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quiero agradecer a mi gran amiga Lourdes Moreno, con la que he tenido la suerte de
compartir director de tesis y discusiones matemáticas, a Julio Rossi, que ha hecho
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Introduction

In this doctoral thesis we deal with several relevant issues in the theory of local and
nonlocal di↵erential equations. The results presented in this manuscript are concen-
trated in three parts. Each part is divided into chapters. Each chapter corresponds
to a paper or a preprint, as follows:

Part (I): Nonlocal di↵usion problems;

• J.A. Cañizo and A. Molino. Improved Energy Methods for Nonlocal Di↵u-
sion Problems, Discrete and Continuous Dynamical System. Serie A, 18
no. 3, Art. 17 (2018).

• A. Molino and J.D. Rossi. Nonlocal di↵usion problems that approximate
a parabolic equation with spatial dependence, Z. Angew. Math. Phys, 67
no. 3, Art. 41, 14 pp. (2016).

• A. Molino and J.D. Rossi. Nonlocal approximations to Fokker-Planck equa-
tions, to appear in Funkcialaj Ekvacioj, (2017).

• T. Leonori, A. Molino and S. Segura de León. Parabolic equations with
natural growth approximated by nonlocal equations, submitted (2017).

Parte (II): Elliptic equations with singularity in the quadratic gradient term and
Gelfand type problems;

• J. Carmona, A. Molino and L. Moreno-Mérida. Existence of a continuum of
solutions for a quasilinear elliptic singular problem, J. Math. Anal. Appl.,
436 no. 2, 1048-1062, (2016).

• J. Carmona, A. Molino and J.D. Rossi. The Gelfand problem for the
1�homogeneous p�laplacian, to appear in Adv. Nonlinear Anal. (2017).

• A. Molino. Gelfand type problem for singular quadratic quasilinear equa-
tions, NoDEA. Nonlinear Di↵erential Equations and Applications, 23 no.
5, Art. 56, 20, (2016).

Parte (III): Some results in Elliptic Equations modeled by the p�laplacian;

• A. Molino and S. Segura de León. Elliptic equations involving the 1–
Laplacian and a subcritical source term, submitted (2017).
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• D. Arcoya, A. Molino and L. Moreno-Mérida. Existence and regularizing
e↵ect of degenerate lower order terms in elliptic equations beyond the Hardy
constant, submitted (2017).

• A. Molino and J.D. Rossi. A concave-convex problem with a variable o-
perator, submitted (2017).

Thus the memory is divided into ten chapters, each of which contains the results
that have been obtained. The chapters are self-contained and can be read inde-
pendently, except for the incorporation of a complete bibliography at the end of the
manuscript. Although each chapter contains its own introduction concerning the prob-
lem, it has been considered convenient to present in the following summary all the
results obtained in this memory. Finally, it is noted that the methodology, objectives
and conclusions of this thesis are included in each chapter.
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PART I: Nonlocal di↵usion problems

We begin the first part of this introduction with the following nonlocal di↵usion dif-
ferential equation

8

>

>

<

>

>

:

u
t

(x, t) =

Z

RN

(K(x, y)u(y, t)�K(y, x)u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u0(x), x 2 RN ,

(1)

where u0 is the initial datum and K : RN ⇥RN ! [0,1) is the di↵usion kernel which
satisfies the following property:

9R, r > 0 : K(x, y) � r when |x� y|  R. (2)

Additional hypotheses about the initial datum u0 and the kernel K will be added
later.

It is interesting to observe that equation (1) is, roughly speaking, the Kolmogorov
equation for Markov’s process with jumping probability K and density u (Ethier and
Kurtz (1986, Chapter 4.2)). This equation has an interesting physics interpretation.
More precisely, if the function u(x, t) is thought as the population density of a par-
ticular species at position x and at time t (with initial density u0(x)) and the kernel
K(x, y) is thought as the probability distribution of jumping from location y to lo-
cation x, then we have that

R

RN K(x, y)u(y, t) dy is the rate at which individuals are
arriving at position x from all other places, and � RRN K(y, x)u(x, t) dy is the rate at
which individuals are leaving the position x to travel to all other places. In this sense,
in the absense of external or internal sources, one can easily deduce that the density
function u(x, t) satisfies the above equation (1). Furthermore, observe that hypothesis
(2) implies that K(x, x) > 0 in a neighborhood of x, for all x 2 RN . So that, from
the perspective of population dynamics, it means that the probability that some indi-
viduals that are in x at time t remain at the same position is positive. Consequently,
this kind of nonlocal di↵usion equation is relevant in applications, for example, in the
study of biological dispersal of species, image processing, particle systems, elasticity
and coagulation models, see for instance, Bobaru et al. (2009); Bodnar and Velazquez
(2006); Carrillo and Fife (2005); Fife (2003); Fournier and Laurençot (2006) and Hut-
son et al. (2003). Given an initial datum u0(x), as a particular application, we also
highlight the following unidimensional model proposed by Cortázar et al. (2007)

u
t

(x, t) =

Z

R
J̃

✓

x� y

g(y)

◆

u(y, t)

g(y)
dy � u(x, t), x 2 R, t > 0, (3)

where J̃ is a nonnegative, even and smooth function supported in [�1, 1] and whose
integral is equal to 1. The function g is a continuous and positive function which
accounts for the dispersal distance which depends on the departing point. So that,
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g models the heterogeneity of the environment which can a↵ect the distribution of a
species through space-dependent dispersal strategies (see also Cortázar et al. (2011);
Cortázar et al. (2015) and Cortázar et al. (2016)). Observe that, in this context, if we
define

K(x, y) = J̃

✓

x� y

g(y)

◆

1

g(y)
,

we have
R

RK(y, x) dy = 1 and then the equation (3) is a particular case of our above
model equation (1). A more general example would be the case in which

K(x, y) = J
�M(y)(x� y)

�

detM(y),

where M(y) is a real N ⇥N matrix.

Even more, it is worth pointing out that if the di↵usion kernel K of (1) is a
symmetric function, that is, the probability of jumping from x to y is the same that
the probability of jumping from y to x, then we obtain the following di↵usion non
local problem:

8

>

>

<

>

>

:

u
t

(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u0(x), x 2 RN .

(4)

This equation has been widely studied during last years as well as its Dirichlet version
in bounded domains, that is, the following Dirichlet problem

8

>

>

>

>

<

>

>

>

>

:

u
t

(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t))dy, x 2 ⌦, t > 0,

u(x, t) = g(x, t), x /2 ⌦, t > 0,

u(x, 0) = u0(x), x 2 ⌦,

(5)

where g and u0 are fixed (see Andreu-Vaillo et al. (2010)). We emphasize that in the
case in which

K(x, y) =
1

|x� y|N+2s
, (6)

the equations (4) and (5) give us a particular and well known kind of problems.
Concretely, it appears the fractional laplacian operator and we have the problems

u
t

(x, t) = �(��)su(x, t),

where the integral of the singular kernel is represented by the principal value of the
integral (see Valdinoci (2009)).
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Asymptotic behavior

In the first Chapter of this manuscript we will deal with the decay rate of the Lp

norms of the solutions of (1). We will use some tools known as “energy methods”.
The aim of these methods is to prove a functional inequality, for a suitable function
F , like the following one

d

dt
ku(·, t)k

p

 F (ku(·, t)k
p

) ,

where ku(·, t)k
p

denotes the Lp(RN ) norm. This kind of inequalities give us ordinary
di↵erential inequations. One can deduce the decay rate of the Lp norms solving the
above di↵erential inequations. Observe that this strategy (energy method) is very
similar to the successful and common one known as entropy method. The aim of the
entropy method is to compare the time derivative of a Lyapunov functional with the
Lyapunov functional itself to obtain a decay rate for solutions (see Jüngel (2016),
Arnold et al. (2004); Bakry and Émery (1985); Carrillo et al. (2001); Gross (1975);
Otto and Villani (2000); Villani (2002) and Desvillettes and Villani (2004)). There
are several advantages to the use of energy methods. Among others, they have the
advantage of being quite robust, often being applicable to equations that are not
explicitly solvable by Fourier transform methods, and to nonlinear problems. It is
convenient to remark that if we take J 2 C(RN ,R) such that J is nonnegative, radial,
J(0) > 0 and whose integral is equal to 1 and we setK(x, y) = J(x�y), then we obtain
a model example which one can solve using Fourier transform methods. Concretely,
in this case, we have the following equation

8

>

>

<

>

>

:

u
t

(x, t) =

Z

RN

J(x� y)u(y, t) dy � u(x, t), x 2 RN , t > 0,

u(x, 0) = u0(x), x 2 RN .

(7)

We highlight that it is equivalent to consider this nonlocal di↵usion equation or to
consider u

t

(x, t) = J ⇤ u � u(x, t) since the above integro-di↵erential equation is in
convolution form. Hence, in this case, the Fourier transform implies that û

t

(⇠, t) =

û(⇠, t)(Ĵ(⇠) � 1) and so that û(⇠, t) = e(Ĵ(⇠)�1)tû0(⇠). From here, it is possible to
obtain the asymptotic behavior (see (Andreu-Vaillo et al., 2010, Chapter 1)).

The use of energy methods for the equation (1) is not new. Indeed, for symmetric
kernels, Ignat and Rossi (2008) prove, among others, the following result:

Theorem 1 Let N � 3, K : RN ⇥ RN ! [0,1) symmetric satisfying (2) and u0 2
L1(RN ) \ L1(RN ). Then, every solution of (4) satisfies

ku(·, t)k
p

 C t�
N(p�1)

2p ,

for all p 2 [1,1) and t big enough, where C is a positive constant which depends on
R, r,N, p, ku0k1 and ku0k1.
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Taking into account this result, the aim of Chapter 1 is to complete it. On the
one hand, we want to obtain a result for symmetric and not symmetric kernels. On
the other hand, we want to find a result without any restriction about the dimension
N . Concretely, we will obtain the following theorem:

Theorem 2 Let N � 1. If we assume that u1 : RN ! (0,1) is an equilibrium
solution of (1) such that 1/m  u1  m, for some m > 0, and u is a solution to
(1) with initial datum u0 2 L1(RN ) \ Lp(RN ), 1 < p < 1, then there is a positive
constant C = C(r,R,N,m, p, ku0k1, ku0kp) such that

ku(·, t)k
p

 C(1 + t)�
N(p�1)

2p ,

for every t � 0.

It is convenient to recall that an equilibrium solution is a solution which does
not depend on the variable t. Hence, we observe that if we consider a symmetric
kernel K, then each positive constant is an equilibrium solution. Therefore, Theorem
2 generalizes and improves the results given by Ignat and Rossi (2008) for symmetric
kernels. Even more, we obtain the same decay rate of the nonlocal equation but for
every N � 1 instead of N � 3.

A direct consequence of Theorem 2 is the asymptotic behavior of the solutions of
(3). Indeed, in Cortázar et al. (2007) the authors prove the existence of a positive
and bounded equilibrium solution u1. Thus, under hypotheses of Theorem 2 one can
claim that

ku(·, t)k
p

 C(1 + t)�
p�1

2p , for every t � 0.

In this first Chapter, we also consider cases in which K(x, y) = J(x � y) where
J : RN ! [0,1) is radial, symmetric and integrable. Therefore, in this context, our
problem (1) is

8

>

>

<

>

>

:

u
t

(x, t) =

Z

RN

J(x� y)(u(y, t)� u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u0(x), x 2 RN .

(8)

and then, equation (7) is a particular case of this problem. Observe that hypothesis
(2) is equivalent to assume that J(z) � r when |z| < R. Obviously, this condition
holds true if J is continuous in a neighborhood of zero and J(0) > 0. For this kind of
kernels it is possible to obtain a more precise decay of the Lp norms of the solutions.
Concretely,

Theorem 3 Let u be a solution of the equation (8) with initial datum u0 2 L1(RN )\
Lp(RN ), 1  p < 1. Then, there is a constant C = C(N, p) such that

ku(·, t)kp
p


(

ku0kpp , 0  t  t0,
�ku0k�p�

p

+ C�rRN+2ku0k�p�

1 (t� t0)
�� 1

� , t � t0,
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where � := 2
N(p�1) and

t0 = max

⇢

0,
1

CrRN

log
�

R
2

� ku0k�p

1 ku0kp
p

)
�

�

.

See also Theorem 1.1.4 for the decay of the Lp norms of the higher derivatives of the
solutions. We point out that Theorem 3 implies that, if t � t0 for some suitable t0,
then the decay rate of the Lp norms of the solutions of (8) is the same that the decay
of the solutions of the heat equation, that is (see Giga et al. (2010)),

kukp
p

 �ku0k�p�

p

+ Cku0k�p�

1 t
�� 1

� , for every t � 0. (9)

As a consequence, roughly speaking, we can say that there is a strong connection
between the equation (8) and the heat equation u

t

= �u. More precisely, it is well
known that if we denote by J

"

the rescaled kernel

J
"

(z) :=
C(J)

"2+N

J
⇣z

"

⌘

, with C(J)�1 =
1

2

Z

RN

J(z)z2
N

dz, (10)

where it is assumed that the second order momentum of J is finite (and thus C(J) is
nontrivial), then the solution u" of

@
t

u"(x, t) =

Z

RN

J
"

(x� y)((u"(y, t)� u"(x, t)) dy, x 2 RN , t > 0, (11)

with initial datum u0 2 C(RN ), converges uniformly in compact subsets of RN⇥ [0,1)
to the solution v of the heat equation v

t

= �v with the same initial datum v(x, 0) =
u0(x) (see for instance Andreu-Vaillo et al. (2010) and Rey and Toscani (2013)). As
a consequence, if the solutions u" tend to the solution of the heat equation, one may
wonder if the decay is preserved in the rescaling that leads to the heat equation. That
is, we want to know if it is possible to find some "0 such that the asymptotic behavior
of u" is exactly the expression (9) for every " < "0 and t � 0. In the following theorem
we give the answer to the above question.

Theorem 4 Let u" be a solution of (11) with initial datum u0 2 L1(RN ) \ Lp(RN )
and p 2 [2,1). Then

ku"(t, ·)kp
p

 �ku0k�p�

p

+ C1ku0k�p�

1 (t� t0)
�� 1

� for all t � t0,

where C1 = C(N, p)�rRN+2C(J) does not depend on " and

t0 = max

⇢

0,
"2

CrRNC(J)
log
�

"
2

�R
2

� ku0k�p

1 ku0kp
p

)
�

�

.

In particular, t0 = 0 for every " < "0 = ku0k
�p
2

1 /
�

Rku0k
�p
2

p

�

.
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Rescaling kernels

In the first chapter we have mentioned that considering the rescaled kernel given by
(10), the approximate solutions u" of (11) converge uniformly (when " ! 0) to the
solution of the heat equation. In a natural way, one may wonder if it could be possible
to consider di↵erent rescaled kernels such that their corresponding solutions tend to a
solution of a local parabolic equation more general than the heat equation. Chapter 2
and Chapter 3 of this manuscript will deal with this natural question. Concretely, in
the first part of Chapter 2, we will show the following result: If⌦ ⇢ RN is a bounded
subset, A(x) = (a

ij

(x)) is a N ⇥N matrix with smooth coe�cients in ⌦, symmetric
and positive definite, g 2 L1

��

RN \ ⌦�⇥ (0,1)
�

and u0 2 L1(⌦) denotes the initial
datum, then the smooth solutions of the following Dirichlet parabolic problem (in
divergence form)

8

>

>

>

>

<

>

>

>

>

:

v
t

(x, t) = div (A(x)rv(x, t)) , x 2 ⌦, t > 0,

v(x, t) = g(x, t), x 2 @⌦, t > 0,

v(x, 0) = u0(x), x 2 ⌦,

(12)

can be uniformly approximated by solutions of the nonlocal problem (5), taking a
suitable rescaled kernel. We highlight that, to obtain this kind of results it is necessary
to assume the existence of smooth solutions of (12). However, under suitable regularity
hypotheses about g, u0 and @⌦, we can assure that the solutions of (12) belong to
C2+↵,1+↵/2

�

⌦⇥ [0, T ]
�

(see, for instance, Lieberman (1996)). More precisely, in the
second chapter we prove the following result.

Theorem 5 Let v 2 C2+↵,1+↵/2
�

⌦⇥ [0, T ]
�

be a solution of (12), where 0 < ↵ < 1.
For every " > 0, we consider u" solution of

8

>

>

>

>

<

>

>

>

>

:

u"
t

(x, t) =

Z

RN

K
"

(x, y)(u"(y, t)� u"(x, t))dy, x 2 ⌦, t > 0,

u"(x, t) = g(x, t), x /2 ⌦, t > 0,

u"(x, 0) = u0(x), x 2 ⌦,

where

K
"

(x, y) =
C(J)

"N+2
G

✓

B�1(x)
x� y

"

◆

G

✓

B�1(y)
x� y

"

◆

, (13)

being G2(s) = J(s) (with J a smooth nonnegative function, radially symmetric and
with compact support), and B(x) = (b

ij

(x)) a N ⇥N matrix such that

det(B(x))B(x)Bt(x) = A(x). (14)

Then
kv � u"k

L

1(⌦⇥[0,T ]) ! 0, when " ! 0.
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Consequently, we can claim that the solutions v 2 C2+↵,1+↵/2
�

⌦⇥ [0, T ]
�

of the Dirich-
let problem (12) can be approximate by solutions of a nonlocal parabolic problem using
the rescaled kernel given by (13). Note that the existence of the matrix B�1(x) and
the matrix factorization (14) is trivial since A(x) is a symmetric and positive definitive
matrix. It is worth pointing out that K

"

(x, y) is also symmetric and this is a very
interesting property. Indeed, thanks to this symmetric property, we have the following
integration by parts formula
ZZ

K(x, y)(u(y)� u(x))'(x)dydx

=
�1

2

ZZ

K(x, y)(u(y)� u(x))('(y)� '(x))dydx.

We emphasize that this integration by parts formula is very similar to the usual one
used for operators in divergence form, i.e.,

Z

div(A(x)rv(x))'(x)dx = �
Z

A(x)rv(x)r'(x)dx.

Furthermore, we also highlight the following consequence of the above theorem.
If we consider the Dirichlet problem associated to the heat equation, that is to say,
the problem (12), where A(x) denotes the identity matrix, then we obtain that the
suitable rescaled kernel is

K
"

(x, y) =
C(J)

"2+N

J

✓

x� y

"

◆

,

which was proved by Cortázar et al. (2009).

Going ahead in the study of these questions, in Theorem 2.1.1 of Chapter 2, it
is also obtained an analogous result to the one obtained in Theorem 5 but for more
general parabolic equations, i.e., not necessarily parabolic equation in divergence form.
More precisely, in Theorem 2.1.1 we consider the following parabolic problem

8

>

>

>

>

>

<

>

>

>

>

>

:

v
t

(x, t) =
N

X

i,j=1

a
ij

(x)
@2v(x, t)

@x
i

@x
j

+
N

X

i

b
i

(x)
@v(x, t)

@x
i

, x 2 ⌦, t > 0,

v(x, t) = g(x, t), x 2 @⌦, t > 0,

v(x, 0) = u0(x), x 2 ⌦.

In this general case, the suitable rescaled kernel is

K
"

(x, y) =
C(x)

"N+2
a
⇣

x� E(x)(x� y)
⌘

J

✓

L�1(x)
x� y

"

◆

, (15)

where a is a function given by a(s) =
P

i

(s
i

+M), with M a positive and big enough
constant to assure that a(x) � � > 0 for some �. The matrix L(x) is the well known
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Cholesky’s factor for the matrix A(x), i.e., it satisfies A(x) = L(x)Lt(x). The matrix
E involves the coe�cients (a

ij

(x)) and b
i

(x), and C(x) is a normalizing function (see
subsection 2.3 for a precise definition). Since, in these new cases, we are working
with operators which are not in divergence form, we note that the kernel (15) is not
symmetric.

Afterwards, in Chapter 3, we consider a kernel like the following one

K(x, y) = J
�M(y)(x� y)

�

detM(y),

where J : RN ! R is a nonnegative radial function such that

J 2 C
c

(RN ) y

Z

RN

J(z)dz = 1 , (16)

being M(y) a N ⇥ N real matrix with smooth and bounded coe�cients such that
detM(y) � � > 0. It is convenient to point out that this kind of kernels preserve the
mass, that is,

Z

RN

Z

RN

J
�M(y)(x� y)

�

detM(y)u(y)dydx =

Z

RN

u(x)dx, 8u 2 C(RN ).

As a consequence, problems like
8

>

>

<

>

>

:

u
t

(x, t) =

Z

RN

J
�M(y)(x� y)

�

detM(y)u(y, t)dy � u(x, t), x 2 RN , t > 0,

u(x, 0) = u0(x), x 2 RN ,

can be seen as a particular case of our initial model problem (1). Observe that, in the
case in which M(y) = g(y)�1 Id, where g is a scalar positive function, then the above
equation is

u
t

(x, t) =

Z

RN

J

✓

x� y

g(y)

◆

u(y, t)

gN (y)
dy � u(x, t).

As we told above, this kind of di↵usion kernels was introduced by Cortázar et al.
(2007) to model inhomogenous dispersion processes (see Coville (2010) and Cortázar
et al. (2015)).

In this third Chapter 3 we will show how a suitable rescaling of this kind of
kernels gives us a sequence of approximate solutions which converges to the classical
local solution of the Fokker-Planck equation, i.e.,

8

>

<

>

:

v
t

(x, t) =
X

i,j

@2

@x
i

@x
j

(a
ij

(x)v(x, t)) , x 2 RN , t 2 [0, T ],

v(x, 0) = v0(x), x 2 RN ,

(17)

where A(x) = (a
ij

(x)) is a N ⇥ N real and positive definite matrix. More precisely,
given the rescaled kernel

K
"

(x, y) =
1

"N
J
⇣

B�1(y)
(x� y)

"

⌘

detB�1(y),
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where B is such that BBt = A and J satisfies (16), we prove the following main result.

Theorem 6 Let v 2 C2+↵,1+↵/2
�

RN , [0, T ]
�

be the solution of the classical Fokker-
Planck equation (17) with initial datum v0 2 C(RN ) \ L1(RN ). For every " > 0, let
u" be the solution of the nonlocal equation

8

<

:

u"
t

=
C

"2

⇢

Z

RN

K
"

(x, y)u(y, t)dy � u(x, t)

�

, x 2 RN , t 2 [0, T ],

u"(x, 0) = v0(x), x 2 RN ,

(18)

where C�1 = 1
2

R

J(z)z2
N

dz. Then

sup
t2[0,T ]

ku"(·, t)� v(·, t)k
L

1 ! 0,

when " ! 0.

Observe that, in the particular case B(y) = g(y) Id, the equation (18) is

u"
t

(x, t) =
C

"2

⇢

Z

RN

1

"N
J
⇣x� y

"g(y)

⌘u(y, t)

gN (y)
dy � u(x, t)

�

and so that, its solutions converge to the local di↵erential equation

v
t

(x, t) =
X

i

(g2(x)v(x, t))
xixi .

Consequently, our theorem generalizes the results obtained by Sun et al. (2011).

Approximating the Kardar-Parisi-Zhang equation by nonlocal
equations

In Chapter 4 of this manuscript we consider nonlocal problems like the following
ones

u
t

(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�G�x, u(y, t)� u(x, t)

�

dy, (19)

where J satisfies (16) and G : RN ⇥ R ! R is an auxiliar nonnegative Carathéodory
function such that

9 ↵2 � ↵1 > 0 : ↵1  G(x, s)s� G(x,� )�

s� �
 ↵2, (20)

for every s,� 2 R with s 6= � and a.e. x 2 RN . Observe that this implies that G is a
positive and bounded function. Indeed, if we take � = 0, one has

0 < ↵1  G(x, s)  ↵2, for every s 2 R and a.e. x 2 RN .
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Moreover, we emphasize that in the particular case G(x, s) ⌘ 1, we obtain again the
di↵usion nonlocal equation (7) which is in convolution form.

In this fourth chapter we deal with the Cauchy problem associated to the equation
(19), i.e.,

8

<

:

u
t

(x, t)=

Z

RN

J(x� y)u(y;x, t) G(x, u(y;x, t)) dy in RN ⇥ (0, T ),

u(x, 0) = u0(x) in RN ,
(21)

where u(y;x, t) := u(y, t)� u(x, t) and u0 2 C(RN ). On the other hand, we deal with
the Dirichlet problem associated to the equation (19), i.e.,

8

>

>

>

<

>

>

>

:

u
t

(x, t) =

Z

RN

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, in⌦ ⇥ (0, T ),

u(x, t) = h(x, t), in (RN \ ⌦)⇥ (0, T ),

u(x, 0) = u0(x), in⌦ ,

(22)

where ⌦ denotes a bounded domain of RN with N � 1, T 2 R+ [{1} , h 2
L1
�

(RN \ ⌦)⇥ (0, T )
�

and u0 2 L1(⌦).

Concretely, if u0 is bounded, then we obtain existence and uniqueness for the
Cauchy problem (21). In particular, we prove that there is a solution belonging
to C �[0, T ); C(RN ) \ L1(RN )

�

(Theorem 4.2.12) which is unique via a comparison
principle (Theorem 4.2.14). In a similar way, assuming that u0 2 C(⌦) and h 2
C((RN \ ⌦) ⇥ [0, T )), we prove existence and uniqueness for the Dirichlet problem
(22). That is, we show that there is a solution belonging to C(⌦ ⇥ (0, T )) (Theorem
4.2.3) which is unique due to another comparison principle (Theorem 4.2.5).

During this fourth chapter, we also study the relation between the nonlocal equa-
tion (21) and the well-known deterministic Kardar-Parisi-Zhang equation (KPZ)

8

<

:

u
t

��u = µ(x)|ru|2 in RN ⇥ (0, T ) ,

u(x, 0) = u0(x) in RN .
(23)

We point out that this equation, at least for µ(x) = µ > 0, was proposed by Kardar
et al. (1986) in the physical theory of growth and roughening of surfaces. See also
Barabási and Stanley (1995) for others physics applications and the recent and com-
plete work by Wio et al. (2011). It is worth pointing out that the KPZ equation has
a natural growth in the gradient, that is to say, this equation has a quadratic growth
respect to the gradient. These kind of equations have been widely studied during the
last decades since the pioneers works by Ladyzenskaja et al. (1968) and Aronson and
Serrin (1967) as well as the results by Boccardo, Murat and Puel in Boccardo et al.
(1989). See also the second part of this introduction.
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More precisely, Theorem 4.2.15 shows that the Cauchy problem (21), with initial
datum u0 2 C(RN ) \ L1(RN ) and under the usual rescaled kernel of J

J
"

(z) =
C(J)

"2+N

J
⇣z

"

⌘

, (24)

has a unique solution u" (for each " > 0) which moreover converges uniformly (when
" ! 0) to a classical solution of the KPZ equation (23) with

µ(x) =
2G0

s

(x, 0)

G(x, 0) . (25)

Even more, we prove that every classical solution of the KPZ equation (23) with
initial datum u0 2 C(RN ) \ L1(RN ) can be uniformly approximated by solutions of
the nonlocal equation (21). Here we consider the rescaled kernels given by (24) and
the same initial datum u0 with the auxiliar function

G ⌘ G
µ

(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
.

Remark that G
µ

satisfies the hypothesis (20) and moreover (25). We also obtain
analogous results for the Dirichlet case (22), see Theorem 4.2.8.

To finish, it is convenient to remark that we also prove two results about the
asymptotic behavior of the solutions. On the one hand, for the Dirichlet problem we
prove that the solutions converge uniformly to the stationary solution. On the other
hand, for the Cauchy problem, we show that the L2 norm of the solutions has a time
decay which depends on G (absortion or reaction). See Theorem 4.2.16 and Theorem
4.2.17.
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PART II: Elliptic equations with singularity in the
quadratic gradient term and Gelfand type problems

In the second part of this introduction, we will deal with initial value problems
which have two di↵erent kind of nonlinearities. On the one hand, we will consider
Gelfand nonlinearities (�eu) and we will study some Gelfand-type problems. On the
other hand, we will study some problems whose di↵erential equation has a singular
nonlinearity with quadratic growth with respect to the gradient (|ru|2/u�).

It is convenient to recall that Gelfand-type problems have been widely studied in
the literature. In particular, this kind of problems has been extensively applied in
some physical models. For instance, for thermal self-ignition problems of a chemically
active mixture of gases in a vessel, see Chandrasekhar (1957); Gel’fand (1963); Joseph
and Sparrow (1970); Keller and Cohen (1967) and the references therein .

The classical Gelfand problem is the following one

8

<

:

��u = � eu , in ⌦,
u � 0 , in ⌦,
u = 0 , on @⌦,

where⌦ ⇢ RN is an open, bounded subset whose boundary @⌦ is smooth, N � 1
and � � 0. We remark that in this context, basically, the nonlinear term eu can be
replaced by a regular positive function f(u) which is increasing, convex and moreover
f(0) > 0.

It is worth pointing out that, roughly speaking, the change of variable u = ln(1+v)
transforms the above semilinear problem in the following quasilinear one

8

>

>

<

>

>

:

��v +
|rv|2
1 + v

= � (1 + v)2 , in ⌦,

v � 0 , in ⌦,
v = 0 , on @⌦.

As a consequence, this example shows how the semilinear problems are strongly con-
nected with the quasilinear ones which have a quadratic growth with respect to the
gradient (or equivalently a natural growth). This kind of quasilinear problems with
natural growth are very common and they appear in a natural way. Indeed, there
are several motivations for these quasilinear equations, some of them coming from
Calculus of Variations. For instance, the Euler Lagrange equation associated to the
functional

I(u) =
1

2

Z

⌦
a(x, u)|ru|2 �

Z

⌦
f0(x)u,

is, at least formally, the following one

�div (a(x, u)ru) +
1

2
a0
u

(x, u)|ru|2 = f0(x).
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We emphasize that if a(x, u) = 1+ |u|�, with � 2 (0, 1), then the above Euler Lagrange
equation not only has a quadratic growth with respect to the gradient but also a
singular term. Some applications of these singular equations can be seen in Barenblatt
et al. (2000); Berestycki et al. (2001) y Kardar et al. (1986).

Di↵erential operators with natural growth have been thoroughly studied during
the last decades since the works by Aronson and Serrin (1967); Ladyzenskaja et al.
(1968) and later by Boccardo et al. (1982, 1983). For instance, given µ 2 L1(⌦) and
a continuous function g, we highlight that the existence of solution for the problem

⇢ ��u+ µ(x)g(u) |ru|2 = f0(x) in ⌦,
u = 0 on @⌦,

it has been considered by Bensoussan et al. (1988), Boccardo and Gallouët (1992) and
Boccardo et al. (1982).

Singularity in the quadratic term

In Chapter 5 we will consider a singular problem which involves a quasilinear elliptic
di↵erential operator with quadratic gradient term. More concretely, our model case
will be

8

<

:

��u+ µ(x)
|ru|2
u�

= �up + f0(x) in ⌦,

u = 0 on @⌦,

where �, p � 0, µ 2 L1(⌦) is non-negative and 0 � f0 2 Lq(⌦) for some q > N/2.
A well known case is the above problem when � = 0. Indeed, this model with � = 0

was introduced by Arcoya and Mart́ınez-Aparicio (2008) when � = 1. Afterwards,
this one with � � 1 was extensively studied in Arcoya and Segura de León (2010);
Boccardo (2008); Mart́ınez-Aparicio (2009) and Giachetti and Murat (2009). In these
above works it is proved the existence of solutions for �  1 and the uniqueness for
� < 1 (see also Arcoya et al. (2017)). It is convenient to recall that, in this problem
(with � = 0), the case � > 1 requieres an additional hypothesis about the nonlinearity
f0. In fact, in Arcoya et al. (2009b), under the additional hypothesis

ess inf{f0(x) : x 2 !} > 0 , 8! ⇢⇢ ⌦ ,

it is proved the existence of a solution if and only if � < 2. Even more, we emphasize

that if � � 2, then |ru|2
u

� /2 L1(⌦) for all u 2 W 1,2
0 (⌦) (see Zhou et al. (2012)), hence

there is no solution.
It is worth pointing out that the case � > 1 is hardier than the case � < 1. Indeed,

nowadays the uniqueness of this problem for � > 1 is unknown and for � = 1 is
uncompleted (see Carmona and Leonori (2017)).

Results concerning the above problem for � 6= 0 were obtained in Arcoya et al.
(2011); Boccardo et al. (2011), being µ(x) a constant function and � < 1. Moreover
it is assumed that the parameters � and p satisfy � + p < 2. On the one hand, in
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Arcoya et al. (2011), the results were obtained by using topological methods. On
the other hand, in Boccardo et al. (2011), the results were proved using some suitable
approximate problems and an iterative scheme. Taking into account that the methods
used in Arcoya et al. (2011) and Boccardo et al. (2011) can not be applied to the case
in which µ(x) is not a constant or p < 1  � < 2, our aim is to complete it in Chapter
5. Even more, in this chapter we will consider more general lower order terms. Indeed
we will work with µ(x)g(u)|ru|2, being g a singular function at zero. We show how the
values of � for which the problem has a solution will be influenced by the singularity
of g at zero and moreover by its behavior at infinity. To distinguish the behavior of g
at zero and infinity, we take �  � and we consider the more general model problem

8

<

:

��u+ µ(x)
|ru|2
u� + u�

= �up + f0(x) in ⌦,

u = 0 on @⌦,
(Q

�

)

Our main result for the case in which µ(x) is a constant is the following one.

Theorem 7 Let µ(x) = µ be a constant function and we consider f0 2 Lq(⌦) with
q > N

2 satisfying ess inf{f0(x) : x 2 !} > 0 , 8! ⇢⇢ ⌦ . Then

i) If 1  � < 2 and 0 < p < 1 the problem (Q
�

) has, at least, a solution for every
� � 0.

ii) If � < 1 < � and 1  p, there are �⇤,�⇤ > 0 such that (Q
�

) does not have
solutions for � > �⇤ and has, at least, a solution for 0  � < �⇤.

Moreover, there is an unbounded continuous, i.e., a connected and closed subset ⌃ of

{(�, u) 2 [0,+1)⇥ C(⌦) : u solución de (Q
�

)} ,

such that there exists a solution u
�

of (Q
�

) with (�, u
�

) 2 ⌃ for every � � 0 (item i)
or every 0  � < �⇤ (item ii).

Furthermore, the tools used to prove the above theorem also allow us to work with
non constant function µ(x) if we suppose that this function is bounded below and
above and the parameter � satisfies �  1. More precisely, we present the following
theorem.

Theorem 8 Assume that 0 < �  �  1, 0 < p < 2� �, f0 2 Lq(⌦) with q > N

2 and
m  µ(x)  M, a.e. x 2 ⌦ (where M < 2 in the case ↵ = � = 1). Then, there exists
an unbounded continuum ⌃ of solutions of (Q

�

), such that there exists u
�

solution of
(Q

�

) with (�, u
�

) 2 ⌃ for every � � 0.

We highlight that this theorem not only improves again the results of Arcoya
et al. (2011) and Boccardo et al. (2011), but also shows the following property. The
hypothesis p < 2 � � is a restriction in the behavior of g at infinity, rather than in
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the singularity at zero. In this sense, working with a more general function g(s) =
1/(s�+s�), one can observe how the behavior at zero or at infinity of g have a di↵erent
role in the solutions set.

To prove the above two theorems we use a double approach. Firstly, we take
a suitable sequence of approximate problems, as in Boccardo et al. (2011), and we
deduce the existence of a continuum⌃

n

for the approximate problems using Leray-
Schauder degree techniques and Rabinowitz continuation theorem, as in Arcoya et al.
(2011). Secondly, we use a topological lemma to obtain a continuum of solutions as
the limit of this approximative scheme⌃

n

.

Gelfand type problems

In Chapters 6 and 7 we will consider some Gelfand type problems corresponding to
di↵erent di↵erential operators. Indeed we will consider the 1-homogeneous p-Laplacian
and moreover some di↵erential operators having lower order terms with quadratic
growth with respect to the gradient.

It is convenient to recall that, if f(u) denotes a regular, positive and convex func-
tion with f(0) > 0, then the problem

8

<

:

��u = � f(u) , in ⌦,
u � 0 , in ⌦,
u = 0 , on @⌦,

(G
�

)

was studied by Crandall and Rabinowitz (1975) (see also Mignot and Puel (1980)
and the references therein). Concretely, if f is superlineal at infinity, that is to say,

if lim
s!+1

f(s)
s

= 1, in Crandall and Rabinowitz (1975) it is proved the following
result.

Proposition 0.0.1 Crandall and Rabinowitz (1975) There exists �⇤ > 0, called the
extremal parameter, such that

• If � < �⇤, then (G
�

) admits a minimal bounded solution w
�

.

• If � > �⇤, then (G
�

) has no solution.

One may wonder if the minimal solution could exist but for Gelfand-type problems
corresponding to di↵erential operators which satisfy a comparison principle. In this
sense, in Chapter 6, we will prove a comparison principle for the 1-homogeneous p-
laplacian which generalizes the well known comparison principles obtained in Barles
and Busca (2001); Mart́ınez-Aparicio et al. (2014a). In Chapter 7 we will use the
comparison principle contained in Arcoya and Segura de León (2010) (see also Arcoya
et al. (2014, 2017)).

Even more, in Crandall and Rabinowitz (1975) it is also proved that the sequence of
minimal solutions {w

�

} of (G
�

) is increasing in �. Furthermore, the minimal solutions
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are stable, namely they satisfy the following condition
Z

⌦

�|r⇠|2 � �f 0(w
�

)⇠2
� � 0, 8⇠ 2 C1

c

(⌦).

We emphasize that this stability condition has an important role to prove some ex-
istence and regularity results for the extremal solution. In particular, this condition
has been used to achieve optimal results of regularity of extremal solution depending
on the dimension N. In this sense, if f(s) = es it is obtained regularity results for the
extremal solution if N < 10. However, if f(s) = (1 + s)p the regularity results are
proved for N < 4 + 2(1� 1/p) + 4

p

1� 1/p (see Crandall and Rabinowitz (1975)).
We note that it makes sense to extend the above stability condition but for general

di↵erential operators with variational structure. Our problem is that in Chapter 6 and
7 we do not have any variational structure. However, in Chapter 7, we will be able
to extend the above stability condition and therefore, we will obtain some results
concerning to the extremal solution.

Before showing the main results of Chapters 6 and 7, we point out again that
Gelfand-type problems constitute one of the most studied fields of semilinear elliptic
equations and it has been extensively considered. For instance, see Arcoya et al.
(2014); Cabré and Capella (2006); Cabré and Sanchón (2013); Gel’fand (1963) and
the references therein.

More concretely, in Chapter 6 we will consider the problem

⇢ ��N

p

u = � eu , in ⌦,
u = 0 , on @⌦,

(P
�,p

)

where⌦ ⇢ RN is a regular bounded domain, p 2 [2,1] and the operator� N

p

is the
called 1-homogeneous p-laplacian defined, for p < 1, by

�N

p

u :=
1

p� 1
|ru|2�p div

�|ru|p�2ru
�

=
1

p� 1
�u+

p� 2

p� 1
�1u,

and for p = 1 by

�1u ⌘ �N

1u =
ru

|ru| ·
✓

D2u
ru

|ru|
◆

,

the 1-homogeneous infinity laplacian
This operator appears when one considers Tug-of-War games with noise, see Man-

fredi et al. (2012); Peres and She�eld (2008); Peres et al. (2009), where the Poisson
problem is studied. Moreover, the problem with right-hand side �uq with 0 < q  1
has been studied in Mart́ınez-Aparicio et al. (2014a) and Mart́ınez-Aparicio et al.
(2014b).

Concerning this kind of problems, our first result is the following one.

Theorem 9 For every p 2 [2,+1] there is a positive extremal parameter �⇤ =
�⇤ (⌦, N, p) such that:
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• If � < �⇤ the problem (P
�,p

) admits a minimal positive solution w
�

.

• If � > �⇤ the problem (P
�,p

) has no positive solution.

Moreover, the branch of minimal solutions {w
�

} is increasing with �.

We highlight that in Chapter 6 we use some arguments from degree theory to
study problems whose di↵erential operator is the 1-homogeneous p-laplacian. The use
of this tools is not easy due to the lack of regularity. Indeed, to address it we need to
use some arguments of Charro et al. (2013) to obtain some compactness results. Using
these techniques we will be able to prove the existence of a continuum of solutions
either for the parameter � or the parameter p. In this sense, for every p fixed, we
denote by

S
p

= {(�, u) 2 [0,�⇤(⌦, N, p)]⇥ C(⌦) : u solution of (P
�,p

)},
and for every � fixed, we denote by

S
�

= {(p, u) 2 [2,1]⇥ C(⌦) : u solution of (P
�,p

)}.

Theorem 10 For every fixed p 2 [2,1], there exists an unbounded continuum of
solutions C ⇢ S

p

that emanates from � = 0, i.e., (0, 0) 2 C. Moreover, for every fixed
�0 2 (0,�⇤), there exists a continuum of solutions D ⇢ S

�

, for all � < �0, such that
its projection on the axis p is [2,+1].

In Chapter 7 we will deal with with some Gelfand-type problems which have a
singularity in the gradient term. Concretely, we will consider

8

<

:

��u+ g(u) |ru|2 = � f(u) , in ⌦,
u > 0 , in ⌦,
u = 0 , on @⌦,

were⌦ ⇢ RN (N � 3) is a smooth bounded and open subset of RN , � > 0 f is a
strictly increasing function, derivable in [0,1) and such that f(0) > 0 and finally g is
a nontrivial and positive function that either is continuous in [0,1) or it is continuous
in (0,1) and integrable in a neighborhood of zero. Our model case are g(s) = 1

s

�

with � 2 (0, 1) and f(s) = es.
We stress that the case g continuous in [0,+1) has been studied in Arcoya et al.

(2014). Here, the authors showed the existence of a minimal solution in a bounded and
maximal interval (0,�⇤) and moreover they studied existence and regularity results
for extremal solutions. Even more, they characterized minimal solutions as those
solutions satisfying a stability condition (see also Brézis and Vázquez (1997) for the
semilinear case). Concretely, in Arcoya et al. (2014) a solution is stable, by definition,
when it satisfies

Z

⌦
|r�|2 � �

Z

⌦
(f 0(u)� g(u)f(u))�2
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for every � 2 W 1,2
0 (⌦). In Chapter 7 we will say that a solution is stable if it satisfies

the above condition given by Arcoya et al. (2014). During this chapter, we will extend
the above previous results to the singular framework and moreover we will improve
the hypotheses assumed for the continuous case. For instance, among others results,
we highlight that the hypothesis f 0(s)� g(s)f(s) increasing required by Arcoya et al.
(2014), it is necessary only to prove that the stable solutions are minimal.

The results obtained in Chapter 7, apply to the particular case g(s) = c

s

� with
0 < � < 1, allow us to consider non-convex function f(s). Indeed, if we take f(s) =

e
s1��

1��
+(s+�)1��

with � small enough, then f 0(s) � g(s)f(s) is a decreasing function.
However, there exists �⇤ > 0 such that the problem admits a minimal bounded solution
w
�

for every � < �⇤ but there is no solution for � > �⇤. Moreover, it is possible to
prove the existence of a extremal solution u⇤ = lim

�!�

⇤ w�

which is a stable solution (in

the above sense) for � = �⇤. Note that this extremal solution is not, in general, a
minimal solution. Even more, if

N <
6(1� �) + 2c+ 4

p

(c+ 1� �)(1� �)

c+ 1� �
,

it is proved that the extremal solution is bounded.
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PART III: Some results in Elliptic Equations modeled by
the p�laplacian

It is considered the following family of elliptic di↵erential equations that involve
the p�laplacian operator and with Dirichlet conditions at the boundary of a bounded
domain⌦ ⇢ RN ,

⇢ �div
�|ru|p�2ru

�

= f(x, u), in⌦ ,
u = 0, on @⌦,

(26)

with p > 1 and being the source data f(x, s), with (x, s) 2 ⌦⇥ R, a certain function
that we will detail below.

Next we present three classic results related to the previous equation:

• The problem with a subcritical source term: f(x, s)  C1|s|q + C2, with 0 <
q < p⇤ � 1 and p > 1. There exist at least two nontrival solutions v  0  w
(see for instance Dinca et al. (1995)).

• The problem with a Hardy potential: f(x, s) =
�|s|p�2s

|x|p and 0 2 ⌦. There is no

solution for � > ((N � p)/p)p, 1 < p < N (see Garćıa Azorero and Peral Alonso
(1998)).

• The concave-convex problem: f(x, s) = |s|r�1s+�|s|q�1s , with 0 < q < p�1 <
r < p⇤ � 1 and � > 0. There exists �⇤ > 0 such that there are at least two
positive solutions for � < �⇤ and there is no positive solution for � > �⇤ (see
Garćıa Azorero et al. (2000)).

In this third part of the memoir we intend to broaden the study of these problems
either by extending the operator or by extending the source data, always without
losing the nature of the classical problem. Concretely, in Chapter 8 we study the
subcritical problem for the 1�Laplacian (p = 1) in which we prove the existence of
two non-trivial solutions for 0 < q < 1⇤ = 1/(N � 1) and that are also bounded.
Another notable result of the chapter is the proof of a Pohoz̆aev type identity for
this kind of operators. The 1�Laplacian operator was originally treated in Kawohl
(1991, 1990), Demengel (1999) y Andreu et al. (2001) leading a huge literature since
then. One of the main interests for studying the Dirichlet problem for equations
involving the 1�Laplacian comes from the variational approach to image restoration
(we refer to Andreu-Vaillo et al. (2004) for a review on the first variational models
in image processing and their connection with the 1–Laplacian, see also the recently
work Mart́ın et al. (2017)).

In Chapter 9 it is considered a problem with a Hardy potential for the laplacian
operator (p = 2). We prove that the presence in the equation of lower order terms
h(x)u(x)� (h 2 L1

loc

(⌦), � > 1) produces a regularizing e↵ect when obtaining a solu-

tion for values of � greater than the critical (N�2)2

4 , even if h vanishes in subsets of ⌦.
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In addition, this term causes the solutions to be more regular. The Hardy problem
for p = 2 was treated firstly in Baras and Goldstein (1984). The authors observed
that, since �

|x|2 2 Lr

loc

(⌦) if and only if 1  r  N/2, the classical theory of uniqueness

and regularity could not be applied. They prove that the asymptotic behavior of the
solutions depends on the values of �, determining a critical value H = (N � 2)2/4
also called the Hardy constant. Later, in Garćıa Azorero and Peral Alonso (1998) the
authors perform a more exhaustive study of the equation for all values of 1 < p < N
where they e↵ectively reveal that the behavior of the solutions depends on the critical
value �⇤ = ((N � p)/p)p, obtaining solutions for � < �⇤. Since then a large number
of related works have emerged.

In Chapter 10 the concave-convex problem is studied but, instead of making a
concave-convex e↵ect to the nonlinearity f(x, s), this e↵ect will be caused to the
operator. That is, the operator in consideration is �div

�|ru|p(x)�2ru
�

being p(x)
the constant function 2 in a region of the domain D1 ⇢ ⌦, and the function constant
p (greater than 2) in the remaining region of the domain D2 = ⌦ \ D1. Regarding
nonlinearity we take f(x, s) = �|s|q with 1 < q < p � 1. Note that these values of q
induce a convex e↵ect in region D1 and a concave e↵ect in region D2. The concave-
convex problems have received a great interest in the literature of di↵erential equations
since the pioneering works of Lions (1982); Garćıa Azorero and Peral Alonso (1991);
Ambrosetti et al. (1994) and Boccardo et al. (1995). On the other hand, the study
of operators p(x)�laplacian with p(x) discontinuous have received great attention
in recent years in modeling the flow of current in Organic Light-Emitting Diodes
(OLEDs) used in the display of portable devices, we refer the works Buĺıček et al.
(2016); Fischer et al. (2014) and Buĺıček et al. (2017). In this chapter we prove the
existence of a critical value �⇤ such that for � > �⇤ there is no positive solution,
and for � < �⇤ there is a minimal positive solution. Furthermore, provided that
p < 2N/(N � 2), there is a second positive solution for almost every � < �⇤.

The technique to deal with the problems of this third part of this memory is mainly
the Calculus of Variations. Observe that the problem (26) has the following functional
energy associated I : W 1,p

0 (⌦) ! R defined as follows

I(u) =
Z

⌦

|ru|p
p

�
Z

⌦
F (x, u) ,

being F (x, s) =
R

s

0 f(x, t)dt, in the sense that critical points of I are solutions to
problem (26). When dealing with the problems mentioned above, an important step is
to replace the space W 1,p

0 (⌦) by another more convenient, thus changing the geometry
of the functional I and being more accessible to find their critical points. This will
have its advantages as will be seen in the Chapters 9 and 10 turning the functional
into coercive, and its disadvantages when the chosen space is not reflexive as is the
case of the Chapter 8, not being able to apply well known results such as compactness
of Palais-Smale sequences.
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Subcritical problem for the 1�Laplacian

In Chapter 8 we study existence and regularity results of solutions with a Dirichlet
problem for an elliptic equation involving the 1–Laplacian operator and a source term,
whose model problem is

8

>

>

<

>

>

:

�div

✓

Du

|Du|
◆

= |u|q�1u, in⌦ ,

u = 0 on @⌦,

(27)

where⌦ ⇢ RN (N � 2) is a bounded domain with Lipschitz boundary and 0 < q <
1

N�1 .
The natural energy space to study problems involving the 1�Laplacian is the

space BV (⌦) of functions of bounded variation, i.e., those L1�functions such that
their distributional gradient is a Radon measure having finite total variation. We
point out that BV (⌦) is a Banach space with norm

kuk
BV (⌦) =

Z

⌦
|Du|+

Z

@⌦
|u| dHN�1,

where HN�1 denotes the (N�1)–dimensional Hausdor↵ measure (we refer for instance
Ambrosio et al. (2000)).

Although BV (⌦) is non reflexive and non separable space. In this way, the
1�Laplace operator presents an extra di�culty. Another di�culty occurs by defining

the quotient
Du

|Du| , being Du just a Radon measure. It can be overcome through

the theory of pairings of L1–divergence–measure vector fields and the gradient of a
BV–function (see Anzellotti (1983)). Using this theory, we may consider a vector field
z 2 L1(⌦;RN ) such that kzk1  1 and (z, Du) = |Du|, so that z plays the role of
ratio Du

|Du| . On the other hand, the boundary condition is weaker. Indeed, in general
the Dirichlet boundary condition is not achieved in the usual trace form, so that, a
very weak formulation must be introduced: [z, ⌫] 2 sign (�u). Where [z, ⌫] stands for
the weak trace on @⌦ of the normal component of z defined in Anzellotti (1983) as
the application [z, ⌫] : @⌦ ! R, being ⌫ the outer normal unitary vector of @⌦, such
that [z, ⌫] 2 L1(@⌦) and k [z, ⌫] k

L

1(@⌦)  kzk
L

1(⌦;RN ). Furthermore, this definition

coincides with the classical one, that is, [z, ⌫] = z · ⌫, for z 2 C1(⌦;RN ).
In this way, we say that u 2 BV (⌦) is a solution of problem (27) if there exists a

vector field z 2 L1(⌦;RN ) with kzk1  1 and such that

(1) � div z = f(x, u) in D0(⌦),

(2) (z, Du) = |Du| as measures on ⌦,

(3) [z, ⌫] 2 sign(�u) on @⌦.
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In order to consider the problem (27) in a variational setting, we establish in
Lemma 8.2.6 that solutions are critical points of the functional I : BV (⌦) ! R
defined as follows

I(u) =
Z

⌦
|Du|+

Z

@⌦
|u| dHN�1 � 1

q + 1

Z

⌦
|u|q+1.

We recall that one of the approaches to find nontrivial solutions to the Dirichlet
problems with p–Laplacian type operator (p > 1) and a subcritical term, i.e. with
|u|q�1u, being 0 < q < p⇤� 1 (where p⇤ stands for the Sobolev conjugate), is by using
the well–known “Mountain Pass Theorem” by Ambrosetti and Rabinowitz Ambrosetti
and Rabinowitz (1973). Specifically, first it is proved that the trivial solution is a local
minimum of the corresponding energy functional and then, since the functional has a
mountain pass geometry, they find other critical points (one positive and another one
negative), we refer Dinca et al. (1995). We point out that the proof of the Palais–Smale
condition relies on the reflexivity of the energy space W 1,p

0 (⌦).

As mentioned above, the space of functions of bounded variation is non reflex-
ive. The strategy is to consider the nontrivial and positive solution, w

p

, obtained
by “Mountain Pass Theorem” applied in the subcritical problem for the p�laplacian
with p > 1 (similarly reasoning for the negative solution). Then, in certain sense, we
take the limit as p ! 1+. However, we carefully have to check that their limit is not
the trivial solution. Thus, we prove in Theorem 8.1.1 that there exist at least two
nontrivial solutions v  0  w of problem (27). Moreover, we prove that they are
bounded. To this end, it is essential to achieve the existence of a positive constant C
independent of p such that

kw
p

k
W

1,1
0

(⌦)  C ,

for all p > 1 enough small.

Finally, in the last part of this chapter, we state in Proposition 8.4.1 a Pohoz̆aev
type identity for solutions belonging to W 1,1(⌦). The important point to note here
is, unlike p�Laplacian problems, the existence of solutions for supercritical growth.
This is confirmed by dealing with explicit examples in the ball.

Regularizing e↵ect of lower order terms in elliptic problems
involving a Hardy potential

In Chapter 9 we study the regularizing e↵ect provided by the inclusion of lower
order terms in elliptic problems of type (26) whith a Hardy potential. Specifically, we
consider equations of type

(

��u+ h(x)|u|p�1u = �
u

|x|2 + f(x) in ⌦,

u = 0 on @⌦,
(28)
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where p > 1, � 2 R, 0  h 2 L1(⌦) and f 2 L
p+1

p (⌦;hdx), i.e., |f | p+1

p h 2 L1(⌦).
Observe that being h integrable, it holds

Lm(⌦;hdx) ⇢ L
p+1

p (⌦;hdx), for all m � p+ 1

p
.

In the case of not including the regularizing term, that is h ⌘ 0, it is known that
there is a solution for all f 2 W�1,2(⌦) provided that

� < H =
(N � 2)2

4
, (29)

see Garćıa Azorero and Peral Alonso (1998). Seen from a variational perspective, the
condition (29) implies, due to the Hardy inequality

Z

⌦

|u|2
|x|2dx  H�1

Z

⌦
|ru|2 ,

that the associated energy functional is coercive in W 1,2
0 (⌦).

The fact of including the term h(x)|u|p�1u to a problem with a Hardy potential is
not new, see Adimurthi et al. (2017); Porzio (2007); Wei and Du (2017) and Wei and
Feng (2015). In these last two works the authors study the asymptotic behavior of
the solution at 0 for the case f ⌘ 0 and h(x) = |x|� with � > �2. On the other hand,
Porzio (2007) and recentely Adimurthi et al. (2017) treat the case h(x) ⌘ h0 > 0
obtaining the following result:

Theorem 11 Consider p > 2⇤ � 1, h(x) ⌘ h0 > 0 and f 2 Lm(⌦) with p+1
p

 m <
N

2
p�1
p

. Then, there exists a solution to problem (28) for all � � 0. Moreover, the

solution belongs to W 1,2
0 (⌦) \ Lpm(⌦).

We emphasize that the solution provided by the above theorem is obtained as a
limit of solutions of a sequence of approximate problems and also the regularity in
Lpm(⌦) is tested only for that specific solution.

In this chapter the Theorem 11 is improved in two ways. First, we prove that the
solution can be obtained as a minimum of the associated functional, in addition, we
obtain regularity for any solution. As a second improvement, we note that we can
consider the case h 2 L1(⌦), not necessarily constant, and it can vanishes in subsets
of ⌦. For example, we prove the existence and regularity of solution when h vanishes
in⌦

�

= {x 2 ⌦ : dist (x,@ ⌦) < �} for � enough small. Furthermore, as regards the
existence of solutions, it is su�cient that h 2 L1

loc

(⌦).
As discussed at the beginning of this Part III, since problem (28) has a varia-

tional characterization, the choice of a suitable space of functions will be advanta-
geous when it comes to finding critical points. Indeed, we consider the reflexive space
E = W 1,2

0 (⌦)\Lp+1(⌦;hdx) and the functional energy I
�

: E ! R defined as follows

I
�

(u) =

Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦
|u|p+1 h� �

2

Z

⌦

u2

|x|2 �
Z

⌦
f u h, 8u 2 E .
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Note that every function f 2 L
p+1

p (⌦;hdx) has associated a functional '
f

in the dual
space E⇤ given by

h'
f

, gi =
Z

⌦
fgh, 8g 2 Lp+1(⌦;hdx).

We show that I
�

is coercive and bounded from below. By using the Ekeland Vari-
ational Principle we also prove that a suitable minimizing sequence of this functional
is weakly convergent to a critical point u 2 E. In this way, in Theorem 9.2.1, we
establish the existence of solutions, under the condition of integrability

Z

⌦\⌦�

|x|
2(p+1)

1�p h(x)
2

1�p < 1 . (30)

Observe that for h(x) ⌘ h0 > 0, the above condition is equivalent to p > 2⇤ � 1,
imposed in Theorem 11. Moreover, under a condition somewhat stronger than (30):
there exists s̄ 2 (2, p+ 1) such that

Z

⌦\⌦�

|x| 2s̄
2�s̄h(x)

2s̄
(p+1)(2�s̄) < 1,

the functional I
�

is weak lower semicontinuous, then the solution is a minimum of I
�

.
Regarding the regularity of the solutions in the Theorem 9.3.1, we establish that

every solution to the problem (28) belongs to W 1,2
0 (⌦)\Lpm(⌦;h(x)dx) provided that:

i) h 2 L1(⌦) and h(x) > 0 for a.e. x 2 ⌦,

ii) |x| 2pm1�p h1�
pm
p�1 2 L1(⌦),

iii) f 2 Lm(⌦;h(x)dx) with m � p+1
p

.

Once again, the regularizing e↵ect of the term h(x)|u|p�1u is evident since, a priori,
the solutions belong to W 1,2

0 (⌦) \ Lp+1(⌦;h(x)dx).

Finally, an interesting case where the previous result is applied is h(x) � µ

|x|�
with µ > 0 and 0  � < N . Where we obtain that the solutions belong to W 1,2

0 (⌦) \
Lpm(⌦;h(x)dx) with

• m 2
h

p+1
p

, (N��)(p�1)
(2��)p

⌘

, if 0  � < 2,

• m 2
h

p+1
p

,1
⌘

, if 2  � < N .

Thus, in the case � = 0 (corresponding to h is constant) we obtain the reguarity result
of Theorem 11 but for every solution, instead of for a solution obtained as limit of
solutions of approximate problems.



PART III: Elliptic equations modeled by the p�laplacian 27

Concave-Convex problem with a discontinuous operator

As explained above, in Chapter 10 we study the existence of positive solutions to
the following problem

⇢ ��
p(x)u = �uq, in⌦ ,
u = 0, on @⌦,

(31)

where � > 0, 1 < q < p� 1,�
p(x)u = div

�|ru|p(x)�2ru
�

and p(x) is a discontinuous
function given by

p(x) =

⇢

2 if x 2 D1,
p if x 2 D2,

being p > 2 and D1, D2 subdomains with smooth boundary and such that

⌦ = D1 [D2, D1 \D2 = ; .

We call � the interface (or surface) inside ⌦, �= @D1 \⌦ = @D2 \⌦, and we assume
that � is a smooth surface with finite (N � 1) dimensional Hausdor↵ measure.

To raise the problem (31) variationally, we will decompose the di↵erential equation
in two di↵erential equations, one in each subdomain D

i

(i = 1, 2). To that end, we
must provide a “continuity” of the solution when it crosses from one region to another,
in the sense that the trace of u on � coincides coming from D1 and coming from D2,
and also we must provide continuity of the associated fluxes across� . In this way, we
consider solutions to problem (31) as weak solutions to the following problem:

8

>

>

>

>

>

<

>

>

>

>

>

:

��u = �uq, in D1,

��
p

u = �uq, in D2,

@u

@⌘
= |ru|p�2@u

@⌘
, u|

D

1

= u|
D

2

, on� ,

u = 0, on @⌦,

(32)

being ⌘ the normal unit vector to � pointing outwards D1. The adequate space to
find weak solutions is

W(⌦) =

⇢

v 2 W 1,2
0 (⌦) :

Z

D

2

|rv|p < 1
�

,

which equipped with the norm

[v]W(⌦) := krv k
L

2(D
1

) + krv k
L

p(D
2

) ,

is a reflexive and separable Banach space (Lemma 10.2.1). In this way, in Lemma
10.2.5 we prove that positive solutions of (32) are uniquely identified as being positive
critical points for the functional

F
�

(u) =

Z

D

1

|ru|2
2

dx+

Z

D

2

|ru|p
p

dx� �

Z

⌦

|u|q+1

q + 1
dx.
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Then, by using the method of sub and supersolution, we prove the existence of �⇤ > 0
such that for 0 < � < �⇤ there exists w

�

, minimal and positive solution. For this,
a comparison principle and a maximum principle for the problem are needed (see
Proposition 10.3.2). Furthermore, w

�

is unique and increasing respect to �. On the
other hand, if � > �⇤ then there is no positive solution. For the nonexistence we use
the fact that solutions to the parabolic problem u

t

= �u + �uq in D1, with large
initial data, blow up in finite time (Theorem 10.1.1).

In Theorem 10.1.2 we establish, under the assumptions p < 2⇤ and D2 ⇢⇢ ⌦, the
existence of a second solution for almost every 0 < � < �⇤. To prove it we argue in
two steps: First, using variational methods and the works of Ambrosetti et al. (1994);
Brézis and Nirenberg (1993); Garćıa Azorero et al. (2000), we prove that (32) has a
solution which is a local minimum of the corresponding energy functional F

�

(Theorem
10.4.6). For this result, since the p(x)�laplacian operator with p(x) discontinuous acts
di↵erently in D1 and in D2, we can only get regularity of solutions at locally Hölder
spaces (see Acerbi and Fusco (1994)). Then, to show that there is a local minimum
in W(⌦), we assume that D2 ⇢⇢ ⌦ in order to get C1 regularity close to @⌦ and then
we show that there is a minimum in the stronger topology C1(F

�

) \ C(⌦) where
F
�

= {x 2 ⌦ : dist(x,@ ⌦) < �}.
is a small strip around the boundary of ⌦. Then, by using a delicate regularity
argument, we relax the topology to W(⌦). Here we use partially the ideas from
Ambrosetti et al. (1994); Brézis and Nirenberg (1993); Garćıa Azorero et al. (2000)
adapting them to our setting with the introduction of a new original trick while using
Stampacchia’s approach in Proposition 10.4.5 in order to obtain an L1�bound. It
is at this point where we use that p < 2⇤. Note that our space of solutions W(⌦)
is a subspace of W 1,2

0 (⌦) that is larger than W 1,p
0 (⌦). Secondly, in order to prove

the existence of a second solution, note that the functional F
�

does not have a global
minimum. Indeed, let v be a function in W(⌦) with compact support in D1, then,
since we have that q > 1,

F
�

(tv) = t2
Z

D

1

|rv|2
2

dx� tq+1�

Z

D

1

|v|q+1

q + 1
dx ! �1 (33)

as t ! 1. Thus, F
�

has the desired Mountain Pass geometry. However, the main
di�culty is to show that Palais-Smale sequences are bounded in W(⌦). This question
is at present far from being solved and an a�rmative answer would allow to find a
second solution for all � 2 (0,�⇤) instead of for almost every � 2 (0,�⇤). We recall
that in previous references involving the search for critical points of Mountain Pass
type for semilinear elliptic equations problems like

⇢ ��u = f(x, u), in⌦ ,
u = 0, on @⌦,

it is usually assumed that the following condition is satisfied

9 > 2 such that 0  F (x, s)  sf(x, s), 8 s � 0 and a.e. x 2 ⌦ . (A-R)
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This condition was originally introduced in Ambrosetti and Rabinowitz (1973) and it
is called Ambrosetti-Rabinowitz type condition. Roughly speaking, the role of (AR)
is to ensure that all Palais-Smale sequences at the mountain pass level are bounded.
Adapting this result to our variable operator� u�

D

1

+ �
p

u�
D

2

it is not di�cult to
prove that if f(x, s) satisfies property (AR) for  > p, then we have that Palais-
Smale sequences are bounded. However, in our setting f(x, s) = �sq and (AR) is not
satisfied for  > p because q + 1 < p. Moreover, even conditions weaker than (AR)
present in the literature of elliptic equations ensuring the existence of bounded Palais-
Smale sequences are not applicable to our problem. To tackle this obstacle, we use
some results from the classic works Ambrosetti and Rabinowitz (1973); De Figueiredo
(1989); Ghoussoub and Preiss (1989); Jeanjean (1999) again adapting them to our
framework. Mainly, relying on a result by Jeanjean (1999) which shows the existence
a bounded Palais-Smale sequence at mountain pass level for almost every 0 < � < �⇤.
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Abstract

We prove an energy inequality for nonlocal di↵usion operators of the following
type, and some of its generalisations:

Lu(x) :=

Z

RN

K(x, y)(u(y)� u(x)) dy,

where L acts on a real function u defined on RN , and we assume that K(x, y)
is uniformly strictly positive in a neighbourhood of x = y. The inequality is a
nonlocal analogue of the Nash inequality, and plays a similar role in the study
of the asymptotic decay of solutions to the nonlocal di↵usion equation @tu = Lu
as the Nash inequality does for the heat equation. The inequality allows us to
give a precise decay rate of the Lp norms of u and its derivatives. As compared
to existing decay results in the literature, our proof is perhaps simpler and gives
new results in some cases.

31
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1.1 Introduction

In this paper we develop energy methods which are useful in the study of some partial
di↵erential equations involving nonlocal di↵usion terms. We start by the basic example
which is the following integro-di↵erential equation in convolution form:

@
t

u(t, x) =

Z

RN

J(x� y)
�

u(t, y)� u(t, x)
�

dy, u(0, x) = u0(x) (1.1)

where t � 0 is the time variable, x 2 RN is the space variable, u = u(t, x) 2 R is
the unknown, and J is the di↵usion kernel. Typically one assumes that J is smooth,
nonnegative, radially symmetric, and with integral 1; we also mention a variety of
models with di↵erent assumptions and variations of (1.1) in Section 1.4. Equation
(1.1) and its relatives appear as a nonlocal version of the usual di↵usion equation
@
t

u = �u, and it is known that (1.1) approximates it when J is close to a Delta
function (see Theorem 1.1.8 and the remarks before it).

We will apply energy methods to deal with nonlocal problems that not necessarily
involve a convolution. That is, problems of the form

@
t

u(t, x) =

Z

RN

K(x, y)(u(t, y)� u(t, x)) dy, (1.2)

where our main hypotheses on K can be summarized as follows: K(x, y) is a nonnega-
tive symmetric function with sup

y2RN

R

RN K(x, y)dx  C
K

and such that K is strictly
positive in a neighborhood of the closet set {x = y}. Furthermore, the symmetry of
K can be replaced by integrability conditions (see Subsection 1.4.2). On the other
hand, observe that it makes sense to assume that K(x, x) > 0 since in many models it
means that the probability that individuals remain for some time at the point where
they are is positive.

As a particular application which motivates our arguments we consider the nonlo-
cal dispersal model proposed by Cortázar et al. (2007) (see also Cortázar et al. (2011);
Cortázar et al. (2015); Cortázar et al. (2016)):

@
t

u(t, x) =

Z

R
J

✓

x� y

g(y)

◆

u(t, y)

g(y)
dy � u(t, x), in R⇥ [0,1), (1.3)

with a prescribed initial data u(x, 0) = u0(x) defined on R. Here J is an even, positive,
smooth function such that

R

R J(x) dx = 1 and supp J = [�1, 1], and g is a continuous
positive function which accounts for the dispersal distance which depends on the
departing point. In this model u represents the spatial distribution of a certain species,
and g models the heterogeneity of the environment which can a↵ect the distribution
of a species through space-dependent dispersal strategies. For this model we are able
to give an explicit rate of decay of the Lp norm of solutions, which is to our knowledge
a new result (see Theorem 1.4.3).
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The driving idea of our methods is that solutions to (1.1) behave in many ways
like solutions to the heat equation

@
t

u = �u, u(0, x) = u0, (1.4)

where as usual the Laplacian � acts only on the space variable x (see Theorem 1.1.8
and the comments before it). For more details we refer the reader to Sun et al. (2011)
for the Cauchy problem, Cortázar et al. (2009) for Dirichlet boundary conditions (see
also Molino and Rossi (2016) in a more general framework) and Cortázar et al. (2008)
for Neumann boundary conditions. One important property of (1.4) is the following
time decay of solutions: there is a constant C = C(N, p) > 0 such that

kukp
p

 �ku0k�p�

p

+ Cku0k�p�

1 t
�� 1

� , for all t � 0, (1.5)

which holds for any 1 < p < +1 and any initial condition u0 2 L1(RN ) \ Lp(RN )
nontrivial, and where

� :=
2

N(p� 1)
.

In fact, it still holds for u0 2 L1(RN ) and all t > 0 by removing the term ku0k�p�

p

.
Here and below, Lp(RN ) denotes the usual Lebesgue space of p-integrable functions
on RN , with associated norm denoted by k ·k

p

. There are several ways of showing this
decay and regularization property for the heat equation. One of them is noticing that
the Lp norms are Lyapunov functionals for (1.4): if u solves (1.4) with u0 2 Lp(RN )
then

d

dt
kukp

p

= �4(p� 1)

p

Z

RN

�

�r(u
p
2 )
�

�

2
. (1.6)

One can then compare the right hand side term to kuk
p

by using the Gagliardo-
Nirenberg-Sobolev inequality (which in this particular case is known as the Nash
inequality Nash (1958))

kvk2  C
N

krvk✓2 kvk1�✓

1 , (1.7)

with

✓ :=
N

N + 2
.

This inequality is valid in any dimension N ; in dimensions N � 3 it can easily be
obtained as a consequence of the more familiar Sobolev inequality kuk2⇤  Ckruk2,
where 2⇤ := 2N/(N � 2). By using (1.7) with v = up/2 we obtain for any p � 2 that

Z

RN

�

�r(u
p
2 )
�

�

2 � C
� 2

✓
N

kuk
p
✓
p

kuk�
p(1�✓)

✓
p
2

� C
� 2

✓
N

kukp(1+�)
p

kuk�p�

1 , (1.8)

where the last step is obtained through an interpolation of kuk
p/2 between kuk

p

and
kuk1. Due to mass conservation for the heat equation we have kuk1  ku0k1 for
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all times t � 0 (this inequality is of course an equality for nonnegative, finite-mass
solutions). Hence using (1.8) in (1.6) one has

d

dt
kukp

p

 �C kukp(1+�)
p

ku0k�p�

1 ,

for some constant C = C(N, p). This is a di↵erential inequality for kuk
p

that readily
gives the decay (1.5).

In the context of di↵usion equations, the strategy of using the Lp norm of u and
its derivative as a means for studying properties of solutions is known as the energy
method. It is a close relative of a common and quite successful strategy in kinetic
equations and dissipative PDE sometimes known as the entropy method (Arnold et al.,
2004; Bakry and Émery, 1985; Bonforte et al., 2010; Carrillo et al., 2001; Desvillettes
and Villani, 2004; Gross, 1975; Otto and Villani, 2000; Villani, 2002), where one
compares the time derivative of a Lyapunov functional with the Lyapunov functional
itself via a functional inequality in order to obtain a certain decay rate for solutions.
These energy methods have the advantage of being quite robust, often being applicable
to equations that are not explicitly solvable by Fourier transform methods, and to
nonlinear problems. The question that motivates this paper is whether these ideas
can be adapted to equation (1.1) in order to show a decay property similar to (1.5).
One important observation is that the same statement cannot be true for solutions of
(1.1), since there is no instantaneous L1 to Lp regularization. In fact, the Lp norms
are still a Lyapunov functional for (1.1) (as is well known, any convex function gives
a Lyapunov functional for (1.1)): if u is an Lp solution to (1.1) then

d

dt
kukp

p

= �DJ

p

(u). (1.9)

Here, the Lp dissipation DJ

p

(u) is defined for any measurable u : RN ! R as

DJ

p

(u) :=
p

2

Z

RN

Z

RN

J(x� y)
�

u(x)� u(y)
��

�
p�1(u(x))� �

p�1(u(y))
�

dx dy, (1.10)

where for q > 0 we denote by �
q

the antisymmetric extension of the usual q-th power,
that is,

�
q

(s) := |s|q sgn(s), s 2 R.
Of course, since �

p�1 is nondecreasing, the integrand in (1.10) is also nonnegative and
always makes sense as a number in [0,+1]. We point out that for nonnegative u the
expression becomes a bit simpler,

DJ

p

(u) :=
p

2

Z

RN

Z

RN

J(x� y)
�

u(x)� u(y)
��

u(x)p�1 � u(y)p�1
�

dx dy.

Precisely this strategy was discussed in Ignat and Rossi (2009), where it was remarked
that no inequality of the following form can hold, for any q > 2 and a smooth,
nonnegative, compactly supported function J :

DJ

2 (u) � Ckuk2
q

.
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Hence the natural analogue of the usual Sobolev inequality does not hold in the
nonlocal case. Similarly, the direct analogue of (1.8) (with DJ

p

(u) on the left hand
side) cannot hold, since it would imply an L1�Lp regularization e↵ect on (1.1) which
is known to fail. In view of this failure, a di↵erent strategy was followed there, leading
to di↵erent inequalities and applications to several linear and nonlinear equations
involving nonlocal di↵usions. Similar ideas were developed in Brändle and de Pablo
(2015) in order to establish decay estimates for fractional di↵usions, with modified
inequalities used in place of the usual Nash inequality. After the statement of our
results we compare them in more detail to those in Brändle and de Pablo (2015);
Ignat and Rossi (2009) and other previous works.

Main results. Our purpose is to show a simple inequality that plays the role of (1.8)
and provides a means to show precise decay properties of (1.1) and (1.2):

Hypothesis 1 J : RN ! [0,+1) is a measurable function such that for some r,R >
0 we have

J(z) � r, for all |z| < R . (1.11)

In particular, this is obviously satisfied if J is continuous in a neighborhood of 0 with
J(0) > 0.

Theorem 1.1.1 (Lp energy inequality) Let J : RN ! R be a function satisfying
Hypothesis 1. For every N � 1 and p � 2, there exists a positive constant C =
C(N, p) > 0 such that

DJ

p

(u) � Crmin
n

RN+2kuk�p�

1 kukp(1+�)
p

, RNkukp
p

o

, (1.12)

for all u 2 L1(RN ) \ Lp(RN ), where � := 2
N(p�1) .

This inequality serves as a useful analogue of (1.8) in the nonlocal case, as we will
see shortly. If one does not care about the precise dependence of the constant C on
J then this can be more simply stated as: there exists a constant C = C(N, p, J)
depending only on N , p and J such that

DJ

p

(u) � Cmin
n

kuk�p�

1 kukp(1+�)
p

, kukp
p

o

. (1.13)

The constants in the above inequalities can be estimated explicitly by following the
proof. To our knowledge, inequality (1.12) is new. Similar modified Nash inequalities
are considered in Carlen et al. (1987); Ignat and Rossi (2009), and especially in Brändle
and de Pablo (2015)[Corollary 4.7]. In the latter, (p, q)-inequalities involving the p and
q norms of u are given for p > q > 1; ours is the limiting case with q = 1, not included
there. We notice the L1 case is fundamental for the generalisations we describe later,
since mass is a natural conserved quantity in many models.

The inequality in Theorem 1.1.1 immediately allows us to deduce bounds on the
asymptotic behaviour of several nonlocal di↵usion equations (see Section 1.4). Let us



36 Improved energy methods for nonlocal di↵usion problems

give the argument for equation (1.1), which is the simplest possible model: using (1.9)
we have

d

dt
kukp

p

= �DJ

p

(u)  �Crmin
n

RN+2kuk�p�

1 kukp(1+�)
p

, RNkukp
p

o

.

Taking into account that kuk1 is nonincreasing in time (it is conserved for nonnegative
solutions) one has

d

dt
kukp

p

 �Crmin
n

RN+2ku0k�p�

1 kukp(1+�)
p

, RNkukp
p

o

.

This is a di↵erential inequality for kuk
p

, which can be solved (see Lemma 1.4.1) to
yield the following result:

Theorem 1.1.2 Take a function J 2 L1(RN ) satisfying Hypothesis 1 and p 2 [2,+1).
Consider the solution u to equation (1.1) with initial data u0 2 L1(RN ) \ Lp(RN ).
There exists a constant C = C(N, p) (the same as in Theorem 1.1.1) such that

kukp
p


(

ku0kpp for 0  t  t0,
�ku0k�p�

p

+ C�rRN+2ku0k�p�

1 (t� t0)
�� 1

� for t � t0,
(1.14)

where � := 2
N(p�1) and

t0 = max

⇢

0,
1

CrRN

log
�

R
2

� ku0k�p

1 ku0kp
p

)
�

�

.

Again, if we are not interested in the precise dependence of the bound on J , ku0k1
and ku0kp then the following statement is simpler: there exists a constant C =
C(r,R,N, p, ku0k1, ku0kp) such that

kukp
p

 C(1 + t)�
N(p�1)

2 for all t � 0. (1.15)

This is a direct consequence of the bound (1.14); see Remark 1.4.2. In this sense, Theo-
rem 1.1.1 is a nonlocal analogue of the Gagliardo-Nirenberg-Sobolev (or Nash) inequal-
ity: it allows us to give a decay rate of the nonlocal di↵usion equation (1.1), and in fact
this decay rate approaches that of the heat equation as (1.1) approaches it (see The-
orem 1.1.8). Furthermore, due to the interpolation formula kuk

q

 kuks1kuk1�s

2 for q 2
[1, 2] and s = 2�q

q

, (1.15) also holds for 1  p  2 and some C = C(J,N, p, ku0k1, ku0k2).
We also give inequalities related to higher derivatives of u in Section 1.3, and

deduce from them corresponding decay properties of derivatives of u, still at the same
asymptotic rate as those for the heat equation. For k � 0 we define the di↵erential
operator Dk acting on a function u as

Dku := �(��)k/2u.

In order to ensure that this expression makes sense we will always assume that u 2
Hk(RN ) (i.e., the classical Sobolev space W k,2(RN )) when applyingDk. The following
result gives an estimate of DJ

2 (D
ku); note that the case k = 0 is just the p = 2 case

of Theorem 1.1.1:
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Theorem 1.1.3 Let N � 1 be an integer and J : RN ! R be a function satisfying
Hypothesis 1. There exists a positive constant C = C(N) such that

DJ

2 (D
ku) � Crmin

⇢

Rk+N+2kuk�
4

N+2k

1 kDkuk2+
4

N+2k

2 , Rk+NkDkuk22
�

(1.16)

for all u 2 Hk(RN ) \ L1(RN ).

As a consequence one can obtain a decay of higher derivatives of solutions to (1.1).
Notice that the case k = 0 of the following result is just Theorem 1.1.2 with p = 2:

Theorem 1.1.4 Take a function J satisfying Hypothesis 1 and a real k � 0. Consider
the solution u to equation (1.1) with initial data u0 2 L1(RN )\Hk(RN ). There exists
a constant C = C(N, k) (the same as in Theorem 1.1.3) such that

kDkuk22 
(

kDku0k22 for 0  t  t0,
�kDku0k�2�

2 + Cr�Rk+N+2ku0k�2�
1 (t� t0)

�� 1

� for t � t0,

where � := 2
N+2k and

t0 = max

⇢

0,
1

CrRk+N

log
⇣

R
2

� ku0k�2
1 kDku0k22

⌘

�

.

The decay in Theorem 1.1.2 can be interpreted as follows: for large times, the
asymptotic decay of the Lp norm of solutions to the nonlocal di↵usion equation (1.1)
is the same as that of the heat equation. However, there can be an initial time during
which a di↵erent decay takes place. The threshold between the two is related to the
value of the Lp norm of u: if it is large then heuristically (since we are assuming u0 is
integrable) the main contribution to the Lp norm comes from local concentrations of
u. Since the smoothing e↵ect of (1.1) is much weaker than that of the heat equation,
the rates of decay of the two di↵er. On the other hand, when kuk

p

is small, the
concentrations of u do not play a major role and the decay of both equations becomes
comparable. The inequality (1.12) and the corresponding decay (1.14) are quite precise
on the dependence on J and the initial data, giving a direct estimate of the time when
the “heat-like” di↵usion kicks in: the time t0 depends logarithmically on the ratio
between ku0kp and ku0k1.

Theorem 1.1.2 as stated is not new; the simplified statement (1.15) can be proved
for example by Fourier transform methods (Andreu-Vaillo et al., 2010), and the decay
(1.14) can probably be obtained as well. The important advantage of using Theorem
1.1.1 to prove Theorem 1.1.2 is that the method is quite robust under modifications
in the linear operator. In Subsection 1.4.2 we prove a result similar to Theorem 1.1.2
which gives decay properties for general nonlocal di↵usion equations with a more
general kernel K(x, y) instead of J(x� y): consider the equation

@
t

u(t, x) =

Z

RN

K(x, y)u(t, y) dy � �(x)u(t, x), (1.17)
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where K : RN ⇥ RN ! [0,1) is a general kernel (not necessarily symmetric) and
� : RN ! [0,+1) is a function. Let us keep our discussion at a formal level for the
moment and not worry about the problem of existence of solutions to (1.17) or the
precise regularity of K and �. Equation (1.17) is a general form of the scattering equa-
tion (see for example Michel et al. (2004)), and contains many others as a particular
case. The nonlocal di↵usion (1.1) is recovered if K(x, y) = J(x�y) and �(x) =

R

RN J
for all x, y. In the case that �(x) =

R

RN K(x, y) dy the equation can be written as

@
t

u(t, x) =

Z

RN

K(x, y)
�

u(t, y)� u(t, x)
�

dy, (1.18)

which is a type of nonlocal di↵usion equation, where the nonlocality is not given by a
convolution. Similarly, if we assume

�(x) =

Z

RN

K(y, x) dy, (1.19)

then equation (1.17) is formally the Kolmogorov forward equation for a Markov jump
process with jump rates given by K, where u represents the probability density of
the process (Ethier and Kurtz, 1986, Chapter 4.2). Notice that (1.19) is just the
statement that the total mass

R

RN u(t, x) dx is formally conserved in time (as should
happen for a probabilistic evolution). In that sense, equation (1.17) contains many
evolution equations linked to Markov processes, and has multiple applications. (We
give an example linked to a population dispersal in Section 1.4.3.) Equation (1.17)
has some properties in common with di↵usion processes, but it is important to notice
that (1.17) may have finite-mass equilibria (unlike the usual heat equation, whose only
finite-mass equilibrium is 0).

Let us state a precise result which is relevant for nonlocal di↵usions. For all of
them we will assume:

Hypothesis 2 There exist r,R > 0 such that K(x, y) � r whenever |x� y| < R.

This is the analogue of Hypothesis 1 in this setting. In order to ensure that Lp

solutions of (1.17) exist we will also assume that K is measurable and that for some
C
K

> 0
Z

RN

K(x, y) dy  C
K

,

Z

RN

K(y, x) dy  C
K

, for all x 2 RN . (1.20)

This ensures that the linear operator on the right hand side of (1.17) is bounded in
L1(RN ) and L1(RN ) (and hence, by interpolation, in any Lp(RN ) with 1  p  1).

Theorem 1.1.5 Take p 2 [2,+1). Assume that K : RN ⇥ RN ! [0,+1) satisfies
Hypothesis 2 and (1.20). Consider equation (1.17) with � given by (1.19), and assume
that there exists an equilibrium u1 of (1.17) satisfying

1

m
 u1(x)  m, for all x 2 RN , (1.21)
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for some m > 0. Let u be any solution to equation (1.17) with initial data u0 2
L1(RN )\Lp(RN ). There exists a constant C depending only on r, R, N , m, p, ku0k1
and ku0kp such that

kukp
p

 C(1 + t)�
N(p�1)

2 , for all t � 0.

In Section 1.4.3 we give an application of these results to a dispersal equation
proposed in Cortázar et al. (2007), obtaining an explicit rate of convergence to equi-
librium.

Remark 1.1.6 Condition (1.20) is just included in order to ensure that there are
well-defined solutions to (1.17), but it does not play a role in the decay estimates. It
can be removed if it can be justified by other means that solutions to (1.17) exist and
rigorously satisfy the entropy property (1.9).

Remark 1.1.7 In Theorem 1.1.5 one can also give a more precise estimation of the
decay and the constants involved, as we did in Theorem 1.1.2. We have preferred in
this case to leave the statement in this form for simplicity, but the reader can state
the analogue of Theorem 1.1.2 without di�culty.

We refer to Section 1.4.2 for details on this and a proof of Theorem 1.1.5.

Heat equation scaling. It is worth mentioning that Theorems 1.1.1 and 1.1.2 pass
to the limit well when the nonlocal equation (1.1) approximates the heat equation.
Let J be a smooth and radially symmetric convolution kernel with J(0) > 0, and
denote by J

✏

the rescaling

J
"

(z) :=
C(J)

"2+N

J
⇣z

"

⌘

, with C(J)�1 =
1

2

Z

RN

J(z)z2
N

dz.

It is well-known that, u", the solution to the equation

@
t

u"(t, x) =

Z

RN

J
"

(x� y)((u"(t, y)� u"(t, x)) dy, x 2 RN , t > 0, (1.22)

with initial data u0 2 C(RN ) converges to the solution of the heat equation @
t

v = �v
with the same initial data (see for instance Andreu-Vaillo et al. (2010); Rey and

Toscani (2013)). Since J satisfies Hypothesis 1 for some r,R > 0 one has J
"

(z) � rC(J)
"

2+N ,
for all |z| < R ". Replacing this in expression (1.14) the " is cancelled and we obtain
the following result:

Theorem 1.1.8 Assume J satisfies Hypothesis 1. Let u" be a solution of (1.22) with
initial data u0 2 L1(RN ) \ Lp(RN ) with p 2 [2,1). Then it holds

ku"(t, ·)kp
p

 �ku0k�p�

p

+ C1ku0k�p�

1 (t� t0)
�� 1

� for t � t0,
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where C1 = C(N, p)�rRN+2C(J) does not depend on " and

t0 = max

⇢

0,
"2

CrRNC(J)
log
�

"
2

�R
2

� ku0k�p

1 ku0kp
p

)
�

�

.

In particular, t0 = 0 for all " < "0 = ku0k
�p
2

1 /
�

Rku0k
�p
2

p

�

.

The interest of the above theorem is that the decay is preserved in the scaling that
leads to the heat equation. In addition, for small " the expression of the decay is
exactly of the same form as that of the heat equation, given in (1.5).

Comparison to results in the literature. Several precise results exist already
regarding the decay properties of equation (1.1). Let us give a brief review and
compare them to our own. Nonlocal di↵usions including (1.1) have been studied in
Chasseigne et al. (2006), and we refer the reader to the recent book Andreu-Vaillo et al.
(2010) for background and an extensive review of the state of the art for equations
involving similar nonlocal terms. A similar approximation to the heat equation, with
a particular kernel J , was studied in Rey and Toscani (2013), and some nonlocal
approximations to Fokker-Planck equations have been recently considered in Mischler
and Tristani (2016) and very recently in Toscani (2017).

The observation that solutions to (1.1) decay asymptotically like the heat equa-
tion has been present since the first works on the matter, with several analogues of
(1.5). The first ones were based on the Fourier transform of (1.1), which is explic-
itly solvable Chasseigne et al. (2006); Ignat and Rossi (2007, 2008). Energy methods
were considered in Ignat and Rossi (2009); results were given on the decay of several
models including the linear nonlocal di↵usion equation (1.1) and a nonlocal version
of the p-Laplacian evolution equation. The method in Ignat and Rossi (2009) is dif-
ferent from ours, and is based on a splitting of the function u into a “smooth” part
and a “rough” part. The ideas are somehow reminiscent of ours, since they borrow
techniques from Fourier splitting by Schonbek (1980) and there is a parallel with our
splitting of the function u in Fourier space. The results from Ignat and Rossi (2009)
are in dimensions N � 3 and K symmetric; on the other hand, they are well-adapted
to nonlinear problems like the nonlocal p-Laplacian equation. Our inequality seems
to be a simpler argument which works in any dimension, is well-adapted to the lin-
ear nonlocal di↵usion operator, but does not easily carry over to nonlinear nonlocal
operators. It also gives a simple way to track the dependence of the decay on the
parameters of the problem, especially the di↵usion kernel J .

Inequalities of the type (1.12) were already noticed in Brändle and de Pablo (2015),
and used in order to obtain decay and regularisation properties for nonlinear di↵usions
of the type (1.1) where the function J typically behaves as |x|�N�↵ as x ! +1, for
some 0 < ↵  2. Their proof goes along the lines of Ignat and Rossi (2009). Inequality
(1.12) is a limit case of their results, but is not included there for similar reasons as
in Ignat and Rossi (2009).

As compared to previous results, we summarise our contributions as follows:
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1. Inequality (1.12) seems to be new. Similar ideas were used in Brändle and
de Pablo (2015); Ignat and Rossi (2009), but (1.12) is a limiting case not included
in these works.

2. Our proof of the inequality (1.12) is straightforward, works in any dimension, and
in our opinion simplifies previous arguments for related inequalities. It also leads
to a precise estimate of the constants in the inequality, which have in particular
the correct scaling when approximating the heat equation (see Theorem 1.1.8).

3. A similar method of proof yields inequalities and decay results involving higher
derivatives of the function u; see Section 1.3.

4. The entropy method used allows for an extension to linear mass-conserving
equations with general kernels K(x, y) (not necessarily symmetric) instead of
J(x� y); see Subsection 1.4.2.

The paper is organised as follows: in Section 1.2 we give the proof of the inequality
in Theorem 1.1.1, and in Section 1.3 we prove similar inequalities involving derivatives.
Finally, in Section 1.4 we show how these inequalities yield decay properties for several
equations involving general kernels K(x, y), in particular proving Theorem 1.1.2 in
Subsection 1.4.1.

1.2 Energy inequalities for nonlocal di↵usion operators

We are interested in finding useful lower bounds of DJ

p

(u) in terms of Lp norms of u.
Since (|a|� |b|)(|a|s � |b|s)  (a� b)(�

s

(a)� �
s

(b)) for any a, b 2 R and s > 1 (where
�
s

(a) := |a|s sgn(a)), it is easily seen that

DJ

p

(u) � DJ

p

(|u|)
for any measurable u : RN ! R. This allows us to work only with nonnegative func-
tions u.

This section is devoted to the proof of Theorem 1.1.1. We first show the case p = 2,
and then deduce from it the general inequality for p � 2. The proof of the p = 2 case
is a modification of a the original proof of the Nash inequality (1.7) appearing in the
paper by Nash (1958):

Lemma 1.2.1 Let I be the normalised characteristic function of the unit ball in RN ,

I(z) :=
1

!
N

if |z| < 1, I(z) = 0 otherwise, (1.23)

where !
N

is the volume of the unit ball in dimension N . There exists a constant
C = C(N) depending only on N such that

DI

2(u) � C min

⇢

kuk�
4

N
1 kuk2+

4

N
2 , kuk22

�

, (1.24)
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for all u 2 L1(RN ) \ L2(RN ).

We point out that the constant C can be estimated explicitly by following the
calculations in the proof below.

Proof: Along the proof we call C1, C2, . . . several constants that depend only on
the dimension N . We will use the following property, which holds for some constant
C1 > 0:

1� Î(⇠) � 1

C1
min{1, |⇠|2}, for all ⇠ 2 RN

or, in other words,

(1� Î(⇠))�1  C1max{1, |⇠|�2}, for all ⇠ 2 RN . (1.25)

Since I has integral one we can write, using that the Fourier transform is an isometry
of L2(RN ;C),

DI

2(u) = 2 hu, u� I ⇤ ui = 2
⌦

û, (1� Î)û
↵

= 2

Z

RN

(1� Î)|û|2,

where h·, ·i denotes the usual inner product in the space of L2 complex functions in
RN . We can break the integral of kuk2 in two parts, for any � > 0:

kuk22 = kûk22 =
Z

|⇠|�

|û(⇠)|2 d⇠ +
Z

|⇠|>�

|û(⇠)|2 d⇠. (1.26)

These two terms can be estimated as follows: for the first one,
Z

|⇠|�

|û(⇠)|2 d⇠  kuk21
Z

|⇠|�

d⇠  !
N

�Nkuk21. (1.27)

For the second one, using (1.25) and assuming � < 1 we have
Z

|⇠|>�

|û(⇠)|2 d⇠  C1

Z

|⇠|>�

⇣

1� Î(⇠)
⌘

max{1, |⇠|�2} |û(⇠)|2 d⇠

 C1

Z

|⇠|>�

⇣

1� Î(⇠)
⌘

max{1, ��2} |û(⇠)|2 d⇠

 C1

�2

Z

|⇠|>�

⇣

1� Î(⇠)
⌘

|û(⇠)|2 d⇠  C1

�2
DI

2(u).

(1.28)

Using (1.27) and (1.28) in (1.26) we obtain

kuk22  !
N

�Nkuk21 +
C1

�2
DI

2(u), for any 0 < � < 1. (1.29)

We would like to optimise this quantity in �, but it is only valid for 0 < � < 1. If
we could choose � freely we would take the one that achieves the best bound in the
inequality (1.29), that is,

�0 :=

✓

2C1DI

2(u)

N!
N

kuk21

◆

1

N+2

.
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Now we discuss two cases:

Case 1. If �0 < 1, then replacing � by �0 in (1.29) we have

kuk22  !
2

N+2

N

C
N

N+2

1

✓

1 +
N

2

◆✓

2

N

◆

N
N+2

kuk
4

N+2

1 DI

2(u)
N

N+2 .

Equivalently,

DI

2(u) � C2kuk�
4

N
1 kuk2+

4

N
2 (1.30)

where C2 = !
� 2

N
N

C�1
1

�

1 + N

2

��N+2

N N

2 .

Case 2. If �0 � 1 then this means that

N!
N

kuk21  2C1DI

2(u).

In this case, choosing � = 1 in (1.29) and using the above inequality we get

kuk22  !
N

kuk21 + C1DI

2(u) 
✓

1 +
2

N

◆

C1DI

2(u),

or
DI

2(u) � C3kuk22 (1.31)

with C3 := C�1
1

�

1 + 2
N

��1
.

Finally, summarising (1.30) and (1.31) we obtain

DI

2(u) � C4 min

⇢

kuk�
4

N
1 kuk2+

4

N
2 , kuk22

�

(1.32)

with C4 := max {C2, C3}. This proves (1.24) with C = C4. ⇤
Notice that DJ

2 (u) satisfies the following scaling property. For � > 0 and any
function g on RN we denote

g
�

(z) := g(z/�), z 2 RN .

Then one sees that
DJ�

2 (u) = �2NDJ

2 (u 1

�
). (1.33)

This easily gives the following extension of Lemma 1.2.1:

Corollary 1.2.2 (L2 energy inequality) Let J satisfy Hypothesis 1. There is some
constant C = C(N) that depends only on the dimension N such that

DJ

2 (u) � Crmin

⇢

RN+2kuk�
4

N
1 kuk2+

4

N
2 , RNkuk22

�

(1.34)

for all u 2 L2(RN ) \ L1(RN ).



44 Improved energy methods for nonlocal di↵usion problems

Proof:[Proof of Corollary 1.2.2] Call I = I(z) the normalised characteristic of the
unit ball, and define

K(z) :=
1

r !
N

J(Rz), z 2 RN .

Then
K(z) � I(z) for all z 2 RN

so
DK

2 (u) � DI

2(u).

Since J = r!
N

K
R

, due to the scaling (1.33) we have

DJ

2 (u) = r !
N

R2NDK

2 (u 1

R
) � r !

N

R2NDI

2(u 1

R
).

Hence we can use Lemma 1.2.1 (writing C
N

to denote the constant C in it) to say
that

DJ

2 (u) � r!
N

R2NC
N

min

⇢

ku 1

R
k�

4

N
1 ku 1

R
k2+

4

N
2 , ku 1

R
k22
�

= r!
N

C
N

min

⇢

RN+2kuk�
4

N
1 kuk2+

4

N
2 , RNkuk22

�

.

This shows the result. ⇤
Corollary 1.2.2 gives the case p = 2 of Theorem 1.1.1. In order to obtain the

general case for p � 2 and complete the proof, let us first give a simple inequality in
the next lemma:

Lemma 1.2.3 Let p > 1, there exists c(p) > 0 such that

(a� b)(ap�1 � bp�1) � c(p) (ap/2 � bp/2)2, for all a, b � 0. (1.35)

Proof: There is no loss of generality in assuming a > b. Dividing by ap (which is
not 0) and denoting ✓ = b/a 2 [0, 1), (1.35) is equivalent to showing that

F (✓) :=
(1� ✓)(1� ✓p�1)

(1� ✓p/2)2
� c(p), ✓ 2 [0, 1).

It is a simple matter to check that F is decreasing in [0, 1), so one may take c(p) =

lim
✓!1 F (✓) = 4(p�1)

p

2

> 0. ⇤
We can now complete the proof of Theorem 1.1.1:
Proof:[Proof of Theorem 1.1.1] As explained at the beginning of Section 1.2, we

may assume that u is nonnegative. By using the inequality in Lemma 1.2.3 we obtain

DJ

p

(u) =

Z

RN

Z

RN

J(x� y)(u(x)� u(y))(u(x)p�1 � u(y)p�1)dxdy

� c(p)

Z

RN

Z

RN

J(x� y)(u(x)p/2 � u(y)p/2)2dxdy

= c(p)DJ

2 (u
p/2).
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Now, by virtue of Corollary 1.2.2, and calling C
N

the constant in it, it follows that

DJ

p

(u) � c(p)C
N

r min

⇢

RN+2kup/2k�
4

N
1 kup/2k2+

4

N
2 , RNkup/2k22

�

= c(p)C
N

r min

⇢

RN+2kuk�
2p
N

p
2

kukp(1+
2

N )
p

, RNkukp
p

�

.

Finally, due to the interpolation formula

kuk p
2

 kuk
1

p�1

1 kuk
p�2

p�1

p

(note that p � 2 is used here) we conclude that

DJ

p

(u) � c(p)C
N

r min
n

RN+2kuk�p �

1 kukp(1+�)
p

, RNkukp
p

o

,

with � = 2
N(p�1) . ⇤

1.3 Energy inequalities involving derivatives

We now prove Theorem 1.1.3, an inequality which is useful when studying the decay
of derivatives of solutions to nonlocal di↵usion equations:

Proof:[Proof of Theorem 1.1.3] The proof is a direct extension of the technique in
the proof of Theorem 1.1.1. We follow the same steps. First, we assume that J is
the normalised characteristic function of the unit ball in RN , given by (1.23). Then,
closely following Lemma 1.2.1, we claim

DJ

2 (D
ku) � C

N

min

⇢

kuk�
4

N+2k

1 kDkuk2+
4

N+2k

2 , kDkuk22
�

(1.36)

for some constant C
N

> 0 depending only on N . As in the proof of Lemma 1.2.1,

DJ

2 (D
ku) = 2

Z

RN

(1� Ĵ)|dDku|2.

Now, recalling inequality (1.25) and taking into account that |dDku(⇠)|2 = |⇠|2k|û(⇠)|2 
|⇠|2kkuk21 we obtain for 0 < �  1 that

kDkuk22 = kdDkuk22 =
Z

|⇠|�

|dDku(⇠)|2 d⇠ +
Z

|⇠|>�

|dDku(⇠)|2 d⇠

 kuk21
Z

|⇠|�

|⇠|2k d⇠ + C1

�2

Z

|⇠|>�

(1� Ĵ(⇠))|dDku(⇠)|2 d⇠ (1.37)

 !
N

�2k+N kuk21 +
C1

2�2
DJ

2 (D
ku).
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Choose

�0 =

✓

2C1DJ

2 (D
ku)

(N + 2k) kuk21 !N

◆

1

N+2k+2

.

We obtain, as in Lemma 1.2.1, two possibilities: if �0  1, we get

kDkuk22  C2 kuk2µk
1 DJ

2 (D
ku)1�µk (1.38)

with µ
k

= 2
N+2+2k and C2 =

�

N

2 + k
�

µk
⇣

1 + 2
N+2k

⌘1�µk

C1!
µk
N

. In the other case,

�0 > 1, we get

kDkuk22 
2C1

(N + 2k)µ
k

DJ

2 (D
ku). (1.39)

Collecting inequalities (1.38) and (1.39) we have

kDkuk22  C
N

max
n

kuk2µk
1 DJ

2 (D
ku)1�µk , DJ

2 (D
ku)
o

where C
N

= max
n

C2,
2C

1

(N+2k)µk

o

. Reversing the inequality we have thus proved

(1.36).

In order to complete the proof we consider any J satisfying Hypothesis 1. We have
a scaling property which is an extension of (1.33):

DJ�
2 (Dku) = �2N�kDJ

2 (D
ku1/�), (1.40)

for any � > 0. Of course, we also have Dku
�

= ��k(Dku)
�

, the usual scaling for
derivatives. If I denotes the characteristic function of the unit ball on RN and we
define K = 1

r!N
J1/R as in the proof of Corollary 1.2.2 then K � I, and J = r!

N

K
R

.
Using the scaling property (1.40) and the normalised case (1.36) we see that

DJ

2 (D
ku) = r!

N

R2N�kDK

2 (u1/R) � r!
N

R2N�kDI

2(u1/R)

� r!
N

R2N�kC
N

min

⇢

ku1/Rk
� 4

N+2k

1 kDku1/Rk
2+ 4

N+2k

2 , kDku1/Rk22
�

= r!
N

R2N�kC
N

min

⇢

R2k�N+2kuk�
4

N+2k

1 kDkuk2+
4

N+2k

2 , R2k�NkDkuk22
�

= r!
N

C
N

min

⇢

Rk+N+2kuk�
4

N+2k

1 kDkuk2+
4

N+2k

2 , Rk+NkDkuk22
�

,

which shows the result. ⇤
We point out that analogous results can be stated for other di↵erential operators.

As an example we consider ru. Following the notation of the preceding section we
set

DJ

2 (ru) =

Z

RN

Z

RN

J(x� y) |ru(x)�ru(y)|2 dx dy, (1.41)

defined for any u 2 H1(RN ). Reasoning along the same lines as in the previous result
one obtains the following result for ru (notice that this is not the same as the k = 1
case of Theorem 1.1.3, since D1u is not equal to ru):
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Theorem 1.3.1 Let N � 1 be an integer and J : RN ! R be a function satisfying
Hypothesis 1. There exists a positive constant C = C(N) such that

DJ

2 (ru) � Crmin

⇢

RN+3kuk�
4

N+2

1 kruk2+
4

N+2

2 , RN+1kruk22
�

, (1.42)

for all u 2 H1(RN ) \ L1(RN ).

Proof: If J has integral one we can write, as before,

DJ

2 (ru) = 2 hru,ru� J ⇤ rui = 2
⌦

cru, (1� Ĵ)cru
↵

= 2

Z

RN

(1� Ĵ)|cru|2.

Since |cru(⇠)|2 = |⇠|2|û(⇠)|2  |⇠|2kuk21, one can follow the same reasoning as in the
k = 1 case of Theorem 1.1.3 to obtain the result. ⇤

1.4 Some applications

1.4.1 The linear nonlocal di↵usion equation in convolution form

The most direct application of the inequalities in the previous section concerns the
long-time behaviour of the linear nonlocal di↵usion equation:

@
t

u(t, x) =

Z

RN

J(x� y)(u(t, y)� u(t, x)) dy, (1.43)

where t � 0 is the time variable, x 2 RN is the space variable, u = u(t, x) 2 R is the
unknown, and J is the di↵usion kernel. As a straightforward consequence of Theorem
1.1.1 we obtain Theorem 1.1.2, which we prove now.

Proof:[Proof of Theorem 1.1.2] The regularity of the solution u allows us to write
the following H-theorem for the Lp norm:

d

dt
kukp

p

= �DJ

p

(u). (1.44)

Due to Theorem 1.1.1, and taking into account that ku(t, ·)k1 = ku0k1 (mass conser-
vation), we have

d

dt
kukp

p

 �Crmin
n

RN+2ku0k�p�

1 kukp(1+�)
p

, RNkukp
p

o

,

for some constant C = C(N, p). This is a di↵erential inequality for kukp
p

which allows
us to compare it to the solution to the equation

X 0(t) = �Crmin
n

RN+2ku0k�p�

1 X(t)(1+�), RNX(t)
o

.

We can then apply Lemma 1.4.1 with

C1 := CrRN+2ku0k�p�

1 , C2 := CrRN ,

to obtain the result. ⇤
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Lemma 1.4.1 Take C1, C2, �> 0 and let X = X(t) be a solution on [0,+1) to the
ordinary di↵erential equation

X 0(t) = �min
�

C1X(t)1+� , C2X(t)
 

. (1.45)

with X(0) > 0. Then we have

X(t) 
(

X(0) for t 2 [0, t0],
�

X(0)�� + �C1(t� t0)
�� 1

� for t 2 (t0,+1)
(1.46)

where

t0 = max

⇢

0,
1

C2
log
�

C
� 1

�

2 C
1

�

1 X(0)
�

�

.

Remark 1.4.2 The solution of the ordinary di↵erential equation in the above lemma
is actually explicit (see the proof), and we just aim to give a simple statement that
captures the decay of the solution as t ! +1. One can simplify even further and say
that there is a constant C = C(C1, C2, � , X(0)) such that

X(t)  C(1 + t)�
1

� , for all t � 0.

This is easily deduced from (1.46) with

C := sup
t�0

X(t)

(1 + t)�
1

�

,

which is finite since both X and (1 + t)�
1

� have the same decay as t ! +1, and
obviously depends only on C1, C2, � and X(0).

Proof:[Proof of Lemma 1.4.1] By usual theorems in ordinary di↵erential equations,
equation (1.45) has a unique solution on [0,+1) with the given initial condition X(0),
and this solution is nonnegative on [0,+1). The condition that decides which of the
two terms achieves the minimum at each time t is whether

X(t)�  C2

C1
. (1.47)

Since X is nonincreasing, once this condition is satisfied at a certain t0 � 0 it will be
satisfied for all t � t0. With this it is easy to calculate the explicit solution, given by

X(t) =

(

X(0)e�C

2

t for t 2 [0, t0],
�

X(t0)�� + �C1(t� t0)
�� 1

� for t 2 (t0,+1)

where

t0 = max

⇢

0,
1

C2
log
�

C
� 1

�

2 C
1

�

1 X(0)
�

�

.
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One obtains the result by noticing that X(0)e�C

2

t  X(0) and X(t0)  X(0). ⇤

Similarly, with the help of the previous lemma the inequalities in Theorem 1.1.3
imply the decay in Theorem 1.1.4:

Proof:[Proof of Theorem 1.1.4] If u satisfies equation (1.1) then Dku satisfies the
same equation, with initial condition Dku(0, x) = Dku0(x). Hence we have, as in
(1.9),

d

dt
kDkuk22 = �DJ

2 (D
ku).

Using Theorem 1.1.3 we obtain

d

dt
kDkuk22  �Crmin

⇢

Rk+N+2kuk�
4

N+2k

1 kDkuk2+
4

N+2k

2 , Rk+NkDkuk22
�

.

This is again a di↵erential inequality for kDkuk22, to which we can apply Lemma 1.4.1
with

C1 = CrRk+N+2ku0k�
4

N+2k

1 , C2 = CrRk+N .

This directly gives the result. ⇤

1.4.2 General linear mass-conserving nonlocal equations

In this section we prove Theorem 1.1.5, which concerns equation (1.17), recalled here:

@
t

u(t, x) =

Z

RN

K(x, y)u(t, y) dy � �(x)u(t, x), (1.48)

where K : RN ⇥ RN ! [0,1) is a general kernel (not necessarily symmetric) and
� : RN ! [0,+1) is a function. In order to apply our strategy to equation (1.48)
we need to have suitable Lyapunov functionals for it. To our knowledge, the most
general setting in which one can do this is that of the so-called general relative entropy
method (Michel et al., 2004, 2005), which we state here in a particular case: assume
that (1.19) holds and that

There exists a positive equilibrium u1 : RN ! (0,+1) of (1.48). (1.49)

(That is, a solution u1 of (1.48) which does not depend on time t.) Then it is known
that

d

dt

Z

RN

�

✓

u(t, x)

u1(x)

◆

u1(x) dx  0,

whenever � is a convex function and u is any solution of (1.48). This fact is well-known
in probability theory (see the review by Chafäı (2004)) and is a direct consequence
of the general relative entropy method (Michel et al., 2004). The explicit form of its
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time derivative can be found in Michel et al. (2004):

d

dt

Z

RN

� (f(x))u1(x) dx

= �
Z

RN

Z

RN

K(x, y)u1(y)
�

�0(f(x))(f(x)� f(y))� �(f(x)) + �(f(y))
�

dx dy,

(1.50)

where we denote f(t, x) ⌘ u(t, x)/u1(x), and where the t variable has been omitted
for shortness. Notice that the integrand is always nonnegative due to the convexity
of �. The following particular cases are of interest for us here: for �(f) = |f |p with
p > 1 we have

d

dt
kukp

p

= �EK

p

(f), (1.51)

where the dissipation EK

p

(f) is an operator acting only on the x variable. Its expression
is given by the right hand side of (1.50) (with � (f) = |f |p) and is not so simple. But
if we additionally assume that

K(x, y)u1(y) = K(y, x)u1(x), for all x, y 2 RN , (1.52)

then one can check that

EK

p

(f)

= p

Z

RN

Z

RN

K(x, y)u1(y)
�

(f(x))p�1(f(x)� f(y))� (f(x))p + (f(y))p
�

dx dy

=
p

2

Z

RN

Z

RN

�

f(x)� f(y)
� �

f(x)p�1 � f(y)p�1
�

K(x, y)u1(y) dx dy (1.53)

for all nonnegative functions f ; note the parallel with (1.9). The last equality in (1.53)
is obtained by noticing that the integrals corresponding to f(x)p and f(y)p cancel out
(easily seen by using (1.52)), and using (1.52) again to symmetrise the remaining
integral:
Z

RN

Z

RN

K(x, y)u1(y)f(x)p�1(f(x)� f(y)) dx dy

=
1

2

Z

RN

Z

RN

K(x, y)u1(y)
�

f(x)p�1 � f(y)p�1
� �

f(x)� f(y)
�

dx dy.

Condition (1.52) is known in probability as the detailed balance or reversibility condi-
tion (it holds for example if u1 ⌘ 1 and K is symmetric). If one works in a setting
where (1.51) holds then it may still be possible to use the inequality in Theorem 1.1.1
(or related ones) and deduce some information on the rate of decay of solutions.

Proof:[Proof of Theorem 1.1.5] Condition (1.20) is easily seen to imply that the
linear operator given by

Lu(x) =

Z

RN

K(x, y)u(y) dy � �(x)u(x), x 2 RN ,
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is well defined and bounded both in L1(RN ) and Lp(RN ). This shows that equation
(1.48) with initial condition u0 has a unique solution in C1([0,+1), Lp(RN )\L1(RN ))
which conserves mass (that is,

R

RN u(t, x) dx =
R

RN u0(x) dx for all t � 0), and that it
satisfies the entropy property (1.9). It is also seen easily that equation (1.48) preserves
sign: if the initial condition is nonnegative (nonpositive) then u(t, x) is nonnegative
(nonpositive) for all t, x. As a consequence, it is enough to prove the result when u0
is nonnegative — the general result is then obtained by linearity from u0 = u+0 � u�0 ,
with u+0 := max{u0, 0} and to u�0 := max{�u0, 0}.

For x, y 2 RN call

K̃(x, y) := r, if |x� y|  R, K̃(x, y) := 0 otherwise

and
J(x) := r, if |x|  R, J(x) := 0 otherwise.

Due to Hypothesis 2 and (1.21) we have

K(x, y)u1(y) � 1

m
K̃(x, y).

Hence, since K̃ is symmetric, using the same symmetrisation trick as in (1.53),

EK

p

(f) � EK̃

p

(f)

� p

2m

Z

RN

�

(f(x))p�1(f(x)� f(y))� (f(x))p + (f(y))p
�

K̃(x, y) dx dy

=
p

2m

Z

RN

�

f(x)p�1 � f(y)p�1
� �

f(x)� f(y)
�

K̃(x, y) dx dy

= DJ

p

(f)

for any nonnegative function f , where DJ

p

(f) is the dissipation in (1.10). Hence for
the (nonnegative) solution u, using Theorem 1.1.1 and calling

X(t) :=

Z

RN

fpu1 =

Z

RN

✓

u(t, x)

u1(x)

◆

p

u1(x) dx

we have

d

dt
X(t) = �EK

p

(f)

 � DJ
p

(f)

 �Cmin{kfk�p�

1 kfkp(1+�)
p

, kfkp
p

}
 �C2min{ku0k�p�

1 X(t)1+� , X(t)},
where C2 also depends on m, and we have used mass conservation and again the
bounds in (1.21). Due to the di↵erential inequality in Lemma 1.4.1 we obtain that

X(t)  C(1 + t)�
N(p�1)

2 , for all t � 0,
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for some constant C as stated in the result. We complete the proof by noticing that

kukp
p

 m1�p

Z

RN

✓

u(t, x)

u1(x)

◆

p

u1(x) dx = m1�pX(t).

⇤

1.4.3 A nonlocal dispersal equation

We consider the following integro-di↵erential equation (the dispersal model that was
briefly mentioned in the introduction):

@
t

u(t, x) =

Z

R
J

✓

x� y

g(y)

◆

u(t, y)

g(y)
dy � u(t, x), in R⇥ [0,1), (1.54)

with a prescribed initial data u(x, 0) = u0(x) defined on R. Here J is an even, positive,
smooth function such that

R

R J(x) dx = 1 and supp J = [�1, 1], and g is a continuous
positive function which accounts for the dispersal distance which depends on the
departing point. In this model u represents the spatial distribution of a certain species,
and g models the heterogeneity of the environment which can a↵ect the distribution
of a species through space-dependent dispersal strategies. This model was proposed in
Cortázar et al. (2007) (see also Cortázar et al. (2011); Cortázar et al. (2015); Cortázar
et al. (2016)). It was shown there that if we assume g is bounded above and below
then there exists a positive steady state solution of (1.54), that is, a solution of the
corresponding stationary problem,

u1(x) =

Z

R
J

✓

x� y

g(y)

◆

u1(y)

g(y)
dy, in R.

Moreover, u1 is bounded above and below by positive constants. It was also proved
in Cortázar et al. (2007) that any solution u of (1.54) converges to 0 locally as t ! 1.
Using the general result in Theorem 1.1.5 we are able to improve this asymptotic
behavior obtaining a precise decay rate of the Lp norms of u:

Theorem 1.4.3 Take p 2 [2,+1). Let u be a solution of (1.54) with initial data
u0 2 L1(R) \ Lp(R), and assume that

1. J 2 L1(R) is a bounded, nonnegative function with compact support, satisfying
Hypothesis 1,

2. and g is a continuous function satisfying

1

M
 g(x)  M, for all x 2 R

and for some M > 0.
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Then for some constant C > 0 depending on J , M , p, ku0k1 and ku0kp,

kukp
p

 C(1 + t)�
p�1

2 , for all t � 0.

Proof: Equation (1.54) is of the form (1.48) with �(x) = 1 for all x 2 R and

K(x, y) = J

✓

x� y

g(y)

◆

1

g(y)
, for x, y 2 R.

Defining K and � in this way, (1.19) is satisfied and one can check that this kernel
K satisfies Hypothesis 2 and (1.20). By the results in Cortázar et al. (2007) we know
that there exists an equilibrium u1 satisfying (1.21) (with m depending only on the
parameters of the problem), so we are in condition to apply Theorem 1.1.5 and obtain
the result. ⇤

Remark 1.4.4 One can pose equation (1.54) in RN instead of R. The only reason
in Theorem 1.4.3 why we need the dimension N to be 1 is that we use the results in
Cortázar et al. (2007) to ensure there is a positive equilibrium u1 which is bounded
above and below. Theorem 1.4.3 is still true in dimension N provided the existence of
an equilibrium satisfying (1.21) (with the same proof). Such existence of a bounded
u1 is to our knowledge an open problem in dimension N > 1.

1.4.4 Nonlocal di↵usions with a nonlinear source

With very little change in our arguments we can obtain the same decay estimates if we
add a nonlinear source to equation (1.48), as long as the nonlinear source “decreases
energy”. We consider

@
t

u(t, x) =

Z

RN

K(x, y)u(t, y) dy � �(x)u(t, x) + f(u(t, x)). (1.55)

with K and � as in Section 1.4.2 and f a locally Lipschitz function satisfying the sign
condition

f(s)s  0, for s 2 R. (1.56)

With the same arguments as before we obtain the following:

Theorem 1.4.5 Take p 2 [2,+1) and let u be a solution of (1.55) with nonnegative
initial data u0 2 L1(R) \ Lp(R), and assume that K and � satisfy the conditions of
Theorem 1.1.5. Assume that f is a locally Lipschitz function satisfying (1.56). Then
for some constant C > 0 depending only on K, N , ku0k1 and ku0kp,

kukp
p

 C(1 + t)�
N
2 , for all t � 0.
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Proof: The conditions on f , K and � ensure that there exists a solution of the equa-
tion, and that one may di↵erentiate it in time to obtain the usual expression for the
time derivative of kukp

p

. Dropping the nonpositive term f(u(t, x))u(t, x) |u(t, x)|p�2

we obtain the inequality
d

dt
kukp

p

 � EK
p

(u),

Arguing as in the proof of Theorem 1.1.5 we obtain the asymptotic decay. Observe
that the total mass of the solution is nonincreasing, since f(s)  0 for s � 0. ⇤

This equation was treated in Andreu-Vaillo et al. (2010); Ignat and Rossi (2009)
where a restriction on the dimension (N � 3) and K symmetric are required in order
to establish the asymptotic behavior.
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Abstract

In this paper we show that smooth solutions to the Dirichlet problem for the
parabolic equation

vt(x, t) =
N
X

i,j=1

aij(x)
@2v(x, t)

@xi@xj
+

N
X

i=1

bi(x)
@v(x, t)

@xi
x 2 ⌦,

with v(x, t) = g(x, t), x 2 @⌦, can be approximated uniformly by solutions of
nonlocal problems of the form

u"
t (x, t) =

Z

Rn

K"(x, y)(u
"(y, t)� u"(x, t))dy, x 2 ⌦,

with u"(x, t) = g(x, t), x /2 ⌦, as " ! 0, for an appropriate rescaled kernel
K". In this way we show that the usual local evolution problems with spatial
dependence can be approximated by non-local ones. In the case of an equation
in divergence form we can obtain an approximation with symmetric kernels, that
is, K"(x, y) = K"(y, x).

55
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2.1 Introduction

Nonlocal di↵usion problems of the form

u
t

(x, t) =

Z

Rn

K(x, y)(u(y, t)� u(x, t))dy (2.1)

and variations of it, have been extensively studied in recent years (see Andreu-Vaillo
et al. (2010); Cortázar et al. (2007); Cortazar et al. (2007) and references therein).
Here, the kernel K : RN ⇥ RN ! R is a nonnegative, smooth function such that
R

RN K(x, y)dx = 1. A physical interpretation of (2.1) is the following: if K(x, y) is
the probability distribution that individuals jump from y to x and u(x, t) is the density
at position x at time t, then

R

RN K(x, y)u(y, t)dy is the rate at which individuals are
arriving to position x from all other locations y. Further, with the same reasoning,
R

RN K(x, y)u(x, t)dy is interpreted as the rate at which they are leaving position x
to all other places. Hence, in the absence of external or internal sources, the density
u(x, t) satisfies (2.1) (see Andreu-Vaillo et al. (2010); Fife (2003); Hutson et al. (2003)).
This kind of nonlocal di↵usion equation is relevant in applications, for example, in the
study of biological dispersal of species, image processing, particle systems, elasticity
and coagulation models, Bobaru et al. (2009); Bodnar and Velazquez (2006); Carrillo
and Fife (2005); Fife (2003); Fournier and Laurençot (2006); Hutson et al. (2003).

In this work we consider the following nonlocal di↵usion problem: given a bounded
domain⌦ ⇢ RN , g 2 L1

��

RN \ ⌦�⇥ (0,1)
�

and u0 2 L1(⌦), find u(x, t) such that

8

>

>

>

>

<

>

>

>

>

:

u
t

(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t))dy, x 2 ⌦, t > 0,

u(x, t) = g(x, t), x /2 ⌦, t > 0,

u(x, 0) = u0(x), x 2 ⌦,

(P
K

)

where the kernel K(x, y) is a positive function with compact support contained in
⌦⇥B(0, d) ⇢ RN ⇥ RN with

0 < sup
y2B(0,d)

K(x, y) = C(x) 2 L1(⌦). (2.2)

As we mentioned before, the integral term in the problem takes into account the
individuals arriving or leaving position x 2 ⌦ from or to other places. In this model,
imposing u(x, t) = g(x, t) for x /2 ⌦, we are prescribing the values of u outside ⌦. In
the particular case g = 0, we mean that individuals that leave ⌦, die (and therefore
the density outside ⌦ is zero).

Existence and uniqueness of solutions of (P
K

) is proved in Proposition 2.2.1 using
a fixed point argument (see also Appendix A, for an alternative proof). In Proposition
2.2.2 we obtain an appropriate comparison principle.
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As a local counterpart to our nonlocal evolution problem, we have the following
second order local parabolic di↵erential equation with Dirichlet boundary conditions

8

>

>

>

>

>

<

>

>

>

>

>

:

v
t

(x, t) =
N

X

i,j=1

a
ij

(x)
@2v(x, t)

@x
i

@x
j

+
N

X

i

b
i

(x)
@v(x, t)

@x
i

, x 2 ⌦, t > 0,

v(x, t) = g(x, t), x 2 @⌦, t > 0,

v(x, 0) = u0(x), x 2 ⌦,

(Q)

where the coe�cients a
ij

(x), b
i

(x) are smooth in ⌦ and (a
ij

(x)) is a symmetric positive
definite matrix, i.e., a

ij

= a
ji

and
P

ij

a
ij

(x)⇠
i

⇠
j

� ↵|⇠|2 for every real vector ⇠ =
(⇠1, . . . , ⇠N ) 6= 0 and for some ↵ > 0.

It is important to stress that here we will use that (Q) has smooth solutions. In
fact, under regularity assumptions on the boundary data g, the domain ⌦ and the
initial condition u0, we have that the solutions of (Q) are C2+↵,1+↵/2

�

⌦⇥ [0, T ]
�

. For
such a regularity result we refer to Lieberman (1996).

Our main goal in this work is to show that the Dirichlet problem for the parabolic
equation (Q) can be approximated by nonlocal problems of the form (P

K

). More
precisely, given J : RN ! R a nonnegative, radial and continuous function with
compact support and finite second order momentum, we consider the rescaled kernel

K
"

(x, y) =
C(x)

"N+2
a
⇣

x� E(x)(x� y)
⌘

J

✓

L�1(x)
x� y

"

◆

(2.3)

Here a is given by a(s) =
P

i

(s
i

+M), with M large enough to ensure a(x) � � > 0.
The matrix L(x) is the Cholesky’s factor of A(x), that is, A(x) = L(x)Lt(x), the ma-
trix E(x) is related with the coe�cients (a

ij

(x)) and b
i

(x) and C(x) is a normalizing
function, see Section 2.3 for a precise definition. Then, we prove that u", solutions
of rescaled nonlocal problems (P

K"), approximate uniformly the solution of the cor-
responding Dirichlet problem for the parabolic equation. We can now formulate our
main result.

Theorem 2.1.1 Let v 2 C2+↵,1+↵/2
�

⌦⇥ [0, T ]
�

be the solution to (Q). Let, for a
given " > 0, u" be the solution to (P

K"), with initial condition u0(x) and external
datum g(x, t). Then, we have

kv � u"k
L

1(⌦⇥[0,T ]) ! 0, as " ! 0.

To deal with an equation in divergence form

v
t

(x, t) =
N

X

i,j=1

@

@x
i

✓

a
ij

(x)
@v(x, t)

@x
j

◆

,

we can just take

b
i

(x) :=
N

X

j=1

@a
ij

(x)

@x
j
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and the previous approach works. However, in this case the resulting family of nonlocal
approximating problems have non-symmetric kernels. Note that for symmetric kernels,
i.e., K(x, y) = K(y, x), one has the desirable property of an ”integration by parts
formula”, that is,
ZZ

K(x, y)(u(y)� u(x))'(x)dydx = �1

2

ZZ

K(x, y)(u(y)� u(x))('(y)� '(x))dydx.

This is similar to the usual integration by parts formula for divergence form operators,
Z

div(A(x)rv(x))'(x)dx = �
Z

A(x)rv(x)r'(x)dx.

To obtain a family of symmetric kernels K
"

(x, y) = K
"

(y, x) such that the corre-
sponding solutions to the nonlocal problems converge as " ! 0 to the solution to the
Dirichlet problem in divergence form we consider,

K
"

(x, y) =
2

C(J)"N+2
G

✓

B�1(x)
x� y

"

◆

G

✓

B�1(y)
x� y

"

◆

, (2.4)

where G2(s) = J(s) (J is a radially symmetric, compactly supported and smooth
kernel), and B(x) = (b

ij

(x)) is a N ⇥N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that B(x) is invertible since A(x) is. In this way we obtain a family of non-local
symmetric kernels such that the approximation result given in Theorem 2.1.1 holds.

For constant matrices A and b
i

(x) = 0 in problem (Q), the rescaled kernels (2.3)
and (2.4) coincide.

We finish the introduction with a brief description of previous results. When one
considers a convolution kernel J (as before, radially symmetric, compactly supported
and smooth) and rescale it, that is, for

K
"

(x, y) =
C

"N+2
J

✓

y � x

"

◆

(2.5)

one finds in the limit as " ! 0 solutions to the classical heat equation, v
t

= �v. This
fact was proved in Cortázar et al. (2009) for Dirichlet boundary conditions and in
Cortázar et al. (2008) for Newmann boundary conditions. For an evolution problem
with the same kernel but with an inhomogeneous term a(y) in front in the whole
RN we refer to Sun et al. (2011) (see also Cortázar et al. (2007)). In this case the
limit equation is given by v

t

= � (a(x)v). For approximations of models from elastic-
ity (peridynamics) we refer to Bobaru et al. (2009). Concerning nonlinear nonlocal
problems (approximating for example the p�Laplacian or the porous medium equa-
tion) we refer to the book Andreu-Vaillo et al. (2010) and the survey Vázquez (2014).
We remark that in the previously mentioned references the case of matrix dependent
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problems (like the ones included in this paper) was not treated (only scalar coe�cients
appear).

The rest of this paper is organized as follows: in Section 2, we prove existence and
uniqueness for solutions to problem (P

K

) using a fixed point theorem (Proposition
2.2.1). In addition, we show a comparison principle (Proposition 2.2.2). In Section 3,
using Cholesky’s decomposition of the matrix A(x) = (a

ij

(x)), we prove the uniform
convergence of u" to v, the solution of the local parabolic equation (Theorem 2.1.1). In
Section 4 we deal with the divergence form equation proving the convergence result for
a symmetric family of kernels. Finally, the Appendix is devoted to give an alternative
proof of existence of solutions (Appendix A), additionally, a technical computation
using in the proof of Theorem 2.1.1 is postponed to the second part of the Appendix
(Appendix B).

2.2 Existence, Uniqueness and Comparison Principle

By a solution of problem (P
K

) we mean a function u 2 C([0,1);L1(⌦)) which satisfies

u(x, t) =

Z

t

0

Z

RN

K(x, y)(u(y, s)� u(x, s))dyds+ u0(x), x 2 ⌦, t � 0,

here we understand that u(y, s) = g(y, s) when y 2 RN \⌦, s > 0. Consequently, due
to the previous integral expression, we notice that u 2 C1([0,1);L1(⌦)).

Proposition 2.2.1 If u0 2 L1(⌦), there exists a unique solution of problem (P
K

).

Proof: Fixed t0 > 0, we set the Banach space X
t

0

= C �[0, t0];L1(⌦)
�

with norm

|||v||| = max
0tt

0

kv(·, t)k
L

1(⌦).

Let T : X
t

0

�! X
t

0

be the operator defined by

T (v)(x, t) =

Z

t

0

Z

RN

K(x, y)(v(y, s)� v(x, s))dyds+ u0(x),

with v(x, t) = g(x, t) if x /2 ⌦.
Note that in the definition of the operator T we include the fact that we are taking

v(y, s) = g(y, s) when y /2 ⌦.
In this way, using Fubini’s theorem we obtain

kT (v)(·, t)k
L

1(⌦)  ku0k
L

1(⌦)

+

Z

t

0

✓

Z

⌦

Z

RN

K(x, y)|v(y, s)|dydx+

Z

⌦

Z

RN

K(x, y)|v(x, s)|dydx
◆

ds.
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Recalling hypothesis (2.2), let us denote by C = kC(x)k1. We get
Z

RN

K(x, y)|v(y, s)|dy  C(x)kv(·, s)k
L

1(⌦)  Ckv(·, s)k
L

1(⌦)

and
Z

RN

K(x, y)|v(x, s)|dy  |B(0, d)|C(x)|v(x, s)|  C|B(0, d)||v(x, s)|.
Hence

kT (v)(·, t)k
L

1(⌦)  ku0k
L

1(⌦) + C̃

Z

t

0
kv(·, s)k

L

1(⌦)ds, (2.6)

where C̃ = C(|⌦|+ |B(0, d)|). Since kv(·, s)k
L

1(⌦)  |||v||| it follows that

kT (v)(·, t)k
L

1(⌦)  ku0k
L

1(⌦) + tC̃|||v|||,
thus operator T is well defined and

|||T (v)|||  ku0k
L

1(⌦) + t0C̃|||v|||.

Now, choosing t0 < C̃�1, for every w, z 2 X
t

0

we get

|||T (w � z)||| < |||w � z|||.
Hence, T is a contraction on X

t

0

which maps X
t

0

into itself, then by the Banach
contraction principle there exists a unique u 2 X

t

0

such that T (u) = u, i.e., we get
local existence and uniqueness of problem (P

K

) for 0  t  t0. Moreover, taking the
Banach space X2t

0

= C �[t0, 2t0];L1(⌦)
�

with norm |||v||| = max
t

0

t2t
0

kv(·, t)k
L

1(⌦),
T : X2t

0

�! X2t
0

defined by

T (v)(x, t) =

Z

t

t

0

Z

RN

K(x, y)(v(y, s)� v(x, s))dyds+ u(x, t0),

and arguing as above, there exists a unique solution in [t0, 2t0] and consequently in
[0, 2t0]. By an iteration argument, we obtain a unique solution u 2 C([0,1);L1(⌦))
of problem (P

K

). ⇤
For an alternative proof we refer the reader to Appendix A.
By a subsolution (respectively supersolution) of problem (P

K

) we mean a function
u 2 C1([0, T ];L1(⌦)) which satisfies the following inequalities

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u
t

(x, t)
(�)

Z

RN

K(x, y)(u(y, s)� u(x, s))dy, x 2 ⌦, t < 0,

u(x, t)
(�)
 g(x, t), x /2 ⌦, t > 0.

u(x, 0)
(�)
 u0(x), x 2 ⌦.

Clearly, a solution is both a subsolution and a supersolution.
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Proposition 2.2.2 Let u, v 2 C1(⌦ ⇥ [0, T ]) be a subsolution and supersolution re-
spectively of problem (P

K

). Then u  v.

Proof:We will denote by w = v � u. Obviously w 2 C1(⌦⇥ [0, T ]) and it satisfies
8

>

>

>

>

<

>

>

>

>

:

w
t

(x, t) �
Z

RN

K(x, y)(w(y, t)� w(x, t))dy, x 2 ⌦, t < 0,

w(x, t) � 0, x /2 ⌦, t > 0.

w(x, 0) � 0, x 2 ⌦.

Now, we assume that w(x, t) is not a nonnegative function, that is, there exists some
point (x̃, t̃) 2 ⌦ ⇥ (0, T ] such that w(x̃, t̃) < 0. Then, by the continuity of w, there
exists " > 0 such that w(x̃, t̃)+"t̃ is also negative. Consider the function w(x, t)+"t 2
C(⌦⇥ [0, T ]), and let (x0, t0) be its minimum, thus

w
t

(x0, t0) + "  0.

Conversely,

w
t

(x0, t0) + " >

Z

RN

K(x0, y)(w(y, t0)� w(x0, t0))dy � 0,

this leads to a contradiction and we conclude that w(x, t) is a nonnegative function.
⇤

2.3 Proof of Teorem 2.1.1

It is well known that given A(x) = (a
ij

(x)) a symmetric and positive definite matrix
there exists a unique lower triangular matrix L(x) = (l

ij

(x)) with real and positive
diagonal entries such that

A(x) = L(x)Lt(x), (2.7)

where Lt(x) denotes the transpose of L(x) which is known as the Cholesky factor and
(2.7) is known as the Cholesky factorization, see for instance Householder (1964).

Let J : Rn ! R be a nonnegative, radially symmetric, continuous function with
R

Rn J(z)dz = 1 and finite second order momentum. Assume also that J is strictly
positive in B(0, r) for some r > 0 and vanishes in Rn \B(0, r).

Now we introduce some notations. Given a matrix A(x) = (a
ij

(x)) with C1(⌦̄)
coe�cients we consider:

A
i

(x) :=
N

X

j=1

a
ij

(x),

W (x) :=

0

B

B

B

@

b1(x) 0 . . . 0
0 b2(x) . . . 0

0 0
. . . 0

0 . . . 0 b
N

(x)

1

C

C

C

A
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We consider the rescaled kernel

K
"

(x, y) =
C(x)

"N+2
a (x� E(x)(x� y)) J

✓

L�1(x)
x� y

"

◆

. (2.8)

Here a is defined as

a(s) =
N

X

i=1

(s
i

+M),

for some constant M > 0 large enough to ensure a(x) � � > 0. The matrix L(x) is
given by (2.7) (note that we can take any N ⇥ N matrix (l

ij

(x)), such that A(x) =
L(x)Lt(x)), the function C(x) is given by

C(x) =
2

C(J)a(x)(detA(x))1/2

being C(J) =
R

J(z)z21dz and the matrix E(x) by

E(x) =
a(x)

2
W (x)A�1(x).

We remark that for this kernel, Proposition 2.2.1 and Proposition 2.2.2 can be used,
since J is smooth, a(x) is strictly positive and the coe�cients of the envolved matrices
are bounded. Therefore, for every " > 0 we have existence, uniqueness and the
comparison principle for the nonlocal problem.

Lemma 2.3.1 Let u be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

function and

L
"

(u) :=

Z

RN

K
"

(x, y)(u(y, t)� u(x, t))dy.

Then

�

�

�

�

�

�

L
"

(u)�
0

@

N

X

i,j=1

a
ij

(x)
@2u(x)

@x
i

@x
j

+
N

X

i=1

b
i

(x)
@u(x)

@x
i

1

A

�

�

�

�

�

�

L

1(⌦⇥[0,T ])

 ✓("),

for some function ✓(") that goes to zero as " ! 0.

Proof: Under the change variables y = x� "L(x)z, L
"

(u) becomes

C(x) (detA(x))1/2

"2

Z

RN

a (x� "D(x)z) J(z)(u(x� "L(x)z, t)� u(x, t))dz
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where D(x) = a(x)
2 W (x)

�

Lt(x)
��1

. By a simple Taylor expansion we obtain

L
"

(u) =
�C(x) (detA(x))1/2

"

N

X

i=1

@u

@x
i

N

X

j=1

l
ij

(x)

Z

RN

a (x� "D(x)z) J(z)z
j

dz

+
1

2
C(x) (detA(x))1/2

N

X

i,j=1

@2u

@x
i

@x
j

N

X

k,m=1

l
ik

(x)l
jm

(x)

⇥
Z

Rn

a (x� "D(x)z) J(z)z
k

z
m

dz +O("↵)

= L1
"

(u) + L2
"

(u) +O("↵).

For the first expression, L1
"

(u), having in mind the definition of the function a(s)
and that J is a radial function, more specifically, we use that

R

J(z)z
j

dz = 0 and
R

J(z)z
m

z
j

dz = 0 if m 6= j, we get

lim
"!0

L1
"

(u) = C(x) (detA(x))1/2
N

X

i=1

@u

@x
i

N

X

j=1

l
ij

(x)
N

X

k,m=1

d
km

(x)

Z

RN

J(z)z
m

z
j

dz

= C(x) (detA(x))1/2C(J)
N

X

i=1

@u

@x
i

N

X

j=1

l
ij

(x)
N

X

k=1

d t

jk

(x),

here d t

jk

(x) denotes the (j, k)-term of the matrix Dt(x). Finally, since

N

X

j=1

l
ij

(x)
N

X

k=1

d t

jk

(x) =
N

X

k=1

(L(x)Dt(x))
ik

=
a(x)

2
b
i

(x),

it follows that

lim
"!0

L1
"

(u) =
N

X

i=1

@u(x, t)

@x
i

b
i

(x).

On the other hand, letting " ! 0 in L2
"

(u) taking into account the choice of the matrix
L(x) we have

lim
"!0

L2
"

(u) =
N

X

i,j=1

@2u(x, t)

@x
i

@x
j

N

X

k=1

l
ik

(x)l t
kj

(x) =
N

X

i,j=1

a
ij

(x)
@2u(x, t)

@x
i

@x
j

,

which concludes the proof. ⇤

Remark 2.3.2 We want to point out that the use of Cholesky’s decomposition is not
necessary for the proof. In fact, any matrix L(x) satisfying (2.7) is also allowed. The
reason to choose Cholesky’s factor is to ensure the uniqueness of the rescaled kernel
K

"

defined in (2.8).
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In order to prove our main result, let ṽ be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

extension of
v, the solution of the parabolic problem (Q). Therefore, ṽ verifies

8

>

>

>

>

<

>

>

>

>

:

ṽ
t

(x, t) = ⇤(ṽ(x, t)), x 2 ⌦, t 2 (0, T ],

ṽ(x, t) = G(x, t), x /2 ⌦, t 2 (0, T ],

ṽ(x, 0) = u0(x), x 2 ⌦,

where G(x, t) = g(x, t) if x 2 @⌦ and

⇤(ṽ(x, t)) =
N

X

i,j=1

a
ij

(x)
@2ṽ(x, t)

@x
i

@x
j

+
N

X

i=1

b
i

(x)
@ṽ(x, t)

@x
i

.

Moreover, as G is smooth we get

G(x, t) = g(x, t) +O("), if dist(x,@ ⌦)  a", (2.9)

where a = r
p
�
min

. Here �
min

denotes the max
x2⌦ �

min

(A(x)) > 0. For more details
we refer the reader to Appendix B.

Proof:[Proof of Theorem 2.1.1] Set w" := ṽ � u" which satisfies
8

>

>

>

>

<

>

>

>

>

:

w
t

(x, t) = ⇤(ṽ)� L
"

(ṽ) + L
"

(w"), x 2 ⌦, t 2 (0, T ],

w"(x, t) = G(x, t)� g(x, t), x /2 ⌦, t 2 (0, T ],

w"(x, 0) = 0, x 2 ⌦.

(2.10)

First, we claim that w̄(x, t) = K1✓(")t + K2" is a supersolution with K1,K2 > 0
su�ciently large but independent of ". Indeed, taking into account Lemma 2.3.1 and
that L

"

(w̄) = 0 we have

w̄
t

(x, t) = K1✓(") � ⇤(ṽ)� L
"

(ṽ) + L
"

(w̄).

Moreover, w̄(x, 0) > 0 and by (2.9) we obtain that w̄(x, t) � K2" � O("), for t 2 (0, T ]
and x /2 ⌦ such that dist(x,@ ⌦)  a", which is our claim. From the comparison result
we get

ṽ � u"  w̄(x, t) = K1✓(")t+K2".

Similar arguments applied to the case w(x, t) = �w̄(x, t) leads us to assert that
w(x, t) is a subsolution of problem (2.10). We conclude, using again the comparison
principle stated in Proposition 2.2.2, that

�K1✓(")t�K2"  ṽ � u"  K1✓(")t+K2",

and hence
kv � u"k

L

1(⌦⇥[0,T ])  K1T✓(") +K2" ! 0.

⇤



Nonlocal di↵usion problems that approximate parabolic equations 65

Remark 2.3.3 It is worth pointing out that the particular case A(x) = I and b
i

(x) =
0, which corresponds to the heat equation, the rescaled kernel (2.5) considered by
Cortázar et al. in Cortázar et al. (2009) is the same K

"

considered here. Moreover,
if we take another decomposition of the identity matrix, for example, consider l

i,j

= 1
if i + j = N + 1 and 0 otherwise, we can get a di↵erent nonlocal approximation by
nonlocal di↵usion problems of the heat equation.

2.4 Divergence form operators

In this section, we consider the following rescaled kernel

K
"

(x, y) =
2

C(J)"N+2
G

✓

B�1(x)
x� y

"

◆

G

✓

B�1(y)
x� y

"

◆

, (2.11)

where G2(s) = J(s) and B(x) = (b
ij

(x)) is a N ⇥N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that the kernels given in (2.11) are symmetric, that is, they verify

K
"

(x, y) = K
"

(y, x).

For this family of symmetric kernels Proposition 2.2.1 and Proposition 2.2.2 can
be used. Therefore, we have that the approximation result stated in Theorem 2.1.1
holds for the divergence form equation

v
t

(x, t) =
N

X

i,j=1

@

@x
i

✓

a
ij

(x)
@v(x, t)

@x
j

◆

.

This can be proved exactly as before as soon as one has the following result.

Lemma 2.4.1 Let u be a C2+↵

�

RN

�

function and

L
"

(u) :=

Z

RN

K
"

(x, y)(u(y)� u(x)dy.

Then
�

�

�

�

�

L
"

(u)�
N

X

i=1

@

@x
i

✓

a
ij

(x)
@u(x)

@x
j

◆

�

�

�

�

�

L

1(⌦⇥[0,T ])

 ✓("),

for some function ✓(") that goes to zero as " ! 0.

Proof: In this proof we will use the following notations for partial derivatives and
for the coe�cients of the inverse and the adjoint of a matrix,

(f(s))0
i

=
@f(s)

@s
i

, B�1(x) = (b�1
ij

(x)), B⇤(x) = (b⇤
ij

(x)).
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Using the change of variable z = x�y

"

and Taylor’s expansions we get

L
"

(u)(x) = F1,"(x) + F2,"(x) +O("2+↵)

with

F1,"(x) =
�2

C(J)"

N

X

i=1

@u(x)

@x
i

Z

RN

G(B�1(x� "z)z)G(B�1(x)z)z
i

dz

and

F2,"(x) =
1

C(J)

N

X

i,j=1

@2u(x)

@x
i

@x
j

Z

RN

G(B�1(x� "z)z)G(B�1(x)z)z
i

z
j

dz.

Let us first analyze the limit as " ! 0 of F1,"(x). As
R

J(B�1(x)z)z
i

dz = 0 (this
follows changing z by �z), we can use L’Hopital’s rule to obtain

lim
"!0

F1,"(x) =
2

C(J)

N

X

i=1

@u(x)

@x
i

⇥
Z

RN

N

X

j=1

G0
j

(B�1(x)z)
N

X

k,m=1

(b�1
jk

)0
m

(x)z
k

z
m

G(B�1(x)z)z
i

dz.

Now we observe that

G0
j

(s)G(s) =
1

2
J 0
j

(s)

and hence

lim
"!0

F1,"(x) =
1

C(J)

N

X

i,j,k,m=1

@u(x)

@x
i

(b�1
jk

)0
m

(x)

Z

RN

J 0
j

(B�1(x)z)z
k

z
m

z
i

dz.

Changing variables as w = B�1(x)z we have

lim
"!0

F1,"(x) =
det(B(x))

C(J)

N

X

i,j,k,m,p,q,r=1

@u(x)

@x
i

(b�1
jk

)0
m

(x)b
ip

(x)b
kq

(x)b
mr

(x)

⇥
Z

RN

J 0
j

(w)w
p

w
q

w
r

dw.

To continue we have to find the value of the last integral. We have that
Z

RN

J 0
j

(w)w
p

w
q

w
r

dw = 0,

except for the following cases:
Case 1. p = q = r = j. In this case we have

Z

RN

J 0
j

(w)(w
j

)3 dw = �3

Z

RN

J(w)(w
j

)2 dw = �3C(J).
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Case 2. (p = j and q = r 6= j) or (q = j and p = r 6= j) or (r = j and p = q 6= j).
In any of these cases one index is equal to j and the other two indexes are the same
but di↵erent from j. Hence, in this case we get

Z

RN

J 0
j

(w)w
j

(w
q

)2 dw = �
Z

RN

J(w)(w
q

)2 dw = �C(J).

Collecting these cases we obtain

lim
"!0

F1,"(x) =
N

X

i=1

@u(x)

@x
i

H
i

(x).

with

H
i

(x) = �det(B(x))

8

<

:

N

X

j,k,m=1

3(b�1
jk

)0
m

(x)b
ij

(x)b
kj

(x)b
mj

(x)

+
N

X

j,k,m p 6=j

(b�1
jk

)0
m

(x)
h

b
ij

(x)b
kp

(x)b
mp

(x)
i

+
N

X

j,k,m,p 6=j

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kj

(x)b
mp

(x)
i

+
N

X

j,k,m p 6=j

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kp

(x)b
mj

(x)
i

9

=

;

= �det(B(x))

8

<

:

N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ij

(x)b
kp

(x)b
mp

(x)
i

+
N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kj

(x)b
mp

(x)
i

+
N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kp

(x)b
mj

(x)
i

9

=

;

= A1 +A2 +A3.

Let us compute each one of the last three terms A1, A2 and A3. First, using that

N

X

k=1

b�1
ik

(x)b
kj

(x) =

⇢

1 i = j,
0 i 6= j,

we obtain
N

X

k=1

(b�1
ik

)0
m

(x)b
kj

(x) = �
N

X

k=1

b�1
ik

(x)(b
kj

)0
m

(x). (2.12)
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Using this property, we get

A1 = �det(B(x))
N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ij

(x)b
kp

(x)b
mp

(x)
i

= det(B(x))
N

X

j,k,m,p=1

h

b
ij

(x)b�1
jk

(x)(b
kp

)0
m

(x)b
mp

(x)
i

= det(B(x))
N

X

m,p=1

h

(b
kp

)0
m

(x)b
mp

(x)
i

.

Now, for A2, using again (2.12) we have

A2 = �det(B(x))
N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kj

(x)b
mp

(x)
i

= det(B(x))
N

X

j,k,m,p=1

h

b�1
jk

(x)(b
kj

)0
m

(x)b
ip

(x)b
mp

(x)
i

.

As

b�1
jk

(x) =
1

det(B(x))
(b⇤

jk

(x))t =
1

det(B(x))
b⇤
kj

(x)

we get

A2 =
N

X

m,p=1

b
ip

(x)b
mp

(x)
N

X

k,j=1

b⇤
kj

(x)(b
kj

)0
m

(x).

Now we use the formula for the derivative of the determinant (see Golberg (1972) for
a simple proof),

(det(B(x)))0
m

=
N

X

k,j=1

b⇤
kj

(x)(b
kj

)0
m

(x),

to obtain

A2 =
N

X

m,p=1

b
ip

(x)b
mp

(x)(det(B(x)))0
m

.

Finally, for A3, using (2.12) one more time, we have

A3 = �det(B(x))
N

X

j,k,m,p=1

(b�1
jk

)0
m

(x)
h

b
ip

(x)b
kp

(x)b
mj

(x)
i

= det(B(x))
N

X

j,k,m,p=1

h

b
ip

(x)(b
kp

)0
m

(x)b
mj

(x)b�1
jk

(x)
i

= det(B(x))
N

X

m,p=1

h

(b
mp

)0
m

(x)b
ip

(x)
i

.
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Hence, collecting these expressions for A
i

we obtain

H
i

(x) =
N

X

j=1

h

det(B(x))(B0
j

(x)Bt(x))
ij

+(det(B(x)))0
j

(B(x)Bt(x))
ij

+det(B(x))(B(x)(Bt)0
j

(x))
ij

i

=
N

X

j=1

@a
ij

(x)

@x
j

.

Therefore, we have obtained

lim
"!0

F1,"(x) =
N

X

i=1

@u(x)

@x
i

N

X

j=1

@a
ij

(x)

@x
j

. (2.13)

Next, we deal with the limit as " ! 0 of F2,"(x). It holds that

lim
"!0

F2,"(x) =
1

C(J)

N

X

i,j=1

@2u(x)

@x
i

@x
j

Z

RN

G2(B�1(x)z)z
i

z
j

dz.

Changing variables as w = B�1(x)z we get

lim
"!0

F2,"(x) =
det(B(x))

C(J)

N

X

i,j=1

@2u(x)

@x
i

@x
j

Z

RN

J(w)
N

X

k=1

b
ik

(x)w
k

N

X

m=1

b
jm

(x)w
m

dw.

Now we only have to observe that

Z

RN

J(w)w
k

w
m

dw =

⇢

C(J) k = m,
0 k 6= m,

to obtain

lim
"!0

F2,"(x) =
N

X

i,j=1

@2u(x)

@x
i

@x
j

det(B(x))
N

X

k=1

b
ik

(x)b
jk

(x) =
N

X

i,j=1

@2u(x)

@x
i

@x
j

a
ij

(x). (2.14)

Finally, from (2.13) and (2.14) we conclude that

lim
"!0

L
"

(u)(x) =
N

X

i,j=1

@2u(x)

@x
i

@x
j

a
ij

(x) +
N

X

i=1

@u(x)

@x
i

N

X

j=1

@a
ij

(x)

@x
j

=
N

X

i,j=1

@

@x
i

✓

a
ij

(x)
@u(x)

@x
j

◆

as we wanted to show. ⇤
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2.5 Appendix

Appendix A

For any arbitrary T > 0 we claim that T is a contraction on C �[0, T ];L1(⌦)
�

with
norm

|||v||| = max
0tT

e�Mtkv(·, t)k
L

1(⌦)

being M some constant greater than C̃ = C(|⌦|+ |B(0, d)|). Indeed, from (2.6)

kT (v)(·, t)k
L

1(⌦)  ku0k
L

1(⌦) +
C̃

M

�

eMt � 1
� |||v|||,

therefore

|||T (v)||| max
0tT

 

e�Mtku0k
L

1(⌦) +
C̃

M

�

1� e�Mt

� |||v|||
!

 ku0k
L

1(⌦) +
C̃

M
|||v|||,

and the claim is proved. The rest of the proof is similar in spirit to the proof of
Proposition 2.2.1.

Appendix B

Given B(x), matrix n⇥ n defined for each x 2 ⌦, we wish to recall that the induced
matrix norm to the euclidian matrix norm

kB(x)k2 = sup
y 6=0

kB(x)yk2
kyk2

is the spectral norm, i.e., kB(x)k2 =
p

�
Max

(Bt(x)B(x)). Thus

kL�1(x)k2 =
p

�
Max

(A�1(x)) = (�
min

(A(x)))�1/2 ,

and hence L�1(x)
x� y

"
2 B(0, r) if y 2 B(x, r"

kL�1(x)k
2

) ⇢ B(x, a").
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Chapter 3

Nonlocal approximations to
Fokker-Planck equations
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Abstract

We show that solutions to a classical Fokker-Plank equation can be approx-
imated by solutions to nonlocal evolution problems when a rescaling parameter
that controls the size of the nonlocality goes to zero.
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3.1 Introduction

Nonlocal reaction-di↵usion equations of the form

ut(x, t) =

Z

RN

K(x, y)u(y, t)dy � u(x, t), (3.1)

where K : RN ⇥ RN ! R is a nonnegative smooth kernel (usually assumed to be symmetric, but
here this may not be the case) such that

R

K(x, y)dx = 1, and variations of it, have been recently
studied to model di↵usion process. If u(y, t) is thought of as a density of a population at location y
at time t and K(x, y) as the probability distribution of jumping from y to x, then the rate at which
individuals are arriving to x is

R

K(x, y)u(y, t)dy. On the other hand, the rate at which individuals
are leaving location x to travel to other places is �

R

K(y, x)u(x, t)dy = �u(x, t). In the absence of
external sources this implies that the density satisfies equation (3.1).

New in this work is to consider kernels of the form

K(x, y) = J
�

M(y)(x� y)
�

detM(y). (3.2)

Here J : RN ! R is a nonnegative radial function such that

J 2 Cc(Rn),

Z

RN

J(z)dz = 1 and

Z

RN

J(z)z2Ndz = C(J) < 1 (3.3)

and M(y) is a N ⇥N real matrix with smooth and bounded coe�cients such that detM(y) � � > 0.
Note that, for this kind of kernels, we have a mass preserving property, that is,

Z

RN

Z

RN

J
�

M(y)(x� y)
�

detM(y)u(y)dydx =

Z

RN

u(x)dx, 8u 2 C(RN ).

Our main goal in this work is to show that solutions to the nonlocal problem (3.1) with kernels of
the form (3.2) adequately rescaled approximate solutions to the classical local Fokker-Plank equation.

In more detail, consider the following local di↵usion problem
8

>

<

>

:

vt(x, t) =
X

i,j

@2

@xi@xj
(aij(x)v(x, t)) , x 2 RN , t 2 [0, T ],

v(x, 0) = v
0

(x), x 2 RN ,

(3.4)

where A(x) = (aij(x)) is a real positive-definite matrix.
Throughout the paper, we make the following assumptions on the matrix A: A(x) = (aij(x)) is

a real N ⇥N symmetric and positive-definite matrix with smooth coe�cients such that

�k⇠k2 
X

i,j

aij(x)⇠i⇠j  �k⇠k2, 8x,⇠ 2 RN ,

for some constants 0 < � < � and we will also assume that

max
x

(

X

i,j

@2aij(x)
@xi@xj

)

< 1. (3.5)

Given A(x), we let B(x) = (bij(x)) be a real N ⇥ N matrix with strictly positive determinant and
smooth coe�cients satisfying B(x)Bt(x) = A(x), x 2 RN . Note that such decomposition is possible
since A is a positive-definite matrix (e.g. using Cholesky factorization).

Now, let us consider the following nonlocal equation
8

>

<

>

:

u"
t =

C
"2

⇢

Z

RN

K"(x, y)u(y, t)dy � u(x, t)

�

, x 2 RN , t 2 [0, T ],

u"(x, 0) = v
0

(x), x 2 RN ,

(3.6)



Nonlocal approximations to Fokker-Planck 73

where C�1 = 1

2

R

J(z)z2Ndz is a constant that depends only on J and the kernel K" is given by

K"(x, y) =
1
"N

J
⇣

B�1(y)
(x� y)

"

⌘

detB�1(y),

with B as above, that is, such that BBt = A and J satisfying (3.3).
As we have mentioned, our aim is to show that solutions of (3.6) converge uniformly to solutions

of (3.4). Our main result reads as follows:

Theorem 3.1.1 Let v be a classical solution of Fokker-Planck equation (3.4) with initial datum
v
0

2 C(RN ) \ L1(RN ). For every " > 0, consider u" the solution of the nonlocal equation (3.6).
Then,

sup
t2[0,T ]

ku"(·, t)� v(·, t)kL1 ! 0,

as "! 0.

Now, let us comment briefly on previous results concerning approximations of local PDEs by
nonlocal problems.

Kernels of the form (3.2) cover a wide variety of nonlocal di↵usion problems treated in the past
twenty years. For example, taking the simplest caseM(y) = Id, equation (3.1) reduces to the following
convolution type di↵usion problem

ut(x, t) = (J ⇤ u� u)(x, t) =

Z

RN

J(x� y)u(y, t)dy � u(x, t).

This model has been treated by several authors in di↵erent contexts, see for example Bates et al.
(1997); Chasseigne et al. (2006); Cortazar et al. (2007) and the references given therein. In addition,
in Cortázar et al. (2009) the authors prove that, under an appropriate rescaling of the kernel, that is,
solutions to

u"
t (x, t) =

C
"2

⇢

Z

RN

1
"N

J
⇣x� y

"

⌘

u(y, t)dy � u(x, t)

�

,

converge, as "! 0, to solutions to the local heat equation, vt = �v.
Another example is the kernel (3.2) with M(y) = g�1(y)Id, being g a positive scalar function. In

this case (3.1) takes the form

ut(x, t) =

Z

RN

J

✓

x� y
g(y)

◆

u(y, t)
gN (y)

dy � u(x, t).

Note that in this evolution problem the step size, g(y), depends on the position y. Such kind of
di↵usion kernel was introduced in Cortázar et al. (2007) in order to model a non-homogeneous dispersal
process. See also Cortázar et al. (2015) and Coville (2010). For this problem in Sun et al. (2011) the
authors prove that under appropriate rescaling of the kernel, i.e. when the problem takes the form

u"
t (x, t) =

C
"2

⇢

Z

RN

1
"N

J
⇣x� y
"g(y)

⌘u(y, t)
gN (y)

dy � u(x, t)

�

, (3.7)

solutions converge to solutions to the local equation

vt(x, t) =
X

i

(g2(x)v(x, t))x
i

x
i

.

Closely related to this work is Molino and Rossi (2016) where we find kernels for nonlocal evolution
problems that, when appropriately rescaled as above, have solutions that approximate solutions to
local problems with spatial dependence in divergence form,

vt(x, t) =
X

i,j

(aij(x)vx
j

)x
i

(x, t)
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or in non-divergence form,

vt(x, t) =
X

i,j

aij(x)vx
i

x
j

(x, t).

Notations. Given A(x) = (aij(x)) we denote by at
ij(x) and a�1

ij (x) the coe�cients of the matrices

At(x), A�1(x) respectively. Also, for any given function f : RN ! R we denote by f 0
i(s) =

@f(s)
@s

i

and

by [f ]
+

(s) = max{0, f(s)}.
The paper is organized as follows: in Section 3.2 we show existence, uniqueness and a comparison

principle for the nonlocal problem and in Section 3.3 we prove the convergence of the solutions as the
scaling parameter " goes to zero.

3.2 Existence, uniqueness and comparison principle

We start this section proving the comparison principle for our problem
8

>

<

>

:

ut(x, t)=

Z

RN

J (M(y)(x� y)) detM(y)u(y, t)dy � u(x, t), x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN .

(P )

For this purpose, we first set the notion of sub and supersolution for (P ).

Definition 3.2.1 A function u 2 C1

�

[0,1), C(RN )
�

is a subsolution of problem (P ) if it satisfies

8

>

<

>

:

ut(x, t)
Z

RN

J (M(y)(x� y)) detM(y)u(y, t)dy � u(x, t), x 2 RN , t > 0,

u(x, 0)  u
0

(x), x 2 RN .

As usual, a supersolution is defined analogously by replacing ”  ” by ” � ”.

Theorem 3.2.2 [Comparison Principle] Let u, v be a subsolution and supersolution respectively of
problem (P ). Then u  v.

Proof: To prove this result we follow closely (Sun et al., 2011, Theorem 2.5). Set w = u� v, then
8

>

<

>

:

wt(x, t)
Z

RN

J (M(y)(x� y)) detM(y)w(y, t)dy � w(x, t) x 2 RN , t > 0,

w(x, 0)  0, x 2 RN .

(3.8)

Let us consider the following function

s(x, t) =

⇢

1, if w(x, t) � 0,
0, if w(x, t) < 0.

Multiplying (3.8) by s(x, t) and taking into account that wt(x, t)s(x, t) = ([w]
+

)t (x, t) and w(y, t) 
[w]

+

(y, t), we obtain, dropping the positive term w(x, t)s(x, t), that

([w]
+

)t (x, t) 
Z

RN

J (M(y)(x� y)) detM(y) [w]
+

(y, t)dy,

integrating in RN and by using the mass preserving property, we get
Z

RN

([w]
+

)t (x, t) 
Z

RN

[w]
+

(y, t)dy.
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Finally, integrating in (0, t) and since [w]
+

(x, 0) = 0 we can assert, using Fubini’s theorem, that

h(t) 
Z t

0

h(s)ds, (3.9)

where

h(t) =

Z

RN

[w]
+

(x, t)dx.

Hence, applying Gronwall’s Lemma in (3.9), we conclude that

h(t)  0.

Now, since [w]
+

(x, t) � 0 and by the continuity of [w]
+

, we get that [w]
+

(x, t) = 0 and, consequently,

u(x, t)  v(x, t)

for all x 2 RN , t > 0. ⇤
Note that the previous proof works locally in time, that is, a supersolution v and a subsolution u

defined both for t 2 [0, T ] verify u(x, t)  v(x, t) for all x 2 RN , 0  t  T .

Definition 3.2.3 By a solution of the problem (P ), we mean a function u 2 C
�

[0,1); C(RN )
�

that
satisfies

u(x, t) =

Z t

0

Z

RN

J (M(y)(x� y)) detM(y)u(y, s)dyds�
Z t

0

u(x, s)ds+ u
0

(x),

for all x 2 RN , t 2 [0,1). Consequently, due to this integral expression, we can assert that u 2
C1

�

[0,1); C(RN )
�

.

Now, we prove existence and uniqueness of a solution which is bounded in RN .

Theorem 3.2.4 [Existence] For every continuous and bounded initial data u
0

there exists a unique
solution u 2 C

�

[0,1); C(RN ) \ L1(RN )
�

of problem (P ).

Proof: For T > 0 we consider the Banach space

X = C
⇣

[0, T ]; C(RN ) \ L1(RN )
⌘

,

with the norm
kwk = max

0tT
e�k(M+1)tkw(·, t)kL1 .

Here M = max
x2RN

detM(x) > 0 and k is any value greater than one.

Now, let Y be the closed ball of X with radius kku
0

k1 and centered at the origin. Note that Y
is a complete metric space with the induced metric d(w

1

, w
2

) = kw
1

� w
2

k.
In order to establish the existence and uniqueness of solutions of (P ) via Banach contraction

principle, we define the operator T : Y �! Y by

T (w)(x, t) =

Z t

0

Z

RN

J (M(y)(x� y)) detM(y)w(y, s)dyds�
Z t

0

w(x, s)ds+ u
0

(x).

Let us first prove that this operator is well defined. Clearly T (w) is belongs to X and satisfies

kT (w)(·, t)kL1  max
x

�

�

�

�

Z t

0

Z

RN

J (M(y)(x� y)) detM(y)w(y, s)dyds

�

�

�

�

+

Z t

0

kw(·, s)kL1ds+ ku
0

kL1  (M + 1)

Z t

0

kw(·, s)kL1ds+ ku
0

kL1 .
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Since kwk  kku
0

kL1 , we obtain that, for 0  t  T ,

kT (w)(·, t)kL1  ek(M+1)T ku
0

kL1 ,

therefore, for T small, kT (w)k  kku
0

kL1 and T (w) belongs to Y .
Now, let us show that the operator T is a contraction. we have

d(T (w
1

), T (w
2

))  max
0tT

e�k(M+1)t(M + 1)

Z t

0

kw
1

(·, s)� w
2

(·, s)kL1ds.

Arguing as above, we obtain

d(T (w
1

), T (w
2

))  max
0tT

1
k
kw

1

� w
2

k
⇣

1� e�k(M+1)t
⌘

 1
k
d(w

1

, w
2

).

Hence, using Banach’s Fixed Point Theorem there exists u a fix point of T , that is the unique solution
of problem (P ) for t 2 [0, T ] and belongs to Y . Finally, since from the comparison principle we have
that

�ku
0

kL1e(max

x

R
K(x,y)dy�1)t  u(x, t)  ku

0

kL1e(max

x

R
K(x,y)dy�1)t,

we obtain a global solution, u 2 C
�

[0,1); C(RN ) \ L1(RN )
�

. ⇤

3.3 Approximations of the Fokker-Planck equation by
nonlocal problems

In this section we prove our main result, that is, that solutions of the Fokker-Planck equation can be
approximated by solutions of the nonlocal problem by rescaling the kernel.

Recall that the general Fokker-Planck equation is given by
8

>

<

>

:

vt(x, t) =
X

i,j

@2

@xi@xj
(aij(x)v(x, t)) , x 2 RN , t 2 [0, T ],

v(x, 0) = v
0

(x), x 2 RN ,

(F�P )

We will call a solution to the Cauchy problem for the Fokker-Planck equation (F�P ) a classical
solution if v 2 C2+↵,1+↵/2

�

RN , [0, T ]
�

. Note that the regularity of v is related with smoothness of
aij(x) and the initial datum v

0

; see Evans (1998); Ladyzenskaja et al. (1968).
We first need to prove the following technical lemmas.

Lemma 3.3.1 Let J be a function satisfying hypothesis (3.3). Then, the following properties are
satisfied:

1.

Z

RN

J 0
j(w)wpwqwrdw =

8

>

>

>

>

<

>

>

>

>

:

�3C(J), if p = q = r = j,

�C(J), if

8

<

:

p = j and r = q 6= j, or
q = j and r = p 6= j, or
r = j and p = q 6= j,

0, in other case.

2.

Z

RN

J 00
jj(w)wlwnwswtdw =

8

>

>

>

>

<

>

>

>

>

:

12C(J), if l = n = s = t = j,

2C(J),

8

<

:

if two indexes are equal to j
and the others two are equal
to each other and di↵erent to j.

0, in other case.
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3. For j 6= p

Z

RN

J 00
jp(w)wlwnwswtdw =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

3C(J),

8

<

:

if three indexes are equal to j
and the other one are equal
to p, or viceversa.

C(J),

8

>

>

<

>

>

:

if one index is equal to j, another
index is equal to p, and the
others two are equal to each
other but di↵erent to j and p.

0, in other case.

Proof: ( 1) If p = q = r = j and since J has compact support, integrating by parts it follows that
Z

RN

J 0
j(w)w3

jdw = �3

Z

RN

J(w)w2

jdw = �3C(J).

Similarly, if one of the indexes is equal to j and the others two are equal between them and di↵erent
from j, integrating by parts respect to the variable j, we obtain

Z

RN

J 0
j(w)wjw

2

sdw = �
Z

RN

J(w)w2

sdw = �C(J),

for s = p, q, r. Finally, in the same way we show that is zero occurs in any di↵erent case.
( 2) For the first case, integrating by parts twice, we get

Z

RN

J 00
jj(w)w4

jdw = �4

Z

RN

J 0
j(w)w3

jdw = 12

Z

RN

J(w)w2

jdw = 12C(J).

We proceed likewise, if two indexes are equal to j and the other two are equal between them and
di↵erent from j (there are 6 cases). For example, taking l = n = j and s = t 6= j, we obtain integrating
by parts twice

Z

RN

J 00
jj(w)w2

jw
2

sdw = �2

Z

RN

J 0
j(w)wjw

2

sdw = 2

Z

RN

J(w)w2

jdw = 2C(J).

Finally, the proof in any other case follows similarly and is left to the reader.
( 3) We apply the same reasoning, integrating by parts twice, respect to the variable p and j.

First, if three indexes are equal to j and the other one is equal to p (there are 8 cases) we get, taking
for example l = n = s = j and t = p, that

Z

RN

J 00
jp(w)w3

jwpdw = �
Z

RN

J 0
j(w)w3

jdw = 3

Z

RN

J(w)w2

jdw = 3C(J).

Analogously, if one index is equal to j, another index is equal to p, and the other two are equalbetween
them but di↵erent from j and p (there are 12 cases) we have, choosing for example l = j, n = p and
s = t 6= j, p, that

Z

RN

J 00
jp(w)wjwpw

2

sdw = �
Z

RN

J 0
j(w)wjw

2

sdw =

Z

RN

J(w)w2

sdw = C(J).

We leave it to the reader to verify that in any other case the integral expression is equal to zero. ⇤

Lemma 3.3.2 Let A(x) = (aij(x)) be a N ⇥ N non-singular real matrix with smooth coe�cients
aij : RN ! R, i, j = 1 . . . N , then the following properties are satisfied:

1.
X

k

�

a�1

ik

�0
m
(x)akj(x) = �

X

k

a�1

ik (x) (akj)
0
m (x),
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2.
X

k

(a�1

jk )00mp(x)akq(x) = �
X

k

�

(a�1

jk )0m(x)(akq)
0
p(x)

+(a�1

jk )0p(x)(akq)
0
m(x) + a�1

jk (x) (akq)
00
mp (x)

o

,

3.
X

j,k

a�1

jk (x)(akj)
0
m(x) = detA�1(x) (detA(x))0m .

Proof:
( 1) It follows by computing the derivate of

P

k a
�1

ik (x)akj(x) = �ij .
( 2) It is easy to prove when we compute the derivate of the expression in ( 1).
( 3) See Golberg (1972) for a simple and original proof. ⇤
Also the following propositions will be needed in the proof of our main theorem. To simplify the

notation, in what follows we let

J"(s) =
1
"N

J
⇣s
"

⌘

.

Proposition 3.3.3 Let u be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

function and let L1

" and ⇤ be the operators
given by

L1

"(u(x, t)) =
C
"2

Z

RN

J"

�

B�1(y)(x� y)
�

detB�1(y)(u(y, t)� u(x, t))dy,

⇤(u(x, t)) =
X

i,j

@2u(x, t)
@xi@xj

aij(x) + 2
X

i,j

@u(x, t)
@xi

@aij(x)
@xj

.

Then,
sup

t2[0,T ]

k
�

L1

" � ⇤
�

(u(·, t))kL1 ! 0 as "! 0.

Proof: Under the change variables y = x� "z and by a simple Taylor expansion we obtain

L1

"(u(x, t)) =
X

i,j

@2u(x, t)
@xi@xj

H1

" (x) +
X

i

@u(x, t)
@xi

H2

" (x) +O("↵),

being

H1

" (x) =
C
2

Z

RN

J
�

B�1(x� "z)z
�

detB�1(x� "z)zizjdz,

and

H2

" (x) = �C
"

Z

RN

J
�

B�1(x� "z)z
�

detB�1(x� "z)zidz.

First, we claim that
H1

" (x) ! aij(x)

as "! 0. Indeed, changing variables as ! = B�1(x)z we get

lim
"!0

H1

" (x) =
C
2
detB�1(x)

Z

RN

J
�

B�1(x)z
�

zizjdz

=
C
2

X

k,m

bik(x)bjm(x)

Z

RN

J(w)wkwmdw.

Taking into account that
Z

RN

J(w)wkwmdw = 0

if k 6= m and the value of the constant C, we get that

lim
"!0

H1

" (x) =
X

k

bik(x)bjk(x) =
X

k

bik(x)b
t
kj(x) = aij(x).
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Now, we claim that

H2

" (x) ! 2
X

j

@aij(x)
@xj

as "! 0. Indeed, since J is a radial function, it follows that
Z

RN

J(B�1(x)z)zidz = 0.

Therefore, lim"!0

H2

" (x) =
0

0

and we can use L’Hopital rule to obtain

lim
"!0

H2

" (x) = lim
"!0

�C

Z

RN

�

F 1

" (x, z) + F 2

" (x, z)
�

dz,

where

F 1

" (x, z) =
@
@"

�

J(B�1(x� "z)z)
�

detB�1(x� "z)zi,

and

F 2

" (x, z) = J(B�1(x� "z)z)
@
@"

�

detB�1(x� "z)
�

zi.

To compute the first part, we note that

@
@"

�

J(B�1(x� "z)z)
�

=
X

j

(

J 0
j(B

�1(x� "z)z)
@
@"

X

k

b�1

jk (x� "z)zk

)

=
X

j,k,m

J 0
j(B

�1(x� "z)z)
�

b�1

jk

�0
m
(x� "z)zk(�zm).

(3.10)

In this way we obtain

lim
"!0

�C

Z

RN

F 1

" (x, z)dz = C detB�1(x)
X

j,k,m

�

b�1

jk

�0
m
(x)

Z

RN

J 0
j(B

�1(x)z)zkzmzidz. (3.11)

Now, we change variables as w = B�1(x)z to obtain

C
X

j,k,m,p,q,r

�

b�1

jk

�0
m
(x)bkp(x)bmq(x)bir(x)

Z

RN

J 0
j(w)wpwqwrdw.

Using property ( 1) from Lemma 3.3.1 we get

= �6
X

j,k,m

(b�1

jk )0m(x)bkj(x)bmj(x)bij(x)

�2
X

j,k,m,q 6=j

(b�1

jk )0m(x)bkj(x)bmq(x)biq(x)

�2
X

j,k,m,p 6=j

(b�1

jk )0m(x)bkp(x)bmj(x)bip(x)

�2
X

j,k,m,p 6=j

(b�1

jk )0m(x)bkp(x)bmp(x)bij(x)

= �2
X

j,k,m,p

(b�1

jk )0m(x) [bkj(x)bmp(x)bip(x)

+bkp(x)bmj(x)bip(x)

+bkp(x)bmp(x)bij(x)] ,

(3.12)

which by property ( 1) from Lemma 3.3.2 turns out to be equal to

2
X

j,k,m,p

b�1

jk (x)(bkj)
0
m(x)bmp(x)bip(x)

+ 2
X

k,p

(bkp)
0
k(x)bip(x) + 2

X

m,p

(bip)
0
m(x)bmp(x)

= 2
X

j,k,m,p

b�1

jk (x)(bkj)
0
m(x)bmp(x)bip(x) + 2

X

j

@aij(x)
@xj

,

(3.13)
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where in the last equality we have used that aij(x) =
P

p bip(x)bjp(x) and we have replaced the
indexes k and p by j.

To conclude the claim, we have to compute the second part and to verify that it is cancelled with
the first term of the last part of (3.13). To be more specific, we need to show that

lim
"!0

C

Z

RN

F 2

" (x, z)dz = 2
X

j,k,m,p

b�1

jk (x)(bkj)
0
m(x)bmp(x)bip(x).

In fact, by virtue of

@
@"

�

detB�1(x� "z)
�

=
X

m

�

detB�1(x� "z)
�0
m
(�zm)

=
X

m

detB�2(x� "z) (detB(x� "z))0m zm,
(3.14)

we have that

lim
"!0

C

Z

RN

F 2

" (x, z)dz = C detB�2(x)
X

m

(detB(x))0m

Z

RN

J
�

B�1(x)z
�

zmzidz

changing variables again w = B�1(x)z

= 2detB�1(x)
X

m,p

(detB(x))0m bmp(x)bip(x)

and finally, using property ( 3) from Lemma 3.3.2 we get

= 2
X

j,k,m,p

b�1

jk (x)(bkj)
0
m(x)bmp(x)bip(x)

and the proof is finished. ⇤

Proposition 3.3.4 Let u be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

function and let L2

", � be the operators de-
fined as

L2

"(u(x, t)) =
C
"2



Z

RN

J"

�

B�1(y)(x� y)
�

detB�1(y)dy � 1

�

u(x, t),

and

�(u(x, t)) =
X

i,j

@2aij(x)
@xi@xj

u(x, t),

Then,
sup

t2[0,T ]

k
�

L2

" � �
�

(u(x, t))kL1 ! 0 as "! 0.

Proof: Under the change variables y = x� "z we obtain

L2

"(u(x, t)) =
C
"2



Z

RN

J
�

B�1(x� "z)z
�

detB�1(x� "z)dz � 1

�

u(x, t). (3.15)

Note that

lim
"!0

Z

RN

J
�

B�1(x� "z)z
�

detB�1(x� "z)dz =

Z

RN

J
�

B�1(x)z
�

detB�1(x)dz = 1.

Therefore, using L’Hopital rule in (3.15) we get

lim
"!0

L2

"(u(x, t)) =
C
2"

Z

RN

�

G1

"(x, z) +G2

"(x, z)
�

dz u(x, t), (3.16)
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where

G1

"(x, z) =
@
@"

�

J(B�1(x� "z)z)
�

detB�1(x� "z),

and

G2

"(x, z) = J(B�1(x� "z)z)
@
@"

�

detB�1(x� "z)
�

.

Now, the proof splits naturally into two parts:
Part 1: To compute

lim
"!0

C
2"

Z

RN

G1

"(x, z)dz.

Using equality (3.10), it is equivalent to compute

lim
"!0

C
2"

X

j,k,m

Z

RN

J 0
j(B

�1(x� "z)z) (b�1

jk )0m(x� "z) zk(�zm) detB�1(x� "z)dz.

Taking into account that
Z

RN

J 0
j(w)wqwpdw = 0,

a simple computation gives that the above expression is 0

0

and we can use L’Hopital rule again, to
obtain

lim
"!0

C
2"

Z

RN

G1

"(x, z)dz = lim
"!0

C
2

X

j,k,m

Z

RN

�

A1

"(x, z) +A2

"(x, z) +A3

"(x, z)
�

dz, (3.17)

where

A1

"(x, z) =
@
@"

⇥

J 0
j(B

�1(x� "z)z)
⇤

(b�1

jk )0m(x� "z) detB�1(x� "z)zk(�zm)dz,

A2

"(x, z) = J 0
j(B

�1(x� "z)z)
@
@"

⇥

(b�1

jk )0m(x� "z)
⇤

detB�1(x� "z)zk(�zm)dz

and

A3

"(x, z) = J 0
j(B

�1(x� "z)z) (b�1

jk )0m(x� "z)
@
@"

⇥

detB�1(x� "z)
⇤

zk(�zm)dz.

Therefore, the Part 1 will be splitter again into three steps:
Part 1.a: Compute

lim
"!0

C
2

X

j,k,m

Z

RN

A1

"(x, z)dz.

By an argument similar to (3.10), we have

@
@"

⇥

J 0
j(B

�1(x� "z)z)
⇤

=
X

p,q,r

J 00
jp(B

�1(x� "z)z) (b�1

pq )
0
r(x� "z) zq(�zr),

thus

lim
"!0

C
2

X

j,k,m

Z

RN

A1

"(x, z)dz

=
C
2

X

j,k,m,p,q,r

(b�1

pq )
0
r(x)(b

�1

jk )0m(x) detB�1(x)

Z

RN

J 00
jp(B

�1(x)z) zqzrzkzmdz.

Now we change variables as w = B�1(x)z to obtain

C
2

X

j,k,m,p,q,r,l,n,s,t

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bql(x)brn(x)bks(x)bmt(x)

⇥
Z

RN

J 00
jp(w)wlwnwswtdw.
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Finally, by properties ( 2) and ( 3) from Lemma 3.3.1, proceeding with similar arguments applied in
(3.12) with easy modifications, we obtain that

lim
"!0

C
2

X

j,k,m

Z

RN

A1

"(x, z)dz =

X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x) [bqj(x)brp(x)bks(x)bms(x)

+bqj(x)brs(x)bkp(x)bms(x) + bqj(x)brs(x)bks(x)bmp(x)

+bqp(x)brj(x)bks(x)bms(x) + bqs(x)brj(x)bkp(x)bms(x)

+bqs(x)brj(x)bks(x)bmp(x) + bqp(x)brs(x)bkj(x)bms(x)

+bqs(x)brp(x)bkj(x)bms(x) + bqs(x)brs(x)bkj(x)bmp(x)

+bqp(x)brs(x)bks(x)bmj(x) + bqs(x)brp(x)bks(x)bmj(x)

+bqs(x)brs(x)bkp(x)bmj(x)] .

(3.18)

Part 1.b: Compute

lim
"!0

C
2

X

j,k,m

Z

RN

A2

"(x, z)dz.

Since
@
@"

⇥

(b�1

jk )0m(x� "z)
⇤

=
X

p

(b�1

jk )00mp(x� "z)(�zp),

it follows, letting "! 0 and changing variables w = B�1(x)z, that

lim
"!0

C
2

X

j,k,m

Z

RN

A2

"(x, z)dz =
C
2

X

j,k,m,p,q,r,s

(b�1

jk )00mp(x)bpq(x)bkr(x)bms(x)

⇥
Z

RN

J 0
j(w)wqwrwsdw

which due to property ( 1) from Lemma 3.3.1 and arguing as in (3.12) is equal to

�
X

j,k,m,p,q

(b�1

jk )00mp(x) [bpq(x)bkq(x)bmj(x) + bpj(x)bkq(x)bmq(x) + bpq(x)bkj(x)bmq(x)] .

Thus, using ( 2) from Lemma 3.3.2, we get

lim
"!0

C
2

X

j,k,m

Z

RN

A2

"(x, z)dz =
X

j,k,m,p,q

�

(b�1

jk )0m(x)(bkq)
0
p(x)bpq(x)bmj(x)

+(b�1

jk )0p(x)(bkq)
0
m(x)bpq(x)bmj(x) + (bkq)

00
mp(x)bmj(x)b

�1

jk (x)bpq(x)

+(b�1

jk )0m(x)(bkq)
0
p(x)bpj(x)bmq(x) + (b�1

jk )0p(x)(bkq)
0
m(x)bpj(x)bmq(x)

+(bkq)
00
mp(x)bpj(x)b

�1

jk (x)bmq(x) + (b�1

jk )0m(x)(bkj)
0
p(x)bpq(x)bmq(x)

+(b�1

jk )0p(x)(bkj)
0
m(x)bpq(x)bmq(x) + (bkj)

00
mp(x)bpq(x)b

�1

jk (x)bmq(x).

(3.19)

Note that, thanks to ( 1) from Lemma 3.3.2, some terms from expressions (3.18) and (3.19) cancel.
In fact, the 12th term of (3.18) verifies

X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bqs(x)brs(x)bkp(x)bmj(x)

= �
X

j,k,m,p,q,r,s

b�1

pq (x)(b
�1

jk )0m(x)(bqs)
0
r(x)brs(x)bkp(x)bmj(x)
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and since
X

p

bkp(x)b
�1

pq (x) = 1

if k = q and vanishes if k 6= q we obtain

�
X

j,k,m,r,s

(b�1

jk )0m(x)(bks)
0
r(x)brs(x)bmj(x).

Replacing s by q and r by p, this last expression is cancelled by the 1st term of (3.19). We leave it
to the reader to verify that, in the same way, the 2nd, 4th, 5th and 7th terms of expression (3.19) are
cancelled by the 5th, 3rd, 1st and 2nd terms of expression (3.18) respectively. Hence, from Part 1.b
only the 3rd, 6th, 8th and 9th terms remain.

Part 1.c: Compute

lim
"!0

C
2

X

j,k,m

Z

RN

A3

"(x, z)dz.

By equality (3.14) we obtain

lim
"!0

C
2

X

j,k,m

Z

RN

A3

"(x, z)dz

= �C
2
detB�2(x)

X

j,k,m,p

(b�1

jk )0m(x)(detB(x))0p

Z

RN

J 0
j(B

�1(x)z)zkzmzpdz.
(3.20)

Furthermore, thanks to the result obtained from equality (3.11) in (3.13), inside the proof of Propo-
sition 3.3.3 we get

C detB�1(x)
P

j,k,m(b�1

jk )0m(x)
R

RN

J 0
j(B

�1(x)z)zkzmzpdz

= 2
X

j,k,m,s

b�1

jk (x)(bkj)
0
m(x)bms(x)bps(x)

+ 2
X

k,j

(bjk)
0
j(x)bpk(x) + 2

X

k,j

(bpk)
0
j(x)bjk(x).

(3.21)

In addition, we have Golberg (1972), that is,

detB�1(x)(detB(x))0p =
X

q,r

b�1

qr (x)(brq)
0
p(x). (3.22)

Replacing (3.21) and (3.22) in equality (3.20), we have

lim
"!0

C
2

X

j,k,m

Z

RN

A3

"(x, z)dz

= �
X

j,k,m,p,q,r,s

b�1

qr (x)(brq)
0
p(x)b

�1

jk (x)(bkj)
0
m(x)bms(x)bps(x)

�
X

j,k,m,p,q,r

b�1

qr (x)(brq)
0
p(x)

�

(bjk)
0
j(x)bpk(x) + (bpk)

0
j(x)bjk(x)

 

.

(3.23)

Note that above expression is cancelled with the 7th, 10th and 4th terms of expression (3.18).
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Summarizing, we conclude Part 1 of the proof as follows:

lim
"!0

C
2"

Z

RN

G1

"(x, z)dz = lim
"!0

C
2

X

j,k,m

Z

RN

�

A1

"(x, z) +A2

"(x, z) +A3

"(x, z)
�

dz

=
X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x) [bqs(x)brj(x)bks(x)bmp(x)

+ bqs(x)brp(x)bkj(x)bms(x) + bqs(x)brs(x)bkj(x)bmp(x)

+bqs(x)brp(x)bks(x)bmj(x)]

+
X

j,k,m,p,q

�

(bkq)
00
mp(x)bmj(x)b

�1

jk (x)bpq(x)

+(bkq)
00
mp(x)bpj(x)b

�1

jk (x)bmq(x) + (b�1

jk )0p(x)(bkj)
0
m(x)bpq(x)bmq(x)

+(bkj)
00
mp(x)bpq(x)b

�1

jk (x)bmq(x)
 

.

(3.24)

Part 2: We have to compute

lim
"!0

C
2"

Z

RN

G2

"(x, z)dz.

Which due to relation (3.14), it is equivalent to compute

lim
"!0

C
2"

X

p

Z

RN

J(B�1(x� "z)z)
(detB(x� "z))0p
detB2(x� "z)

zp dz.

Note that since
Z

RN

J(B�1(x)z) zp dz = 0,

letting "! 0, we have that the above expression is 0

0

. Consequently, by L’Hopital rule we obtain

lim
"!0

C
2"

Z

RN

G2

"(x, z)dz =
C
2

X

p

Z

RN

�

R1

"(x, z) +R2

"(x, z) +R3

"(x, z)
�

dz,

where

R1

"(x, z) =
@
@"

⇥

J(B�1(x� "z)z)
⇤ (detB(x� "z))0p

detB2(x� "z)
zp,

R2

"(x, z) = J(B�1(x� "z)z)
@
@"



(detB(x� "z))0p
detB(x� "z)

�

detB�1(x� "z)zp,

and

R3

"(x, z) = J(B�1(x� "z)z)
(detB(x� "z))0p
detB(x� "z)

@
@"

⇥

detB�1(x� "z)
⇤

zp.

Therefore, the Part 2 will be divided into three steps:
Part 2.a: Compute

lim
"!0

C
2

X

p

Z

RN

R1

"(x, z)dz.

By identity (3.10) and letting " to 0, we get

= �C
2
detB�2(x)

X

j,k,m,p

(b�1

jk )0m(x)(detB(x))0p

Z

RN

J 0
j(B

�1(x)z)zkzmzpdz.

Which coincides with expression (3.20). Hence,

lim
"!0

C
2

X

p

Z

RN

R1

"(x, z)dz

= �
X

j,k,m,p,q,r,s

b�1

qr (x)(brq)
0
p(x)b

�1

jk (x)(bkj)
0
m(x)bms(x)bps(x)

�
X

j,k,m,p,q,r

b�1

qr (x)(brq)
0
p(x)

�

(bjk)
0
j(x)bpk(x) + (bpk)

0
j(x)bjk(x)

 

.

(3.25)
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Part 2.b: Compute

lim
"!0

C
2

X

p

Z

RN

R2

"(x, z)dz.

If we compute de derivative of (3.22), we obtain that

@
@"



(detB(x� "z))0p
detB(x� "z)

�

=
@
@"

X

j,k

b�1

jk (x� "z)(bkj)
0
p(x� "z)

= �
X

j,k,m

�

(b�1

jk )0m(x� "z)zm(bkj)
0
p(x� "z) + b�1

jk (x� "z)(bkj)
00
pm(x� "z)zm

 

.

Therefore, replacing the above expression, letting " ! 0 and change variables as w = B�1(x)z, Part
2.b reads as follows

lim
"!0

C
2

X

p

Z

RN

R2

"(x, z)dz

= �
X

j,k,m,p,q

�

(b�1

jk )0m(x)(bkj)
0
p(x)bpq(x)bmq(x)

+b�1

jk (x)(bkj)
00
pm(x)bpq(x)bmq(x)

 

.

(3.26)

Part 2.c: Compute

lim
"!0

C
2

X

p

Z

RN

R3

"(x, z)dz.

Using again the equalities (3.22) and (3.14), letting "! 0 and change variables w = B�1(x)z, we
get

lim
"!0

C
2

X

p

Z

RN

R3

"(x, z)dz

=
X

j,k,m,p,q,r,s

b�1

jk (x)(bkj)
0
mb�1

qr (x)(brq)
0
p(x)bms(x)bps(x).

(3.27)

Note that this expression cancels with the first part of (3.25) from Part 2.a.
Summarizing, we conclude Part 2 of the proof as follows:

lim
"!0

C
2"

Z

RN

G2

"(x, z)dz = lim
"!0

C
2

X

p

Z

RN

�

R1

"(x, z) +R2

"(x, z) +R3

"(x, z)
�

dz

= �
X

j,k,m,p,q,r

b�1

qr (x)(brq)
0
p(x)

�

(bjk)
0
j(x)bpk(x) + (bpk)

0
j(x)bjk(x)

 

�
X

j,k,m,p,q

�

(b�1

jk )0m(x)(bkj)
0
p(x)bpq(x)bmq(x)

+b�1

jk (x)(bkj)
00
pm(x)bpq(x)bmq(x)

 

.

(3.28)

Finally, taking into account that the first sum of (3.28) is cancelled with the 2nd and 3rd term of
(3.24) and the second sum of (3.28) is cancelled with the last two terms of (3.24). We have, adding
Part 1 and Part 2 in (3.16), that

lim
"!0

L2

"(u(x, t)) =

8

<

:

X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bqs(x)brj(x)bks(x)bmp(x)

+
X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bqs(x)brp(x)bks(x)bmj(x)

+
X

j,k,m,p,q

(bkq)
00
mp(x)bmj(x)b

�1

jk (x)bpq(x)

+
X

j,k,m,p,q

(bkq)
00
mp(x)bpj(x)b

�1

jk (x)bmq(x)

9

=

;

u(x, t).
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Now, applying property ( 1) from Lemma 3.3.2, each sum satisfies
X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bqs(x)brj(x)bks(x)bmp(x)

=
X

j,k,m,p,q,r,s

b�1

pq (x)b
�1

jk (x)(bqs)
0
r(x)brj(x)(bks)

0
m(x)bmp(x)

=
X

k,q,s

(bqs)
0
k(x)(bks)

0
q(x) =

X

i,j,k

(bik)
0
j(x)(bjk)

0
i(x),

(3.29)

replacing, in the last equality, indexes {q, k, s} by {i, j, k} respectively. We have
X

j,k,m,p,q,r,s

(b�1

pq )
0
r(x)(b

�1

jk )0m(x)bqs(x)brp(x)bks(x)bmj(x)

=
X

j,k,m,p,q,r,s

b�1

pq (x)b
�1

jk (x)(brp)
0
r(x)bqs(x)(bmj)

0
m(x)bks(x)

=
X

m,p,r

(brp)
0
r(x)(bmp)

0
m(x) =

X

i,j,k

(bik)
0
i(x)(bjk)

0
j(x),

(3.30)

replacing, in the last equality, indexes {r,m, p} by {i, j, k} respectively.
Now,

X

j,k,m,p,q

(bkq)
00
mp(x)bmj(x)b

�1

jk (x)bpq(x) =
X

k,p,q

(bkq)
00
kp(x)bpq(x)

=
X

i,j,k

(bik)
00
ij(x)bjk(x),

(3.31)

replacing, in the last equality, indexes {k, p, q} by {i, j, k} respectively.
Also, we have

X

j,k,m,p,q

(bkq)
00
mp(x)bpj(x)b

�1

jk (x)bmq(x) =
X

k,m,q

(bkq)
00
mk(x)bmq(x)

=
X

i,j,k

(bjk)
00
ij(x)bik(x),

(3.32)

replacing, in the last equality, indexes {m, k, q} by {i, j, k} respectively.
Summarizing, from (3.29), (3.30), (3.31) and (3.32), we conclude that

lim
"!0

L2

"(u(x, t)) =
X

i,j,k

�

(bik)
0
j(x)(bjk)

0
i(x) + (bik)

0
i(x)(bjk)

0
j(x)

+(bik)
00
ij(x)bjk(x) + (bjk)

00
ij(x)bik(x)

 

u(x, t) =
X

i,j

@2aij(x)
@xi@xj

u(x, t),

and the Proposition gets proved. ⇤

Proposition 3.3.5 Let u be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

function and let L" be the operator defined
as

L"(u(x, t)) =
C
"2

⇢

Z

RN

J"

�

B�1(y)(x� y)
�

detB�1(y)u(y, t)dy � u(x, t)

�

. (3.33)

Then,

sup
t2[0,T ]

�

�

�

L"(u(x, t))�
X

i,j

@2

@xi@xj
(aij(x)u(x, t))

�

�

�

L1
! 0 as "! 0.

Proof: Thanks to Propostion 3.3.3 and Proposition 3.3.4 we obtain that

sup
t2[0,T ]

�

�

�

L"(u(x, t))�
X

i,j

@2

@xi@xj
(aij(x)u(x, t))

�

�

�

L1

 sup
t2[0,T ]

k
�

L1

" � ⇤
�

(u(x, t))kL1 + sup
t2[0,T ]

k
�

L2

" � �
�

(u(x, t))kL1 ! 0,
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as "! 0. ⇤
We are now ready to prove our main result.
Proof:[Proof of Theorem 3.1.1] We will denote by w" = u"�v. Note that w" satisfies the following

equation
8

<

:

w"
t (x, t) = L"(w

"(x, t)) + F̃ (x, t), x 2 RN , t 2 [0, T ],

w"(x, 0) = 0, x 2 RN ,
(3.34)

where

F̃ (x, t) = L"(v(x, t))�
X

i,j

@2

@xi@xj
(aij(x)v(x, t)) .

In addition, thanks to Proposition 3.3.5, we can assert that there exists a positive function ✓ such
that |F̃ (x, t)|  ✓(") ! 0 as "! 0, for every x 2 RN , t 2 [0, T ].

Next, let us consider

⌘(") = max

⇢

C
"2



Z

RN

J"

�

B�1(y)(x� y)
�

detB�1(y)dy � 1

�

, x 2 RN

�

,

it is easy to check that ⌘(") < 1, for every " > 0. Futhermore, by Proposition 3.3.4 and (3.5) we
obtain

⌘(") ! max

(

X

i,j

@2aij(x)
@xi@xj

, x 2 RN

)

< 1.

In this way, we set the following function

w(x, t) =

8

>

<

>

:

✓(")
⌘(")

⇣

e⌘(")t � 1
⌘

+ " e⌘(")t, if ⌘(") 6= 0,

✓(")t+ ", if ⌘(") = 0,

for x 2 RN , t 2 [0, T ]. Now, we claim that w is a supersolution of (3.34). Indeed, for ⌘(") 6= 0

wt(x, t) = ✓(")e⌘(")t + " ⌘(") e⌘(")t = ⌘(")w(x, t) + ✓(")

� L2

"(w(x, t)) + F̃ (x, t) = L"(w(x, t)) + F̃ (x, t),

taking into account that L1

"(w(x, t)) = 0 in the last equality. We left to the reader to check the case
⌘(") = 0. Finally, as w(x, 0) = ", the claim is proved.

Similar arguments applied to the case w(x, t) = �w(x, t) leads us to assert that w(x, t) is a
subsolution of problem (3.34).

We conclude from the comparison principle, Theorem 3.2.2, that

w  w"  w

and since w(x, t), w(x, t) ! 0 as "! 0 our main result gets proved. ⇤

Remark 3.3.6 One can easily check that, for all test function ' 2 C2

c (RN ) and u 2 L1(RN ) \
C2+↵(RN ), it holds that

Z

RN

L"u(x)'(x)dx =

Z

RN

X

j,k

'00
x
j

x
k

(x) (B(x)Bt(x))
(j,k) u(x) dx+ 0("↵) (3.35)

and hence, integrating by parts twice, we get
Z

RN

L"u(x)'(x)dx =

Z

RN

X

j,k

@2

@xjxk
(ajk(x)u(x))'(x)dx+ 0("↵).
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In fact, for ' 2 C2

c (RN ) we have
Z

RN

L"u(x)'(x)dx

=

Z

RN

C
"2

⇢

Z

J"(B
�1(y)(x� y)) detB�1(y)u(y)'(x)dy � u(x)'(x)

�

dx

=

Z

RN

C
"2

✓

Z

J"(B
�1(y)(x� y)) detB�1(y)'(x)dx

◆

u(y)dy � C
"2

Z

RN

u(x)'(x)dx

=

Z

RN

u(y)
C
"2

⇢

Z

J"(B
�1(y)y � z)'(B(y)z) dz � '(y)

�

dy

=

Z

RN

u(y)
C
"2

⇢

Z

J"(B
�1(y)y � z)�(z) dz � �(B�1(y)y)

�

dy,

with �(z) := '(B(y)z). Now we observe that it is well known (see Chasseigne et al. (2006)) that this
last expression verifies

=

Z

RN

u(y)��(B�1(y)y) dy +O("↵).

Using that

��(B�1(x)x) =
X

j,k

'00
x
j

x
k

(x) (B(x)Bt(x))
(j,k)

we obtain (3.35).

Remark 3.3.7 Our results can be interpreted from a stochastic processes viewpoint. In fact, given
the stochastic di↵erential equation

dXt = B(Xt) dWt,

where Xt is an N-dimensional random variable vector and Wt is an N-dimensional standard Wiener
process. Our main result states that

Solutions of the rescaled nonlocal problem (3.6), u"(x, t), converge uniformly to the probability
density, u(x, t), that corresponds to the process Xt.

See Risken (1984) for more details.



Chapter 4

Parabolic equations with natural
growth approximated by
nonlocal equations

T. Leonori, A. Molino and S. Segura de León, submitted (2017).

Abstract

In this paper we study several aspects related with solutions of nonlocal prob-
lems whose prototype is

8

<

:

ut =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�G�u(y, t)� u(x, t)

�

dy in⌦ ⇥ (0, T ) ,

u(x, 0) = u0(x) in ⌦,

where we take, as the most important instance, G(s) ⇠ 1+ µ
2

s
1+µ2s2 with µ 2 R as

well as u0 2 L1(⌦), J is a smooth symmetric function with compact support and
⌦ is either a bounded smooth subset of RN , with nonlocal Dirichlet boundary
condition, or RN itself.

The results deal with existence, uniqueness, comparison principle and asymp-
totic behavior. Moreover we prove that if the kernel rescales in a suitable way, the
unique solution of the above problem converges to a solution of the deterministic
Kardar-Parisi-Zhang equation.

89
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4.1 Introduction

This work is concerned with the study the existence, uniqueness, comparison principle and asymptotic
behavior for the following nonlinear parabolic equation with nonlocal di↵usion,

8

<

:

ut(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

G
�

u(y, t)� u(x, t)
�

dy in⌦ ⇥ (0, T ) ,

u(x, 0) = u
0

(x) in ⌦,
(4.1)

for an appropriate functions J and G (see below (J) and (G)), and its relationship with the local
problem

8

<

:

ut ��u = µ|ru|2 in⌦ ⇥ (0, T ) ,

u(x, 0) = u
0

(x) in ⌦,
(4.2)

where

1. ⌦ is either RN itself (Cauchy problem) or a bounded smooth subset of RN adding the boundary
condition u(x, t) = h(x, t) on @⌦⇥ (0, T ) for h su�ciently smooth (Dirichlet problem);

2. T > 0 (possibly infinite) and µ 2 R;
3. u

0

is a smooth enough datum.

4.1.1 Local problem

The equation ut ��u = µ|ru|2 , at least for µ > 0, is known in the literature as the deterministic
Kardar-Parisi-Zhang (KPZ) equation. It was proposed in Kardar et al. (1986) in the physical theory
of growth and roughening of surfaces. Further developments on physical applications of the KPZ
equation can be found in Barabási and Stanley (1995) (for a survey on more recent aspects we refer
to Wio et al. (2011)).

The Kardar–Parisi–Zhang equation has given rise to a rich mathematical theory which has had
a spectacular recent progress (see Corwin (2012); Hairer (2013)). From the point of view of Partial
Di↵erential Equations, equations having a gradient term with the so-called natural growth have been
largely studied in the last decades by many mathematicians: in addition to the classical reference
Ladyzenskaja et al. (1968) let us just mention the pioneer paper by Aronson and Serrin Aronson and
Serrin (1967) and also the result due to Boccardo, Murat and Puel Boccardo et al. (1989).

4.1.2 Nonlocal problem

Nonlocal evolution equations have been extensively studied to model di↵usion processes. The proto-
type example in this framework is the following one

ut(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t))dy, (4.3)

where the kernel K : RN ⇥ RN ! R is a nonnegative smooth function (not necessarily symmetric)

satisfying

Z

RN

K(x, y)dx = 1 for any y 2 RN (or variations of it, see for instance Andreu et al.

(2008/09)). If u(y, t) is thought of as a density at location y at time t and K(x, y) as the probability
distribution of jumping from place y to place x, then the rate at which individuals from any other
location go to the place x is given by

R

RN

K(x, y)u(y, t)dy. On the other hand, the rate at which
individuals leave the location x to travel to all other places is �

R

RN

K(y, x)u(x, t)dy = �u(x, t). In
the absence of external sources this implies that the density must satisfy equation (4.3).

We are especially interested in symmetric kernels (we denote them by J) that have compact
support; it means that the individuals can jump from a place to other, but they cannot go “too



Parabolic equations with natural growth approximated by nonlocal equations 91

far away”. On the contrary, for instance, nonlocal operators that allow “long jumps”correspond to
a di↵erent choice of kernels. It is the case of the fractional laplacian that involves a kernel that is
singular and that does not have compact support (see, for instance Valdinoci (2009) for a survey on
this latter class of processes).

In particular, we consider J : RN ! R as a nonnegative radial symmetric function such that

J 2 Cc(Rn),

Z

RN

J(z) dz = 1 and

Z

RN

J(z)z2Ndz < 1, z = (z
1

, . . . , zN ).

With this choice of the kernel, equation (4.3) changes into a di↵usion equation of convolution
type, namely

ut(x, t) = (J ⇤ u� u)(x, t) =

Z

RN

J(x� y)u(y, t)dy � u(x, t), in⌦ ⇥ (0, T ) (4.4)

(see for instance Bates et al. (1997); Chasseigne et al. (2006); Cortazar et al. (2007)).

4.1.3 Background

One of the most important features of nonlocal equations is that can be rescaled to approximate local
ones.

In Cortázar et al. (2009) (see also Molino and Rossi (2016) for the same type of result in a
more general case) it has been proved that, under an appropriate rescaling kernel, solutions of (4.4)
converge uniformly to solutions of heat equation. To be more specific, solutions of

u"
t (x, t) =

C
"2



Z

RN

J"(x� y)u(y, t)dy � u(x, t)

�

in⌦ ⇥ (0, T ) (4.5)

converge uniformly to solutions of

vt = �v in⌦ ⇥ (0, T ) ,

where C�1 =
1
2

Z

RN

J(z)z2N dz and J"(s) =
1
"N

J(
s
"
).

Let us mention that results in this direction, with the presence of a gradient term of convection
type can be found, for instance, in Ignat and Rossi (2007): in such a case the equation is the sum of
two terms, one corresponding to the di↵usion one, the other to the convection term.

In general, we consider nonlocal problems of the type

ut(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

G
�

u(y, t)� u(x, t)
�

dy, (4.6)

where G : R ! R is a suitable continuous function. For instance, if G ⌘ 1, then we recover problem
(4.4). Let us mention the case G(s) = |s|p�2, with p � 2 has been treated in Andreu et al. (2008/09)
where it is proved that solutions to the rescaled nonlocal problem converge to solutions of the Dirichilet
problem for the p–Laplacian evolution equation.

On the contrary, the kind of kernels G we consider does not have the same structure of the previous
ones, since they are bounded and do not satisfy any symmetry assumptions (neither odd nor even).

With this background, it is not surprising that problem (4.2) can be approximated by nonlocal
equations. The question is to identify what kind of nonlocal equation approximates, under rescaling,
problem (4.2). At first glance, one could think that a good approximation for (4.2) might be a nonlocal
equation such as

ut(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

dy + µ

Z

RN

J(x� y)|u(y, t)� u(x, t)|2 dy,
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that is, taking G(s) = 1+µs in (4.6). We explicitly point out that this is an unbounded function that
satisfies G(0) = 1 and G0(0) = µ (compare with condition (G) below). Anyway, for our approach the
lack of boundedness of G leads to an obstacle for proving the existence of a solution to (4.6) via a fixed
point argument. By the other hand, we recall that one of the main tools to deal with problem (4.2)
is the so–called Hopf–Cole change of unknown which is defined by w(x, t) = eµu(x,t). This transforms
every classical solution to (4.2) into a classical solution to problem

(

wt(x, t) = �w(x, t) in ⌦⇥ (0, T ) ,

w(x, 0) = eµu0(x) in⌦ ,

for a smooth enough datum u
0

. However, the same kind of di�culty are found if one try to reproduce
the Hopf–Cole transformation and try to approximate the solution of (4.2) by something of the form

ut(x, t) =

Z

RN

J(x� y)
⇣

eµu(y,t) � eµu(x,t)
⌘

dy .

4.1.4 Main results

To conclude this introduction we want to state the most relevant results of our work. In order to not
enter in technicalities, let us fix a family of kernels Gµ that are the easiest (not trivial) example we
can consider: for µ 2 R let

Gµ(s) = 1 +
µs

2(1 + µ2s2)
, s 2 R , µ 2 R,

and the corresponding family of nonlocal Dirichlet problems
8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

Gµ

�

u(y, t)� u(x, t)
�

dy in⌦ ⇥ (0, T ) ,

u(x, 0) = u
0

(x) in ⌦,

u(x, t) = h(x, t) in (RN \ ⌦)⇥ (0, T ) .
(4.7)

with ⌦ a bounded domain and u
0

and h smooth enough.

After have proved the existence, uniqueness (see Theorem 4.2.3) and a Comparison Principle (see
Theorem 4.2.5) for solutions of (4.7), we face the problem of rescaled kernels.

The result we prove, in this model case, reads like this.

Let u be the unique smooth solution to (4.2), with suitable initial data u
0

and boundary condition
u(x, t) = h(x, t) on @⌦ ⇥ (0, T ). Then there exists a family of functions {u"}, " > 0, such that u"

solves the approximating nonlocal problem

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u"
t (x, t) =

C
"2

Z

⌦

J

"

J"(x� y)



�

u"(y, t)� u"(x, t)
�

+
µ
2

�

u"(y, t)� u"(x, t)
�

2

1 + µ2

�

u"(y, t)� u"(x, t)
�

2

�

dy,

in⌦ ⇥ (0, T ),

u"(x, 0) = u
0

(x), in⌦ ,

u"(x, t) = h(x, t), in (⌦J
"

\⌦)⇥ (0, T ),

with C a suitable constant, ⌦J
"

= ⌦+ supp J" and the family {u"} satisfies

lim
"!0

sup
t2[0,T ]

�

�

�

u"(x, t)� u(x, t)
�

�

�

L1
(⌦)

= 0 .
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The same kind of results (i.e. existence, uniqueness and convergence for a suitable rescaled kernel
to a solution of a local problem) are also proved for the corresponding Cauchy problem associated
(i.e., ⌦= RN ).

In addition, we deal with the asymptotic behavior of the solutions of problem (4.1). Concretely,
we have two kind of results: if ⌦ is a bounded domain of RN , we prove that the solutions of (4.7)
converge uniformly to the stationary one. On the other hand, if ⌦= RN , we prove that the L2-norm
of the solution has a suitable decay in time, depending on the nature (absorption or reaction) of the
kernel (see for more details Theorems 4.2.16 and 4.2.17, respectively).

Plan of the paper

Section 2 is devoted to show the precise statements of the main results. Preliminaries are contained
in Section 3. Section 4 deals with the Dirichlet problem in a bounded domain, while the results
concerning the Cauchy problem can be found in Section 5.

4.2 Statement of the results

This section is devoted to the statement of the main results we prove in the present paper.
Let us consider the following equation:

ut(x, t) =

Z

RN

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, (4.8)

where J : RN ! R is a nonnegative radial symmetric function such that

J 2 Cc(Rn),

Z

RN

J(z) dz = 1 and C(J) :=

Z

RN

J(z)z2Ndz, z = (z
1

, z
2

, . . . , zN ) (J)

and where, here and throughout the paper, we denote u(y;x, t) := u(y, t)� u(x, t).
As far as the function G is concerned, we assume that G : RN ⇥ R ! R is a nonnegative

Carathéodory function (namely, G(·, s) is measurable for every s 2 R and G(x, ·) is continuous for
almost every x 2 RN ) satisfying

9 ↵
2

� ↵
1

> 0 : ↵
1

 G(x, s)s� G(x,� )�
s� �

 ↵
2

, 8s,� 2 R s 6= � , and for a.e. x 2 RN (G)

Let us first point out that the above condition implies that G is a positive bounded function, since
taking � = 0 in (G), we get

0 < ↵
1

 G(x, s)  ↵
2

, for any s 2 R and for a.e. x 2 RN .

Moreove observe that the above condition relies to be a sort of uniform ellipticity for the operator,
while (G) corresponds to a strong monotonicity.

Further remarks about the condition on G are addressed to Section 3.

Anyway, let us stress again that, in contrast with all the known results about nonlocal equation
of the above type, in our case we do not require any symmetry (neither odd nor even) assumption to
G.

The prototype of G we have in mind (we will come back on this example later) is the following
one:

Gµ(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
, x 2 ⌦, s 2 R ,

where µ : ⌦! R stands for a measurable function.
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4.2.1 Dirichlet problem

The first kind of results we want to prove deals with the existence and uniqueness of solutions of
a nonlocal Dirichlet boundary value problem. More precisely, consider the following problem in a
bounded domain⌦ ⇢ RN , N � 1.

8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

RN

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, in⌦ ⇥ (0, T )

u(x, t) = h(x, t), in (RN \ ⌦)⇥ (0, T ),

u(x, 0) = u
0

(x), in⌦ ,

with h 2 L1

�

(RN \ ⌦)⇥ (0,1)
�

and u
0

2 L1(⌦).

Let us first observe that the integral expression vanishes outside of⌦ J = ⌦ + supp(J). In this
way, h is only needed to be fixed, in fact, in⌦ J \ ⌦ and we can rewrite the above problem as

8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

⌦

J

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, in⌦ ⇥ (0, T ),

u(x, t) = h(x, t), in (⌦J \ ⌦)⇥ (0, T ),

u(x, 0) = u
0

(x), in⌦ ,

(P )

where T > 0 may be finite or +1.

Due to the aim of the paper, we give now two definitions of solution.

Definition 4.2.1 Assume that J and G satisfy (J) and (G), respectively.
For h(x, t) 2 L1((⌦J \ ⌦) ⇥ (0, T )) and u

0

(x) 2 L1(⌦), we define a weak solution of problem (P ) a
function u 2 C([0, T );L1(⌦)) such that:

u(x, t) =

Z t

0

Z

⌦

J

J(x� y)u(y;x,⌧ )G(x, u(y;x,⌧ )) dy d⌧ + u
0

(x), for a.e. x 2 ⌦, t 2 (0, T ), (4.9)

u(y, t) = h(y, t), for a.e. y 2 ⌦J \ ⌦ and t 2 (0, T )

lim
t!0

+
ku(x, t)� u

0

(x)kL1
(⌦)

= 0 .

Moreover, if h(x, t) 2 C((⌦J \ ⌦) ⇥ (0, T )) and u
0

(x) 2 C(⌦), we define a regular solution of
problem (P ) as a function u 2 C([0,1); C(⌦)) such that:

u(x, t) =

Z t

0

Z

⌦

J

J(x� y)u(y;x,⌧ )G(x, u(y;x,⌧ )) dy d⌧ + u
0

(x), for any x 2 ⌦, t 2 (0, T ),

u(y, t) = h(y, t) for any y 2 ⌦J \ ⌦ and t 2 (0, T )

lim
t!0

+
ku(x, t)� u

0

(x)kC(⌦)

= 0 .

Some more remarks about the meaning of weak and regular solutions are in order to be given.

Remark 4.2.2

i) Observe that, in addition to the di↵erent smoothness of the boundary condition and/or the
initial datum, the main di↵erence lies on the prescription of data on @⌦. Indeed, for weak
solutions, h is prescribed in (⌦J \ ⌦) ⇥ (0, T ) and u

0

in ⌦, while for regular solutions, h is
prescribed in (⌦J \ ⌦)⇥ (0, T ) and u

0

in ⌦.

ii) As already noticed in Chasseigne et al. (2006) (in a di↵erent context) the boundary conditions
cannot be meant in a classical way, i.e. it is not true that the solutions of problem (P ) pointwise
coincide with the prescribed boundary data h(x, t). This is due to the fact that the value at any
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point (x, t) 2 @⌦⇥ (0, T ) depends both on the values of u inside ⌦⇥ [0, T ] and on the boundary
datum h(x, t), since

u(x, t) =

Z t

0

Z

⌦\suppJ

J(x� y)u(y;x,⌧ ) G
�

x, u(y,⌧ )� u(x,⌧ )
�

dy d⌧

+

Z t

0

Z

⌦

c\suppJ

J(x� y)
�

h(y,⌧ )� u(x,⌧ )
�

G
�

x, h(y,⌧ )� u(x,⌧ )
�

dy d⌧ + u
0

(x) .

Consequently, in contrast with the local case, the equation is solved up to the boundary, depend-
ing, near @⌦, also of the prescribed boundary condition.

iii) Let us stress that the regularity required in the definition of weak solutions is the less restrictive
in order to give sense to the formulation and to the boundary and initial conditions. Anyway
from (4.9) we deduce that the time derivative ut(x, t) of u also belongs to C((0,1);L1(⌦)).

Let us also point out that the weak solutions framework is the more natural one in order to
prove the existence of a solution. Indeed we only require an L1 regularity to prove the existence
of a solution.

Finally we want to underline that the nonlocal operator involved in such equation does not have
the regularizing e↵ect that is typical of the Laplacian, but leave unchanged the regularity of the
initial and boundary data.

Our existence result is the following.

Theorem 4.2.3 [Existence] Consider problem (P ) and suppose that (J) and (G) are in force. Then:

i) For any u
0

2 L1(⌦) and h 2 L1((⌦J \ ⌦)⇥ (0, T )) there exists a unique weak solution;

ii) For any u
0

2 C(⌦) and h 2 C((⌦J \ ⌦) ⇥ [0, T )) there exists a unique regular solution and
moreover its time derivative belongs to C(⌦⇥ (0, T )).

Once we have deduced the existence of a solution, one important tool is to compare two solutions,
or, more generally a sub and a supersolution. Here we recall what we mean by those concepts in our
setting.

Definition 4.2.4 A function u 2 C(⌦⇥ [0, T ]) is a regular subsolution to problem (P ) if it satisfies
ut 2 C(⌦⇥ (0, T )) and

8

>

>

>

<

>

>

>

:

ut(x, t) 
Z

⌦

J

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, in ⌦⇥ (0, T ),

u(x, t)  h(x, t), in (⌦J \ ⌦)⇥ (0, T ),

u(x, 0)  u
0

(x), in ⌦,

(4.10)

with u
0

(x) 2 C(⌦) and h(x, t) 2 C((⌦J \ ⌦)⇥ (0, T )).
As usual, a regular supersolution is defined analogously by replacing “” with “�”. Clearly, a regular
solution is both a regular subsolution and a regular supersolution.

Next, we state our comparison principle.

Theorem 4.2.5 [Comparison Principle] Let u an v be a regular subsolution and a regular supersolu-
tion of problem (P ), respectively, with boundary data h

1

(x, t) and h
2

(x, t) and initial data u
0

(x) and
v
0

(x), respectively. If h
1

(x, t)  h
2

(x, t) in ⌦J \ ⌦ and u
0

(x)  v
0

(x) in ⌦, then u  v in ⌦⇥ [0, T ].
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Remark 4.2.6 The existence, uniqueness and comparison principle are also true relaxing the hy-
potheses on the kernel J(x � y) by considering a more general one of the form K : RN ⇥ RN ! R+

with compact support in ⌦⇥B(0, ⇢), with ⇢ > 0 such that

0 < sup
y2B(0,⇢)

K(x, y) = R(x) 2 L1(⌦).

The next result we want to prove relates solutions of local and nonlocal equations. In order to
do it, let us fix a Hölder continuous function µ : ⌦! R with exponent ↵ 2 (0, 1), and consider

Gµ(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
, (x, s) 2 ⌦⇥ R. (4.11)

The local problem we are interested in is the following
8

>

>

<

>

>

:

vt(x, t) = �v(x, t) + µ(x)|rv(x, t)|2 in⌦ ⇥ (0, T ),

v(x, t) = h
0

(x, t) on @⌦⇥ (0, T ),

v(x, 0) = v
0

(x) in ⌦.

(4.12)

Observe that if for the same 0 < ↵ < 1 we have that @⌦ 2 C2+↵, v
0

2 C1+↵(⌦), h 2 C1+↵,1+↵/2(@⌦⇥
[0, T ]) with v

0

and h compatible (namely, they are globally a C1+↵,1+↵/2 function of the parabolic
boundary of the cylinder) and the equation holds up to the boundary, then Theorem 6.1 of Chapter
V in Ladyzenskaja et al. (1968) provides a solution v 2 C2+↵,1+↵/2(⌦⇥ (0, T ]).

Such a result becomes trivial if we assume µ(x) = µ 2 R, after the Hopf–Cole transformation,
since solutions of the heat equation satisfy the required regularity.

We set here the definition of classical solution.

Definition 4.2.7 We say that v 2 C(⌦ ⇥ [0, T ]) \ C2+↵,1+↵/2(⌦ ⇥ (0, T )) is a classical solution for
the Dirichlet problem (4.12) if it satisfies both the equations and the boundary and initial conditions
in a pointwise sense.

Consider now, for any " > 0 the rescaling nonlocal problem

8

>

>

>

<

>

>

>

:

u"
t (x, t) =

C(x)
"2

Z

⌦

J

"

J"(x� y)u"(y;x, t)Gµ(x, u
"(y;x, t))dy in ⌦⇥ (0, T ),

u"(x, t) = h(x, t) in ( ⌦J
"

\ ⌦)⇥ (0, T ),

u"(x, 0) = u
0

(x) in ⌦,

(4.13)

where Gµ defined in (4.11) and C(x), u
0

and h are suitable measurable functions.

Here we state our converging result.

Theorem 4.2.8 Let ⌦ be a C2+↵, with ↵ 2 (0, 1), bounded domain of RN , N � 1, and let v
be a classical solution of the quasilinear problem (4.12) with h 2 C1+↵ (⌦J

"

\⌦⇥ (0, T ]) such that
h
�

�

@⌦⇥(0,T )

= h
0

(x, t) and v
0

2 C1+↵(⌦). Assume that J satisfies (J) and that for a.e. x in ⌦, G(x, s)
is a C1+↵ function with respect to the s variable such that that (G) holds true. For any " > 0, let u"

denote the solution to
8

>

>

>

<

>

>

>

:

u"
t (x, t) =

C(x)
"2

Z

⌦

J

"

J"(x� y)u"(y;x, t)G(x, u"(y;x, t))dy in ⌦⇥ (0, T ),

u"(x, t) = h(x, t) in (⌦J
"

\ ⌦)⇥ (0, T ),

u"(x, 0) = v
0

(x) in ⌦,

(4.14)
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with C(x)�1 = 1

2

C(J)G(x, 0) and µ(x) =
2G0

s(x, 0)
G(x, 0) for any a.e. x 2 ⌦. Then we have

lim
"!0

sup
t2[0,T ]

�

�

�

u"(x, t)� v(x, t)
�

�

�

L1
(⌦)

= 0 .

Let us stress that the same kind of result (as well as the existence, uniqueness and Comparison
Principle one) can be proved in a more general framework. First of all, we might consider the same
equation adding on the right hand side a (smooth enough) function. On the other hand, a more
general kernel, that depends also on y could be considered (see Remark 4.4.3 for some more details).
We decided to skip these generalizations in order to keep the paper more readable.

The last type of results of this section deals with the asymptotic behavior of the solutions to
(PK). More precisely we prove, as it is usual for parabolic equations, that a solution of problem (PK)
converges, for large times, to a stationary solution of the same problem.

In order to avoid technicalities, we assume that the lateral condition is homogeneous, i.e. h(x, t) ⌘
0.

Here we state our result that asserts such a convergence, even if, under some additional hypotheses,
we provide results on the rate of convergence (see Remark 4.4.6 for more details).

Theorem 4.2.9 For every 0  u
0

2 C
0

(⌦), the regular solution to problem
8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

⌦

J

J(x� y)u(y;x, t) G(x, u(y;x, t)) dy in ⌦⇥ (0,+1),

u(x, t) = 0, in ⌦J \ ⌦⇥ (0,+1), t > 0,

u(x, 0) = u
0

(x) in ⌦,

(4.15)

satisfies
lim
t!1

u(x, t) = 0 uniformly in ⌦ .

Remark 4.2.10 We want to stress that the hypothesis u
0

� 0 is not, in fact, necessary, but we
assume it just to let the proof easier.

Let us just point out that we have two special cases whose asymptotic behavior is well known in
the local setting. If we assume that

9� > 0 : G(x, s)s  �s, 8s 2 R, for a.e. x 2 RN , (4.16)

it corresponds to the absorption case, i.e. the case in which we have (at least) the same decay
estimates as if G ⌘ 1. In fact we can deduce (see Remark 4.4.6) that in the absorption case the rate
of convergence at 0 is of exponential type. On the other hand, if

9� > 0 : G(x, s)s � �s, 8s 2 R, for a.e. x 2 RN . (4.17)

the result is more surprising since it correspond to the reaction case. In this framework it is crucial
to deal with smooth solutions, since we exploit, in the proof, the comparison principle.

4.2.2 Cauchy problem

This section deals with the Cauchy Problem related to (4.8), that is
8

<

:

ut(x, t)=

Z

RN

J(x� y)u(y;x, t) G(x, u(y;x, t)) dy in RN ⇥ (0, T ),

u(x, 0) = u
0

(x) in RN ,
(C)

with G as in (G), J as in (J) and u
0

2 C(RN ). First let us give the notion of solution.
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Definition 4.2.11 Given u
0

2 C(RN ) we define a solution of problem (C) as a function u 2
C
�

[0, T ); C(RN )
�

such that it satisfies

u(x, t) =

Z t

0

Z

RN

J(x� y)u(y;x,⌧ )G(x, u(y;x,⌧ ))dyd⌧ + u
0

(x) in RN ⇥ (0, T ).

Consequently, due to the integral expression above, u 2 C1

�

(0, T ); C(RN )
�

.

The first result we want to present in this framework deals with the existence of a bounded
solution.

Theorem 4.2.12 [Existence] For every continuous and bounded initial data u
0

there exists a unique
solution u 2 C

�

[0, T ); C(RN ) \ L1(RN )
�

of problem (C).

We continue this section proving the comparison principle for our problem. For this purpose, we
first set the notion of sub and supersolution.

Definition 4.2.13 A function u 2 C0

�

[0, T ), C(RN )
�

\C1

�

(0, T ), C(RN )
�

is a subsolution of problem
(C) if it satisfies

8

>

<

>

:

ut(x, t)
Z

RN

J(x� y)u(y;x, t)G(x, u(y;x, t))dy, in RN ⇥ (0, T ),

u(x, 0)  u
0

(x), in RN .

As usual, a supersolution is defined analogously by replacing “  ” by “ � ”.

Next we state the comparison principle in this framework.

Theorem 4.2.14 [Comparison Principle] Let u, v be a subsolution and supersolution respectively of
problem (C) with initial data u

0

2 C(RN ) \ L1(RN ) and v
0

2 C(RN ) \ L1(RN ), respectively, such
that u

0

 v
0

in RN . Then u  v in RN ⇥ (0, T ).

Now, we prove that given a classical solution (i.e., v 2 C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

) of the parabolic
problem with a quadratic gradient term of the form

(

vt(x, t) = �v(x, t) + µ(x)|rv(x, t)|2 in RN ⇥ (0, T )

v(x, 0) = v
0

(x) in RN ,
(4.18)

with v
0

2 C(RN ) \ L1(RN ) and µ(x) 2 C↵
�

RN
�

\ L1(RN ), it can be approximated by a solution of
the nonlocal problem

8

<

:

u"
t =

C(x)
"2

Z

RN

J"(x� y)u"(y;x, t)G(x, u"(y;x, t))dy in RN ⇥ (0, T ),

u"(x, 0) = v
0

(x), in RN ,
(4.19)

such that
2G0

s(x, 0)
G(x, 0) = µ(x). As usual C(x)�1 = 1

2

C(J)G(x, 0) 6= 0 and J"(s) = 1

"N
J( s

"
).

Theorem 4.2.15 Let v be a classical solution of quasilinear di↵erential equation (4.18). Let, for a
given " > 0, u" be the solution to (4.19), with the same initial datum v

0

2 C(RN ) \ L1(RN ). Then,
we have

lim
"!0

sup
t2[0,T ]

�

�u"(·, t)� v(·, t)
�

�

L1
(RN

)

= 0 .
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Finally, we study the asymptotic behavior of the solutions associated to the Cauchy problem.
Our result depends on the nature of G, i.e. if it is of absorption or reaction type.

Summarizing, we obtain the following results:

Theorem 4.2.16 For N � 1, let u be a solution of Cauchy problem (C) satisfying (4.16) and positive
initial datum u

0

2 L1(RN )\L1(RN )\C(RN ). Then there exists a positive constant C = C(J,N,�, q)
such that

ku(·, t)kLq

(RN

)

 Cku
0

kL1
(RN

)

t
�N

2

⇣
1� 1

q

⌘

, for any q 2 [1,1),

for t su�ciently large.

Theorem 4.2.17 For N � 1, let u be a solution of of Cauchy problem (C) with G ⌘ Gµ, 0  µ 2
L1(RN ) and positive initial datum u

0

2 L1(RN ) \ L1(RN ) \ C(RN ) satisfying

ku
0

kL1
(RN

)

kµkL1
(RN

)

< 1 . (4.20)

Then,

ku(·, t)k2L2
(RN

)

 C̃ku
0

kL1
(RN

)

t�
N

2 ,

for some C̃ = C̃(kµkL1
(RN

)

, ku
0

kL1
(RN

)

, N, J) > 0 and for t su�ciently large.

4.3 Preliminaries

Notation. Throughout this paper, we always use the following notation:
we denote in a short way u(y;x, t) = u(y, t) � u(x, t). Moreover the time variable will always get
values between 0 and T , with T > 0. As far as the kernel J is concerned, we assume that it is defined
as in (J) and such that G satisfies (G) and C = 2C(J)�1, J"(s) = 1

"N
J( s

"
).

As far as the the function G(x, s) is concerned, we observe that, for a function G di↵erentiable
with respect to s we have, thanks to the Mean Value Theorem, that

↵
1

 G0
s(x, s)s+ G(x, s)  ↵

2

, for any s 2 R a.e. in x 2 RN . (4.21)

Moreover, if G is di↵erentiable with respect to s, condition (G) is equivalent to define  : RN ⇥
R⇥ R ! R with

0 < ↵
1

  (x, s,� )  ↵
2

for a.e. x 2 ⌦, 8s,� 2 R,
such that

 (x, s,� ) =

8

<

:

G(x, s)s� G(x,� )�
s� �

if s 6= � ,

G0
s(x, s)s+ G(x, s) if s = �.

(4.22)

We also remark that, in particular, condition (G) implies G(x, 0) 6= 0 for any x 2 RN .

Here, we state the following technical result which allow us to see that the function defined in
(4.11) satisfies the basic condition (G).

Proposition 4.3.1 Let p, q and k be real numbers, then the following properties hold true

3
4
 1 +

kp
2(1 + k2p2)

 5
4
,

p



1 +
kp

2(1 + k2p2)

�

� q



1 +
kq

2(1 + k2q2)

�

= (p� q)



1 +
k(p+ q)

2(1 + k2p2)(1 + k2q2)

�

,
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1� 3
p
3

16
 1 +

k(p+ q)
2(1 + k2p2)(1 + k2q2)

 1 +
3
p
3

16
.

Moreover, for any measurable function µ : RN ! R, the function defined by Gµ(x, s) = 1+
µ(x)s

2(1 + µ(x)2s2)
satisfies the following conditions

(i)
⇣

1� 3

p
3

16

⌘

(s� �)  Gµ(x, s)s� Gµ(x,� )� 
⇣

1 + 3

p
3

16

⌘

(s� �), for s > �, x 2 RN ;

(ii) if µ � 0, then Gµ(x, s)s  s, for any (x, s) 2 RN ⇥ R;
(iii) if µ  0 then Gµ(x, s)s � s, for any (x, s) 2 RN ⇥ R.

Proof: The first two inequalities are straightforward while for the third one we just remark that
the function given by

f(x, y) =
|x|+ |y|

(1 + x2)(1 + y2)

attains its maximum 3

p
3

8

at the point ( 1
3

, 1

3

).
Now, (i) is a consequence of the previous inequalities. Conditions (ii) and (iii) follow by the fact that

(

3

4

 Gµ(x, s)  1, if (x, s) 2 RN ⇥ [0,1),

1  Gµ(x, s)  5

4

, if (x, s) 2 RN ⇥ (�1, 0],

for µ(x)  0, and
(

1  Gµ(x, s)  5

4

, if (x, s) 2 RN ⇥ [0,1),

3

4

 Gµ(x, s)  1, if (x, s) 2 RN ⇥ (�1, 0],

for µ(x) � 0. ⇤

Remark 4.3.2 Let us stress that in the above result we only assume that µ(x) is measurable, without
any hypotheses on its regularity.

Lemma 4.3.3 Let q � 1, there exists c(q) > 0 such that

(a� b)(aq�1 � bq�1) � c(q) (a
q

2 � b
q

2 )2, for any a, b � 0. (4.23)

Proof: Without loss of generality we assume a > b. Therefore, (4.23) is equivalent to prove that the
function

F (✓) =
(1� ✓)(1� ✓q�1)

(1� ✓
q

2 )2
✓ 2 [0, 1),

is bounded below by a 0 < c(q), being ✓ = b/a.
The result just follows by computing the derivative of F and noticing that it is decreasing. Hence

the minimum of F is achieved at ✓ = 1, and lim
✓!1

�
F (✓) = 4

q � 1
q2

. ⇤

4.4 Proofs of results about Dirichlet Problem

We start by proving the existence result.
Proof:[Proof of Theorem 4.2.3] i) Fixed an arbitrary T > 0, we set the Banach space XT =

C([0, T ];L1(⌦)) endowed with norm

|||v||| = max
0tT

e�Mtkv(·, t)kL1
(⌦)

, (4.24)

for some M � C̃ = ↵
2

kJkL1
(⌦)

(|⌦|+ |supp(J)|).
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Let T : XT ! XT be the operator defined by

T (v)(x, t) =

Z t

0

Z

⌦

J

J(x� y)v(y;x,⌧ )G(x, v(y;x,⌧ )) dy d⌧ + u
0

(x),

with v(y, t) = h(y, t) for y 2 ⌦J \⌦. Then, we prove the existence and uniqueness of solutions of (P )
via the standard Banach contraction principle applied to the operator T . In this way, using Fubini’s
Theorem and since G is bounded, we obtain

kT (v(·, t))kL1
(⌦)

 ku
0

kL1
(⌦)

+ ↵
2

Z t

0

Z

⌦

Z

⌦

J

J(x� y)|v(y;x,⌧ )| dy dx d⌧

 ku
0

kL1
(⌦)

+ ↵
2

Z t

0

✓

Z

⌦

Z

⌦

J

J(x� y)|v(y,⌧ )| dy dx +

Z

⌦

Z

⌦

J

J(x� y)|v(x,⌧ )| dy dx
◆

d⌧

 ku
0

kL1
(⌦)

+
C̃

1

M

⇣

eMt � 1
⌘

|||v|||+ C̃
2

,

(4.25)

where C̃
1

= ↵
2

kJkL1
(RN

)

(|⌦|+ |supp(J)|) and C̃
2

= ↵
2

kJkL1
(RN

)

|⌦| khkL1
((⌦

J

\⌦)⇥(0,1))

. There-
fore

|||T (v)||| max
0tT

✓

e�Mt(ku
0

kL1
(⌦)

+ C̃
2

) +
C̃

1

M

⇣

1� e�Mt
⌘

|||v|||
◆

 ku
0

kL1
(⌦)

+ C̃
2

+
C̃

1

M
|||v||| .

Hence, T maps XT into itself. Note that all the involved constants do not depend on the value T .
Now, by virtue of (G), we can assert that for every w, z 2 XT

�

�(T (w)� T (z))(x, t)
�

� 
Z t

0

Z

⌦

J

J(x� y)
�

�w(y;x,⌧ )G(x,w(y;x,⌧ ))� z(y;x,⌧ )G(x, z(y;x,⌧ ))
�

� dy d⌧

 ↵
2

Z t

0

Z

⌦

J

J(x� y) |w(y;x,⌧ )� z(y;x,⌧ )| dy d⌧.

Therefore, arguing as in (4.25), we get

kT (w)� T (z)kL1
(⌦)

 C̃
1

M

⇣

eMt � 1
⌘

|||w � z||| .

Thus, since M > C̃, we get
|||T (w)� T (z)||| #|||w � z||| ,

with 0 < # < 1. Hence T is a contraction and by the Banach’s Fixed Point Theorem there exists
a unique u 2 XT such that T (u) = u, i.e., consequently we get local existence and uniqueness of
problem (P ) for 0  t  T . Moreover, since this argument is independent of the value T , we obtain
a unique solution u 2 C([0,1);L1(⌦)) of problem (P ).

ii) For the second part it is su�cient to change the definition of ||| · ||| in (4.24), replacing L1(⌦)
with C(⌦). The regularity of ut easily follows by using the equation solved by u. ⇤

Next we deal with the proof of the comparison principle.

Proof:[Proof of Theorem 4.2.5] We denote by w = u � v. Obviously w 2 C(⌦ ⇥ [0, T ]), wt 2
C(⌦⇥ (0, T )) and it satisfies

8

>

>

>

<

>

>

>

:

wt(x, t) 
Z

⌦

J

J(x� y)(w(y, t)� w(x, t)) (w(y;x, t)) dy, in ⌦⇥ (0, T ),

w(x, t)  0, in⌦ J \ ⌦⇥ (0, T ),

w(x, 0)  0, in ⌦,
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where  is the function defined in (4.22).
Assume by contradiction that w(x, t) is positive at some point (x̃, t̃) that, without loss of generality,

we can assume that belongs to⌦ ⇥ (0, T ]. Thus, by the continuity of u and v, there exists a � > 0
such that w(x̃, t̃) � �t̃ > 0. Let us denote by (x

0

, t
0

) the maximum point of w(x, t)� �t which is, by
construction, positive. Consequently being ut continuous in⌦ ⇥ (0, T ), we have that

wt(x0

, t
0

)� � � 0 .

On the other hand, plugging it into the equation in (4.10), we get

wt(x0

, t
0

) 
Z

⌦

J

J(x
0

� y)
�

w(y, t
0

)� w(x
0

, t
0

)
�

 
�

w(y, t
0

)� w(x
0

, t
0

)
�

dy

=

Z

⌦

J(x
0

� y)
�

(w(y, t
0

)� �t
0

)� (w(x
0

, t
0

)� �t
0

)
�

 
�

(w(y, t
0

)� �t
0

)� (w(x
0

, t
0

)� �t
0

)
�

dy

+

Z

⌦

J

\⌦
J(x

0

� y)
�

(w(y, t
0

)� �t
0

)� (w(x
0

, t
0

)� �t
0

)
�

 
�

(w(y, t
0

)� �t
0

)� (w(x
0

, t
0

)� �t
0

)
�

dy ,

and the last two integrals are nonpositive. Indeed as far as the first one is concerned, we observe
that (x

0

, t
0

) is a maximum point, while  is positive; moreover outside ⌦ we use that the boundary
condition is negative and that w(x

0

, t
0

) � �t
0

> 0, as well as the positivity of  . Hence we get a
contradiction. ⇤

Our goal is now to get a proof of Theorem 4.2.8. Here, we start with a preliminary Lemma.

Lemma 4.4.1 Let u 2 C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

, G(x, s) a C1+↵ function with respect to variable s
such that G(x, 0) 6= 0 for a.e. x 2 ⌦, and let L" be the following operator

L"(u(x, t)) =
C(x)
"2

Z

RN

J"(x� y)u(y;x, t)G(x, u(y;x, t)) dy, (4.26)

where 1

C(x)
= 1

2

C(J) G(x, 0). Then, 9 c = c(T ) > 0 such that, 8" > 0

sup
t2[0,T ]

�

�

�

L"(u(x, t))��u(x, t)� µ(x)|ru(x, t)|2
�

�

�

L1
(⌦)

 c "↵

where µ(x) =
2G0

s(x, 0)
G(x, 0) .

Remark 4.4.2 Observe that the integral expression above vanishes outside of ⌦J
"

= ⌦ + " supp(J).
In this way, h is only needed to be prescribed in ⌦J

"

\ ⌦. Observe also that, thanks to the hypothesis
of Theorem 4.2.8 we use, in the following, that

h(x, t) = h
0

(x, t) +O(") in ⌦ \ ⌦J
"

.

Proof: In order to compute L"(u(x, t)) we make the change of variables y = x� "z, and we get

L"(u(x, t)) =
C(x)
"2

Z

RN

J(z)u(x� "z;x, t)G(x, u(x� "z;x, t))dz. (4.27)

Moreover by Taylor formula we have that G(x,� ) = G(x, 0) + G0
s(x, 0)� +O(�1+↵), and

u(x� "z;x, t) = �"
X

i

@u(x, t)
@xi

zi +
"2

2

X

i,j

@2u(x, t)
@xi@xj

zizj +O
�

"2+↵� ,

Consequently

L"(u(x, t)) = S
1

(x, t) + S
2

(x, t) + S
3

(x, t) (4.28)
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being

S
1

(x, t) =
C(x)G(x, 0)

"2

Z

RN

J(z)u(x� "z;x, t) dz,

S
2

(x, t) =
C(x)G0

s(x, 0)
"2

Z

RN

J(z)u(x� "z;x, t)2 dz,

S
3

(x, t) =
C(x)
"2

Z

RN

J(z)u(x� "z;x, t)2+↵ dz = O("↵).

First, we deal with S
1

(x, t) and we obtain

S
1

(x, t) = �C
"

X

i

@u(x, t)
@xi

Z

RN

J(z)zidz + C(J)�1

X

i,j

@2u(x, t)
@xi@xj

Z

RN

J(z)zizj +O ("↵)

=
X

i,j

@2u(x, t)
@xi@xj

+O ("↵) , (4.29)

using in the last equality that J is radially symmetric, that is,
R

RN

J(z)zidz = 0 and

Z

RN

J(z)zizj dz = 0 if i 6= j .

In order to compute S
2

(x, t), using the expansion of u(x� "z;x, t) up to the first order, we get

S
2

(x, t) =
C(x)G0

s(x, 0)
"2

Z

RN

J(z)

 

�"
X

i

@u(x, t)
@xi

zi +O
�

"1+↵�

!

2

dz

= C(x)G0
s(x, 0)

X

i,j

@u(x, t)
@xi

@u(x, t)
@xj

Z

RN

J(z)zizjdz +O ("↵)

=
2G0

s(x, 0)
G(x, 0)

X

i

✓

@u(x, t)
@xi

◆

2

+O ("↵) ,

(4.30)

using again, in the last equality, that J is radially symmetric. Finally, setting u(x� "z;x, t) = O("),
we obtain that S

3

(x, t) = O ("↵) and gathering together (4.28) with (4.29) and (4.30), we deduce that
(4.27) becomes

L"(u(x, t)) =� u(x, t) + µ(x)|ru(x, t)|2 +O ("↵)

concluding the proof. ⇤

Remark 4.4.3 Arguing as the in the proof of the above Lemma, we can state the following assertion:
the operator defined as

L̃"(u(x, t)) =
C(x)
"2

Z

RN

J"(x� y)u(y;x, t)G(y, u(y;x, t)) dy,

converges uniformly in [0, T ]⇥ ⌦, as "! 0, to the operator

�u(x, t) +ry⌘(x, 0)ru(x, t) + ⌘0s(x, 0)|ru(x, t)|2,

being ⌘(x, s) = logG(x, s)2. Therefore, the role of the variables is not symmetric.

Remark 4.4.4 Let us recall that given µ : RN ! R, then Gµ(x, s) defined in (4.11) satisfies
2G0

s

(x,0)

G(x,0)
=

µ(x), for any x 2 RN .
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Now, we prove the main result of this section. That is, classical solutions of (4.12) can be
approximated by solutions of problem (4.13) which in a general setting reads as follows,

Proof:[Proof of Theorem 4.2.8] Let ṽ be a C2+↵,1+↵/2
�

RN ⇥ [0, T ]
�

extension of v, the solution

to (4.12). Denote by h(x, t) = ṽ(x, t) for any (x, t) 2 (RN\⌦) ⇥ (0, T ]. Then h is smooth and
h(x, t) = h

0

(x, t) if x 2 @⌦ and we get

h(x, t) = h
0

(x, t) +O("), for x 2 ⌦J
"

\ ⌦. (4.31)

Observe that ṽ verifies
8

>

>

<

>

>

:

ṽt(x, t) = �ṽ(x, t) + µ(x)|rṽ(x, t)|2 in⌦ ,

ṽ(x, t) = h(x, t) in ( ⌦J
"

\ ⌦)⇥ (0, T ),

ṽ(x, 0) = v
0

(x) in ⌦.

Theorem 4.2.3 asserts that, for any given " > 0, there exists a unique u" which is solution to
(4.14).

Set w" := ṽ � u", which satisfies
8

>

>

<

>

>

:

w"
t (x, t) = �ṽ(x, t) + µ(x)|rṽ(x, t)|2 � L"(u

"(x, t)) in⌦ ⇥ (0, T ),

w"(x, t) = 0 in ( ⌦J
"

\ ⌦)⇥ (0, T ),

w"(x, 0) = 0 in⌦ .

(4.32)

By using condition (4.22), we set

M"(w
"(x, t)) := L"(ṽ(x, t))� L"(u

"(x, t))

=
C(x)
"2

Z

⌦

J

"

J"(x� y) (x, ṽ(y;x, t), u"(y;x, t)) w"(y;x, t)dy.

⇤"(ṽ(x, t)) := �ṽ(x, t) + µ(x)|rṽ(x, t)|2 � L"(ṽ(x, t)).

In this way, we replace equation (4.32) by the following
8

>

>

<

>

>

:

w"
t (x, t) = ⇤"(ṽ(x, t)) +M"(w

"(x, t)), in⌦ ⇥ (0, T ),

w"(x, t) = 0 , in (⌦J
"

\ ⌦)⇥ (0, T ),

w"(x, 0) = 0, in⌦ .

(4.33)

We begin by proving that for K
1

,K
2

> 0 su�ciently large, w(x, t) = K
1

"↵t+K
2

" is a supersolution
of (4.33). Indeed, taking into account Lemma 4.4.1 and that M"(w(x, t)) = 0, we obtain

wt(x, t) = K
1

"↵ � ⇤"(ṽ(x, t)) =⇤ "(ṽ(x, t)) +M"(w(x, t)),

for x 2 ⌦, t 2 (0, T ]. Moreover, w(x, 0) > 0 and by (4.31), we have that w(x, t) � K
2

" � O("), for
x 2 ⌦J

"

\ ⌦ and t 2 (0, T ]. Consequently, w is a supersolution of (4.33).
Now, by the comparison principle stated in Theorem 4.2.5, we get

ṽ � u"  K
1

"↵t+K
2

". (4.34)

By the other hand, similar arguments applied to the case w = �w leads us to assert that w is a
subsolution of (4.33) and using again the comparison principle we obtain

ṽ � u" � �K
1

"↵t�K
2

". (4.35)

Hence, by virtue of (4.34) and (4.35)

sup
t2[0,T ]

ku"(·, t)� v(·, t)kL1
(⌦)

 K
1

"↵T +K
2

",

that vanishes as " goes to 0. ⇤
Here, we deal with the asymptotic behavior of the solution. In order to prove the main result

(i.e. Theorem 4.2.9), we start with an intermediate result.
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Theorem 4.4.5 Given � 6= 0, consider the problem
8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

⌦

J

J(x� y)G(x, u(y;x, t))u(y;x, t) dy, x 2 ⌦, t > 0,

u(x, t) = 0, x 2 ⌦J \ ⌦, t > 0.

u(x, 0) = �, x 2 ⌦.

(4.36)

Then the unique solution to problem (4.36) satisfies

lim
t!1

u(·, t) = 0 , uniformly in ⌦ . (4.37)

Proof:We assume that � > 0, the other case may similarly be proved.
Let u 2 C(⌦ ⇥ [0,1)) be the unique solution to problem (4.36) with � > 0. Since v1(x, t) = �

and v2(x, t) = 0 define a supersolution and a subsolution, respectively, it follows from the Comparison
Principle that

0  u(x, t)  � , for every in ⌦⇥ (0,+1) . (4.38)

Moreover, fixed ⌧ > 0, the function u⌧ (x, t) = u(x, t + ⌧) defines a solution with initial datum
u⌧
0

(x) = u(x,⌧ ). Thus, the basic inequality (4.38) implies 0  u⌧
0

(x)  �. Appealing again to the
Comparison Principle, it yields

0  u(x, t+ ⌧)  u(x, t) , for every in ⌦ and for any ⌧ > 0 .

Hence, we obtain that our solution is nonincreasing with respect to t. As a consequence, there exists

w(x) = lim
t!1

u(x, t) , for any x 2 ⌦ .

We have to prove that w(x) = 0 for any x 2 ⌦. Observe that this limit function satisfies

w(x) =

Z 1

0

Z

⌦

J

J(x� y)G(x, u(y;x, t))u(y;x, t) dy dt+ � , x 2 ⌦

and w�
�

⌦
J

\⌦
⌘ 0.

Fixed any x 2 ⌦, consider a sequence {tn}n2N satisfying tn ! 1. We deduce that

lim
n!1

ut(x, tn) =

Z

⌦

J

J(x� y)G(x,w(y;x))w(y;x) dy ,

and so this limit does not depend on the chosen sequence. Thus, there exists limt!1 ut(x, t) = ` and
this limit is nonpositive since our solution is nonincreasing in t. (We remark that the limit ` depends
on the considered point x.) Assume by contradiction that ` < 0. Then there exists t

0

> 0 such that

ut(x, t) <
`
2
, for any t � t

0

.

It follows that u(x, t) � u(x, t
0

) < `
2

(t � t
0

), which implies u(x, t) < � + `
2

(t � t
0

) and this quantity
is negative for t large enough. Since this contradicts (4.38), we have ` = 0. Obviously, this argument
holds for every x 2 ⌦, wherewith

lim
t!1

ut(x, t) =

Z

⌦

J

J(x� y)G(x,w(y;x))w(y;x) dy = 0 , x in⌦ .

By continuity, we conclude that
Z

⌦

J

J(x� y)G(x,w(y;x))w(y;x) dy = 0 , x in ⌦ . (4.39)
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Recalling that the function w is the limit of a nonincreasing family of continuous functions, we
deduce that w is lower semicontinuous in ⌦. So w attains its maximum in ⌦; let x

0

2 ⌦ satisfy
w(x)  w(x

0

) for any x 2 ⌦.
Since the function J is radial symmetric, it is positive in an open ball centered at the origin; we

denote its radius is r Let n be the integer part of dist(x
0

, @⌦)/r. Applying (4.39) it yields
Z

⌦

J

J(x� y)G(x,w(y)� w(x
0

))(w(y)� w(x
0

)) dy = 0 .

Since the integrand is nonpositive, it vanishes, so that w(y) = w(x
0

) for any y 2 ⌦ satisfying y�x
0

2
supp J , that is, for any y 2 ⌦ \B

1

(x
0

). If n � 1 and so Br(x0

) ⇢ ⌦, taking y
0

close to the boundary
of Br(x0

) and applying the same argument, we infer that w(y) = w(x
0

) for any y 2 ⌦\B
2r(x0

). We
may follow this procedure n times to find some x 2 ⌦ such that w(x) = w(x

0

) and dist(x,@ ⌦) < r
(this fact can already be attained in the first step if n = 0). Then

0 =

Z

⌦

J(x� y)G(x,w(y)� w(x))(w(y)� w(x)) dy +

Z

⌦

J

\⌦
J(x� y)G(x,�w(x))(�w(x)) dy .

Notice that both integrands are nonpositive, so that both vanish. We deduce from the first integral
that w is constant in ⌦ \Br(x) and from the second one that this constant is equal to 0. Therefore,
w(x

0

) = w(x) = 0 and as a consequence w(x) = 0 for any x 2 ⌦.
Recalling that the function u(x, t) is nonincreasing in t and lim

t!1
u(x, t) = 0 for any x 2 ⌦, we

deduce from Dini’s Theorem that this convergence is uniform. ⇤
With the help of Theorem 4.4.5, we are ready to prove Theorem 4.2.9.

Proof:[Proof of Theorem 4.2.9] Consider u1 the solution to (4.15) with initial datum u1

0

(x) =
ku

0

kL1
(⌦)

, and u2 ⌘ 0. On the one hand, it follows from the Comparison Principle that

0  u(x, t)  u1(x, t) , for any x 2 ⌦ and t > 0 .

On the other hand, we deduce from Proposition 4.4.5 that

lim
t!1

u1(x, t) = 0 , uniformly in ⌦

and thus the result follows. ⇤

Remark 4.4.6 As already mentioned, if hypothesis (4.16) holds true, we have that the decay at 0 is
of exponential type. Indeed,

d
dt

Z

⌦

u2(x, t)dx = 2

Z

RN

Z

RN

J(x� y)G(x, u(y;x, t))u(y;x, t)u(x, t) dy dx

= ��
Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))2 dy dx.

Now, due to Chasseigne et al. (2006), there exists a pair (�
1

,�(x)) 2 R+ ⇥ C(⌦) such that

0 < �
1

= inf
u2L2

(⌦)\{0}

1
2

Z

RN

Z

RN

J(x� y)(u(y)� u(x))2dy dx
Z

⌦

u(x)2dx

and a function �(x) where the infimum is attained. Consequently, we conclude that

d
dt

Z

⌦

u2(x, t)dx  �2��
1

Z

⌦

u(x, t)2dx,

and integrating over [0, t], we have that ku(·, t)kL2
(⌦)

 ku
0

kL2
(⌦)

e��1� t .
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4.5 Proofs of results about Cauchy Problem

As in the previous Section, we start by proving the existence and uniqueness result.
Proof:[Proof of Theorem 4.2.12] For T > 0 we consider the Banach space

X = C
⇣

[0, T ]; C(RN ) \ L1(RN )
⌘

,

endowed with the norm
|||w||| = max

0tT
e�kMtkw(·, t)kL1

(RN

)

.

Here M = 2↵
2

and k � 1.
Now, let Y be the closed ball of X with radius kku

0

kL1
(RN

)

and centered at the origin. Note
that Y is a complete metric space with the induced metric d(w

1

, w
2

) = |||w
1

� w
2

|||.
In order to establish the existence and uniqueness of solutions of (C) via Banach contraction

principle, we define the operator T : Y �! Y by

T (w)(x, t) =

Z t

0

Z

RN

J(x� y)w(y;x,⌧ )G(x,w(y;x,⌧ ))dyd⌧ + u
0

(x).

Let us first prove that this operator is well defined. Clearly T (w) is belongs to X and satisfies

kT (w)(·, t)kL1
(RN

)

 ↵
2

max
x2RN

Z t

0

Z

RN

J(x� y)|w(y;x, s)|dyds+ ku
0

kL1
(RN

)

 2↵
2

Z t

0

kw(·, s)kL1
(RN

)

ds+ ku
0

kL1
(RN

)

 2↵
2

|||w|||
R t

0

ekMsds+ ku
0

kL1
(RN

)

 ekMtku
0

kL1
(RN

)

.

(4.40)

Therefore,

|||T (w)||| = max
0tT

e�kMtkT (w)(·, t)kL1
(RN

)

 ku
0

kL1
(RN

)

.

Since k > 1, we obtain that |||T (w)||| kku
0

kL1
(RN

)

and T (w) belongs to Y .
Now, let us show that the operator T is a contraction. By using that G satisfies (G) and arguing

as (4.40), we obtain

k (T (w
1

)� T (w
2

)) (·, t)kL1
(RN

)

 ↵
2

max
x2RN

Z t

0

Z

RN

J(x� y)|w
1

(y;x,⌧ )� w
2

(y;x,⌧ )|dyd⌧

 2↵
2

Z t

0

kw
1

(·, ⌧)� w
2

(·, ⌧)kL1
(RN

)

d⌧  2↵
2

|||w
1

� w
2

|||
Z t

0

ekM⌧ d⌧

 1

k

�

ekMt � 1
�

|||w
1

� w
2

|||.

Therefore,

d(T (w
1

), T (w
2

))  1
k
|||w

1

� w
2

||| max
0tT

⇣

1� e�kMt
⌘

 1
k
d(w

1

, w
2

).

Since k > 1, T is a contraction. Hence, using Banach’s Fixed Point Theorem there exists u a fix point
of T , that is the unique solution of problem (C) for t 2 [0, T ] and belongs to Y . Finally, since T is
arbitrary, we obtain a global solution, u 2 C

�

[0,1); C(RN ) \ L1(RN )
�

. ⇤
Now we can prove the Comparison Principle.

Proof:[Proof of Theorem 4.2.14] Set w = u� v, then in virtue of (4.22) w satisfies
8

>

<

>

:

wt(x, t) =

Z

RN

J(x� y)w(y;x, t)  (x, u(y;x, t), v(y;x, t))dy in RN ⇥ (0,+1)

w(x, 0)  0, in RN ,

(4.41)
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where  is the function defined in (4.22). Let us consider the following function

&(x, t) =

(

1 if w(x, t) � 0,

0 if w(x, t) < 0.

Multiplying (4.41) by &(x, t) and taking into account that wt(x, t)&(x, t) = (w
+

)t (x, t) and w(y, t)&(x, t) 
w

+

(y, t), we obtain, dropping the positive term w(x, t)&(x, t), that

(w
+

)t (x, t) =

Z

RN

J(x� y) (w(y, t)&(x, t)� w(x, t)&(x, t)) (x, u(y;x, t), v(y;x, t))dy


Z

RN

J(x� y)w
+

(y, t) (x, u(y;x, t), v(y;x, t))dy  ↵
2

Z

RN

J(x� y)w
+

(y, t)dy,

integrating in RN and by using
R

RN

J(z)dz = 1, we get
Z

RN

(w
+

)t (x, t)dx  ↵
2

Z

RN

w
+

(y, t)dy.

Finally, integrating in (0, T ] and since w
+

(x, 0) = 0 we can assert, using Fubini’s theorem, that

k(t)  ↵
2

Z t

0

k(⌧)d⌧, where k(t) =

Z

RN

w
+

(x, t)dx. (4.42)

Hence, applying Gronwall’s Lemma in (4.42), we conclude that

k(t)  0.

Now, since w
+

(x, t) � 0 and by the continuity of w
+

, we get that w
+

(x, t) = 0 and, consequently,

u(x, t)  v(x, t)

for any x 2 RN , t > 0. ⇤
Note that the previous proof works locally in time, that is, a supersolution v and a subsolution u

defined both for t 2 [0, T ] verify u(x, t)  v(x, t) for any x 2 RN , 0  t < T .
Proof:[Proof of Theorem 4.2.15] By Theorem 4.2.12, for any " > 0 there exists u" the unique

solution of problem (4.19). Set w" := v � u", wich satisfies
8

<

:

w"
t (x, t) = �v(x, t) + µ(x)|rv(x, t)|2 � L"(u

"(x, t)), in RN ⇥ (0, T ],

w"(x, 0) = 0, in RN ,
(4.43)

being

L"(u
"(x, t)) =

C(x)
"2

Z

RN

J"(x� y)u"(y;x, t)G(x, u"(y;x, t))dy.

Now, the proof follows the one of Theorem 4.2.3.
Choosing w(x, t) = K"↵t and w(x, t) = �w(x, t). Then for K su�ciently large we have that w and w
are super and subsolution of (4.43) respectively. Therefore, by the principle comparison of Theorem
4.2.14 we obtain w  w"  w and the proof is straightforward. ⇤

As far as the asymptotic behavior is concerned, we observe that Ĵ(⇠), the Fourier transform of
J , satisfies

Ĵ(⇠)  1� C(J)|⇠|2 + o(|⇠|2), as ⇠ ! 0 .

where the above estimates follows since

1
2
@2

⇠
i

⇠
i

Ĵ(0) =
1
2

Z

RN

J(z)z2Ndz =
1
2
C(J) < 1,

thanks to (3.3).

For the convenience of the reader we repeat the following Lemma that is proved in Cañizo and
Molino (2016) including also a sketch of the proof (in order to make this part of the paper self-
contained).
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Lemma 4.5.1 Let u 2 L1(RN ) \ L2(RN ) and J satisfying hypothesys (J). In addition, consider

DJ(u) =

Z

RN

⇣

1� Ĵ(⇠)
⌘

|û(⇠)|2d⇠.

Then, 9 C̃ = C̃(N, J) > 0 such that

kuk2L2
(RN

)

 C̃max

⇢

kuk
4

N+2

L12
(RN

)

DJ(u)
N

N+2 , DJ(u)

�

,

and consequently
Z

RN

Z

RN

J(x� y) (u(y)� u(x))2 dxdy � K min

⇢

kuk�
4
N

L1
(RN

)

kuk2+
4
N

L2
(RN

)

, kuk2L2
(RN

)

�

. (4.44)

Proof: First, we set the following quantities

C = max
|⇠|�1

1

1� Ĵ(⇠)
> 0, �

0

=

 

C DJ(u)
C(N)kuk2

L1
(RN

)

C(J)

!

1
N+2

,

where C(N) = N⇡N/2

2�(N

2 +1)
and � denotes the Gamma function. Since u 2 L1(RN ) \ L2(RN ) it follows

that û 2 L2(RN ) and consequently we obtain for 0 < �  1 that

kûk2L2
(RN

)

=

Z

|⇠|�

|û(⇠)|2d⇠ +
Z

|⇠|>�

|û(⇠)|2d⇠  kuk2L1
(RN

)

2C(N)
N

�N +
C

C(J) �2
DJ(u) . (4.45)

Now, if we assume that �
0

 1. Replacing � by �
0

in (4.45), we have

kûk2L2
(RN

)

 C
1

kuk
4

N+2

L1
(RN

)

DJ(u)
N

N+2 , (4.46)

where C
1

=
�

2

N
+ 1
�

C(N)
2

N+2C
N

N+2 . Alternatively, if we assume that �
0

> 1, i.e.,

C(N) kuk2L1
(RN

)

< C DJ(u),

choosing � = 1 in (4.45) and using the above inequality, we get

kûk2L2
(RN

)

 kuk2L1
(RN

)

2C(N)
N

+ C DJ(u) 
✓

2
N

+ 1

◆

C DJ(u). (4.47)

Finally, using Plancherel’s theorem on kûk2L2
(RN

)

and summarizing (4.46) and (4.47), it follows that

kuk2L2
(RN

)

 C̃max

⇢

kuk
4

N+2

L1
(RN

)

DJ(u)
N

N+2 , DJ(u)

�

where C̃ = max
�

C
1

,
�

2

N
+ 1
�

C
 

and the proof is concluded. Due to the above formula, we can state
the following inequality

DJ(u) � K min

⇢

kuk�
4
N

L1
(RN

)

kuk2+
4
N

L2
(RN

)

, kuk2L2
(RN

)

�

,

being K = K(N, J). Thus, it is easy to check that
Z

RN

Z

RN

J(x� y) (u(y)� u(x))2 dxdy = �2

Z

RN

(J ⇤ u� u)(x)u(x) dx,

having in mind that Fourier transform preserves inner product we deduce (4.44) ⇤
Next Lemma gives the L1 boundedness from above or from below of solutions depending on how

the function G(x, s)s behaves. To be more specific we have the following result.
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Lemma 4.5.2 Let u be a solution of Cauchy problem (C) with 0  u
0

2 L1(RN ). Then

(i) If G satisfies (4.16), it follows that t 7! ku(·, t)kL1
(RN

)

is decreasing on [0,1), therefore

ku(·, t)kL1
(RN

)

 ku
0

kL1
(RN

)

.

(ii) If G satisfies (4.17), it follows that t 7! ku(·, t)kL1
(RN

)

is increasing on [0,1), therefore

ku(·, t)kL1
(RN

)

� ku
0

kL1
(RN

)

.

Proof: Since 0  u
0

and Comparison Principle of Proposition 4.2.14 we can assume that u(x, t) �
0. Furthermore, if G(x, s)s  �s for any (x, s) 2 RN ⇥ R, since

d
dt

Z

RN

u(x, t)dx =

Z

RN

Z

RN

J(x� y)u(y;x, t) G(x, u(y;x, t))dydx

 �

Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))dydx = 0,

where the last identity follows since, by Fubini Theorem,
Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))dydx =

Z

RN

Z

RN

J(x� y)(u(x, t)� u(y, t))dxdy .

Hence ku(·, t)kL1
(RN

)

is nonincreasing in time and we state (i). Equivalently, if G(x, s)s � �s

for any (x, s) 2 RN ⇥ R, reasoning as above we obtain the opposite inequality and, consequently,
ku(·, t)kL1

(RN

)

is nondecreasing in time and (ii) is proved. ⇤

Now we can prove the asymptotic behavior of the solution for G satisfying (4.16),

Theorem 4.5.3 Let u be a solution of Cauchy problem (C) with G satisfying (4.16) and positive
prescribed data u

0

2 L1(RN ) \ Lq(RN ) for q � 2. Then there exists C = C(J,N,�, q) > 0 such that

ku(·, t)kLq

(RN

)

 Cku
0

kL1
(RN

)

t
�N

2

⇣
1� 1

q

⌘

,

for any t su�ciently large.

Proof:[Proof of Theorem 4.5.3]
Let q � 2 and let us multiply the equation in (C) by uq�1(x, t) (observe that u � 0): thus we

have

d
dt

1
q

Z

RN

u(x, t)qdx =

Z

RN

ut(x, t)u(x, t)
q�1dx

 �

Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))u(x, t)q�1dxdy

= ��
2

Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))(u(y, t)q�1 � u(x, t)q�1)dxdy

 �C(q,� )

Z

RN

Z

RN

J(x� y)(u(y, t)q/2 � u(x, t)q/2)2dxdy,

where in the last inequality we have used Lemma 4.3.3. Hence by (4.44), we get

d
dt

Z

RN

u(x, t)qdx  �C min

⇢

ku(·, t)k�
2q
N

L
q

2
(RN

)

ku(·, t)kq(1+
2
N

)
Lq

(RN

)

, ku(·, t)kq
Lq

(RN

)

�
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where C = C(q,�, N, J). Now, by interpolation ku(·, t)k
L

q

2
(RN

)

 ku(·, t)k
1

q�1

L1
(RN

)

ku(·, t)k
q�2
q�1

Lq

(RN

)

and

denoting by Y (t) = ku(·, t)kq
Lq

(RN

)

, we obtain, in virtue of Lemma 4.5.2, the following di↵erential

inequality

Y 0(t)  �C min
n

ku
0

k�q�

L1
(RN

)

Y (t)1+� , Y (t)
o

(4.48)

being � =
2

N(q � 1)
. Therefore, Y (t) is decreasing. We claim that there exists t

0

� 0 such that

Y (t)  ku
0

kq
L1

(RN

)

, t � t
0

.

Indeed, otherwise, using that Y (t) is decreasing, we would have that ku
0

kq
L1

(RN

)

 Y (t) for any t � t
0

.

Replacing in (4.48) we obtain
Y 0(t)  �C Y (t), t � t

0

,

and integrating on [t
0

, t] we get that Y (t)  Y (t
0

)e�C(t�t0) ! 0 as t ! 1 which leads to a contra-
diction and the claim is proved.

Thus, since

Y (t) = Y (t)1+�Y (t)�� � Y (t)1+�Y (t
0

)�� � Y (t)1+�ku
0

k�q�

L1
(RN

)

,

it follows, by inequality (4.48), that

Y 0(t)  �C ku
0

k�q�

L1
(RN

)

Y (t)1+� , t � t
0

.

Integrating on [t
0

, t] we get

Y (t) 
ku

0

kq
L1

(RN

)

(� C)1/�
(t� t

0

)�1/� .

Having in mind that Y (t) = ku(·, t)kq
Lq

(RN

)

and
�1
q �

= �N
2

✓

1� 1
q

◆

we conclude that, for any time

t large enough, 9 C = C(J,N,�, q), such that

ku(·, t)kLq

(RN

)

 Cku
0

kL1
(RN

)

t
�N

2

⇣
1� 1

q

⌘

.

⇤
With the help of the above result, we can now prove Theorem 4.2.16.

Proof:[Proof of Theorem 4.2.16] Theorem 4.5.3 covers the case q � 2, while for q 2 (1, 2] the
interpolation inequality yields to

ku(·, t)kLq

(RN

)

 ku(·, t)k
2
q

�1

L1
(RN

)

ku(·, t)k
2

⇣
1� 1

q

⌘

L2
(RN

)

 Cku
0

kL1
(RN

)

t
�N

2

⇣
1� 1

q

⌘

,

being C = C(J,N,�, q) a positive constant. ⇤
In order to obtain a decay estimate of the norm of the solution u, for functions Gµ with µ(x) � 0,

a L1 boundedness from above of u is required. For this purpose, we must to control de L1-norm of
initial data u

0

with respect to function µ.

Lemma 4.5.4 Let u be a solution of of Cauchy problem (C) with G ⌘ Gµ, 0  µ 2 L1(RN ) and
positive prescribed data u

0

2 L1(RN ) \ C(RN ) satisfying ku
0

kL1
(RN

)

kµkL1
(RN

)

= ✓ < 1. Then

d
dt

ku(·, t)k2L2
(RN

)

 �(1� ✓)

Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))2dydx. (4.49)

If, in addition, u
0

2 L1(RN ) then

ku(·, t)kL1
(RN

)

 cku
0

kL1
(RN

)

, (4.50)

with c = c(ku
0

kL1
(RN

)

, kµkL1
(RN

)

) > 1.
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Proof: Since u
0

2 L1(RN )\C(RN ), by Theorem 4.2.12 there exists a unique solution of problem
(C) and it satisfies u 2 C

�

[0,1); C(RN ) \ L1(RN )
�

. Moreover, since 0 and ku
0

kL1
(RN

)

are sub and
supersolution respectively of problem (C), we get, due the comparison principle Theorem 4.2.14, that

0  u(x, t)  ku
0

kL1
(RN

)

, (x, t) 2 RN ⇥ [0,1).

Let us multiply the equation in (C) by u(x, t) and integrate in RN , so that

d
dt

ku(·, t)k2L2
(RN

)

= 2

Z

RN

ut(x, t)u(x, t)dx

= 2

Z

RN

Z

RN

J(x� y)u(y;x, t) Gµ(u(y;x, t))u(x, t) dydx

= 2

Z

RN

Z

RN

J(x� y)u(y;x, t) u(x, t)dydx+

Z

RN

Z

RN

J(x� y)
µ(x)u(y;x, t)2

1 + µ2(x)u(y;x, t)2
u(x, t)dydx

 �
Z

RN

Z

RN

J(x� y)u(y;x, t)2dydx+

Z

RN

Z

RN

J(x� y)µ(x)u(y;x, t)2u(x, t)dydx

= �
Z

RN

Z

RN

J(x� y)u(y;x, t)2(1� µ(x)u(x, t))dydx

 �(1� ✓)

Z

RN

Z

RN

J(x� y)(u(y, t)� u(x, t))2dydx,

which proves the first part of lemma.
In order to get (4.50), we compute the derivate of L1-norm of u, and we get

d
dt

ku(·, t)kL1
(RN

)

=

Z

RN

Z

RN

J(x� y)Gµ

�

u(y, t)� u(x, t)
��

u(y, t)� u(x, t)
�

dydx

=

Z

RN

Z

RN

J(x� y)
µ(x)
2

�

u(y, t)� u(x, t)
�

2

1 + µ2(x)
�

u(y, t)� u(x, t)
�

2

dxdy


kµkL1

(RN

)

2

Z

RN

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

2

dydx

 �
kµkL1

(RN

)

2
1

1� ✓
d
dt

ku(·, t)k2L2
(RN

)

,

where we have used (4.49) in the last inequality. Hence, we obtain the following di↵erential inequality:

9 c
1

> 0 :
d
dt

ku(·, t)kL1
(RN

)

+ c
1

d
dt

ku(·, t)k2L2
(RN

)

 0,

being c
1

=
kµk

L

1(RN )

2(1�✓)
> 0. Consequently, integrating on [0, t],

ku(·, t)kL1
(RN

)

+ c
1

ku(·, t)k2L2
(RN

)

 ku
0

kL1
(RN

)

+ c
1

ku
0

kL1
(RN

)

ku
0

kL1
(RN

)

,

where we have used the interpolation formula, ku
0

k2L2
(RN

)

 ku
0

kL1
(RN

)

ku
0

kL1
(RN

)

. Finally we

conclude that ku(·, t)kL1
(RN

)

 cku
0

kL1
(RN

)

, for c = 1 + c
1

ku
0

kL1
(RN

)

.
⇤

Proof:[Proof of Theorem 4.2.17] Applying inequality (4.44) in (4.49) from Lemma 4.5.4, it follows

d
dt

ku(·, t)k2L2
(RN

)

 �C
1

min

⇢

ku(·, t)k�
4
N

L1
(RN

)

ku(·, t)k2+
4
N

L2
(RN

)

, ku(·, t)k2L2
(RN

)

�

,
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where C
1

= C
1

(kµkL1
(RN

)

, ku
0

kL1
(RN

)

, N, J) > 0. Writing X(t) = ku(·, t)k2L2
(RN

)

and using the

boundedness of L1-norm in inequality (4.50) we have that

X 0(t)  �C
2

min

⇢

ku
0

k�
4
N

L1
(RN

)

X(t)1+
2
N , X(t)

�

,

where C
2

= C
2

(kµkL1
(RN

)

, ku
0

kL1
(RN

)

, N, J) > 0. Thus, arguing as in proof of Theorem 4.5.3, we

can assume that there exists t
0

� 0 such that X(t)  ku
0

k2L1
(RN

)

for t � t
0

and therefore,

X 0(t)  �C
2

ku
0

k�
4
N

L1
(RN

)

X(t)1+
2
N , t � t

0

.

Finally, integrating on [t
0

, t], we obtain the L2-norm decay estimate for any t su�ciently large. ⇤
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Abstract

In this paper we study the existence of positive solution u 2 H1
0 (⌦) for some

quasilinear elliptic equations, having lower order terms with quadratic growth in
the gradient and singularities, whose model is

��u+ µ(x)
|ru|2

u� + u�
= �up + f0(x), x 2 ⌦, 0 < �  �, 0 < p.

Using topological methods we obtain the existence of an unbounded continuum of
solutions. In the case µ(x) constant we derive the existence of solution for every
� > 0 if 1 < � < 2 for any � and p < 1. Even more for µ 2 L1(⌦) we prove this
result if �  1 and p < 2� �.

115
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5.1 Introduction

We consider the following boundary value problem

⇢

��u+ µ(x)g(u) |ru|2 = �up + f
0

(x) in ⌦,
u = 0 on @⌦,

(P�)

where ⌦ is a smooth bounded and open subset of RN , N � 3, p � 0. The functions µ 2 L1(⌦)
and g 2 C1((0,+1)) are nonnegative; notice that g can become singular at zero. We are assume
0 � f

0

2 Lq(⌦) for some q > N/2.

By a subsolution (respectively, supersolution) of problem (P�) we mean a function u 2 H1

0

(⌦) \
C(⌦) with u > 0 a.e. x 2 ⌦ , g(u) |ru|2 2 L1(⌦) and which satisfies the following inequality:

Z

⌦

rur'+

Z

⌦

µ(x)g(u) |ru|2'
(�)


Z

⌦

(�up + f
0

)' ,

for every 0  ' 2 H1

0

(⌦) \ L1(⌦). A solution is a function which is both a subsolution and a
supersolution.

Problem (P�) involves a quasilinear elliptic di↵erential operator with quadratic gradient terms.
This kind of di↵erential operators with natural growth were considered in Boccardo et al. (1982, 1983)
and since then di↵erent associated boundary value problems have been studied. A well known case is
the existence of the solution of (P

0

) when g is continuous at u = 0 (see for instance Bensoussan et al.
(1988), Boccardo and Gallouët (1992) and Boccardo et al. (1982)).

Alternatively, problem (P
0

) for functions g with a singularity at zero, has also been extensively
studied in Arcoya and Mart́ınez-Aparicio (2008); Arcoya and Segura de León (2010); Boccardo (2008);
Mart́ınez-Aparicio (2009). Existence of solutions was discussed in Arcoya et al. (2009b) in the casep
g 2 L1(0, 1) by imposing the following condition

ess inf{f
0

(x) : x 2 !} > 0 , 8! ⇢⇢ ⌦ . (5.1)

Results concerning (P�) for � 6= 0 were obtained in Arcoya et al. (2011); Boccardo et al. (2011)
in the case g(s) = 1/s� where the model problem is

8

<

:

��u+ µ(x)
|ru|2
u�

= �up + f
0

(x) in ⌦,

u = 0 on @⌦,
(R�)

with µ(x) as a constant function. More precisely, with � < 1 and � + p < 2 (region I in Figure 1
below), the existence of a solution for each � � 0 was proved in Arcoya et al. (2011) by means of
topological methods and in Boccardo et al. (2011) by using an approximative scheme.

Figure 1: Existence regions
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21

1

2

0

I
II

γ

p

Notice that if � � 2 it makes no sense to search solutions of (R�). Indeed, as it is proved in Zhou

et al. (2012), |ru|2
u�

/2 L1(⌦).
However, the techniques employed in Arcoya et al. (2011); Boccardo et al. (2011) can not be

applied in the case µ(x) not constant or where p < 1  � < 2 (region II in Figure 1 above). In this
paper, we complete the previous results and we extend them for a more general function g in order to
show the following: “the values of � for which there exists a solution of (P�) depends on the behavior
of g at infinity”. In fact, in contrast with the results when g ⌘ 0, in some cases we obtain solutions
for every positive �, that is, the gradient term produces a regularizing e↵ect. We deal with (P�)
for a function g exhibiting a di↵erent behavior at zero and at infinity. In particular, we are mainly
interested in the case of functions g(s) = 1/(s� + s�) with �  �. In this way, we consider the model
problem

8

<

:

��u+ µ(x)
|ru|2

u� + u�
= �up + f

0

(x) in ⌦,

u = 0 on @⌦,
(Q�)

as a natural extension of the problem (R�). Observe that for � = 0, as was mentioned above, problem
(Q

0

) has been extensively studied. Our main goal is to exploit this known case to obtain an unbounded
continuum ⌃ of solutions of (Q�), namely, a connected and closed subset of

{(�, u) 2 [0,+1)⇥ C(⌦) : u is a solution of (Q�)} ,

for suitable values of p,� and �, which extend the previous existence results. In particular, beginning
with the case µ(x) constant and � < 2, we prove in Theorem 5.1.1 the existence of an unbounded
continuum ⌃. In Theorem 5.1.2 we deal with non-constant µ(x) in the case �  1.

Theorem 5.1.1 Assume µ(x) = µ is constant and that f
0

2 Lq(⌦) with q > N
2

satisfies (5.1). Then:

i) If 1  � < 2 and 0 < p < 1 then problem (Q�) admits at least one solution for every � � 0.

ii) If � < 1 < � and 1  p, then there exists �⇤,�⇤ > 0 such that (Q�) admits no solution for
� > �⇤ and at least one solution for 0  � < �⇤.

Moreover, there exists an unbounded continuum ⌃ of solutions of (Q�), such that there exists u�

solution of (Q�) with (�, u�) 2 ⌃ for every � � 0 (item i)) or every 0  � < �⇤ (item ii)).

We would like to stress that in the case of item i), it is not required assumptions on the parameter

�. This is because in order to |ru|2
u�

+u�

be an integrable function we only need the natural hypothesis
� < 2 which is a condition at zero. In other words, the behavior of g at infinity has not a role in
the solutions set. Conversely, item ii) shows that no regularizing e↵ect take place since there is no
solution for all positive �.

Moreover, observe that this theorem improve the results of Arcoya et al. (2011); Boccardo et al.
(2011) since item i) with � = � gives us existence results of the problem (R�) in the case that (�, p)
belongs to Region II of Figure 1 above.
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Furthermore, our techniques also allow us to work with non-constant function µ(x) when the
parameter (�, p) belongs to the corresponding Region I of the Figure 1 above. In fact, if we suppose
that there exist positive constants m,M such that

m  µ(x)  M, a.e. x 2 ⌦, (5.2)

we prove the following theorem.

Theorem 5.1.2 Assume that 0 < �  �  1, 0 < p < 2��, f
0

2 Lq(⌦) with q > N
2

and (5.2) where
M < 2 in the case � = � = 1 and M > 0 otherwise. Then there exists an unbounded continuum ⌃ of
solutions of (Q�), such that there exists u� solution of (Q�) with (�, u�) 2 ⌃ for every � � 0.

Note that this theorem with � = � < 1 improves again the results of Arcoya et al. (2011) since
we can consider non-constant function µ(x). Furthermore, it improves also Boccardo et al. (2011)

except regularity of f
0

; in this work the authors consider data f
0

belonging to L
2N

2N��(N�2) (⌦).
In addition, since we deal with � < � and the function g(s) = 1/(s� + s�) behaves at infinity as

1/s� do, we also show that the hypothesis p < 2 � � is a restriction in the behavior of g at infinity,
rather than in the singularity at zero.

We obtain the existence of the continuum in the above two theorems by using a double approach.
Initially, for a convenient sequence of approximated problems, we can derive the existence of⌃ n by
means of Leray-Schauder degree techniques and Rabinowitz continuation theorem as in Arcoya et al.
(2011). This requires the uniqueness of the solution for the problem (P

0

), in order to set the problem
as a fixed point problem for a compact operator. This uniqueness result can not be deduced from
Arcoya and Segura de León (2010) if µ is not a constant. Conditions to have uniqueness results
for (P

0

) were obtained in Arcoya et al. (2017). Secondly, we use a topological lemma to obtain a
continuum of solutions as the limit of this approximative scheme⌃ n. It is also important to note that
condition (5.1) becomes crucial when applying this approach in Theorem 5.1.1.

The rest of the paper is structured as follows, Section 2 presents the main a priori estimates (this
is essentially contained in Stampacchia (1966) and Boccardo et al. (2011)). Section 3 provides, for
sequences of solutions of (P�), compactness properties and continua of solutions. Section 4 provides
proofs of the main theorems. Finally the Appendix contains the proof of some a priori estimates and
results related to the uniqueness of solution of the problem (P

0

).

5.2 Preliminaries

In this section, according the values for p, we obtain L1 estimates for solutions of problem (P�).
As usual, for every s 2 R, we denote by s+ = max{s, 0}, s� = s� s+, T"(s) = smin{1, " /|s|} and

G"(s) = s� T"(s).
Next lemma is consequence of the classical Stampacchia method (Stampacchia (1966)). We

include the proof in the Appendix, by convenience of the reader, using the Hartman-Stampacchia
variant (Hartman and Stampacchia (1966), see also Ladyzhenskaya and Ural’tseva (1968)).

Lemma 5.2.1 Let ⇤ be a positive number. Assume that 0 < p < 1 and f
0

2 Lq(⌦) with q > N
2

, then
there exists a positive constant C > 0 such that, for every g � 0 and every solution u of (P�) with
0 < � < ⇤, one has kukL1

(⌦)

 C.

The next lemma shows that, for a convenient decay of g at infinity, the previous result is true
even for some cases where p � 1.

Lemma 5.2.2 Let ⇤ be a positive number. Assume (5.2) and that f
0

2 Lq(⌦) with q > N
2

. Let g
0

also be a nonnegative function in C((0,+1)) sastifying

lim inf
t!1

t�g
0

(t) > 0, (5.3)
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where 1  p < 2 � �. Then there exists a positive constant C > 0 such that, for every g � g
0

and
every solution u of (P�) with 0 < � < ⇤, one has kukL1

(⌦)

 C.

Proof: We follow the arguments of (Boccardo et al., 2011, Theorem 2.1) and we prove that the right
hand side of (P�) is (uniformly) bounded in Lr(⌦), for some r > N

2

. Thus the conclusion follows by
the classical Stampacchia boundedness theorem and by the positive sign on the quadratic gradient
lower order term.

We claim that there exists a positive constant C > 0 and � � pN/2 such that, for every g � g
0

and
every solution u of (P�) with 0 < � < ⇤, one has kukL�

(⌦)

 C. Thus we can take r = min{q,�/p}
to complete the proof.

In order to prove the claim we take � = (2� �)s⇤⇤ for some s with

max

⇢

Np
2(2� � + p)

,
2N

2N � �(N � 2)

�

< s <
N
2
. (5.4)

We observe that since Np
2(2��+p)

< s we have that (2� �)s⇤⇤ > pN/2. In addition, (5.4) assures that

✓ = (2��)s⇤⇤

2

⇤ > 1 and, for 0 < � < 1, we use (u + �)2✓+��2 � �2✓+��2 as test function taking into
account (Arcoya et al., 2011, Lemma 2.1).

We obtain, dropping negative terms,
Z

⌦

|ru|2(u+ �)2✓+��3



(2✓ + � � 2) +m(u+ �)g(u)

�

 M�2✓+��2

Z

⌦

g(u)|ru|2 +
Z

⌦

[⇤up + f
0

](u+ �)2✓+��2 .
(5.5)

Using (5.3) we deduce the existence of a positive constant C > 0 such that

1 + tg
0

(t)
(t+ 1)1��

� C, 8t � 0.

Hence, since g � g
0

and � < 1, we have the inequality

1 + tg(t) � C(t+ �)1�� , 8t � 0.

Therefore, from (5.5) we obtain, using also Sobolev inequality,

CS
✓

Z

⌦

h

(u+ �)✓ � �✓
i

2

⇤ ◆ 2
2⇤

 C

Z

⌦

|ru|2(u+ �)2✓�2

 M�2✓+��2

Z

⌦

g(u)|ru|2 +
Z

⌦

[⇤up + f
0

](u+ �)2✓+��2 ,

(5.6)

where S is the Sobolev embedding constant. Letting � tend to zero, we get

CS
✓

Z

⌦

u2

⇤✓
◆

2
2⇤

 C

Z

⌦

|ru|2u2✓�2  ⇤
Z

⌦

u2✓+�+p�2 +

Z

⌦

f
0

u2✓+��2 . (5.7)

Thanks to the choice of ✓, we have 2⇤✓ = (2✓ + � � 2)s0 = (2� �)s⇤⇤. Thus, using Hölder inequality,
and recalling that s⇤⇤(2� �) � 2⇤ > 2 > 2� � > p, we deduce

✓

Z

⌦

u(2��)s⇤⇤
◆

2
2⇤

 C

✓

Z

⌦

u(2��)s⇤⇤
◆

2✓+�+p�2
(2��)s⇤⇤

+C kf
0

kLs

(⌦)

✓

Z

⌦

u(2�✓)s⇤⇤
◆

1
s

0

.

(5.8)

Now we point out that 2

2

⇤ > 1

s0 , since s < N
2

, and that 2

2

⇤ > 2✓+�+p�2

(2��)s⇤⇤ , since 2 � � > p. Therefore,

from (5.8) it follows the claim which allows to finish the proof. ⇤
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5.3 Global continua of solutions

Let M be the solution set for (P�), namely

M = {(�, u) 2 [0,+1)⇥ C(⌦) : u is a solution of (P�)}.

Continua of solutions in M are obtained in this section by using degree computations and Rabinowitz
continuation theorem. In this way, we set (P�) as a fixed point problem for a compact operator.

Next result gives su�cient conditions to assure that solutions of (P�) are uniformly bounded from
below by a positive constant in compact subsets. In fact, we can consider lower order terms of the
form h(u)|ru|2 with

h 2 C((0,+1)) is a nonnegative function, nonincreasing (5.9)

in a neighborhood of zero with
p
h 2 L1(0, 1),

and data f
0

satisfying

(F) If e�
R
s

1 h(t)dt 2 L1(0, 1) then f
0

is nonnegative and nontrivial. In other case f
0

satisfies (5.1).

Lemma 5.3.1 Assume that h verifies (5.9) and f
0

2 L1(⌦) satisfies (F). Then for each ! ⇢⇢ ⌦
there exists a positive constant c! such that z(x) � c! > 0 a.e. x 2 !, for every 0 < z 2 H1

0

(⌦)\C(⌦)
supersolution of

��z + h(z)|rz|2 = f
0

in ⌦.

Proof: On the one hand, if f
0

satisfies (5.1) the proof can be found in (Arcoya et al., 2009b,
Proposition 2.3). On the other hand, if e�

R
s

1 h(t)dt 2 L1(0, 1), then f
0

is a general nonnegative and
nontrivial function and we split the proof into two cases: when h 2 L1(0, 1) we conclude by (Arcoya
et al., 2011, Proposition 2.4), while if h /2 L1(0, 1) we follow the arguments of (Mart́ınez-Aparicio,
2009, Theorem 3.1). ⇤

Remark 5.3.2 We notice that if we assume h(s) = C
s�

then e�
R
s

1 h(t)dt 2 L1(0, 1) if and only if � < 1
or if � = 1 and C < 1.

The following lemma ensures the compactness properties required later to deal with our topolog-
ical approach.

Lemma 5.3.3 Assume that 0 � f
0

2 Lq(⌦) with q > N
2

and µ 2 L1(⌦). Let assume that 0 < un 2
H1

0

(⌦) \ C(⌦) satisfies

⇢

��un + µ(x)gn(un)|run|2 = �nw
p
n + f

0

in ⌦,
un = 0 on @⌦,

(5.10)

with 0  �n bounded in R, 0  wn bounded in C(⌦) and 0  gn a sequence of functions in C((0,+1)).
Then, up to a subsequence, un is strongly convergent in C(⌦) to u 2 H1

0

(⌦) \ C(⌦). If, in addition,
�n ! �, wn ! w in C(⌦), gn(s) ! g(s) uniformly in C([a, b]) for every 0 < a < b < 1, gn(s)  h(s)
for some h verifying (5.9) and f

0

satisfies (F), then u is a solution of problem

⇢

��u+ µ(x)g(u)|ru|2 = �wp + f
0

(x) in ⌦,
u = 0 on @⌦ .

(5.11)

Moreover, if the problem (5.11) admits a unique solution then the whole sequence un converges strongly
to u in C(⌦).
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Proof: Since the sequence fn := �nw
p
n + f

0

is bounded in Lq(⌦) for some q > N/2, we can
deduce, as in the proof of Lemma 5.2.1, or by using the Stampacchia technique in Stampacchia (1966)
that kunkL1

(⌦)

 c1 for some positive constant c1. In addition, applying (Ladyzhenskaya and
Ural’tseva, 1968, Theorem 6.1) we deduce that the sequence un is bounded in C0,↵(⌦). Consequently,
Ascoĺı-Arzelá Theorem assures that un possesses a subsequence converging in C(⌦). This conclude
the first part of the lemma.

In order to prove the second part we observe that, since the sequence un is bounded in H1

0

(⌦)
(arguing again as in the proof of Lemma 5.2.1, Step I) we can assume that un converges weakly to
u in H1

0

(⌦). Now we prove that u is solution of problem (5.11), i.e. u > 0, g(u)|ru|2 2 L1(⌦) and
satisfies,

Z

⌦

rur'+

Z

⌦

µ(x)g(u) |ru|2' =

Z

⌦

(�wp + f
0

)', (5.12)

for every ' 2 H1

0

(⌦) \ L1(⌦).
By Lemma 5.3.1 given ! ⇢⇢ ⌦ there exists c! > 0 such that un(x) � c! a.e. x 2 ! for every

n 2 N. In particular, using that un converges strongly to u in C(⌦), we deduce u > 0 in ⌦. Even
more, the strong convergence of gn to g in C([c!, c1]) assures that gn(un) ! g(u) a.e. in ⌦ .

Next, by the first part of the proof of Theorem 3.1 in Boccardo (2008) we have that µ(x)g(u)|ru|2 2
L1(⌦). We include the proof by convenience of the reader. Indeed, taking ' = T

✏

(u
n

)

✏
as test function

in (5.10) and dropping the positive term coming from the principal part we get
Z

⌦

µ(x)gn(un)|run|2
T✏(un)
✏


Z

⌦

(�nw
p
n + f

0

)
T✏(un)
✏

.

Since

Z

⌦

(�nw
p
n + f

0

)  C, we obtain

Z

⌦

µ(x)gn(un)|run|2
T✏(un)
✏

 C.

The limit as ✏! 0 implies, using that lim
✏!0

T
✏

(u
n

)

✏
= 1,

Z

⌦

µ(x)gn(un)|run|2  C .

Furthermore, the results of (Boccardo and Murat, 1992, Theorem 2.1) imply that (up to a subse-
quence) run ! ru strongly in (Lq(⌦))N (1 < q < 2), particularly, it converges almost everywhere
in⌦ . Then, the last inequality gives us after applying the Fatou lemma that

Z

⌦

µ(x)g(u)|ru|2  C ,

which proves our claim.
To finish, following closely Boccardo (2008), we prove that u satisfies the equation (5.12). Since

' = '+ + '�, it is enough to prove (5.12) for every nonegative function ' 2 H1

0

(⌦) \ L1(⌦).
Furthermore, by density, it is su�cient to prove it when 0  ' 2 H1

0

(⌦) \ Cc(⌦).
We divide the proof into two steps.

Step I. The function u satisfies
Z

⌦

rur�+

Z

⌦

µ(x)g(u)|ru|2� 
Z

⌦

�wp �+

Z

⌦

f
0

�,

for all 0  � 2 H1

0

(⌦) \ Cc(⌦). Indeed, since µ(x)gn(un)|run|2 � 0, gn(un) ! g(u) a.e. x 2 ⌦,
run converges weakly in (L2(⌦))N and a.e. x 2 ⌦ to ru and wp

n converges to wp strongly in L2(⌦),
then we obtain the result taking a function 0  � 2 H1

0

(⌦) \ Cc(⌦) as a test function in (5.10) and
applying Fatou lemma.
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Step II. The function u satisfies
Z

⌦

rur�+

Z

⌦

µ(x)g(u)|ru|2� �
Z

⌦

�wp�+

Z

⌦

f
0

�,

for all 0  � 2 H1

0

(⌦) \ Cc(⌦). We fix 0  � 2 H1

0

(⌦) \ Cc(⌦) and we define the function

H(t) =

Z t

1

Mh (s) ds,

where M = kµkL1
(⌦)

. Let call ! = supp � and observe, thanks to Lemma 5.3.1 there exists a positive
constants c! such that c!  un in ! for every n 2 N. Moreover, the boundedness in L1(⌦) of the
sequence {un} implies un  c1. Therefore, for n big enough

|H(u)�H(un)| M

Z c1

c
w

h(s)ds  M(c1 � c!) max
s2[c

!

,c1]

h(s) < 1,

a.e. x 2 !. In addition, one can similarly deduce, that

|H(u)�H(un)|  M |u� un| max
s2[c

!

,c1]

h(s), a.e. x 2 !.

In particular, there exists a positive constant C� (depending only on �) such that

eH(u)�H(u
n

)�  C�.

Even more,

r
⇣

eH(u)�H(u
n

)�
⌘

=

eH(u)�H(u
n

) (M�h(u)ru�M�h(un)run +r�) 2 L2(⌦).

Thus, taking ' = eH(u)�H(u
n

)� as a test function in (5.10), we get
Z

⌦

runr� eH(u)�H(u
n

) +M

Z

⌦

h(u)rurune
H(u)�H(u

n

)�

�
Z

⌦

(�nw
p
n + f

0

) eH(u)�H(u
n

)�

=

Z

⌦

(Mh(un)� µ(x)gn(un)) |run|2eH(u)�H(u
n

) � . (5.13)

Next, we want to pass to the limit in the above expression. Observe that, since run converges weakly
in (L2(⌦))N , we have

Z

⌦

runr� eH(u)�H(u
n

) �!
Z

⌦

rur�.

In addition, since the function �h(u) and the sequence �nw
p
n are bounded, we obtain using the

Lebesgue Theorem
Z

⌦

h(u)rurune
H(u)�H(u

n

) � �!
Z

⌦

h(u)|ru|2�,

and
Z

⌦

(�nw
p
n + f

0

) eH(u)�H(u
n

) � �!
Z

⌦

(�wp + f
0

) � .

To finish, since Mh(un) � µ(x)gn(un) � 0, we deduce the inequality desired applying the Fatou
Lemma in the right hand side of (5.13).

Summarizing Step I and Step II we conclude the proof. ⇤
As can be observed, uniqueness of solution for (P

0

) plays a fundamental role. In order to use the
uniqueness result in (Arcoya et al., 2017, Theorem 1.1) we have to assume that the function g satisfies
in addition that for every ⌫ > 0 there exists ✓⌫ � 0 and a nonnegative function g̃ 2 C1((0,+1)) with
e�

R
s

1 g̃(t)dt 2 L1(0, 1) such that for every 0 < s < ⌫ and for a.e. x 2 ⌦
✓⌫ [(µ(x)g

0(s)� g̃0(s)) + g̃(s)(µ(x)g(s)� g̃(s))]
� (µ(x)g(s)� g̃(s))2 .

(5.14)
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Remark 5.3.4 In the case µ(x) = µ for some positive constant µ, we can use the uniqueness result
for problem (P

0

) in Arcoya and Segura de León (2010) for functions g 2 L1(0, 1). Observe that,
in that case, condition (5.14) is also trivially satisfied with g̃(s) = µg(s). On the other hand, for a
non-constant function µ(x), it is proved in Arcoya et al. (2017) that condition (5.14) is also satisfied
in the case g(s) = 1/s� with � < 1. Moreover, in the case g(s) = 1/s, assuming in addition that
M < 1, we can choose g̃(s) = c/s for some M < c < 1 and we have that (5.14) is satisfied with
✓⌫ � c

1�c
. Others particular cases that it will be used in the proof of Theorem 5.1.2 can be found in

the Appendix.

Finally, next result ensures existence of an unbounded, connected and closed subset of M.

Theorem 5.3.5 Assume (5.2), g satisfies (5.14), g(s)  h(s) for some function h verifying (5.9)
and f

0

2 Lq(⌦) with q > N/2 satisfies (F). Then there exists an unbounded continuum ⌃ ⇢ M such
that (0, u

0

) 2 ⌃, where u
0

is the unique solution of (P
0

).

Proof: Firstly, we observe the problem (P
0

) admits a unique solution 0 < u 2 H1

0

(⌦)\C(⌦). Indeed,
the existence is due to Boccardo (2008) and Mart́ınez-Aparicio (2009) if 0 � f

0

and due to (Arcoya
et al., 2009b, Theorem 1.1) if f

0

satisfies (5.1). Alternatively, the uniqueness is deduced using (Arcoya
et al., 2017, Theorem 1.1).

Hence, we can define K : [0, 1] ⇥ R ⇥ C(⌦) ! C(⌦) by setting K(t,� , w) as the unique solution
0 < u 2 C(⌦) of the problem

⇢

��u+ tµ(x)g(u) |ru|2 = �+(w+)p + f
0

in⌦ ,
u = 0 on @⌦,

(5.15)

for every � 2 R, t 2 [0, 1] and w 2 C(⌦). With this notation problem (P�) can be rewritten as a fixed
point problem, namely,

u = K1

�(u),

with Kt
�(u) = K(t,� , u). Moreover, since g satisfies (5.14) Lemma 5.3.3 assures that K is compact

and we can use Leray-Schauder degree to study (P�).
The result follows, as in Arcoya et al. (2011), from the Rabinowitz’s Theorem (Rabinowitz, 1971,

Theorem 3.2). We only have to compute the index of the solution u
0

and show that it is di↵erent
from zero. Let us denote ut = K(1 � t, 0, 0) i.e., ut is the unique positive solution in H1

0

(⌦) \ C(⌦)
of the problem

⇢

��u+ (1� t)µ(x)g(u) |ru|2 = f
0

in⌦ ,
u = 0 on @⌦ .

Define the homotopy J : [0, 1] ⇥ C(⌦) ! C(⌦) by J(t, w) = ut for every t 2 [0, 1] and w 2 C(⌦).
Observe that J(t, w) = K(1 � t, 0, 0) and thus, using Lemma 5.3.3, we have that J is compact.
Moreover, J(0, w) = u

0

and J(1, w) = (��)�1(f
0

(x)). Therefore

i(K1

0

, u
0

) = i(J(0, ·), u
0

) = i(J(1, ·), u
1

) = i((��)�1(f
0

(x)), u
1

) = 1.

Consequently, since i(K1

0

, u
0

) = 1, we conclude the proof by using Rabinowitz’s theorem. ⇤

5.4 Proof of the main results

In order to prove Theorem 5.1.1 and Theorem 5.1.2 we recall, for the convenience of the reader, the
following definition and topological result (see Whyburn (1958)):

Definition 5.4.1 Let {Sn} ⇢ X be any infinite collection of point sets, not necessarily di↵erent. The
set of all points x of our space X such that every neighborhood of x contains points of infinitely many
sets of {Sn} is called the superior limit. The set of all points y such that every neighborhood of y
contains points of all but a finite number of the sets of {Sn} is called the inferior limit.
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From the definiton, we have at once for any system {Sn}

lim inf Sn ⇢ lim supSn

Lemma 5.4.2 (Whyburn (1958)) Let X be a metric space. If {Sn} is a sequence of connected
subsets of X such that

S

Sn is relatively compact and lim inf Sn is not empty, then the lim supSn is
connected.

The trick, in the proof of Theorem 5.1.1 and Theorem 5.1.2 is to use Lemma 5.4.2¸ where Sn is a
continuum of solutions of the following approximated problems

8

<

:

��u+ µ(x)
|ru|2

(u+ 1

n
)� + (u+ 1

n
)�

= �up + f
0

(x) , in⌦,

u = 0 , on @⌦,
(Qn,�)

for n 2 N and �  �.
Proof:[Proof of Theorem 5.1.1] First we deal with item i). We consider, for n 2 N, the approx-

imated problems (Qn,�) and the idea is to use Theorem 5.3.5 with h(s) = 1

s�+s�
and f

0

satisfying

(5.1). We observe that, under the assumption µ constant, the function gn(s) = 1

(s+1/n)

�

+(s+1/n)

�

satisfies (5.14) without restrictions in � and � (recall Remark 5.3.4). Now by Theorem 5.3.5, there
exists a continuum⌃ n in [0,+1)⇥ C(⌦) of positive solutions of (Qn,�) such that (0, un) 2 ⌃n with
un solution of (Qn,0). One can observe that by Lemma 5.2.1, one has Proj

[0,1)

⌃n = [0,1).
For obtaining the existence of an unbounded continuum ⌃ of solutions of (Q�) we apply the

result of Lemma 5.4.2. Indeed, for every⇤ > 0 we take Sn,⇤ the connected component of⌃ n \
�

[0,⇤]⇥ C(⌦)
�

such that (0, un) 2 Sn,⇤. Since ⌃n is unbounded and Proj
[0,1)

⌃n = [0,1), we deduce
that Proj

[0,⇤]

Sn,⇤ = [0,⇤]. Moreover, Lemma 5.3.3 with �n = 0 assures that, up to (not relabeled)
subsequences, un converges strongly to u solution of (Q

0

), which implies (0, u) 2 lim inf Sn,⇤. Even
more, given a sequence (�m, um) 2

S

k2N Sk,⇤ we have that, for some km 2 N
⇢

��um + µ(x)gk
m

(um)|rum|2 = �mup
m + f

0

(x) in ⌦,
um = 0 on @⌦,

with 0  �m < ⇤ and kumkL1
(⌦)

 c
⇤

. As we can suppose that km ! 1, then the first part of Lemma
5.3.3, with wn = um, assures that (�m, um) admits a strongly convergent subsequence. In particular
we deduce that

S

k2N Sk,⇤ is relatively compact. We notice that if the sequence km is bounded then,
up to a sequence, (�m, um) converges in

S

k2N Sk,⇤. Now we can use Lemma 5.4.2 to deduce that
�
⇤

= lim supSn,⇤ is a continuum which, using the second part of Lemma 5.3.3, is contained in M.
In fact, since for every n 2 N there exists (⇤, un) 2 Sn,⇤, then we have that Proj

[0,⇤]

�
⇤

= [0,⇤].
Furthermore, by construction,�

⇤

is increasing in ⇤ and we can take ⌃=
S

n2N �n. Observe that

since (0, u) 2 �n for every n 2 N then⌃ ⇢ M is a connected set in [0,+1) ⇥ C(⌦). Moreover,
Proj

[0,1)

⌃ =
S

n2N[0, n] = [0,1).
Now we deal with the proof in the case of item i i). In this case, since µ(x) is constant and � < 1,

we have that g(s) = 1

s�+s�
verifies (5.14) and (5.9). Thus, the unbounded continuum ⌃ of solutions

of (Q�) is obtained from Theorem 5.3.5. In addition, the projection of ⌃ to the �-axis has to be
bounded, since we can use (Arcoya et al., 2011, Theorem 5.1) to deduce the existence of �⇤. Observe
that g 2 L1(0,+1) and

lim
s!1

sp
R s

0

e
R
s

r

g(t)dtdr
= lim

s!1
e
R
s

1 (
p

t

�g(t))dt
R s

0

e�
R
r

1 g(t)dtdr
= lim

s!1

⇣p
s
� g(s)

⌘

sp

= lim
s!1

sp�1

✓

p� s1��

s��� + 1

◆

=

⇢

1, p = 1,
1, p > 1.

Therefore g verifies condition (1.6) in Arcoya et al. (2011). ⇤
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Proof:[Proof of Theorem 5.1.2] We observe that, for every n 2 N fixed, the function gn(s) =
1

(s+1/n)

�

+(s+1/n)

�

satisfies (5.14) for �  1 and general µ(x) (see Cases 1-3 of Appendix). Thus

by Theorem 5.3.5 there exists a continuum⌃ n in [0,+1) ⇥ C(⌦) of positive solutions of (Qn,�)
such that (0, un) 2 ⌃n with un solution of (Qn,0). We claim that Proj

[0,1)

⌃n = [0,1). Indeed,
this is a consequence of the bound on the norm, for � in bounded sets, of the solutions of (Qn,�).
More precisely, this bound is obtained by means of Lemma 5.2.1, for p < 1 and Lemma 5.2.2 with
g
0

(s) = 1

(s+1)

�

+(s+1)

�

for p � 1.

The existence of the unbounded continuum ⌃ with Proj
[0,1)

⌃ = [0,1) is deduced now arguing
as in the proof of Theorem 5.1.1, observe that Lemma 5.3.3 with �n = 0 assures that, passing to
subsequence, un converges strongly to u solution of (Q

0

). To conclude, we note by Remark 5.3.4 the
need to consider M < 2 in the case � = � = 1. ⇤

Remark 5.4.3 Thanks to Case 4 of Appendix it is worth stressing that the previous theorem could
be extended to � = 1 < � if M  1.

Remark 5.4.4 A simplest proof of Theorem 5.1.2 can be obtained in the particular case � = �  1.
Indeed, the function g(s) = 1/s� with � < 1 satisfies condition (5.14) and this condition is also
satisfied in the case � = 1 if, in addition, we assume that M < 1 (see Remark 5.3.4). Consequently
applying directly Theorem 5.3.5 for � < 1 and Remark 5.3.2 for � = 1 we can deduce the existence of
an unbounded continuum ⌃ of solutions of (R�). Moreover, using Lemma 5.2.1 in the case p < 1 or
Lemma 5.2.2, with � = � and g

0

(s) = 1/s� , in the case p > 1, we can assure that Proj
[0,1)

⌃ = [0,1),
concluding the claim.

Appendix

We devote this appendix to include the proof of Lemma 5.2.1 as well as the proof of (5.14) in some
particular cases.

Proof:[Proof of Lemma 5.2.1] We choose suitable test functions taking into account (Arcoya et al.,
2011, Lemma 2.1). We divide the proof into two steps:
STEP I. There exists a positive constant C such that, for every g � 0 and every solution u of (P�)
with 0 < � < ⇤, one has kukH1

0 (⌦)

 C.
Indeed, take ' = u as a test function to obtain, dropping the positive term given by the lower

order term, that
Z

⌦

|ru|2 
Z

⌦

�up+1 +

Z

⌦

f
0

u .

Since p+ 1 < 2, we can use Hölder and Sobolev inequalities in the right hand side to conclude

Z

⌦

|ru|2  c

 

✓

Z

⌦

|ru|2
◆

p+1
2

+

✓

Z

⌦

|ru|2
◆

1
2

!

,

for some positive constant c depending only on⇤ ,⌦, f
0

and p. This inequality give us Step I with C
the unique positive solution of the equation s2 = c(sp+1 + s).

STEP II. There exists C > 0 such that, for every g � 0 and every solution u of (P�) with 0 < � < ⇤,
one has kukL1

(⌦)

 CkukL1
(⌦)

.
Given k > 1, we take ' = Gk(u) as a test function in (P�). Hence, dropping the positive lower

order term and using Hölder’s inequality in the right hand side, we have

Z

⌦

|rGk(u)|2 
Z

A
k

(�+ f
0

)u2  k�+ f
0

kLq

(⌦)

✓

Z

A
k

u2q0
◆

1
q

0

, (5.16)

where Ak = {x 2 ⌦ : u(x) > k}. Throughout the proof, C denotes di↵erent positive constants
depending only on⇤, f

0

, p and ⌦.
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Firstly, we estimate the right hand side of (5.16) using Hölder and Sobolev inequalities and the
fact that u = Tk(u) +Gk(u). Thus,

✓

Z

A
k

u2q0
◆

1
q

0

 C

✓

k2q0 |Ak|+
Z

A
k

Gk(u)
2q0
◆

1
q

0

 C

✓

Z

A
k

Gk(u)
2q0
◆

1
q

0

+ C k2|Ak|
1
q

0

 C

✓

Z

⌦

Gk(u)
2

⇤
◆

2
2⇤

|Ak|
1
q

0 � 2
2⇤ + C k2|Ak|

1
q

0

 C |Ak|
1
q

0 � 2
2⇤
Z

⌦

|rGk(u)|2 + C k2|Ak|
1
q

0 .

Consequently, from (5.16) we have,
Z

⌦

|rGk(u)|2  C k�+ f
0

kLq

(⌦)

✓

|Ak|
1
q

0 � 2
2⇤
Z

⌦

|rGk(u)|2 + k2|Ak|
1
q

0

◆

.

Using Step I we have that k|Ak|  kukL1
(⌦)

 C and, since 1

q0 �
2

2

⇤ > 0, we can choose k big enough
such that

Z

⌦

|rGk(u)|2  C k�+ f
0

kLq

(⌦)

k2|Ak|
1
q

0 .

Using Hölder and Sobolev inequalities and the above inequality we conclude
Z

A
k

Gk(u)  C k |Ak|1+
1

2q0 �
1
2⇤ ,

which gives us the result applying (Hartman and Stampacchia, 1966, Lemma 7.2) (see also (Ladyzhen-
skaya and Ural’tseva, 1968, Lemma 5.1, pag 71)).

Summarizing Step I and Step II, we conclude the proof. ⇤
Now we prove (5.14) for g(s) = 1

(s+ 1
n

)�+(s+ 1
n

)�
and 0 < �  �  1 or M < 1 = � < �.

Proof:[Proof of (5.14)] For every ⌫ > 0, we take g̃(s) = h(s)g(s) for a convenient function
h 2 C1([0,+1)), such that, for some ✓⌫ � 0

✓⌫

✓✓

µ(x)
g0(s)
g2(s)

� h(s)
g0(s)
g2(s)

� h0(s)
g(s)

◆

+ h(s)(µ(x)� h(s))

◆

� (µ(x)� h(s))2, 8s < ⌫ .

Observe that this inequality is trivially satisfied if h(s) = µ(x) and h0(s)  0 while, in other case,
it is equivalent to prove that the function

�(x, s) ⌘
(µ(x)� h(s))

⇣

h(s) + g0(s)
g2(s)

⌘

� h0
(s)

g(s)

(µ(x)� h(s))2

is bounded from below by a positive constant. We point out that

g0(s)
g2(s)

= ��
✓

s+
1
n

◆��1

� �

✓

s+
1
n

◆��1

.

Now we choose the function h(s) based on the di↵erent values of � and �.
Case 1. �  � < 1.

In this case we take h(s) = �g0(s)/g2(s) = �(s+ 1

n
)��1 + �(s+ 1

n
)��1. Thus

h0(s) = �(� � 1)

✓

s+
1
n

◆��2

+ �(� � 1)

✓

s+
1
n

◆��2

< 0.
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In particular, we have that �(x, s) is given by
⇣

�(1� �)
�

s+ 1

n

���2

+ �(1� �)
�

s+ 1

n

���2

⌘⇣

�

s+ 1

n

��
+
�

s+ 1

n

��
⌘

⇣

µ(x)� �
�

s+ 1

n

���1 � �
�

s+ 1

n

���1

⌘

2

=

⇣

�(1� �)
�

s+ 1

n

����
+ �(1� �)

⌘⇣

�

s+ 1

n

����
+ 1
⌘

⇣

µ(x)
�

s+ 1

n

�

1�� � �
�

s+ 1

n

���� � �
⌘

2

We conclude by taking into account that this function (which may take infinite values) only vanishes
for s ! +1.
Case 2. � < � = 1.

In this case we take again h(s) = �g0(s)/g2(s) = �(s+ 1

n
)��1 + 1. Thus

h0(s) = �(� � 1)

✓

s+
1
n

◆��2

< 0.

In particular, we have

�(x, s) =

⇣

�(1� �)
�

s+ 1

n

���2

⌘

��

s+ 1

n

��
+
�

s+ 1

n

��

⇣

µ(x)� �
�

s+ 1

n

���1 � 1
⌘

2

.

We conclude, as before, by taking into account that this function only vanishes for s ! +1.
Case 3. � = � = 1.

In this case we can choose h(s) = 2 + 1

1+3ns
and we have

�(x, s) =
(µ(x)� 2� 1

1+3ns
) 1

1+3ns
+ 6n(s+1/n)

(1+3ns)2

⇣

µ(x)� 2� 1

1+3ns

⌘

2

>

�3�6ns
(1+3ns)2

+ 6n(s+1/n)

(1+3ns)2

⇣

µ(x)� 2� 1

1+3ns

⌘

2

=
3

((µ(x)� 2)(1 + 3ns)� 1)2

We conclude again using that this function only vanishes for s ! +1.
Case 4. M  1 = � < �.

In this case we can choose h(s) = 1 and, since g0(s)
g2(s)

= �1� �(s+ 1

n
)��1, we have

�(x, s) =
1� 1� �(s+ 1

n
)��1

µ(x)� 1
=
�(s+ 1

n
)��1

1� µ(x)
� �

n��1(1� µ(x))
.

⇤
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The Gelfand problem for the
1-homogeneous p-laplacian
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Abstract

In this paper we study the existence of viscosity solutions to the Gelfand
problem for the 1-homogeneous p-laplacian in a bounded domain⌦ ⇢ RN , that
is, we deal with � 1

p�1 |ru|2�p div
�|ru|p�2ru

�

= � eu in ⌦ with u = 0 on @⌦.

For this problem we show that, for p 2 [2,1], there exists a positive critical value
�⇤ = �⇤ (⌦, N, p) such that:

• If � < �⇤, the problem admits a minimal positive solution w�.

• If � > �⇤, the problem admits no solution.

Moreover, the branch of minimal solutions {w�} is increasing with �.
In addition, using degree theory, for fixed p we show that there exists an

unbounded continuum of solutions that emanates from the trivial solution, u = 0
with � = 0 and for a small fixed � we also obtain a continuum of solutions with
p 2 [2,1].
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6.1 Introduction

This paper deals with the Gelfand problem corresponding to the 1-homogeneous p-Laplacian,

⇢

��N
p u = � eu , in⌦,

u = 0 , on @⌦,
(P�,p)

where⌦ ⇢ RN is a regular bounded domain, p 2 [2,1] and the operator� N
p is the called 1-

homogeneous p-laplacian (also called the normalized p�Laplacian) defined, for p < 1, by

�N
p u :=

1
p� 1

|ru|2�p div
�

|ru|p�2ru
�

= ↵�u+ ��1u, (6.1)

being ↵ = 1/(p� 1), � = (p� 2)/(p� 1) and for p = 1

�1u ⌘ �N
1u =

ru
|ru| ·

✓

D2u
ru
|ru|

◆

the 1-homogeneous infinity laplacian. This kind of elliptic operators for 2  p < 1 have 1 and
1/(p � 1) as ellipticity constants, hence there is a lack of uniform ellipticity when we let p ! 1.
Therefore, the theory of uniformly elliptic operators can not be applied. Moreover, we remark the
lack of variational structure and di↵erentiability of this operator, in contrast to what happens with
the classical p-laplacian. This fact implies that the theory concerning “stable solutions” can not be
applied to our problem.

Note that the 1-homogeneous p-laplacian is a convex combination of laplacian and infinity lapla-
cian operators since ↵ + � = 1. Moreover, ↵ = 1, � = 0 if p = 2 and ↵ ! 0, � ! 1 as p ! 1.
This operator appears when one considers Tug-of-War games with noise, see Manfredi et al. (2012);
Peres and She�eld (2008); Peres et al. (2009), where the Poisson problem is studied. Moreover, the
sublinear problem and the eigenvalue problem associated to the 1-homogeneous p-Laplacian, namely,
the problem with right-hand side �uq for 0 < q  1 , has been studied in Mart́ınez-Aparicio et al.
(2014a) and Mart́ınez-Aparicio et al. (2014b). In view of these two references it seems natural to
deal with the superlinear case (that for this operator is challenging due to the fact that there is no
variational structure and no Sobolev spaces framework).

Concerning the Gelfand problem, since it is a classical problem, there is a large number of refer-
ences. We quote: Arcoya et al. (2014); Cabré and Capella (2006); Cabré and Sanchón (2013); Gel’fand
(1963); Molino (2016) and references therein for the Laplacian and Ros-Oton (2014) for the fractional
Laplacian.

Our first result for this problem reads as follows:

Theorem 6.1.1 For every fixed p 2 [2,+1] there exists a positive extremal parameter �⇤ = �⇤ (⌦, N, p)
such that:

• If � < �⇤, problem (P�,p) admits a minimal positive solution w�.

• If � > �⇤, problem (P�,p) has no positive solution.

Moreover, the branch of minimal solutions {w�} is increasing with �. Even more, in the case of a
ball, ⌦ = Br, the minimal solution is radial.

One of our main tools for the proof of this result is a comparison principle (that we prove here)
adapted to the particular structure of the 1-homogeneous p-laplacian (see Theorem 6.3.3). This result
generalizes previous ones in Barles and Busca (2001); Mart́ınez-Aparicio et al. (2014a). We believe
that this comparison principle is of independent interest.

Using arguments from degree theory we can obtain the following result concerning solutions that
are not necessarily the minimal one. Remark that we even obtain a continuum of solutions for a fixed
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p using � as parameter or for fixed � small taking p as parameter. More precisely, fixed p we denote
by Sp to the solution set, i.e.

Sp = {(�, u) 2 [0,�⇤(⌦, N, p)]⇥ C(⌦) : u solves (P�,p)}.

Analogously, fixed � we denote by S� to the solution set

S� = {(p, u) 2 [2,1]⇥ C(⌦) : u solves (P�,p)}.

Theorem 6.1.2 For every fixed p 2 [2,1], there exists an unbounded continuum of solutions C ⇢
Sp that emanates from � = 0, u = 0, i.e. (0, 0) 2 C. Moreover, for every fixed � < �

0

=
min{�⇤(⌦, N, 2), (2d2e)�1}, where d is the diameter of ⌦, there exists a continuum of solutions
D ⇢ S�, with Proj

[2,+1]

D = [2,+1] and kuk1  1, 8(p, u) 2 D.

We remark that, as a consequence of the previous theorem there is a lower bound for the extremal
parameter found in Theorem 6.1.1, 0 < �

0

 �⇤(⌦, N, p) for every p 2 [2,+1].
The use of degree theory is new for this kind of operators. Here we perform homotopies both in

the parameters � and p. The deformation in p is needed in order to start the argument with the trivial
solution u = 0 for the problem with p = 2 and � = 0, �u = 0, that is known to have degree 1. Note
that, due to the non smoothness of the operator, there is a nontrivial di�culty in the computation of
the degree of the trivial solution to� N

p u = 0. Also note that the necessary compactness is nontrivial,
we rely here in results from Charro et al. (2013).

Remark 6.1.3 Our results can be generalized to handle the equation

��N
p u = �f(u),

with a general continuous nonlinearity f that verifies

f(0) > 0, f(s) is increasing and
f(s)
s

� k > 0.

To simplify the exposition we just write the details for f(s) = es and we make a comment at the end
of the paper on how to deal with this general case.

The rest of the paper is organized as follows: in Section 6.2 we collect some preliminaries and
state the definition of a viscosity solution to our equation, in Section 6.3 we prove our comparison
result, and finally in Sections 6.4 and 6.5 we prove our main results concerning the Gelfand problem.

6.2 Preliminaries

In this section we introduce the notion of viscosity solution for problem (P�,p). Actually we give the
definition for a more general family of nonlinearities and we consider the following boundary value
problem:

⇢

��N
p u = � f(x, u) , in⌦,

u = 0 , on @⌦,
(6.2)

where f : ⌦⇥ R ! R is a continuous function.

Since the normalized infinity laplacian,� 1u = ru
|ru| ·

⇣

D2u ru
|ru|

⌘

is not well defined at the points

where |ru(x)| = 0, we have to use the semicontinuous envelopes of the operator

(⇠, X) 7! ⇠
|⇠| ·

✓

X
⇠
|⇠|

◆

, ⇠ 2 RN , X 2 SN
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in order to define viscosity solutions for problem (6.2) (see Chen et al. (1991); Crandall et al. (1992)).
To this end, we denote the largest and the smallest eigenvalue for A 2 SN by M(A) and m(A),
respectively. That is,

M(A) = max
|⌘|=1

⌘ · (A⌘) , m(A) = min
|⌘|=1

⌘ · (A⌘) .

Let us denote by USC(!) the set of upper semicontinuous functions u : ! ⇢ RN ! R, and we
denote by LSC(!) the set of lower semicontinuous functions.

Definition 6.2.1

1. u 2 USC(⌦) is a viscosity subsolution of the equation ��N
p u = � f(x, u) if whenever x

0

2 ⌦
and ' 2 C2(⌦) such that '(x

0

) = u(x
0

) and '� u > 0 in ⌦ \ {x
0

}, then
(

��N
p '(x0

)  � f(x
0

,'(x
0

)) , if r'(x
0

) 6= 0,

�↵�'(x
0

)� �M
�

D2'(x
0

)
�

 � f(x
0

,'(x
0

)) , if r'(x
0

) = 0.
(6.3)

If, in addition, u 2 USC(⌦) and u  0 on @⌦ we say that u is a subsolution of (6.2).

2. u 2 LSC(⌦) is a viscosity supersolution of the equation ��N
p u = � f(x, u) if whenever x

0

2 ⌦
and  2 C2(⌦) such that  (x

0

) = u(x
0

) and u�  > 0 in ⌦ \ {x
0

}, then
(

��N
p  (x0

) � � f(x
0

, (x
0

)) , if r (x
0

) 6= 0,

�↵� (x
0

)� �m
�

D2 (x
0

)
�

� � f(x
0

, (x
0

)) , if r (x
0

) = 0.
(6.4)

If, in addition, u 2 LSC(⌦) and u � 0 on @⌦ we say that u is a supersolution of (6.2).

3. A continuous function u : ⌦ ! R is a viscosity solution of (6.2) if it is both, a viscosity
supersolution and a viscosity subsolution.

In what follows, ' stands for test functions whose graph touches the graph of u from above, and
 denotes test functions whose graph touches the graph of u from below. Notice that the inequalities
' � u > 0 and u �  > 0 have to be satisfied in a neighborhood of {x

0

} and not necessarily in the
whole⌦ \ {x

0

}.

Remark 6.2.2 Let u be a classical subsolution of (6.2), that is, u 2 C2(⌦), u  0 on @⌦ and for
every x 2 ⌦ satisfies

(

��N
p u(x)  � f(x, u(x)) , if ru(x) 6= 0,

�↵�u(x)� �M
�

D2u(x)
�

 � f(x, u(x)) , if ru(x) = 0.

Then u is a viscosity subsolution. Indeed, let ' 2 C2(⌦) be such that '(x
0

) = u(x
0

) and '� u > 0 in
⌦ \ {x

0

}, then r('� u)(x
0

) = 0 and D2('� u)(x
0

) is a positive definite N ⇥N matrix. Therefore,

⌘ ·
�

D2'(x
0

)⌘
�

� ⌘ ·
�

D2u(x
0

)
�

⌘,⌘ 2 RN ,

and tr
�

D2'(x
0

)
�

� tr
�

D2u(x
0

)
�

(i.e. �'(x
0

) � �u(x
0

)). Hence, if ru(x
0

) 6= 0, we obtain

�↵�'(x
0

)� ��N
1'(x0

)  �↵�u(x
0

)� ��N
1u(x

0

)  �f(x
0

,'(x
0

)).

Finally, using that M(D2'(x
0

)) � M(D2u(x
0

)) for ru(x
0

) = 0, it follows that u is a viscosity
subsolution. We can proceed analogously with the supersolution case. Thus, classical solutions of
(6.2) are solutions in the viscosity sense.
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Let us observe that u 2 USC(⌦) is a viscosity subsolution of ��N
p u = � f(x, u) if

8

<

:

�↵ tr(X)� �
⌘
|⌘| ·

✓

X
⌘
|⌘|

◆

 � f(x
0

,'(x
0

)) , if ⌘ 6= 0,

�↵ tr(X)� �M (X)  � f(x
0

,'(x
0

)) , if ⌘ = 0.
(6.5)

whenever x
0

2 ⌦ and (⌘, X) =
�

r'(x
0

), D2'(x
0

)
�

2 RN ⇥ SN for some ' 2 C2(⌦) such that
'(x

0

) = u(x
0

) and ' � u > 0 in ⌦ \ {x
0

}. Thus, as in Crandall et al. (1992), we can characterize
viscosity sub and supersolutions using the concept of upper and lower semijets in the sense of the
following definition.

Definition 6.2.3 For u 2 USC(O) and x
0

2 O we define the upper semijet

J2,+
O u(x

0

) =
��

r'(x
0

), D2'(x
0

)
�

: ' 2 C2(O), '(x
0

) = u(x
0

) and

'� u has a local minimum at x
0

} .

Analogously, for u 2 LSC(O) and x
0

2 O, we define the lower semijet

J2,�
O u(x

0

) =
��

r (x
0

), D2 (x
0

)
�

:  2 C2(O),  (x
0

) = u(x
0

) and

 � u has a local maximum at x
0

} .

Finally, we introduce the sets J
2,+
O u(x

0

), J
2,�
O u(x

0

) as follows: (p,X) 2 J
2,+
O u(x

0

) if there exist
xn 2 Br(x0

) and (pn, Xn) 2 J2,+
O u(xn), such that u(xn) ! u(x

0

) and (xn, pn, Xn) ! (x
0

, p,X) as

n ! 1. An analogous statement holds for J
2,�
O u(x

0

).

Remark 6.2.4 It is clear that u 2 USC(⌦) is a viscosity subsolution of ��N
p u = � f(x, u) if (6.5)

is verified for every (⌘, X) 2 J2,+
⌦

u(x
0

). Moreover, if u is a subsolution then (6.5) is verified for every

(⌘, X) 2 J
2,+
⌦

u(x
0

). The analogous statement holds for supersolutions.

Remark 6.2.5 In Imbert et al. (2016) a parabolic equation of the form

ut = |ru|�(�u+ (p� 2)�N
1u)

was studied using viscosity solutions. The definition of viscosity solutions given there (inspired in
Ohnuma and Sato (1997)) di↵ers from ours. In fact, in Imbert et al. (2016) the authors restrict the
class of test functions in order to give sense to the equation when the gradient vanishes (note that
this parabolic problem can be singular or degenerate according to the value of �). In our definition
we do not restrict the test functions but we give a meaning to �N

1u in terms of the largest and the
smallest eigenvalue of D2u at points where the gradient vanishes. With our definition we can prove a
comparison principle in the next section.

6.3 Comparison principle and Uniqueness

In this section, we start giving su�cient conditions on f to prove a comparison principle and hence
obtain uniqueness for (6.2).

Definition 6.3.1 Given a positive function h 2 C1(0,+1) such that h 2 L1(0, 1) and h0(s)/h2(s) is
nondecreasing, we say that f : ⌦⇥ R ! R satisfies the h-decreasing condition if for every x 2 ⌦

h(s)f(x, s) is decreasing respect to s. (6.6)
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Remark 6.3.2 Observe that if f(x, s) = f
0

(x) > 0, that is, f does not depend on s, then f satisfies
the h-decreasing condition for h(s) = 1

sq
for any 0 < q < 1. In addition, when f(x, s) = f

0

(x)sq > 0
for some 0  q < 1 then f satisfies the h-decreasing condition for h(s) = 1

sq+"

for any 0 < " < 1� q.

Moreover, taking h a decreasing function, we obtain that any function 0 < f 2 C1(⌦⇥R) nonincreasing
with respect to s also satisfies the h-decreasing condition (since h0(s)f(x, s) + h(s)f 0

s(x, s) < 0 in this
case).

Theorem 6.3.3 Assume that 0 < f 2 C(⌦⇥R) satisfies the h-decreasing condition. Let u, u 2 C(⌦)
be respectively a sub and a supersolution of ��N

p u = f(x, u) such that u > 0 in ⌦ and u  u on @⌦.
Then u  u in ⌦.

Proof: We argue by contradiction following closely the ideas in Crandall et al. (1992). Suppose that
⌦+ = {x 2 ⌦ : u(x) > u(x)} is non empty. Let

H(s) =

Z s

0

h(t)dt,

for s � 0. By hypothesis u  u on @⌦ and using that u, u 2 C(⌦) we have that there exists x̂ 2 ⌦+

with

H(u(x̂))�H(u(x̂)) = sup
x2⌦

+
H(u(x))�H(u(x)) > 0.

Since⌦ + is an open set we can take ⌦̂, an open neighborhood of x̂, such that ⌦̂ ⇢ ⌦+. Now, let w
and w be the positive functions defined for x 2 ⌦̂ by

w(x) = H(u(x)) and w(x) = H (u(x)) .

Clearly w,w 2 C(⌦̂) and
w(x) > w(x) > 0, x 2 ⌦̂. (6.7)

Now, we claim that w,w are a sub and a supersolution (in the viscosity sense) of the equation

��N
p w +

h0(H�1(w))
h2(H�1(w))

|rw|2 = h(H�1(w))f(x,H�1(w)), in ⌦̂. (Q)

Indeed, we proceed to show that w is subsolution (the fact that w is a supersolution can be proved in
the same way). For every x

0

2 ⌦̂ we take ' 2 C2(⌦̂) with '(x
0

) = w(x
0

) and '(x) > w(x) for every
x 2 ⌦̂ \ {x

0

}. If r'(x
0

) 6= 0 and we take '̃ = H�1('), then it is easy to check that

��N
p '(x0

) +
h0(H�1('(x

0

)))
h2(H�1('(x

0

)))
|r'(x

0

)|2

= �↵�'(x
0

)� ��1'(x0

) + h0('̃(x
0

))|r'̃(x
0

)|2

= �↵�'̃(x
0

)h('̃(x
0

))� ↵h0('̃(x
0

))|r'̃(x
0

)|2 � ��1'̃(x0

)h('̃(x
0

))

��h0('̃(x
0

))|r'̃(x
0

)|2 + h0('̃(x
0

))|r'̃(x
0

)|2

= ��N
p '̃(x0

)h('̃(x
0

)).

Now, taking into account that '̃(x
0

) = u(x
0

) and ('̃ � u)(x) > 0 in ⌦̂ \ {x
0

}, it follows that '̃ is a
test function touching from above u at x

0

. Thus, since u is subsolution of ��N
p u = f(x, u) we get

��N
p '̃(x0

)  f(x
0

, H�1('̃(x
0

))).

Consequently

��N
p '(x0

) +
h0(H�1('(x

0

)))
h2(H�1('(x

0

)))
|r'(x

0

)|2  h(H�1('(x
0

)))f(x
0

, H�1('(x
0

))).
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In case r'(x
0

) = 0, since r'̃(x
0

) = 0 and D2'(x
0

) = h('̃(x
0

))D2'̃(x
0

), we have

�↵�'(x
0

)� �M
�

D2'(x
0

)
�

= �↵�'̃(x
0

)h('̃(x
0

))� �M
�

D2'̃(x
0

)
�

h('̃(x
0

))

 h(H�1('(x
0

)))f(x
0

, H�1('(x
0

))).

Therefore, we conclude that w is a subsolution of problem (Q), which was our claim.
Now, consider the sequence of functions

 n(x, y) = w(x)� w(y)� n
4
|x� y|4, (x, y) 2 ⌦̂⇥ ⌦̂, n 2 N.

For every n 2 N, let (xn, yn) 2 ⌦̂⇥ ⌦̂ be such that

 n(xn, yn) = sup
ˆ

⌦⇥ˆ

⌦

 n(x, y),

we note that n(xn, yn) is finite since w�w is continuous and ⌦̂ is compact. Moreover n(xn, yn) �
 (x, x) = w(x) � w(x) > 0. Furthermore, we can assume that xn, yn ! x̂, ŷ, w(xn) ! w(x̂) and
w(yn) ! w(ŷ) as n ! 1 and that x̂ = ŷ (see (Crandall et al., 1992, Lemma 3.1 and Proposition
3.7)). Next, by (Crandall et al., 1992, Theorem 3.2), there exist Xn, Yn 2 SN satisfying

(i) Xn  Yn,

(ii) (⌘n, Xn) 2 J
2,+
ˆ

⌦

(w(xn)), (⌘n, Yn) 2 J
2,�
ˆ

⌦

(w(yn)),

(iii) Xn  0  Yn, for xn = yn,

where ⌘n = n|xn � yn|2(xn � yn).
Hence, if xn 6= yn, having in mind that w and w are sub and supersolution of (Q) and using

Remark 6.2.4, we obtain that

h(H�1(w(yn)))f(yn, H
�1(w(yn)))

 �↵ tr(Yn)� �
⌘n
|⌘n|

·
✓

Yn
⌘n
|⌘n|

◆

+
h0(H�1(w(yn)))
h2(H�1(w(yn)))

|⌘n|2

 �↵ tr(Xn)� �
⌘n
|⌘n|

·
✓

Xn
⌘n
|⌘n|

◆

+
h0(H�1(w(xn)))
h2(H�1(w(xn)))

|⌘n|2

+

✓

h0(H�1(w(yn)))
h2(H�1(w(yn)))

� h0(H�1(w(xn)))
h2(H�1(w(xn)))

◆

|⌘n|2

 h(H�1(w(xn)))f(xn, H
�1(w(xn)))

+

✓

h0(H�1(w(yn)))
h2(H�1(w(yn)))

� h0(H�1(w(xn)))
h2(H�1(w(xn)))

◆

|⌘n|2 ,

letting n ! 1 and by continuity of w,w, f , h, h0 and using that h0/h2 is nondecreasing, we get

h(H�1(w(x̂)))f(x̂, H�1(w(x̂)))  h(H�1(w(x̂)))f(x̂, H�1(w(x̂))).

This is a contradiction with (6.7) since it implies, using (6.6) that

h(H�1(w(x̂)))f(x̂, H�1(w(x̂))) > h(H�1(w(x̂)))f(x̂, H�1(w(x̂))).

If xn = yn for n � n
0

, then ⌘n = 0 and by (iii) we have

h(H�1(w(yn)))f(yn, H
�1(w(yn)))  �↵ tr(Yn)� �m(Yn)

 �↵ tr(Xn)� �M(Xn)

 h(H�1(w(xn)))f(xn, H
�1(w(xn))) ,

and, arguing as above, it leads to the contradiction. ⇤
Let us extract easy consequences of this comparison principle.
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Proposition 6.3.4 [Uniqueness] Assume that 0 < f 2 C(⌦⇥R) satisfies the h-decreasing condition.
Then, there exists at most one positive viscosity solution of

⇢

��N
p u(x) = f(x, u) , in ⌦,

u = 0 , on @⌦.
(P )

Proof: Suppose that there exist u
1

, u
2

� 0 two solutions of (P ). Using twice Theorem 6.3.3 we
obtain that u

1

 u
2

and u
2

 u
1

, and we conclude that u
1

= u
2

. ⇤
The next result improves Mart́ınez-Aparicio et al. (2014a) where a starshaped condition on the

domain ⌦ was required.

Corollary 6.3.5 As a particular case, we can assert that there exists a unique positive solution of
⇢

��N
p u(x) = �uq , in ⌦,

u = 0 , on @⌦,

for every � > 0 and 0 < q < 1. Moreover, for � = 0, the problem admits as unique solution, u = 0.

Proof: For � > 0, the uniqueness is due to Proposition 6.3.4 and existence to (Mart́ınez-Aparicio
et al., 2014a, Theorem 3.1) (which can be extended to the case p = 1 using the same iterative
procedure as in (Mart́ınez-Aparicio et al., 2014a, Theorem 3.1)). For � = 0, we observe that u is a
solution of ��N

p u = 0 if and only if ��pu = 0 in the viscosity sense, (this holds since it is enough to
test the equation ��pu = 0 with test functions with r' 6= 0, see Juutinen et al. (2001)). Thus, the
trivial solution u = 0 is the unique solution when � = 0. ⇤

6.4 Existence of Minimal Solutions for the Gelfand
problem

The first result of this section shows how one can pass to the limit in a sequence of viscosity solutions
of a sequence of problems to obtain a viscosity solution of the limit problem.

Lemma 6.4.1 Let un, fn 2 C(⌦) and pn 2 [2,1] be three sequences satisfying

��N
p
n

un = fn, (6.8)

in the viscosity sense, such that fn ! f , un ! u uniformly for every ! ⇢⇢ ⌦ and pn ! p 2 [2,1].
Then, u is a viscosity solution to the problem

��N
p u = f. (6.9)

Proof: First, we prove that u is a subsolution. For every x
0

2 ⌦ we take ' 2 C2(⌦) such that
'(x

0

) = u(x
0

) and '� u > 0 in ⌦ \ {x
0

}. Fix � > 0 such that B�(x0

) ⇢ ⌦, and for every n 2 N, we
consider xn as the strict minimum point (not necessarily unique) of '� un in B�(x0

), i.e.,

('� un) (xn)  ('� un) (x), for all x 2 B�(x0

).

Up to a subsequence, we can assume that xn ! x⇤ 2 B�(x0

). Using that un is continuous and that
the sequence un uniformly converges to u we deduce that un(xn) ! u(x⇤). We obtain, taking limits
in the above inequality, that

('� u) (x⇤)  ('� u) (x), for all x 2 B�(x0

),

and we can assert that x⇤ = x
0

. We set

'n(x) = '(x) + un(xn)� '(xn) + kx� xnk4, x 2 B�(x0

).
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It is easy to check that 'n satisfies:

'n(xn) = un(xn), r'n(xn) = r'(xn), D2'n(xn) = D2'(xn)

and
('n � un) (x) > 0

in a neighborhood of xn. Thus, using that un is a subsolution of (6.8), taking 'n as test function we
obtain that

1. If r'n(xn) 6= 0 then �↵n�'n(xn)� �n�1'n(xn)  fn(xn) and thus

� ↵n�'(xn)� �n�1'(xn)  fn(xn). (6.10)

2. If r'n(xn) = 0 then �↵n�'n(xn)� �nM(D2'n(xn))  fn(xn) and thus

� ↵n�'(xn)� �nM(D2'(xn))  fn(xn), (6.11)

where ↵n =
1

pn � 1
, �n =

pn � 2
pn � 1

if pn < +1 and ↵n = 0,�n = 1 if pn = 1.

Now, denoting ↵ =
1

p� 1
, � =

p� 2
p� 1

if p < +1 and ↵ = 0,� = 1 in other case, we distinguish

three di↵erent cases:

Case i): r'(x
0

) 6= 0. In this case, we can suppose that, up to a subsequence, r'n(xn) 6= 0 for n � n
0

and, taking into account that ' 2 C2 and the continuity and uniform convergence of fn, we
can pass to the limit in (6.10) as n ! 1 to obtain

�↵�'(x
0

)� ��1'(x0

)  f(x
0

).

Case ii): r'(x
0

) = 0 and, up to a subsequence, r'n(xn) 6= 0 for n � n
0

. In this case, since

�1'(xn)  M(D2'(xn))

replacing in (6.10) we get (6.11) and taking limits we obtain the desired inequality

� ↵�'(x
0

)� �M(D2'(x
0

))  f(x
0

). (6.12)

Case iii): r'(x
0

) = r'n(xn) = 0, for n � n
0

we obtain (6.12) directly from (6.11).

On the other hand, to prove that u is a supersolution, we argue in a similar way. To be more
specific, for every x

0

2 ⌦ we take the test function  2 C2(⌦), satisfying u�  has a strict minimum
at x

0

with  (x
0

) = u(x
0

). Now, taking xn, the strict minimum of un �  in B�(x0

) ⇢ ⌦, we set
 n(x) =  (x) + un(xn) �  (xn) � kx � xnk4 as the test function in (6.8) touching the graph of un

from below in xn. The rest of the proof runs as before. ⇤
Now we can prove the existence of minimal solutions of (P�,p) for � small and nonexistence of

solutions for � large, that is, we prove Theorem 6.1.1.
Proof:[Proof of Theorem 6.1.1] Let z 2 C2([0, 1]) be a classical solution to the problem

8

>

<

>

:

�z00(r)� ↵(N � 1)
z0(r)
r

= � ez(r) , r in (0, 1),

z(1) = 0, z0(0) = 0,

(6.13)

with

↵ =
1

p� 1
if p < +1 and ↵ = 0 in other case.

Then u(x) := z(|x|) is a solution to the problem
8

<

:

��N
p u = � eu , in B

1

,
u > 0, in B

1

,
u = 0 , on @B

1

,
(6.14)
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in the sense of Definition 6.2.1-(iii) (see also Remark 6.2.2). Due to Joseph and Lundgren (1972/73),
it is well known that there exists a positive number �̃(B

1

), depending only on p,N , such that problem
(6.13) has no solution for � > �̃(B

1

). Moreover, for every 0  � < �̃(B
1

) there exists a classical
solution z 2 C2([0, 1]) (see also Jacobsen and Schmitt (2002) for a complete description of the mul-
tiplicity of solutions). Observe that for any classical solution z 2 C2([0, 1]), � � 0, of (6.13) it holds
that �  �̃(B

1

) (we refer again to Jacobsen and Schmitt (2002) for a complete description of the
multiplicity of solutions).

Note also that the relationship between classical solutions of (6.13) and viscosity radial solutions
of (6.14) is bidirectional. Given u 2 C(B̄

1

) solution of (6.14) radially symmetric and decreasing then
z(r) = u(|x|) for some x 2 ⌦ with |x| = r satisfies (6.13) in the weak sense (which is equivalent to be
a classical solution in this case).

Taking into account Remark 6.2.2, u is also a solution to our problem in the viscosity sense.
Now, for any fixed R > 0, we can rescale the problem and consider

v(r) := z(r/R).

It is easy to check that we arrive to the ODE
8

>

<

>

:

�v00(r)� ↵(N � 1)
v0(r)
r

=
�
R2

ev(r) , in (0, R),

v(R) = 0, v0(0) = 0.

(6.15)

Summarizing, we have that there exists a positive value

�̃(BR) =
�̃(B

1

)
R2

> 0,

which is decreasing with respect to R, such that problem (P�,p) admits at least a solution for every
� < �̃(BR) in the ball of radius R, ⌦ =BR.

Let now ⌦ be a bounded domain and R
1

> 0 given by

R
1

= min{R > 0 : ⌦ ⇢ BR}. (6.16)

Notice that if uR1 is a solution in BR1 for some⇤ < �̃(BR1) then it is a supersolution in ⌦ for
�  ⇤ < �̃(BR1). We claim that there exists a solution of problem (P�,p) with � = ⇤. Indeed, to
prove this fact we use a standard monotone iteration argument: let w

0

= 0 and for every n � 1 we
define the recurrent sequence {wn} by

(Qn)

8

<

:

��N
p wn = � ewn�1 , in⌦,

wn > 0 , in⌦.
wn = 0 , on @⌦,

The sequence {wn} 2 C(⌦̄) is well defined by Manfredi et al. (2012); Peres and She�eld (2008), see
also Lu and Wang (2008). Note that we are solving a problem of the form ��N

p wn = f in⌦ , with
f > 0 and wn = 0 on @⌦ as boundary condition. Then existence is a consequence of a limit procedure
involving game theory (in this problem the right hand side, f , enters into the problem as a running
payo↵ and the boundary condition wn = 0 as the final payo↵). The existence of such solution can be
also proved directly using Perron’s method thanks to our general comparison principle.

Moreover, the sequence {wn} is increasing with n. Indeed, taking in account that 0 < w
1

we
obtain �ew0  �ew1 and using the comparison principle in Theorem 6.3.3 it follows that w

1

 w
2

.
By an inductive argument, we get 0 < w

1

 w
2

 · · ·  wn, for all n � 1. From the fact that uR1

is a supersolution of problem (P�,p), with a similar inductive argument, we prove that wn  uR1 for
every n 2 N.

Since uR1 2 L1(⌦), the sequence {wn(x)} is increasing and bounded by uR1(x), therefore, exists

w�(x) := lim
n!1

wn(x).
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In addition, thanks to the subtle Krylov-Safonov C0,↵-estimates of wn for every p 2 [2,1] (here we
refer to Ca↵arelli and Cabré (1995); Charro et al. (2013)), we obtain that wn ! w� uniformly. Taking
fn = �ewn�1 and pn = p in Lemma 6.4.1 we get that w� is a solution of problem (P�,p).

To prove that the obtained solution w� is minimal, let v� be a solution of problem (P�,p), by a
similar argument using the comparison principle and induction in n we have wn  v� for all n 2 N.
As w�(x) = limn!1 wn(x) (we use again comparison here), we obtain w�  v�.

We have thus proved that for every � < �̃(BR1) there exists w�, minimal solution of problem
(P�,p). In particular

0 < �̃(BR1)  �⇤(⌦, N, p) = sup{� > 0 : 9 a minimal solution of (P�,p)}  1.

Now to ensure that �⇤(⌦, N, p) < 1 let

R
2

= max{R > 0 : BR ⇢ ⌦},
we remark that without loss of generality we can assume that 0 2 ⌦. In that way, taking w�, the
minimal solution in ⌦, as a supersolution in BR2 and applying the above argument again, with⌦
replaced by BR2 , we obtain that �⇤(⌦, N, p)  �⇤(BR2 , N, p).

Note that in the case ⌦= Br we can perform the previous argument starting with w
0

= 0 and
obtain that the minimal solution is radial. In fact, by uniqueness, in this case wn is radial for every
n. Remark that in this case the unique minimal solution leads to a solution of the ODE (6.15) and
thus �⇤(BR2 , N, p)  �̃(BR2). ⇤

Remark 6.4.2 The arguments used in the previous proof shows that the extremal parameter verifies

�⇤(⌦, N, p) = sup{� > 0 : there exists a minimal solution of (P�,p)}
= sup{� > 0 : there exists a solution of (P�,p)}
= sup{� > 0 : there exists a nonnegative supersolution of (P�,p)}.

Also note that
�⇤(⌦

1

, N, p)  �⇤(⌦
2

, N, p) when ⌦
2

⇢ ⌦
1

,

and that the extremal value for a ball, ⌦ = BR, is the one that corresponds to the existence of a
radial solution, we refer to Jacobsen and Schmitt (2002) and Joseph and Lundgren (1972/73) for the
analysis of the resulting ODE.

In addition, we note that, if we have a solution to our problem, it holds

��N
p u = �eu � �u.

Therefore we must have �  �
1,p(⌦), where �1,p(⌦) is the first eigenvalue of the operator ��N

p with
Dirichlet boundary conditions. We conclude that

�⇤(⌦, N, p)  �
1,p(⌦).

6.5 Unbounded Continua of Solutions

For the reader’s convenience, we recall the following general results from the theory of global continua
of solutions using degree theory which will be essential for our analysis. For the proofs we refer to
Ambrosetti and Arcoya (2011), Schmitt (1995) and Leray and Schauder (1934).

Theorem 6.5.1 [Continuation Theorem of Leray-Schauder] Let X be a real Banach space, O an
open bounded subset of X and assume that T : R ⇥X ! X is completely continuous (i.e., relatively
compact and continuous). Furthermore, assume that for � = �

0

we have that u 6= T (�
0

, u) for every
u 2 @O and deg(I � T (�

0

, ·),O, 0) 6= 0. Let

⌃ = {(�, u) 2 [�
0

,1)⇥X : u = T (�, u)}.
Then there exists a maximal connected and closed C ⇢ ⌃. Even more, the following statements are
valid:
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1. C \ {�
0

}⇥O 6= ;.
2. Either C is unbounded or else C \ {�

0

}⇥X \ O 6= ;.

Theorem 6.5.2 [Homotopy property] Let X be a real Banach space, O an open subset of X and
let T 2 C([0, 1] ⇥ O, X) be completely continuous in [0, 1] ⇥ O. If b : [0, 1] ! X is continuous and
b(t) 6= u� T (t, u) in [0, 1]⇥ @O, then deg(I � T,O, b(t)) remains constant 8 t 2 [0, 1].

Theorem 6.5.3 [Classical Leray-Schauder’s theorem] Let X be a real Banach space, O ⇢ X an open
and bounded subset of X and � : [a, b] ⇥ O ! X given by �(t, u) = u � T (t, u) being T completely
continuous. We also assume that

�(t, u) 6= u, 8 (t, u) 2 [a, b]⇥ @O.

Then, if deg (�(a, ·),O, 0) 6= 0, it holds that

1. The equation �(t, u) = 0 with u 2 X has a solution in O for every a  t  b.

2. There exists a closed and connected set, ⌃a,b ⇢ {(t, u) 2 [a, b]⇥X : u = T (t, u)}, that intersects
t = a and t = b.

Let us consider the operator

K : [0, 1]⇥ R⇥ C(⌦) ! C(⌦)

by defining, for every t 2 [0, 1], � 2 R and w 2 C(⌦), u := K(t,� , w) as the unique solution in C(⌦)
of the problem

(

��N
p(t)u = �+ ew

+
, in⌦,

u = 0 , on @⌦,

where

p(t) =
t� 2
t� 1

.

That is, ��N
p(t)u = �(1 � t)�u � t�1u. Notice that every p(t) 2 [2,1] is labeled by a unique

t 2 [0, 1] (and conversely), thus K is well defined.
Now, we prove that K is completely continuous, which allows us to apply the Leray-Schauder

degree techniques (see Leray and Schauder (1934)), in order to study the existence of “continua of
solutions” of (P�,p), i.e., connected and closed subsets in the solution set

Sp =

⇢

(�, u) 2 [0,1)⇥ C(⌦) : K

✓

p� 2
p� 1

,�, u

◆

= u

�

,

for every fixed p 2 [2,+1] or, if we fixed � instead, in

S� =

⇢

(p, u) 2 [2,1]⇥ C(⌦) : K

✓

p� 2
p� 1

,�, u

◆

= u

�

,

Lemma 6.5.4 Let assume that un 2 C(⌦) satisfies

⇢

��N
p(t

n

)

un = �n ewn , in ⌦,
un = 0 , on @⌦,

with tn 2 [0, 1] and 0  �n, wn bounded in R ⇥ C(⌦). Then, up to a subsequence, un is strongly
convergent to u 2 C(⌦). If, in addition, �n ! �, tn ! t and wn converges in C(⌦) to w, then u is
solution of problem

⇢

��N
p(t)u = � ew , in ⌦,

u = 0 , on @⌦.
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Proof: If �n = 0 then un = 0 is the unique solution (Corollary 6.3.5) and the proof is immediate.
In other case, since the sequence 0 < �ne

w
n  C for some positive constant, un is a subsolution of

problem
⇢

��N
p(t

n

)

v = C , in⌦,
v = 0 , on @⌦.

It is well-known, by the theory of uniformly elliptic fully nonlinear equations, that for every fixed n 2
N, un 2 C0,⌫(n)(⌦), whenever 2  p(tn)  M for some M su�ciently large (for instance, greater than
the dimension N), being 0 < ⌫(n) < 1 (Ca↵arelli and Cabré (1995); Gilbarg and Trudinger (1983)).
We stress that this Hölder estimates depend on the ratio between the ellipticity constants, which in
this case is p(tn)� 1 and, consequently, it blows-up as p(tn) ! 1. However, for p(tn) 2 [M,1], it is

shown in (Charro et al., 2013, Theorem 7) that un 2 C0,⇢(n)(⌦) being ⇢(n) = p(t
n

)�N
p(t

n

)�1

.

Thus, we can assert that the sequence un 2 C0,�(⌦) where � = min{⌫(n), ⇢(n) : n 2 N}. Hence,
Ascoĺı-Arzelá Theorem gives that un possesses a subsequence converging in C(⌦) which conclude the
first part of the lemma. Finally, the second part is a direct consequence of the uniqueness of solutions
Proposition 6.3.4 and Lemma 6.4.1. ⇤

The following is the main result in this section, Theorem 6.1.2.
Proof:[Proof of Theorem 6.1.2] Fixed R > 0, let OR be the open ball of radius R of C(⌦) and we

fix some �R with

0 < �R <
R

2d2eR
,

where d is the diameter of⌦.
By Lemma 6.5.4, we obtain that K 2 C([0, 1] ⇥ [0,�R] ⇥ OR, C(⌦)) and K(t,�, ·) is completely

continuous for every (t,� ) 2 [0, 1] ⇥ [0,�R]. Now, in order to apply twice Theorem 6.5.2 for the
parameters (t,� ) with b(t,� ) ⌘ 0 2 C(⌦), we must check an priori bound of the solutions of the
equation u = K(t,� , u). That is, u 6= K(t,� , u) in [0, 1] ⇥ [0,�R] ⇥ @OR. In fact, we argue by
contradiction, suppose that kuk1 = R and there exist t 2 [0, 1] and � 2 [0,�R] such that u satisfies
the equation

��N
p(t)u = �eu in⌦ ,

hence u is a subsolution of problem

��N
p(t)v = �eR in⌦ .

On the other hand, a simple computation of (Charro et al., 2013, Theorem 1 and Theorem 3) shows
that if v 2 C(⌦) is a nonnegative subsolution of the Poisson problem

��N
p v = f(x) in ⌦,

with 0  f 2 C(⌦) and p 2 [2,1], then kvk1  2d2kfk1. Applying this last result we get the
following contradiction

R = kuk1  2d2�eR  2d2�Re
R < R.

In this way, due to the Homotopy Property, we obtain

deg(I �K(t,�, ·),OR, 0) = const 8 (t,� ) 2 [0, 1]⇥ [0,�R].

Moreover, since

K(0,�, w) = (��)�1

⇣

�ew
+
⌘

is the inverse of the laplacian operator, and it is well known that

deg(I �K(0, 0, ·),OR, 0) = 1,

we get
1 = deg(I �K(0, 0, ·),OR, 0) = deg(I �K(t,�, ·),OR, 0).
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To conclude the proof, we apply the Continuation Theorem of Leray-Schauder (Theorem 6.5.1) with
T (�, u) = K(t,� , u), for every fixed t 2 [0, 1], which is completely continuous (Lemma 6.5.4). There-
fore, by using that deg(I�T (0, ·),OR, 0) = 1 6= 0, we can assert that there exists a maximal connected
subset C of Sp that contains (0, 0). Furthermore, since 0 is the unique solution for � = 0, C is not
bounded. Finally, since for every � such that there is a solution of (P�,p) we can construct a minimal
solution, we can state that C ⇢ [0,�⇤]⇥ C(⌦).

With the same arguments, using Theorem 6.5.3 with T (t, u) = K(t,� , u) and [a, b] = [0, 1], for
every fixed � 2 (0,�

0

= min{�⇤(⌦, N, 2), 1

2d2e
}), we can obtain the existence of a continuum of

solutions moving p 2 [2,1]. More precisely, since deg(I�K(0,� ,·),O
1

, 0) = 1 we can apply Theorem
6.5.3 obtaining the existence of a continuum⌃

0,1 ⇢ {(t, u) 2 [0, 1] ⇥ O
1

: u = T (t, u)} such that
Proj

[0,1]⌃0,1 = [0, 1]. Note that the upper bound for � is used to ensure an a priori bound. Thus, we
finish the proof by taking

D =

⇢✓

t� 2
t� 1

, u

◆

2 [2,+1]⇥O
1

: (t, u) 2 ⌃
0,1

�

.

⇤

Remark 6.5.5 Now we briefly comment on possible extensions for more general nonlinearities. Note
that we can also deal with the equation

��N
p u = �f(u),

with a general continuous nonlinearity f that verifies f(0) > 0, increasing and f(s)
s

� k > 0. In fact,
we only need to show existence and nonexistence of radial solutions (the rest of the arguments can be
extended without much di�culties). Hence we arrive to the problem

8

>

<

>

:

�z00(r)� ✓
z0(r)
r

= �f(z(r)), r 2 (0, 1),

z(r) > 0, r 2 (0, 1),
z(1) = z0(0) = 0,

(6.17)

where ✓ = N�1

p�1

2 [0,1) due to the fact that p 2 [2,1]. Multiplying by r✓ and integrating twice we
obtain

z(r) = �

Z

1

r

1
⌧✓

Z ⌧

0

s✓f(z(s))dsd⌧

� �

Z

1

r

1
⌧✓

Z r

0

s✓f(z(s))dsd⌧

� �

Z

1

r

1
⌧✓

Z r

0

s✓f(z(r))dsd⌧.

Therefore, for every r 2 (0, 1) it must hold

1
k
� z(r)

f(z(r))
� �

Z

1

r

Z r

0

⇣ s
⌧

⌘✓

dsd⌧ := �F✓(r).

As F✓(r) is positive in (0, 1) and is bounded above we concluded that �  1

c(✓)k
. Hence there is no

solutions for � greater than a constant that depends only on p and N .
To look for existence of solutions for small �, we can use degree theory for the operator T :

[0,1)⇥ C([0, 1]) ! C([0, 1]) given by

T (�, u) = �

Z

1

r

1
⌧✓

Z ⌧

0

s✓f(u(s))dsd⌧.

Since f is assumed to be continuous it is easy to check that T is completely continuous. Now, as
T (0, u) = 0 for every u 2 C([0, 1]) using Leray-Schauder’s theorem we obtain the existence of a
continuum of solutions C ⇢ [0,1) ⇥ C([0, 1]) that is unbounded with (0, 0) 2 C. In particular, there
exist solutions for values of � close to 0.
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Abstract

In this paper, we study the existence of positive solutions for the quasilinear
elliptic singular problem

(

��u+ c |ru|2
u�

= � f(u) , in ⌦,
u = 0 , on @⌦,

where c,�> 0 , � 2 (0, 1), f is strictly increasing and derivable in [0,1) with
f(0) > 0. We show that there exists �⇤ > 0 such that (0,�⇤] is the maximal set
of values such there exists solution. In addition, we prove that for � < �⇤ there
exists minimal and bounded solutions. Moreover, we give su�cient conditions for
existence and regularity of solutions for � = �⇤.
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7.1 Introduction

Gelfand-type problems constitute one of the most studied fields of semilinear elliptic equations and it
has been considered since the very earliest stages of development of the theory of Partial Di↵erential
Equations. There are several reasons for this interest, foremost among them are the wide applications
to physical models (we refer to Chandrasekhar (1957); Gel’fand (1963); Joseph and Sparrow (1970);
Keller and Cohen (1967) and references therein) and the open problems relating to the existence and
boundedness of solutions which still remain unsolved. We recall that a Gelfand-type problem aims to
study the following semilinear elliptic equation

8

<

:

��u = � f(u) , in ⌦,
u � 0 , in ⌦,
u = 0 , on @⌦,

(G�)

where ⌦ is a smooth bounded, open subset of RN (N � 1), � � 0 and the nonlinearity term satisfies

f is C1[0,1), positive, increasing and convex such that f(0) > 0. (F)

Typical examples for f are the power-like (1 + u)p with p > 1 and the exponential eu. If a solution u
of (G�) belongs to L1(⌦) it is said that it is regular and minimal if u  v being v any other solution
of (G�).

M.G. Crandall and P.H. Rabinowitz in Crandall and Rabinowitz (1975) (see also F. Mignot and
J.P. Puel Mignot and Puel (1980)) proved, under the hypothesis f is superlinear at infinity (i.e.
f(s)
s

! 1), the following result

Proposition 7.1.1 [Crandall-Rabinowitz, 1973] Crandall and Rabinowitz (1975) There exists a pos-
itive number �⇤ called the extremal parameter such that

• If � < �⇤ the problem (G�) admits a minimal bounded solution w�.

• If � > �⇤ the problem (G�) admits no solution.

Even more, they showed that the sequence of minimal solutions {w�} of (G�) is increasing. Further-
more, the minimal solutions are stable, namely they satisfy the following condition

Z

⌦

�

|r⇠|2 � �f 0(w�)⇠
2

�

� 0, 8⇠ 2 C1
c (⌦).

An important role is played by the stability condition in order to prove the existence and regularity
of u⇤ := lim�!�⇤ w�, called extremal solution. In particular, it has been used to achieve optimal
results of regularity of extremal solution depending on the dimension N . Special mention should be
made of the exponential case f(s) = es, obtaining regularity for N < 10 as well as the power-like
f(s) = (1 + s)p for N < 4 + 2(1� 1/p) + 4

p

1� 1/p (see Crandall and Rabinowitz (1975)).
In Brézis and Vázquez (1997) H. Brezis and J.L. Vázquez proved that u⇤ is a weak solution of

(G�⇤). But, as far as regularity of u⇤ is concerned , for general nonlinearities f satisfying (F), a
few results are obtained. More specifically, assuming the superlinearity of f , G. Nedev proved the
boundedness of extremal solutions for dimension N  3 (Nedev (2000)) and S. Villegas in Villegas
(2013) for N = 4. See also X. Cabré et al. in Cabré and Capella (2006); Cabré and Sanchón (2013)
for convex domains ⌦.

On the other hand, quasilinear Dirichlet problems having lower order terms with quadratic growth
with respect to the gradient whose simplest model is the following boundary value problem

8

<

:

��u+H(x, u) |ru|2 = f
0

(x) , in⌦,
u > 0 , in⌦,
u = 0 , on @⌦,

(Q)

have also been extensively studied. A simple motivation relies in the fact that they arise naturally in
Calculus of Variations. For example, the Euler-Lagrange equation of the functional
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I(u) =
1
2

Z

⌦

a(x, u)|ru|2 �
Z

⌦

f
0

(x)u,

is formally

�div (a(x, u)ru) +
1
2
a0
u(x, u)|ru|2 = f

0

(x),

wich contains a quadratic gradient term.
In the 1980s, L. Boccardo, F. Murat and J.P. Puel discussed, among other important aspects, the

case H(x, s) = g(s) continuous in [0,1), giving a huge literature since then (see Boccardo et al. (1982,
1983) and references therein). It can be observed in the previous example of Calculus of Variations
that if we consider functions with unbounded derivative in zero, for instance a(x, u) = 1 + |u|� with
� 2 (0, 1), it shows that the Euler-Lagrange equation associated should have a singularity in the
quadratic term. In recent years, the case H(x, s) with a singularity at s = 0 has been studied by D.
Arcoya et al. (Arcoya and Segura de León (2010); Arcoya et al. (2009a,b, 2010)) and some applications
are described by this kind of equations, see for instance Barenblatt et al. (2000); Berestycki et al.
(2001); Kardar et al. (1986).

The goal of this work is to bring together the two areas above, that is, a Gelfand-type problem
with a singularity in the gradient term. To be more specifically, we propose to study the existence
and regularity of positive solutions for the following problem

8

<

:

��u+ g(u) |ru|2 = � f(u) , in⌦,
u > 0 , in⌦,
u = 0 , on @⌦,

(P�)

were ⌦ is a smooth bounded and open subset of RN (N � 3), � > 0, f strictly increasing, derivable
in [0,1) with f(0) > 0 and respect to g a nontrivial and positive function that either is continuous
in [0,1) or it is continuous in (0,1), decreasing and integrable in a neighborhood of zero. Typical
example is g(s) = 1

s�
with � 2 (0, 1).

Most recently in Arcoya et al. (2014) D. Arcoya et al. solved problem (P�) in the case g continuous
in [0,1). Consequently, in the just mentioned paper the authors proved analogous results to that of
semilinear elliptic problem (G�). They established that the maximal set of � for which the problem
(P�) has at least one solution is a closed interval [0,�⇤], with �⇤ > 0, and there exists a minimal
regular solution for every � 2 [0,�⇤) (compare Proposition 7.1.1). They also proved, under suitable
conditions, that for � = �⇤ there exists a minimal regular solution. Even more, they characterized
minimal solutions as those solutions satisfying a stability condition. Motivated by this paper, our
intention in the current work is to address this matter and provide statements that apply to the
quasilinear problem having a singularity in the quadratic gradient term. To make our discussion
more precise, under suitable hypotheses (see below hypotheses (H1)-(H4)) we prove in Theorem
7.2.9 a similar version of Crandall-Rabinowitz result (Proposition 7.1.1) for problem (P�). Moreover,
assuming that

lim
s!1

s(f 0(s)� g(s)f(s))
f(s)

= ↵ 2 (1,1]

then u⇤ is a stable solution of (P�⇤) (Theorem 7.3.6 and Corollary 7.3.7). We suggest that the reader

refers to Brézis and Vázquez (1997) and compare this condition with lims!1
sf 0

(s)
f(s)

= ↵ 2 (1,1].

We recall, following the definition introduced by D. Arcoya et al. Arcoya et al. (2014), that a stable
solution in the literature of elliptic equations with quadratic growth in the gradient is a positive
solution satisfying

Z

⌦

|r�|2 � �

Z

⌦

(f 0(u)� g(u)f(u))�2

for every � 2 W(⌦). Stability condition plays an important role in the process to determine when the
extremal solutions are regular, we give su�cient conditions in Theorem 7.4.1. Finally, under the extra
condition f 0(s)� g(s)f(s) is strictly increasing, we prove that stable solutions are minimal (Theorem
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7.3.8). We would like to point out that, unlike the work of D. Arcoya et al., we use this extra condition
exclusively for this last result.

The rest of this paper proceeds as follows: in Section 2, it is shown the existence of bounded
minimal solutions for (P�) up to a given value �⇤. In addition, we prove that sequence of minimal
solutions is increasing respect to �. In Section 3, we deal with the stability and the issue of the
circumstances under which u⇤ is a stable solution. Also, we establish the relation between minimal
and stable solution. Finally, in Section 4 we proceed with the study of regularity of extremal solution
and some examples are stated.

Notation. We denote by |⌦| the Lebesgue measure of⌦ ⇢ RN and by 2⇤ the critical Sobolev
exponent 2N/(N � 2), N > 2. For every s 2 R we consider s+ = max{s, 0}, s� = min{s, 0} and the
functions G(s) =

R s

0

g(t)dt,  (s) =
R s

0

e�G(t)dt.

7.2 Existence of bounded minimal solutions

This section is devoted to the study of solutions of problem (P�). As in the semilinear case, it is
expected that there exists an interval of values of � such that there is at least one solution. Even
more, we prove that there exists a parameter �⇤ > 0 such that the problem has a minimal solution
u� which is bounded if 0 < � < �⇤ and no solution for � > �⇤.

We recall that a function 0 < u 2 W(⌦) is a (weak) solution of (P�) if g(u)|ru|2, f(u) 2 L1(⌦)
and it satisfies

Z

⌦

rur�+

Z

⌦

g(u) |ru|2 � =

Z

⌦

� f(u)�, (7.1)

for all test function � 2 W(⌦)\L1(⌦). As usual, supersolution (respectively subsolution) is defined
analogously by replacing the equality ”=” by the inequality ”�”, (resp. ), for positive test function.

We are interested in the case of functions g which are singular at zero, as a model case g(s) =
1
s�

,

� 2 (0, 1). In this way, the function g will be required to satisfy the following hypotheses

lim
s!1

sup g(s) < 1 (H1)

f 0(s)� g(s)f(s) > 0 and non-singular (s � 0) (H2)

e�G(s) 2 L1(1,1) (H3)

8C > 0, 9C̃ > 0 : g(Cs)  C̃g(s), 8s < 1 (H4)

Remark 7.2.1 We want to point out that the hypothesis (H2), which involves function f , in partic-
ular it implies that the function f(s)e�G(s) is increasing for s � 0. Moreover, model case satisfies

hypotheses (H1), (H3), (H4) and (H2) taking for instance functions of kind f(s) = h(s)e
s

1��

1�� , with
h(s) increasing and h(0) > 0, which also implies that f(s) is concave in a neighborhood of zero. An-
other interesting case is g(s) = 1

log(1+s�)

with � 2 (0, 1). Additionally, we would like to highlight that

functions g(s) = c (c > 0) are also considered.

One of the main keys to study problems with singularities in the quadratic gradient term is to
treat with test functions with compact support. For this reason it is appropriate to enunciate the
following result, which ensures that solutions have a convenient estimate from below in compact sets.

Proposition 7.2.2 For every compactly contained open subset ! ⇢ ⌦ (i.e., ! ⇢⇢ ⌦) there exists a
constant c! > 0 such that u(x) � c! a. e. x 2 ! for every u 2 W(⌦) supersolution of problem (P�).
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Proof: To prove it we follow closely (Arcoya et al., 2011, Proposition 2.4). By the fact that
�f(s) � �f(0) 6= 0 for every s � 0 then every supersolution u 2 W(⌦) of (P�) is a supersolution of
problem

8

<

:

��w + g(w) |rw|2 = � f(0) , in⌦,
w > 0 , in⌦,
w = 0 , on @⌦.

(P
0

)

The problem (P
0

) has a solution w
0

in W(⌦)\C(⌦) (see (Boccardo, 2008, Theorem 3.1)), in particular,
since w

0

is continuous, it follows that for every compactly contained subset ! ⇢ ⌦ there exists
min! w

0

= c! > 0. Now by comparison principle due to (Arcoya and Segura de León, 2010, Theorem
2.7) we obtain that u(x) � w

0

(x) � c! a.e. x 2 !. ⇤

Lemma 7.2.3 If g satisfies (H1), (H2) and (H3), then there exists �̄ such that (P�) admits no
solution for � > �̄.

Proof: Let u 2 W(⌦) be a solution of (P�) and let �
1

be the positive eigenfunction associated to
�
1

, the first positive eigenvalue of the Laplacian operator �� with zero Dirichlet boundary conditions.
We take 'n = e�G(u)�̃n, n 2 N, where 0  �̃n 2 C1

c (⌦) such that �̃n ! �
1

in W(⌦). Since
'n 2 L1(⌦) and |r'n|  e�G(u)g(u)�̃n|ru| + e�G(u)|r�̃n| 2 L2(⌦) (by Proposition 7.2.2 and
hypothesis (H1)), the function 'n belongs to W(⌦) \ L1(⌦) and we can take it as test function in
(7.1) to have

Z

⌦

e�G(u)rur�̃n � �

Z

⌦

f(u)e�G(u)�̃n,

taking limits as n tends to 1, we get

Z

⌦

e�G(u)rur�
1

= �

Z

⌦

f(u)e�G(u)�
1

.

On the one hand, let  be given by  (s) =
R s

0

e�G(t)dt, then e�G(u)ru = r (u) and  (u) 2 W(⌦)

since  (s) is a Lipschitz function, and on the other hand by hypothesis (H2) f(s)e�G(s) � f(0), we
obtain

Z

⌦

r�
1

r (u) � �f(0)

Z

⌦

�
1

.

Taking into account  (s)  c
1

by hypothesis (H3) and integrability of g near to zero,

Z

⌦

r�
1

r (u) � �f(0)
c
1

Z

⌦

�
1

 (u).

Lastly, using that �
1

is the eingefunction associated to �
1

, we conclude the proof taking �̄ � �
1

c
1

f(0)
.

⇤

Remark 7.2.4 Even more, there exists �̄ such that (P�) admits no supersolution for � > �̄. Indeed,
the proof is similar starting with u a supersolution in place of a solution of (P�).

We will consider I the set of values of � > 0 such that there exists a solution of (P�). By the
previous lemma I ⇢ (0, �̄]. In order to prove the main result of this section let �(s) be a positive
function given by

�(s) =  �1

✓

�
µ
 (s)

◆

, 0 < � < µ. (7.2)

We give some properties of function �(s).
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Lemma 7.2.5 Let �(s) be a positive function defined by (7.2). Then, following properties are satis-
fied:

1. 0  �(s)  s.

2. If (H3) is satisfied then � is bounded.

3. 0 < �0(s)  �
µ
.

4. �00(s) = �0(s) [g (�(s))� 0(s)� g(s)].

Proof:

1. Clearly �(s) � 0. On the other hand, since
�
µ
 (s)   (s) and  �1 is increasing then

�(s) =  �1

✓

�
µ
 (s)

◆

  �1 ( (s)) = s.

2. Since  (1) < 1 and
�
µ

< 1 we get the result.

3. An easy computation shows that

�0(s) =
�
µ

e�G(s)

e�G(�(s))
=
�
µ
eG(�(s))�G(s)  �

µ
.

using in the last inequality that G is increasing and �(s)  s. Consequently, � is strictly
increasing.

4. We may now compute the second derivative to conclude that

�00(s) =
✓

�
µ
eG(�(s))�G(s)

◆0
=
�
µ
eG(�(s))�G(s) �g(�(s))�0(s)� g(s)

�

.

⇤

Proposition 7.2.6 If g satisfies hypothesis (H1)-(H4) and u is a solution of (Pµ) (µ > 0) then, for
every fixed � < µ, �(u) is a bounded supersolution of (P�).

Proof:  (s) is well-defined since g is continuous in (0,1) and integrable near to zero. Furthermore,
by hypothesis (H3) it is bounded, therefore �(u) is bounded using property (1) from Lemma 7.2.5.
By the other hand, taking into account

|r�(u)| = �0(u)|ru|  �
µ
|ru| 2 L2(⌦),

and �(u) = 0 on @⌦, it therefore follows that �(u) 2 W(⌦) \ L1(⌦). Moreover, we claim that
functions f(�(u)) and g(�(u))|r�(u)|2 are in L1(⌦). Indeed, since f is continuous and � is bounded
we deduce that f(�(u)) 2 L1(⌦). Now we prove that g(�(u))|r�(u)|2 2 L1(⌦), to this end, we define
the subset of⌦ " as {x 2 ⌦ : u(x) < "} where 0 < " < 1 is such that g(s) is decreasing in (0, "). On
one side, if u � " then�( u) � �(") since � is increasing, in addition of �(u) is bounded and g is
continuous gives g(�(u))  C a.e. x 2 ⌦ \ ⌦" and from the fact that �(u) 2 W(⌦) we obtain that
g(�(u))|r�(u)|2 2 L1(⌦ \ ⌦").

On the other side, again by property (1) from Lemma 7.2.5 we obtain 0 < �(s)  " , s 2 (0, ")
and since

lim
s!0

+

�(s)
s

= lim
s!0

+
�0(s) =

�
µ
,
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let C" > 0 be the infimum of �(s)
s

for s 2 (0, "), namely,�( s) � C"s 8s 2 (0, "). Now, by the fact
that g(s) is decreasing in (0, ") and � (s), C"s 2 (0, ") then g(�(s))  g(sC") in (0, "). Taking also
into account the hypothesis (H4) there exists C̃" > 0 such that g(sC")  C̃"g(s) and

g(�(u))|r�(u)|2  C̃"

✓

�
µ

◆

2

g(u)|ru|2 2 L1(⌦"),

proving the claim. As a result, up to now �(u) 2 W(⌦) \ L1(⌦) and f(�(u)), g(�(u))|r�(u)|2 2
L1(⌦). To conclude the proof we verify that �(u) is a supersolution of (P�), i.e.,

Z

⌦

r�(u)r'+

Z

⌦

g(�(u)) |r�(u)|2 ' �
Z

⌦

� f(�(u))',

for all 0  ' 2 W(⌦) \ L1(⌦). For every fixed 0  ' 2 W(⌦) \ L1(⌦) let {'n}n2N be positive
functions in C1

c (⌦) such that 'n ! ' in W(⌦). Then �n = �0(u)'n 2 W(⌦) \L1(⌦), indeed, since
�0(u)  �

µ
then �n 2 L1(⌦) and by property (4) from Lemma 7.2.5

|r�n|2 
✓

�
µ

◆

2

�

|r'n|2 + (g(�(u))|r�(u)|+ g(u)|ru|)2 '2

n

�

,

and the fact that u(x) � c!
n

for a. e. x 2 !n, where !n = supp 'n, in addition to hypothesis (H1)
we obtain that g(u), g(�(u)) 2 L1(!n) and |r�n|2 2 L1(⌦).

Therefore, taking �n as a test function in problem (Pµ)

Z

⌦

ru
�

�00(u)ru'n + �0(u)r'n

�

+

Z

⌦

g(u)|ru|2�0(u)'n =

µ

Z

⌦

f(u)�0(u)'n � �

Z

⌦

f(�(u))'n,

using in the last inequality that µf(u)�0(u) = �f(�(u))
e�G(u)f(u)

e�G(�(u))f(�(u))
and hypothesis (H2).

Lastly, adding and subtracting |r�(u)|2g(�(u))'n together with the fact that the term �

00
(u)

�

0
(u)

+

g(u)� �0(u)g(�(u)) is equal to zero, we have for all n 2 N
Z

⌦

r�(u)r'n +

Z

⌦

g(�(u)) |r�(u)|2 'n �
Z

⌦

� f(�(u))'n,

since |r�(u)|2, g(�(u)) |r�(u)|2, f(�(u)) 2 L1(⌦) and 'n ! ' in W(⌦), we take the limit when n
tends to 1 and we conclude the proof. ⇤

Remark 7.2.7 Contrary to others works on this topic, this supersolution depends on the quadratic
gradient term g(s), and not on the nonlinearity term f(s) (compare Arcoya et al. (2014) and Brézis
et al. (1996)). This allows us to deal with functions f less restrictive, for instance, in Arcoya et al.
(2014) the authors impose f 0(s)� g(s)f(s) is an increasing function, conversely this condition is not

required in this section, in fact no-convex functions such as f(s) = eG(s)e(s+�)� with � small enough
are allowed, being f 0(s)� g(s)f(s) decreasing near to zero.

This result will prove to be extremely useful in the following theorem which ensures that set I is
an interval.

Theorem 7.2.8 Assume that g satisfies hypotheses (H1)-(H4) and fix µ 2 I, then for every � 2 (0, µ)
there exists a bounded minimal solution of (P�).

Proof: First we prove that there exists a bounded solution. To prove it we use a standard
monotone iteration argument: let w

0

the bounded solution of problem (P
0

) in the proof of Proposition
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7.2.2, we point out that w
0

is unique due to (Arcoya and Segura de León, 2010, Theorem 2.9). For
every n � 1 we define the recurrent sequence {wn} by

8

<

:

��wn + g(wn) |rwn|2 = � f(wn�1

) , in⌦,
wn > 0 , in⌦,
wn = 0 , on @⌦.

(Pn)

The sequence {wn} is well defined by Boccardo (2008) and Arcoya and Segura de León (2010), even
more, the sequence is increasing, to check that it su�ces to prove that w

0

 w
1

. Indeed, taking
in account that 0 < w

0

and f is increasing we obtain �f(0)  �f(w
0

) and by comparison principle,
which is due to Arcoya and Segura de León (2010), it follows that w

0

 w
1

and by induction argument
0 < w

0

 w
1

 · · ·  wn, for all n � 1. By the fact that �(u), defined by (7.2), is a supersolution of
problem (P

0

), with a similar argument we prove that wn  �(u) for every n 2 N.
Since �(u) 2 L1(⌦), the sequence {wn(x)} is increasing and bounded by �(u)(x) for a. e. x 2 ⌦.

Let w�(x) be the limit almost every where in ⌦ (i. e., w�(x) := limn!1 wn(x) a. e. x 2 ⌦). We
claim that w� 2 W(⌦) \ L1(⌦). Indeed, clearly w� 2 L1(⌦) since w�  �(u) 2 L1(⌦). Moreover,
as wn 2 W(⌦) \ L1(⌦) we can take it as a test function in problem (Pn)

Z

⌦

|rwn|2 +
Z

⌦

g(wn)|rwn|2wn = �

Z

⌦

f(wn�1

)wn,

dropping the positive term g(wn)|rwn|2wn, since wn�1

 wn  �(u) and f is increasing it follows
that

Z

⌦

|rwn|2  �

Z

⌦

f(�(u))�(u)  �f(k�(u)k1)k�(u)k1|⌦|.

That is, {wn} is uniformly bounded in W(⌦) and, up to a subsequence, there exists w̃ such that
wn converges weakly to w̃ in W(⌦) and wn(x) ! w̃(x) a. e. x 2 ⌦, by the unicity of the limit
w� = w̃ 2 W(⌦) and we conclude the claim.

We now verify that w� is solution of (P�). In order to prove it we define the operator K : W(⌦) !
W(⌦) by K[v] as the unique solution of problem

8

<

:

��u+ g(u) |ru|2 = v+ + � f(0) , in⌦,
u > 0 , in⌦,
u = 0 , on @⌦,

K is well defined (see Boccardo (2008) and Arcoya and Segura de León (2010)), even more, due to
(Arcoya et al., 2011, Proposition 2.5) K is a compact operator. We remark that with this notation
wn is solution of (Pn) if and only if wn = K[�(f(wn�1

)� f(0))]. Now taking limits and considering
that wn converges weakly to w� in W(⌦) we obtain that w� = K[�(f(w�) � f(0))], that is, w� is a
solution of (P�).

Our next claim is that the interval I is not empty. Indeed, we proceed to show that there exists
�̃ 2 I. In order to get this, we fix k > 0 and we consider ũ 2 W(⌦) \ L1(⌦), kũk1  c̃, the unique
solution of problem

8

<

:

��u+ g(u) |ru|2 = k , in⌦,
u > 0 , in⌦,
u = 0 , on @⌦,

we take �̃ 2 (0, �), where 0 < �  k
f(c̃)

, to obtain for all ' 2 W(⌦) \ L1(⌦)

Z

⌦

rũr'+

Z

⌦

g(ũ)|rũ|2' =

Z

⌦

k' �
Z

⌦

�f(c̃)' � �̃

Z

⌦

f(ũ)',

that ũ is a bounded supersolution of (P
˜�). We now apply the standard monotone iteration argument

again, with the bounded supersolution �(u) replaced by ũ, to obtain u
˜� a bounded solution of problem

(P
˜�) and finally that I 6= ;.
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Note that we have actually proved that if µ 2 I then (0, µ] ⇢ I, even more, for every � 2 (0, µ)
there exists a bounded solution of (P�). The proof is completed by showing that solutions w� are
minimal, indeed, let v� be a solution of problem (P�), by a similar argument of comparison principle
and by induction in n we have wn  v� for all n 2 N as w�(x) := limn!1 wn(x) a. e. x 2 ⌦ thus
w�  v�.

⇤
Theorem 7.2.8 and Lemma 7.2.3 may be summarized by formulating our main result of this

section

Theorem 7.2.9 Assume that g satisfies hypotheses (H1)-(H4). Then there exists �⇤ 2 (0, �̄] such
that there is a bounded minimal solution of (P�) for every � < �⇤ and no solution for � > �⇤.

Remark 7.2.10 We note that if �
1

 �
2

< �⇤, taking w�2 as a supersolution of problem (P�1) and
arguing as the proof of Theorem 7.2.8 we obtain w�1  w�2 . That is, the family of functions {w�}�2I
are increasing.

Remark 7.2.11 It is worth pointing out that for every fixed arbitrary µ 2 I su�ciently small and

u a solution of (Pµ), it follows that �(u) =  �1

⇣

�
µ
 (u)

⌘

tends to zero as � ! 0. Hence, for every

" > 0 there exists ⌘(") > 0 such that w⌫(x) < " for every 0 < ⌫ < ⌘.

7.3 Stability and extremal solutions

As we have stated at the Remark 7.2.10, the mapping � ! u� is increasing in (0,�⇤), a.e. x 2 ⌦.
This allows one define u⇤ := lim�!�⇤ u� and we call u⇤ the extremal solution of problem (P�). In
Brézis et al. (1996) and Arcoya et al. (2014) the authors proved that u⇤ is a weak solution for the
semilinear and quasilinear problem, respectively. In order to prove the same e↵ect for the singular
quadratic quasilinear case we give a property of the minimal solutions, its stability.

Definition 7.3.1 Let u be a solution of (P�), we say that u is stable if f 0(u) � g(u)f(u) 2 L1

loc(⌦)
and

Z

⌦

|r�|2 � �

Z

⌦

(f 0(u)� g(u)f(u))�2 (7.3)

holds for every � 2 C1
c (⌦).

Since f 0(u)�g(u)f(u) > 0 it follows that, by a standard approximation argument and Fatou Lemma,
one can take � 2 W(⌦) in the above definition.

The following result may be proved in much the same way as (Arcoya et al., 2014, Lemma 3.7).

Lemma 7.3.2 Minimal bounded solutions of (P�) are stable.

Our next goal is to prove that stability condition (7.3) (and under extra condition) allows us to
ensure that minimal bounded solutions are uniformly bounded in W(⌦). For that purpose we give
the following technnical lemma.

Lemma 7.3.3 Let f and g be two positive continuous functions in (0,1) with f increasing and
sastifying the condition

lim
s!1

s(f 0(s)� g(s)f(s))
f(s)

> 0.

Then, for every positive � < ↵, there exits a positive constant C(�) (depending only on �) such that
f(s)s  1

�
s2(f 0(s)� g(s)f(s)) + C(�) for all s � 0.
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Proof: By definition of limit: for all " > 0 there exists s
0

(") depends to " such that

�

�

�

�

s(f 0(s)� g(s)f(s))
f(s)

� ↵

�

�

�

�

< " , 8s � s
0

("),

choosing " = ↵� � and multiplying by s we obtain that there exists s
0

(�) such that

s2(f 0(s)� g(s)f(s)) � �sf(s), 8s � s
0

(�),

By the other hand, since f is increasing, f(s)s < f(s
0

(�))s
0

(�) for all s < s
0

(�). Hence taking

C(�) = f(s0(�))s0(�)
�

we conclude the proof. ⇤

Proposition 7.3.4 Let {w�} be a sequence of minimal bounded solutions of problem (P�) such that
f and g satisfy the condition

lim
s!1

s(f 0(s)� g(s)f(s))
f(s)

= ↵ 2 (1,1]. (7.4)

Then, the sequence is uniformly bounded in W(⌦).

Proof: Let w� be the minimal bounded solution of (P�) taken as a test function in (7.1) and
dropped the positive term g(w�)|rw�|2w� we obtain

Z

⌦

|rw�|2  �

Z

⌦

f(w�)w�.

In addition, by Lemma 7.3.3
Z

⌦

|rw�|2  �
�

Z

⌦

�

f 0(w�)� g(w�)f(w�)
�

w2

� + C
1

,

with C
1

= �⇤C(�)|⌦|.

While on the other hand, by Lemma 7.3.2 w� satisfies the stability condition, hence choosing
� = w� in (7.3)

Z

⌦

|rw�|2 � �

Z

⌦

�

f 0(w�)� g(w�)f(w�)
�

w2

�.

Finally, by combining the last two inequalities and taking � > 1 the proposition follows. ⇤

Remark 7.3.5 We note that above proof also involves the boundedness of
R

⌦

f(w�)w� for � 2 (0,�⇤).

The remainder of this section will be devoted to the proof of our main result, namely the extremal
solution u⇤ is a solution of problem (P�⇤).

Theorem 7.3.6 Under the hypotheses (H1)-(H4) and condition (7.4), w�(x) converges to u⇤(x) a.
e. x 2 ⌦, a solution of (P�⇤).

Proof: Thanks to Proposition 7.3.4 there exists C
1

> 0 independent of � such that kw�kW(⌦)

 C
1

for all � 2 (0,�⇤). Therefore, up to a subsequence, w� converges to u⇤ weakly in H1

0

(⌦) (w� * u⇤),
strongly in Ls(⌦) (1  s < 2⇤) and almost everywhere in ⌦,

w�(x) �! u⇤(x), a.e. x 2 ⌦. (7.5)

It should be noted that, as w�(x) is increasing, the whole sequence converges almost everywhere to
u⇤(x) > 0.
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Now we prove that u⇤ is a solution of (P�⇤), i. e. g(u⇤)|ru⇤|2, f(u⇤) 2 L1(⌦) and satisfies (7.1).
First we claim that f(w�) is uniformly bounded in L1(⌦), indeed fixed ⇢ > 0 then f(s)  f(⇢)+ 1

⇢
f(s)s

for every s � 0, thus
Z

⌦

f(w�)  f(⇢)|⌦|+ 1
⇢

Z

⌦

f(w�)w�

and by Remark 7.3.5, the last expression is bounded, proving the claim. Therefore the boundedness of
f(w�) in L1(⌦) combined with the fact that f(w�) is increasing, the monotone convergence theorem
implies that f(u⇤) 2 L1(⌦).

Concerning the term g(u⇤) |ru⇤|2, taking ' = T
"

(w
�

)

"
as test function in (7.1), where T"(s) :=

min{s," }, thereby T
"

(w
�

)

"
 1 and rT"(w�) = rw� · �{w

�

"}, we get

Z

⌦

|rw�|2 · �{w
�

"} +

Z

⌦

g(w�)|rw�|2
T"(w�)
"

 �⇤
Z

⌦

f(w�).

Dropping the positive term |rw�|2 · �{w
�

"} and taking into account the boundedness of f(w�) in
L1(⌦) we obtain that there exists a positive constant C

2

such that
Z

⌦

g(w�)|rw�|2
T"(w�)
"

 C
2

.

Taking the limit as " ! 0 and having in mind that lim
"!0

T
"

(w
�

)

"
= 1, we get from the Lebesgue

dominated convergence theorem
Z

⌦

g(w�)|rw�|2  C
2

,

for every � 2 (0,�⇤). Now, the result of (Boccardo and Murat, 1992, Theorem 2.1) yields that (up
to a subsequence) rw� ! ru⇤ converges strongly in (Lq(⌦))N (1 < q < 2), particularly it converges
almost everywhere in ⌦. Then we have, by Fatou lemma, g(u⇤)|ru⇤|2 2 L1(⌦).

To close, following closely Boccardo (2008), we proceed to show that u⇤ satisfies the equation
(7.1). Since � = �+ + ��, it is enough to prove it for every nonegative function � 2 H1

0

(⌦)\L1(⌦).
Furthermore, by density, it is su�cient to prove it when 0  � 2 H1

0

(⌦)\Cc(⌦). First we claim that
u⇤ is a subsolution. Indeed, from

Z

⌦

g(w�) |rw�|2 � = �

Z

⌦

f(w�)��
Z

⌦

rw�r�,

we apply the Fatou lemma on the left side. In regards to the right-hand side, since w� converges
weakly to u⇤ in W(⌦) and the boundedness of f(w�) in L1(⌦) we take limits and the claim is proved.

On the other hand, our next claim is that u⇤ is a supersolution. Choosing ' = eG(Tk

(u⇤
))�G(w

�

) �
as a test function we obtain

Z

⌦

eG(Tk

(u⇤
))�G(w

�

)rw�r�+

Z

⌦

eG(Tk

(u⇤
))�G(w

�

)g(Tk(u
⇤))rTk(u

⇤)rw��

= �

Z

⌦

f(w�)e
G(T

k

(u⇤
))�G(w

�

) �.

Since w� converges weakly to u⇤ and by the strong convergence of eG(Tk

(u⇤
))�G(w

�

) to eG(Tk

(u⇤
))�G(u⇤

),
hence taking limits as � tends to �⇤ and again by Fatou lemma on the right side it follows that

Z

⌦

eG(Tk

(u⇤
))�G(u⇤

)ru⇤r�+

Z

⌦

eG(Tk

(u⇤
))�G(u⇤

)g(Tk(u
⇤))rTk(u

⇤)ru⇤�

� �⇤
Z

⌦

f(u⇤)eG(Tk

(u⇤
))�G(u⇤

) �.
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Finally, since � has compact support, there exists a positive constant such that u⇤ � w� � C�, that
is, g(u⇤) is bounded in supp� . We pass to the limit as k ! 1 and by dominated convergence theorem
we obtain the desired converse inequality for compact support functions. Using density argument we
finish the proof.

⇤

Corollary 7.3.7 Under the hypotheses of Theorem 7.3.6 the extremal solution u⇤ is stable.

Proof: Since w� is stable, it follows that

Z

⌦

|r�|2 � �

Z

⌦

(f 0(w�)� g(w�)f(w�))�
2,

letting �! �⇤ and by Fatou lemma imply that u⇤ satisfies condition (7.3). Theorem 7.3.6 now shows
that u⇤ is stable. ⇤

We have been working under the assumption that f 0(s) � g(s)f(s) is not necessarily increasing.
In the remainder of this section we assume f 0(s)� g(s)f(s) to be increasing.

Theorem 7.3.8 Assume the hypotheses (H1)-(H4) hold and f 0(s) � g(s)f(s) is strictly increasing.
Then every stable solution of problem (P�) is minimal.

Proof: Let u be a stable solution of (P�) and suppose, contrary to our claim, that there exists
v 2 W(⌦) a solution of (P�) and O ⇢ ⌦ (|O| 6 = 0) such that v < u in O.

On the one hand, choosing e�G(u)� (� 2 C1
c ) as a test function in the equation (7.1) satisfied by

u
Z

⌦

e�G(u)rur� = �

Z

⌦

f(u)e�G(u)�, (7.6)

and by a standard approximation argument the above equation is satisfied for every � 2 W(⌦) \
L1(⌦).

Analogously, choosing e�G(v)� on the equation which is satisfied by v,
Z

⌦

e�G(v)rvr� = �

Z

⌦

f(v)e�G(v)�, (7.7)

for every � 2 W(⌦) \ L1(⌦). Now, subtracting (7.7) from (7.6) and writing  (s) instead of
R s

0

e�G(t)dt, this gives
Z

⌦

r( (u)�  (v))r� = �

Z

⌦

⇣

f(u)e�G(u) � f(v)e�G(v)
⌘

�.

Taking � = ( (u) �  (v))+ in the above equation, which is zero in⌦ \ O, since  is increasing and
v < u in O. We have

Z

O
|r( (u)�  (v))|2 = �

Z

O

⇣

f(u)e�G(u) � f(v)e�G(v)
⌘

( (u)�  (v)). (7.8)

On the other hand, taking � = ( (u)�  (v))+ on the stability condition (7.3) satisfied by u, it gives
Z

O
|r( (u)�  (v))+|2 � �

Z

O
(f 0(u)� g(u)f(u))

⇥

( (u)�  (v))+
⇤

2

. (7.9)

Now combining (7.8) with (7.9) yields
Z

O

h

(f 0(u)� g(u)f(u))z �
⇣

f(u)e�G(u) � f(v)e�G(v)
⌘i

z  0, (7.10)

here and subsequently, z denotes  (u) �  (v). Note that z > 0 in O. Our claim is that (f 0(u) �
g(u)f(u))z � (f(u)e�G(u) � f(v)e�G(v)) > 0, which leads to a contradiction with (7.10), therefore
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z  0 and concluding that u  v in O. To prove the claim it is su�cient to show that f 0(u) �
g(u)f(u) � f(u)e�G(u)�f(v)e�G(v)

z
is positive. Thus, since by the Mean Value Theorem there exists

ũ 2 [v, u], a. e. x 2 O, such that

f(u)e�G(u) � f(v)e�G(v)

z
=

f 0(ũ)e�G(ũ) � g(ũ)f(ũ)e�G(ũ)

e�G(ũ)

= f 0(ũ)� g(ũ)f(ũ),

hence, with the fact that f 0(s) � g(s)f(s) is strictly increasing and ũ  u a. e. in O, the claim is
proved and the theorem follows. ⇤

Corollary 7.3.9 Under the hypotheses of Theorem 7.3.6. If in addition, f 0(s) � g(s)f(s) is strictly
increasing. Then the extremal solution u⇤ is stable and minimal.

Proof: Clearly, by Corollary 7.3.7 the extremal solution u⇤ given by Theorem 7.3.6 is stable and
consequently, applying Theorem 7.3.8 we complete the proof. ⇤

Corollary 7.3.10 Under the assumptions of Theorem 7.3.8. If u is an stable and singular solution
of (P�) then � = �⇤.

Proof: By Theorem 7.3.8 u is the minimal solution of (P�) and Theorem 7.2.8 assures that u is
bounded for � 2 (0,�⇤) which implies, since u is singular, that � = �⇤. ⇤

7.4 Regularity of extremal solutions

The extremal solution u⇤ may be bounded or singular. In Brézis and Vázquez (1997) H. Brezis and
J.L. Vázquez raised the question of determining the regularity of u⇤ depending on the dimension N ,
this problem led to the study of the regularity theory of stable solutions which many authors are
interested (Cabré and Capella (2006); Nedev (2000); Villegas (2013)). In this section, we will obtain,
under suitable conditions depending on the dimension N , the regularity of extremal solutions for the
quasilinear case with singularity in the quadratic gradient term.

In what follows, we write the nonlinearity term of (P�) as e
G(s)h(s) instead of f(s), where h(0) > 0

and h is a derivable function in [0,1). We note that with this notation hypothesis (H2) is equivalent
to impose h(s) is increasing. In this way, we replace problem (P�) by the following

8

<

:

��u+ g(u) |ru|2 = � eG(u)h(u) , in⌦,
u > 0 , in⌦,
u = 0 , on @⌦.

(Q�)

We can now formulate our main result of this section.

Theorem 7.4.1 Under hypotheses (H1)-(H4) and

lim
s!1

sh0(s)
h(s)

> 1 (7.11)

The extremal solution of (Q�) given in Theorem 7.3.6 is bounded whenever

N <
4 + 2(µ̃+ ↵̃) + 4

p
µ̃+ ↵̃

1 + ↵̃
, (7.12)

↵̃ and µ̃ being the following parameters

↵̃ := lim
s!1

g(s)h(s)
h0(s)

, µ̃ := lim
s!1

h00(s)h(s)
(h0(s))2

. (7.13)
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Remark 7.4.2 Comparing the above theorem with (Arcoya et al., 2014, Theorem 4.7) we obtain
similar results replacing ↵̃ and µ̃ by

↵ =
↵̃

1 + ↵̃
, µ =

↵̃+ µ̃
↵̃+ 1

.

However, in addition to the singularity of function g, some hypotheses of (Arcoya et al., 2014, Theorem

4.7) such as ↵ < 1, 1

f
2 L1,

�

�

�

f 0
(s)

f2
(s)

�

�

�

 c
2

(1+
p

g(s)) or f 0(s)�g(s)f(s) is increasing, are not necessary.

We wish to emphasize that last hypothesis allow us to deal with functions f(s) no-convex.

Proof: Due to Stampacchia Lemma ((Stampacchia, 1966, Lemma 5.1)), we have to show that
eG(u⇤

)h(u⇤) 2 L�(⌦) with � > N/2.
By (7.12) we fix

� 2
✓

N
2
,
2 + (µ̃+ ↵̃) + 2

p
µ̃+ ↵̃

1 + ↵̃

◆

, (7.14)

and let us consider the following positive di↵erentiable function

�(s) =

s

h(s)� (eG(s))��1

h0(s)
, s � R,

such that �(0) = 0 and � 2 C1[0, R]. For � < �⇤ let u� be the bounded minimal solution of (Q�)
given by Theorem 7.2.8 which, under the assumptions of Theorem 7.3.6 with condition (7.4) replaced
by condition (7.11), converges to u⇤(x) a. e. x 2 ⌦. In addition to Lemma 7.3.2, u� satisfies the
stability condition, in this way, taking �(u�) in (7.3) (clearly �(u�) 2 W(⌦) since u� is bounded) we
obtain

Z

⌦

(�0(u�))
2|ru�|2 � �

Z

⌦

R

eG(u
�

)h0(u�)�
2(u�) + �

Z

⌦

e�G(u
�

)h�(u�) (7.15)

��
Z

⌦

R

e�G(u
�

)h�(u�)

where⌦ R = {x 2 ⌦ : u�(x) < R}. Computing, we have

�0(s) =
�(s)
2

✓

�
h0(s)
h(s)

+ (� � 1)g(s)� h00(s)
h0(s)

◆

. (7.16)

While on the other hand, we define

⇣(s) := e�G(s)

Z s

0

(�0(t))2eG(t)dt,

since u� is bounded if follows that ⇣(u�) 2 L1(⌦), and applying L’Hôpital rule we obtain

lim
s!0

R s

0

(�0(t))2eG(t)dt

s
= (�0(0))2 < 1

since � 2 C1[0, R]. Thus

⇣0(0) = lim
s!0

⇣(s)
s

and therefore ⇣0(u�) 2 L1(⌦) and ⇣(u�) 2 W(⌦). Furthermore, using (7.13) and L’Hôpital rule we
get

lim
s!1

⇣(s)

(eG(s)h(s))��1

= lim
s!1

R s

0

(�0(t))2eG(t)dt

e�G(s)h(s)��1

= lim
s!1

(�0(s))2e(1��)G(s)

h(s)��2(�g(s)h(s) + (� � 1)h0(s))
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= lim
s!1

h2(s)

✓

�
h0(s)
h(s)

+ (� � 1)g(s)� h00(s)
h0(s)

◆

2

4h0(s) (�g(s)h(s) + (� � 1)h0(s))
=

(� + (� � 1)↵̃� µ̃)2

4(↵̃� + � � 1)
,

which is less than 1 due to (7.14). Thereby, there exist � < 1 and K > 0 such that

⇣(s)  �
⇣

eG(s)h(s)
⌘��1

+K, s � R.

In this way, choosing ⇣(u�) as a test function in (7.1) we obtain
Z

⌦

(�0(u�))
2|ru�|2 = �

Z

⌦

eG(u
�

)h(u�)⇣(u�)

 ��

Z

⌦

e�G(u
�

)h�(u�) +K�

Z

⌦

eG(u
�

)h(u�).

Combining this last inequality with (7.15) (and dropping the positive term eG(u
�

)h0(u�)�
2(u�)) we

can assert that

(1� �)�

Z

⌦

e�G(u
�

)h�(u�)  �

Z

⌦

R

e�G(u
�

)h�(u�) +K�

Z

⌦

eG(u
�

)h(u�),

and taking into account that h is increasing (hypothesis (H2)) together with the Lebesgue dominated
convergence theorem we deduce that

Z

⌦

e�G(u
�

)h�(u�) 
f(R)� |⌦|
�⇤(1� �)

+
K

1� �

Z

⌦

eG(u⇤
)h(u⇤)

and eG(u⇤
)h(u⇤) 2 L1(⌦) since u⇤ is a solution of (P�⇤) (Theorem 7.3.6). Finally we conclude, from

the Fatou Lemma applied on the left-hand side of the above inequality, that eG(u⇤
)h(u⇤) 2 L�(⌦)

with � > N/2 which is the desired conclusion. ⇤
We now give few examples, according to the di↵erent types of function g.

Example 1 Let us consider the problem
8

<

:

��u+ c |ru|2 = � eu , in ⌦,
u > 0 , in ⌦,
u = 0 , on @⌦,

(P�)

with c < 1. By Theorem 7.2.9, since g(s) = c satisfies hypotheses (H1)-(H4), there exists �⇤ > 0 such
that there is a bounded minimal solution for every � < �⇤ and no solution for � > �⇤. Moreover,
there exists u⇤ solution for � = �⇤ (Theorem 7.3.6) and it is stable and minimal (Corollary 7.3.9).
Furthermore, since ↵̃ = c

1�c
and µ̃ = 1, it follows from Theorem 7.4.1 that u⇤ is bounded provided

that
N < 4(1� c) + 2 + 4

p
1� c.

We remark that letting c ! 0 we obtain the regularity of extremal solution for the well known semilinear
elliptic equation (G�) in the exponential case, i.e., N < 10.

Example 2 In the singularity case g(s) = c
s�

with 0 < � < 1, a relevant example would be the case

f(s) no-convex. Thus, if we take as h(s) = e(s+�)1��

with � small enough then f 0(s) � g(s)f(s) is
not increasing (see Remark 7.2.7). Therefore, Theorem 7.2.9 ensures that there exist �⇤ > 0 and
bounded minimal solutions for � < �⇤, and no solutions for � > �⇤. Even more, since condition 7.4
is satisfied, u⇤ is a stable solution for � = �⇤ (Theorem 7.3.6 and Corollary 7.3.7) and not necessarily
minimal. In addition, since ↵̃ = c

1��
and µ̃ = 1, due to Theorem 7.4.1 we obtain for

N <
6(1� �) + 2c+ 4

p

(c+ 1� �)(1� �)

c+ 1� �
,

the regularity of the extremal solution. We would like to stress that letting c ! 0 we have N < 10.





Chapter 8

Elliptic equations involving the
1–Laplacian and a subcritical
source term

A. Molino and S. Segura de León, submitted (2017).

Abstract

In this paper we deal with a Dirichlet problem for an elliptic equation involving
the 1–Laplacian operator and a source term. We prove that, when the growth
of the source is subcritical, there exist two bounded nontrivial solutions to our
problem. Moreover, a Pohoz̆aev type identity is proved, which holds even when
the growth is supercritical. We also show explicit examples of our results.
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8.1 Introduction

This paper is concerned to the following Dirichlet problem for the 1–Laplacian operator and a sub-
critical source term, whose model problem is

8

>

>

<

>

>

:

�div

✓

Du
|Du|

◆

= |u|q�1u, in⌦ ,

u = 0 on @⌦,

(8.1)

where⌦ ⇢ RN (N � 2) is an open bounded set with Lipschitz boundary and 0 < q < 1

N�1

. Our aim
is to obtain nontrivial solutions (in the sense of Definition 8.2.1) and study their properties.

We point out that similar problems have many applications and have been studied for a long time.
Indeed, the study of steady states of reaction–di↵usion equations have systematically been studied
since the late 1970s (see Fife (1979) and Ni (2011) for a more recent survey). More precisely, Dirichlet
problems with p–Laplacian type operator (p > 1) having a term with a subcritical growth, that is:

8

>

<

>

:

��pu = |u|q�1u, in⌦ ,

u = 0, on @⌦,

(8.2)

with 0 < q < p⇤ � 1 (where p⇤ stands for the Sobolev conjugate), have extensively been considered in
the theory of Partial Di↵erential Equations by using di↵erent approaches (for a background we refer to
Ambrosetti and Arcoya (2011) and Dinca et al. (2001)). For instance in Dinca et al. (1995) the authors,
by using the well–known “Mountain Pass Theorem” by Ambrosetti and Rabinowitz Ambrosetti and
Rabinowitz (1973), firstly proved that the trivial solution is a local minimum of the corresponding
energy functional and then, since the functional has a mountain pass geometry, they find other critical
points (one positive and another one negative), which obviously are solutions to problem (8.2) . We
point out that the proof of the Palais–Smale condition relies on the reflexivity of the energy space
W 1,p

0

(⌦). Moreover, the restriction q < p⇤ � 1 ensures that the imbedding W 1,p
0

(⌦) ,! Lq(⌦) is
compact, being this fact essential for the approach used in Dinca et al. (1995).

The 1–Laplace operator appearing in (8.1) introduces some extra di�culties and special features.
We recall that in recent years there have been many works devoted to this operator (we refer to the
pioneering works Andreu et al. (2001); Demengel (1999); Kawohl (1991, 1990) and the related papers
Andreu et al. (2002); Andreu-Vaillo et al. (2002); Bellettini et al. (2002); Cicalese and Trombetti
(2003); Demengel (2002a,b)). One of the main interests for studying the Dirichlet problem for equa-
tions involving the 1–Laplacian comes from the variational approach to image restoration (we refer to
Andreu-Vaillo et al. (2004) for a review on the first variational models in image processing and their
connection with the 1–Laplacian). This has led to a great amount of papers dealing with problems
that involve the 1–Laplacian operator. In spite of this situation, up to our knowledge, this is the first
attempt to analyze problem (8.1).

The natural energy space to study problems involving the 1–Laplacian is the space BV (⌦) of
functions of bounded variation, i.e., those L1–functions such that their distributional gradient is a
Radon measure having finite total variation. In order to deal with the 1–Laplacian operator, a first

di�culty occurs by defining the quotient
Du
|Du| , being Du just a Radon measure. It can be overcome

through the theory of pairings of L1–divergence–measure vector fields and the gradient of a BV–
function (see Anzellotti (1983)). Using this theory, we may consider a vector field z 2 L1(⌦;RN )
such that kzk1  1 and (z, Du) = |Du|, so that z plays the role of the above ratio. In general, the
Dirichlet boundary condition is not achieved in the usual trace form, so that a very weak formulation
must be introduced: [z, ⌫] 2 sign (�u), where [z, ⌫] stands for the weak trace on @⌦ of the normal
component of z.

We point out that the space BV (⌦) is not reflexive, so that we cannot follow the arguments of
Dinca et al. (1995). Instead, we apply the results in Dinca et al. (1995) for problem (8.2) getting
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nontrivial solutions wp and then we let p goes to 1. Hence, one of our biggest concerns will be that
constants appearing in the proof do not depend on p. The other major di�culty we have to overcome
is to check that the limit function w = limp!1

wp is not trivial.

8.1.1 Assumptions and main result

Let us state our problem and assumptions more precisely. We consider the general problem
8

>

>

<

>

>

:

�div

✓

Du
|Du|

◆

= f(x, u), in⌦ ,

u = 0, on @⌦.

(P )

Here, the source term f : ⌦⇥ R ! R is a Carathéodory function satisfying the following hypotheses

(i) There exists ↵ > 0 such that

lim
s!0

sup
|f(x, s)|
|s|↵ < 1, uniformly in x 2 ⌦.

(ii) There exist q 2
⇣

0, 1

N�1

⌘

and C > 0 such that

|f(x, s)|  C (1 + |s|q) , x 2 ⌦, s 2 R.

(iii) There exist  > 1 and s
0

> 0 such that

0 <  F(x, s)  sf(x, s), x 2 ⌦, |s| � s
0

,

where F (x, s) =
R s

0

f(x, t)dt. We deal with solutions of problem (P ) in the sense of Definition 8.2.1
(see next section). Our main result is stated as follows:

Theorem 8.1.1 Under the above assumptions, there exist at least two nontrivial solutions v, w 2
BV (⌦) \ L1(⌦) of problem (P ). Moreover, v  0  w a.e. x 2 ⌦.

The proof of existence considers approximating p–Laplacian problems and then the limit as p !
1+ of their nontrivial solutions wp is taken. To this end, it is essential to achieve the existence of a
positive constant C̃ independent of p such that

kwpkW1,1
0 (⌦)

 C̃ , (8.3)

so that they are uniformly bounded in W 1,1
0

(⌦). However, we carefully have to check that their limit
is not the trivial solution.

As far as the regularity of solutions is concerned, we further prove that they are bounded. To
prove the boundedness of the solutions a crucial point is the estimate (8.3). We would like to highlight
that the usual Stampacchia truncation method with p�Laplacian problem does not work here since
the problem becomes superlineal when p tends to 1 (i.e. p� 1 < q).

Finally, in Proposition 8.4.1 we state a Pohoz̆aev type identity for solutions belonging to W 1,1(⌦).
The important point to note here is, unlike p�Laplacian problems, the existence of solutions for any
growth conditions of the source term. This is confirmed by dealing with explicit examples in the ball.

This paper is organized as follows: in the next section on Preliminaries we introduce the space
of functions of bounded variation and we give some definitions and properties of Anzellotti’s theory.
In addition, we raise the problem (P ) in a variational framework. Section 3 is devoted to the proof
of existence and regularity of nontrivial solutions. To finish, in Section 4 a Pohoz̆aev type identity is
obtained. For the sake of completeness, we include there some examples.
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8.2 Preliminaries

Throughout this paper, the symbol HN�1(E) stands for the (N � 1)–dimensional Hausdor↵ measure
of a set E ⇢ RN and |E| for its Lebesgue measure. Moreover,⌦ ⇢ RN denotes an open bounded
set with Lipschitz boundary. Thus, an outward normal unit vector ⌫(x) is defined for HN�1–almost
every x 2 @⌦.

We will denote by W 1,q
0

(⌦) the usual Sobolev space, of measurable functions having weak gradient
in Lq(⌦;RN ) and zero trace on @⌦. Finally, if 1  p < N , we will denote by p⇤ = Np/(N � p) its
Sobolev conjugate exponent. Furthermore, BV (⌦) will denote the space of functions of bounded
variation:

BV (⌦) =
�

u 2 L1(⌦) : Du is a bounded Radon measure
 

where Du : ⌦ ! RN denotes the distributional gradient of u. In what follows, we denote the
distributional gradient by ru if it belongs to L1(⌦;RN ). We recall that the space BV (⌦) with norm

kukBV (⌦)

=

Z

⌦

|Du|+
Z

⌦

|u|

is a Banach space which is non reflexive and non separable.
On the other hand, the notion of a trace on the boundary can be extended to functions u 2 BV (⌦),

so that we may write u
�

�

@⌦
, through a bounded operator BV (⌦) ,! L1(@⌦), which is also onto. As a

consequence, an equivalent norm on BV (⌦) can be defined (see Ambrosio et al. (2000)):

kuk =

Z

⌦

|Du|+
Z

@⌦

|u| dHN�1,

where HN�1 denotes the (N � 1)–dimensional Hausdor↵ measure. We will often use this norm in
what follows. In addition, the following continuous embeddings hold

BV (⌦) ,! Lm(⌦) , for every 1  m  N
N � 1

,

which are compact for 1  m < N
N�1

.

Moreover, we will use some functionals which are lower semicontinuous with respect to the L1–
convergence. Besides the BV–norm, we also apply the lower semicontinuity of the functional given
by

u 7!
Z

⌦

' |Du|,

where ' is a nonnegative smooth function. For further properties of functions of bounded variations,
we refer to Ambrosio et al. (2000)

Since our concept of solution lies on the Anzellotti theory, we next introduce it. ConsiderXN (⌦) =
�

z 2 L1(⌦;RN ) : d z 2 LN (⌦)
 

. For z 2 XN (⌦) and u 2 BV (⌦) we denote by (z, Du) : C1
c (⌦) ! R

the distribution introduced by Anzellotti (Anzellotti (1983)):

h(z, Du),'i = �
Z

⌦

u' d z�
Z

⌦

u zr', 8' 2 C1
c (⌦) . (8.4)

Moreover, in Anzellotti (1983) (see also (Andreu-Vaillo et al., 2004, Corollary C.7, C.16)) it is proved
that (z, Du) is a Radon measure with finite total variation and for every Borel B set with B ✓ U ✓ ⌦
(U open) it holds

�

�

�

�

Z

B

(z, Du)

�

�

�

�


Z

B

|(z, Du)|  kzkL1
(U)

Z

B

|Du| . (8.5)

We recall the notion of weak trace on @⌦ of the normal component of z defined in Anzellotti (1983)
as the application [z, ⌫] : @⌦ ! R, being ⌫ the outer normal unitary vector of @⌦, such that [z, ⌫] 2
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L1(@⌦) and k [z, ⌫] kL1
(@⌦)

 kzkL1
(⌦;RN

)

. Furthermore, this definition coincides with the classical
one, that is,

[z, ⌫] = z · ⌫, for z 2 C1(⌦�;RN ) , (8.6)

where⌦ � = {x 2 ⌦ : dist(x,@ ⌦) < �}, for some � > 0 su�ciently small. In Anzellotti (1983) a Green
formula involving the measure (z, Du) and the weak trace [z, ⌫] is established, namely:

Z

⌦

(z, Du) +

Z

⌦

u d z =

Z

@⌦

u [z, ⌫] dHN�1 (8.7)

being z 2 XN (⌦) and u 2 BV (⌦).
Next, we give the definition of solution to our problem

Definition 8.2.1 We say that u 2 BV (⌦) is a solution of problem (P ) if there exists a vector field
z 2 L1(⌦;RN ) with kzk1  1 and such that

(1) � div z = f(x, u) in D0(⌦),

(2) (z, Du) = |Du| as measures on ⌦,

(3) [z, ⌫] 2 sign(�u) on @⌦.

Remark 8.2.2 We remark that our solution belongs to BV (⌦) ⇢ L
N

N�1 (⌦). Thus condition (ii)
satisfied by function f leads to

|f(x, u(x))|  C (1 + |u(x)|q) 2 L
N

q(N�1) (⌦)

for certain 1 < q < 1

N�1

, wherewith f(·, u) 2 LN (⌦). It follows from (1) in the above definition that

dz 2 LN (⌦), so that the Anzellotti theory is available.

Remark 8.2.3 In principle, condition (1) in Definition 8.2.1 only allows us to take test functions
in the space C1

c (⌦). We explicitly point out that, as a consequence of the Anzellotti theory, we may
choose any w 2 BV (⌦) as a test function. Then, Green’s formula (8.7) implies

Z

⌦

(z, Dw)�
Z

⌦

f(x, u)w =

Z

@⌦

w[z, ⌫] dHN�1 .

Observe that the vector field z need not be unique. For instance, we may choose z = (1, 0, · · · , 0)
or z = (0, 1, · · · , 0) to check that u ⌘ 0 is solution of (8.1).

In order to introduce a variational setting of problem (P ) we recall the notion of subdi↵erential
of a convex operator.

Definition 8.2.4 Let H : BV (⌦) ! R be a convex operator. For every u 2 BV (⌦) we denote by
@H(u), the subdi↵erential of H in u, as the set

�

⇠ 2 BV (⌦)0 : H(u) + ⇠(v � u)  H(v), for all v 2 BV (⌦)
 

Remark 8.2.5 Using this definition it is easy to check that u
0

is a global minimum of H if and only
if 0 2 @H(u

0

).

Lemma 8.2.6 Given u 2 BV (⌦) and z 2 L1(⌦;RN ) with kzk1  1, dz 2 LN (⌦), (z, Du) = |Du|
and [z, ⌫] 2 sign(�u) on @⌦. Let ⇠u : BV (⌦) ! R be a linear map defined as

⇠u(v) := �
Z

⌦

v dz .

Then, ⇠u 2 @kuk.
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Proof: Observe that ⇠u 2 BV (⌦)0 as a consequence of the Anzellotti theory. Indeed, Green’s formula
(8.7) and kzk1  1 imply

|⇠u(v)| 
�

�

�

�

Z

⌦

(z, Dv)

�

�

�

�

+

�

�

�

�

Z

@⌦

v [z, ⌫] dHN�1

�

�

�

�


Z

⌦

|Dv|+
Z

@⌦

|v| dHN�1 ,

for every v 2 BV (⌦). So ⇠u 2 BV (⌦)0 and k⇠uk  1.
On the other hand, for every v 2 BV (⌦) we obtain

⇠u (v � u) =

Z

⌦

� d z (v � u)

=

Z

⌦

(z, D(v � u))�
Z

@⌦

(v � u) [z, ⌫] dHN�1

=

Z

⌦

(z, Dv)�
Z

⌦

|Du|�
Z

@⌦

(v [z, ⌫] + |u|)dHN�1

 kzk1
Z

⌦

|Dv|�
Z

⌦

|Du|+ kzk1
Z

@⌦

|v|dHN�1 �
Z

@⌦

|u|dHN�1

 kvk � kuk.

⇤
Let J : BV (⌦) ! R be defined as

J(u) =

Z

⌦

|Du|+
Z

@⌦

|u| dHN�1 �
Z

⌦

F (x, u).

We will say that u
0

2 BV (⌦) is a critical point of functional J if there exists z 2 L1(⌦;RN ) with
kzk1  1 such that

�
Z

⌦

w dz =

Z

⌦

f(x, u
0

)w, for all w 2 BV (⌦),

(z, Du
0

) = |Du
0

| in ⌦ and [z, ⌫] 2 sign(�u
0

) on @⌦.

In virtue of Lemma 8.2.6, the functional given by ⇠(w) = �
R

⌦

w dz belongs to @ku
0

k. We point
out that critical points of J coincide with solutions of problem (P ).

8.3 Proof of Theorem 1

8.3.1 Existence of non trivial solutions

We shall prove that (P ) has a nontrivial solution w � 0. A similar argument shows that there exists
a nontrivial solution v  0.

Let p̃ = min {1 + ↵,, q + 1}. For each 1 < p < p̃, consider the problem

⇢

�div
�

|ru|p�2ru
�

= f(x, u), in⌦ ,
u = 0 on @⌦.

(8.8)

By our hypotheses and the choice of p̃, the following assertions are true for every p 2 (1, p̃):

(a) |f(x, s)|  C(1 + |s|q) with 0 < q < p⇤ � 1,

(b) lims!0

sup
f(x, s)
|s|p�2s

= 0, uniformly with x 2 ⌦,

(c) 0 <  F(x, s)  sf(x, s) for x 2 ⌦, |s| � s
0

and  > p.
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Then, it is well–know that problem (8.8) has nontrivial solutions vp  0  wp (see e.g. Dinca
et al. (2001)). These solutions are obtained using the “Mountain Pass Theorem” by Ambrosetti and
Rabinowitz (Ambrosetti and Rabinowitz (1973)) for the two following functionals J±

p : W 1,p
0

(⌦) ! R
given by

J±
p (u) =

1
p

Z

⌦

|ru|p �
Z

⌦

F±(x, u),

where F±(x, s) =
R s

0

f±(x, t)dt, being f± : ⌦⇥ R ! R defined by

f
+

(x, s) =

⇢

0 if s  0,
f(x, s) if s > 0.

f�(x, s) =
⇢

f(x, s) if s  0,
0 if s > 0.

Concretely, for the nonnegative solution wp it is used J+

p (while J�
p is used for the nonpositive one

vp). Now consider the functional

Ip(u) = J+

p (u) +
p� 1
p

|⌦| .

Since, by Young’s inequality
Z

⌦

|ru|p1  p
1

p
2

Z

⌦

|ru|p2 +
p
2

� p
1

p
2

|⌦|, 1  p
1

 p
2

,

it follows that Ip is nondecreasing with respect to p. On the other hand, we fix 0 < � 2 C1
c (⌦) and

since Ip(t�) ! �1 as t ! 1, it yields e = T� (for some T > 0) such that Ip̃(e) < 0. Then, by
monotonicity, we obtain

Ip(e) < 0, for all p 2 (1, p̃).

Moreover, due to the fact that critical points of J+

p are uniquely determined by critical points of
Ip, it follows that u ⌘ 0 is a local minimum of Ip and wp � 0 is a nontrivial critical point of Ip which
can be obtained invoking to the Mountain Pass Theorem. That is, it satisfies

Ip(wp) = inf
�2�

p

max
t2[0,1]

Ip(�(t)),

where
�p =

�

� 2 C
�

[0, 1],W 1,p
0

(⌦)
�

: �(0) = 0, �(1) = e
 

.

Next we claim that the sequence {Ip(wp)}
1<p<p̃ is increasing. Indeed, let 1 < p

1

< p
2

< p̃ and thanks

to the monotony of Ip and the fact that� p2 ⇢ �p1 (because W 1,p2
0

(⌦) ⇢ W 1,p1
0

(⌦)), it holds

Ip1(wp1) = inf
�2�

p1

max
t2[0,1]

Ip1(�(t))

 inf
�2�

p2

max
t2[0,1]

Ip1(�(t))

 inf
�2�

p2

max
t2[0,1]

Ip2(�(t))

= Ip2(wp2)

and the claim is proved. Thus, for a fixed p
0

2 (1, p̃) we get Ip(wp)  Ip0(wp0) for all p 2 (1, p
0

) and
hence

1
p

Z

⌦

|rwp|p �
Z

⌦

F (x,wp)  C, for all p 2 (1, p
0

), (8.9)

with C = C(p
0

) > 0 independent of p. Observe that we write F (x,wp) instead F
+

(x,wp) because
wp � 0 (an analogous remark holds for f

+

(x,wp)).
We denote⌦ p = {x 2 ⌦ : wp(x)  s

0

}, for any p 2 (1, p
0

). Then, by condition (a) and the
definition of F (x, s), we obtain

Z

⌦

p

F (x,wp)  Cs
0

(1 + sq
0

) |⌦| = C
1

, (8.10)
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where C
1

is independent of p. Also, by condition (c) and since wp is a solution, it holds
Z

⌦\⌦
p

F (x,wp) 
1


Z

⌦

wpf(x,wp) =
1


Z

⌦

|rwp|p. (8.11)

Substituting (8.10) and (8.11) into (8.9), we get
✓

1
p
0

� 1


◆

Z

⌦

|rwp|p 
✓

1
p
� 1


◆

Z

⌦

|rwp|p  C + C
1

.

Then, since  > p
0

, we conclude that
Z

⌦

|rwp|p  C̃, 8 p 2 (1, p
0

), (8.12)

for some positive constant C̃ = C̃(p
0

), independent of p.
This last inequality (8.12) allows us to establish the following statements (see (Andreu et al.,

2001, Proposition 3), and also (Mercaldo et al., 2013, Theorem 3.3)): there exists a bounded vector
field z 2 L1(⌦: RN ) with kzk1  1 such that

|rwp|p�2rwp * z, weakly in Lr(⌦;RN ), for all 1  r < 1, (8.13)

as p ! 1+. In particular,
Z

⌦

|rwp|p�2rwp ·r'!
Z

⌦

z ·r', for all ' 2 C1

c (⌦). (8.14)

On the other hand, (8.12) and Young’s inequality imply

kwpk 
Z

@⌦

|wp| dHN�1 +
1
p

Z

⌦

|rwp|p +
p� 1
p

|⌦|  C̃ + |⌦| ,

so that {wp}p>1

is bounded in BV (⌦). It follows that there exists w 2 BV (⌦) such that, up to a
subsequence (no relabeled),

(A) wp ! w, in Lm(⌦), for 1  m < N
N�1

.

(B) wp(x) ! w(x), almost everywhere x 2 ⌦.
(C) 9 g 2 Lm(⌦) (1  m < N

N�1

) such that |wp(x)|  g(x).

Observe that w � 0 because wp � 0 for all p > 1. Then, thanks to (B) and the fact that f(x, s) is a
Carathéodory function, we obtain

f(x,wp(x)) ! f(x,w(x)), a.e. x 2 ⌦.

Moreover, we deduce from (C) that

|f(x,wp(x))|  C(1 + |wp(x)|q)  C(1 + g(x)q) 2 LN (⌦).

Consequently, by the Dominated Convergence Theorem,
Z

⌦

f(x,wp)'!
Z

⌦

f(x,w)', for all ' 2 C1

c (⌦). (8.15)

Expressions (8.14) and (8.15) imply that

� d z = f(x,w) in D0(⌦). (8.16)

In order to prove that (z, Dw) = |Dw|, we note that it is enough to show h(z, Dw),'i = h|Dw|,'i
for all 0  ' 2 C1

c (⌦). Since kzk1  1 and (8.5) holds, we just prove the inequality h(z, Dw),'i �
h|Dw|,'i. Due to the definition of (z, Dw), we must check that:

�
Z

⌦

w d z'�
Z

⌦

w z ·r' �
Z

⌦

|Dw|', for all 0  ' 2 C1

c (⌦). (8.17)
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To this end, taking 0  wp ' 2 W 1,p
0

(⌦) as a test function in problem (8.8), we get

Z

⌦

|rwp|p'+

Z

⌦

wp|rwp|p�2rwp ·r' =

Z

⌦

f(x,wp)wp '. (8.18)

We estimate the first integral term in (8.18) using Young’s inequality:

Z

⌦

'|rwp| 
1
p

Z

⌦

'|rwp|p +
p� 1
p

Z

⌦

' .

Now, from the lower semicontinuity of the involved functional, we obtain

lim inf
p!1

+

Z

⌦

'|rwp|p � lim inf
p!1

+

Z

⌦

'|rwp|

=

Z

⌦

'|Dw| .

On the other hand, by (A) and (8.13)

Z

⌦

wp|rwp|p�2rwp ·r'!
Z

⌦

w z ·r', as p ! 1+.

The right hand side of (8.18) is analyzed as follows. We deduce from

|f(x,wp)wp '|  MC|wp|(1 + |wp|q)  C
1

g(x)(1 + g(x)q) 2 L1(⌦)

and the pointwise convergence, that
Z

⌦

f(x,wp)wp '!
Z

⌦

f(x,w)w' = �
Z

⌦

d zw' .

Then, letting p ! 1+ in (8.18), we obtain the required inequality (8.17) to conclude that

(z, Dw) = |Dw|. (8.19)

Next, we will show that [z, ⌫] 2 sign(�w) on @⌦. It is easy to check that this fact is equivalent to
show

Z

@⌦

(|w|+ w [z, ⌫]) dHN�1 = 0, (8.20)

because | [z, ⌫] |  kzk1  1. Since �w [z, ⌫]  kzk1|w|  |w| and so

Z

@⌦

(|w|+ w [z, ⌫]) dHN�1 � 0 ,

it remains to prove the reverse inequality. To do this, we take wp � ', with ' 2 C1

c (⌦), as a test
function in (8.8), to obtain

Z

⌦

|rwp|p =

Z

⌦

|rwp|p�2rwp ·r'+

Z

⌦

f(x,wp)(wp � '). (8.21)

Hence, using Young’s inequality, we get

p

Z

⌦

|rwp| 
Z

⌦

|rwp|p + (p� 1)|⌦|

=

Z

⌦

|rwp|p�2rwp ·r'+

Z

⌦

f(x,wp)(wp � ') + (p� 1)|⌦|.
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Now, having in mind (8.13), the weak lower semicontinuity of the total variation and from the previous
arguments, we can pass to the limit as p ! 1+, to have

Z

⌦

|Dw|+
Z

@⌦

|w|dHN�1 
Z

⌦

z ·r'�
Z

⌦

f(x,w)'+

Z

⌦

f(x,w)w

=

Z

⌦

f(x,w)w, (8.22)

due to (8.16). Furthermore, by (8.16), (8.7) and (8.19), we get
Z

⌦

f(x,w)w = �
Z

⌦

w d z

= �
Z

@⌦

w [z, ⌫] dHN�1 +

Z

⌦

(z, Dw)

= �
Z

@⌦

w [z, ⌫] dHN�1 +

Z

⌦

|Dw| .

Replacing this equality in (8.22) gives the desired equality in (8.20) and we conclude that

[z, ⌫] 2 sign(�w) on @⌦. (8.23)

Then, (8.16), (8.19) and (8.23) lead to conclude that w is a nonnegative solution of problem (P ) in
the sense of Definition 8.2.1.

In order to check that w is nontrivial, by hypothesis (i), f(x, 0) = 0 and there exists � > 0, small
enough, such that |f(x, s)|  K

1

|s|↵ for all |s| 2 (0, �) and for some K
1

> 0. Observe that hypothesis
(ii) implies ↵ < q < 1

N�1

. Moreover, by definition of F
+

(x, s) it follows

F
+

(x, s) =

Z s

0

f
+

(x, t)dt 
Z s

0

|f(x, s)|  K
1

1 + ↵
|s|1+↵,

for |s| 2 (0, �). Let ⇢ 2 (0, �) to be determined. Then, for u 2 BV (⌦) with kuk = ⇢, it holds

J(u) = kuk �
Z

⌦

F
+

(x, u)

� kuk � K
1

1 + ↵

Z

⌦

|u|1+↵

� kuk �K
2

kuk1+↵

= ⇢(1�K
2

⇢↵).

We define ⇢, so small, such that 1�K
2

⇢↵ � 1

2

, so that

J(u) � ⇢
2
, for kuk = ⇢ > 0.

Observing that J(e) < 0, we deduce that kek > ⇢. Since, by Young’s inequality, we get that Ip(u) �
J(u) for all u 2 W 1,p

0

, it follows that

Ip(wp) = inf
�2�

p

max
t2[0,1]

Ip(�(t)) �
⇢
2
. (8.24)

On the other hand, we have

lim
p!1

+

1
p

Z

⌦

|rwp|p = lim
p!1

+

1
p

Z

⌦

f(x,wp)wp

=

Z

⌦

f(x,w)w

=

Z

⌦

(z, Dw)�
Z

@⌦

w[z, ⌫] dHN�1

=

Z

⌦

|Dw|+
Z

@⌦

|w| dHN�1,
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where in the last equality we have used that w is a solution of (P ). In addition, it is easy to check
that

lim
p!1

+

Z

⌦

F (x,wp) =

Z

⌦

F (x,w).

By using these last two equalities, we can assert that

lim
p!1

+
Ip(wp) = J(w). (8.25)

Summarizing (8.24) and (8.25) we conclude that J(w) � ⇢
2

and then w is nontrivial, because J(0) = 0.

With regard to the existence of a nontrivial solution v  0 of problem (P ), we use the same
reasoning applied to the functional

Ĩp(u) =
1
p

Z

⌦

|ru|p �
Z

⌦

F�(x, u) +
p� 1
p

|⌦| ,

getting that vp ! v as p ! 1+. Where vp is the nonpositive solution of p�Laplacian problem (8.8).

8.3.2 Boundedness of the solutions

In this subsection, we will write S
1

to denote the best constant of the Sobolev embedding W 1,1
0

(⌦) ,!
L

N

N�1 (⌦). Moreover, for every k � 0 and 0  wp 2 W 1,p
0

(⌦) solution of (8.8) defined in the proof of
Theorem 8.1.1, we set

Ak(wp) = Ak,p = {x 2 ⌦ : |wp(x)| > k} .

Lemma 8.3.1 For every " > 0 there exists k
0

> 0 (which does not depend on p) such that
Z

A
k,p

(1 + wq
p)

N < "

for every k � k
0

and for all p > 1 small enough.

Proof: Using Hölder’s inequality twice, Sobolev’s inequality and taking into account that

|Ak,p| 
1

k
N

N�1

Z

A
k,p

w
N

N�1
p ,

we obtain

Z

A
k,p

(1 + wq
p)

N  2N�1

 

|Ak,p|+
Z

A
k,p

wqN
p

!

 2N�1

0

@|Ak,p|+
 

Z

A
k,p

w
N

N�1
p

!q(N�1)

|Ak,p|1�q(N�1)

1

A

 2N�1(1 + kqN )

k
N

N�1

Z

⌦

w
N

N�1
p

 2N�1(1 + kqN )

k
N

N�1

S
N

N�1
1

✓

Z

⌦

|rwp|
◆

N

N�1

 2N�1(1 + kqN )

k
N

N�1

S
N

N�1
1

✓

Z

⌦

|rwp|p
◆

N

p(N�1)

|⌦|
p�1
p

N

N�1 ,
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now, having in mind inequality (8.12) which asserts the existence of a positive constant C̃, which does
not depend on p, satisfying

✓

Z

⌦

|rwp|p
◆

1
p

 C̃1/p < 1 + C̃

and since |⌦|
p�1
p < 1 + |⌦|, it follows that there exists a positive constant C = C(N, q,S

1

, |⌦|) such
that

Z

A
k,p

(1 + wq
p)

N <
C(1 + kqN )

k
N

N�1

! 0

as k ! 1, because q < 1

N�1

. ⇤

Remark 8.3.2 By a similar argument we can state the existence of a k
0

> 0 (which does not depend
on p) such that

Z

A
k,p

(1 + |vp|q)N < "

for every k � k
0

and for all p > 1 su�ciently small. Where 0 � vp 2 W 1,p
0

(⌦) is the negative solution
of (8.8) and Ak,p = Ak(vp).

Now, we are ready to prove the boundedness of the solutions v and w of problem (P ). Proof:[Proof
of Boundedness] We prove the boundedness of the positive solution w. The proof for the negative one
is similar in spirit.

For every k > 0, we define the auxiliary function Gk : R ! R as usual

Gk(s) =

8

<

:

s� k, s > k,
0, |s|  k,
s+ k, s < �k.

Then, choosing Gk(wp) as a test function in (8.8), we get
Z

⌦

|rGk(wp)|p =

Z

⌦

f(x,wp)Gk(wp). (8.26)

Now, computing and using (8.26), Sobolev’s embedding, and the Young and Hölder inequalities, we
have

✓

Z

⌦

Gk(wp)
N

N�1

◆

N�1
N

 S
1

Z

⌦

|rGk(wp)|

 S
1

p

Z

⌦

|rGk(wp)|p +
S
1

(p� 1)
p

|⌦|

 S
1

Z

⌦

|f(x,wp|Gk(wp) +
S
1

(p� 1)
p

|⌦|

 CS
1

Z

A
k

(1 + wq
p)Gk(wp) +

S
1

(p� 1)
p

|⌦|

 CS
1

 

Z

A
k,p

(1 + wq
p)

N

!

1
N

✓

Z

⌦

Gk(wp)
N

N�1

◆

N�1
N

+
S
1

(p� 1)
p

|⌦|.

By Lemma 8.3.1, there exists k̃
0

> 0 (which does not depend on p) such that
Z

A
k,p

(1 + wq
p)

N <
1

(2CS
1

)N
, for all k � k̃

0

,
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and for all p > 1 su�ciently small. Consequently, we obtain

Z

⌦

Gk(wp)
N

N�1 
✓

2S
1

(p� 1)|⌦|
p

◆

N

N�1

.

Since wp(x) ! w(x) a.e. x 2 ⌦, by Fatou lemma, we can pass to the limit on p ! 1, to conclude that
Z

⌦

(w(x)� k)
N

N�1 = 0, for every k � k̃
0

.

Thus, kwk1  k̃
0

. ⇤

8.4 A Pohoz̆aev type identity and explicit examples

In this section we provide a Pohoz̆aev type identity for elliptic problems involving the 1–Laplacian
operator

8

>

>

<

>

>

:

�div

✓

Du
|Du|

◆

= f(u), in⌦ ,

u = 0 on @⌦.

(8.27)

From now on, for any function g evaluated on @⌦, we write
R

@⌦
g instead of

R

@⌦
g dHN�1 when no

confusion can arise.

Proposition 8.4.1 [Pohoz̆aev type identity for the 1–Laplacian] Let u 2 W 1,1(⌦) be a solution
of problem (8.27) in the sense of Definition 8.2.1 with z 2 C1(⌦�) (for some � > 0 su�ciently small)
and assume that x ·ru 2 W 1,1(⌦). Then, u satisfies the identity

(N � 1)

Z

⌦

uf(u)�N

Z

⌦

F (u) +

Z

@⌦

F (u)x · ⌫ (8.28)

=

Z

@⌦

|ru|x · ⌫ �
Z

@⌦

(x ·ru) (z · ⌫) + (N � 1)

Z

@⌦

|u| .

Proof:
By our assumption x ·ru 2 W 1,1(⌦), we have

r (x ·ru) = ru+D2u · x,

where
�

D2u · x
�

j
=
PN

i=1

@2u
@x

i

@x
j

xi (j = 1, . . . , N) belong to L1(⌦). Moreover, by Stampacchia’s

Theorem, r (x ·ru) = 0 a.e. in the set {x ·ru = 0} which implies
�

D2u · x
�

j
= 0, a.e. in {|ru| = 0}.

Hence, integrating by parts and taking into account (8.6), we obtain

Z

⌦

d z (x ·ru) =

Z

@⌦

(x ·ru) (z · ⌫)�
Z

⌦

z · r(x ·ru)

=

Z

@⌦

(x ·ru) (z · ⌫)�
Z

⌦

|ru|�
Z

⌦

�

D2u · x
�

· z , (8.29)

On the other hand, we also get

N

Z

⌦

|ru| =
Z

@⌦

|ru|x · ⌫ �
Z

⌦

x ·r(|ru|)

=

Z

@⌦

|ru|x · ⌫ �
Z

⌦

�

D2u · x
�

· z , (8.30)
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where in the last integral term we replace ru
|ru| by z since we can assume that |ru| > 0. Then,

combining (8.29) and (8.30), we obtain

Z

⌦

d z (x ·ru) =

Z

@⌦

(x ·ru) (z · ⌫) + (N � 1)

Z

⌦

|ru|�
Z

@⌦

|ru|x · ⌫. (8.31)

Since u is a solution, we can choose x ·ru 2 W 1,1(⌦) as a test function and by using integration by
parts we get

Z

⌦

d z (x ·ru) = �
Z

⌦

f(u)(x ·ru)

= �
X

i

Z

⌦

xi
@F (u)
@xi

= �
Z

@⌦

F (u)x · ⌫ +N

Z

⌦

F (u).

Also, taking u as a test function we have
Z

⌦

|ru| =
Z

⌦

uf(u) +

Z

@⌦

u (z · ⌫) .

Replacing the above two equalities in (8.31) and remembering that u (z · ⌫) = �|u|, it yields the
equality (8.28). Finally, we point out that in case |ru| = 0 in the whole ⌦, we obtain the identity

(N � 1)

Z

⌦

uf(u)�N

Z

⌦

F (u) +

Z

@⌦

F (u)x · ⌫ = (N � 1)

Z

@⌦

|u|

⇤

Corollary 8.4.2 In case ⌦ = BR (the ball of radius R > 0). Under the hypotheses of Proposition
8.4.1, solutions of (8.27) must satisfy the inequality

(N � 1)

Z

B
R

uf(u)�N

Z

B
R

F (u) +R

Z

@B
R

F (u) � (N � 1)

Z

@B
R

|u|.

Proof: Since x · ⌫ = R and by (8.5) , it follows that

Z

@B
R

|ru|x · ⌫ �
Z

@B
R

(x ·ru) (z · ⌫)

� R

Z

@B
R

|ru| � kzk1
Z

@B
R

(x ·ru)

� R (1� kzk1)

Z

@B
R

|ru| � 0.

Substituting into (8.28), we obtain the desired inequality. ⇤
The following result, first obtained by F. Demengel in (Demengel, 1999, Section 4), is now a

consequence of Proposition 8.4.1.

Corollary 8.4.3 Besides the hypotheses of Proposition 8.4.1, assume that u|@⌦ ⌘ 0. Then

(N � 1)

Z

⌦

uf(u) = N

Z

⌦

F (u).

In particular, for f(s) = |s|q�1s it follows q = 1

N�1

.
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It is worth noting that in the Pohoz̆aev inequalities, there is no restriction on the possible values
of q. We give some explicit examples about radial solutions of problem (P ) in the ball BR = {x 2
RN : |x| < R}. We point out that they also satisfy the Pohoz̆aev identity (8.28).

Example 3 For f(s) = |s|q�1s, with q > 0

u(x) ⌘
✓

N
R

◆

1/q

, z(x) = � x
R
,

defines a positive constant solution, while a negative solution is defined by

u(x) ⌘ �
✓

N
R

◆

1/q

, z(x) =
x
R
.

Furthermore thanks to Proposition 8.4.1, for a general continuous and increasing function f , constant
solutions of (8.27) in BR must satisfy

u ⌘ f�1

✓

N
R

◆

.

In the next examples, we assume a supercritical growth, so that in the supercritical case, two
positive (and two negative) solutions are obtained. A further remark is in order. We have considered
the Anzellotti theory of pairing gradients of BV –functions and bounded vector fields whose divergence
is an LN–function. It should be remarked that analogous results hold for bounded vector fields whose
divergence is a function belonging to the Marcinkiewicz space LN,1(⌦). This fact is a consequence

of the continuous embedding of BV (⌦) ,! L
N

N�1 ,1(⌦), where L
N

N�1 ,1(⌦) denotes the Lorentz space
(see Alvino (1977)). Hence, the Radon measure (z, Du) is well–defined for the vector field z(x) = x

|x| ,

whose distributional divergence is given by dz(x) = N�1

|x| and belongs to LN,1(BR), and for any

u 2 BV (BR).

Example 4

1. For f(s) = sq
+

with q > 1

N�1

u(x) =

✓

N � 1
|x|

◆

1/q

, z(x) = � x
|x| ,

is a positive solution in W 1,1(BR).

2. For f(s) =
⇣

�

N�1

R

�

1/q
+ s
⌘q

+

with q > 1

N�1

u(x) =

✓

N � 1
|x|

◆

1/q

�
✓

N � 1
R

◆

1/q

, z(x) = � x
|x| ,

is a positive solution belongs to W 1,1
0

(BR).





Chapter 9

Existence and regularizing e↵ect
of degenerate lower order terms
in elliptic equations beyond the
Hardy constant

D. Arcoya, A. Molino and L. Moreno-Mérida, submitted (2017).

Abstract

In this paper we study the regularizing e↵ect of lower order terms in elliptic
problems involving a Hardy potential. Concretely, our model problem is

��u+ h(x)|u|p�1u = �
u

|x|2 + f(x) in ⌦,

with Dirichlet conditions on @⌦, where p > 1 and f 2 Lm(⌦;hdx) with m � p+1
p .

We prove that there is a solution of the above problem even for � � H = (N�2)2

4
and 0  h 2 L1(⌦) which could be vanished in a subset of ⌦. Moreover, we show
that all the solutions are in Lpm(⌦;hdx). These results improve and generalize
the case h(x) ⌘ h0 treated in Porzio (2007) and recently in Adimurthi et al.
(2017).

175
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9.1 Introduction

For a bounded domain⌦ ⇢ RN (N > 2) with smooth boundary @⌦ and 0 2 ⌦, we consider the
following problem

(

��u+ h(x)|u|p�1u = �
u

|x|2 + f(x) in ⌦,

u = 0 on @⌦,
(9.1)

being � > 0, p > 1, 0  h 2 L1

loc(⌦) and f 2 L
p+1
p

h (⌦), (i.e. |f |
p+1
p h 2 L1(⌦)).

If h ⌘ 0, it is proved in Garćıa Azorero and Peral Alonso (1998) the existence of a solution for

every f 2 W�1,2(⌦) when � < H = (N�2)

2

4

(H is called the Hardy constant). From this pioneering
paper the case h ⌘ 0 has been studied by many authors. More recently, it is proved in Adimurthi et al.
(2017); Porzio (2007) that if h(x) ⌘ h

0

> 0, then the lower order term h
0

|u|p�1u has a regularizing
e↵ect: Consider f 2 Lm(⌦), then there exists a solution belonging to W 1,2

0

(⌦) \ Lpm(⌦) for every
� � 0 provided that p+1

p
 m < N

2

p�1

p
. The solution is obtained as limit of solutions of a sequence of

suitable approximate problems. In particular the Lpm(⌦)-regularity of the solution is only obtained
for this specific solution obtained by approximation. We remark explicitly that the assumption that
h(x) is uniformly away from zero is essential in these papers.

Our first goal is to deal with the existence of solutions for � � H and terms h which can vanish
in a subset of ⌦. Indeed, in Section 2 we handle functions h(x) that can be zero in a neighbourhood
⌦� = {x 2 ⌦ : dist (x,@ ⌦) < �} of @⌦. First we prove in Theorem 9.2.1-a) that if

Z

⌦\⌦
�

|x|
2(p+1)
1�p h(x)

2
1�p < 1 , (9.2)

then there exists a solution u of (9.1) for every �  ⇤(�), where ⇤(�) ! 1 as � ! 0. Observe that
in the particular case that h(x) ⌘ a > 0, the above condition is satisfied provided that p > 2⇤ � 1.
Hence, our result contains also the existence result of Adimurthi et al. (2017); Porzio (2007) when
m = p+1

p
(see Corollary 9.2.3). The case that h is zero in⌦ � is also considered in Corollary 9.2.5.

For the proof of Theorem 9.2.1-a) we take advantage of the variational nature of (9.1) by finding
its solution as a critical point of the associated Euler C1-functional I� (see (9.4) below). Indeed, we
show that I� is coercive and bounded from below. By using the Variational Principle of Ekeland we
also prove that a suitable minimizing sequence of this functional is weakly convergent to a critical
point u 2 W 1,2

0

(⌦) \ Lp+1

h (⌦) of I�, i.e., a solution of (9.1).

In addition, in Theorem 9.2.1-b) we also prove that if we strengthen the condition (9.2) by
assuming that there exists s̄ 2 (2, p+ 1) such that

Z

⌦\⌦
�

|x|
2s̄

2�s̄ h(x)
2s̄

(p+1)(2�s̄) < 1, (9.3)

then I� is weakly lower semicontinuous (see Remark 9.2.2-iv) for a comparison with the result of
(Garćıa Azorero and Peral Alonso, 1998, Theorem 3.4)) and thus u is a minimum of the functional
I�. We also use this additional variational characterization of this found solution to obtain the
existence of a non-zero solution of the problem (9.1) when f ⌘ 0 (see Corollary 9.2.6) and improve
the corresponding existence results of Wei and Du (2017); Wei and Feng (2015) (see Remark 9.2.7).

We devote the section 3 to study the regularity of every solution of (9.1). Specifically we prove

in Theorem 9.3.1 that if f 2 Lm
h (⌦) with m � p+1

p
and |x|

2pm
1�p h1� pm

p�1 2 L1(⌦), then every solution

u of (9.1) verifies u 2 Lpm
h (⌦) improving the previously mentioned regularity result of Adimurthi

et al. (2017); Porzio (2007) for solutions which are only obtained as limit of solutions of approximate
problems (see Remark 9.3.4-ii)).
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9.2 Coercivity and existence of solutions

For 0  h 2 L1

loc(⌦) let Lp+1

h (⌦) be the linear space of all measurable functions in ⌦ such that
|f |p+1h 2 L1(⌦). It can be equiped with the seminorm

|u|
L

p+1
h

(⌦)

=

✓

Z

⌦

|u|p+1 h

◆

1
p+1

, 8u 2 Lp+1

h (⌦),

which is a norm in the particular case that h(x) > 0 a.e. x 2 ⌦.
We consider the reflexive space

E = W 1,2
0

(⌦) \ Lp+1

h (⌦)

endowed with the norm
kukE = krukL2

(⌦)

+ |u|
L

p+1
h

(⌦)

.

Observe that every function f 2 L
p+1
p

h (⌦) has associated a functional 'f in the dual space E⇤ (of E)
given by

h'f , gi =
Z

⌦

fgh, 8g 2 Lp+1

h (⌦).

Hence, we understand that a solution of (9.1) is just a critical point of the C1-functional I� defined
in E by setting

I�(u) =

Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h� �
2

Z

⌦

u2

|x|2 �
Z

⌦

f u h, 8u 2 E; (9.4)

i.e. a function u 2 E satisfying
Z

⌦

rurv +

Z

⌦

|u|p�1u v h� �

Z

⌦

u
|x|2 v �

Z

⌦

f(x) v h = 0, 8v 2 E.

On the other hand, for every � � 0, we define the set

⌦� = {x 2 ⌦ : dist (x,@ ⌦) < �} .

Observe that⌦
0

= ; and that clearly there exists �
0

> 0 such that for every � 2 [0, �
0

] the boundary
@⌦� of⌦ � is smooth and 0 /2 ⌦̄�, where ⌦̄� denotes the clousure of⌦ �. We point out that in the
sequel the positive constant � will be always assumed to be smaller than �

0

.
Our first goal is to study the existence of solutions for the problem (9.1) with functions h that

can vanish in⌦ �. Concretely, we are going to prove the following existence theorem.

Theorem 9.2.1 Assume that p > 1, f 2 L
p+1
p

h (⌦) and that there exists � � 0 such that @⌦� is
smooth, 0 /2 ⌦̄� and h > 0 a.e. in ⌦ \ ⌦�.

a) If condition (9.2) holds true, then there exists ⇤(�) such that (9.1) has a solution u 2 E for
every �  ⇤(�). In addition, ⇤(�) ! 1 as � ! 0.

b) If, in addition, there exists s̄ 2 (2, p + 1) such that condition (9.3) holds true, then u is a
minimum of functional I� given by (9.4).

Remarks 9.2.2

i) As it has been previously observed, every function f 2 L
p+1
p

h (⌦) can be considered as an
element of the dual space E⇤ of E. We will see in the proof that for the above existence result

the hypothesis f 2 L
p+1
p

h (⌦) can be relaxed to f 2 E⇤.
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ii) Observe that condition (9.2) is equivalent to 1

|x|h
1

p+1
2 L

2(p+1)
p�1 (⌦), while condition (9.3) means

that 1

|x|h
1

p+1
2 L

2s̄
s̄�2 (⌦) . Observe that if 2 < s̄ < p+ 1, then 2 < 2(p+1)

p�1

< 2s̄
s̄�2

and it follows

that (9.3) implies (9.2).

iii) Moreover, (9.3) is clearly satisfied in the case in which h(x) is a Hardy potential term of order
p+1 on the left hand of equation (9.1), i.e. h(x) = 1/|x|p+1. Indeed, in this context condition,
(9.3) holds true due to the boundedness of the domain ⌦.

iv) In the case h ⌘ 0, the part b) of the above theorem has to be compared with the result of
(Garćıa Azorero and Peral Alonso, 1998, Theorem 3.4) where the authors proved the existence
of a minimum of the functional by using an argument that do not require the weak lower
semicontinuity of the functional I� leaving this semicontinuity as an open problem. As for us,
we prove that the hypothesis (9.3) implies that I� is w.l.s.c.

Proof: a) By (9.2), using the Hölder inequality with exponent
p+ 1
2

, we obtain for every u 2 E

Z

⌦

u2

|x|2 =

Z

⌦

�

u2

|x|2 +

Z

⌦\⌦
�

u2

|x|2 =

Z

⌦

�

u2

|x|2 +

Z

⌦\⌦
�

u2h(x)
2

p+1

h(x)
2

p+1 |x|2

 1
⇢(�)2

Z

⌦

�

u2 + C
1

 

Z

⌦\⌦
�

|u|p+1 h

!

2
p+1

,

where ⇢(�) := dist(0,⌦�) > 0.
Moreover, since u = 0 in @⌦ and @⌦ ⇢ @⌦� we can use a Poincaré inequality in⌦ � (see e.g.

Maz’ya (2011), (Ziemer, 1989, Section 4.6) see also (Adams, 1998, Section 8)) to assert that
Z

⌦

�

u2  C(�)

Z

⌦

�

|ru|2

with the positive constant C(�) satisfying

C(�) = C
2

s

|⌦�|
C

1,2(@⌦)
! 0, as � ! 0, (9.5)

where C
1,2(@⌦) denotes the capacity of @⌦.

Hence, the functional I� given by (9.4) satisfies for every u 2 E that

I�(u) �
Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h� �C(�)
⇢(�)2

Z

⌦

�

|ru|2
2

� �C
1

2

 

Z

⌦\⌦
�

|u|p+1 h

!

2
p+1

�
Z

⌦

f u h

�
✓

1� �C(�)
⇢(�)2

◆

Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h� �C
1

2

✓

Z

⌦

|u|p+1 h

◆

2
p+1

� kfkE⇤kukE .

Thus, since 2

p+1

< 1, we obtain that I� is coercive and bounded from below provided that

�  ⇤(�) := ⇢(�)2

C(�)
.

As a consequence, by the Variational Principle of Ekeland Ekeland (1974), there is a bounded mini-
mizing sequence {un} ⇢ E such that

I�(un) ! inf
E

I� (9.6)
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and I 0�(un) ! 0 in E⇤, i.e., there exists a sequence of positive numbers {"n} converging to zero such
that

�

�

�

�

Z

⌦

runrv +

Z

⌦

|un|p�1un v h� �

Z

⌦

un

|x|2 v �
Z

⌦

f(x) v h

�

�

�

�

 "nkvkE , 8v 2 E. (9.7)

We are going to pass to the limit in this inequality as n tends to infinity. The boundedness of
{un} in E implies that, up to a subsequence, we have the weak convergence of un in E to some u 2 E.
In particular, up to a subsequence, we can assume that

(A) un * u in W 1,2
0

(⌦),

(B) unh
1

p+1 * uh
1

p+1 in Lp+1(⌦),

(C) un ! u in Lq(⌦) (1  q < 2⇤),

(D) un(x) ! u(x) a.e. in ⌦ ,

(E) 9 g 2 Lq(⌦) (1  q < 2⇤) such that |un(x)|  g(x).

Obviously, by (A),

lim
n!1

Z

⌦

runrv =

Z

⌦

rurv, 8v 2 W 1,2
0

(⌦)

and by (B) the sequence |un|p�1un is bounded in Lp+1

h (⌦) and due to almost every convergence (D),
it follows that |un|p�1un * |u|p�1u in Lp+1(⌦;hdx). Hence, by (E), Lebesgue dominated convergence
theorem implies that

lim
n!1

Z

⌦

|un|p�1un v h =

Z

⌦

|u|p�1u v h, 8v 2 Lp+1(⌦).

In order to get the convergence of the term with Hardy potential, i.e.,
R

⌦

u
n

|x|2 v, we point out that for

each v 2 W 1,2
0

(⌦) the operator Tv : W 1,2
0

(⌦) ! R defined as

Tv(u) =

Z

⌦

u
|x|2 v, 8v 2 W 1,2

0

(⌦)

is linear and continuous since (by using Hölder and Hardy inequalities)

|Tv(u)| 
 

Z

⌦

✓

u
|x|

◆

2

!

1/2 
Z

⌦

✓

v
|x|

◆

2

!

1/2

 H kuk
W

1,2
0 (⌦)

kvk
W

1,2
0 (⌦)

for every v 2 W 1,2
0

(⌦), (H is the Hardy constant).
In particular, since Tv has finite range, it is also compact and hence Tv(un) strongly converges to

Tv(u), i.e.

lim
n!1

Z

⌦

un(x)
|x|2 v(x) =

Z

⌦

u(x)
|x|2 v(x).

In conclusion, taking limits in (9.7) we obtain that u 2 E is a solution of problem (9.1) for
� < ⇤(�).

In addition, since ⇢(�) ! dist(0, @⌦) > 0 as � ! 0, then (9.5) implies that ⇤ (�) ! 1 as � ! 0.
b) As it has been seen in the proof of the part a), for every �  ⇤(�) the functional I� is bounded

from below and coercive. Thus, in order to deduce that I� attains its minimum, it su�ces to show
that it is weak lower semicontinuous. Assume hence that {un} is a sequence weakly convergent in
E. As before, up to a subsequence, we can assume that {un} verifies the convergences (A)-(E). In

addition, we note that the boundedness of unh
1

p+1 in Lp+1(⌦) and the a.e. convergence (D) of un

imply the strong convergence of unh
1

p+1 in Ls(⌦) for every 1  s < p + 1. As a consequence, there

exists G 2 Ls(⌦) such that (again up to a subsequence) |un(x)h
1

p+1 (x)|  G(x), for all n 2 N.
We claim that

lim
n!1

Z

⌦

un(x)
2

|x|2 =

Z

⌦

u(x)2

|x|2 . (9.8)
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Indeed, if we consider the function g 2 L2(⌦) given in (E) with q = 2 which satisfies that |un(x)| 
g(x) for every n 2 N and almost everywhere for x 2 ⌦ then

u2

n(x)
|x|2  H(x) a.e. x 2 ⌦,

where the function H is defined in ⌦as

H(x) =

8

>

>

>

>

<

>

>

>

>

:

g2(x)
|x|2 , if x 2 ⌦̄�,

G2(x)

|x|2h(x)
2

p+1

, if x 2 ⌦ \ ⌦̄�.

By (D) we also have the convergence of u
n

(x)2

|x|2 to u(x)2

|x|2 for almost every x 2 ⌦. Therefore, by the

dominated convergence theorem, the claim will be proved if we show thatH 2 L1(⌦). For this purpose,

observe that taking into account that 0 /2 ⌦̄�, we deduce that g2(x)

|x|2 2 L1(⌦̄�), i.e., H 2 L1(⌦̄�). To

prove the integrability in⌦ \ ⌦̄�, we use the Hölder inequality with exponent s
2

> 1 to obtain

Z

⌦\⌦
�

G2(x)

|x|2h(x)
2

p+1


 

Z

⌦\⌦
�

1

|x|
2s

s�2 h(x)
2s

(s�2)(p+1)

!

s�2
s

 

Z

⌦\⌦
�

G(x)s
!

2
s

.

The last two integral terms are finite due to hypothesis (9.3) and that G 2 Ls(⌦). Consequently, we
also have H 2 L1(⌦ \ ⌦̄�) and the claim is proved.

By the other hand, the result of (Boccardo and Murat, 1992, Theorem 2.1) implies that (up to a
subsequence) run ! ru strongly in (Lq(⌦))N (1 < q < 2) and in particular (up to a subsequence)
it converges almost everywhere in ⌦. Then, applying the Fatou lemma we have

lim inf
n!1

✓

Z

⌦

|run|2
2

+
1

p+ 1

Z

⌦

|un|p+1 h

◆

�
Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h (9.9)

Summarizing (9.8) and (9.9) we obtain

lim inf
n!1

I�(un) � I�(u),

i.e. the functional I� is w.l.s.c. and the proof is concluded. ⇤
If we take � = 0, then ⌦� = ; and by observing that

R

⌦

|x|
2(p+1)
1�p < 1 provided that p > 2⇤ � 1,

we derive from Theorem 9.2.1 the following consequence for the case that h is a positive constant in
all ⌦.

Corollary 9.2.3 Assume p > 2⇤ � 1, f 2 L
p+1
p (⌦) and h(x) ⌘ h

0

> 0 in ⌦. There exists u 2 E,
solution of problem (9.1) for every � 2 R.

Remark 9.2.4 In particular, we recover the existence result of Adimurthi et al. (2017); Porzio (2007):
there exists a solution in E = W 1,2

0

(⌦) \ Lp+1(⌦).

A simple case in which h vanishes in⌦ � is the following one.

Corollary 9.2.5 Let p > 2⇤ � 1, 0 < �  �
0

, f 2 L
p+1
p (⌦ \ ⌦�) and h ⌘ h

0

�
⌦\⌦

�

for some h
0

> 0.

Then, there is a solution of (9.1) in E for �  ⇤(�).
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If H < � then it is possible to choose w 2 W 1,2
0

(⌦) such that

Z

⌦

|rw|2 � �

Z

⌦

w2

|x|2 < 0.

and since p > 1, we deduce in the case f ⌘ 0 that infE I�  I�(tw) < 0 = I�(0) provided that t is
close to zero. This allows to conclude this section by showing a simple consequence of the additional
information that the solution u given in Theorem 9.2.1 is a minimum of I�.

Corollary 9.2.6 If p > 1, the function h satisfies (9.3) with h > 0 a.e. in ⌦\⌦� and H < �  ⇤(�),
then the problem

(

��u+ h(x)|u|p�1u = �
u

|x|2 in ⌦,

u = 0 on @⌦,
(9.10)

has at least one nonzero solution.

Remark 9.2.7 As usual by considering instead of I� the functional J� given by

J�(u) =

Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h� �
2

Z

⌦

(u+)2

|x|2 , u 2 E,

it is possible to deduce the existence of a positive solution of the problem (9.10). Therefore we improve
the corresponding existence result of Wei and Feng (2015) where it is required additionally that h is
a continuous and positive function in ⌦̄ and of Wei and Du (2017), where the case h(x) = 1/|x|� with
� > 2 is studied. (Observe that in both cases considered in those papers, ⇤(�) = 1 in the above
corollary).

9.3 Regularity of the solutions

In this section, for the reader’s convenience we assume that h 2 L1(⌦). In this case, by Hölder
inequality, it is easy to verify that Lr

h(⌦) ⇢ Ls
h(⌦) for every r � s � 1. Next, we give a su�cient

condition on the function h for which if we strength the condition f 2 L
p+1
p

h (⌦) by assuming that
f 2 Lm

h (⌦) with m � p+1

p
, then the solution (given by Theorem 9.2.1) u 2 W 1,2

0

(⌦) \ L p+1

h (⌦) of

(9.1) is more regular: it belongs also to L pm
h (⌦).

Theorem 9.3.1 Assume that h 2 L1(⌦) with h(x) > 0 a.e. in ⌦ and that there exists m � p+1

p
such

that

i) f 2 Lm
h (⌦),

ii) |x|
2pm
1�p h1� pm

p�1 2 L1(⌦).

If u is a solution of (9.1), then u 2 L pm
h (⌦).

Remark 9.3.2 If instead of assuming that h 2 L1(⌦) we only assume that h 2 L1

loc(⌦), then the

above hypothesis i) should be replaced by f 2 L
p+1
p

h (⌦) \ Lm
h (⌦).

Proof: For every k > 0, we define the auxiliary function Tk : R ! R as usual

Tk(s) =

8

<

:

k, s > k,
s, |s|  k,
�k, s < �k.
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Let u 2 E be a solution of (9.1). Since m � (p+1)/p, we have � := pm�1�p > 0 and we can choose
|Tk(u)|�Tk(u) as a test function in problem (9.1) to obtain, by dropping the positive term coming
from the principal part, that

Z

⌦

h|u|p|Tk(u)|�+1  �

Z

⌦

|u||Tk(u)|�+1

|x|2 +

Z

⌦

f |Tk(u)|�+1h. (9.11)

Next, we estimate each term of the above inequality. In order to do it, we define

Fk(u) := |u|p��|Tk(u)|1+�+�h ,

where

� =
(1 + �)(p� 1)

� + 2
=

p(m� 1)(m� 1)
pm� p+ 1

2 (0, p� 1).

Using that |Tk(s)|  |s| for all s 2 R, we deduce that

|u|p|Tk(u)|�+1h = Fk(u)|Tk(u)|��/|u|�� � Fk(u)

and thus
Z

⌦

h|u|p|Tk(u)|�+1 �
Z

⌦

Fk(u), (9.12)

On the other hand, using Hölder inequality with exponent p � � > 1 and that 1 + � + � =
(1 + �)(p� �), we get

�

Z

⌦

|u||Tk(u)|�+1

|x|2 = �

✓

Z

⌦

|x|
2pm
1�p h1� pm

p�1

◆

1
(p��)0

✓

Z

⌦

Fk(u)

◆

1
p��

 C
1

✓

Z

⌦

Fk(u)

◆

1
p��

, (9.13)

where the last inequality is a consequence of hypothesis ii).
In addition, using Hölder with exponent m and taking into account that

(� + 1)m
m� 1

= pm = � + 1 + p

we obtain by i)
Z

⌦

f |Tk(u)|�+1 h =

Z

⌦

f h
1
m |Tk(u)|�+1 h

m�1
m


✓

Z

⌦

|f |m h

◆

1
m

✓

Z

⌦

|Tk(u)|
(1+�)m
m�1 h

◆

m�1
m

 C
2

✓

Z

⌦

Fk(u)

◆

m�1
m

. (9.14)

In conclusion, substituting (9.12), (9.13) and (9.14) into (9.11), we deduce that

Z

⌦

Fk(u)  C
1

✓

Z

⌦

Fk(u)

◆

1
p��

+ C
2

✓

Z

⌦

Fk(u)

◆

m�1
m

. (9.15)

Since 1

p��
and m�1

m
are less than 1, (9.15) implies the existence of k

0

> 0 and C
3

> 0 (independent
of k and u) such that

Z

⌦

|u|p��|Tk(u)|1+�+�h =

Z

⌦

Fk(u)  C
3

, for all k � k
0

.

Fatou’s lemma when k tends to 1 and the fact that � + 1 + p = pm implies that
Z

⌦

|u|pmh(x)dx =

Z

⌦

|u|p+1+�h  C
3



Existence and regularizing e↵ect beyond the Hardy constant 183

as we desired.
⇤

A particular interesting case is when the function h can be compared with a Hardy potential of
di↵erent order.

Corollary 9.3.3 Assume that f 2 Lm
h (⌦) for m � p+1

p
, and that there exist µ > 0 and � � 0 such

that the function h 2 L1(⌦) satisfies

h(x) � µ
|x|� , a.e. x 2 ⌦.

If u is a solution of (9.1), then u 2 Lpm
⇣

⌦; dx
|x|�

⌘

for every

m 2

8

>

>

<

>

>

:

h

p+1

p
, (N��)(p�1)

(2��)p

⌘

, if � 2 [0, 2),

h

p+1

p
,1
⌘

, if � � 2.

Remarks 9.3.4

i) The integrability of h implies that necessarily � < N .

ii) Observe that if � 2 [0, 2), then the interval [ p+1

p
, (N��)(p�1)

(2��)p
] of the possibles values of m is not

empty (i.e., p+1

p
< (N��)(p�1)

(2��)p
) if and only if h satisfies condition (9.2).

iii) We note that in the particular case � = 0 the regularity result is proved in Adimurthi et al.
(2017) only for a solution obtained as limit of solutions of a sequence of suitable approximate
problems, but not for every solution as in the previous result.





Chapter 10

A concave-convex problem with
a variable operator

A. Molino and J.D. Rossi, submitted (2017).

Abstract

We study the following elliptic problem �A(u) = �uq with Dirichlet boundary
conditions, where A(u)(x) = �u(x)�D1(x) + �pu(x)�D2(x) is the Laplacian in
one part of the domain, D1, and the p�Laplacian (with p > 2) in the rest of the
domain, D2. We show that this problem exhibits a concave-convex nature for
1 < q < p�1. In fact, we prove that there exists a positive value �⇤ such that the
problem has no positive solution for � > �⇤ and a minimal positive solution for
0 < � < �⇤. If in addition we assume that p is subcritical, that is, p < 2N/(N�2)
then there are at least two positive solutions for almost every 0 < � < �⇤, the first
one (that exists for all 0 < � < �⇤) is obtained minimizing a suitable functional
and the second one (that is proven to exist for almost every 0 < � < �⇤) comes
from an appropriate (and delicate) mountain pass argument.
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10.1 Introduction

Given a smooth bounded domain ⌦ we split it into two smooth subdomains

⌦ = D
1

[D
2

, D
1

\D
2

= ;

(we assume that both D
1

and D
2

are Lipschitz). We call � the interface inside ⌦,

� = @D
1

\ ⌦ = @D
2

\ ⌦,

and we assume that � is a smooth surface with finite (N � 1) dimensional Hausdor↵ measure.
For a fixed p > 2 we consider the operator which acts as the Laplacian in the region D

1

and as
the p-Laplacian in the region D

2

. To be more precise, we consider equations of the form

��u = f(u), in D
1

and ��pu = f(u), in D
2

,

with a Dirichlet boundary condition, u = 0 on @⌦, a suitable continuity condition on � and a power
nonlinearity f .

Note that this problem can also be rewritten involving a variable exponent operator, a p(x)-
Laplacian, with a discontinuous exponent p(x). That is, we deal with

⇢

��p(x)u = f(u), in⌦ ,
u = 0, on @⌦,

where� p(x)u = div
⇣

|ru|p(x)�2ru
⌘

and the variable discontinuous exponent p(x) is given by

p(x) =

⇢

2 if x 2 D
1

,
p > 2 if x 2 D

2

.
(10.1)

With regard to equations involving p(x)-Laplacian terms, with a general p(x) (not necessarily
discontinuous) we refer the reader to the recent book Diening et al. (2011) for background and an
extensive review of recent results. In addition, problems that involve the p(x)-Laplacian with a
discontinuous variable exponent, which is assumed to be constant in disjoint pieces of the domain
⌦, are recently used to model organic semiconductors (i.e., carbon-based materials conducting an
electrical current). In these models p(x) describes a jump function that characterizes Ohmic and
non-Ohmic contacts of the device material, see Buĺıček et al. (2016) and Buĺıček et al. (2017). In
fact, let us consider the Organic Light-Emitting Diodes (OLEDs) which are constituted by thin-
film heterostructures made up by organic molecules or polymers. Each functional layer has its own
current-voltage characteristics and hence, the current-flow equation is of p(x)-Laplacian type. Since
the exponent p(x) describes non-Ohmic behavior of materials, it changes abruptly in passing from
one to another. For example, in electrodes the parameter p(x) is typically 2 (Ohmic) while in organic
materials p(x) takes larger values, e.g. p(x) = 9 (Fischer et al. (2014)).

This work is devoted to the study of this kind of operators with a power nonlinearity on the right
hand side that has a concave-convex nature with respect to the variable operator� p(x). That is,
convex (superlinear) for the Laplacian and concave (sublinear) for the p-Laplacian. Concretely, we
look for existence and multiplicity of positive weak solutions for the following problem

8

>

>

>

>

>

<

>

>

>

>

>

:

��u = �uq, in D
1

,

��pu = �uq, in D
2

,

@u
@⌘

= |ru|p�2

@u
@⌘

, u|D1 = u|D2 , on� ,

u = 0, on @⌦,

(10.2)

in the following function space

W(⌦) =

⇢

v 2 W 1,2
0

(⌦) :

Z

D2

|rv|p < 1
�

.
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Here
� > 0, 2 < q + 1 < p,

and ⌘ is the normal unit vector to � pointing outwards D
1

. This space W(⌦) is a reflexive and
separable Banach space equipped with the norm

[v]W(⌦)

:= krv kL2
(D1)

+ krv kLp

(D2) (10.3)

(see Lemma 10.2.1 for a detailed proof). We refer to the Preliminaries section in order to justify the
definition of this convenient space.

Observe that in (10.2) we have continuity of the solution, in the sense that the trace of u on�
coincides coming from D

1

and coming from D
2

, and also we have continuity of the associated fluxes
across �. In addition, note that the exponent q is a superlinear exponent (convex) for the problem
in D

1

and a p�sublinear one (concave) for the problem in D
2

. Therefore this problem has both a
concave part and a convex one (but acting in di↵erent regions).

It is fairly easy to see that problem (10.2) has a variational structure. Indeed, if we consider the
functional F : W(⌦) ! R

F�(u) =

Z

D1

|ru|2
2

dx+

Z

D2

|ru|p
p

dx� �

Z

⌦

|u|q+1

q + 1
dx, (10.4)

as we will see in Lemma 10.2.5, positive solutions of (10.2) are uniquely identified as being positive
critical points for this functional.

From a pure mathematical perspective concave–convex problems have received some interest in
the literature in recent times, including several kinds of boundary conditions and generalizations to
other operators such as the p–Laplacian or fully nonlinear uniformly elliptic operators. The subject
goes back to the pioneering works Boccardo et al. (1995), Garćıa Azorero and Peral Alonso (1991),
Garćıa Azorero and Peral Alonso (1994) and Lions (1982). However, Ambrosetti et al. (1994) is
regarded as a first detailed analysis of the main properties of such type of problems, especially its
bifurcation diagrams (see also Lions (1982), Section 1.1). We also quote Ambrosetti et al. (1996)
and Garćıa Azorero et al. (2000) that deal with Dirichlet conditions and the p–Laplacian operator;
Charro et al. (2009), dedicated to fully nonlinear uniformly elliptic operators with Dirichlet boundary
conditions; Garćıa-Azorero et al. (2004), dealing with flux–type nonlinear boundary conditions and
source nonlinearities and Garćıa-Melián et al. (2012) handling concave–convex terms of absorption
nature. Of course, this list is far from being complete and is only a sample of the previous research
on the topic.

In this framework we have the following results:

Theorem 10.1.1 There exists �⇤ > 0 such that:

1. For 0 < � < �⇤ there exists w� a minimal positive solution. Moreover, this minimal solution,
w�, is unique and increasing with respect to �.

2. For � > �⇤ there is no positive solution.

The proof is based on the method of sub and supersolution. For this, a comparison principle and a
maximum principle for this problem are needed. For the nonexistence of solutions for � large we use
the fact that solutions to the parabolic problem ut = �u + �uq in D

1

, with large initial data, blow
up in finite time. Theorem 10.1.1 is proved in Section 3.

Our next result shows that this problem has a second solution for almost every 0 < � < �⇤ when
p is subcritical, in our case that is, p < 2⇤. Here 2⇤ = 2N

N�2

if N � 3 and 2⇤ = 1 when N = 1, 2.
Note that we also have that q is subcritical since 1 < q < p� 1 < 2⇤ � 1.

Theorem 10.1.2 Assume, in addition, p < 2⇤ and D
2

⇢⇢ ⌦. Then, there exists a second positive
solution v� for almost every 0 < � < �⇤.
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To prove the existence of a second solution we argue in two steps: First, using variational methods,
we prove that (10.2) has a solution which is a local minimum of the corresponding energy functional
(Theorem 10.4.6). This fact is subtle and we run into new di�culties. To be more precise, as the
operator acts di↵erently in D

1

and in D
2

, we can only get regularity of solutions at locally Hölder
spaces (we refer the seminal paper Acerbi and Fusco (1994)). Then, to show that there is a local
minimum in W(⌦), we assume that D

2

⇢⇢ ⌦ in order to get C1 regularity close to @⌦ and then
we show that there is a minimum in the stronger topology C1(F�) \ C(⌦) where F� is a small strip
around the boundary of ⌦. Then, by using a delicate regularity argument, we relax the topology to
W(⌦). Here we use partially the ideas from Ambrosetti et al. (1994); Brézis and Nirenberg (1993);
Garćıa Azorero et al. (2000) adapting them to our setting with the introduction of a new original
trick while using Stampacchia’s approach in Proposition 10.4.5 in order to obtain an L1�bound. It
is at this point where we use that p < 2⇤. Note that our space of solutions W(⌦) is a subspace of
W 1,2

0

(⌦) that is larger than W 1,p
0

(⌦).
Next, in order to prove the existence of a second positive solution, the crucial fact is to try to

apply a Mountain Pass argument. The main di�culty here is to show that Palais-Smale sequences
are bounded in W(⌦). This question is at present far from being solved and an a�rmative answer
would allow to find a second solution for all � 2 (0,�⇤) instead of for almost every � 2 (0,�⇤). Let
us discuss some di�culties: Initially, we point out that the usual trick combining F�(un) ! c with
F 0
�(un)un = o(kunk) does not work here. In addition, we would like to comment that in previous

references involving the search for critical points of Mountain Pass type for problems like
⇢

��u = f(x, u), in⌦ ,
u = 0, on @⌦,

it is usually assumed that

9 > 2 such that 8 s � 0 and a.e. x 2 ⌦) 0  F (x, s)  sf(x, s), (AR)

where F (x, s) =
R s

0

f(x, t)dt. This condition was originally introduced in Ambrosetti and Rabinowitz
(1973) and it is called Ambrosetti-Rabinowitz type condition. Roughly speaking, the role of (AR)
is to ensure that all Palais-Smale sequences at the mountain pass level are bounded. Adapting this
result to our variable operator� u�D1 + �pu�D2 it is not di�cult to prove that if f(x, s) satisfies
property (AR) for  > p, then we have that Palais-Smale sequences are bounded (see Appendix).
However, in our setting f(x, s) = �sq and (AR) is not satisfied for  > p because q + 1 < p.
Moreover, even conditions weaker than (AR) present in the literature of elliptic equations ensuring
the existence of bounded Palais-Smale sequences are not applicable to our problem. To tackle this
obstacle, we use some results from the classic works Ambrosetti and Rabinowitz (1973); De Figueiredo
(1989); Ghoussoub and Preiss (1989); Jeanjean (1999) again adapting them to our framework. Mainly,
relying on a result by Jeanjean Jeanjean (1999) which shows the existence a bounded Palais-Smale
sequence at mountain pass level for almost every 0 < � < �⇤. We remark that once we have a bounded
Palais-Smale sequence we are able to prove that there is a subsequence that converges strongly in
W(⌦).

Finally, we note that with the same ideas used here we can obtain similar results for the following
problem

(

��u = �uq1�D1 + �uq2�D2 , in⌦

u = 0, on @⌦,

with q
1

< 1 < q
2

. See Garćıa-Melián et al. (2016) for similar results for the same problem with �uq(x),
with a continuous exponent q(x).

Also remark that when we take D
1

= D
2

= ⌦, that is, for the problem
(

��u��pu = �uq, in⌦

u = 0, on @⌦,

with 1 < q < p�1 one has existence of a minimal positive solution for large �, � > �̃ and nonexistence
for small �, � < �̃. This result (that can be obtained just constructing adequate sub and supersolution)
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has to be contrasted with ours for (10.2) where we have existence for small � and nonexistence for
large �.

The rest of this paper is organized as follows: in the Preliminaries, Section 10.2, we give some
definitions and motivate the use of the space W(⌦). In Section 10.3 we deal with the proof of
Theorem 10.1.1. Finally, in Section 10.4 we prove the existence of a second solution provided p < 2⇤.
For completeness, in the Appendix we include a proof that shows that Palais-Smale sequences are
bounded when we assume (AR) with  > p.

10.2 Preliminaries

In this section we motivate the use of the space W(⌦) to define weak solutions for our problem and
also we collect some results that will be used throughout this work.

In order to justify the definition of space W(⌦), let us give a briefly description about W 1,p(x)
0

spaces with p(x) defined in (10.1). Following Diening et al. (2011) we define the Banach space

Lp(x)(⌦) =
�

v : ⌦! R mesurable : kvkL2
(D1)

+ kvkLp

(D2) < 1
 

.

equipped with the Luxemburg norm

kvkLp(x)
(⌦)

= inf
⌧>0

⇢

Z

D1

⇣u
⌧

⌘

2

+

Z

D2

⇣u
⌧

⌘p

 1

�

.

The space Lp(x)(⌦) is a reflexive and separable Banach space. Accordingly, we set the Sobolev space

W 1,p(x)(⌦) =
n

v : ⌦! R mesurable : v, |rv| 2 Lp(x)(⌦)
o

and we have that W 1,p(x)(⌦) is a reflexive and separable Banach space with the norm

kvkW1,p(x)
(⌦)

= kvkLp(x)
(⌦)

+ krv kLp(x)
(⌦)

.

Moreover, since C1(⌦) is dense in W 1,p(x)(⌦) ((Fan et al., 2006, Theorem 2.4 and 2.7)). Then,

W 1,p(x)
0

(⌦) is well-defined as the closure of C1
c (⌦) in W 1,p(x)(⌦) and it satisfies

W 1,p
0

(⌦) ⇢ W 1,p(x)
0

(⌦) ⇢ W 1,2
0

(⌦).

However, we can not use Poincaré’s inequality in cW since, in general, it does not hold for discon-
tinuous exponents, see (Diening et al., 2011, Sec. 8.2). Thus, we deal with a di↵erent Sobolev space
that will be appropriate for our problem. Concretely, we define the Sobolev space W(⌦)

W(⌦) =

⇢

v 2 W 1,2
0

(⌦) :

Z

D2

|rv|p < 1
�

,

equipped with the following norm

kvkW(⌦)

= kvk
W

1,2
0 (⌦)

+ krv kLp

(D2).

The space W(⌦) is a separable and reflexive Banach space, since it is a closed subspace of W 1,2
0

(⌦).
The following result asserts that, by using Poincaré inequality, we can use the norm [ · ]W(⌦)

defined
in (10.3) which only depends on the gradient terms.

Lemma 10.2.1

�

W(⌦), [ · ]W(⌦)

�

is a reflexive and separable Banach space.
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Proof: Since
�

W(⌦), k · kW(⌦)

�

is a reflexive and separable Banach space, it is su�cient to show that
the norms [ · ]W(⌦)

and k · kW(⌦)

are equivalent. For this purpose we use the fact that functions in

the classical Sobolev space W 1,2
0

(⌦) satisfies the Poincaré inequality and also that the continuous
embedding of variable Lebesgue spaces to obtain for arbitrary v 2 W(⌦),

kvkW(⌦)

= kvkW1,2
(⌦)

+ krv kLp

(D2)

 c
1

krv kL2
(D1)

+ c
1

krv kL2
(D2)

+ krv kLp

(D2)

 c
1

krv kL2
(D1)

+ c
2

krv kLp

(D2)

 c
3

�

krv kL2
(D1)

+ krv kLp

(D2)

�

.

and

kvkW(⌦)

� krv kL2
(⌦)

+ krv kLp

(D2)

� krv kL2
(D1)

+ krv kLp

(D2).

In these estimates, positive constants are denoted by ci, i � 1. ⇤

Remark 10.2.2 It is worth pointing out that the k · kLp

(D2)-norm is controlled by the [ · ]W(⌦)

-
norm (in particular, if [u]W(⌦)

< 1 ) kukLp

(D2) < 1). Moreover, there exists C > 0 such that
kukLp

(D2)  C
�

kru kLp

(D2) + kukL2
(D2)

�

. To see this fact, arguing by contradiction, suppose that
for every n 2 N there exists un such that

kunkLp

(D2) > n
�

krun kLp

(D2) + kunkL2
(D2)

�

(10.5)

which is equivalent to write the above expression as

1 > n
�

krvn kLp

(D2) + kvnkL2
(D2)

�

.

being

vn =
un

kunkLp

(D2)

.

Since krvn kLp

(D2) <
1

n
and kvnkLp

(D2) = 1 it follows that the sequence {vn} is bounded in W 1,p(D
2

)
and hence, up to a subsequence, vn converges weakly to w 2 W 1,p(D

2

). Consequently, vn ! w in
Lr(D

2

) for every r 2 [2, p⇤). Taking r = p, and the fact kvnkLp

(D2) = 1 implies kwkLp

(D2) = 1.
However, taking r = 2 from (10.5) we have kunkL2

(D2)
< 1

n
and then we get that kwkL2

(D2)
= 0

leading to a contradiction.

Remark 10.2.3 Let W(⌦)0 be the dual space of W(⌦). We have that for every fixed w 2 W(⌦) the
functional ŵ : W(⌦) ! R defined as

ŵ(v) :=

Z

D1

rwrv +

Z

D2

|rw|p�2rwrv +

Z

⌦

wv, v 2 W(⌦)

belongs to W(⌦)0.

Since we are considering positive solutions to the following p(x)-laplacian equation
⇢

��p(x)u = �uq, in⌦ ,
u = 0, on @⌦,

with p(x) defined in (10.1), a natural idea of what is a positive weak solution is a positive function
that vanishes on @⌦ (in an appropriate trace sense) and such that

Z

⌦

|ru|p(x)�2rur' =

Z

D1

rur'+

Z

D2

|ru|p�2rur' = �

Z

⌦

uq '

for all ' 2 C1
c (⌦).

Hence, let us state the definition of weak positive solutions to our problem as follows:
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Definition 10.2.4 Let u 2 W(⌦) be a positive function, it is said that u is a weak positive solution
of (10.2) if it satisfies

Z

D1

rur'+

Z

D2

|ru|p�2rur' = �

Z

⌦

uq ' (10.6)

for all ' 2 C1
c (⌦).

Note that (10.6) is formally equivalent to the following conditions:
Z

D1

rur' = �

Z

D1

uq '+

Z

�

@u
@⌘

',

Z

D2

|ru|p�2rur' = �

Z

D2

uq '�
Z

�

|ru|p�2

@u
@⌘

',

and
Z

�

@u
@⌘

' =

Z

�

|ru|p�2

@u
@⌘

'.

In the next lemma we prove that we can study critical points of functional (10.4) instead of
solutions of equation (10.2).

Lemma 10.2.5 Solutions of (10.2) are characterized by positive critical points of functional in (10.4)

Proof: From Definition 10.2.4, weak solutions satisfy
Z

D1

rur'+

Z

D2

|ru|p�2rur' = �

Z

⌦

uq '

for all ' 2 C1
c (⌦). Therefore, weak solutions are positive critical points of the functional (10.4).

Conversely, if u 2 W(⌦) is a critical point, we obtain in particular that
Z

D1

rur� = �

Z

D1

|u|q�1u� , 8� 2 C1
c (D

1

).

Thus, u is a weak solution of the laplacian problem: ��u = �|u|q�1u in D
1

. Hence, multiplying by
test functions ' 2 C1

c (⌦), integrating by parts and taking into account that �= @D
1

\⌦, we obtain
Z

D1

rur' = �

Z

D1

|u|q�1u'+

Z

�

@u
@⌘

', (10.7)

being ⌘ the normal unit vector to � pointing outwards D
1

. Analogously, choosing test functions
belongs to C1

c (D
2

), we get that critical points are weak solutions to the p-laplacian problem: ��pu =
�|u|q�1u in D

2

. The same arguments used above applied to this case give
Z

D2

|ru|p�2rur' = �

Z

D2

|u|q�1u'�
Z

�

|ru|p�2

@u
@⌘

'. (10.8)

Finally, since equalities (10.7) and (10.8) hold together, the fact that u is a critical point imply that
R

�

@u
@⌘
' =

R

�

|ru|p�2 @u
@⌘
'. Therefore, it follows that positive critical points of functional F� are weak

solutions to our problem. ⇤
Finally, let us introduce the concept of sub and supersolution.

Definition 10.2.6 By a subsolution (respectively, supersolution) to the problem (10.2) we mean a
function u 2 W(⌦) that satisfies the following inequality:

Z

D1

rur'+

Z

D2

|ru|p�2rur'  (�)�

Z

⌦

|u|q�1u' ,

for every 0  ' 2 C1
c (⌦).

Note that a solution is just a function which is both a subsolution and a supersolution.
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10.3 Existence and Non-Existence of Solutions

This section deals with existence and non existence of solutions. Initially, note that the functional
F does not have a global minimum (and therefore the direct method of calculus of variations is not
applicable). Indeed, let v be a function in W(⌦) with compact support in D

1

, then, since we have
that q > 1,

F�(tv) = t2
Z

D1

|rv|2
2

dx� tq+1�

Z

D1

|v|q+1

q + 1
dx ! �1 (10.9)

as t ! 1.
Hence, we use sub and supersolution techniques in order to get existence of solutions to problem

(10.2). Our first step is to prove existence, uniqueness and a comparison principle for the problem

8

>

>

>

>

>

<

>

>

>

>

>

:

��u = f, in D
1

,

��pu = f, in D
2

,

@u
@⌘

= |ru|p�2

@u
@⌘

u|D1 = u|D2 , on� ,

u = 0, on @⌦.

(10.10)

Here solutions, sub and supersolutions are understood as in Definitions 10.2.4 and 10.2.6 with �uq

replaced by f .

Proposition 10.3.1 For every f 2 L2(⌦), the problem (10.10) has a unique weak solution in u 2
W(⌦).

Proof: It is su�cient to prove that the functional

I(u) :=

Z

D1

|ru|2
2

dx+

Z

D2

|ru|p
p

dx�
Z

⌦

f u dx,

has a unique critical point in W(⌦). First, observe that is straightforward that this functional is
weakly lower semi continuous in W(⌦). Moreover, there exists 0 < C = C(N, p, kfkL2

(⌦)

, |⌦|) such
that

I(u) � C
⇣

kru k2L2
(D1)

� kru kL2
(D1)

+ kru kpLp

(D2)
� kru kLp

(D2)

⌘

.

Thus, the functional is coercive (i.e., I(u) ! 1 as [u]W(⌦)

! 1) and since W(⌦) is a reflexive Banach
space there exists u⇤ 2 W(⌦) such that

I(u⇤) = min{I(u) : u 2 W(⌦)}.

The uniqueness is due to the strict convexity of I. Indeed, by using the inequality |⇠|r � |⇠
0

|r +
r|⇠

0

|r�2⇠
0

(⇠ � ⇠
0

), for ⇠,⇠
0

2 RN and r = 2, p (which is strict if ⇠ 6= ⇠
0

) it follows that I(w) >
I(v) + I 0(v)(w � v) for v 6= w 2 W(⌦). ⇤

Proposition 10.3.2 Let u
1

, u
2

2 W(⌦) be sub and supersolution respectively of (10.10). Then
u
1

 u
2

a.e. in ⌦.

Proof: From the definition of sub and supersolution we get, for every test function 0  ' 2 C1
c (⌦),

Z

D1

ru
1

r'+

Z

D2

|ru
1

|p�2ru
1

r' 
Z

⌦

f ' , (10.11)

Z

D1

ru
2

r'+

Z

D2

|ru
2

|p�2ru
2

r' �
Z

⌦

f ' . (10.12)
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Note that since W(⌦) ⇢ W 1,2
0

(⌦) = C1
c (⌦)

W1,2

, by density we can choose test functions in W(⌦).
In this way, consider the test function

' = (u
1

� u
2

)+ := max {u
1

� u
2

, 0}

in the above inequalities and subtract (10.12) from (10.11) to obtain
Z

{x2D1:u1>u2}
|r(u

1

� u
2

)|2

+

Z

{x2D2:u1>u2}

�

|ru
1

|p�2ru
1

� |ru
2

|p�2ru
2

�

(ru
1

�ru
2

)  0.

Finally, taking into account the well-known inequality

�

|⇠|r�2⇠ � |⇠
0

|r�2⇠
0

�

(⇠ � ⇠
0

) � c(r)|⇠ � ⇠
0

|r, ⇠, ⇠
0

2 RN , (10.13)

for r = 2, p, we conclude that (u
1

� u
2

)+ ⌘ 0 finishing the proof. ⇤
As a direct consequence, there exists u � 0 the unique weak solution of (10.10) for every 0  f 2

L2(⌦). The next result shows that in fact the solution is strictly positive when f is nontrivial.

Proposition 10.3.3 For every nontrivial 0  f 2 L2(⌦), every supersolution of (10.10) is strictly
positive in ⌦.

Proof: Let u � 0 in ⌦ be a supersolution (or a solution) to (10.10). There is no loss of generality
in assuming that f|D2 6= 0 (the argument when f|D1 6= 0 is completely analogous). Consider 0 < v 2
W 1,p

0

(D
2

) the solution to the problem

(

��pv = f, in D
2

,

v = 0, on @D
2

.
(10.14)

Since u � 0, it follows that u � 0 on � and hence u is a supersolution to (10.14). From the comparison
principle we obtain that u � v > 0 in D

2

. Furthermore, if u(x
0

) = 0 for some x
0

2 �, by Hopf’s
lemma we have, in addition, that

@u(x
0

)
@⌘

= |ru(x
0

)|p�2

@u(x
0

)
@⌘

< 0

which means that x
0

is not a minimum of u and this contradicts the fact that u(x
0

) = 0. Therefore,
u > 0 on �. Finally, to show the that u is positive in the region D

1

, consider w 2 W 1,2(D
1

) the
solution to the following problem

(

��w = 0, in D
1

,

w = u, on @D
1

.
(10.15)

Since u > 0 on � ⇢ @D
1

, the strong maximum principle applied in problem (10.15) shows that
w > 0 in D

1

. Taking into account that u is a supersolution to problem (10.15), we conclude from the
comparison principle that u � w > 0 in D

1

. ⇤

Corollary 10.3.4 Let u 2 W(⌦) be a nonnegative solution to problem (10.2). Then either u(x) = 0
a.e. x in ⌦ or u(x) > 0 a.e. x 2 ⌦.

The method of proof of Proposition 10.3.3 can be applied to solutions that are nonnegative and
nontrivial on the boundary. To be more precisely, we state the following proposition whose proof is
almost the same as the previous one and is therefore omitted.



194 A concave-convex problem with a variable operator

Proposition 10.3.5 Let 0  f 2 L2(⌦) (maybe trivial) and u solution of (10.10) with boundary
conditions 0 � u on @⌦. Then u > 0 in ⌦.

Now, we are ready to prove one of the main goals of this section.

Proposition 10.3.6 There exists a minimal bounded and positive solution of problem (10.2) for every
0 < �  �̃, being �̃ su�ciently small.

Proof: First, we find a supersolution of (10.2) for � small. By Proposition 10.3.1, let u 2 W(⌦) be
the unique positive solution to the problem

8

>

>

>

>

>

<

>

>

>

>

>

:

��w = 1, in D
1

,

��pw = 1, in D
2

,

@w
@⌘

= |rw|p�2

@w
@⌘

, w|D1 = w|D2 , on� ,

w = 0, on @⌦.

Classical regularity for p-laplacian operators states that there exist C
1

, C
2

> 0 such that kukL1
(D1) 

C
1

and kukL1
(D2)  C

2

. Furthermore, setting �̃ = 1

(C1+C1)
q

, we get
Z

D1

rur'+

Z

D2

|ru|p�2 rur' =

Z

⌦

' = �̃

Z

⌦

(C
1

+ C
2

)q ' � �

Z

⌦

uq ',

for all �  �̃ and 0  ' 2 C1
c (⌦). Therefore, u is a supersolution of (10.2) for �  �̃. Note that this

argument shows the existence of a bounded supersolution only for � small.
Next, to get a subsolution, take v 2 W 1,p

0

(D
2

) the positive solution to
(

��pv = �vq, in D
2

,

v = 0, on @D
2

.
(10.16)

Note that there is a unique v for every � > 0 due to the fact that q < p� 1. Then we define

u(x) =

⇢

v(x) x 2 D
2

,
0 x 2 D

1

.
(10.17)

Clearly, u belongs toW(⌦). Moreover, due to Hopf’s Lemma Sakaguchi (1987), we get that |ru|p�2

@u
@⌘

<
0 on � (recal that ⌘ is the normal unit vector to � pointing outwards D

1

), then
Z

D2

|ru|p�2rur' = �

Z

D2

uq '+

Z

�

|ru|p�2

@u
@⌘

'  �

Z

D2

uq ',

for every � > 0 and 0  ' 2 C1
c (⌦). Thus, u is the required subsolution of (10.2) without any

restriction on � > 0. We stress that, thanks to Hopf’s Lemma, the above inequality is strict for tests
functions that verify ' > 0 on �. Thus, u is not a solution.

Clearly, 0 = u(x)  u(x) for x 2 D
1

. In addition, since u, u are a solution and a supersolution
respectively of problem (10.16) for �  �̃, it follows by the comparison principle for p�sublinear terms
in p-laplacian operators that u  u a.e. in D

2

. Finally, since u = u = 0 on @⌦, we can state that

u  u, a.e. in ⌦.

To conclude, we use the standard monotone iteration argument in order to find a solution for our
problem. For every n � 1 we define the recurrent sequence {wn} by

8

>

>

>

>

>

<

>

>

>

>

>

:

��wn = �wq
n�1

, in D
1

,

��pwn = �wq
n�1

, in D
2

,

@wn

@⌘
= |rwn|p�2

@wn

@⌘
, wn|D1 = wn|D2 , on� ,

wn = 0, on @⌦,

(10.18)
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where w
0

= u . The sequence {wn} is well defined by Proposition 10.3.1. Moreover, the sequence is
increasing. To check this property it su�ces to prove that w

0

 w
1

(and then proceed by induction).
Indeed, taking into account that w

0

is a subsolution of problem (10.18) for n = 1, we obtain by
comparison principle Proposition 10.3.2 that w

0

 w
1

. Hence, by an inductive argument: w
0

 w
1


· · · wn, for all n � 1. By the fact that u is a supersolution of problem (10.18) for n = 1, with a
similar argument we prove that wn  u for every n 2 N. Since u 2 L1(⌦), the sequence {wn(x)} is
increasing and bounded by u(x) for a.e. x 2 ⌦. Let w�(x) be the limit almost everywhere in ⌦ (i.e.,
w�(x) := limn!1 wn(x) a.e. x 2 ⌦) which is bounded since u is bounded. We claim that w� 2 W(⌦).
Indeed, since wn 2 W(⌦) we can take it as a test function in equation (10.18) to obtain

Z

D1

|rwn|2 +
Z

D2

|rwn|p = �

Z

⌦

wq
n�1

wn  �

Z

⌦

u q+1  �kuk q+1

L1
(⌦)

|⌦|.

That is, {wn} is uniformly bounded in the norm of W(⌦) and since this space is reflexive, up to a
subsequence, wn converges weakly to w̃ 2 W(⌦). Furthermore, wn(x) ! w̃(x) a.e. x 2 ⌦. Finally,
by the uniqueness of the limit w� = w̃ 2 W(⌦) and we conclude the claim.

To finish the proof, we verify that w� is a weak solution of (10.2). To this end, fix ' 2 C1
c (⌦)

and observe that from (10.18) we get
Z

D1

rwnr'+

Z

D2

|rwn|p�2rwnr' = �

Z

⌦

wq
n�1

'.

Now, let n ! 1 to obtain
Z

D1

rw�r'+

Z

D2

|rw�|p�2rw�r' = �

Z

⌦

wq
� ',

as desired. We note that w� is positive by Corollary 10.3.4 and minimal by construction. In fact, let
w̃� be another solution of problem (10.2), by a similar argument using the comparison principle and
induction in n we obtain wn  w̃� for all n 2 N, thus w�(x) = limn!1 wn(x)  w̃�(x) a.e. x 2 ⌦. ⇤

Now we are ready to proceed with the proof of Theorem 10.1.1.
Proof:[Proof of Theorem 10.1.1] First, we observe that if there exists û 2 W(⌦), a solution to

problem (10.2) for some �̂ > 0, then there exists w� a minimal solution for every � 2 (0, �̂). Indeed,
for a fixed 0 < � < �̂, we take û as a supersolution and u from (10.17) as a subsolution of problem
(10.2). Recall that we have showed existence of this subsolution for any value of � > 0. Arguing as
in the proof of Proposition 10.3.6, it holds that the sequence u < w

1

 w
2

 · · ·  wn  · · ·  û is
uniformly bounded in W(⌦) and, by our previous argument, there exists w�, the minimal solution.
In this way we set

�⇤ = sup {0  � : exists a solution to problem (10.2)} .

By Propositon 10.3.6 it follows that �⇤ > 0. Thus, for every 0 < � < �⇤ there exists w� a minimal
positive solution.

Next, in order to prove that �⇤ < 1, we take again v 2 W 1,p
0

(D
2

) the unique positive solution
to (10.16) and let us observe that

v(x) = �� v
1

(x), in D
2

,

with � = 1

p�1�q
> 0 and v

1

the unique solution to

(

��pv1 = (v
1

)q, in D
2

,

v
1

= 0, on @D
2

.

Now, fix a ball B ⇢⇢ D
2

. Since v
1

� c > 0 in B, it holds that

v(x) � c�� , x 2 B.
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That is, v is uniformly large in B for � large.
Now, let us consider z the solution to

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

��z = 0, in D
1

,

��pz = 0, in D
2

, \B
@z
@⌘

= |rz|p�2

@z
@⌘

, z|D1 = z|D2 , on� ,

z = 0, on @⌦,

z = c�� , on @B.

(10.19)

Such solution can be obtained as the minimum from the following coercive functional

H(u) =

Z

D1

|ru|2
2

dx+

Z

D2\B

|ru|p
p

dx

in the set A = {u 2 W̃(⌦ \B) : u|
@B

⌘ c��} being W̃(⌦ \B) the Banach space defined as

W̃(⌦ \B) =
�

u 2 W 1,2(⌦ \B) \W 1,p(D
2

\B) : u|
@⌦

⌘ 0
 

.

We note that such minimum is attained because A is a nonempty convex and weakly close subset of
W̃(⌦ \B).

Now fix a di↵erent ball B
2

⇢⇢ D
1

. We claim that z is uniformly large in B
2

when � is large.
Indeed, z should be large on � and therefore large in B

2

.
In order to prove the nonexistence of solutions to (10.2) for � large. Assume, arguing by contra-

diction, that there is a solution u for � large. By a comparison argument, we have that

u � v, in D
2

.

Hence u is a supersolution of problem (10.19) in W̃(⌦ \B) and due to Proposition 10.3.5 in the space
W̃(⌦ \B), it holds by comparison principle

u � z in B
2

.

This gives a contradiction, since the solution to the parabolic problem
8

>

>

<

>

>

:

wt ��w = �wq, in B
2

⇥ (0, T ),

w = 0, on @B
2

⇥ (0, T ),

w
0

= z, in B
2

,

(10.20)

blows up in finite time (due to the fact that z is uniformly large in the ball B
2

, see for instance Ball
(1977)) and also must satisfy

w(x, t)  u(x),

since u is a supersolution to the parabolic problem (10.20).
Finally, we note that if �

1

 �
2

< �⇤, taking w�2 as a supersolution of problem (10.2) for � = �
1

and arguing as the proof of Proposition 10.3.6 we obtain w�1  w�2 . That is, the family of functions
{w�}0<�<�⇤ is increasing with �. ⇤

10.4 Multiplicity of solutions

In this section we show that problem (10.2) has at least two positive di↵erent solutions provided
p < 2⇤ if N � 3 (with no restriction on p for N = 1, 2) and D

2

⇢⇢ ⌦. Concretely, we prove that
(10.2) has a first solution which corresponds to the global minimum of an appropriated functional
and then a second solution is found by means of Mountain Pass theory.
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Since our objective is to find positive solutions of our problem, we observe that they correspond
to critical points of the following functional

G�(u) =

Z

D1

|ru|2
2

dx+

Z

D2

|ru|p
p

dx� �

Z

⌦

uq+1

+

q + 1
dx,

where u
+

= max{u, 0}. We will write it simply G instead G� when no confusion can arise. Of course,
F (u) = G(u) whenever u � 0 and then, positive critical points of G correspond to positive solutions
of (10.2).

In general, for a p(x) discontinuous, the C1(⌦)-regularity of minimizers of G are not satisfied, in
fact, one can find some counter-examples in Zhikov (1997). However, as it mentioned in (Harjulehto
et al., 2010, Theorem 9.15) which refers to Fan and Zhao (2006), for our class of discontinuous
exponents one can arrive at locally Hölder continuity (see also Acerbi and Fusco (1994)). Therefore,
due to lack of C1-results in whole ⌦, we impose that D

2

⇢⇢ ⌦ in order to get regularity close to @⌦.
Concretely, as we will see later, we need that local minimizers of functional G belongs to C1(F�)\C(⌦)
where F� is a small strip around the boundary,

F� = {x 2 ⌦ : dist(x,@ ⌦) < �} (10.21)

being � enough small to ensure that F
3� ⇢ D

1

and @F� is smooth.
Following partially the ideas in Ambrosetti et al. (1994), we begin by showing the next result.

Lemma 10.4.1 For every � 2 (0,�⇤) there exists a local minimum of G in the C(⌦)\C1(F�)-topology.

Proof: Fixed 0 < � < �⇤, we take �
1

,�
2

> 0 such that �
1

< � < �
2

< �⇤ and let us denote by
u
1

and u
2

their respective minimal solutions for �
1

and �
2

obtained in Theorem 10.1.1. Since the
minimal solutions are increasing, we have u

1

 u
2

. Even more, since �
1

< �
2

it follows by the Strong
Maximum Principle applied in each region Di, i = 1, 2 (see for instance Damascelli (1998); Guedda
and Véron (1989)) and the Hopf Maximum Principle that

u
1

< u
2

, in⌦ ,

@u
2

@⌫
<
@u

1

@⌫
< 0, on @⌦,

being ⌫ the outer unit normal on @⌦.
Consider,

h(x, s) =

8

>

>

<

>

>

:

uq
2

(x) , s � u
2

(x),

sq , u
1

(x) < s < u
2

(x),

uq
1

(x) , s  u
1

(x),

and the truncated functional

G̃(u) =

Z

D1

|ru(x)|2
2

+

Z

D2

|ru(x)|p
p

� �

Z

⌦

H(x, u)

where u 2 W(⌦) and H(x, u) =
R u

0

h(x, s)ds. Clearly, G̃ is coercive and weakly lower semicontinuous

(because q < N+2

N�2

) . Hence, there exists its global minimum at some ũ 2 W(⌦) and for every
0  ' 2 C1

c (⌦) it holds
Z

D1

rũ(x)r'(x) +
Z

D2

|rũ(x)|p�2rũ(x)r'(x) = �

Z

⌦

h(x, ũ)'(x)

> �
1

Z

⌦

uq
1

(x)'(x).

That is, ũ is a supersolution of (10.10) with f = �
1

uq
1

and since u
1

is a solution it follows by the
comparison principle from Proposition 10.3.2 that u

1

 ũ. We proceed analogously to obtain that
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ũ  u
2

. Moreover, using again the Strong Maximum Principle and the Hopf Maximum Principle we
obtain that

0 < u
1

< ũ < u
2

, in⌦ , (10.22)

and

@u
2

@⌫
<
@ũ
@⌫

<
@u

1

@⌫
< 0, on @⌦. (10.23)

Next, we claim that ũ 2 C(⌦) \ C1(F�). Indeed, let K = ⌦ \ F�/2 be a compact set. Since ũ is a

local minimizer and u
1

, u
2

are bounded then G̃ is in the framework of the work Fan and Zhao (2006).
It follows a higher integrability of the gradient of ũ which implies locally Hölder continuity, hence
ũ 2 C↵(K). Moreover, ũ satisfies the equation

⇢

��ũ = �ũq, in F�,
ũ = 0, on @⌦,

and ũ is continuous on @F� \ ⌦. Then, the well-known classical regularity for the laplacian operator
(see Gilbarg and Trudinger (1983)) implies that ũ 2 C1(F�) \ C(F �) and the claim is proved.

Finally, in virtue of inequalities (10.22) and (10.23), there exists " > 0 su�ciently small such that
u
1

< v < u
2

in ⌦ for all v 2 B"(ũ) the ball of center ũ and radius " in the topology of C(⌦)\ C1(F�).
Therefore,

G(v) = G̃(v) � G̃(ũ) = G(ũ), for all v 2 B"(ũ).

Equivalently, ũ is a local minimum of G in C(⌦) \ C1(F�)-topology. ⇤

Remark 10.4.2 Concerning the regularity of local minimizers of functional G̃ in the proof of above
lemma, the same reasoning applied to the functional G states that local minimizers of G also belong
to C(⌦) \ C1(F�).

Our first goal is to show that there exists a local minimum of G in W(⌦). In fact, we will prove
that ũ, the local minimum in C(⌦) \ C1(F�)-topology of the proof of Lemma 10.4.1, is the desired
local minimizer. To prove it, we argue by contradiction following closely the ideas of (De Figueiredo,
1987, Lemma 1) (see also Brézis and Nirenberg (1993)). Thus, we suppose that there exists "

0

> 0
such that

G(v") := min {G(u) : u 2 V"(ũ)} < G(ũ), for all " < "
0

, (10.24)

where V"(ũ) is the closed set

V"(ũ) =

⇢

u 2 W(⌦) :

Z

D1

|r(u� ũ)|2
2

+

Z

D2

|r(u� ũ)|p
p

 "

�

.

Note that such minimum is attained as G is weakly lower semicontinuous and V"(ũ) is weakly
compact in the reflexive space W(⌦). Moreover, v" ! ũ as "! 0 in norm in W(⌦).

The strategy is to prove that v" ! ũ in C(⌦)\ C1(F�)-topology contradicting the fact that ũ is a
local minimum in C(⌦) \ C1(F�)-topology by the above lemma.

For that purpose, we note that the corresponding Euler equation for v" contains a nonpositive
Lagrange multiplier µ"  0. Namely, v" must be satisfy the following:

Z

D1

rur'+

Z

D2

|ru|p�2rur'�
Z

⌦

g(u)'

= µ"



Z

D1

r(u� ũ)r'+

Z

D2

|r(u� ũ)|p�2r(u� ũ)r'
�

, (10.25)

for all ' 2 W(⌦), being g(u) = �uq
+

.
Our first step is to prove that v" are uniformly L1-bounded by a constant independent of ".
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Lemma 10.4.3 Given 0  " < "
0

< 1, there exists M > 0 such that v" defined by (10.24) satisfies

kv"kL1
(⌦)

 M,

for all " 2 [0, "
0

).

Proof: We adapt the techniques applied in Garćıa Azorero et al. (2000) by using the classical
lemma due to Stampacchia Stampacchia (1966). First, since

Z

D1

|rũ|p�2rũr�+

Z

D2

rũ� = �

Z

⌦

ũq�, 8� 2 C(⌦) \ C1(F�),

and a density argument, the above equality holds for test functions belonging to W(⌦). Hence, we
write equation (10.25), which satisfies v", as follows

Z

D1

r(u� ũ)r'+

Z

D2

(|ru|p�2ru� | r̃u|p�2rũ)r'�
Z

⌦

(g(u)� g(ũ))'

= µ"



Z

D1

r(u� ũ)r'+

Z

D2

|r(u� ũ)|p�2r(u� ũ)r'
�

,

for all ' 2 W(⌦). We consider now for every k 2 R+ the function Tk : R ! R given by

Tk(s) =

8

<

:

s+ k, s  �k,
0, �k < s  k,
s� k, s > k.

Thus, taking
' = Tk(u� ũ)

as test function in the previous equation we get
Z

D1\⌦

k

r(u� ũ)rTk(u� ũ) +

Z

D2\⌦

k

(|ru|p�2ru� | r̃u|p�2rũ)rTk(u� ũ)

=

Z

⌦

(g(u)� g(ũ))Tk(u� ũ) + µ"



Z

D1\⌦

k

|r(u� ũ)|2 +
Z

D2\⌦

k

|r(u� ũ)|p
�

,

where⌦ k ⌘ {x 2 ⌦ : |u(x)� ũ(x)| > k}.
Hence, dropping the negative term

µ"



Z

D1

|r(u� ũ)|2 +
Z

D2

|r(u� ũ)|p
�

and using the inequality (10.13), we arrive to
Z

D1\⌦

k

|rTk(u� ũ)|2 + c(p)

Z

D2\⌦

k

|rTk(u� ũ)|p


Z

⌦

(g(u)� g(ũ))Tk(u� ũ).

(10.26)

We can also assume that ku � ũkLr

(⌦)

 R independent of ". Note that due u 2 V"(ũ) then r is at
least equal to 2⇤. Therefore, since |Tk(s)|  |s| and applying Hölder inequality for this r � 2⇤, the
right hand side can be estimated as follows

Z

⌦

(g(u)� g(ũ))Tk(u� ũ) 
Z

⌦

k

|g(u)� g(ũ)||Tk(u� ũ)|

 �

Z

⌦

k

(|u|q + |ũ|q)|Tk(u� ũ)|

 �

✓

Z

⌦

k

(|u|q + |ũ|q)
r

q

◆

q

r

✓

Z

⌦

k

|Tk(u� ũ)|2
⇤
◆

1
2⇤

|⌦k|1�
q

r

� 1
2⇤

 C
1

✓

Z

⌦

k

|Tk(u� ũ)|2
⇤
◆

1
2⇤

|⌦k|1�
q

r

� 1
2⇤ ,

(10.27)
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for some positive constant C
1

(�, q,N,R, kũkLr

(⌦)

). For the reader’s convenience, we will explain the
last inequality in more detail, we have

�

✓

Z

⌦

k

(|u|q + |ũ|q)
r

q

◆

q

r

 c
1

(�)

✓

Z

⌦

|u|r +
Z

⌦

|ũ|r
◆

q

r

 c
2

(�, q,N, kukLr

(⌦)

, kũkLr

(⌦)

)

 c
3

(�, q,N,R, kũkLr

(⌦)

).

Replacing inequality (10.27) in (10.26) we have that
Z

D1\⌦

k

|rTk(u� ũ)|2 + c(p)

Z

D2\⌦

k

|rTk(u� ũ)|p (10.28)

 C
1

✓

Z

⌦

k

|Tk(u� ũ)|2
⇤
◆

1
2⇤

|⌦k|1�
q

r

� 1
2⇤ .

Concerning to the left hand side, we use the inequality

a+ b c � 2�c(a+ b)c, 0  a, b  1  c,

to obtain
Z

D1\⌦

k

|rTk(u� ũ)|2 + c(p)

Z

D2\⌦

k

|rTk(u� ũ)|p

� C
2

 

Z

D1\⌦

k

|rTk(u� ũ)|2 +
✓

Z

D2\⌦

k

|rTk(u� ũ)|2
◆

p

2

!

� C
3

✓

Z

⌦

k

|rTk(u� ũ)|2
◆

p

2

� C
4

✓

Z

⌦

k

|Tk(u� ũ)|2
⇤
◆

p

2⇤

.

(10.29)

Going back to (10.28), we get

✓

Z

⌦

k

|Tk(u� ũ)|2
⇤
◆

p�1
2⇤

 C
5

|⌦k|1�
q

r

� 1
2⇤ . (10.30)

On the other hand, it is easy to check that h � k  |Tk(s)|, for s � h � k. Therefore, h � k 
|Tk(u� ũ)|, for x 2 ⌦h and h � k. Hence, we obtain the inequality

|⌦h|(h� k)2
⇤

Z

⌦

h

|Tk(u� ũ)|2
⇤

Z

⌦

k

|Tk(u� ũ)|2
⇤

(10.31)

and combining with (10.30) we have that

|⌦h| 
C

6

(h� k)2
⇤ |⌦k|� , for h > k.

being � =
�

1� q
r
� 1

2

⇤
�

2

⇤

p�1

. Therefore we can apply Stampacchia Lemma Stampacchia (1966), to
deduce that

(i) if u� ũ 2 Lr(⌦) with r >
2⇤q

2⇤ � p
, then u� ũ 2 L1(⌦) and

ku� ũkL1
(⌦)

 cC1/2⇤

6

,

for some specific c > 0,
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(ii) if u� ũ 2 Lr(⌦) with r =
2⇤q

2⇤ � p
, then u� ũ 2 Ls(⌦) for s 2 [1,1),

(iii) if u � ũ 2 Lr(⌦) with r <
2⇤q

2⇤ � p
, then u � ũ 2 Ls(⌦) for s =

2⇤

1� �
� ⇢ and ⇢ > 0 arbitrary

small.

Since u 2 L2

⇤
(⌦) we can argue as above for r = 2⇤. Thus, if 2⇤ > 2

⇤q
2

⇤�p
we conclude by item (i)

that u � ũ 2 L1(⌦) and, in virtue of the regularity of ũ, we get that kukL1
(⌦)

 M . In the case

2⇤ = 2

⇤q
2

⇤�p
we use item (ii) to choose s > 2

⇤q
2

⇤�p
and after repeating the argument we lie under the

conditions of item (i) and conclude again the desired bound. Finally, in the case 2⇤ < 2

⇤q
2

⇤�p
, by using

item (iii) we can take

r
1

=
2⇤(p� 1)
p� 2⇤ + q

� ⇢
1

> 2⇤.

As before, if r
1

� 2

⇤q
2

⇤�p
we conclude easily. In other cases we take

r
2

=
2⇤(p� 1)r

1

(p� 2⇤)r
1

+ 2⇤q
� ⇢

2

.

We claim that arguing by iteration, there exists k
0

2 N such that rk > 2

⇤q
2

⇤�p
for k � k

0

, i.e, we can
conclude after a finite number of steps. Indeed, in other cases, we have that the sequence {rk} is
bounded and it satisfies the recurrence

8

<

:

rk+1

=
2⇤(p� 1)rk

(p� 2⇤)rk + 2⇤q
� ⇢k+1

,

r
0

= 2⇤.
(10.32)

Where ⇢k+1

! 0. Moreover, it is easy to check that the sequence is increasing and therefore it is
convergent and the limit r1 satisfies

r1 =
2⇤(p� 1)r1

(p� 2⇤)r1 + 2⇤q
,

namely,

r1 =
2⇤(p� 1� q)

p� 2⇤
< 0,

which is a contradiction, proving the claim. Note that here we use the condition p < 2⇤. ⇤

Remark 10.4.4 Note that the hypothesis p < 2⇤ is necessary in order to apply Stampacchia’s idea
in the proof of the previous lemma.

Proposition 10.4.5 Let v" defined in (10.24). Then v" ! ũ in C(⌦) \ C1(F�)-topology for � > 0
su�ciently small.

Proof: Due to the construction of F� in (10.21), we have that v" satisfies

⇢

�(1� µ")�v" = �v q
" , in F

2�,
v" = 0, on @⌦.

Moreover, by using Lemma 10.4.3 it follows that v" is bounded on @F
2�\⌦. Then by interior regularity,

one may bootstrap the bound kv"kW1,2
(F

�

)

 M to arrive to kv"kC1,↵
(F

�

)

 M independent of ". Thus,

since v" ! ũ in W(⌦) it follows by Arzelà-Ascoli that v" ! ũ in C1(F�). This concludes the first part
of the proof.
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In order to prove that v" ! ũ uniformly in C(⌦) we adapt part of the method of Stampacchia
used in the proof of Lemma 10.4.3 to get an estimate. Concrentely, let  2 N such that r, the -term
of the sequence (10.32), satisfies r > 2

⇤q
2

⇤�p
. We adapted (10.27) replacing by r in the following form

Z

⌦

(g(v")� g(ũ))Tk(v" � ũ)  �

Z

⌦

k

(|v"|q + |ũ|q)|Tk(v" � ũ)|

 �

✓

Z

⌦

k

(|v"|q + |ũ|q)
r



q

◆

q

r



✓

Z

⌦

k

|Tk(v" � ũ)|2
⇤
◆

1
2⇤

|⌦k|1�
q

r



� 1
2⇤

 C

✓

Z

⌦

k

|Tk(v" � ũ)|2
⇤
◆

1
2⇤

|⌦k|1�
q

r



� 1
2⇤ ,

here C = C(�, q, , N, kũkLr



(⌦)

). Let us consider 0 < ⌧ < 1/2⇤ su�ciently small, that we will specify
later, and we write the last expression as follows

Z

⌦

(g(v")� g(ũ))Tk(v" � ũ)

 C

✓

Z

⌦

k

|Tk(v" � ũ)|2
⇤
◆⌧ ✓Z

⌦

k

|Tk(v" � ũ)|2
⇤
◆

1
2⇤ �⌧

|⌦k|1�
q

r



� 1
2⇤

 C

✓

Z

⌦

|v" � ũ|2
⇤
◆⌧ ✓Z

⌦

k

|Tk(v" � ũ)|2
⇤
◆

1
2⇤ �⌧

|⌦k|1�
q

r



� 1
2⇤ .

Therefore, using this inequality in (10.26) and having in mind (10.29), it holds that

✓

Z

⌦

k

|Tk(v" � ũ|2
⇤
◆

p�1
2⇤ +⌧

 C ✓(") |⌦k|1�
q

r



� 1
2⇤ ,

here ✓(") =
⇣

R

⌦

|v" � ũ|2⇤
⌘⌧

(note that ✓(") ! 0 since v" ! ũ in W(⌦) ). Thus, by using inequality

(10.31), we get

|⌦h| 
C̃✓̂(")

(h� k)2
⇤ |⌦k|

ˆ� , h > k.

Where ✓̂(") = ✓(")
2⇤

p�1+⌧2⇤ and

�̂ =
1� q

r


� 1

2

⇤

p�1

2

⇤ + ⌧
.

Then, choosing ⌧ such that �̂ > 1 (note that it is possible due to the choice of r) it is straightforward
by item (i) from Stampacchia Lemma that

kv" � ũkL1
(⌦)

 c ✓̂(")
1
2⇤ ! 0, as "! 0,

which completes the proof. ⇤
Summarizing, we have proved the following result:

Theorem 10.4.6 For every � 2 (0,�⇤), there exists, ũ�, a positive local minimum of G� in W(⌦).

The last goal is to obtain a second positive solution of problem (10.2). Taking into account (10.9),
one may expect that G� possesses a mountain-pass geometry and, by using results by Ghoussoub-
Preiss (Ghoussoub and Preiss (1989)) and Jeanjean (Jeanjean (1999)) in the spirit of the celebrated
Mountain Pass theorem due to Ambrosetti and Rabinowitz (Ambrosetti and Rabinowitz (1973)), to
find a critical point di↵erent from the minimum. To make sure that this critical point is nontrivial
we consider, for every fixed � 2 (0,�⇤), the truncated functional bG� : W(⌦) ! R as follows:

bG�(u) =

Z

D1

|ru(x)|2
2

+

Z

D2

|ru(x)|p
p

� �

Z

⌦

bH(x, u), (10.33)
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as usual bH(x, s) =
R s

0

bh(x, t)dt, being in this case

bh(x, t) =

(

tq , t > u
1

(x),

uq
1

(x) , t  u
1

(x),

and by 0 < u
1

we denote the minimal solution for a fixed �
1

2 (0,�) which is obtained in Theorem

10.1.1. We point out that, bu�, critical point of bG� corresponds to a supersolution of problem (10.10)
with f = �

1

uq
1

. Hence, by Proposition 10.3.2, it follows that bu� � u
1

. Moreover, if � > �
1

we obtain
bu� > u

1

and then it is also a critical point of G�.
In order to use the Mountain Pass theorem, as usual, a preliminary step is to show the existence of

a bounded Palais-Smale sequence at the mountain pass level and then prove that it posses a convergent
subsequence. We recall that a Palais-Smale sequence for the functional bG� at level c(�) 2 R is a

sequence {un} ⇢ W(⌦) verifying limn
bG�(un) = c(�) and limn

bG 0
�(un) = 0 in W(⌦) 0. We start by

showing that bounded Palais-Smale sequences have a subsequence converging strongly in W(⌦). Note
that we have to assume that the sequence is bounded, since it is not clear how to obtain boundedness
in W(⌦) using only that limn

bG�(un) = c(�) and limn
bG 0
�(un) = 0. This di�culty (showing that

Palais-Smale sequences are bounded) forces us to use Jeanjean’s ideas (Jeanjean (1999)) and hence
obtain existence of a second solution for almost every � 2 (0,�⇤).

Lemma 10.4.7 Let {un} ⇢ W(⌦) be a sequence satisfying

(i) {un} bounded in W(⌦),

(ii) bG�(un) bounded,

(iii) bG 0
�(un) ! 0 in W 0(⌦).

Then, {un} has a convergent subsequence in W(⌦).

Proof: From (i) there exists a subsequence {un
k

} and u 2 W(⌦), such that un
k

* u in W(⌦)
and, by the embedding W(⌦) ⇢ W 1,2

0

(⌦) ⇢ Lr(⌦), 8r 2 [1, 2⇤), it holds un
k

! u strongly in Lr(⌦).

Let now "n
k

= k bG 0
�(un

k

)kW 0
(⌦)

. By (iii) it holds "n
k

! 0. Furthermore
�

�

�

bG 0
�(un

k

)(v)
�

�

�

 "n
k

[v]W(⌦)

, 8v 2 W(⌦), k 2 N. (10.34)

Choosing v = un
k

� u in (10.34) and taking into account that
Z

⌦

bH(x, un
k

(x))(un
k

� u)(x) ! 0

(because un
k

! u strongly in Lq+1(⌦), since q+1 < 2⇤), we have from (10.34) the following inequality
Z

D1

run
k

r(un
k

� u) +

Z

D2

|run
k

|p�2run
k

r(un
k

� u)  "n
k

[un
k

� u]W(⌦)

.

And, since {un} is bounded in norm [ · ]W(⌦)

, it follows that
Z

D1

run
k

r(un
k

� u) +

Z

D2

|run
k

|p�2run
k

r(un
k

� u) ! 0, k ! 1. (10.35)

Let’s show that (10.35) implies the existence of a subsequence of {un
k

} which converges strongly in
W(⌦).

We set the operator S : W(⌦) ! [0,1) as

S(v) =
1
2
krvk2L2

(D1)
+

1
p
krvkpLp

(D2)
,
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namely,

S(v) = bG�(v) + �

Z

⌦

bH(x, u).

It is easy to check that S is convex and weakly lower semicontinuous. First, we claim that

lim
k!1

S(un
k

) = S(u). (10.36)

Indeed, by (ii) and by the strong convergence of {un
k

} in Lq+1(⌦), we get that the sequence
{S(un

k

)} is bounded. Thus, up to a subsequence, S(un
k

) ! a 2 R. Moreover, since S is weakly lower
semicontinuous, we obtain

a = lim
k!1

inf S(un
k

) � S(u).

By the other hand, due to convexity of S, i.e.

S(u) � S(un
k

) + S 0(un
k

)(u� uu
k

)

and keeping in mind, by (10.35), that S 0(un
k

)(u� uu
k

) ! 0, we obtain (taking limits)

S(u) � a

and the claim (10.36) is proved.
Then, to show that there exists a subsequence of {un

k

} which converges strongly to u in W(⌦),
we argue by contradiction. We consider a subsequence {un

k

l

} and � > 0 such that [un
k

l

�u]W(⌦)

� �.

In particular, there is a �̃ > 0 such that S(un
k

l

� u) � �̃.
We have

un
k

l

+ u

2
* u

and, by using again that S is weakly lower semicontinuous, it holds

S(u)  lim inf S

✓

un
k

l

+ u

2

◆

. (10.37)

On the other hand, due to Clarkson’s inequality:
�

�

�

z + w
2

�

�

�

r

+
�

�

�

z � w
2

�

�

�

r

 1
2
|z|r + 1

2
|w|r, z, w 2 R, 2  r < 1.

it is easy to check that

S

✓

un
k

l

+ u

2

◆

 1
2
S(un

k

l

) +
1
2
S(u)� S

✓

un
k

l

� u

2

◆

 1
2
S(un

k

l

) +
1
2
S(u)� �̃

2p
.

Finally, taking superior limits and taking into account (10.36), we have

lim supS

✓

un
k

l

+ u

2

◆

 S(u)� �̃
2p

which, together with (10.37), leads to the following contradiction

S(u)  lim inf S

✓

un
k

l

+ u

2

◆

 lim supS

✓

un
k

l

+ u

2

◆

 S(u)� �̃
2p

.

⇤
Now we are ready to find a second solution.
Proof:[Proof of Theorem 10.1.2] For every fixed � 2 (0,�⇤), we consider

�(�) := {� 2 C([0, 1],W(⌦)) : �(0) = ũ�, �(1) = Tw}.
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Here ũ� is the local minimum of the functional G� obtained in Theorem 10.4.6. In addition, by
construction, ũ� is greater that u

1

, the minimal positive solution for 0 < �
1

< � obtained in Theorem
10.1.1. Therefore, ũ� is also a local minimum from bG�. On the other hand, 0 < w 2 C1

c (D
1

) and

T = T (�) > 0 big enough to ensure that Tw > u
1

in D
1

and bG�(ũ�) > bG�(Tw).
Let’s also consider

c(�) := inf
�2�(�)

max
t2[0,1]

bG�(�(t)).

Obviously, c(�) � max{ bG�(ũ�), bG�(Tw)} = bG�(ũ�) = G�(ũ�). Where in the last equality we have
used the fact that u

1

< ũ�.
We distinguish between two possible cases:
If c(�) = bG�(ũ�). In this case, since ũ� is a local minimizer of bG�, there is � > 0 such that

bG�(ũ�)  bG�(v) for all v belongs in the ball B�(ũ�) = {v 2 W(⌦) : [v � ũ�]W(⌦)

< �}. In the case

that there is a v
0

2 B�(ũ�) \ {ũ�} with bG�(ũ�) = bG�(v0), then v
0

will be another minimum (in fact,
there will be infinity many minimums) and the proof is finished. Therefore, we can suppose

bG�(ũ�) < bG�(v), 8v 2 B�(ũ�) \ {ũ�}.

In particular, for all r 2 (0, �), it holds

c(�) = bG�(ũ�) < bG�(v), if [ũ� � v]W(⌦)

= r.

Then, applying the refinement of the Mountain Pass Theorem dues to Ghoussoub-Preiss (Ghoussoub
and Preiss, 1989, Theorem 1) with the closed subset

Fr = {v 2 W(⌦) : [v � ũ�]W(⌦)

= r} ⇢ W(⌦)

we obtain the existence of a sequence {un} ⇢ W(⌦) verifying:

lim
n

dist(un, Fr) = 0, lim
n

bG�(un) = c(�) and lim
n

k bG 0
�(un)kW(⌦)

0 = 0.

Then, {un} is bounded (because Fr is bounded and the distance of un to Fr goes to zero) and
by Lemma 10.4.7 our functional satisfies the Palais-Smale condition for bounded sequences. Conse-
quently, there exists a critical point of bG� on Fr with critical value c(�) (see (Ghoussoub and Preiss,
1989, Theorem 1. bis)). Then, this critical point is a nontrivial weak solution to our problem (10.2)
(that is in fact strictly greater than u

1

). Note that we can apply this reasoning for every closed subset
Fr with r 2 (0, �), and to conclude the existence of infinite critical points of G� in B�(ũ�).

If c(�) > bG�(ũ�), for some � = �̂ 2 (0,�⇤). Let �
1

< �̂ and u
1

the minimal solution in the

construction of bG
ˆ� in (10.33). In this way, we consider the interval [�̂� "

0

, �̂], with "
0

> 0 such that

"
0

< min

(

(q + 1)"
1

kũ
ˆ�k

q+1

Lq+1
(⌦

, �̂� �
1

)

,

where "
1

= c(�̂) � bG
ˆ�(ũˆ�) > 0. Obviously, [�̂ � "

0

, �̂] ⇢ (0,�⇤) since "
0

< �̂. Then, for this (u
1

,�
1

)

fixed, we define bG� for � 2 [�̂�"
0

, �̂]. Of course, bG� is non-increasing with respect to �. Furthermore,
we get for every � 2 [�̂� "

0

, �̂] :

c(�) � c(�̂) = bG
ˆ�(ũˆ�) + "

1

= bG
ˆ��"0

(ũ
ˆ�) + "

1

� "
0

q + 1

Z

⌦

ũq+1

ˆ�

> bG
ˆ��"0

(ũ
ˆ�)

� bG�(ũˆ�),

where we have used the fact that bG�(ũˆ�) = G�(ũˆ�) for � 2 [�̂� "
0

, �̂].
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Summarizing, we have

c(�) > max{ bG�(ũˆ�),
bG�(Tw)}, for all � 2 [�̂� "

0

, �̂].

Finally, applying Jeanjean’s result (Jeanjean, 1999, Theorem 1.1), there exists a bounded Palais-
Smale sequence at the level c(�) for almost every � 2 [�̂ � "

0

, �̂]. This Palais-Smale sequence,
due Lemma 10.4.7, has a subsequence that converges strongly. In this setting, by the Mountain
Pass theorem due to Ambrosetti and Rabinowitz (Ambrosetti and Rabinowitz (1973)) there exists a

critical point of bG� at level c(�) (hence di↵erent from the minimum ũ�) for almost every � 2 [�̂�"
0

, �̂].
Arguing as in the previous case, we obtain a positive critical point of G�.

Then, we conclude that there exists a second positive solution of problem (10.2) for almost every
� 2 (0,�⇤). ⇤

10.5 Appendix

We include here a proof of the fact that Palais-Smale sequences are bounded when we assume an
Ambrosetti-Rabinowitz type condition with  > p. We remark again that this condition does not
hold here, but we include this simple computation for the sake of completeness.

Lemma 10.5.1 Consider the functional F : W(⌦) ! R defined as follows:

F (u) =

Z

D1

|ru|2
2

dx+

Z

D2

|ru|p
p

dx� �

Z

⌦

H(x, u(x)) dx,

with H such that there exists  > p satisfying

0  H(x, s)  sh(x, s), s � 0, x 2 ⌦, (10.38)

where H(x, s) =
R s

0

h(x, t)dt.
Then, Palais-Smale sequences for F are bounded.

Proof: Let {un} ⇢ W(⌦) be a Palais-Smale sequence. That is, |F (un)|  C and F 0(un) ! 0 in
W(⌦)0. Then

C �
Z

D1

|run|2
2

+

Z

D2

|run|p
p

� �

Z

⌦

H(x, un) dx,

�
Z

D1

|run|2
2

+

Z

D2

|run|p
p

� �


Z

⌦

unh(x, un)dx

=

✓

1
2
� 1


◆

Z

D1

|run|2 +
✓

1
p
� 1


◆

Z

D2

|run|p +
1

F 0(un)(un)

�
✓

1
p
� 1


◆✓

Z

D1

|run|2 +
Z

D2

|run|p
◆

� "n

[un]W(⌦)

,

where "n ! 0. This leads to the boundedness of {un} in W(⌦). ⇤
We remark that the condition (10.38) can be relaxed imposing the inequality for |s| � R > 0.
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caṕıtulo contiene su propia introducción concerniente al problema, se ha considerado conveniente
presentar en el siguiente resumen todos los resultados obtenidos en esta memoria. Por último, se hace
notar que la metodoloǵıa, objetivos y conclusiones de esta tesis se encuentran comprendidos en cada
caṕıtulo.
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PARTE I: Problemas de difusión no local

Empezamos este resumen considerando la siguiente ecuación diferencial de difusión no local:
8

>

>

<

>

>

:

ut(x, t) =

Z

RN

(K(x, y)u(y, t)�K(y, x)u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN .

(10.39)

Donde u
0

es el dato en tiempo inicial y K : RN ⇥ RN ! [0,1) es el llamado núcleo de difusión
satisfaciendo la siguiente propiedad:

existen R, r > 0, tales que K(x, y) � r cuando |x� y|  R. (10.40)

Hipótesis adicionales de u
0

y K se irán incorporando a lo largo de esta sección.

La ecuación (10.39) es formalmente la ecuación de Kolmogorov para procesos de Markov con
probabilidad de salto K y u la densidad del proceso (Ethier and Kurtz (1986, Chapter 4.2)). Una
interpretación f́ısica de la ecuación (10.39) seŕıa la siguiente: si entendemos u(x, t) como la densidad
de población de individuos de una cierta especie en el lugar x y tiempo t (cuya densidad inicial es
u
0

(x)) y K(x, y) como la función de distribución de probabilidad que un individuo salte desde el lugar
y hasta el lugar x, entonces la tasa de individuos que llegan al lugar x desde otras localizaciones es
R

RN

K(x, y)u(y, t) dy. Por otro lado, la tasa de individuos que abandonan el lugar x para desplazarse a
otros lugares es �

R

RN

K(y, x)u(x, t) dy. De esta manera, en ausencia de causas internas o externas, la
densidad u(x, t) satisface la ecuación (10.39). Obsérvese que la hipótesis (10.40) implica K(x, x) > 0
en un entorno de x. Es decir, desde el enfoque de la dinámica de poblaciones, significa que los
individuos tienen probabilidad positiva de saltar cerca de donde se encuentran. Por lo tanto, este
tipo de ecuaciones de difusión no local es relevante en el estudio de dispersión biológica de especies.
Aśı como también en el procesamiento de imágenes, modelos de elasticidad y coagulación, sistemas
de part́ıculas, etc. Véanse por ejemplo los trabajos de Bobaru et al. (2009); Bodnar and Velazquez
(2006); Carrillo and Fife (2005); Fife (2003); Fournier and Laurençot (2006) y Hutson et al. (2003).

En esta ĺınea, cabŕıa destacar también el siguiente modelo unidimensional propuesto por Cortázar
et al. (2007)

ut(x, t) =

Z

R
J̃

✓

x� y
g(y)

◆

u(y, t)
g(y)

dy � u(x, t), x 2 R, t > 0, (10.41)

con dato inical u
0

(x). Donde J̃ es una función par, no negativa y suave con integral igual a 1 y con
soporte en el intervalo [�1, 1]. En cuanto a g es una función positiva y continua la cual afecta a la
distancia de dispersión ya que depende del punto de partida. Aśı pues, g modela la heterogeneidad
del entorno afectando la distribución de las especies (véanse también Cortázar et al. (2011); Cortázar
et al. (2015) y Cortázar et al. (2016)). Obsérvese que si tomamos

K(x, y) = J̃

✓

x� y
g(y)

◆

1
g(y)

,

se tiene que
R

R K(y, x) dy = 1 y por tanto la ecuación (10.41) entra en el marco del modelo (10.39).
Un ejemplo mucho más general seŕıa el caso

K(x, y) = J
�

M(y)(x� y)
�

detM(y),

donde M(y) es una matriz real N ⇥N .

Por otro lado, en el caso de la ecuación (10.39) con núcleo simétrico, K(x, y) = K(y, x), es decir,
los individuos tienen la misma probabilidad de saltar desde x hacia y, que a la inversa, se obtiene el
siguiente problema de difusión no local:

8

>

>

<

>

>

:

ut(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN .

(10.42)
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Este tipo de ecuaciones se han tratado en los últimos años, aśı como también su versión en dominios
acotados con condiciones de Dirichlet en la frontera, esto es, problemas del tipo

8

>

>

>

>

>

<

>

>

>

>

>

:

ut(x, t) =

Z

RN

K(x, y)(u(y, t)� u(x, t))dy, x 2 ⌦, t > 0,

u(x, t) = g(x, t), x /2 ⌦, t > 0,

u(x, 0) = u
0

(x), x 2 ⌦,

(10.43)

donde g y u
0

son datos dados. Para un amplio estudio de este tipo de problemas consúltese el libro
Andreu-Vaillo et al. (2010). Nótese que en el caso particular de

K(x, y) =
1

|x� y|N+2s
, (10.44)

las ecuaciones (10.42) y (10.43) se corresponden con los problemas del tipo laplaciano fraccionario

ut(x, t) = �(��)su(x, t),

donde la integral del núcleo singular (10.44) coresponde al valor principal de la integral. Véase
Valdinoci (2009) para una completa descripción de ecuaciones que involucran este tipo de operadores.

Comportamiento asintótico

El Caṕıtulo 1 de esta tesis está dedicado al comportamiento asintótico en norma de las soluciones
del problema (10.39) mediante la técnica de métodos de enerǵıa. Esta estrategia se basa en conseguir,
para una cierta función F , una desigualdad funcional del tipo

d
dt

ku(·, t)kp  F (ku(·, t)kp) ,

donde ku(·, t)kp es la norma en Lp(RN ). La resolución posterior de dicha inecuación diferencial
ordinaria permitirá deducir el comportamiento asintótico en norma de las soluciones. Este tipo de
estrategia es muy parecida a la muy exitosa técnica demétodos de entroṕıa, la cual se basa en comparar
la derivada en tiempo de un funcional de Lyapunov con el mismo funcional de Lyapunov y aśı obtener
una cierta tasa de decaimiento de las soluciones (véase el reciente libro de Jüngel (2016) y los trabajos
de Arnold et al. (2004); Bakry and Émery (1985); Carrillo et al. (2001); Gross (1975); Otto and
Villani (2000); Villani (2002) y Desvillettes and Villani (2004)). Varias son las ventajas del uso de los
métodos de enerǵıa. Una de ellas es que siguen siendo válidos si perturbamos ligeramente el operador,
es decir, son bastante robustos bajo ciertas modificaciones en el operador. Otra de las ventajas es
que se pueden aplicar a ecuaciones que no son expĺıcitamente resolubles mediante transformadas de
Fourier. Un ejemplo modelo en el cual la ecuación (10.39) śı es resoluble por transformada de Fourier
es cuando K(x, y) = J(x � y) donde J 2 C(RN ,R) es no negativa, radial con integral igual a 1 y tal
que J(0) > 0. En este caso la ecuación que quedaŕıa es

8

>

>

<

>

>

:

ut(x, t) =

Z

RN

J(x� y)u(y, t) dy � u(x, t), x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN .

(10.45)

Estas ecuaciones de difusión no locales son en forma de convolución, ya que puede reescribirse
como ut(x, t) = J ⇤ u � u(x, t). Aśı pues, aplicando la transformada de Fourier se deduce que

ût(⇠, t) = û(⇠, t)(Ĵ(⇠) � 1). Por tanto û(⇠, t) = e(
ˆJ(⇠)�1)tû

0

(⇠), pudiéndose obtener, a partir de
esto, su comportamiento asintótico (ver (Andreu-Vaillo et al., 2010, Chapter 1)).
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El uso demétodos de enerǵıa para la ecuación (10.39) no es nuevo. En el caso de núcleos simétricos
Ignat and Rossi (2008) obtuvieron, entre otros, el siguiente resultado:

Theorem 1 Sea N � 3, K : RN ⇥ RN ! [0,1) simétrico satisfaciendo (10.40) y u
0

2 L1(RN ) \
L1(RN ). Entonces, toda solución del problema (10.42) satisface

ku(·, t)kp  C t�
N(p�1)

2p ,

para todo p 2 [1,1) y t suficientemente grande, siendo C una costante positiva que depende de
R, r,N, p, ku

0

k
1

y ku
0

k1.

Aśı pues, uno de los objetivos del Caṕıtulo 1 es completar el resultado anterior en dos direcciones:
que no haya ninguna restricción sobre la dimensión del espacio N , aśı como que sea aplicable para
núcleos no simétricos (ecuación (10.39)). Concretamente, se obtiene el siguiente teorema:

Theorem 2 Sea N � 1. Supongamos que existe u1 : RN ! (0,1), solución de equilibrio de (10.39),
tal que 1/m  u1  m para algún m > 0 y sea u, solución de (10.39) con dato inicial u

0

2 L1(RN )\
Lp(RN ), 1 < p < 1. Entonces existe una constante positiva C = C(r, R,N,m, p, ku

0

k
1

, ku
0

kp) tal
que

ku(·, t)kp  C(1 + t)�
N(p�1)

2p ,

para todo t � 0.

Recuérdese que una solución de equilibrio es una solución que no depende de la variable temporal
t. De esta manera, en el caso de K simétrico cualquier constante positiva es solución de equilibrio.
El Teorema 2 ampĺıa y mejora los resultados obtenidos por Ignat and Rossi (2008) para núcleos
simétricos, obteniendo la misma tasa de decaimiento pero en este caso para toda dimensión N .

Una aplicación directa del Teorema 2 es el comportamiento asintótico de las soluciones del prob-
lema (10.41). En efecto, en Cortázar et al. (2007) los autores prueban la existencia de una solución
de equilibrio u1 positiva y acotada tanto superior como inferiormente. Por tanto, bajo las hipótesis
del Teorema 2 podemos afirmar que

ku(·, t)kp  C(1 + t)�
p�1
2p , para todo t � 0.

Otro de los resultados del primer caṕıtulo corresponde al caso K(x, y) = J(x � y) siendo J :
RN ! [0,1) radialmente simétrica e integrable. Por consiguiente, el problema (10.39) se reduce a

8

>

>

<

>

>

:

ut(x, t) =

Z

RN

J(x� y)(u(y, t)� u(x, t)) dy, x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN .

(10.46)

Nótese que la ecuación (10.45) es un caso particular. Obsérvese que la hipótesis (10.40) equivale
a imponer que J(z) � r siempre y cuando |z| < R, que obviamente se cumple si J es continua en
el cero y J(0) > 0. Para este tipo de núcleos, se obtiene un decaimiento en norma de las soluciones
mucho más preciso,

Theorem 3 Considérese u solución de la ecuación (10.46) con dato inicial u
0

2 L1(RN ) \ Lp(RN ),
1  p < 1. Entonces, existe una constante C = C(N, p) tal que

ku(·, t)kpp 
(

ku
0

kpp , 0  t  t
0

,
�

ku
0

k�p�
p + C�rRN+2ku

0

k�p�
1

(t� t
0

)
�� 1

� , t � t
0

,

donde � := 2

N(p�1)

y

t
0

= max

⇢

0,
1

CrRN
log
�

R
2
� ku

0

k�p
1

ku
0

kpp)
�

�

.
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Véase también el Teorema 1.1.4 para el decaimiento de las derivadas de las soluciones. En este Teorema
3 se puede apreciar que a partir de un tiempo t � t

0

, el decaimiento en norma de las soluciones de
(10.46) es el mismo que el de la ecuación del calor (Giga et al. (2010))

kukpp 
�

ku
0

k�p�
p + Cku

0

k�p�
1

t
�� 1

� , para todo t � 0. (10.47)

Esto nos hace pensar la analoǵıa que tiene la ecuación (10.46) con la ecuación del calor ut = �u.
Este parecido se hace más visible cuando se reescala el núcleo J . Siendo más precisos, es bien conocido
que si tomamos el siguiente reescalamiento J" como

J"(z) :=
C(J)
"2+N

J
⇣z
"

⌘

, con C(J)�1 =
1
2

Z

RN

J(z)z2N dz, (10.48)

donde hay que imponer que J tiene momento de segundo orden finito para que C(J) no sea trivial,
entonces u" solución de

@tu
"(x, t) =

Z

RN

J"(x� y)((u"(y, t)� u"(x, t)) dy, x 2 RN , t > 0, (10.49)

con dato inicial u
0

2 C(RN ), al tender " ! 0 cumple u" ! v uniformemente sobre compactos
de RN ⇥ [0,1), siendo v la solución de la ecuación del calor vt = �v con el mismo dato inicial
v(x, 0) = u

0

(x) (véase por ejemplo Andreu-Vaillo et al. (2010) y Rey and Toscani (2013)). Por tanto,
si las soluciones u" tienden a la solución del calor, cabe preguntarse si existirá algún "

0

tal que el
comportamiento asintótico de u" sea exactamente la expresión (10.47) para todo " < "

0

y t � 0. A
continuación damos una respuesta afirmativa poniendo fin al resumen del primer caṕıtulo:

Theorem 4 Sea u" solución de (10.49) con dato inicial u
0

2 L1(RN )\Lp(RN ) y p 2 [2,1). Entonces
se tiene,

ku"(t, ·)kpp 
�

ku
0

k�p�
p + C

1

ku
0

k�p�
1

(t� t
0

)
�� 1

� para t � t
0

,

donde C
1

= C(N, p)�rRN+2C(J) no depende de " y

t
0

= max

⇢

0,
"2

CrRNC(J)
log
�

"
2
� R

2
� ku

0

k�p
1

ku
0

kpp)
�

�

.

En particular, t
0

= 0 para todo " < "
0

= ku
0

k
�p

2
1

/
�

Rku
0

k
�p

2
p

�

.

Reescalamiento de núcleos

Como se ha mencionado anteriormente, con el reescalamiento (10.48), las soluciones u" de (10.49)
convergen uniformemente a la solución de la ecuación del calor cuando "! 0. Una pregunta natural
es si existen soluciones de otros tipos de reescalamiento de manera que converjan a soluciones de
ecuaciones parabólicas locales más generales que la del calor. La respuesta a esta pregunta la tenemos
en los Caṕıtulos 2 y 3. Más aún, en una primera parte del segundo caṕıtulo veremos que si⌦ ⇢ RN

es un dominio acotado, A(x) = (aij(x)) es una matriz con coeficientes diferenciables en ⌦, simétrica
y definida positiva, g 2 L1

��

RN \ ⌦
�

⇥ (0,1)
�

y el dato inicial u
0

2 L1(⌦), las soluciones suaves del
problema de Dirichlet de ecuaciones parabólicas locales en forma de divergencia:

8

>

>

>

>

<

>

>

>

>

:

vt(x, t) = div (A(x)rv(x, t)) , x 2 ⌦, t > 0,

v(x, t) = g(x, t), x 2 @⌦, t > 0,

v(x, 0) = u
0

(x), x 2 ⌦,

(10.50)



A concave-convex problem with a variable operator 213

pueden ser aproximadas uniformemente por soluciones del problema no local (10.43), bajo un reescalamiento
adecuado del núcleo. Es importante hacer notar que hacemos un uso a priori de la existencia de solu-
ciones suaves de (10.50). De hecho podemos asumir que, bajo suposiciones de regularidad tanto del
dato en la frontera g, como de la frontera del dominio ⌦ y de la condición inicial u

0

, se tiene que
las soluciones de (10.50) están en C2+↵,1+↵/2

�

⌦⇥ [0, T ]
�

(véase por ejemplo Lieberman (1996)). Aśı
pues, el resultado en cuestión es el siguiente:

Theorem 5 Sea v 2 C2+↵,1+↵/2
�

⌦⇥ [0, T ]
�

con 0 < ↵ < 1, solución de (10.50). Consideremos,
para cada " > 0, u" solución de

8

>

>

>

>

>

<

>

>

>

>

>

:

u"
t (x, t) =

Z

RN

K"(x, y)(u
"(y, t)� u"(x, t))dy, x 2 ⌦, t > 0,

u"(x, t) = g(x, t), x /2 ⌦, t > 0,

u"(x, 0) = u
0

(x), x 2 ⌦,

donde

K"(x, y) =
C(J)
"N+2

G
⇣

B�1(x)
x� y
"

⌘

G
⇣

B�1(y)
x� y
"

⌘

, (10.51)

siendo G2(s) = J(s) (con J función suave no negativa, radialmente simétrica y con soporte compacto),
y B(x) = (bij(x)) es una matriz N ⇥N tal que

det(B(x))B(x)Bt(x) = A(x). (10.52)

Entonces, se tiene

kv � u"kL1
(⌦⇥[0,T ])

! 0, cuando "! 0.

Este teorema viene a decirnos que toda solución v 2 C2+↵,1+↵/2
�

⌦⇥ [0, T ]
�

de (10.50), siempre se
puede aproximar por una familia de soluciones de problemas no locales con el reescalamiento (10.51).
Obsérvese que tanto la descomposición matricial (10.52) como la existencia de la matriz B�1(x) es
siempre viable al ser A(x) una matriz simétrica definida positiva.

Se puede apreciar también que K"(x, y) es simétrico. Esta propiedad era deseable ya que, cuando
se tienen núcleos simétricos, en general uno obtiene la siguiente fórmula de integración por partes

ZZ

K(x, y)(u(y)� u(x))'(x)dydx

=
�1
2

ZZ

K(x, y)(u(y)� u(x))('(y)� '(x))dydx.

Que es el análogo a la usual fórmula de integración por partes que se obtiene con los operadores en
forma de divergencia,

Z

div(A(x)rv(x))'(x)dx = �
Z

A(x)rv(x)r'(x)dx.

Otra consecuencia del teorema es que si consideramos el problema de Dirichlet para la ecuación
del calor, es decir, el problema (10.50) con A(x) la matriz identidad, entonces obtenemos que el
reescalamiento adecuado es

K"(x, y) =
C(J)
"2+N

J
⇣x� y

"

⌘

,

resultado que ya fue obtenido por Cortázar et al. (2009).
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Por otro lado, en el Theorem 2.1.1 del Caṕıtulo 2 se obtiene también un resultado análogo al
Teorema 5 pero para ecuaciones parabólicas en general, es decir, que no están en forma de divergencia.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

vt(x, t) =
N
X

i,j=1

aij(x)
@2v(x, t)
@xi@xj

+
N
X

i

bi(x)
@v(x, t)
@xi

, x 2 ⌦, t > 0,

v(x, t) = g(x, t), x 2 @⌦, t > 0,

v(x, 0) = u
0

(x), x 2 ⌦.

Donde en este caso el reescalamiento adecuado es

K"(x, y) =
C(x)
"N+2

a
⇣

x� E(x)(x� y)
⌘

J
⇣

L�1(x)
x� y
"

⌘

, (10.53)

siendo a una función dada por a(s) =
P

i(si +M), con M constante positiva suficientemente grande
para garantizar que a(x) � � > 0 para un cierto �. La matriz L(x) es el conocido factor de Cholesky
de la matriz A(x), esto es, satisface la igualdad A(x) = L(x)Lt(x). En cuanto a la matriz E(x)
involucra los coeficientes (aij(x)) y bi(x) y por último C(x) es una cierta función normalizadora
(véase el apartado 2.3 para una precisa definición de estos términos). Como era de esperar, el núcleo
(10.53) no es simétrico al tratarse de operadores que no están en forma de divergencia.

En cuanto al Caṕıtulo 3, se consideran núcleos de la forma

K(x, y) = J
�

M(y)(x� y)
�

detM(y).

Donde J : RN ! R es una función radial no negativa tal que

J 2 Cc(RN ) y

Z

RN

J(z)dz = 1 , (10.54)

y siendo M(y) una matriz real N ⇥N con coeficientes diferenciables y acotados tal que detM(y) �
� > 0. Nótese que este tipo de núcleos preservan la masa, esto es,

Z

RN

Z

RN

J
�

M(y)(x� y)
�

detM(y)u(y)dydx =

Z

RN

u(x)dx, 8u 2 C(RN ).

Por lo que problemas del tipo

8

>

>

<

>

>

:

ut(x, t) =

Z

RN

J
�

M(y)(x� y)
�

detM(y)u(y, t)dy � u(x, t), x 2 RN , t > 0,

u(x, 0) = u
0

(x), x 2 RN ,

se encuadran de nuevo en el modelo (10.39). En el caso particular de un múltiplo de la matriz
identidad, es decir, M(y) = g(y)�1 Id, siendo g una función escalar positiva, la ecuación anterior
toma la forma de

ut(x, t) =

Z

RN

J

✓

x� y
g(y)

◆

u(y, t)
gN (y)

dy � u(x, t).

Como ya se comentó anteriormente, este tipo de núcleos de difusión fueron introducidos por Cortázar
et al. (2007) a la hora de modelar procesos de dispersión no homogéneos, véase también Coville (2010)
y Cortázar et al. (2015).

En el Caṕıtulo 3 veremos que, con un adecuado reescalamiento de este tipo de núcleos, sus
soluciones convergen a la solución clásica local de la ecuación de Fokker-Planck

8

>

<

>

:

vt(x, t) =
X

i,j

@2

@xi@xj
(aij(x)v(x, t)) , x 2 RN , t 2 [0, T ],

v(x, 0) = v
0

(x), x 2 RN ,

(10.55)
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siendo A(x) = (aij(x)) una matriz N ⇥ N real y definida positiva. Siendo más precisos, dado el
siguiente reescalamiento

K"(x, y) =
1
"N

J
⇣

B�1(y)
(x� y)

"

⌘

detB�1(y),

donde la matriz B es tal que BBt = A y J satisface (10.54), obtenemos el siguiente resultado principal
del caṕıtulo

Theorem 6 Sea v 2 C2+↵,1+↵/2
�

RN , [0, T ]
�

la solución clásica de la ecuación de Fokker-Planck

(10.55) con dato inicial v
0

2 C(RN ) \ L1(RN ). Para todo " > 0, consideramos u" la solución de la
ecuación no local

8

>

<

>

:

u"
t =

C
"2

⇢

Z

RN

K"(x, y)u(y, t)dy � u(x, t)

�

, x 2 RN , t 2 [0, T ],

u"(x, 0) = v
0

(x), x 2 RN ,

(10.56)

donde C�1 = 1

2

R

J(z)z2Ndz. Entonces,

sup
t2[0,T ]

ku"(·, t)� v(·, t)kL1 ! 0,

cuando "! 0.

Obsérvese, que el caso particular B(y) = g(y) Id, la ecuación (10.56) toma la forma

u"
t (x, t) =

C
"2

⇢

Z

RN

1
"N

J
⇣x� y
"g(y)

⌘u(y, t)
gN (y)

dy � u(x, t)

�

.

Y por tanto, sus soluciones convergen a la ecuación local

vt(x, t) =
X

i

(g2(x)v(x, t))x
i

x
i

.

Este resultado también fue obtenido por Sun et al. (2011).

Aproximación de la ecuación Kardar-Parisi-Zhang por ecuaciones no
locales

En el Caṕıtulo 4 consideramos problemas no locales del tipo:

ut(x, t) =

Z

RN

J(x� y)
�

u(y, t)� u(x, t)
�

G
�

x, u(y, t)� u(x, t)
�

dy, (10.57)

donde J cumple (10.54) y G : RN ⇥ R ! R es una función auxiliar no negativa de Carathéodory (es
decir, G(·, s) es medible para cada s 2 R y G(x, ·) es continua para casi todo x 2 RN ) y que además
satisface la siguiente condición:

9 ↵
2

� ↵
1

> 0 : ↵
1

 G(x, s)s� G(x,� )�
s� �

 ↵
2

, (10.58)

para todo s,� 2 R con s 6= � y para casi todo x 2 RN . En el caso particular G(x, s) ⌘ 1, recobramos
nuevamente las ecuaciones de difusión no locales en forma de convolución (10.45).

Obsérvese que esta condición implica que G es una función positiva y acotada, ya que si tomamos
� = 0 se tiene

0 < ↵
1

 G(x, s)  ↵
2

, para todo s 2 R y para casi todo x 2 RN .
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En el caṕıtulo se aborda tanto el problema de Cauchy de la ecuación (10.57)

8

<

:

ut(x, t)=

Z

RN

J(x� y)u(y;x, t) G(x, u(y;x, t)) dy en RN ⇥ (0, T ),

u(x, 0) = u
0

(x) en RN ,
(10.59)

donde se ha denotado u(y;x, t) := u(y, t)� u(x, t) y u
0

2 C(RN ). Aśı como el problema de Dirichlet
de la ecuación (10.57)

8

>

>

>

<

>

>

>

:

ut(x, t) =

Z

RN

J(x� y)u(y;x, t)G(x, u(y;x, t)) dy, en⌦ ⇥ (0, T ),

u(x, t) = h(x, t), en (RN \ ⌦)⇥ (0, T ),

u(x, 0) = u
0

(x), en⌦ ,

(10.60)

para T 2 R+ [ {1 }, h 2 L1

�

(RN \ ⌦)⇥ (0, T )
�

y u
0

2 L1(⌦). Siendo ⌦ un dominio acotado de RN

con N � 1.

En concreto, para el problema de Cauchy (10.59) con u
0

acotada se obtiene unicidad y existencia
de solución en C

�

[0, T ); C(RN ) \ L1(RN )
�

(Theorem 4.2.12) además de un principio de comparación

(Theorem 4.2.14). De la misma manera, para el problema de Dirichlet (10.60) con u
0

2 C(⌦) y
h 2 C((RN \⌦)⇥ [0, T )), se demuestra la existencia y unicidad de solución en C(⌦⇥ (0, T )) (Theorem
4.2.3) aśı como también un principio de comparación (Theorem 4.2.5).

Otro de los aspectos que abordamos en el caṕıtulo es el v́ınculo entre la ecuación no local (10.59)
y la ecuación local determista de Kardar-Parisi-Zhang (ecuación KPZ a partir de ahora)

8

<

:

ut ��u = µ(x)|ru|2 en RN ⇥ (0, T ) ,

u(x, 0) = u
0

(x) en RN .
(10.61)

Esta ecuación, al menos para µ(x) = µ > 0, fue propuesta por Kardar et al. (1986) en el estudio
de la teoŕıa f́ısica del crecimiento y la rugosidad de las superficies. Véase también Barabási and
Stanley (1995) para otras aplicaciones en la f́ısica y el reciente estudio completo de dicha ecuación
en Wio et al. (2011). Desde un punto de vista de las Ecuaciones en Derivadas Parciales, la ecuación
de KPZ posee un término de gradiente al cuadrado, también llamado como crecimiento natural en
el gradiente, que ha sido extensamente estudiado en las últimas décadas partiendo de los trabajos
pioneros de Ladyzenskaja et al. (1968) y Aronson and Serrin (1967) como también de los resultados
de Boccardo, Murat y Puel en Boccardo et al. (1989). Véase también la Parte II de este resumen.

Concretamente, en el Theorem 4.2.15 se establece que el problema de Cauchy (10.59) con dato
inicial u

0

2 C(RN ) \ L1(RN ) y bajo el rescalamiento usual del núcleo J

J"(z) =
C(J)
"2+N

J
⇣z
"

⌘

, (10.62)

tiene una única solución u" (para cada " > 0) que además converge uniformemente cuando " ! 0 a
una solución clásica de la ecuación KPZ (10.61) con

µ(x) =
2G0

s(x, 0)
G(x, 0) . (10.63)

Más aún, se prueba que toda solución clásica de la ecuación KPZ (10.61) con dato inicial u
0

2
C(RN ) \ L1(RN ) se puede aproximar uniformemente por soluciones de la ecuación no local (10.59)
con el reescalamiento (10.62) y con el mismo dato inicial u

0

, tomando como función auxiliar

G ⌘ Gµ(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
.
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Obsérvese que Gµ cumple la hipótesis (10.58) y además satisface (10.63). Resultados análogos se
obtienen en el Theorem 4.2.8 para el caso del problema de Dirichlet (10.60).

Para finalizar, cabe mencionar que sobre el comportamiento asintótico de las soluciones se obtienen
dos tipos de resultados: en el caso del problema de Dirichlet se prueba que las soluciones convergen
uniformemente a la solución estacionaria. Por otra parte, en el problema de Cauchy, se prueba que la
norma L2 de las soluciones tiene un decaimento en tiempo que depende de la naturaleza (absorción o
reacción) de G (Theorem 4.2.16 y Theorem 4.2.17).
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PARTE II: Ecuaciones eĺıpticas con singularidad en el
término del gradiente al cuadrado y problemas tipo
Gelfand

En la segunda parte de la memoria se estudian diferentes problemas de valores iniciales asociados
a una ecuación casilineal eĺıptica de segundo orden que involucra o bien una nolinealidad tipo Gelfand
(�eu) o bien un operador diferencial con términos de orden inferior que presentan un crecimiento
cuadrático en el gradiente y singularidad en la incógnita (|ru|2/u�).

Los problemas tipo Gelfand han sido extensivamente estudiados en el campo de las ecuaciones
eĺıpticas semilineales. Podemos citar, en el estudio de problemas de auto ignición térmica de una mez-
cla de gases qúımicamente activa, los siguientes trabajos clásicos: Chandrasekhar (1957); Gel’fand
(1963); Joseph and Sparrow (1970); Keller and Cohen (1967) aśı como las referencias en ellos con-
tenidas.

Recordemos el problema de Gelfand clásico:
8

<

:

��u = � eu , en⌦,
u � 0 , en⌦,
u = 0 , en @⌦,

donde⌦ ⇢ RN es un abierto acotado con frontera suave, N � 1 y � � 0. Aunque esencialmente, el
término no lineal eu se puede sustituir por una función regular f(u), positiva, creciente y convexa con
f(0) > 0.

Un cambio de variable formal del tipo u = ln(1 + v) transforma el problema anterior en
8

>

>

<

>

>

:

��v +
|rv|2
1 + v

= � (1 + v)2 , en ⌦,

v � 0 , en ⌦,
v = 0 , en @⌦.

Este ejemplo pone de manifiesto la relación directa entre problemas semilineales y problemas casilin-
eales con términos de orden inferior que tienen dependencia cuadrática en el gradiente. Este tipo de
problemas, al constituir una clase cerrada para cambios de variable, se suelen denominar problemas
con crecimiento natural en el gradiente. Además, suelen aparecer de manera natural en el Cálculo de
Variaciones. De hecho, la ecuación de Euler-Lagrange asociada al funcional

I(u) =
1
2

Z

⌦

a(x, u)|ru|2 �
Z

⌦

f
0

(x)u,

viene dada formalmente por

�div (a(x, u)ru) +
1
2
a0
u(x, u)|ru|2 = f

0

(x).

Obsérvese además que para a(x, u) = 1 + |u|� con � 2 (0, 1) la ecuación de Euler-Lagrange contiene
un término singular además de la dependencia cuadrática en el gradiente. Algunas aplicaciones donde
aparecen este tipo de ecuaciones singulares se describen en Barenblatt et al. (2000); Berestycki et al.
(2001) y Kardar et al. (1986).

El estudio general de operadores diferenciales con crecimiento natural comenzó a desarrollarse
en Aronson and Serrin (1967); Ladyzenskaja et al. (1968) y posteriormente en Boccardo et al. (1982,
1983) y desde entonces se han estudiado multitud de problemas de contorno asociados. Por ejemplo,
el problema de la existencia de solución para

⇢

��u+ µ(x)g(u) |ru|2 = f
0

(x) en ⌦,
u = 0 en @⌦,

es considerado en Bensoussan et al. (1988), Boccardo and Gallouët (1992) y Boccardo et al. (1982),
siendo µ 2 L1(⌦) y g una función continua en R.
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Singularidad en el término del gradiente

En el Caṕıtulo 5 se considera un problema con crecimiento cuadrático en el gradiente, que además pre-
senta singularidad en la variable dependiente, confrontado con un término no lineal de tipo potencia.
Un problema modelo es

8

<

:

��u+ µ(x)
|ru|2
u�

= �up + f
0

(x) en ⌦,

u = 0 en @⌦,

siendo �, p � 0, µ 2 L1(⌦) no negativa y 0 � f
0

2 Lq(⌦) para algún q > N/2.
El estudio de este tipo de problemas con términos de orden inferior que presentan crecimiento

cuadrático y singularidad fueron introducidos en Arcoya and Mart́ınez-Aparicio (2008) donde abordan
el caso � = 0, � = 1. Posteriormente el caso � = 0, �  1 ha sido ampliamente estudiado en Arcoya
and Segura de León (2010); Boccardo (2008); Mart́ınez-Aparicio (2009) y Giachetti and Murat (2009).
Se deduce en dichos trabajos, la existencia de solución para �  1 y unicidad si � < 1 (véase además
Arcoya et al. (2017)).

El caso � > 1 requiere una restricción sobre la nolinealidad f
0

. Concretamente en Arcoya et al.
(2009b) se prueba existencia de solución si y solo si � < 2 imponiendo que

ess inf{f
0

(x) : x 2 !} > 0 , 8! ⇢⇢ ⌦ .

Además, como se observa en Zhou et al. (2012), para � � 2 se tiene que |ru|2
u�

/2 L1(⌦) para toda

u 2 W 1,2
0

(⌦) y por tanto no puede existir solución.
Las dificultades del caso � > 1 quedan patentes cuando se observa que la unicidad de solución sigue

siendo un problema abierto en la actualidad. Dicha unicidad tampoco es un problema completamente
resuelto para � = 1 aunque algunos avances se han conseguido en Carmona and Leonori (2017).

El problema fue estudiado para � 6= 0 simultáneamente en Arcoya et al. (2011); Boccardo et al.
(2011) cuando µ(x) es una función constante, � < 1 y además los exponentes verifican la restricción
� + p < 2. La diferencia entre ambos trabajos radica en las técnicas empleadas, mientras que en
Arcoya et al. (2011) se emplean métodos de grado topológico, en Boccardo et al. (2011) se utilizan
convenientes esquemas iterativos. En ambos casos dichas técnicas no se pueden aplicar directamente
para estudiar el caso µ(x) no constante o bien p < 1  � < 2. Los resultados del caṕıtulo 5 vienen
a completar a los anteriores precisamente en estos casos. Además, se consideran términos de orden
inferior generales del tipo µ(x)g(u)|ru|2, con g singular en cero, y se muestra que el conjunto de
valores del parámetro � para los que existe solución, no solo se ve afectado por la singularidad en
cero de g, sino también por su comportamiento en infinito. Para diferenciar dicho comportamiento
en cero y en infinito, tomamos �  � y consideramos el problema modelo

8

<

:

��u+ µ(x)
|ru|2

u� + u�
= �up + f

0

(x) en ⌦,

u = 0 en @⌦,
(Q�)

El resultado principal en el caso µ(x) constante es el siguiente.

Theorem 7 Sea µ(x) = µ una función constante y sea f
0

2 Lq(⌦) con q > N
2

y verificando que
ess inf{f

0

(x) : x 2 !} > 0 , 8! ⇢⇢ ⌦ . Entonces

i) Si 1  � < 2 y 0 < p < 1 el problema (Q�) admite al menos una solución para cada � � 0.

ii) Si � < 1 < � y 1  p, entonces existen valores del parámetro �⇤,�⇤ > 0 tales que (Q�) no
admite solución para � > �⇤ y admite al menos una solución cuando 0  � < �⇤.

Además, existe un continuo (cerrado y conexo) no acotado ⌃ en

{(�, u) 2 [0,+1)⇥ C(⌦) : u solución de (Q�)} ,

cuya proyección al eje de � corresponde con el intervalo de valores del parámetro para los que, en los
items i) y ii), se obtiene la existencia de solución.
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Para el caso en que µ(x) no sea necesariamente constante, pero se encuentre entre dos constantes
positivas, podemos abordar el problema con las mismas técnicas si además �  1. Concretamente se
prueba el siguiente teorema.

Theorem 8 Supongamos que 0 < �  �  1, 0 < p < 2 � �, f
0

2 Lq(⌦) con q > N
2

y m  µ(x) 
M, a.e. x 2 ⌦ (con M < 2 si ↵ = � = 1). Existe un continuo no acotado ⌃ de soluciones de (Q�)
cuya proyección al eje de � es el intervalo [0,+1).

Este resultado no solo extiende a funciones µ(x) no constantes, los resultados previos de Arcoya
et al. (2011) y Boccardo et al. (2011) sino que, al trabajar con una función g(s) = 1/(s� + s�) con
diferente comportamiento en cero y en infinito, se constata que la hipótesis p < 2�� es una restricción
sobre el comportamiento de g en infinito más que sobre la singularidad en el origen.

Por otra parte nuestros argumentos combinan la aproximación, como en Boccardo et al. (2011),
por problemas donde es posible usar técnicas de grado topológico de Leray Schauder y el teorema de
continuación de Rabinowitz, como en Arcoya et al. (2011). Aśı obtenemos la existencia de continuos
⌃n. Posteriormente, un conveniente lema topológico nos permite pasar al ĺımite en⌃ n y obtener
nuestro continuo de soluciones.

Problema de Gelfand

En los Caṕıtulos 6 y 7 consideramos problemas tipo Gelfand asociados a diferentes operadores difer-
enciales (p-Laplaciano 1-homogéneo y operadores con términos de orden inferior con crecimiento
cuadrático y singularidad) para los que, al menos para nuestro conocimiento, no hab́ıan sido tratados
en la literatura hasta ahora.

Recordemos que el problema
8

<

:

��u = � f(u) , en⌦,
u � 0 , en⌦,
u = 0 , en @⌦,

(G�)

para una función regular f(u), positiva, creciente y convexa con f(0) > 0 fue estudiado en Crandall
and Rabinowitz (1975) (véase también Mignot and Puel (1980) y las citas que contienen). En este

trabajo, para una función f que sea superlineal en infinito, es decir, lims!+1
f(s)
s

= 1, prueban el
siguiente resultado.

Proposición 10.5.2 Crandall and Rabinowitz (1975) Existe un valor del parámetro �⇤ > 0, denom-
inado parámetro extremal de manera que

• Si � < �⇤ el problema (G�) admite una solución minimal acotada w�.

• Si � > �⇤ el problema (G�) no admite solución.

Parece razonable pensar que la existencia de solución minimal se puede extender para problemas
tipo Gelfand asociados a operadores diferenciales para los que se verifique un conveniente principio
de comparación. Aśı, en el Caṕıtulo 6, probamos un principio de comparación para el p-laplaciano 1-
homogéneo que generaliza los conocidos en Barles and Busca (2001); Mart́ınez-Aparicio et al. (2014a).
Por otra parte, en Caṕıtulo 7, usamos el principio de comparación contenido en Arcoya and Segura de
León (2010) (véase también Arcoya et al. (2014, 2017)).

Por otra parte, en Crandall and Rabinowitz (1975) se prueba además que el conjunto de soluciones
minimales {w�} de (G�) es no decreciente en �. Más aún, dichas soluciones minimales son estables
en el sentido de satisfacer la siguiente condición

Z

⌦

�

|r⇠|2 � �f 0(w�)⇠
2

�

� 0, 8⇠ 2 C1
c (⌦).
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Dicha condición de estabilidad juega un papel fundamental en el estudio de la existencia y regu-
laridad de lo que se conoce habitualmente como solución extremal, u⇤ := lim�!�⇤ w�. En concreto,
se ha usado para determinar resultados óptimos de regularidad de la solución extremal en términos de
la dimensión N . Aśı, en el caso f(s) = es se obtiene regularidad de la solución extremal para N < 10
y si f(s) = (1 + s)p para N < 4 + 2(1� 1/p) + 4

p

1� 1/p (véase Crandall and Rabinowitz (1975)).
Dicha condición de estabilidad parece que se podŕıa extender a operadores con estructura varia-

cional. Este no es el caso de los considerados en los Caṕıtulos 6 y 7 donde el operador no tiene
estructura variacional. Sin embargo en el Caṕıtulo 7 si que será posible extender la noción de solución
estable permitiendo aśı la obtención de resultados relativos a la solución extremal.

Antes de pasar a describir los resultados de ambos caṕıtulos debemos recordar nuevamente que
los problemas tipo Gelfand son un problema clásico de la literatura y por tanto las referencias sobre
el tema son numerosas, citaremos entre otros los trabajos de Arcoya et al. (2014); Cabré and Capella
(2006); Cabré and Sanchón (2013); Gel’fand (1963) y las referencias que contienen.

Concretamente en el Caṕıtulo 6 consideramos el problema
⇢

��N
p u = � eu , en⌦,

u = 0 , en @⌦,
(P�,p)

en un dominio acotado regular⌦ ⇢ RN y para p 2 [2,1] notamos por �N
p al operador p-laplaciano

1-homogéneo. Este viene definido, para p < 1 como

�N
p u :=

1
p� 1

|ru|2�p div
�

|ru|p�2ru
�

=
1

p� 1
�u+

p� 2
p� 1

�1u,

mientras que para p = 1 viene dado por

�1u ⌘ �N
1u =

ru
|ru| ·

✓

D2u
ru
|ru|

◆

,

conocido como infinito laplaciano 1-homogéneo.
Este operador aparece en el estudio de juegos Tug-of-War con ruido en Manfredi et al. (2012);

Peres and She�eld (2008); Peres et al. (2009), donde se analiza el problema de Poisson asociado.
Además, en Mart́ınez-Aparicio et al. (2014a) y Mart́ınez-Aparicio et al. (2014b) ha sido confrontado
con un término no lineal sublineal del tipo �uq con 0 < q  1.

Nuestro primer resultado es el siguiente:

Theorem 9 Para cada p 2 [2,+1] existe un valor extremal del parámetro �⇤ = �⇤ (⌦, N, p) de
manera que:

• Si � < �⇤ el problema (P�,p) admite una solución minimal positiva w�.

• Si � > �⇤ el problema (P�,p) no admite solución.

Además, el conjunto de soluciones minimales {w�} es no decreciente en �.

Otra de las novedades que aporta el Caṕıtulo 6 es la utilización de técnicas de teoŕıa de grado para
el estudio de problemas asociados al p-laplaciano 1-homogéneo. Esto presenta dificultades no triviales
debido a la falta de regularidad. No obstante, es posible usar algunos argumentos de Charro et al.
(2013) para obtener la compacidad necesaria para usar dichas técnicas. Aśı, se obtiene la existencia
de continuos de soluciones tanto cuando el parámetro es � como p. Para ello notaremos, para cada p
fijado,

Sp = {(�, u) 2 [0,�⇤(⌦, N, p)]⇥ C(⌦) : u solución de (P�,p)},
Analogamente, para cada � fijado, notamos

S� = {(p, u) 2 [2,1]⇥ C(⌦) : u solución de (P�,p)}.
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Theorem 10 Para cada p 2 [2,1] existe un continuo de soluciones no acotado C ⇢ Sp que emana
de la solución trivial para � = 0, es decir (0, 0) 2 C. Además, existe �

0

2 (0,�⇤) de manera que, para
cada � < �

0

existe un continuo de soluciones D ⇢ S�, cuya proyección sobre el eje p es [2,+1].

En el Caṕıtulo 7 abordamos el estudio de problemas tipo Gelfand asociados en este caso a prob-
lemas con singularidades en el término del gradiente cuadrado. Concretamente consideramos el prob-
lema

8

<

:

��u+ g(u) |ru|2 = � f(u) , en⌦,
u > 0 , en⌦,
u = 0 , en @⌦,

en un abierto y acotado⌦ ⇢ RN (N � 3) con frontera suave, � > 0, f estrictamente creciente y
derivable en [0,1), f(0) > 0 y g una función no negativa y no trivial que o bien es continua en [0,1)
o bien lo es (0,1) y presenta una singularidad integrable en cero. Los casos modelo son g(s) = 1

s�

con � 2 (0, 1) y f(s) = es.
Recientemente, el caso g continua en [0,+1) ha sido estudiado en Arcoya et al. (2014). Además

de la existencia de soluciones minimales en un intervalo acotado maximal (0,�⇤), los autores analizan
la existencia y regularidad de solución extremal caracterizando las soluciones minimales como aquellas
que satisfacen una determinada condición de estabilidad (véase también Brézis and Vázquez (1997)
para el caso semilineal). Concretamente, en Arcoya et al. (2014) se define que una solución al problema
es estable si

Z

⌦

|r�|2 � �

Z

⌦

(f 0(u)� g(u)f(u))�2

para cada � 2 W 1,2
0

(⌦). Esta es la noción de estabilidad que se adopta en el Caṕıtulo 7 en el caso
g singular en cero y no solo se extienden los resultados de Arcoya et al. (2014) al caso singular, sino
que además se mejoran las condiciones impuestas en el caso continuo. Por ejemplo, se puntualiza que
la condición f 0(s)� g(s)f(s) estrictamente creciente, impuesta en Arcoya et al. (2014), solamente se
necesita para probar que las soluciones estables son minimales.

Aśı, los resultados obtenidos en dicho caṕıtulo particularizados al caso g(s) = c
s�

con 0 < � < 1

permiten considerar funciones f(s) no convexas. De hecho, tomando f(s) = e
s

1��

1��

+(s+�)1��

con �
suficientemente pequeño, entonces f 0(s) � g(s)f(s) es decreciente. Sin embargo, existe �⇤ > 0 de
manera que el problema admite solución minimal acotada w� para cada � < �⇤ y no existe solución
para � > �⇤. Incluso se puede probar la existencia de solución extremal u⇤ = lim

�!�⇤
w� que además

es solución estable, en el sentido anterior, para � = �⇤ (dicha solución extremal no es necesariamente
minimal). Más aún, para dimensiones

N <
6(1� �) + 2c+ 4

p

(c+ 1� �)(1� �)

c+ 1� �
,

se obtiene que la solución extremal es acotada.
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PARTE III: Algunos resultados en ecuaciones eĺıpticas
modeladas por el p�laplaciano

Se considera la siguiente familia de ecuaciones diferenciales eĺıpticas que involucran el operador
p�laplaciano y con condiciones de Dirichlet en la frontera de un dominio acotado⌦ ⇢ RN ,

⇢

�div
�

|ru|p�2ru
�

= f(x, u), en⌦ ,
u = 0, en @⌦,

(10.64)

para p > 1 y siendo el dato fuente f(x, s), con (x, s) 2 ⌦⇥ R, una cierta función que a continuación
detallaremos.

Seguidamente presentamos tres resultados clásicos relacionados con la ecuación anterior:

• El problema con dato subcŕıtico: f(x, s)  C
1

|s|q +C
2

con exponente 0 < q < p⇤ � 1. Existen
al menos dos soluciones no triviales v  0  w para todo p > 1 (véase por ejemplo Dinca et al.
(1995)).

• El problema con el potencial de Hardy: f(x, s) =
�|s|p�2s

|x|p y 0 2 ⌦. No existe solución para

� > ((N � p)/p)p, 1 < p < N (véase Garćıa Azorero and Peral Alonso (1998)).

• El problema cóncavo-convexo: f(x, s) = |s|r�1s + �|s|q�1s con 0 < q < p � 1 < r < p⇤ � 1
y � > 0. Existe �⇤ > 0 tal que hay al menos dos soluciones positivas para � < �⇤ y no hay
solución positiva para � > �⇤ (véase Garćıa Azorero et al. (2000)).

En esta tercera parte de la memoria se pretende ampliar el estudio de estos problemas bien
extendiendo el operador o bien extendiendo el dato, siempre sin perder la naturaleza del problema
clásico. En concreto, en el Caṕıtulo 8 se estudia el problema subcŕıtico para el 1�Laplaciano (p = 1)
en el cual demostramos la existencia de 2 soluciones no triviales para 0 < q < 1⇤ = 1/(N � 1) y que
además están acotadas. Otro de los resultados notables del caṕıtulo es la existencia de una identidad
tipo Pohoz̆aev para este tipo de operadores. El operador 1�Laplaciano fue originalmente tratado
en Kawohl (1991, 1990), Demengel (1999) y Andreu et al. (2001) dando lugar a una gran literatura
desde entonces. Una de sus aplicaciones más interesantes es el empleo de modelos variacionales en la
restauración de imágenes, véase Andreu-Vaillo et al. (2004) y recientemente Mart́ın et al. (2017).

En el Caṕıtulo 9 se considera un problema con un potencial de Hardy para el operador laplaciano
(p = 2). Probamos que la presencia en la ecuación de términos de orden inferior h(x)u(x)� (h 2
L1

loc(⌦), � > 1) produce un efecto regularizante al obtener solución para valores de � mayores que

el cŕıtico (N�2)

2

4

, inclusive si h se anula en subconjuntos de ⌦. Además, dicho término provoca que
las soluciones sean más regulares. El problema de Hardy para p = 2 fue estudiado primeramente por
Baras and Goldstein (1984). Los autores observaron que como �

|x|2 2 Lr
loc(⌦) śı y solo śı 1  r  N/2,

las teoŕıas clásicas de unicidad y regularidad no se pod́ıan aplicar. Prueban que el comportamiento
asintótico de las soluciones depende de los valores de �, determinando un valor cŕıtico H = (N�2)2/4
también llamado constante de Hardy. Más tarde, en Garćıa Azorero and Peral Alonso (1998) los
autores realizan un estudio más exhaustivo de la ecuación para todo valor de 1 < p < N donde
efectivamente revelan que el comportamiento de las soluciones depende del valor cŕıtico �⇤ = ((N �
p)/p)p, obteniendo soluciones para � < �⇤. A partir de entonces ha surgido un gran número de
trabajos relacionados.

En el Caṕıtulo 10 se estudia el problema cóncavo-convexo pero, en lugar de realizar un efecto
cóncavo-convexo a la nolinealidad f(x, s), se provocará tal efecto al operador. Es decir, el operador en

consideración es �div
⇣

|ru|p(x)�2ru
⌘

siendo p(x) la función constante 2 en una región del dominio

D
1

⇢ ⌦, y la función constante p > 2 en la región restante del dominio D
2

= ⌦ \ D
1

. En cuanto a
la nolinealidad tomamos f(x, s) = �|s|q con 1 < q < p� 1. Nótese que estos valores de q inducen en
la ecuación un efecto convexo en la región D

1

y un efecto cóncavo en la región D
2

. Los problemas
cóncavo-convexo han recibido un gran interés en la literatura de las ecuaciones diferenciales desde los
trabajos pioneros de Lions (1982); Garćıa Azorero and Peral Alonso (1991); Ambrosetti et al. (1994) y
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Boccardo et al. (1995). Por otro lado, el estudio de operadores p(x)�laplaciano con p(x) una función
discontinua ha cobrado una gran atención en los últimos años al modelar el flujo de corriente en los
diodos orgánicos que emiten luz (OLED) usados en las pantallas de dispositivos pórtatiles, véanse
los trabajos de Buĺıček et al. (2016); Fischer et al. (2014) y Buĺıček et al. (2017). En este caṕıtulo
demostramos la existencia de un valor cŕıtico �⇤ tal que para � > �⇤ no existe solución positiva, y
para � < �⇤ hay una solución positiva y minimal. Además, si p < 2N/(N � 2) entonces existe una
segunda solución para casi todo � < �⇤.

La técnica para afrontar los problemas de esta tercera parte de la memoria es principalmente
el cálculo de variaciones. Obsérvese que el problema (10.64) tiene asociado el siguiente funcional de
enerǵıa I : W 1,p

0

(⌦) ! R definido como

I(u) =
Z

⌦

|ru|p
p

�
Z

⌦

F (x, u) ,

siendo F (x, s) =
R s

0

f(x, t)dt, en el sentido que los puntos cŕıticos de I son las soluciones del problema
(10.64). A la hora de afrontar los problemas citados anteriormente un paso importante es sustituir el
espacio W 1,p

0

(⌦) por otro más conveniente, cambiando aśı la geometŕıa del funcional I y siendo más
accesible encontrar sus puntos cŕıticos. Esto tendrá sus ventajas como se verá en los Caṕıtulos 9 y
10 convirtiendo el funcional en coercivo, y sus desventajas cuando el espacio elegido no es reflexivo
como es el caso del Caṕıtulo 8, no pudiendo aśı aplicar resultados tan conocidos como la compacidad
en las sucesiones de Palais-Smale.

Problema subcŕıtico para el 1�Laplaciano

En el Caṕıtulo 8 tratamos sobre la existencia y regularidad de soluciones del problema de Dirichlet
para una ecuación diferencial eĺıptica con operador el 1�Laplaciano y dato subcŕıtico, cuyo modelo
es

8

>

>

<

>

>

:

�div

✓

Du
|Du|

◆

= |u|q�1u, en⌦ ,

u = 0 en @⌦,

(10.65)

siendo⌦ ⇢ RN (N � 2) un dominio acotado con frontera Lipschitz y donde 0 < q < 1

N�1

.
El espacio natural para tratar este tipo de operadores es el espacio de funciones de variación aco-

tada BV (⌦), esto es, funciones que pertenecen al espacio L1(⌦) tales que su gradiente distribucional
es una medida de Radon finita. Además, BV (⌦) es un espacio de Banach con la norma

kukBV (⌦)

=

Z

⌦

|Du|+
Z

@⌦

|u| dHN�1,

donde HN�1 es la medida (N � 1)–dimensional de Hausdor↵ (véase por ejemplo Ambrosio et al.
(2000)).

Sin embargo el espacio BV (⌦), no es reflexivo ni separable. Aśı pues el hecho de tratar con el
operador 1�Laplaciano conlleva una dificultad extra. Otra de las dificultades es dotar de sentido al
cociente Du

|Du| , ya que tanto Du como |Du| son medidas de Radon finitas. Para salvar este obstáculo

se usa la Teoŕıa de Anzellotti (véase Anzellotti (1983)) en la cual se considera un campo vectorial
z 2 L1(⌦;RN ) tal que kzk1  1 y (z, Du) = |Du|, de esta manera z juega el papel del cociente Du

|Du| .
Por otro lado, el significado de la condición impuesta en la frontera debe ser precisado. Para ello se
define la traza débil en @⌦ de la componente normal de z como la aplicación [z, ⌫] : @⌦! R, siendo
⌫ el vector normal exterior unitario de @⌦, tal que [z, ⌫] 2 L1(@⌦) y k [z, ⌫] kL1

(@⌦)

 kzkL1
(⌦;RN

)

.

Observemos que para z 2 C1(⌦;RN ), esta definición coincide con la clasica [z, ⌫] = z · ⌫.
Aśı pues, diremos que u 2 BV (⌦) es solución del problema (10.65) si existe un campo vectorial

z 2 L1(⌦;RN ) con kzk1  1 y tal que

(1) � div z = |u|q�1u, en el sentido de las distribuciones D0(⌦),
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(2) (z, Du) = |Du|, como medidas en ⌦ ,

(3) [z, ⌫] 2 sign(�u), en @⌦.

A la hora de considerar la ecuación (10.65) en un marco variacional, en el Lemma 8.2.6 establece-
mos que soluciones del problema coinciden con puntos cŕıticos del funcional I : BV (⌦) ! R definido
como

I(u) =
Z

⌦

|Du|+
Z

@⌦

|u| dHN�1 � 1
q + 1

Z

⌦

|u|q+1.

Se recuerda que el método variacional para encontrar soluciones no triviales en el problema subcŕıtico
para el p�laplaciano (p > 1), radica en el uso del Teorema de Paso de Montaña (véase Dinca et al.
(1995)). Concretamente, primero se prueba que la solución trivial es un mı́nimo local de su corre-
spondiente funcional de enerǵıa. Después, debido a que el funcional tiene una geometŕıa de paso de
montaña y satisface la condición de compacidad de Palais-Smale, se encuentran dos puntos cŕıticos
(uno positivo y otro negativo). Hay que resaltar que la condición de Palais-Smale se basa en la reflex-
ividad del espacio W 1,p

0

(⌦). Como se ha comentado anteriormente el espacio de funciones de variación
acotada no es reflexivo. La estrategia consiste en tomar wp solución no trivial y positiva (de igual
forma se realiza para la negativa) obtenida por el paso de montaña del problema subcŕıtico para el
p�laplaciano y en cierto sentido hacer tender p ! 1+. Un paso importante y delicado es probar que
dicho ĺımite no es la solución trivial. De esta manera, demostramos en el Theorem 8.1.1 la existencia
de al menos dos soluciones no triviales v  0  w del problema (10.65). Además, se demuestra que
dichas soluciones están acotadas, para tal fin resulta crucial la existencia de una constante positiva
C, independiente de p tal que la solución wp verifica

kwpkW1,1
0 (⌦)

 C ,

para todo p > 1.
En la última parte del caṕıtulo presentamos una desigualdad tipo Pohoz̆aev para soluciones que

están en W 1,1(⌦) (Proposition 8.4.1). Además, damos ejemplos expĺıcitos donde se hace constar la
existencia de soluciones sin restricción del exponente q.

Efecto regularizante de términos de orden inferior en problemas
eĺıpticos que involucran un potencial de Hardy

En el Caṕıtulo 9 tratamos sobre el efecto regularizante que proporciona la inclusión de términos
de orden inferior en ecuaciones del tipo (10.64) que involucran un potencial de Hardy. Siendo más
espećıficos, consideramos ecuaciones del tipo

(

��u+ h(x)|u|p�1u = �
u

|x|2 + f(x) en ⌦,

u = 0 en @⌦,
(10.66)

donde p > 1, � 2 R, 0  h 2 L1(⌦) y f 2 L
p+1
p (⌦;hdx), es decir, |f |

p+1
p h 2 L1(⌦). Obsérvese que al

ser h integrable, se tiene

Lm(⌦;hdx) ⇢ L
p+1
p (⌦;hdx), para todo m � p+ 1

p
.

En el caso de no incluir el término regularizante, es decir h ⌘ 0, es conocido que existe solución para
toda f 2 W�1,2(⌦) siempre que

� < H =
(N � 2)2

4
, (10.67)

véase Garćıa Azorero and Peral Alonso (1998). Visto desde una perspectiva variacional la condición
(10.67) implica que gracias a la desigualdad de Hardy

Z

⌦

|u|2
|x|2 dx  H�1

Z

⌦

|ru|2 ,
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el funcional de enerǵıa asociado es coercivo en W 1,2
0

(⌦).
El hecho de incluir el término h(x)|u|p�1u al problema con un potencial de Hardy no es nuevo,

véase Adimurthi et al. (2017); Porzio (2007); Wei and Du (2017) y Wei and Feng (2015). En estos
dos últimos trabajos los autores estudian el comportamiento asintótico de la solución en 0 para el
caso f ⌘ 0 y h(x) = |x|� con � > �2. Por otro lado, Porzio (2007) y recientemente Adimurthi et al.
(2017) tratan el caso h(x) ⌘ h

0

> 0 obteniendo el siguiente resultado

Theorem 11 Sea p > 2⇤ � 1, h(x) ⌘ h
0

> 0 y f 2 Lm(⌦) con p+1

p
 m < N

2

p�1

p
. Entonces,

existe solución del problema (10.66) para todo � � 0. Además, la solución pertenece al espacio
W 1,2

0

(⌦) \ Lpm(⌦).

Destacamos que la solución proporcionada por este teorema se obtiene como ĺımite de soluciones de
una sucesión de problemas aproximantes y además que la regularidad en Lpm(⌦) se prueba únicamente
para esa espećıfica solución.

En este caṕıtulo se mejora el Teorema 11 en dos sentidos. Primero, probamos que la solución puede
obtenerse como un mı́nimo del funcional asociado y además obtenemos regularidad para cualquier
solución. Como segunda mejora, señalamos que podemos considerar el caso h 2 L1(⌦) no nece-
sariamente constante y que puede anularse en subconjuntos de ⌦. Aśı por ejemplo, probamos la
existencia y regularidad de solución cuando h se anula en⌦ � = {x 2 ⌦ : dist (x,@ ⌦) < �} para val-
ores de � suficientemente pequeños. Más aún, en cuanto a la existencia de soluciones es suficiente que
h 2 L1

loc(⌦).
Como se comentó al principio de la introducción, ya que el problema (10.66) posee una carac-

terización variacional, la elección de un espacio de funciones adecuado será ventajoso a la hora de
encontrar sus puntos cŕıticos. En efecto, consideremos el espacio E = W 1,2

0

(⌦) \ Lp+1(⌦;hdx) y el
funcional de enerǵıa I� : E ! R definido por

I�(u) =

Z

⌦

|ru|2
2

+
1

p+ 1

Z

⌦

|u|p+1 h� �
2

Z

⌦

u2

|x|2 �
Z

⌦

f u h, 8u 2 E .

Obsérvese que para cada función f 2 L
p+1
p (⌦;h(x)dx) se tiene un funcional asociado 'f en el espacio

dual E⇤ dado por

h'f , gi =
Z

⌦

fgh, 8 g 2 Lp+1(⌦;h(x)dx).

Probamos que I� es coercivo y acotado inferiormente. Posteriormente, usando el Principio Variacional
de Ekeland una sucesión minimizante es débilmente convergente hacia un punto cŕıtico en E. De
esta manera, en el Theorem 9.2.1, establecemos la existencia de soluciones, bajo la condición de
integrabilidad

Z

⌦\⌦
�

|x|
2(p+1)
1�p h(x)

2
1�p < 1 . (10.68)

Nótese que la condición (10.68) para h(x) ⌘ h
0

> 0 equivale a p > 2⇤ � 1, impuesta en el Teorema
11. Además, bajo una condición algo más fuerte que (10.68): existe s̄ 2 (2, p+ 1) tal que

Z

⌦\⌦
�

|x|
2s̄

2�s̄ h(x)
2s̄

(p+1)(2�s̄) < 1,

el funcional I� es débilmente inferiomente semicontinuo, por tanto, la solución es mı́nimo del funcional.
En cuanto a la regularidad de las soluciones en el Theorem 9.3.1 establecemos que toda solución

del problema (10.66) pertenece a W 1,2
0

(⌦) \ Lpm(⌦;h(x)dx) supuesto que se cumplen las hipótesis:

i) h 2 L1(⌦) y h(x) > 0 para casi todo x 2 ⌦,

ii) |x|
2pm
1�p h1� pm

p�1 2 L1(⌦),

iii) f 2 Lm(⌦;h(x)dx) con m � p+1

p
.
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Una vez más, queda patente el efecto regularizante del término h(x)|u|p�1u, ya que en un principio
las soluciones se encuentran en W 1,2

0

(⌦) \ Lp+1(⌦;h(x)dx).

Por último, un caso interesante donde se aplica el resultado anterior es h(x) � µ
|x|� con µ > 0 y

0  � < N . Donde obtenemos que la solución se encuentra en W 1,2
0

(⌦) \ Lpm(⌦;h(x)dx) con

• m 2
h

p+1

p
, (N��)(p�1)

(2��)p

⌘

, si 0  � < 2,

• m 2
h

p+1

p
,1
⌘

, si 2  � < N .

Aśı pues, en el caso � = 0 (que corresponde a h constante) obtenemos el resultado de reguaridad del
Teorema 11 pero en esta ocasión para toda solución, en lugar de para una solución obtenida como
ĺımite de soluciones de problemas aproximados.

Problema Cóncavo-Convexo con un operador discontinuo

Como se explicó anteriormente, en el Caṕıtulo 10 estudiamos la existencia de soluciones positivas
del siguiente problema

⇢

��p(x)u = �uq, en⌦ ,
u = 0, en @⌦,

(10.69)

donde � > 0, 1 < q < p � 1,� p(x)u = div
⇣

|ru|p(x)�2ru
⌘

y p(x) es una función discontinua dada
por

p(x) =

⇢

2 si x 2 D
1

,
p si x 2 D

2

,

siendo p > 2 y D
1

y D
2

dominios con frontera suave y tales que

⌦ = D
1

[D
2

, D
1

\D
2

= ; .

Llamaremos � a la interfaz o superficie que delimita las dos regiones, �= @D
1

\⌦ = @D
2

\⌦, la cual
supondremos suave con medida de Hausdor↵( N � 1)-dimensional finita.

Para plantear de forma variacional el problema (10.69), descompondremos la ecuación diferencial
en dos ecuaciones diferenciales, una en cada subdominio Di (i = 1, 2). Con tal fin, debemos propor-
cionar una “continuidad” de la solución cuando atraviesa de una región a otra. Es decir, que la traza
de u en � coincide tanto “si viene” de D

1

como de D
2

, y también respecto al flujo al cruzar �. Aśı
pues, consideramos soluciones del problema (10.69) como soluciones débiles del siguiente problema:

8

>

>

>

>

>

<

>

>

>

>

>

:

��u = �uq, en D
1

,

��pu = �uq, en D
2

,

@u
@⌘

= |ru|p�2

@u
@⌘

, u|D1 = u|D2 , en� ,

u = 0, en @⌦,

(10.70)

siendo ⌘ el vector normal unitario normal de � que apunta hacia afuera de D
1

. El espacio adecuado
para encontrar soluciones débiles es

W(⌦) =

⇢

v 2 W 1,2
0

(⌦) :

Z

D2

|rv|p < 1
�

,

dotado con la norma
[v]W(⌦)

:= krv kL2
(D1)

+ krv kLp

(D2) ,

es un espacio de Banach reflexivo y separable (Lemma 10.2.1). De esta manera, demostramos que las
soluciones de (10.70) corresponden a puntos cŕıticos del funcional de enerǵıa F� : W(⌦) ! R definido
como

F�(u) =

Z

D1

|ru|2
2

dx+

Z

D2

|ru|p
p

dx� �

Z

⌦

|u|q+1

q + 1
dx.
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A continuación, usando el método de sub y super-solución, para el cual es necesario un principio de
comparación (véase Proposition 10.3.2), demostramos la existencia de �⇤ > 0 tal que para 0 < � < �⇤

existe w� solución minimal y positiva. Además, w� es única y creciente respecto a �. Por otro lado, si
� > �⇤ entonces no existe solución positiva. Para este último resultado resulta esencial que el problema
parabólico ut = �u+�uq en la región D

1

, con un dato inicial u(x, 0) = u
0

(x) suficientemente grande,
explota en tiempo finito (Theorem 10.1.1).

En el Theorem 10.1.2 establecemos, bajo las hipótesis adicionales p < 2⇤ y D
2

⇢⇢ ⌦, la existencia
de una segunda solución para casi todo 0 < � < �⇤. La demostración del teorema se divide en dos
partes: primero, usando métodos variacionales y las ideas de Ambrosetti et al. (1994); Brézis and
Nirenberg (1993); Garćıa Azorero et al. (2000) probamos que el funcional de enerǵıa F� tiene un
mı́nimo local (véase Theorem 10.4.6). Para este resultado, como el operador p(x)�laplaciano, con
p(x) discontinuo, actúa de manera diferente en D

1

y en D
2

, lo máximo que podemos aspirar es que
las soluciones sean localmente Hölder (véase Acerbi and Fusco (1994)). Aśı pues, para demostrar
que hay un mı́nimo local en W(⌦) imponemos que D

2

⇢⇢ ⌦ para aśı obtener regularidad C1 de la
solución cerca de @⌦ (donde actúa el operador laplaciano). Como consecuencia deducimos que existe
un mı́nimo en la topoloǵıa C1(F�) \ C(⌦), donde F� es una pequeña banda alrededor de la frontera

F� = {x 2 ⌦ : dist(x,@ ⌦) < �}.

Seguidamente, usando un delicado argumento de regularidad tipo Stampacchia, relajamos el mı́nimo
a la topoloǵıa de W(⌦). Es en ese último paso cuando debemos exigir la condición p < 2⇤ (Proposition
10.4.5). En cuanto a la segunda parte de la demostración, para probar la existencia de una segunda
solución, nótese que el funcional no tiene un mı́nimo global. En efecto, si tomamos v 2 W(⌦) con
soporte compacto en D

1

, como q > 1, se obtiene que

F�(tv) = t2
Z

D1

|rv|2
2

dx� tq+1�

Z

D1

|v|q+1

q + 1
dx ! �1

cuando t ! 1. Por tanto, F� tiene una geometŕıa de paso de montaña. Si embargo, para aplicar
el Teorema de Paso de Montaña, la gran dificultad radica en la compacidad del funcional o más
concretamente en probar que las sucesiones de Palais-Smale están acotadas en W(⌦). Hasta ahora,
éste sigue siendo un problema abierto. Recordemos que, para encontrar puntos cŕıticos de paso de
montaña para problemas semilineales del tipo

⇢

��u = f(x, u), en⌦ ,
u = 0, en @⌦,

usualmente se asume que se satisfaga la condición de Ambrosetti-Rabinowitz

9 > 2 tal que 0  F (x, s)  sf(x, s), 8 s � 0 y a.e. x 2 ⌦ . (A-R)

Esta condición implica que todas las sucesiones de Palais-Smale al nivel del paso de montaña están
acotadas. De forma análoga para nuestro operador variable� p(x) se puede comprobar que si f(x, s)
satisface la propiedad (A-R) para  > p, entonces se tiene que las sucesiones de Palais-Smale están
acotadas (véase Apéndice 10.5). Sin embargo, en nuestro marco concreto f(x, s) = �sq no cumple la
condición (A-R) para  > p, ya que q + 1 < p.

Para superar esta dificultad de la compacidad del funcional, combinamos los resultados clásicos
de Ambrosetti and Rabinowitz (1973); De Figueiredo (1989) con una técnica de Jeanjean (1999) que
prueba la existencia de una sucesión de Palais-Smale acotada a nivel del paso de montaña para casi
todo 0 < � < �⇤.
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tiques quasi-linéaires à croissance quadratique. In Nonlinear partial di↵erential equations and their
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Cabré, X. and Sanchón, M. Geometric-type Sobolev inequalities and applications to the regularity of
minimizers. J. Funct. Anal., 264(1):303–325, 2013. ISSN 0022-1236.
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