operators

and their coefficients are defined to appear in the same order as the corresponding fermion

fields inside the operator. Finally, the hermitian derivatives
↔
D and

↔
D a appearing in the

O(1)
φψ and O(3)

φψ operators in table 6 are defined by:

↔
Dµ ≡ Dµ −

←
Dµ,

↔
D a
µ ≡ σaDµ −

←
Dµσa.

Operator Notation

Dim. 4

(
φ†φ

)2 Oφ4

ēRφ
†lL Oye

d̄Rφ
†qL Oyd

ūRφ̃
†qL Oyu

Dim. 5 lcLφ̃
∗φ̃†lL O5

Table 4. Operators of dimension four and five.
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Operator Notation Operator Notation

(
L̄L
) (
L̄L
) (

l̄LγµlL
) (
l̄Lγ

µlL
)
Oll

(q̄LγµqL) (q̄Lγ
µqL) O(1)

qq (q̄LγµσaqL) (q̄Lγ
µσaqL) O(3)

qq(
l̄LγµlL

)
(q̄Lγ

µqL) O(1)
lq

(
l̄LγµσalL

)
(q̄Lγ

µσaqL) O(3)
lq

(
R̄R
) (
R̄R
) (ēRγµeR) (ēRγ

µeR) Oee
(ūRγµuR) (ūRγ

µuR) Ouu
(
d̄RγµdR

) (
d̄Rγ

µdR
)

Odd
(ūRγµuR)

(
d̄Rγ

µdR
)
O(1)
ud (ūRγµTAuR)

(
d̄Rγ

µTAdR
)
O(8)
ud

(ēRγµeR) (ūRγ
µuR) Oeu (ēRγµeR)

(
d̄Rγ

µdR
)

Oed

(
L̄L
) (
R̄R
)

(
l̄LγµlL

)
(ēRγ

µeR) Ole (q̄LγµqL) (ēRγ
µeR) Oqe(

l̄LγµlL
)

(ūRγ
µuR) Olu

(
l̄LγµlL

) (
d̄Rγ

µdR
)

Old
(q̄LγµqL) (ūRγ

µuR) O(1)
qu (q̄LγµTAqL) (ūRγ

µTAuR) O(8)
qu

(q̄LγµqL)
(
d̄Rγ

µdR
)
O(1)
qd (q̄LγµTAqL)

(
d̄Rγ

µTAdR
)
O(8)
qd(

L̄R
) (
R̄L
) (

l̄LeR
) (
d̄RqL

)
Oledq

(
L̄R
) (
L̄R
) (q̄LuR) iσ2 (q̄LdR)T O(1)

quqd (q̄LTAuR) iσ2 (q̄LTAdR)T O(8)
quqd(

l̄LeR
)
iσ2 (q̄LuR)T O(1)

lequ

(
l̄LσµνeR

)
iσ2 (q̄Lσ

µνuR)T O(3)
lequ

B-violating

εABC
(
d̄cAR uBR

) (
q̄cCL iσ2lL

)
Oduq

εABC
(
q̄cAL iσ2q

B
L

) (
ūcCR eR

)
Oqqu

εABC
(
d̄cAR uBR

) (
ūcCR eR

)
Oduu

εABC(iσ2)αδ(iσ2)βγ
(
q̄cAαL qBβL

)(
q̄cCγL lδL

)
Oqqq

Table 5. Basis of dimension-six operators: four-fermion interactions. Flavor indices are omitted.
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Operator Notation Operator Notation

X3
εabcW

a ν
µ W b ρ

ν W c µ
ρ OW εabcW̃

a ν
µ W b ρ

ν W c µ
ρ OW̃

fABCG
Aν
µ GB ρν GC µρ OG fABCG̃

Aν
µ GB ρν GC µρ OG̃

φ6
(
φ†φ

)3 Oφ

φ4D2
(
φ†φ

)
�
(
φ†φ

)
Oφ�

(
φ†Dµφ

)
((Dµφ)† φ) OφD

ψ2φ2

(
φ†φ

) (
l̄LφeR

)
Oeφ(

φ†φ
)

(q̄LφdR) Odφ
(
φ†φ

) (
q̄Lφ̃uR

)
Ouφ

X2φ2

φ†φBµνB
µν OφB φ†φB̃µνB

µν OφB̃
φ†φW a

µνW
aµν OφW φ†φW̃ a

µνW
aµν OφW̃

φ†σaφW
a
µνB

µν OφWB φ†σaφW̃
a
µνB

µν OφW̃B

φ†φGAµνG
Aµν OφG φ†φG̃AµνG

Aµν OφG̃

ψ2Xφ

(
l̄Lσ

µνeR
)
φBµν OeB

(
l̄Lσ

µνeR
)
σaφW a

µν OeW
(q̄Lσ

µνuR) φ̃Bµν OuB (q̄Lσ
µνuR)σaφ̃W a

µν OuW
(q̄Lσ

µνdR)φBµν OdB (q̄Lσ
µνdR)σaφW a

µν OdW
(q̄Lσ

µνTAuR) φ̃GAµν OuG (q̄Lσ
µνTAdR)φGAµν OdG

ψ2φ2D

(φ†i
↔
Dµφ)

(
l̄Lγ

µlL
)
O(1)
φl (φ†i

↔
D a
µ φ)

(
l̄Lγ

µσalL
)
O(3)
φl

(φ†i
↔
Dµφ) (ēRγ

µeR) Oφe
(φ†i

↔
Dµφ) (q̄Lγ

µqL) O(1)
φq (φ†i

↔
D a
µ φ) (q̄Lγ

µσaqL) O(3)
φq

(φ†i
↔
Dµφ) (ūRγ

µuR) Oφu (φ†i
↔
Dµφ)

(
d̄Rγ

µdR
)
Oφd

(φ̃†iDµφ) (ūRγ
µdR) Oφud

Table 6. Basis of dimension-six operators: operators other than four-fermion interactions. Flavor

indices are omitted.
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C Operators generated by each field multiplet

In this appendix we provide the representation of each heavy multiplet introduced in sec-

tion 2 in terms of operators of dimension n ≤ 6 in the low energy effective Lagrangian. The

results for the corresponding coefficients are given in appendix D. See section 4 for details.

Fields Operators

S Oφ4, Oφ, Oφ�, OφB, OφB̃, OφW , OφW̃ , OφG, OφG̃, Oeφ, Odφ, Ouφ
S1 Oll
S2 Oee
ϕ Ole, O

(1)
qu , O(8)

qu , O(1)
qd , O(8)

qd , Oledq, O
(1)
quqd, O

(1)
lequ, Oφ, Oeφ, Odφ, Ouφ

Ξ Oφ4, Oφ, OφD, Oφ�, OφWB, OφWB̃, Oeφ, Odφ, Ouφ
Ξ1 Oφ4, O5, Oll, Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ
Θ1 Oφ
Θ3 Oφ
ω1 O(1)

qq , O(3)
qq , O(1)

lq , O(3)
lq , Oeu, O(1)

ud , O(8)
ud , O(1)

quqd, O
(8)
quqd,

O(1)
lequ O

(3)
lequ, Oduq, Oqqu, Oqqq, Oduu

ω2 Odd
ω4 Ouu, Oed, Oduu
Π1 Old
Π7 Olu, Oqe, O(1)

lequ, O(3)
lequ

ζ O(1)
qq , O(3)

qq , O(1)
lq , O(3)

lq , Oqqq
Ω1 O(1)

qq , O(3)
qq , O(1)

ud , O(8)
ud , O(1)

quqd, O
(8)
quqd

Ω2 Odd
Ω4 Ouu
Υ O(1)

qq , O(3)
qq

Φ O(1)
qu , O(8)

qu , O(1)
qd , O(8)

qd , O(8)
quqd

Table 7. Operators generated by the heavy scalar fields introduced in table 1.
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Fields Operators

N O5, O(1)
φl , O(3)

φl

E Oeφ, OeB , O(1)
φl , O(3)

φl

∆1 Oeφ, OeB , OeW , Oφe
∆3 Oeφ, Oφe
Σ O5, Oeφ, O(1)

φl , O(3)
φl

Σ1 Oeφ, OeW , O(1)
φl , O(3)

φl

U Ouφ, OuB , OuG, O(1)
φq , O(3)

φq

D Odφ, OdB , OdG, O(1)
φq , O(3)

φq

Q1 Odφ, Ouφ, OdB , OdW , OdG, OuB , OuW , OuG, Oφd, Oφu, Oφud
Q5 Odφ, Oφd
Q7 Ouφ, Oφu
T1 Odφ, Ouφ, OdW , O(1)

φq , O(3)
φq

T2 Odφ, Ouφ, OuW , O(1)
φq , O(3)

φq

Table 8. Operators generated by the heavy vector-like fermions in table 2.

Fields Operators

B Oll, O(1)
qq , O(1)

lq , Oee, Odd, Ouu, Oed, Oeu, O(1)
ud , Ole, Old, Olu, Oqe, O(1)

qu , O(1)
qd ,

OφD, Oφ�, Oeφ, Odφ, Ouφ, O(1)
φl , O(1)

φq , Oφe, Oφd, Oφu
B1 Oφ4, O(1)

ud , O(8)
ud , Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ, Oφud

W Oφ4, Oll, O(3)
qq , O(3)

lq , Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ, O(3)
φl , O(3)

φq

W1 Oφ4, Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ
G O(1)

qq , O(3)
qq , Odd, Ouu, O(8)

ud , O(8)
qu , O(8)

qd

G1 O(1)
ud , O(8)

ud

H O(1)
qq , O(3)

qq

L1 Oφ4, Oye , Oyd , Oyu , Ole, O(1)
qu , O(8)

qu , O(1)
qd , O(8)

qd , Oledq, O(1)
quqd, O

(1)
lequ,

Oφ, OφD, Oφ�, OφB , OφB̃ , OφW , OφW̃ , OφWB , OφWB̃ , Oeφ, Odφ, Ouφ,

OeB , OeW , OdB , OdW , OuB , OuW , O(1)
φl , O(3)

φl , O(1)
φq , O(3)

φq , Oφe, Oφd, Oφu
L3 Ole
U2 O(1)

lq , O(3)
lq , Oed, Oledq

U5 Oeu
Q1 Olu, O(1)

qd , O(8)
qd , Oduq

Q5 Oqe, O(1)
qu , O(8)

qu , Oledq, Oduq, Oqqu
X O(1)

lq , O(3)
lq

Y1 O(1)
qd , O(8)

qd

Y5 O(1)
qu , O(8)

qu

Table 9. Operators generated by the heavy vector bosons presented in table 3.
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D Complete contributions to Wilson coefficients

In this appendix we present the contributions to the dimension-six SMEFT induced by the

heavy scalars, fermions and vectors introduced in section 2. See section 4 for details.

D.1 Redefinitions of Standard Model interactions

Upon integrating the heavy fields L1 and ϕ out, the kinetic term of the SM Higgs doublet

receives extra contributions, yielding a non-canonically normalized field:

Lkin,φ = ZφDµφ
†Dµφ, (D.1)

where

Zφ ≡ 1− (γL1)∗r(γL1)r
M2
L1r

−
µ̂2
φ(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

. (D.2)

In what follows, we renormalize φ → Z
−1/2
φ φ and present our results in a basis where all

fields have canonical kinetic terms (in the electroweak exact phase). The operators with nφ

doublets are therefore renormalized with Z
−nφ/2
φ . (This includes also the operators in L0.)

We will show these factors explicitly wherever they are needed, such that all the Wilson

coefficients Ci in this appendix are defined as the coefficients multiplying the corresponding

operators with canonical fields in the effective Lagrangian. Let us make two observations

about Zφ. First, the effect of the second term in eq. (D.2) on the Wilson coefficients of

dimension-six operators will have have an extra suppression of the form µ̂2
φ/M

2, with M

a heavy mass scale, comparable to the one of the typical Wilson coefficients of dimension-

eight operators with respect to the dimension-six ones. Hence, even if we include it for

completeness of the dimension-six results, for most practical purposes this second term can

be neglected. The first term, on the other hand, will not be suppressed if the dimensionful

coupling γL1 is of order ML1 . Second, Zφ is non-trivial only when γL1 6= 0, so it can be

ignored in perturbative unitary extensions of the SM.

The contributions to the renormalizable SM interactions in table 4 are given by

Z
1
2
φ (Cye)ij =−

µ̂2
φ(δL1ϕ)sr(γL1)∗s(y

e
ϕ)rij

M2
ϕrM

2
L1s

−
µ̂2
φŷ

e
ij(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

2M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
µ̂2
φ(g̃eDlL1

)rij(γL1)∗r

2M2
L1r

+
µ̂2
φ(g̃DelL1

)rij(γL1)∗r

2M2
L1r

}
, (D.3)

Z
1
2
φ

(
Cyd
)
ij

=−
µ̂2
φ(δL1ϕ)sr(γL1)∗s(y

d
ϕ)rij

M2
ϕrM

2
L1s

−
µ̂2
φŷ

d
ij(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

2M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
µ̂2
φ(g̃dDqL1

)rij(γL1)∗r

2M2
L1r

+
µ̂2
φ(g̃DdqL1

)rij(γL1)∗r

2M2
L1r

}
, (D.4)
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Z
1
2
φ (Cyu)ij =

µ̂2
φ(δL1ϕ)∗sr(γL1)s(y

u
ϕ)∗rji

M2
ϕrM

2
L1s

−
µ̂2
φŷ

u
ij(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

2M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
−
µ̂2
φ(g̃qDuL1

)∗rij(γL1)r

2M2
L1r

−
µ̂2
φ(g̃DquL1

)∗rij(γL1)r

2M2
L1r

}
, (D.5)

Z2
φCφ4 =

(κS)r(κS)r
2M2
Sr

+
(κΞ)r(κΞ)r

2M2
Ξr

−
2µ̂2

φ(κΞ)r(κΞ)r

M4
Ξr

+
2(κΞ1)∗r(κΞ1)r

M2
Ξ1r

−
4µ̂2

φ(κΞ1)∗r(κΞ1)r

M4
Ξ1r

+
µ̂2
φ(ĝφB1

)∗r(ĝ
φ
B1

)r

M2
B1r

+
µ̂2
φ(ĝφW)∗r(ĝ

φ
W)r

2M2
Wr

+
µ̂2
φ(ĝφW1

)∗r(ĝ
φ
W1

)r

4M2
W1r

−
µ̂2
φg2(gWL1

)sr(γL1)∗s(γL1)r

M2
L1r
M2
L1s

+
µ̂2
φ(h

(1)
L1

)rs(γL1)∗r(γL1)s

M2
L1r
M2
L1s

+
2µ̂2

φ Im
(

(ĝφW)r

)
(δWΞ)rs(κΞ)s

M2
Wr
M2

Ξs

+
2µ̂2

φ(δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s

M2
Ξr
M2

Ξs
M2
Wt

+
2µ̂2

φ Im
(

(ĝφW1
)∗r(δW1Ξ1)rs(κΞ1)s

)
M2

Ξ1s
M2
W1r

+
4µ̂2

φ(δW1Ξ1)∗st(δW1Ξ1)sr(κΞ1)r(κΞ1)∗t

M2
Ξ1r
M2
W1s

M2
Ξ1t

−
2µ̂2

φ Re
(

(g
(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

−
µ̂2
φ(εSL1)rts(κS)r(γL1)∗t (γL1)s

M2
SrM

2
L1s
M2
L1t

−
2µ̂2

φ Re ((δL1ϕ)rs(γL1)∗r(λϕ)s)

M2
ϕsM

2
L1r

−
2µ̂2

φλ̂φ(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
2µ̂2

φ Re
(

(g
(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2
L1s

+
µ̂2
φ(εΞL1)srt(κΞ)s(γL1)∗r(γL1)t

M2
L1r
M2

Ξs
M2
L1t

−
4µ̂2

φ Re
(

(g
(1)
ΞL1

)∗rs(γL1)∗s

)
(κΞ)r

M2
Ξr
M2
L1s

−
4µ̂2

φ Re
(

(g
(1)
Ξ1L1

)∗rs(γL1)∗s(κΞ1)r

)
M2
L1s
M2

Ξ1r

+
2µ̂2

φ Re ((δL1ϕ)rs(γL1)∗r(κSϕ)ts)(κS)t

M2
ϕsM

2
StM

2
L1r

+
2µ̂2

φ Re ((δL1ϕ)rs(γL1)∗r(κΞϕ)ts)(κΞ)t

M2
L1r
M2

Ξt
M2
ϕs

+
4µ̂2

φ Re ((δL1ϕ)rs(γL1)∗r(κΞ1ϕ)∗ts(κΞ1)t)

M2
ϕsM

2
L1r
M2

Ξ1t

+
1

f

{
−
µ̂2
φ(k̃φS)r(κS)r

M2
Sr

+
µ̂2
φ(k̃φΞ)r(κΞ)r

M2
Ξr

+
2µ̂2

φ Re
(

(γ̃
(3)
L1

)r(γL1)∗r

)
M2
L1r

−
2µ̂2

φ Im
(
(γ̃WL1

)r(γL1)∗r
)
g2

M2
L1r

}
. (D.6)
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These contributions can be absorbed into redefinitions of the SM Yukawa and quartic Higgs

couplings:

ŷe,u,dij = Z
1
2
φ (ye,u,dij −

(
Cye,u,d

)
ij

), (D.7)

λ̂φ = Z2
φ(λφ − Cφ4). (D.8)

Due to the Higgs-field renormalization, the coefficient of the Higgs mass term is also

redefined:

µ̂2
φ = Zφ µ

2
φ. (D.9)

We remind the reader that the hatted couplings on the left-hand side of the last three

equations are the coefficients of the corresponding operators — with the original Higgs-

field normalization — in the SM part of LBSM. The corresponding unhatted couplings are

the coefficients of these operators — built with canonically-normalized fields — in Leff .

Note that the right-hand sides depend linearly on the explicit hatted couplings on the

left-hand sides. Solving this linear system is straightforward.

In terms of the renormalized Higgs field and the redefined couplings µ2
φ, ye,u,d and λφ,

all the heavy-field contributions appear in the Wilson coefficients of higher-dimensional

operators. In order to keep our results as compact and clear as possible, we write the

dimension-six operators in terms of the original, hatted couplings. They can be readily

substituted by the solutions to eqs. (D.7), (D.8) and (D.9) to get the expressions in terms

of the redefined couplings. In practice, these expressions can be greatly simplified. Indeed,

all the contributions to Cye,u,d , except the one inside Zφ, and most of the contributions to

Cφ4 are not O(1) but carry an extra suppression µ2
φ/M

2. For calculations to order E2/M2,

with E a low-energy scale, all these contributions can be neglected. In this approximation,

the hatted couplings do not appear on the right-hand sides of eqs. (D.7), (D.8) and (D.9),

which thus give explicitly their expressions in terms of the redefined ones.

D.2 Dimension five

The only dimension-five operator in the basis receives the following contributions:

Zφ (C5)ij =−
2(κΞ1)r(yΞ1)∗rji

M2
Ξ1r

+
(λN )rj(λN )ri

2MNr

+
(λΣ)rj(λΣ)ri

8MΣr

. (D.10)

D.3 Four-fermion operators

D.3.1
(
LL
) (
LL
)

(Cll)ijkl =
(yS1)∗rjl(yS1)rik

M2
S1r

+
(yΞ1)rki(yΞ1)∗rlj

M2
Ξ1r

−
(glB)rkl(g

l
B)rij

2M2
Br

−
(glW)rkj(g

l
W)ril

4M2
Wr

+
(glW)rkl(g

l
W)rij

8M2
Wr

, (D.11)

(
C(1)
qq

)
ijkl

=
(yqqω1)rik(y

qq
ω1)∗rlj

2M2
ω1r

+
3(yqqζ )rki(y

qq
ζ )∗rlj

2M2
ζr

+
(yqqΩ1

)∗rik(y
qq
Ω1

)rjl

4M2
Ω1r

+
3(yΥ)rlj(yΥ)∗rki

4M2
Υr

−
(gqB)rkl(g

q
B)rij

2M2
Br

−
(gqG)rkj(g

q
G)ril

8M2
Gr

+
(gqG)rkl(g

q
G)rij

12M2
Gr

−
3(gH)rkj(gH)ril

32M2
Hr

, (D.12)
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(
C(3)
qq

)
ijkl

=−
(yqqω1)rki(y

qq
ω1)∗rjl

2M2
ω1r

−
(yqqζ )rki(y

qq
ζ )∗rjl

2M2
ζr

+
(yqqΩ1

)∗rik(y
qq
Ω1

)rlj

4M2
Ω1r

+
(yΥ)∗rki(yΥ)rjl

4M2
Υr

−
(gqW)rkl(g

q
W)rij

8M2
Wr

−
(gqG)rkj(g

q
G)ril

8M2
Gr

+
(gH)rkl(gH)rij

48M2
Hr

+
(gH)rkj(gH)ril

32M2
Hr

,

(D.13)(
C

(1)
lq

)
ijkl

=
(yqlω1)∗rki(y

ql
ω1)rlj

4M2
ω1r

+
3(yqlζ )∗rki(y

ql
ζ )rlj

4M2
ζr

−
(gqB)rkl(g

l
B)rij

M2
Br

−
(glqU2

)∗rjk(g
lq
U2

)ril

2M2
U2r

−
3(gX )∗rjk(gX )ril

8M2
Xr

, (D.14)

(
C

(3)
lq

)
ijkl

=−
(yqlω1)∗rki(y

ql
ω1)rlj

4M2
ω1r

+
(yqlζ )∗rki(y

ql
ζ )rlj

4M2
ζr

−
(gqW)rkl(g

l
W)rij

4M2
Wr

−
(glqU2

)∗rjk(g
lq
U2

)ril

2M2
U2r

+
(gX )∗rjk(gX )ril

8M2
Xr

. (D.15)

D.3.2
(
RR
) (
RR
)

(Cee)ijkl =
(yS2)rki(yS2)∗rlj

2M2
S2r

−
(geB)rkl(g

e
B)rij

2M2
Br

, (D.16)

(Cdd)ijkl =
(yω2)∗rlj(yω2)rki

M2
ω2r

+
(yΩ2)∗rik(yΩ2)rjl

2M2
Ω2r

−
(gdB)rkl(g

d
B)rij

2M2
Br

−
(gdG)rkj(g

d
G)ril

4M2
Gr

+
(gdG)rkl(g

d
G)rij

12M2
Gr

, (D.17)

(Cuu)ijkl =
(yuuω4

)∗rlj(y
uu
ω4

)rki

M2
ω4r

+
(yΩ4)∗rik(yΩ4)rjl

2M2
Ω4r

−
(guB)rkl(g

u
B)rij

2M2
Br

−
(guG)rkj(g

u
G)ril

4M2
Gr

+
(guG)rkl(g

u
G)rij

12M2
Gr

, (D.18)

(Ced)ijkl =
(yedω4

)∗rik(y
ed
ω4

)rjl

2M2
ω4r

−
(gdB)rkl(g

e
B)rij

M2
Br

−
(gedU2

)∗rjk(g
ed
U2

)ril

M2
U2r

, (D.19)

(Ceu)ijkl =
(yeuω1

)∗rik(y
eu
ω1

)rjl

2M2
ω1r

−
(guB)rkl(g

e
B)rij

M2
Br

−
(gU5)∗rjk(gU5)ril

M2
U5r

, (D.20)

(
C

(1)
ud

)
ijkl

=
(yduω1

)∗rlj(y
du
ω1

)rki

3M2
ω1r

+
(yudΩ1

)∗rik(y
ud
Ω1

)rjl

3M2
Ω1r

−
(guB)rij(g

d
B)rkl

M2
Br

−
(gduB1

)∗rli(g
du
B1

)rkj

3M2
B1r

−
4(gG1)∗rli(gG1)rkj

9M2
G1r

, (D.21)

(
C

(8)
ud

)
ijkl

=−
(yduω1

)∗rlj(y
du
ω1

)rki

M2
ω1r

+
(yudΩ1

)∗rik(y
ud
Ω1

)rjl

2M2
Ω1r

−
(gdG)rkl(g

u
G)rij

M2
Gr

−
2(gduB1

)∗rli(g
du
B1

)rkj

M2
B1r

+
(gG1)∗rli(gG1)rkj

3M2
G1r

. (D.22)
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D.3.3
(
LL
) (
RR
)

Recall that ŷe,u,d are defined in equation (D.7).

(Cle)ijkl =−
(yeϕ)∗rli(y

e
ϕ)rkj

2M2
ϕr

−
(geB)rkl(g

l
B)rij

M2
Br

+
(gL3)∗rki(gL3)rlj

M2
L3r

−
ŷe∗li (δL1ϕ)sr(γL1)∗s(y

e
ϕ)rkj

2M2
ϕrM

2
L1s

−
ŷekj(δL1ϕ)∗sr(γL1)s(y

e
ϕ)∗rli

2M2
ϕrM

2
L1s

−
ŷekj ŷ

e∗
li (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

2M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
ŷe∗li (g̃eDlL1

)rkj(γL1)∗r
4M2
L1r

+
ŷe∗li (g̃DelL1

)rkj(γL1)∗r
4M2
L1r

+
ŷekj(g̃

eDl
L1

)∗rli(γL1)r

4M2
L1r

+
ŷekj(g̃

Del
L1

)∗rli(γL1)r

4M2
L1r

}
, (D.23)

(Cld)ijkl =−
(yΠ1)∗rjk(yΠ1)ril

2M2
Π1r

−
(gdB)rkl(g

l
B)rij

M2
Br

+
(gdlQ5

)∗rki(g
dl
Q5

)rlj

M2
Q5r

, (D.24)

(Clu)ijkl =−
(yluΠ7

)∗rjk(y
lu
Π7

)ril

2M2
Π7r

−
(guB)rkl(g

l
B)rij

M2
Br

+
(gulQ1

)∗rki(g
ul
Q1

)rlj

M2
Q1r

, (D.25)

(Cqe)ijkl =−
(yeqΠ7

)∗rli(y
eq
Π7

)rkj

2M2
Π7r

−
(geB)rkl(g

q
B)rij

M2
Br

+
(geqQ5

)∗rki(g
eq
Q5

)rlj

M2
Q5r

, (D.26)

(
C(1)
qu

)
ijkl

=−
(yuϕ)∗rjk(y

u
ϕ)ril

6M2
ϕr

−
2(yquΦ )∗rjk(y

qu
Φ )ril

9M2
Φr

−
(guB)rkl(g

q
B)rij

M2
Br

+
2(guqQ5

)∗rlj(g
uq
Q5

)rki

3M2
Q5r

+
2(gY5)∗rlj(gY5)rki

3M2
Y5r

+
ŷukj(δL1ϕ)rs(γL1)∗r(y

u
ϕ)sil

6M2
L1r
M2
ϕs

+
ŷu∗li (δL1ϕ)∗rs(γL1)r(y

u
ϕ)∗sjk

6M2
L1r
M2
ϕs

−
ŷukj ŷ

u∗
li (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

6M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
−
ŷukj(g̃

qDu
L1

)rli(γL1)∗r

12M2
L1r

−
ŷukj(g̃

Dqu
L1

)rli(γL1)∗r

12M2
L1r

−
ŷu∗li (g̃qDuL1

)∗rkj(γL1)r

12M2
L1r

−
ŷu∗li (g̃DquL1

)∗rkj(γL1)r

12M2
L1r

}
, (D.27)

(
C(8)
qu

)
ijkl

=−
(yuϕ)∗rjk(y

u
ϕ)ril

M2
ϕr

+
(yquΦ )∗rjk(y

qu
Φ )ril

6M2
Φr

−
(guG)rkl(g

q
G)rij

M2
Gr

−
2(guqQ5

)∗rlj(g
uq
Q5

)rki

M2
Q5r

+
(gY5)∗rlj(gY5)rki

M2
Y5r
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+
ŷukj(δL1ϕ)rs(γL1)∗r(y

u
ϕ)sil

M2
L1r
M2
ϕs

+
ŷu∗li (δL1ϕ)∗rs(γL1)r(y

u
ϕ)∗sjk

M2
L1r
M2
ϕs

−
ŷukj ŷ

u∗
li (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
−
ŷukj(g̃

qDu
L1

)rli(γL1)∗r

2M2
L1r

−
ŷukj(g̃

Dqu
L1

)rli(γL1)∗r

2M2
L1r

−
ŷu∗li (g̃qDuL1

)∗rkj(γL1)r

2M2
L1r

−
ŷu∗li (g̃DquL1

)∗rkj(γL1)r

2M2
L1r

}
, (D.28)

(
C

(1)
qd

)
ijkl

=−
(ydϕ)∗rli(y

d
ϕ)rkj

6M2
ϕr

−
2(ydqΦ )∗rli(y

dq
Φ )rkj

9M2
Φr

−
(gdB)rkl(g

q
B)rij

M2
Br

+
2(gdqQ1

)∗rlj(g
dq
Q1

)rki

3M2
Q1r

+
2(gY1)∗rlj(gY1)rki

3M2
Y1r

−
ŷd∗li (δL1ϕ)sr(γL1)∗s(y

d
ϕ)rkj

6M2
ϕrM

2
L1s

−
ŷdkj(δL1ϕ)∗sr(γL1)s(y

d
ϕ)∗rli

6M2
ϕrM

2
L1s

−
ŷdkj ŷ

d∗
li (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

6M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
ŷd∗li (g̃dDqL1

)rkj(γL1)∗r

12M2
L1r

+
ŷd∗li (g̃DdqL1

)rkj(γL1)∗r

12M2
L1r

+
ŷdkj(g̃

dDq
L1

)∗rli(γL1)r

12M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rli(γL1)r

12M2
L1r

}
, (D.29)

(
C

(8)
qd

)
ijkl

=−
(ydϕ)∗rli(y

d
ϕ)rkj

M2
ϕr

+
(ydqΦ )∗rli(y

dq
Φ )rkj

6M2
Φr

−
(gdG)rkl(g

q
G)rij

M2
Gr

−
2(gdqQ1

)∗rlj(g
dq
Q1

)rki

M2
Q1r

+
(gY1)∗rlj(gY1)rki

M2
Y1r

−
ŷd∗li (δL1ϕ)sr(γL1)∗s(y

d
ϕ)rkj

M2
ϕrM

2
L1s

−
ŷdkj(δL1ϕ)∗sr(γL1)s(y

d
ϕ)∗rli

M2
ϕrM

2
L1s

−
ŷdkj ŷ

d∗
li (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
ŷd∗li (g̃dDqL1

)rkj(γL1)∗r

2M2
L1r

+
ŷd∗li (g̃DdqL1

)rkj(γL1)∗r

2M2
L1r

+
ŷdkj(g̃

dDq
L1

)∗rli(γL1)r

2M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rli(γL1)r

2M2
L1r

}
. (D.30)
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D.3.4
(
LR
) (
RL
)

and
(
LR
) (
LR
)

Recall that ŷe,u,d are defined in equation (D.7).

(Cledq)ijkl =
(ydϕ)rkl(y

e
ϕ)∗rji

M2
ϕr

+
2(glqU2

)ril(g
ed
U2

)∗rjk
M2
U2r

−
2(geqQ5

)rjl(g
dl
Q5

)∗rki
M2
Q5r

+
ŷe∗ji (δL1ϕ)sr(γL1)∗s(y

d
ϕ)rkl

M2
ϕrM

2
L1s

+
ŷdkl(δL1ϕ)∗sr(γL1)s(y

e
ϕ)∗rji

M2
ϕrM

2
L1s

+
ŷdklŷ

e∗
ji (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
−
ŷe∗ji (g̃dDqL1

)rkl(γL1)∗r

2M2
L1r

−
ŷe∗ji (g̃DdqL1

)rkl(γL1)∗r

2M2
L1r

−
ŷdkl(g̃

eDl
L1

)∗rji(γL1)r

2M2
L1r

−
ŷdkl(g̃

Del
L1

)∗rji(γL1)r

2M2
L1r

}
, (D.31)

(
C

(1)
quqd

)
ijkl

=−
(yuϕ)rij(y

d
ϕ)∗rlk

M2
ϕr

+
4(yqqω1)rki(y

du
ω1

)∗rlj
3M2

ω1r

+
4(yqqΩ1

)∗rki(y
ud
Ω1

)rjl

3M2
Ω1r

−
ŷd∗lk (δL1ϕ)sr(γL1)∗s(y

u
ϕ)rij

M2
ϕrM

2
L1s

+
ŷu∗ji (δL1ϕ)∗sr(γL1)s(y

d
ϕ)∗rlk

M2
ϕrM

2
L1s

+
ŷu∗ji ŷ

d∗
lk (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
ŷd∗lk (g̃qDuL1

)rji(γL1)∗r

2M2
L1r

+
ŷd∗lk (g̃DquL1

)rji(γL1)∗r

2M2
L1r

−
ŷu∗ji (g̃dDqL1

)∗rlk(γL1)r

2M2
L1r

−
ŷu∗ji (g̃DdqL1

)∗rlk(γL1)r

2M2
L1r

}
, (D.32)

(
C

(8)
quqd

)
ijkl

=−
4(yqqω1)rki(y

du
ω1

)∗rlj
M2
ω1r

+
2(yqqΩ1

)∗rki(y
ud
Ω1

)rjl

M2
Ω1r

−
(ydqΦ )∗rlk(y

qu
Φ )rij

M2
Φr

, (D.33)

(
C

(1)
lequ

)
ijkl

=
(yuϕ)rkl(y

e
ϕ)∗rji

M2
ϕr

+
(yeuω1

)rjl(y
ql
ω1)∗rki

2M2
ω1r

+
(yeqΠ7

)∗rjk(y
lu
Π7

)ril

2M2
Π7r

+
ŷe∗ji (δL1ϕ)sr(γL1)∗s(y

u
ϕ)rkl

M2
ϕrM

2
L1s

−
ŷu∗lk (δL1ϕ)∗sr(γL1)s(y

e
ϕ)∗rji

M2
ϕrM

2
L1s

−
ŷu∗lk ŷ

e∗
ji (δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+
1

f

{
−
ŷe∗ji (g̃qDuL1

)rlk(γL1)∗r

2M2
L1r

−
ŷe∗ji (g̃DquL1

)rlk(γL1)∗r

2M2
L1r

+
ŷu∗lk (g̃eDlL1

)∗rji(γL1)r

2M2
L1r

+
ŷu∗lk (g̃DelL1

)∗rji(γL1)r

2M2
L1r

}
, (D.34)

(
C

(3)
lequ

)
ijkl

=−
(yeuω1

)rjl(y
ql
ω1)∗rki

8M2
ω1r

+
(yeqΠ7

)∗rjk(y
lu
Π7

)ril

8M2
Π7r

. (D.35)
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D.3.5 B-violating

(Cduq)ijkl =
(yduω1

)∗rij(y
ql
ω1)rkl

M2
ω1r

+
2(gdqQ1

)∗rik(g
ul
Q1

)rjl

M2
Q1r

−
2(guqQ5

)∗rjk(g
dl
Q5

)ril

M2
Q5r

, (D.36)

(Cqqu)ijkl =
(yeuω1

)rlk(y
qq
ω1)∗rij

M2
ω1r

−
2(guqQ5

)∗rki(g
eq
Q5

)rlj

M2
Q5r

, (D.37)

(Cqqq)ijkl =
2(yqqω1)∗rij(y

ql
ω1)rkl

M2
ω1r

−
2(yqqζ )∗rij(y

ql
ζ )rkl

M2
ζr

, (D.38)

(Cduu)ijkl =
(yduω1

)∗rij(y
eu
ω1

)rlk

M2
ω1r

−
2(yuuω4

)∗rjk(y
ed
ω4

)rli

M2
ω4r

. (D.39)

D.4 Bosonic operators

D.4.1 φ6 and φ4D2

Recall that ĝφV contains contributions from L1 (see equations (4.3)–(4.6)) and that λ̂φ is

defined in equation (D.8).

Due to the length of the contributions to the coefficient of the Oφ operator we have

separated them as follows:

Z3
φCφ = CS

φ + CV
φ + CSV

φ , (D.40)

where CS
φ , CV

φ , and CSV
φ are given below.

CV
φ = −

2λ̂φ(ĝφB1
)∗r(ĝ

φ
B1

)r

M2
B1r

−
λ̂φ(ĝφW)∗r(ĝ

φ
W)r

M2
Wr

−
λ̂φ(ĝφW1

)∗r(ĝ
φ
W1

)r

2M2
W1r

+
2g2λ̂φ(gWL1

)sr(γL1)∗s(γL1)r

M2
L1r
M2
L1s

−
2λ̂φ(h

(1)
L1

)rs(γL1)∗r(γL1)s

M2
L1r
M2
L1s

+
1

f

{
−

4λ̂φ Re
(

(γ̃
(3)
L1

)r(γL1)∗r

)
M2
L1r

+
4λ̂φ Im

(
(γ̃WL1

)r(γL1)∗r
)
g2

M2
L1r

}
, (D.41)

CS
φ =− (λS)rs(κS)r(κS)s

M2
SrM

2
Ss

+
(κS3)rts(κS)r(κS)t(κS)s

M2
SrM

2
SsM

2
St

+
(λϕ)∗r(λϕ)r

M2
ϕr

+
4λ̂φ(κΞ)r(κΞ)r

M4
Ξr

− (λΞ)s(κΞ)s(κΞ)r
M2

Ξr
M2

Ξs

+
8λ̂φ(κΞ1)∗r(κΞ1)r

M4
Ξ1r

− 2(λΞ1)rs(κΞ1)∗r(κΞ1)s
M2

Ξ1r
M2

Ξ1s

+

√
2(λ′Ξ1

)rs(κΞ1)∗r(κΞ1)s

M2
Ξ1r
M2

Ξ1s

+
(λΘ1)∗r(λΘ1)r

6M2
Θ1r

+
(λΘ3)∗r(λΘ3)r

2M2
Θ3r

−
2 Re ((κSϕ)rs(λϕ)∗s)(κS)r

M2
SrM

2
ϕs

+
(κSϕ)∗rt(κS)r(κSϕ)st(κS)s

M2
SrM

2
SsM

2
ϕt

− (λSΞ)sr(κS)s(κΞ)r
M2

Ξr
M2
Ss

+
(κSΞ)tsr(κS)t(κΞ)s(κΞ)r

M2
Ξr
M2

Ξs
M2
St

−
2 Re ((κΞϕ)rs(λϕ)∗s)(κΞ)r

M2
Ξr
M2
ϕs

+
(κΞϕ)∗tr(κΞ)t(κΞϕ)sr(κΞ)s

M2
ϕrM

2
Ξs
M2

Ξt
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− 4 Re ((λSΞ1)rs(κΞ1)∗s)(κS)r
M2

Ξ1s
M2
Sr

+
2(κSΞ1)trs(κS)t(κΞ1)∗r(κΞ1)s

M2
Ξ1r
M2

Ξ1s
M2
St

− 2
√

2 Re ((λΞ1Ξ)rs(κΞ1)∗r)(κΞ)s
M2

Ξs
M2

Ξ1r

−
√

2(κΞΞ1)srt(κΞ)s(κΞ1)∗r(κΞ1)t
M2

Ξ1r
M2

Ξs
M2

Ξ1t

−
4 Re ((κΞ1ϕ)∗rs(κΞ1)r(λϕ)∗s)

M2
Ξ1r
M2
ϕs

+
4(κΞ1ϕ)∗st(κΞ1)s(κΞ1ϕ)rt(κΞ1)∗r

M2
Ξ1r
M2

Ξ1s
M2
ϕt

− Re ((κΞΘ1)rs(λΘ1)∗s)(κΞ)r
3M2

Θ1s
M2

Ξr

+
(κΞΘ1)∗rs(κΞ)r(κΞΘ1)ts(κΞ)t

6M2
Ξr
M2

Θ1s
M2

Ξt

− Re ((κΞ1Θ1)rs(κΞ1)∗r(λΘ1)∗s)

3M2
Ξ1r
M2

Θ1s

+
(κΞ1Θ1)∗tr(κΞ1)t(κΞ1Θ1)sr(κΞ1)∗s

6M2
Θ1r

M2
Ξ1s
M2

Ξ1t

− Re ((κΞ1Θ3)rs(κΞ1)∗r(λΘ3)∗s)

M2
Ξ1r
M2

Θ3s

+
(κΞ1Θ3)∗tr(κΞ1)t(κΞ1Θ3)sr(κΞ1)∗s

2M2
Θ3r

M2
Ξ1s
M2

Ξ1t

+
2 Re ((κΞϕ)∗rs(κSϕ)ts)(κΞ)r(κS)t

M2
Ξr
M2
StM

2
ϕs

+
4 Re ((κΞ1ϕ)rs(κΞ1)∗r(κSϕ)ts)(κS)t

M2
ϕsM

2
Ξ1r
M2
St

+
4 Re ((κΞ1ϕ)∗rs(κΞ1)r(κΞϕ)∗ts)(κΞ)t

M2
ϕsM

2
Ξ1r
M2

Ξt

+
Re ((κΞ1Θ1)∗rs(κΞ1)r(κΞΘ1)ts)(κΞ)t

3M2
Θ1s

M2
Ξ1r
M2

Ξt

+
1

f

{
2λ̂φ(k̃φS)r(κS)r

M2
Sr

+
(λ̃S)r(κS)r

M2
Sr

−
2λ̂φ(k̃φΞ)r(κΞ)r

M2
Ξr

+
(λ̃Ξ)r(κΞ)r

M2
Ξr

+
4 Re

(
(λ̃Ξ1)r(κΞ1)∗r

)
M2

Ξ1r

}
, (D.42)

CSV
φ

λ̂φ
= −

4 Im
(

(ĝφW)r

)
(δWΞ)rs(κΞ)s

M2
Wr
M2

Ξs

− 4(δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s
M2

Ξr
M2

Ξs
M2
Wt

−
4 Im

(
(ĝφW1

)∗r(δW1Ξ1)rs(κΞ1)s

)
M2

Ξ1s
M2
W1r

− 8(δW1Ξ1)∗st(δW1Ξ1)sr(κΞ1)r(κΞ1)∗t
M2

Ξ1r
M2
W1s

M2
Ξ1t

+
4 Re

(
(g

(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

+
2(εSL1)rts(κS)r(γL1)∗t (γL1)s

M2
SrM

2
L1s
M2
L1t

+
4 Re ((δL1ϕ)rs(γL1)∗r(λϕ)s)

M2
ϕsM

2
L1r

+
4λ̂φ(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

−
4 Re

(
(g

(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2
L1s

− 2(εΞL1)srt(κΞ)s(γL1)∗r(γL1)t
M2
L1r
M2

Ξs
M2
L1t

+
8 Re

(
(g

(1)
ΞL1

)∗rs(γL1)∗s

)
(κΞ)r

M2
Ξr
M2
L1s

+
8 Re

(
(g

(1)
Ξ1L1

)∗rs(γL1)∗s(κΞ1)r

)
M2
L1s
M2

Ξ1r

−
4 Re ((δL1ϕ)rs(γL1)∗r(κSϕ)ts)(κS)t

M2
ϕsM

2
StM

2
L1r

−
4 Re ((δL1ϕ)rs(γL1)∗r(κΞϕ)ts)(κΞ)t

M2
L1r
M2

Ξt
M2
ϕs

−
8 Re ((δL1ϕ)rs(γL1)∗r(κΞ1ϕ)∗ts(κΞ1)t)

M2
ϕsM

2
L1r
M2

Ξ1t

, (D.43)
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Z2
φCφD =− 2(κΞ)r(κΞ)r

M4
Ξr

+
4(κΞ1)∗r(κΞ1)r

M4
Ξ1r

−
Re
(

(ĝφB)r(ĝ
φ
B)r

)
M2
Br

−
(ĝφB)∗r(ĝ

φ
B)r

M2
Br

+
(ĝφB1

)∗r(ĝ
φ
B1

)r

M2
B1r

−
Re
(

(ĝφW)r(ĝ
φ
W)r

)
4M2
Wr

+
(ĝφW)∗r(ĝ

φ
W)r

4M2
Wr

−
(ĝφW1

)∗r(ĝ
φ
W1

)r

4M2
W1r

+
g1(gBL1

)rs(γL1)∗r(γL1)s

M2
L1r
M2
L1s

−
(h

(2)
L1

)rs(γL1)∗r(γL1)s

M2
L1r
M2
L1s

+
2 Re

(
(h

(3)
L1

)rs(γL1)∗r(γL1)∗s

)
M2
L1r
M2
L1s

+
2 Im

(
(ĝφW)r

)
(δWΞ)rs(κΞ)s

M2
Wr
M2

Ξs

+
2(δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s

M2
Ξr
M2

Ξs
M2
Wt

−
2 Im

(
(ĝφW1

)∗r(δW1Ξ1)rs(κΞ1)s

)
M2
W1r

M2
Ξ1s

− 4(δW1Ξ1)∗tr(δW1Ξ1)ts(κΞ1)s(κΞ1)∗r
M2

Ξ1r
M2

Ξ1s
M2
W1t

−
4 Re

(
(g

(1)
ΞL1

)∗rs(γL1)∗s

)
(κΞ)r

M2
Ξr
M2
L1s

+
4 Re

(
(g

(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2
L1s

+
2(εΞL1)srt(κΞ)s(γL1)∗r(γL1)t

M2
L1r
M2

Ξs
M2
L1t

+
4 Re

(
(g

(1)
Ξ1L1

)∗rs(γL1)∗s(κΞ1)r

)
M2
L1s
M2

Ξ1r

−
4 Re

(
(g

(2)
Ξ1L1

)rs(κΞ1)∗r(γL1)s

)
M2
L1s
M2

Ξ1r

− 4 Re ((εΞ1L1)∗rst(κΞ1)∗r(γL1)t(γL1)s)

M2
L1s
M2
L1t
M2

Ξ1r

+
1

f

{
2(k̃φΞ)r(κΞ)r

M2
Ξr

−
4 Re

(
(k̃Ξ1)r(κΞ1)∗r

)
M2

Ξ1r

−
2 Re

(
(γ̃

(1)
L1

)r(γL1)∗r

)
M2
L1r

+
2 Re

(
(γ̃

(2)
L1

)r(γL1)∗r

)
M2
L1r

+
2 Im

(
(γ̃BL1

)r(γL1)∗r
)
g1

M2
L1r

}
, (D.44)

Z2
φCφ� =− (κS)r(κS)r

2M4
Sr

+
(κΞ)r(κΞ)r

2M4
Ξr

+
2(κΞ1)∗r(κΞ1)r

M4
Ξ1r

−
Re
(

(ĝφB)r(ĝ
φ
B)r

)
2M2
Br

−
Re
(

(ĝφW)r(ĝ
φ
W)r

)
8M2
Wr

−
(ĝφB1

)∗r(ĝ
φ
B1

)r

2M2
B1r

−
(ĝφW)∗r(ĝ

φ
W)r

4M2
Wr

−
(ĝφW1

)∗r(ĝ
φ
W1

)r

8M2
W1r

+
g1(gBL1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
3g2(gWL1

)sr(γL1)∗s(γL1)r

4M2
L1r
M2
L1s

−
(h

(1)
L1

)rs(γL1)∗r(γL1)s

2M2
L1r
M2
L1s

+
Re
(

(h
(3)
L1

)rs(γL1)∗r(γL1)∗s

)
M2
L1r
M2
L1s

+
Im
(

(ĝφB)r

)
(δBS)rs(κS)s

M2
BrM

2
Ss

+
(δBS)rt(δBS)rs(κS)s(κS)t

2M2
BrM

2
SsM

2
St

−
Im
(

(ĝφW)r

)
(δWΞ)rs(κΞ)s

2M2
Wr
M2

Ξs

− (δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s
2M2

Ξr
M2

Ξs
M2
Wt
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−
Im
(

(ĝφW1
)∗r(δW1Ξ1)rs(κΞ1)s

)
M2

Ξ1s
M2
W1r

− 2(δW1Ξ1)∗st(δW1Ξ1)sr(κΞ1)r(κΞ1)∗t
M2

Ξ1r
M2
W1s

M2
Ξ1t

−
Re
(

(g
(1)
SL1

)∗rs(γL1)∗s

)
(κS)r

M2
SrM

2
L1s

+
Re
(

(g
(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

+
(εSL1)rts(κS)r(γL1)∗t (γL1)s

2M2
SrM

2
L1s
M2
L1t

+
Re
(

(g
(1)
ΞL1

)∗rs(γL1)∗s

)
(κΞ)r

M2
Ξr
M2
L1s

−
Re
(

(g
(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2
L1s

− (εΞL1)srt(κΞ)s(γL1)∗r(γL1)t
2M2
L1r
M2

Ξs
M2
L1t

+
2 Re

(
(g

(1)
Ξ1L1

)∗rs(γL1)∗s(κΞ1)r

)
M2
L1s
M2

Ξ1r

−
2 Re

(
(g

(2)
Ξ1L1

)rs(κΞ1)∗r(γL1)s

)
M2
L1s
M2

Ξ1r

− 2 Re ((εΞ1L1)∗rst(κΞ1)∗r(γL1)t(γL1)s)

M2
L1s
M2
L1t
M2

Ξ1r

+
1

f

{
(k̃φS)r(κS)r

2M2
Sr

−
(k̃φΞ)r(κΞ)r

2M2
Ξr

−
2 Re

(
(k̃Ξ1)r(κΞ1)∗r

)
M2

Ξ1r

+
Re
(

(γ̃
(2)
L1

)r(γL1)∗r

)
M2
L1r

−
Re
(

(γ̃
(3)
L1

)r(γL1)∗r

)
M2
L1r

+
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1

2M2
L1r

+
3 Im

(
(γ̃WL1

)r(γL1)∗r
)
g2

2M2
L1r

}
.

(D.45)

D.4.2 X2φ2

ZφCφB =− (g1)2(γL1)∗r(γL1)r
8M4
L1r

−
g1(gBL1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃BS )r(κS)r

M2
Sr

−
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1

2M2
L1r

}
, (D.46)

ZφCφB̃ =−
g1(gB̃L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃B̃S )r(κS)r

M2
Sr

−
Im
(

(γ̃B̃L1
)r(γL1)∗r

)
g1

2M2
L1r

}
, (D.47)

ZφCφW =− (g2)2(γL1)∗r(γL1)r
8M4
L1r

−
g2(gWL1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃WS )r(κS)r

M2
Sr

−
Im
(
(γ̃WL1

)r(γL1)∗r
)
g2

2M2
L1r

}
, (D.48)

ZφCφW̃ = −
g2(gW̃L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃W̃S )r(κS)r

M2
Sr

−
Im
(

(γ̃W̃L1
)r(γL1)∗r

)
g2

2M2
L1r

}
, (D.49)
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ZφCφWB =− g1g2(γL1)∗r(γL1)r
4M4
L1r

−
g2(gBL1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

−
g1(gWL1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃WB

Ξ )r(κΞ)r
M2

Ξr

−
Im
(
(γ̃BL1

)r(γL1)∗r
)
g2

2M2
L1r

−
Im
(
(γ̃WL1

)r(γL1)∗r
)
g1

2M2
L1r

}
, (D.50)

ZφCφWB̃ =−
g2(gB̃L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

−
g1(gW̃L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
1

f

{
(k̃WB̃

Ξ )r(κΞ)r
M2

Ξr

−
Im
(

(γ̃B̃L1
)r(γL1)∗r

)
g2

2M2
L1r

−
Im
(

(γ̃W̃L1
)r(γL1)∗r

)
g1

2M2
L1r

}
, (D.51)

ZφCφG =
1

f

(k̃GS )r(κS)r
M2
Sr

, (D.52)

ZφCφG̃ =
1

f

(k̃G̃S )r(κS)r
M2
Sr

. (D.53)

D.5 Operators with bosons and fermions

There are three types of operators coupling bosonic and fermionic fields: the operators of

the form ψ2φ3 represent couplings between scalars and fermions only, while those of the

form Xψ2φ and ψ2Dφ2 contain covariant interactions between the SM scalar, fermions and

gauge fields.

D.5.1 ψ2φ3

Due to the length of the contributions to the coefficients of the different ψ2φ3 operators

(Oeφ, Odφ and Ouφ), we have separated them as follows:

Z
3
2
φ (Ceφ)ij = ŷe∗ji a+ beij + ceij , (D.54)

Z
3
2
φ (Cdφ)ij = ŷd∗ji a+ bdij + cdij , (D.55)

Z
3
2
φ (Cuφ)ij = ŷu∗ji a

∗ + buij + cuij , (D.56)

where the coefficients a, bψij and cψij are defined below (equations (D.57)–(D.63)). (The

coefficients bψij and cψij refer to the contributions from only one type of particle and mixed

contributions, respectively.)

Recall also that ĝφV contains contributions from L1 (see equations (4.3)–(4.6)) and that

ŷe,d,uji and λ̂φ are defined in equations (D.7) and (D.8).

a =
(κΞ)r(κΞ)r

M4
Ξr

+
2(κΞ1)∗r(κΞ1)r

M4
Ξ1r

−
i Im

(
(ĝφB)r(ĝ

φ
B)r

)
2M2
Br

−
(ĝφB1

)∗r(ĝ
φ
B1

)r

2M2
B1r

−
i Im

(
(ĝφW)r(ĝ

φ
W)r

)
8M2
Wr

−
(ĝφW)∗r(ĝ

φ
W)r

4M2
Wr

−
(ĝφW1

)∗r(ĝ
φ
W1

)r

8M2
W1r
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+
g2(gWL1

)sr(γL1)∗s(γL1)r

2M2
L1r
M2
L1s

−
(h

(1)
L1

)rs(γL1)∗r(γL1)s

2M2
L1r
M2
L1s

−
i Im

(
(h

(3)
L1

)rs(γL1)∗r(γL1)∗s

)
M2
L1r
M2
L1s

−
iRe

(
(ĝφB)r

)
(δBS)rs(κS)s

M2
BrM

2
Ss

+
i
(

(ĝφW)r − 3(ĝφW)∗s

)
(δWΞ)rs(κΞ)s

4M2
Wr
M2

Ξs

− (δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s
M2

Ξr
M2

Ξs
M2
Wt

−
Im
(

(ĝφW1
)∗r(δW1Ξ1)rs(κΞ1)s

)
M2

Ξ1s
M2
W1r

− 2(δW1Ξ1)∗st(δW1Ξ1)sr(κΞ1)r(κΞ1)∗t
M2

Ξ1r
M2
W1s

M2
Ξ1t

+
i Im

(
(g

(1)
SL1

)∗rs(γL1)∗s

)
(κS)r

M2
SrM

2
L1s

+
Re
(

(g
(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

+
(εSL1)rts(κS)r(γL1)∗t (γL1)s

2M2
SrM

2
L1s
M2
L1t

+
(δL1ϕ)sr(γL1)∗s(λϕ)r

M2
ϕrM

2
L1s

+
2λ̂φ(δL1ϕ)∗ts(γL1)t(δL1ϕ)rs(γL1)∗r

M2
L1r
M2
ϕsM

2
L1t

+

(
(g

(1)
ΞL1

)rs(γL1)s + 3(g
(1)
ΞL1

)∗rs(γL1)∗s

)
(κΞ)r

2M2
Ξr
M2
L1s

−
Re
(

(g
(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2
L1s

− (εΞL1)srt(κΞ)s(γL1)∗r(γL1)t
2M2
L1r
M2

Ξs
M2
L1t

+
2 Re

(
(g

(1)
Ξ1L1

)∗rs(γL1)∗s(κΞ1)r

)
M2
L1s
M2

Ξ1r

−
2i Im

(
(g

(2)
Ξ1L1

)rs(κΞ1)∗r(γL1)s

)
M2
L1s
M2

Ξ1r

− 2i Im ((εΞ1L1)∗rst(κΞ1)∗r(γL1)t(γL1)s)

M2
L1s
M2
L1t
M2

Ξ1r

−
(δL1ϕ)tr(γL1)∗t (κSϕ)sr(κS)s

M2
ϕrM

2
SsM

2
L1t

−
(δL1ϕ)rt(γL1)∗r(κΞϕ)st(κΞ)s

M2
L1r
M2

Ξs
M2
ϕt

−
2(δL1ϕ)sr(γL1)∗s(κΞ1ϕ)∗tr(κΞ1)t

M2
ϕrM

2
L1s
M2

Ξ1t

+
1

f

{
(k̃φS)r(κS)r

2M2
Sr

−
(k̃φΞ)r(κΞ)r

2M2
Ξr

−
2i Im

(
(k̃Ξ1)r(κΞ1)∗r

)
M2

Ξ1r

−
i Im

(
(γ̃

(2)
L1

)r(γL1)∗r

)
M2
L1r

−
Re
(

(γ̃
(3)
L1

)r(γL1)∗r

)
M2
L1r

+
Im
(
(γ̃WL1

)r(γL1)∗r
)
g2

M2
L1r

}
, (D.57)

beij =
(λϕ)r(y

e
ϕ)∗rji

M2
ϕr

+
ŷe∗jk(λE)rk(λE)∗ri

2M2
Er

+
ŷe∗ki (λ∆1)rj(λ∆1)∗rk

2M2
∆1r

+
ŷe∗ki (λ∆3)rj(λ∆3)∗rk

2M2
∆3r

+
ŷe∗jk(λΣ)∗ri(λΣ)rk

4M2
Σr

+
ŷe∗jk(λΣ1)rk(λΣ1)∗ri

8M2
Σ1r
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+
iŷe∗jk Im

(
(ĝφB)r

)
(glB)rik

M2
Br

−
iŷe∗ki Im

(
(ĝφB)r

)
(geB)rkj

M2
Br

+
iŷe∗jk Im

(
(ĝφW)r

)
(glW)rik

4M2
Wr

+
1

f

{
(ỹeS)∗rji(κS)r

M2
Sr

+
(ỹeΞ)∗rji(κΞ)r

M2
Ξr

+
2(ỹeΞ1

)∗rji(κΞ1)r

M2
Ξ1r

+
iŷe∗jk(λ̃lE)rk(λE)∗ri

2MEr

+
(λ̃eE)rj(λE)∗ri

MEr

+
iŷe∗jk(λ̃lE)∗ri(λE)rk

2MEr

−
iŷe∗ki (λ̃

e
∆1

)∗rk(λ∆1)rj

2M∆1r

+
(λ̃l∆1

)∗ri(λ∆1)rj

M∆1r

+
(λ̃l′∆1

)∗ri(λ∆1)rj

M∆1r

−
iŷe∗ki (λ̃

e
∆1

)rj(λ∆1)∗rk
2M∆1r

−
iŷe∗ki (λ̃

e
∆3

)∗rk(λ∆3)rj

2M∆3r

+
(λ̃l∆3

)∗ri(λ∆3)rj

M∆3r

−
iŷe∗ki (λ̃

e
∆3

)rj(λ∆3)∗rk
2M∆3r

+
iŷe∗jk(λ̃lΣ)∗ri(λΣ)rk

2MΣr

+
iŷe∗jk(λ̃lΣ)rk(λΣ)∗ri

2MΣr

+
(λ̃eΣ)rj(λΣ)∗ri

MΣr

+
iŷe∗jk(λ̃lΣ1

)rk(λΣ1)∗ri
4MΣ1r

+
(λ̃eΣ1

)rj(λΣ1)∗ri
2MΣ1r

+
iŷe∗jk(λ̃lΣ1

)∗ri(λΣ1)rk

4MΣ1r

+
ŷe∗jkŷ

e
lk(g̃

eDl
L1

)∗rli(γL1)r

4M2
L1r

−
ŷe∗ki ŷ

e
kl(g̃

eDl
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃eDlL1

)∗rji(γL1)r

M2
L1r

−
ŷe∗jkŷ

e
lk(g̃

Del
L1

)∗rli(γL1)r

4M2
L1r

+
ŷe∗ki ŷ

e
kl(g̃

Del
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃DelL1

)∗rji(γL1)r

M2
L1r

+
iŷe∗ki (g̃

e
L1

)rkj(γL1)∗r
2M2
L1r

−
iŷe∗jk(g̃lL1

)rik(γL1)∗r

2M2
L1r

−
iŷe∗jk(g̃l′L1

)rik(γL1)∗r

2M2
L1r

+
iŷe∗ki (g̃

e
L1

)∗rjk(γL1)r

2M2
L1r

−
iŷe∗jk(g̃lL1

)∗rki(γL1)r

2M2
L1r

−
iŷe∗jk(g̃l′L1

)∗rki(γL1)r

2M2
L1r

}
, (D.58)

ceij =−
(κSϕ)rs(κS)r(y

e
ϕ)∗sji

M2
SrM

2
ϕs

−
(κΞϕ)sr(κΞ)s(y

e
ϕ)∗rji

M2
ϕrM

2
Ξs

−
2(κΞ1ϕ)∗sr(κΞ1)s(y

e
ϕ)∗rji

M2
ϕrM

2
Ξ1s

− (λE∆1)rs(λE)∗ri(λ∆1)sj
MErM∆1s

− (λE∆3)sr(λE)∗si(λ∆3)rj
M∆3rMEs

− (λΣ)∗si(λΣ∆1)sr(λ∆1)rj
2M∆1rMΣs

− (λΣ1∆1)rs(λΣ1)∗ri(λ∆1)sj
4MΣ1rM∆1s

+
(λΣ1∆3)sr(λΣ1)∗si(λ∆3)rj

4M∆3rMΣ1s

− (wSE)rsj(κS)r(λE)∗si
M2
SrMEs

− (wS∆1)∗rsi(κS)r(λ∆1)sj
M2
SrM∆1s

− (wΞ∆3)∗rsi(κΞ)r(λ∆1)sj
M2

Ξr
M∆1s

− (wΞΣ1)srj(κΞ)s(λΣ1)∗ri
2MΣ1rM

2
Ξs

− 2(wΞ1∆3)∗rsi(κΞ1)r(λ∆3)sj
M2

Ξ1r
M∆3s

−
(λΣ)∗si(wΞ1Σ)∗rsj(κΞ1)r

M2
Ξ1r
MΣs
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+
iŷe∗jk(zEL1)rsk(λE)∗ri(γL1)∗s

2MErM
2
L1s

+
iŷe∗jk(zEL1)∗rsi(γL1)s(λE)rk

2MErM
2
L1s

−
iŷe∗ki (z∆1L1)∗rsk(γL1)∗s(λ∆1)rj

2M∆1rM
2
L1s

−
iŷe∗ki (z∆1L1)rsj(λ∆1)∗rk(γL1)s

2M∆1rM
2
L1s

−
iŷe∗ki (z∆3L1)∗srk(γL1)r(λ∆3)sj

2M2
L1r
M∆3s

−
iŷe∗ki (z∆3L1)srj(λ∆3)∗sk(γL1)∗r

2M2
L1r
M∆3s

+
iŷe∗jk(λΣ)∗ri(zΣL1)rsk(γL1)s

2MΣrM
2
L1s

+
iŷe∗jk(λΣ)sk(zΣL1)∗sri(γL1)∗r

2M2
L1r
MΣs

+
iŷe∗jk(zΣ1L1)srk(λΣ1)∗si(γL1)∗r

4M2
L1r
MΣ1s

+
iŷe∗jk(zΣ1L1)∗rsi(γL1)s(λΣ1)rk

4MΣ1rM
2
L1s

+
iŷe∗jk(δBS)rs(g

l
B)rik(κS)s

M2
BrM

2
Ss

−
iŷe∗ki (δBS)rs(g

e
B)rkj(κS)s

M2
BrM

2
Ss

+
iŷe∗jk(δWΞ)sr(g

l
W)sik(κΞ)r

2M2
Ξr
M2
Ws

+
2λ̂φ(δL1ϕ)∗sr(γL1)s(y

e
ϕ)∗rji

M2
ϕrM

2
L1s

, (D.59)

bdij =
(λϕ)r(y

d
ϕ)∗rji

M2
ϕr

+
ŷd∗jk(λD)rk(λD)∗ri

2M2
Dr

+
ŷd∗ki (λ

d
Q1

)rj(λ
d
Q1

)∗rk
2M2

Q1r

+
ŷd∗ki (λQ5)rj(λQ5)∗rk

2M2
Q5r

+
ŷd∗jk(λT1)rk(λT1)∗ri

8M2
T1r

+
ŷd∗jk(λT2)rk(λT2)∗ri

4M2
T2r

+
iŷd∗jk Im

(
(ĝφB)r

)
(gqB)rik

M2
Br

−
iŷd∗ki Im

(
(ĝφB)r

)
(gdB)rkj

M2
Br

+
iŷd∗jk Im

(
(ĝφW)r

)
(gqW)rik

4M2
Wr

+
1

f

{
(ỹdS)∗rji(κS)r

M2
Sr

+
(ỹdΞ)∗rji(κΞ)r

M2
Ξr

+
2(ỹdΞ1

)∗rji(κΞ1)r

M2
Ξ1r

+
iŷd∗jk(λ̃qD)rk(λD)∗ri

2MDr

+
(λ̃dD)rj(λD)∗ri

MDr

+
iŷd∗jk(λ̃qD)∗ri(λD)rk

2MDr

−
iŷd∗ki (λ̃

d
Q1

)∗rk(λ
d
Q1

)rj

2MQ1r

+
(λ̃qQ1

)∗ri(λ
d
Q1

)rj

MQ1r

+
(λ̃q′Q1

)∗ri(λ
d
Q1

)rj

MQ1r

−
iŷd∗ki (λ̃

d
Q1

)rj(λ
d
Q1

)∗rk
2MQ1r

−
iŷd∗ki (λ̃

d
Q5

)∗rk(λQ5)rj

2MQ5r

+
(λ̃qQ5

)∗ri(λQ5)rj

MQ5r

−
iŷd∗ki (λ̃

d
Q5

)rj(λQ5)∗rk
2MQ5r

+
iŷd∗jk(λ̃qT1

)rk(λT1)∗ri
4MT1r

+
(λ̃dT1

)rj(λT1)∗ri
2MT1r

+
iŷd∗jk(λ̃qT1

)∗ri(λT1)rk

4MT1r

+
iŷd∗jk(λ̃qT2

)rk(λT2)∗ri
2MT2r

+
(λ̃dT2

)rj(λT2)∗ri
MT2r

+
iŷd∗jk(λ̃qT2

)∗ri(λT2)rk

2MT2r

+
ŷd∗jk ŷ

d
lk(g̃

dDq
L1

)∗rli(γL1)r

4M2
L1r

−
ŷd∗ki ŷ

d
kl(g̃

dDq
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃dDqL1

)∗rji(γL1)r

M2
L1r

−
ŷd∗jk ŷ

d
lk(g̃

Ddq
L1

)∗rli(γL1)r

4M2
L1r

+
ŷd∗ki ŷ

d
kl(g̃

Ddq
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃DdqL1

)∗rji(γL1)r

M2
L1r
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+
iŷd∗ki (g̃

d
L1

)rkj(γL1)∗r
2M2
L1r

−
iŷd∗jk(g̃qL1

)rik(γL1)∗r

2M2
L1r

−
iŷd∗jk(g̃q′L1

)rik(γL1)∗r

2M2
L1r

+
iŷd∗ki (g̃

d
L1

)∗rjk(γL1)r

2M2
L1r

−
iŷd∗jk(g̃qL1

)∗rki(γL1)r

2M2
L1r

−
iŷd∗jk(g̃q′L1

)∗rki(γL1)r

2M2
L1r

}
, (D.60)

cdij = −
(κSϕ)rs(κS)r(y

d
ϕ)∗sji

M2
SrM

2
ϕs

−
(κΞϕ)rs(κΞ)r(y

d
ϕ)∗sji

M2
Ξr
M2
ϕs

−
2(κΞ1ϕ)∗sr(κΞ1)s(y

d
ϕ)∗rji

M2
ϕrM

2
Ξ1s

−
(λDQ1)sr(λD)∗si(λ

d
Q1

)rj

MQ1rMDs

−
(λDQ5)rs(λD)∗ri(λQ5)sj

MDrMQ5s

−
(λT1Q1)rs(λT1)∗ri(λ

d
Q1

)sj

4MT1rMQ1s

−
(λT2Q1)sr(λT2)∗si(λ

d
Q1

)rj

2MQ1rMT2s

+
(λT1Q5)rs(λT1)∗ri(λQ5)sj

4MT1rMQ5s

− (wSD)rsj(κS)r(λD)∗si
M2
SrMDs

−
(wSQ1)∗rsi(κS)r(λ

d
Q1

)sj

M2
SrMQ1s

−
(wΞQ7)∗sri(κΞ)s(λ

d
Q1

)rj

MQ1rM
2
Ξs

− (wΞT1)rsj(κΞ)r(λT1)∗si
2M2

Ξr
MT1s

−
2(wΞ1Q5)∗rsi(κΞ1)r(λQ5)sj

M2
Ξ1r
MQ5s

− (wΞ1T2)rsj(κΞ1)r(λT2)∗si
M2

Ξ1r
MT2s

+
iŷd∗jk(zDL1)rsk(λD)∗ri(γL1)∗s

2MDrM
2
L1s

+
iŷd∗jk(zDL1)∗rsi(γL1)s(λD)rk

2MDrM
2
L1s

−
iŷd∗ki (z

d
Q1L1

)∗rsk(γL1)∗s(λ
d
Q1

)rj

2MQ1rM
2
L1s

−
iŷd∗ki (z

d
Q1L1

)rsj(λ
d
Q1

)∗rk(γL1)s

2MQ1rM
2
L1s

−
iŷd∗ki (zQ5L1)∗rsk(γL1)s(λQ5)rj

2MQ5rM
2
L1s

−
iŷd∗ki (zQ5L1)rsj(λQ5)∗rk(γL1)∗s

2MQ5rM
2
L1s

+
iŷd∗jk(zT2L1)rsk(λT2)∗ri(γL1)s

2MT2rM
2
L1s

+
iŷd∗jk(zT2L1)∗sri(γL1)∗r(λT2)sk

2M2
L1r
MT2s

+
iŷd∗jk(zT1L1)rsk(λT1)∗ri(γL1)∗s

4MT1rM
2
L1s

+
iŷd∗jk(zT1L1)∗sri(γL1)r(λT1)sk

4M2
L1r
MT1s

+
iŷd∗jk(δBS)rs(g

q
B)rik(κS)s

M2
BrM

2
Ss

−
iŷd∗ki (δBS)rs(g

d
B)rkj(κS)s

M2
BrM

2
Ss

+
iŷd∗jk(δWΞ)sr(g

q
W)sik(κΞ)r

2M2
Ξr
M2
Ws

+
2λ̂φ(δL1ϕ)∗sr(γL1)s(y

d
ϕ)∗rji

M2
ϕrM

2
L1s

, (D.61)

buij = −
(λϕ)∗r(y

u
ϕ)rij

M2
ϕr

+
ŷu∗jk (λU )rk(λU )∗ri

2M2
Ur

+
ŷu∗ki (λuQ1

)rj(λ
u
Q1

)∗rk
2M2

Q1r

+
ŷu∗ki (λQ7)rj(λQ7)∗rk

2M2
Q7r

+
ŷu∗jk (λT1)rk(λT1)∗ri

4M2
T1r

+
ŷu∗jk (λT2)rk(λT2)∗ri

8M2
T2r
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+
iŷu∗jk Im

(
(ĝφB)r

)
(gqB)rik

M2
Br

−
iŷu∗ki Im

(
(ĝφB)r

)
(guB)rkj

M2
Br

−
iŷu∗jk Im

(
(ĝφW)r

)
(gqW)rik

4M2
Wr

+
1

f

{
(ỹuS)∗rji(κS)r

M2
Sr

−
(ỹuΞ)∗rji(κΞ)r

M2
Ξr

+
2(ỹuΞ1

)rji(κΞ1)∗r
M2

Ξ1r

+
iŷu∗jk (λ̃qU )rk(λU )∗ri

2MUr

+
(λ̃uU )rj(λU )∗ri

MUr

+
iŷu∗jk (λ̃qU )∗ri(λU )rk

2MUr

−
iŷu∗ki (λ̃uQ1

)∗rk(λ
u
Q1

)rj

2MQ1r

+
(λ̃q′Q1

)∗ri(λ
u
Q1

)rj

MQ1r

−
iŷu∗ki (λ̃uQ1

)rj(λ
u
Q1

)∗rk
2MQ1r

−
iŷu∗ki (λ̃uQ7

)∗rk(λQ7)rj

2MQ7r

+
(λ̃qQ7

)∗ri(λQ7)rj

MQ7r

−
iŷu∗ki (λ̃uQ7

)rj(λQ7)∗rk
2MQ7r

+
iŷu∗jk (λ̃qT1

)rk(λT1)∗ri
2MT1r

+
(λ̃uT1

)rj(λT1)∗ri
MT1r

+
iŷu∗jk (λ̃qT1

)∗ri(λT1)rk

2MT1r

+
iŷu∗jk (λ̃qT2

)rk(λT2)∗ri
4MT2r

−
(λ̃uT2

)rj(λT2)∗ri
2MT2r

+
iŷu∗jk (λ̃qT2

)∗ri(λT2)rk

4MT2r

−
ŷu∗jk ŷ

u
lk(g̃

qDu
L1

)rli(γL1)∗r

4M2
L1r

+
ŷu∗ki ŷ

u
kl(g̃

qDu
L1

)rjl(γL1)∗r

4M2
L1r

+
λ̂φ(g̃qDuL1

)rji(γL1)∗r

M2
L1r

+
ŷu∗jk ŷ

u
lk(g̃

Dqu
L1

)rli(γL1)∗r

4M2
L1r

−
ŷu∗ki ŷ

u
kl(g̃

Dqu
L1

)rjl(γL1)∗r

4M2
L1r

+
λ̂φ(g̃DquL1

)rji(γL1)∗r

M2
L1r

+
iŷu∗ki (g̃uL1

)rkj(γL1)∗r
2M2
L1r

−
iŷu∗jk (g̃qL1

)rik(γL1)∗r

2M2
L1r

+
iŷu∗jk (g̃q′L1

)rik(γL1)∗r

2M2
L1r

+
iŷu∗ki (g̃uL1

)∗rjk(γL1)r

2M2
L1r

−
iŷu∗jk (g̃qL1

)∗rki(γL1)r

2M2
L1r

+
iŷu∗jk (g̃q′L1

)∗rki(γL1)r

2M2
L1r

}
, (D.62)

cuij =
(κSϕ)∗rs(κS)r(y

u
ϕ)sij

M2
SrM

2
ϕs

+
(κΞϕ)∗sr(κΞ)s(y

u
ϕ)rij

M2
ϕrM

2
Ξs

+
2(κΞ1ϕ)rs(κΞ1)∗r(y

u
ϕ)sij

M2
Ξ1r
M2
ϕs

−
(λUQ1)rs(λU )∗ri(λ

u
Q1

)sj

MUrMQ1s

−
(λUQ7)rs(λU )∗ri(λQ7)sj

MUrMQ7s

−
(λT1Q1)sr(λT1)∗si(λ

u
Q1

)rj

2MQ1rMT1s

−
(λT2Q1)sr(λT2)∗si(λ

u
Q1

)rj

4MQ1rMT2s

+
(λT2Q7)sr(λT2)∗si(λQ7)rj

4MQ7rMT2s

− (wSU )rsj(κS)r(λU )∗si
M2
SrMUs

−
(wSQ1)∗rsi(κS)r(λ

u
Q1

)sj

M2
SrMQ1s

+
(wΞT2)srj(κΞ)s(λT2)∗ri

2MT2rM
2
Ξs

+
(wΞQ7)∗rsi(κΞ)r(λ

u
Q1

)sj

M2
Ξr
MQ1s

− (wΞ1T1)srj(κΞ1)∗s(λT1)∗ri
MT1rM

2
Ξ1s

−
2(wΞ1Q7)∗rsi(κΞ1)∗r(λQ7)sj

M2
Ξ1r
MQ7s
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+
iŷu∗jk (zUL1)rsk(λU )∗ri(γL1)s

2MUrM
2
L1s

+
iŷu∗jk (zUL1)∗rsi(γL1)∗s(λU )rk

2MUrM
2
L1s

−
iŷu∗ki (zuQ1L1

)∗srk(γL1)r(λ
u
Q1

)sj

2M2
L1r
MQ1s

−
iŷu∗ki (zuQ1L1

)srj(λ
u
Q1

)∗sk(γL1)∗r

2M2
L1r
MQ1s

−
iŷu∗ki (zQ7L1)∗rsk(γL1)∗s(λQ7)rj

2MQ7rM
2
L1s

−
iŷu∗ki (zQ7L1)rsj(λQ7)∗rk(γL1)s

2MQ7rM
2
L1s

+
iŷu∗jk (zT1L1)rsk(λT1)∗ri(γL1)∗s

2MT1rM
2
L1s

+
iŷu∗jk (zT1L1)∗sri(γL1)r(λT1)sk

2M2
L1r
MT1s

+
iŷu∗jk (zT2L1)∗sri(γL1)∗r(λT2)sk

4M2
L1r
MT2s

+
iŷu∗jk (zT2L1)rsk(λT2)∗ri(γL1)s

4MT2rM
2
L1s

+
iŷu∗jk (δBS)rs(g

q
B)rik(κS)s

M2
BrM

2
Ss

−
iŷu∗ki (δBS)rs(g

u
B)rkj(κS)s

M2
BrM

2
Ss

−
iŷu∗jk (δWΞ)sr(g

q
W)sik(κΞ)r

2M2
Ξr
M2
Ws

−
2λ̂φ(δL1ϕ)sr(γL1)∗s(y

u
ϕ)rij

M2
ϕrM

2
L1s

. (D.63)

D.5.2 Xψ2φ

Z
1
2

φ (CeB)ij =
1

f

{
(λ̃BE)rj(λE)∗ri

MEr

+
(λ̃B∆1

)∗ri(λ∆1)rj

M∆1r

−
g1(g̃eDlL1

)∗rji(γL1)r

8M2
L1r

+
g1(g̃DelL1

)∗rji(γL1)r

8M2
L1r

}
,

(D.64)

Z
1
2

φ (CeW )ij =
1

f

{
(λ̃W∆1

)∗ri(λ∆1
)rj

M∆1r

+
(λ̃WΣ1

)rj(λΣ1
)∗ri

2MΣ1r

−
g2(g̃eDlL1

)∗rji(γL1
)r

8M2
L1r

+
g2(g̃DelL1

)∗rji(γL1
)r

8M2
L1r

}
,

(D.65)

Z
1
2

φ (CdB)ij =
1

f

{
(λ̃BD)rj(λD)∗ri

MDr

+
(λ̃BQ1

)∗ri(λ
d
Q1

)rj

MQ1r

−
g1(g̃dDqL1

)∗rji(γL1)r

8M2
L1r

+
g1(g̃DdqL1

)∗rji(γL1)r

8M2
L1r

}
,

(D.66)

Z
1
2

φ (CdW )ij =
1

f

{
(λ̃WQ1

)∗ri(λ
d
Q1

)rj

MQ1r

+
(λ̃WT1

)rj(λT1
)∗ri

2MT1r

−
g2(g̃dDqL1

)∗rji(γL1
)r

8M2
L1r

+
g2(g̃DdqL1

)∗rji(γL1
)r

8M2
L1r

}
,

(D.67)

Z
1
2

φ (CdG)ij =
1

f

{
(λ̃GD)rj(λD)∗ri

MDr

+
(λ̃GQ1

)∗ri(λ
d
Q1

)rj

MQ1r

}
, (D.68)

Z
1
2

φ (CuB)ij =
1

f

{
(λ̃BU )rj(λU )∗ri

MUr

+
(λ̃BQ1

)∗ri(λ
u
Q1

)rj

MQ1r

+
g1(g̃qDuL1

)rji(γL1
)∗r

8M2
L1r

−
g1(g̃DquL1

)rji(γL1)∗r
8M2
L1r

}
,

(D.69)

Z
1
2

φ (CuW )ij =
1

f

{
(λ̃WQ1

)∗ri(λ
u
Q1

)rj

MQ1r

+
(λ̃WT2

)rj(λT2
)∗ri

2MT2r

+
g2(g̃qDuL1

)rji(γL1
)∗r

8M2
L1r

−
g2(g̃DquL1

)rji(γL1
)∗r

8M2
L1r

}
,

(D.70)

Z
1
2

φ (CuG)ij =
1

f

{
(λ̃GU )rj(λU )∗ri

MUr

+
(λ̃GQ1

)∗ri(λ
u
Q1

)rj

MQ1r

}
. (D.71)
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D.5.3 ψ2φ2D

Recall that ĝφV contains contributions from L1 (see equations (4.3)–(4.6)) and that ŷe,u,d

are defined in equation (D.7).

Zφ

(
C

(1)
φl

)
ij

=
(λN )∗ri(λN )rj

4M2
Nr

− (λE)rj(λE)∗ri
4M2

Er

+
3(λΣ)∗ri(λΣ)rj

16M2
Σr

− 3(λΣ1)rj(λΣ1)∗ri
16M2

Σ1r

−
Re
(

(ĝφB)r

)
(glB)rij

M2
Br

−
g1δij(g

B
L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
i(λN )rj(zNL1)∗rsi(γL1)∗s

4MNrM
2
L1s

− i(λN )∗ri(zNL1)rsj(γL1)s
4MNrM

2
L1s

− i(zEL1)∗rsi(γL1)s(λE)rj
4MErM

2
L1s

+
i(zEL1)rsj(λE)∗ri(γL1)∗s

4MErM
2
L1s

+
3i(λΣ)sj(zΣL1)∗sri(γL1)∗r

8M2
L1r
MΣs

− 3i(λΣ)∗ri(zΣL1)rsj(γL1)s
8MΣrM

2
L1s

+
3i(zΣ1L1)srj(λΣ1)∗si(γL1)∗r

8M2
L1r
MΣ1s

− 3i(zΣ1L1)∗rsi(γL1)s(λΣ1)rj
8MΣ1rM

2
L1s

+
1

f

{
i(λ̃N )∗ri(λN )rj

4MNr

− i(λ̃N )rj(λN )∗ri
4MNr

+
i(λ̃lE)rj(λE)∗ri

4MEr

−
i(λ̃lE)∗ri(λE)rj

4MEr

+
3i(λ̃lΣ)∗ri(λΣ)rj

8MΣr

−
3i(λ̃lΣ)rj(λΣ0)∗ri

8MΣr

+
3i(λ̃lΣ1

)rj(λΣ1)∗ri
8MΣ1r

−
3i(λ̃lΣ1

)∗ri(λΣ1)rj

8MΣ1r

−
ŷe∗ki (g̃

eDl
L1

)rkj(γL1)∗r
8M2
L1r

−
ŷekj(g̃

eDl
L1

)∗rki(γL1)r

8M2
L1r

+
ŷe∗ki (g̃

Del
L1

)rkj(γL1)∗r
8M2
L1r

+
ŷekj(g̃

Del
L1

)∗rki(γL1)r

8M2
L1r

−
i(g̃lL1

)rij(γL1)∗r
2M2
L1r

+
i(g̃lL1

)∗rji(γL1)r

2M2
L1r

−
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1δij

2M2
L1r

}
, (D.72)

Zφ

(
C

(3)
φl

)
ij

=− (λN )∗ri(λN )rj
4M2

Nr

− (λE)rj(λE)∗ri
4M2

Er

+
(λΣ)∗ri(λΣ)rj

16M2
Σr

+
(λΣ1)rj(λΣ1)∗ri

16M2
Σ1r

−
Re
(

(ĝφW)r

)
(glW)rij

4M2
Wr

+
g2δij(g

W
L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

− i(λN )rj(zNL1)∗rsi(γL1)∗s
4MNrM

2
L1s

+
i(λN )∗ri(zNL1)rsj(γL1)s

4MNrM
2
L1s
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+
i(zEL1)rsj(λE)∗ri(γL1)∗s

4MErM
2
L1s

− i(zEL1)∗rsi(γL1)s(λE)rj
4MErM

2
L1s

+
i(λΣ)sj(zΣL1)∗sri(γL1)∗r

8M2
L1r
MΣs

− i(λΣ)∗ri(zΣL1)rsj(γL1)s
8MΣrM

2
L1s

− i(zΣ1L1)srj(λΣ1)∗si(γL1)∗r
8M2
L1r
MΣ1s

+
i(zΣ1L1)∗rsi(γL1)s(λΣ1)rj

8MΣ1rM
2
L1s

+
1

f

{
− i(λ̃N )∗ri(λN )rj

4MNr

+
i(λ̃N )rj(λN )∗ri

4MNr

+
i(λ̃lE)rj(λE)∗ri

4MEr

−
i(λ̃lE)∗ri(λE)rj

4MEr

+
i(λ̃lΣ)∗ri(λΣ)rj

8MΣr

−
i(λ̃lΣ)rj(λΣ)∗ri

8MΣr

−
i(λ̃lΣ1

)rj(λΣ1)∗ri
8MΣ1r

+
i(λ̃lΣ1

)∗ri(λΣ1)rj

8MΣ1r

−
ŷe∗ki (g̃

eDl
L1

)rkj(γL1)∗r
8M2
L1r

−
ŷekj(g̃

eDl
L1

)∗rki(γL1)r

8M2
L1r

+
ŷe∗ki (g̃

Del
L1

)rkj(γL1)∗r
8M2
L1r

+
ŷekj(g̃

Del
L1

)∗rki(γL1)r

8M2
L1r

−
i(g̃l′L1

)rij(γL1)∗r
2M2
L1r

+
i(g̃l′L1

)∗rji(γL1)r

2M2
L1r

+
Im
(
(γ̃WL1

)r(γL1)∗r
)
g2δij

2M2
L1r

}
, (D.73)

Zφ

(
C

(1)
φq

)
ij

=
(λU )rj(λU )∗ri

4M2
Ur

− (λD)rj(λD)∗ri
4M2

Dr

− 3(λT1)rj(λT1)∗ri
16M2

T1r

+
3(λT2)rj(λT2)∗ri

16M2
T2r

−
Re
(

(ĝφB)r

)
(gqB)rij

M2
Br

+
g1δij(g

B
L1

)rs(γL1)∗r(γL1)s

12M2
L1r
M2
L1s

− i(zUL1)rsj(λU )∗ri(γL1)s
4MUrM

2
L1s

+
i(zUL1)∗rsi(γL1)∗s(λU )rj

4MUrM
2
L1s

+
i(zDL1)rsj(λD)∗ri(γL1)∗s

4MDrM
2
L1s

− i(zDL1)∗rsi(γL1)s(λD)rj
4MDrM

2
L1s

+
3i(zT1L1)rsj(λT1)∗ri(γL1)∗s

8MT1rM
2
L1s

− 3i(zT1L1)∗sri(γL1)r(λT1)sj
8M2
L1r
MT1s

− 3i(zT2L1)rsj(λT2)∗ri(γL1)s
8MT2rM

2
L1s

+
3i(zT2L1)∗sri(γL1)∗r(λT2)sj

8M2
L1r
MT2s

+
1

f

{
−
i(λ̃qU )rj(λU )∗ri

4MUr

+
i(λ̃qU )∗ri(λU )rj

4MUr

+
i(λ̃qD)rj(λD)∗ri

4MDr

−
i(λ̃qD)∗ri(λD)rj

4MDr
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+
3i(λ̃qT1

)rj(λT1)∗ri
8MT1r

−
3i(λ̃qT1

)∗ri(λT1)rj

8MT1r

−
3i(λ̃qT2

)rj(λT2)∗ri
8MT2r

+
3i(λ̃qT2

)∗ri(λT2)rj

8MT2r

−
ŷd∗ki (g̃

dDq
L1

)rkj(γL1)∗r

8M2
L1r

−
ŷdkj(g̃

dDq
L1

)∗rki(γL1)r

8M2
L1r

+
ŷd∗ki (g̃

Ddq
L1

)rkj(γL1)∗r

8M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rki(γL1)r

8M2
L1r

−
ŷukj(g̃

qDu
L1

)rki(γL1)∗r

8M2
L1r

−
ŷu∗ki (g̃qDuL1

)∗rkj(γL1)r

8M2
L1r

+
ŷukj(g̃

Dqu
L1

)rki(γL1)∗r

8M2
L1r

+
ŷu∗ki (g̃DquL1

)∗rkj(γL1)r

8M2
L1r

−
i(g̃qL1

)rij(γL1)∗r

2M2
L1r

+
i(g̃qL1

)∗rji(γL1)r

2M2
L1r

+
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1δij

6M2
L1r

}
, (D.74)

Zφ

(
C

(3)
φq

)
ij

=− (λU )rj(λU )∗ri
4M2

Ur

− (λD)rj(λD)∗ri
4M2

Dr

+
(λT1)rj(λT1)∗ri

16M2
T1r

+
(λT2)rj(λT2)∗ri

16M2
T2r

−
Re
(

(ĝφW)r

)
(gqW)rij

4M2
Wr

+
g2δij(g

W
L1

)rs(γL1)∗r(γL1)s

4M2
L1r
M2
L1s

+
i(zUL1)rsj(λU )∗ri(γL1)s

4MUrM
2
L1s

− i(zUL1)∗rsi(γL1)∗s(λU )rj
4MUrM

2
L1s

+
i(zDL1)rsj(λD)∗ri(γL1)∗s

4MDrM
2
L1s

− i(zDL1)∗rsi(γL1)s(λD)rj
4MDrM

2
L1s

− i(zT1L1)rsj(λT1)∗ri(γL1)∗s
8MT1rM

2
L1s

+
i(zT1L1)∗sri(γL1)r(λT1)sj

8M2
L1r
MT1s

− i(zT2L1)rsj(λT2)∗ri(γL1)s
8MT2rM

2
L1s

+
i(zT2L1)∗sri(γL1)∗r(λT2)sj

8M2
L1r
MT2s

+
1

f

{
i(λ̃qU )rj(λU )∗ri

4MUr

−
i(λ̃qU )∗ri(λU )rj

4MUr

+
i(λ̃qD)rj(λD)∗ri

4MDr

−
i(λ̃qD)∗ri(λD)rj

4MDr

−
i(λ̃qT2

)rj(λT2)∗ri
8MT2r

+
i(λ̃qT2

)∗ri(λT2)rj

8MT2r

−
i(λ̃qT1

)rj(λT1)∗ri
8MT1r

+
i(λ̃qT1

)∗ri(λT1)rj

8MT1r
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−
ŷd∗ki (g̃

dDq
L1

)rkj(γL1)∗r

8M2
L1r

−
ŷdkj(g̃

dDq
L1

)∗rki(γL1)r

8M2
L1r

+
ŷd∗ki (g̃

Ddq
L1

)rkj(γL1)∗r

8M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rki(γL1)r

8M2
L1r

+
ŷukj(g̃

qDu
L1

)rki(γL1)∗r

8M2
L1r

+
ŷu∗ki (g̃qDuL1

)∗rkj(γL1)r

8M2
L1r

−
ŷukj(g̃

Dqu
L1

)rki(γL1)∗r

8M2
L1r

−
ŷu∗ki (g̃DquL1

)∗rkj(γL1)r

8M2
L1r

−
i(g̃q′L1

)rij(γL1)∗r

2M2
L1r

+
i(g̃q′L1

)∗rji(γL1)r

2M2
L1r

+
Im
(
(γ̃WL1

)r(γL1)∗r
)
g2δij

2M2
L1r

}
, (D.75)

Zφ (Cφe)ij =
(λ∆1)rj(λ∆1)∗ri

2M2
∆1r

− (λ∆3)rj(λ∆3)∗ri
2M2

∆3r

−
Re
(

(ĝφB)r

)
(geB)rij

M2
Br

−
g1δij(g

B
L1

)rs(γL1)∗r(γL1)s

2M2
L1r
M2
L1s

+
i(z∆1L1)∗rsi(γL1)∗s(λ∆1)rj

2M∆1rM
2
L1s

− i(z∆1L1)rsj(λ∆1)∗ri(γL1)s
2M∆1rM

2
L1s

− i(z∆3L1)∗sri(γL1)r(λ∆3)sj
2M2
L1r
M∆3s

+
i(z∆3L1)srj(λ∆3)∗si(γL1)∗r

2M2
L1r
M∆3s

+
1

f

{
i(λ̃e∆1

)∗ri(λ∆1)rj

2M∆1r

−
i(λ̃e∆1

)rj(λ∆1)∗ri
2M∆1r

−
i(λ̃e∆3

)∗ri(λ∆3)rj

2M∆3r

+
i(λ̃e∆3

)rj(λ∆3)∗ri
2M∆3r

−
ŷe∗jk(g̃eDlL1

)rik(γL1)∗r

4M2
L1r

−
ŷeik(g̃

eDl
L1

)∗rjk(γL1)r

4M2
L1r

+
ŷe∗jk(g̃DelL1

)rik(γL1)∗r

4M2
L1r

+
ŷeik(g̃

Del
L1

)∗rjk(γL1)r

4M2
L1r

−
i(g̃eL1

)rij(γL1)∗r
2M2
L1r

+
i(g̃eL1

)∗rji(γL1)r

2M2
L1r

−
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1δij

M2
L1r

}
, (D.76)
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Zφ (Cφd)ij =
(λdQ1

)rj(λ
d
Q1

)∗ri

2M2
Q1r

−
(λQ5)rj(λQ5)∗ri

2M2
Q5r

−
Re
(

(ĝφB)r

)
(gdB)rij

M2
Br

−
g1δij(g

B
L1

)rs(γL1)∗r(γL1)s

6M2
L1r
M2
L1s

+
i(zdQ1L1

)∗rsi(γL1)∗s(λ
d
Q1

)rj

2MQ1rM
2
L1s

−
i(zdQ1L1

)rsj(λ
d
Q1

)∗ri(γL1)s

2MQ1rM
2
L1s

−
i(zQ5L1)∗rsi(γL1)s(λQ5)rj

2MQ5rM
2
L1s

+
i(zQ5L1)rsj(λQ5)∗ri(γL1)∗s

2MQ5rM
2
L1s

+
1

f

{
i(λ̃dQ1

)∗ri(λ
d
Q1

)rj

2MQ1r

−
i(λ̃dQ1

)rj(λ
d
Q1

)∗ri
2MQ1r

−
i(λ̃dQ5

)∗ri(λQ5)rj

2MQ5r

+
i(λ̃dQ5

)rj(λQ5)∗ri
2MQ5r

−
ŷd∗jk(g̃dDqL1

)rik(γL1)∗r

4M2
L1r

−
ŷdik(g̃

dDq
L1

)∗rjk(γL1)r

4M2
L1r

+
ŷd∗jk(g̃DdqL1

)rik(γL1)∗r

4M2
L1r

+
ŷdik(g̃

Ddq
L1

)∗rjk(γL1)r

4M2
L1r

−
i(g̃dL1

)rij(γL1)∗r
2M2
L1r

+
i(g̃dL1

)∗rji(γL1)r

2M2
L1r

−
Im
(
(γ̃BL1

)r(γL1)∗r
)
g1δij

3M2
L1r

}
, (D.77)

Zφ (Cφu)ij =−
(λuQ1

)rj(λ
u
Q1

)∗ri

2M2
Q1r

+
(λQ7)rj(λQ7)∗ri

2M2
Q7r

−
Re
(

(ĝφB)r

)
(guB)rij

M2
Br

+
g1δij(g

B
L1

)rs(γL1)∗r(γL1)s

3M2
L1r
M2
L1s

−
i(zuQ1L1

)∗sri(γL1)r(λ
u
Q1

)sj

2M2
L1r
MQ1s

+
i(zuQ1L1

)srj(λ
u
Q1

)∗si(γL1)∗r

2M2
L1r
MQ1s

+
i(zQ7L1)∗rsi(γL1)∗s(λQ7)rj

2MQ7rM
2
L1s

−
i(zQ7L1)rsj(λQ7)∗ri(γL1)s

2MQ7rM
2
L1s

+
1

f

{
−
i(λ̃uQ1

)∗ri(λ
u
Q1

)rj

2MQ1r

+
i(λ̃uQ1

)rj(λ
u
Q1

)∗ri
2MQ1r

+
i(λ̃uQ7

)∗ri(λQ7)rj

2MQ7r

−
i(λ̃uQ7

)rj(λQ7)∗ri
2MQ7r

−
ŷuik(g̃

qDu
L1

)rjk(γL1)∗r

4M2
L1r

−
ŷu∗jk (g̃qDuL1

)∗rik(γL1)r

4M2
L1r
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+
ŷuik(g̃

Dqu
L1

)rjk(γL1)∗r

4M2
L1r

+
ŷu∗jk (g̃DquL1

)∗rik(γL1)r

4M2
L1r

−
i(g̃uL1

)rij(γL1)∗r
2M2
L1r

+
i(g̃uL1

)∗rji(γL1)r

2M2
L1r

+
2 Im

(
(γ̃BL1

)r(γL1)∗r
)
g1δij

3M2
L1r

}
, (D.78)

Zφ (Cφud)ij =
(λdQ1

)rj(λ
u
Q1

)∗ri

M2
Q1r

−
(ĝφB1

)r(g
du
B1

)∗rji
M2
B1r

+
i(zuQ1L1

)∗rsi(γL1)s(λ
d
Q1

)rj

MQ1rM
2
L1s

−
i(zdQ1L1

)rsj(λ
u
Q1

)∗ri(γL1)s

MQ1rM
2
L1s

+
1

f

{
i(λ̃uQ1

)∗ri(λ
d
Q1

)rj

MQ1r

−
i(λ̃dQ1

)rj(λ
u
Q1

)∗ri
MQ1r

+
i(g̃duL1

)∗rji(γL1)r

M2
L1r

−
ŷuik(g̃

dDq
L1

)∗rjk(γL1)r

2M2
L1r

+
ŷuik(g̃

Ddq
L1

)∗rjk(γL1)r

2M2
L1r

+
ŷd∗jk(g̃qDuL1

)∗rik(γL1)r

2M2
L1r

−
ŷd∗jk(g̃DquL1

)∗rik(γL1)r

2M2
L1r

}
. (D.79)
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