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Abstract

The amount of available images and videos in our everyday life has grown very

quickly in the last few years. Mainly due to the proliferation of cheap image and

video capture devices (photo cameras, webcams or cell phones), and the spread of

the Internet accessibility.

Sites for photo sharing like Picasa c©or Flickr c©; social networks like Facebook c©or

MySpace c©; or video sharing sites like YouTube c©or Metacafe c©, offer a huge amount

of visual data ready to be downloaded in our computers or mobile phones. Currently,

most of the searches, performed in online sites and on personal computers, are based

on the text associated to the files. In general, the textual information is usually poor

compared to the rich information provided by the visual content. Therefore, it is

necessary efficient ways of searching photos and/or videos in collections, making use

of the visual content encoded in them.

This thesis focuses in the problems of automatic object detection and categoriza-

tion in still images, and the recognition of human actions on video sequences. We

address these tasks by using appearance based models.



2



Chapter 1

Introduction

The amount of available images and videos in our everyday life has grown very quickly

in the last few years. Mainly due to the proliferation of cheap image and video capture

devices (photo cameras, webcams or cell phones), and the spread of the Internet

accessibility.

Sites for photo sharing like Picasa c©or Flickr c©; social networks like Facebook c©or

MySpace c©; or video sharing sites like YouTube c©or Metacafe c©, offer a huge amount

of visual data ready to be downloaded in our computers or mobile phones. Currently,

most of the searches, performed in online sites and on personal computers, are based

on the text associated to the files. In general, the textual information is usually poor

compared to the rich information provided by the visual content. Therefore, it is

necessary efficient ways of searching,in an automatic way, photos and/or videos in

collections, making use of the visual content encoded in them.

This chapter will first describe the thesis objectives and motivations. We will then

answer why it is a challenge and what we have achieved over the last years. An

outline of the thesis is finally given.
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a b c

Figure 1.1: Objectives of the thesis. a) Is the target object in the image?. b)
What is the region occupied by the object?. c) What is happening in the video
sequence?

1.1 Objectives

The objective of this work is twofold: i) object detection and categorization in still

images, and ii) human action recognition in video sequences.

Our first goal is to decide whether an object of a target category is present in

a given image or not. For example, in figure Fig. 1.1.a, we could be interested in

knowing if there is a car wheel, a photocamera or a person in that image, without

knowing the exact position of any of such “entities”.

Afterwards, in image Fig. 1.1.b, we could say that the upper-body (head and

shoulders) of the person depicted in it, is located in the pixels enclosed by the yellow

bounding box. So our goal would be the detection or localization of the target object.

Finally, provided that we have a video sequence, we would like to know what

the target object is doing along time. For example, we could say that the person in

image Fig. 1.1.c is waving both hands.

To sum up, we aim to explore the stages that go from the detection of an object

in a single image, to the recognition of the behaviour of such object in a sequence

of images. In the intermediate stages, our goal is to delimit the pixels of the image

that define the object and/or its parts.
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1.2 Motivation

In our everyday life, we successfully carry out many object detection operations.

Whitout being aware of that, we are capable of finding where our keys or our favourite

book are. If we go walking along the street, we have no problem to know where a

traffic light or a bin are. Moreover, we are not only capable of detecting an object of

a target class, but also to identify it. That is to say, in a place crowded of people, we

are able to distinguish an adquirance. Or we are able to say which is our car from

those parked in a public garage. In addition, we are able to learn, without apparent

effort, new classes of objects from a small amount of examples, and new individual

instances.

Currently, new applications where it is necessary the use of object detection are

emerging. For example, image retrieval from huge databases, as it is the Internet

or the film archives in TV broadcast companies. Also, the description of a scene

through the objects that compound it, for instance, to manipulate them later. Video

surveillance is other emerging application, for example, in an airport or public park-

ing. Or systems to control the access to resctricted areas. For the latter cases, these

systems must be fast and robust, since their performance is critical.

However, there are not definitive solutions to solve those problems, and this is

why object and motion recognition are still open problems.

1.3 Challenges

In this section we state the main challenges we face when dealing with the problems

of object and action recognition.
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Figure 1.2: Intra-class variability. Each row shows a collection of objects of the
same class (octopus, chair, panda) but with different aspect, size, color,... Images
extracted from Caltech-101 dataset [1].
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Figure 1.3: Inter-class variability. In these pairs of classes (left: bull and ox ;
right: horse and donkey) the differences amongst them are small at first glance.

1.3.1 Challenges on object detection/recognition

The main challenges in object detection and recognition are: a) the big intra-class

variability, b) the small inter-class variabity, c) the illumination, d) the camera point-

of-view, e) the occlusions, f) the object deformations, and, g) the clutter in back-

ground.

We expand those concepts in the following paragraphs:

• In figure Fig.1.2, although each row contains examples of object instances from

the same classes, the visual differences amongst them are quite significative.

This concept is known as intra-class variability. An object recognition sys-

tem has to be able to learn the features that makes the different instances be

members of the same class.

• An ideal system should be able to distinguish amongst objects of different

classes although the differences between are subtle (i.e. small inter-class

variability). See figure Fig.1.3.

• Different illuminations are used on the same object in figure Fig. 1.4 (bottom

row). Depending on the illumination, the same object could be perceived as

different. Pay attention, for example, to the different shadows on the mug

surface.
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Figure 1.4: Challenges on object detection. Top row: different points of view
of the same object. Bottom row: different illuminations on the same object. Images
extracted from ALOI dataset [36].

• Depending on the camera point of view from which the object is seen, differ-

ent parts are visible. Therefore, different views should be naturally managed by

a robust object recognition system. Top row of figure Fig. 1.4 shows different

views of the same mug.

• Some portions of the objects can be occluded depending on the viewpoint. For

deformable objects, as persons or animals, these occlusions can be originated

by their own parts.

• The object deformations are due to the relative position of its constitutive

parts. The different appearances of articulated objects makes hard learning

their shapes as a whole. See, for example, top and bottom rows of figure

Fig. 1.2.

• Objects usually do not appear on flat backgrounds but they are surronded by

clutter. That increases the difficulty of distinguishing the object features from

the ones appearing in the background.
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1.3.2 Challenges on human action recognition

Figure 1.5: Challenges on action recognition. Different points of view of same
action: walking. Even for humans, viewing this action frontally, it is more difficult
to recognize it than when it is viewed from the side. Images extracted from VIHASI
dataset [2].

In contrast to what one might infer from their own ability to solve the human

action recognition task in fractions of seconds and with a very small error rate, there

exists a wide range of difficulties that need to be overcome by an automatic system,

and that are handled very well by humans.

For example, depending on the camera viewpoint (see Fig. 1.5) parts of the

body can be occluded, making more difficult the recognition of the action. Bad

lighting conditions can generate moving shadows that prevent the system from

following the actual human motion.

Other common distractors are the moving objects placed in the background.

Imagine for example a crowded street scene where there are not only people or car

moving but also trees swinging or shop advertisements blinking. We must add to this

list, the fact that different people usually perform same named actions at different

velocity.

1.4 Contributions

Our contributions in this research can be divided in four main themes, summarized

below.
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Use of filter banks for object categorization. In the work described in chapter

3 we propose: (i) the combination of oriented Gaussian-based filters (zero, first and

second order derivatives) in a HMAX-based framework [104], along with a proposed

Forstner’s filter and Haar-like filters [118]; and, (ii) the evualation of the proposed

framework in the problems of object categorization [69, 67, 70, 78], object part-

specific localization [68] and gender recognition [51]. In addition, appendix A.2.2

shows a comparison [78] between SIFT descriptor and HMAX.

Upper-body detection and applications. In the work presented in chapter 4

we begin by developing and evaluating two upper-body detectors (frontal/back and

profile views). Then, we build on top of it, the following applications: (i) upper-

body human pose estimation [27, 29]; (ii) retrieval of video shots where there are

persons holding an especific body pose [28]; and, (iii) content-based video retrieval

focused on persons [90, 91]. Derived from this work, we publicly release four related

datasets: two for training an upper-body detector (frontal and profile views), one for

evaluating upper-body pose estimation algorithms, and one for training pose specific

detectors. Along with these datasets, software for detecting frontal upper-bodies is

also released.

Human motion descriptor. In the research described in the first part of chap-

ter 5, we contribute a new motion descriptor (aHOF [71]) based on the temporal

accumulation of histograms of oriented optical flow. We show through a wide ex-

perimental evaluation, that our descriptor can be used for human action recognition

obtaining recognition results that equal or improve the state-of-the-art on current

human action datasets.

Machine learning techniques for human motion encoding. In the second

part of chapter 5, we thoroughly show how recent multi-layer models based on Re-

stricted Boltzmann Machines (RBM) can be used for learning features suitable for

human action recognition [71]. In our study, the basis features are either video
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sequences described by aHOF or simple binary silhouettes. Diverse single-layer clas-

sifiers (e.g. SVM or GentleBoost) are compared. In general, the features learnt by

RBM-based models offer a classification performance at least equal to the original

features, but with lower dimensionality.

1.5 Outline of the thesis

The structure of the thesis is as follows:

In chapter 2 we do a review of the literature regarding the main issues of this

research: object detection and recognition in still images, and human action recogni-

tion in video sequences. We also include a brief review on the classification methods

that we use in our work.

In chapter 3 we propose and study the use of a set of filter banks for object cate-

gorization and object part-specific localization. These filter banks include Gaussian-

based filters (i.e. zero, first and second order derivatives), a Forstner-like filter and

Haar-like filters. Some contents of this chapter were developed in collaboration with

Dr. Àgata Lapedriza et al. and Dr. Plinio Moreno et al., during my research stays

at the Computer Vision Center1 of Barcelona (Spain) and the Instituto Superior

Técnico2 of Lisbon (Portugal), respectively.

In chapter 4 we present a new upper-body dectector (frontal and side view) based

on Histograms of Oriented Gradients, along with some applications, as human pose

estimation or content-based video retrieval. The contents of this chapter contains

joint work with Dr. Vittorio Ferrari and Prof. Andrew Zisserman, during my research

stay at Visual Geometry Group’s laboratory3 at the University of Oxford.

In the first part of chapter 5 we present a new human motion descriptor based

on Histograms of Optical Flow. This motion descriptor accummulates histograms

of optical flow along time, what makes it robust to the common noisy estimation of

1CVC: http://www.cvc.uab.es/index.asp?idioma=en
2VisLab: http://www.isr.ist.utl.pt/vislab/
3VGG: http://www.robots.ox.ac.uk/˜vgg/
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optical flow. We evaluate the performance of our descriptor on the state-of-the-art

datasets. Our results equal or improve the state-of-the-art on the reported results on

those datasets. In the second part, we study how we can use Restricted Boltzmann

Machines based models for learning human motion and use them for human action

recognition. We use diverse classifiers (i.e. kNN, SVM, GentleBoost and RBM-based

classifiers) to evaluate the quality of the learnt features. Static (i.e. silhouettes) and

dynamic (i.e. optical flow) features are used as basis.

Finally, chapter 6 presents the conclusions of this work along with the contribu-

tions of the thesis and future work derived of this research.

At the end of the document, there are a set of appendices that include a glossary of

technical terms and abbreviations used in this work; information about the databases

used in the experiments; and complementary information for the chapters.



Chapter 2

Literature Review and Methods

In this chapter, we review the literature and methods related to the topics discussed

in this thesis.

2.1 Object detection

Terms like object detection, object localization, object categorization or object recog-

nition are sometimes used indistinctly in the literature. We will use them in this

thesis with the following meanings:

• Object detection: we can say that an object of a target class has been de-

tected, if it is present anywhere in the image. In some contexts, it also involves

localization.

• Object localization: the localization process not only involves to decide that

an object is present in the image, but also to define the image window where

it is located.

• Object categorization: if we assume that there is an object in the image, ob-

ject categorization aims to decide which is its category (class) from a set of

predefined ones.

13
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a b c

Figure 2.1: Object representation. (a) Representation of the object face as a
whole. (b) Representation of the object as a set of parts with relation between them.
(c) Representation of the object as a set of parts without explicit relation between
them (bag of visual words). [Image extracted from Caltech 101 dataset [1]]

• Object recognition: the goal of an object recognition task is to assign a “proper

name” to a given object. For example, from a group of people, we would like

to say who of them is our friend John.

In the literature, we can find two main approaches for object detection (see

Fig. 2.1): (i) to consider the object as a whole (i.e. holistic model) [101, 64, 17,

10, 14]; and, (ii) to consider the object as a set of parts (part-based model), either

with a defined spatial relation [76, 4, 62, 59, 26, 23], or without such relation [104].

Schneiderman and Kanade [101] learn probability distributions of quantized 2D

wavelet coefficients to define car and face detectors, for specific viewpoints. Liu [64]

defines multivariate normal distributions to model face and non-face classes, where

1D Harr wavelets are used to generate image features in combination with discrimi-

nating feature analysis. Dalal and Triggs[17] propose to represent pedestrians (nearly

frontal and back viewpoints) with a set of spatially localized histograms of oriented

gradients (HOG). Bosch et al. [10] represent objects of more than one hundred cat-

egories by computing HOG descriptors at diverse pyramidal levels. Chum and Zis-

serman [14] optimize a cost function that generates a region of interest around class

instances. Image regions are represented by spatially localized histograms of visual

words (from SIFT descriptors).
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Mohan et al. [76] build head, legs, left arm, and right arm detectors, based on Haar

wavelets. Then, they combine the detections with the learnt spatial relations of the

body parts to locate people (nearly frontal and back viewpoints) in images. Agarwal

and Roth [4] build a side view car detector by learning spatial relations between

visual words (gray-levels) extracted around interest points (i.e. local maxima of

Foerstner operator responses). Fei-Fei et al. [62] propose a generative probabilistic

model, which represents the shape and appearance of a constellation of features

belonging to an object. This model can be trained in an incremental manner with

few samples of each one of the 101 classes used for its evaluation. Leibe et al. [59]

use visual words, integrated in a probabilistic framework, to simultaneously detect

and segment rigid and articulated objects (i.e. cars and cows). Ferrari et al. [26]

are able to localize boudaries of specific object classes by using a deformable shape

model and by learning the relative position of object parts with regards to the object

center. Felzenswalb et al. [23] build object detectors for different classes based on

deformable parts and where the parts are represented by HOG descriptors.

a b c d

Figure 2.2: Image features. (a) Original color image. (b) Gradient modulus (from
Sobel mask). (c) Response to Gabor filter (θ = 3/4). (d) HoG representation . [Left
image extracted from ETHZ shapes dataset [26].]

Holistic models are simpler, since there does not exist the concept of parts and

hence it is not necessary to explicitly learn their relations. On the other hand,

part-based models are more flexible against partial occlusions and more robust to

viewpoint changes [3, 50].

Traditionally, most of the object detection systems are optimized to work with a

particular class of objects, for example, faces [101, 64], or cars [101, 4, 61]. Human
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beings are able to recognize any object following the same criterium, independently

of its category. Recently, there have emerged systems that are able to satisfactorily

manage any kind of objects following a common metodology [4, 24, 62, 104].

Common features used to describe image regions are: (i) raw pixel intensity

levels; (ii) spatial gradients (Fig. 2.2.b); (iii) texture measurements based on filter

responses [117] (Fig. 2.2.c); (iv) intensity and color histograms; (v) histograms of

spatial gradients: SIFT [65], HoG [17] (Fig. 2.2.d); and, (vi) textons [66].

2.2 Human Action Recognition

a b c d

Figure 2.3: Action representation. (a) Original video frame with BB around
the person. (b) KLT point trajectories. (c) Optical flow vectors inside the BB. (d)
Foreground mask extracted by background subtraction.

A video consist of massive amounts of raw information in the form of spatio-

temporal pixel intensity variations. However, such information has to be processed

in order to delimit the information relevant for the target task. An experiment carried

out by Johansson [46] showed that humans can recognize patterns of movements from

points of light placed at a few body joints with no additional information.

Different surveys present and discuss the advances in human action recognition

(HAR) in the last few years: [35, 75, 87, 115]. Here, we review the main approaches

that are relevant to our work.
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The main kind of features that are used in the literature for addressing the prob-

lem of motion description are: (i) features based on shapes [9, 119, 37, 44] (see

Fig. 2.3.d); (ii) features based on optical flow (see Fig. 2.3.c) or point trajecto-

ries [19, 82] (see Fig. 2.3.b); (iii) features from combination of shape and motion

[45, 100, 99]; and, (iv) spatio-temporal features from local video patches (bag of

visual words) [123, 53, 102, 47, 18, 81, 79, 56, 105, 80]. Raw pixel intensities [81],

spatial and temporal gradients [79] or optical flow [47] can be used inside the local

spatio-temporal patches.

Whereas, the previous referenced approaches do not model, in a explicit way,

the relations between the different body parts, Song et al. [108] propose a graphical

model to represent the spatial relations of the body parts.

Blank et al. [9] model human actions as 3D shapes induced by the silhouettes

in the space-time volume. Wang and Suter [119] represent human actions by using

sequences of human silhouettes. Hsiao et al. [44] define fuzzy temporal intervals and

use temporal shape contexts to describe human actions.

Efros et al. [19] decompose optical flow in its horizontal and vertical components

to recognize simple actions of low resolution persons in video sequences. Oikonomopou-

los et al. [82] use the trajectory of spatio-temporal salient points to describe aerobic

exercises performed by people.

Jhuang et al. [45] address the problem of action recognition by using spatio-

temporal filter responses. Schindler and Van Gool [99] show that only a few video

frames are neccessary to recognize human actions by combining filter responses with

the goal of describing local shape and optical flow.

Zelnik-Manor and Irani [123] propose to use temporal events (represented with
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spatio-temporal gradients) to describe video sequences. Schüldt [102] build his-

tograms of occurrences of 3D visual (spatio-temporal) words to describe video se-

quences of human actions. Each 3D visual word is represented by a set of spatio-

temporal jets (derivatives). Dollar et al. [18] extract cuboids at each detected spatio-

temporal interest point (with a new operator) in video sequences. Each cuboid is rep-

resented by either its pixel intensities, gradients or optical flow. Then, cuboid proto-

types are computed in order to be used as bins of occurrence histograms. Niebles and

Fei-Fei [79] propose a hierarchical model that can be characterized as a constellation

of bags- of-features, and that is able to combine both spatial and spatial-temporal

features in order to classify human actions. Shechtman and Irani [105] introduce a

new correlation approach for spatio-temporal volumes that allows matching of hu-

man actions in video sequences. Laptev and Pérez 2007 [56] describe spatio-temporal

volumes by using histograms of spatial gradients and optical flow.

2.3 Classifiers

Both previous problems (object detection and action recognition) are commonly

approached by firstly extracting image/video features and, then, using them as input

of classifiers. During the learning stage, the classifier is trained by usually showing it

a huge variety of samples (feature vectors). Afterwards, during the test (recognition)

stage, feature vectors are extracted from the target item and given to the classifier

to deliver its opinion.

One classical classifier is Nearest Neighbour (kNN) [8]. kNN is a non-parametric

classifier. In its simpler formulation, it computes distances between the test vector

and all the training prototypes. It returns the class label corresponding to the major-

ity class found in the k nearest (most similar) prototypes. This approach generally

provides fair results, but its usage can be considered prohibitive if the amount of

training samples is huge (too many comparisons) or if the overlapping among the

classes is significative.
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a b

Figure 2.4: Binary classifiers. (a) Support Vector Machine: circles outlined in
green represent the support vectors that define the border between the two classes.
(b) Boosting: the thick line represents the border between the two classes. It comes
from the combination of the weak classifiers defined by the dotted lines.

In the last few years, more sofisticated classifiers have arised. They have shown

a good trade-off in terms of testing time and classification performance in a wide

variety of problems [8].

In this section we do a brief review on the following classifiers (used in this the-

sis): Support Vector Machines, Boosting-based classifiers and Restricted Boltzmann

Machines.

2.3.1 Support Vector Machines

Support Vector Machines (SVM) [16, 84] are known as max-margin classifiers, since

they try to learn a hyperplane, in some feature space, in order to separate the positive

and negative training samples with a maximum margin.

Figure Fig. 2.4.a represents a binary problem where the two classes are separated

as a function of the support vectors (outlined in green color).

Classical kernels are: linear, polynomial, radial basis functions (RBF), sigmoid,...

Some problems where SVM have been successfully used are: tracking [125], hu-

man action recognition [102], object categorization [20], object detection [17, 88],



20 CHAPTER 2. LITERATURE REVIEW AND METHODS

character recognition [11].

2.3.2 Boosting-based classifiers

Boosting [8] is a technique for combining multiple weak classifiers (or base learning

algorithms) to produce a form of committee (or strong classifier) whose performance

can be significantly better than that of any of the weak classifiers.

AdaBoost [33] calls a given weak classifier repeatedly in a series of rounds t =

1 : T . One of the main ideas of the algorithm is to maintain a distribution or set of

weights over the training set. The weight of this distribution on training example i

on round t is denoted Dt(i). Initially, all weights are set equally, but on each round,

the weights of incorrectly classified examples are increased so that the weak learner

is forced to focus on the hard examples in the training set.

Decision stumps (tree with a single node) are commonly used as weak classifiers.

GentleBoost [34] is a modification on AdaBoost where the update is done by

following Newton steps.

Figure Fig. 2.4.b represents a binary problem where two classes are separated

by a strong classifier (thick line) defined by the combination of two weak classifiers

(dotted lines).

Some problems where Boosting have been successfully used are: object detec-

tion [118, 63, 52] and activity recognition [114, 95].

JointBoosting

Recently, Torralba et al. [112, 113] proposed a multi-class classifier based on boosting.

It is named JointBoosting.

Joint Boosting trains, simultaneously, several binary classfiers which share fea-

tures between them, improving this way the global performance of the classification.

In our experiments, we will use decision stumps as weak classifiers.
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2.3.3 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite

connectivity graph (see 5.5.a). That is, an undirected graphical model where only

connections between units in different layers are allowed. A RBM with m hidden

variables hi is a parametric model of the joint distribution between the hidden vector

h and the vector of observed variables x.

Hinton [40] introduced a simple method for training these models, what makes

them attractive to be used in complex problems. In particular, the work in [41]

shows how to encode (into short codes) and classify (with high accuracy) handwritten

numbers using multilayer architectures based on RBM.

Recently, diverse variants of RBM models have arised and have been applied

to different problems. Memisevic et al. [74] apply RBM models to learn (in an

unsupervised way) image transformations. Taylor et al. [110] learn human motion

by defining a temporal conditional-RBM model. Torralba et al. [111] use an approach

based on this model to encode images and then use the generated codes to retrieve

images from large databases.
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Chapter 3

Filtering Images To Find Objects

In this chapter, we pose the following question: how far can we go in the task of

object detection/categorization by using filter banks as our main tool?

Firstly, we introduce the concept of oriented multi-scale filter banks. Then, we study

how image features can be extracted by using filter responses and can be used under

the HMAX framework to build higher level semantic features. Finally, we evaluate

such features on the following three tasks: (i) image categorization; (ii) object part

localization; and (iii) gender recognition (female/male).

3.1 Introduction

The Marr‘s theory [73] supports that in the early stages of the vision process, there

are cells that respond to stimulus of primitive shapes, such as corners, edges, bars, etc.

Young [122] models these cells by using Gaussian derivative functions. Riesenhuber &

Poggio [96] propose a model for simulating the behavior of the Human Visual System

(HVS), at the early stages of vision process. This model, named HMAX, generates

features that exhibit interesting invariance properties (illumination, position, scale

and rotation). More recently, Serre et al. [104], based on HMAX, proposed a new

model for image categorization adding to the HMAX model a learning step and

23
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changing the original Gaussian filter bank by a Gabor filter bank. They argue that

the Gabor filter is much more suitable in order to detect local features. Nevertheless

no sufficient experimental support has been given.

Different local feature based approaches are used in the field of object catego-

rization in images. Serre et al. [104] use local features based on filter responses

to describe objects, achieving a high performance in the problem of object catego-

rization. On the other hand, different approaches using grey-scale image patches,

extracted from regions of interest, to represent parts of objects have been suggested,

Fei-Fei et al. [62], Agarwal et al. [3], Leibe [60]. But, at the moment, there is

not a clear advantage from any of these approaches. However, the non-parametric

and simple approach followed by Serre et al. [104] in his learning step suggests that

a lot of discriminative information can be learnt from the output of filter banks.

Computing anisotropic Gabor features is a heavy task that only is justified if the

experimental results show a clear advantage on any other type of filter bank.

The goal of this chapter is to carry out an experimental study in order to propose

a new set of simpler filter banks. We compare local features based on a Gabor filter

banks with the ones based on Gaussian derivative filter banks. These features will

be applied to the object categorization problem and specific part localisation task.

3.2 Filter banks

Koenderink et al. [49] propose a methodology to analyze the local geometry of the

images, based on the Gaussian function and its derivatives. Several optimization

methods are available to perform efficient filtering with those functions [116]. Fur-

thermore, steerable filters [32, 89] (oriented filters whose response can be computed as

linear combination of other responses) can be defined in terms of Gaussian functions.

Yokono & Poggio [121] show, empirically, the excellent performance achieved by

features created with filters based on Gaussian functions, applied to the problem of

object recognition. In other published works, as Varma et al. [117], Gaussian filter
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Figure 3.1: Sample filter banks. From top to bottom: Haar-like filters; Gabor;
first-order Gaussian derivatives plus zero-order Gaussian (right most); second-order
Gaussian derivatives plus Laplacian of Gaussian (right most)

banks are used to describe textures.

Our goal is to evaluate the capability of different filter banks, based on Gaussian

functions, for encoding information usable for object categorization. We will use the

biologically inspired HMAX model [104] to generate features.

In particular, HMAX consists of 4 types of features: S1, C1, S2 and C2. S1

features are the lowest level features, and they are computed as filter responses,

grouped into scales; C1 features are obtained by combining pairs of S1 scales with

the maximum operator; and, finally, C2 are the higher-level features, which are

computed as the maximum value of S2 from all the positions and scales. Where S2

features 1 measure how good is the matching of one C1 feature in a target image.

The reader is referred to the appendix Ap. A.2) for more details about this model

and example figures Fig. A.10, A.11, A.12.

Due to the existence of a large amount of works based on Gaussian filters, we

propose to use filter banks compound by the Gaussian function and its oriented

derivatives as local descriptors, including them in the first level of HMAX.

The considered filters are defined by the following equations:

1 Let Pi and X be patches, of identical dimensions, extracted at C1 level from different images,
then, S2 is defined as: S2(Pi, X) = exp(−γ · ‖X − Pi‖

2), where γ is a tunable parameter.
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a) Isotropic Gaussian:
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b) First order Gaussian derivative:
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c) Second order Gaussian derivative:
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d) Laplacian of Gaussian:

LG(x, y) =
(x2 + y2 − 2σ2)

2πσ6
· exp

(

−
x2 + y2

2σ2

)

(3.4)

e) Gabor (real part, as [104])

Gr(x, y) = exp

(

X2 + γ2Y 2

2σ2

)

× cos

(

2π

λ

)

(3.5)

Where, σ is the standard deviation, X = x cos θ+ y sin θ and Y = −x sin θ+ y cos θ.

Figure Fig.3.1 shows examples of the different filter banks studied in this chapter.

3.3 Non Gaussian Filters

Foerstner interest operator as a filter

In order to improve the information provided by the features, we propose to include,

in the lowest level, the responses of the Forstner operator [31], used to detect regions

of interest. For each image point, we can compute a q value, in the range [0, 1], by
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edcba

Figure 3.2: Foerstner operator as a filter. Responses to the Foerstner filter (at
four scales) applied to the image on the left.

using equation 3.7.

N(x, y) =

∫

W

M(x, y)dxdy ≈ ΣMi,j (3.6)

q = 1−

(

λ1 − λ2

λ1 + λ2

)2

=
4detN

(trN)2
(3.7)

Where M is the moments matrix, W is the neighborhood of the considered point

(x, y), and λ1, λ2 are the eigenvalues of matrix N . tr refers to the matrix trace and

det to the matrix determinant.

The moments matrix M is defined by the image derivatives Ix, Iy as follows:

M =

(

I2x IxIy

IxIy I2y

)

(3.8)

Haar like features

Viola and Jones, in their fast object detector [118], extract features with a family of

filters which are simplified versions of first and second order Gaussian derivatives.

Since these filters achieve very good results and are computable in a very efficient

way (thanks to the integral image technique [118]), we include them in our study.

The top row of Fig. 3.1 shows some of the Haar like filters that will be used in

the following experiments.
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3.4 Experiments and Results

In this section, we perform various experiments of object categorization and part-

specific localisation, based on the filters previously introduced.

3.4.1 Object categorization results

Given an input image, we want to decide whether an object of a specific class is

contained in the image or not. This task is addressed by computing HMAX-C2

features with a given filter bank and then training a classifier with those features.

The eight filter banks defined for this experiment are the following:

(1) Viola (2 edge filters, 1 bar filter and 1 special diagonal filter);

(2) Gabor (as [104]);

(3) anisotropic first-order Gaussian derivative;

(4) anisotropic second-order Gaussian derivative;

(5) (3) with an isotropic zero-order Gaussian;

(6) (3) with a Laplacian of Gaussian and Forstner operator;

(7) (3), (4) with a zero order Gaussian, Laplacian of Gaussian and Forstner op;

(8) (4) with Forstner operator.

In these filter banks we have combined linear filters (Gaussian derivatives of

different orders) and non-linear filters (Forstner operator), in order to study if the

mixture of information of diverse nature enhances the quality of the features.

The Gabor filter and the anisotropic first and second order Gaussian derivatives

(with aspect-ratio equals 0.25) are oriented at 0, 45, 90 and 135 degrees. All the

filter banks contain 16 scales (as [104]).

The set of parameters used for the Gaussian-based filters, are included in table

Tab. 3.1. For each Gaussian filter, a size FS and a filter width σ are defined. In
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particular, the standard deviation is equal to a quarter of the filter-mask size. The

minimum filter size is 7 pixels and the maximum is 37 pixels.

FS 7 9 11 13 15 17 19 21
σ 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25

FS 23 25 27 29 31 33 35 37
σ 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25

Table 3.1: Experiment parameters. Filter mask size (FS ) and filter width (σ)
for Gaussian-based filter banks.

Dataset: Caltech 101-object categories

Figure 3.3: Caltech 101 dataset. Typical examples from Caltech 101 object cat-
egories dataset. It includes faces, vehicles, animals, buildings, musical instruments
and a variety of different objects.

We have chosen the Caltech 101-object categories 2 to perform the object catego-

rization experiments. This database has become, nearly, the standard database for

object categorization. It contains images of objects grouped into 101 categories, plus

a background category commonly used as the negative set. This is a very challenging

2The Caltech-101 database is available at http://www.vision.caltech.edu/
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database due to the high intra-class variability, the large number of classes and the

small number of training images per class. Figure 3.3 shows some sample images

drawn from diverse categories of this database. All the images have been normalized

in size, so that the longer side had 140 pixels and the other side was proportional,

to preserve the aspect ratio.

More sample images and details can be found in appendix A.1.

Multi-scale filter banks evaluation

We will compute biologically inspired features based on different filter banks. For

each feature set, we will train binary classifiers for testing the presence or absence

of objects in images from a particular category. The set of the negative samples

is compound by images of all categories but the current one, plus images from the

background category. We are interested in studying the capability of the features to

distinguish between different categories, and not only in distinguishing foreground

from background.

We will generate features (named C2 ) following the HMAX method and using the

same empirical tuned parameters proposed by Serre et al. in [104]. The evaluation of

the filters will be done following a strategy similar to the one used in [62]. From one

single category, we draw 30 random samples for training, and 50 different samples

for test, or less (the remaining ones) if there are not enough in the set. The training

and test negative set are both compound by 50 samples, randomly chosen following

the strategy previously explained. For each category and for each filter bank we will

repeat 10 times the experiment.

For this particular experiment, and in order to make a ‘robust’ comparison, we

have discarded the 15 categories that contains less than 40 samples. Therefore, we

use the 86 remaining categories to evaluate the filter banks.
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Figure 3.4: Selecting the number of patches. Evolution of performance versus
number of patches. Evaluated on five sample categories (faces, motorbikes, car-side,
watch, leopards), by using three different filter banks: Gabor, first order Gaussian
derivative and second order Gaussian derivative. About 300 patches, the achieved
performance is nearly steady.

Results on filter banks evaluation. During the patch 3 extraction process, we

have always taken the patches from a set of prefixed positions in the images. Thereby,

the comparison is straightforward for all filter banks.

We have decided, empirically (Fig. 3.4), to use 300 patches (features) per category

and filter bank. If those 300 patches were selected (from a huge pool) for each

individual case, the individual performances would be better, but the comparison

would be unfair.

In order to avoid a possible dependence between the features and the type of

classifier used, we have trained and tested, for each repetition, two different classifiers:

AdaBoost (with decision stumps) [34] and Support Vector Machines (linear) [83].

3 In this context, a patch is a piece of a filtered image, extracted from a particular scale. It is
three dimensional: for each point of the patch, it contains the responses of all the different filters,
for a single scale.
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- Viola Gabor FB-3 FB-4 FB-5 FB-6 FB-7 FB-8

AdaB 78.4 , 4.3 81.4 , 3.9 81.2, 3.9 81.4 , 4.2 81.9 , 3.3 77.9 , 4.5 80.3 , 4.3 78.1, 4.0
SVM 84.2 , 2.3 85.5 , 2.5 84.1 , 3.6 86.0 , 3.3 84.1 , 3.0 82.6 , 2.7 82.8 , 2.4 82.7, 2.6

Table 3.2: Filter banks comparison. Results of binary classification (86 cate-
gories) using different filter banks: averaged performance and averaged confidence
intervals. First row: AdaBoost. Second row: SVM with linear kernel.

For training the AdaBoost classifiers, we have set two stop conditions: a maxi-

mum of 300 iterations (as many as features), or a training error rate lower than 10−6.

On the other hand, for training the SVM classifiers, we have selected the parameters

through a cross-validation procedure.

The results obtained for each filter bank, from the classification process, are

summarized in table 3.2. For each filter bank, we have computed the average of the

all classification ratios, achieved for all the picked out categories, and the average

of the confidence intervals (of the means). The top row refers to AdaBoost and

the botton row refers to Support Vector Machine. The performance is measured at

equilibrium-point (when the miss-ratio equals the false positive ratio).

Figure 3.5 shows the averaged performance achieved, for the different filter banks,

by using AdaBoost and SVM. In general, by using this kind of features, SVM out-

performs AdaBoost.

If we focus on table 3.2, we see that the averaged performances are very similar.

Also, the averaged confidence intervals are overlapped. If we pay attention only at

the averaged performance, the filter bank based on second order Gaussian derivatives,

stands out slightly from the others.

Therefore, our conclusion for this experiment is that Gaussian filter banks rep-

resent a clear alternative in comparison to the Gabor filter bank. It is much better

in terms of computational burden and is slightly better in terms of categorization

efficacy. However, depending on the target category, one filter bank may be more

suitable than other.
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Figure 3.5: AdaBoost and SVM classifiers for comparing the filter banks.
From left to right: (1) Viola, (2) Gabor, (3) 1st deriv., (4) 2nd deriv, (5) 1st deriv.
with 0 order, (6) 1st deriv. with LoG and Forstner op., (7) G0, 1oGD, 2oGD, LoG,
Forstner, (8) 2oGD and Forstner.

Multicategorization experiment: 101+1 classes

In this experiment, we deal with the problem of multicategorization on the full

Caltech 101-object categories, included the background category. The training set

is compound by the mixture of 30 random samples drawn from each category, and

the test set is compound by the mixture of 50 different samples drawn from each

category (or the remaining, if it is less than 50). Each sample is enconded by using

4075 patches (as [104]), randomly extracted from the full training set. These features

are computed by using the oriented second order Gaussian derivative filter bank.

In order to perform the categorization process, we will use a Joint Boosting

classifier, proposed by Torralba et al. [112]. Joint Boosting trains, simultaneously,

several binary classfiers which share features between them, improving this way the

global performance of the classification.

Under these conditions, we have achieved an average 46.3% of global correct

categorization (chance is below 1% for this database), where more than 40 categories

are over 50% of correct categorization. By using only 2500 features, the performance
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Samples 5 10 15 20 30
Performance 22.7% 33.5% 39.5% 42.6% 46.3%

Table 3.3: Multicategorization Caltech-101. Global performance VS number of
training samples per category.

is about 44% (fig. 3.6.c). On the other hand, if we use 15 samples per category for

training, we achieve a 39.5% rate. Figure 3.6.a shows the confusion matrix for the

101 categories plus background (by using 4075 features and 30 samples per category).

For each row, the highest value should belong to the diagonal.

At the date4 of this experiment was performed, other published results (using

diverse technics) on this database were: Serre 42% [104], Holub 40.1% [43], Grauman

43% [38], and, the best result up to that moment, Berg 48% [7].

Figure 3.6.b shows the histogram of the individual performances achieved for the

101 object categories, in the multiclass task. Note, that only 6 categories shows a

performance lower than 10%, and 17 categories are over 70%.

In figure 3.6.c, we can see the evolution of the test performance, depending on

the number of patches used for encode the samples. With only 500 patches, the

performance is about 31%. If we use 2500 patches, the performance increases up to

44%.

Table 3.3 shows how global performance evolves depending on the number of

samples per category used for training. These results are achieved by using 4075

patches and JointBoosting classifiers.

4In 2007, performance on Caltech-101 reached around 78% (30 positive training samples per
class)[10].
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Figure 3.6: 101 object categories learnt with 30 samples per category and
JointBoosting classifier. (a) Confusion matrix for 101-objects plus background
class. Global performance is over 46%. (b) Histogram of individual performances.
(c) Global test performance vs Number of features. (d) Training error yielded by
Joint Boosting. Y-axis: logarithmic.
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Figure 3.7: Features shared on 101 object categories. (a) Left: first 50 shared
features selected by JointBoosting. (b) Right: the first 4 features, selected by Joint-
Boosting.

Figure 3.6.d shows how the training error evolves, yielded by the Joint-Boosting

classifier, over the 101-object categories. The error decreases with the number of

iterations following a logarithmic behavior.

Figure 3.7.a shows how the first 50 features selected by JointBoosting, for the

joint categorization of the 101 categories, are shared between the 102 categories

(background is included as a category). The rows represent the features and the

columns are the categories. A black-filled cell means that the feature is used to

represent the category.

Figure 3.7.b shows the first four features selected by JointBoosting, for the joint

categorization of the 101 object categories. The size of the first patch is 4x4 (with 4

orientations), and the size of the others is 8x8 (with 4 orientations).

In table 3.4, we show which categories share the first 10 selected patches. Three

of those features are used only by one single category.
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# Feature Shared-Categories

1 yin yang
2 car side
3 pagoda, accordion
4 airplanes , wrench , ferry , car side , stapler , euphonium , mayfly , scissors ,

dollar bill , mandolin , ceiling fan , crocodile , dolphin
5 dollar bill, airplanes
6 trilobite , pagoda , minaret , cellphone , accordion
7 metronome , schooner , ketch , chandelier , scissors , binocular , dragonfly , lamp
8 Faces easy
9 inline skate , laptop , buddha , grand piano , schooner , panda , octopus , bonsai ,

snoopy , pyramid , brontosaurus , background , gramophone , metronome
10 scissors , headphone , accordion , yin yang , saxophone , windsor chair , stop sign ,

flamingo head , brontosaurus , dalmatian , butterfly , chandelier , binocular ,
cellphone , octopus , dragonfly , Faces , wrench

Table 3.4: Feature sharing. First 10 shared features by categories.
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Figure 3.8: Caltech animals. Typical examples of animal categories from Caltech
101 dataset.

Multicategorization experiment: animal classes

Unlike cars, faces, bottles, etc., which are ’rigid’ objects, animals are flexible as

they are articulated. For example, there are many different profile views of a cat,

depending on how the tail or the paws are. Therefore, learning these classes of

objects results to be harder than the others whose different poses are invariants.

From Caltech 101 object categories, 35 of the them have been selected (Fig.

3.8): ant, bass, beaver, brontosaurus, butterfly, cougar body, crab, crayfish, crocodile,

dalmatian, dolphin, dragonfly, elephant, emu, flamingo, gerenuk, hawksbill, hedgehog,

ibis, kangaroo, llama, lobster, octopus, okapi, panda, pigeon, platypus, rhino, rooster,

scorpion, sea horse, starfish, stegosaurus, tick, wild cat.

As we did on the full Caltech-101 dataset, we firstly extract 300 patches from the

training images, on prefixed locations to build the features vector. Then, we have

trained and tested, for each repetition, two different classifiers: AdaBoost (with

decision stumps) [34] and Support Vector Machines (linear kernel) [83] [13].

The results obtained for each filter bank, from the classification process, are

summarized in table 3.5. For each filter bank, we have computed the average of

all correct classification ratios, achieved for all the 35 categories, and the average of

the confidence intervals (of the means). The top row refers to AdaBoost and the
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Figure 3.9: Animal categorization. Confusion matrix for Caltech 101 object
categories ’Animal subset’. Performance about 33%

botton row refers to Support Vector Machines. The performance is measured at

equilibrium-point (when the miss-ratio equals the false positive ratio).

- Viola First order Second order

AdaBoost (79.6, 4.1) (80.4, 4.0) (80.6, 4.4)
SVM (81.7, 3.1) (81.8, 3.3) (83.3, 3.5)

Table 3.5: Filter banks comparison. Results of classification using three different
filter banks: averaged performance and averaged confidence intervals. First row:
AdaBoost with decision stumps. Second row: SVM linear. The combination of SVM
with features based on second order Gaussian derivatives achieves the best mean
performance for the set of animals.

One-VS-all VS Multiclass approach In this experiment we are interested in

comparing two methods to be used with our features in the task of multicategoriza-

tion (we mean, to decide which is the category of the animal contained in the target

image). The methods are one-vs-all and JointBoosting.

The one-vs-all approach consists of training N binary classifiers (as many as

categories) where, for each classifier Bi, the positive set is compound by samples from

class Ci and the negative set is compound by samples from all the other categories.
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When a test sample comes, it is classified by all the N classifiers, and the assigned

label is the one belonging to the classifier with the greatest output. We have used

Support Vector Machines (with linear kernel) [83] as the binary classifiers.

On the other hand, Torralba et al. have proposed a procedure, named JointBoost-

ing [112], to generate boosting-based classifiers oriented to multiclass problems.

For this experiment, the training set is compound by the mixture of 20 random

samples drawn from each category, and the test set is compound by the mixture of

20 different samples drawn from each category (or the remaining, if it is less than

20). Each sample is encoded by using 4075 patches, randomly extracted from the

full training set. These features are computed by using the oriented second order

Gaussian derivative filter bank.

Under this conditions, JointBoosting system achieves 32.8% of correct rate cat-

egorization, and one-vs-all approach achieves 28.7%. Note that for this set (35

categories), chance is below 3%. Regarding computation time, each experiment with

JointBoosting has required seven hours, however each experiment with one-vs-all

has needed five days, on a state-of-the-art desktop PC 5.

Results by sharing features Having chosen the scheme compound by second

order Gaussian derivatives based features and JointBoosting classifiers, in this ex-

periment we intend to study in-depth what this scheme can achieve in the problem of

multicategorization on flexible object categories, in concrete, focused on categories

of animals. Also, JointBoosting allows to understand how the categories are related

by the shared features.

The basic experimental setup for this section is: 20 training samples per category,

and 20 test samples per category. We will repeat the experiments 10 times with

different randomly built pairs of sets.

Firstly, we will evaluate the performance of the system according to the number

of features (patches) used to encode each image. We will begin with 100 features

5 Details: both methods programmed in C, PC with processor at 3 GHz and 1024 MB RAM
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and we will finish with 4000 features.

Table 3.6 shows the evolution of the mean global performance (multicategoriza-

tion) versus the number of used features. We can see figure 3.10.a for a graphical

representation. Note that with only 100 features, performance is over 17% (better

than chance, 3%).

N features 100 500 1000 1500 2000 2500 3000 3500 4000
Performance 17.5 25.1 27.1 28.9 30.2 31.2 32 32.2 32.8

Table 3.6: Evolution of global performance. With only 100 features, perfor-
mance is over 17% (note that chance is about 3%)
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Figure 3.10: Multicategorization results over the 35 categories of animals.
(a) Performance (on average) vs number of patches. (b) Confusion matrix (on aver-
age). From top to bottom and left to right, categories are alphabetically sorted. (c)
Histogram (on average) of individual performances.

Figure 3.10.b shows the confusion matrix (on average) for the 35 categories of

animals, where the rows refers to the real category and columns to the assigned

category. In figure 3.10.c we can see the histogram of the individual performances

achieved for the 35 object categories, in the multiclass task. Note, that more than

17 categories are over 30% correct classification ratio. If we study the results for
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each category, we notice that the hardest category is cougar (8.8%) and the easiest

category is dalmatian (68.8%).

We know that the animals involved in the experiments have parts in common,

and since we can know which features are shared by which categories, now we will

focus on the relations established by the classifiers.

The first and second features selected by JointBoosting are used for describing

the categories tick and hawksbill, respectively. Other shared features, or relations,

are:

• panda, stegosaurus, dalmatian.

• dalmatian, elephant, cougar body.

• dolphin, crocodile, bass.

• dalmatian, elephant, panda.

• kangaroo, panda, dalmatian, pigeon, tick, butterfly.

• dalmatian, stegosaurus, ant, octopus, butterfly, dragonfly, panda, dolphin.

• panda, okapi, ibis, rooster, bass, hawksbill, scorpion, dalmatian.

For example, we notice that panda and dalmatian share several features. Also, it

seems that dolphin, crocodile and bass have something in common.

In figure 3.11 we can see the six patches selected by JointBoosting in the first

rounds of an experiment. There are patches of diverse sizes: 4x4, 8x8 and 12x12, all

of them represented with their four orientations.

Caltech selected categories database.

In this section, we focus on a subset of the Caltech categories: motorbikes, faces,

airplanes, leopards and car-side.
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Figure 3.11: Shared patches. Sample patches selected by JointBoosting, with their
sizes: (a)(b)(c) 4x4x4, (d)(e) 8x8x4, (f) 12x12x4. For representational purposes, the
four components (orientations) of the patches are joint. Lighter cells represent higher
responses.

The filter bank used for these experiments is based on second order Gaussian

derivatives, and its parameters are the same ones than in the previous sections. 2000

patches have been used to encode the samples.

Experiment 1 We have trained JointBoosting classifiers with an increasing num-

ber of samples (drawn at random), and tested with all the remaining ones. Figure

3.12 shows how the mean test performance, for 10 repetitions, evolves according to

the number of samples (per category) used for training. On the left, we show the

performance achieved when 4 categories are involved, and, on the right, when 5 cat-

egories are involved. With only 50 samples, these results are already comparable to

the ones shown in [43].

Experiment 2 By using 4-fold cross-validation (3 parts for training and 1 for

test), we have evaluated the performance of the JointBoosting classifier applied to

the Caltech selected categories. The experiment is carried out with the 4 categories

used in [24, 43] (all but car-side), and, also, with the five selected categories. Table

3.7 and table 3.8 contains, respectively, the confusion matrix for the categorization

of the four and five categories. In both cases, individual performances (values of the

diagonal) are greater than 97%, and the greater confusion-error is found when air-

planes are classified as motorbikes. It calls our attention the fact that the individual
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Figure 3.12: Performance evolution. Performance versus number of training
samples, in multicategorization environment. Left: 4 categories. Right: 5 categories.

performances are slightly better for the 5-categories case. It could be due to the

patches contributed by the extra class.

- Motorbikes Faces airplanes Leopards

Motorbikes 99.75 0.13 0.13 0
Faces 1.38 98.62 0 0

Airplanes 2.38 0 97.50 0.13
Leopards 0.50 0.50 0 99.00

Table 3.7: Categorization results. Caltech selected (as [24]). Mean performance
from 4-fold cross-validation.

3.4.2 Describing object categories with non category specific

patches.

The goal of this experiment is to evaluate the capability of generalization of the

features generated with HMAX and the proposed filter banks. In particular, we

wonder if we could learn a category, without using patches extracted from samples

belonging to it. For this experiment we will use the Caltech-7 database (faces,

motorbikes, airplanes, leopards, cars rear, leaves and cars side), used in other papers

as [24]. Each category is randomly split into two separated sets of equal size, the
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- Motorbikes Faces airplanes Leopards Car side

Motorbikes 99.87 0.13 0 0 0
Faces 1.15 98.85 0 0 0

Airplanes 2.00 0 98.00 0 0
Leopards 0.50 0.50 0 99.00 0
Car side 0.81 0 0 0.81 98.37

Table 3.8: Categorization results. Caltech selected (5 categories). Mean perfor-
mance from 4-fold cross-validation.

training and test sets. For each instance of this experiment, we extract patches from

all the categories but one, and we focus our attention on what happens with that

category.

We have extracted 285 patches from each category, therefore each sample is en-

coded with 1710 (285 × 6) patches. We train a Joint Boosting classifier with the

features extracted from 6 categories and test over the 7 categories. We repeat the

procedure 10 times for each excluded category. The filter bank used for this exper-

iment is compound by 4 oriented first order Gaussian derivatives, plus an isotropic

Laplacian of Gaussian.

No-face No-moto No-airp No-leop No-car rear No-leav No-car side

Global 94.7 93.7 94.8 96.8 95.9 95 93.5
Individual 98.7 96.9 96.5 94.0 88.9 91.4 88.5

Table 3.9: Categorization by using non-specific features. First row shows the
mean global performance (all categories) and, the second row shows the individual
performance (just the excluded category). It seems that the car rear and car side
categories need their own features to represent them in a better way.

Table 3.9 shows the mean global multicategorization performance, and the indi-

vidual performance, achieved for each excluded category. We can see that all the

global results are near the 95% of correct categorization. These results suggest that

there are features that are shared between categories in a ’natural’ way, and hence

it encourages the search for the universal visual codebook, proposed in some works

[104].
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3.4.3 Specific part localization

The aim of the following experiments is to evaluate how well we can find specific

object parts (templates) in images under different conditions.

Template definition

Unlike classical templates based on patches of raw gray levels or templates based

on histograms, our approach is based on filter responses. In concrete, the template

building is addressed by the HMAX model [96][104]. The main idea is to convolve

the image with a filter bank compound by oriented filters at diverse scales. We will

use four orientations per scale (0, 45, 90 and 135 degrees).

Let Fs,o be a filter bank compound by (s · o) filters grouped into s scales (an even

number) with o orientations per scale. Let Fi,· be the i-th scale of filter bank Fs,o

compound by o oriented filters.

The steps for processing an image(or building the template) are the following:

1. Convolve the target image with a filter bank Fs,o, obtaining a set Ss,o of s · o

convolved images. The filters must be normalized to zero mean and sum of

squares equals one, and also each convolution window of the target image.

Hence, values of filtered images will be in [-1,1].

2. For i = {1, 3, 5, 7, ..., s − 1}, in pairs (i, i + 1), subsample Si,· and Si+1,· by

using a grid of size gi and selecting the local max value of each grid. Grids are

overlapped by v pixels. This is independently done for each orientation. At

the end of this step, the resultant images Ŝi and Ŝi+1 contain the local max

values (of each grid) for the o orientations.

3. Then, combine each pair Ŝi and Ŝi+1 in a single band Ci by selecting the max

value for each position between both scales (i, i + 1). As a result, s/2 bands

Ci are obtained, where each one is compound by o elements.
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Template matching

Once we have defined our template T , we are interested in locating it in a new image.

We will select the position of the new image where the similarity function raises a

maximum. The proposed similarity measure M is based on the following expression:

M(T,X) = exp(−γ · ‖F (T)− F (X)‖2) (3.9)

Where T is the template, X is the comparison region of the same size of T, γ

controls the steepness of the exponential function, F is an indicator function and ‖·‖

is the Euclidean norm. Values of M are in the interval [0, 1].

Experiments and results

c

b

a

d
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f

Figure 3.13: Part localization noise test. From top to bottom: lighting, speckle,
blurred, unsharp, motion, rotation.

In this experiment a target image is altered in different ways in order to test the

capability of our approach to perform a correct matching in adverse conditions. The
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experiment has been carried out with functions included in c©Matlab 7.0. The six

kinds of alterations are:

1. Lighting change: pixel values are raised to an exponent each time.

2. Addition of multiplicative noise (speckle): mean zero and increasing variance

in [0.02:0.07:0.702].

3. Blurring: iteratively, a gaussian filter of size 5x5, with mean 0 and variance 1,

is applied to the image obtained in the previous iteration.

4. Unsharping: iteratively, an unsharp filter (for local contrast enhancement) of

size 3x3 and α (controls shape of the Laplacian) equals 0.1, is applied to the

image obtained in the previous iteration.

5. Motion noise: iteratively, a motion filter (pixels displacement in a fixed direc-

tion) with a displacement of 5 pixels in the 45 degrees direction, is applied to

the image obtained in the previous iteration.

6. In-plane rotation: several rotations θ are applied to the original image. With

values θ = [5 : 5 : 50].

A template of size 8x8 (with the four orientations) is extracted around the left

eye, and the aim is to find its position in the diverse test images. The battery of

altered images is shown in figure 3.13. Each row is compound by ten images. Note

that, even for us, some images are really hard.

Figure 3.14: Template matching responses. Part localization noise test results.
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In figure 3.14, we see the similarity maps obtained for the lighting and rotation

test. The lightest pixel is the position chosen by our method as the best matching

position.

Test Lighting Speckle Blurring Unsharp Motion Rotation
% Hit 90 60 100 100 100 50

Table 3.10: Eye localization results. Percentage of correct matching for each test.

For evaluating the test, the matching is considered correct if the proposed tem-

plate position is not far from the real one more than 1 unit (in Ci coordinates). The

percentages of correct matching for the different cases are shown in table 3.10.

In blurring, unsharping and motion test the results are really satisfactory, tem-

plate has been always precisely matched. Matching in lighting test fails only for the

first image (left in fig. 3.13). On the other hand, in speckle test, matching begins

failing when variance of noise is greater than 0.5 (the seventh image in the second

row, fig. 3.14); and matching in rotation test fails when angle is near 30 degrees.

However, these results suggest the interesting properties of robustness of this kind

of templates for matching in adverse noisy conditions.

3.4.4 Application: gender recognition

In this experiment, we deal with the problem of gender recognition in still images.

Classically, internal facial features (nose, eyes, mouth,...) are used for training a

system devoted to the recognition of gender. However, here we study the contribution

of external facial features (chin, ears,...) in the recognition process [51].

We perform experiments where external features are encoded by using HMAX on

the multi-scale filter banks proposed in the previous sections.

Methodology As stated above, our objective is to develop a method for extracting

features from all the zones of a human face image, even from the chin, ears or
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Figure 3.15: Internal and external features for gender recognition. Top rows
show image fragments from both internal and external parts of the face. Bottom
rows show approximate location and scale where those features were found during a
matching process.

head. Nevertheless, the external face areas are high variable and it is not possible to

establish directly in these zones a natural alignment. For this reason, we propose a

fragment based system to aim this purpose.

The general idea of the method can be divided in two steps. First, we select a

set of face fragments from any face zone that will be considered as a model. After

that, given an unseen face image, we weight the presence of each fragment in this

new image. Proceeding like this, we obtain a positive weight for each fragment, and

each weight is considered as a feature. Moreover, we obtain in this way an aligned

feature vector that can be processed by any known classifier.

To establish the model we select a set of fragments F = {Fi}i=1..N obtained from

face images. This selection should be made using an appropriate criterion, depending

on the task we want to focus on and on the techniques that will be used to achieve

the objective. In our case we wanted a high quantity of different fragments to obtain

a rich and variable model. For this reason we have selected them randomly, adding

a high number of elements.
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Experiments and results. The experiments have been performed using the FRGC

Database6. We have considered separately two sets of images: on the one hand im-

ages acquired under controlled conditions, having uniform grey background, and on

the other hand images acquired in cluttered scenes. These sets are composed by 3440

and 1886 samples respectively. Some examples of these images can be seen in figure

Fig. 3.15.

AB JB
External 94.60%± 0.60% 96.70%± 0.80%
Internal 94.66%± 0.76% 94.70%± 1.10%

Combination 94.60%± 0.60% 96.77%± 0.47%

Table 3.11: Controlled environments. Gender recognition in controlled environ-
ments experiments: achieved results.

AB JB
External 87.38%± 2.46% 90.61%± 1.80%
Internal 87.04%± 3.16% 89.77%± 2.34%

Combination 87.99%± 2.20% 91.72%± 1.56%

Table 3.12: Controlled environments. Gender recognition in uncontrolled envi-
ronments experiments: achieved results.

All the experiments have been performed three times: first considering only the

external features, second considering only the internal information and finally consid-

ering both feature sets together. With these results we are able to test the presented

feature extraction method and to compare the contribution of the external and the

internal face features separately. We encode the internal and the external informa-

tion following in both cases the feature extraction method explained in section 2. In

concrete, the filter bank selected for building the features is based on second order

Gaussian derivative and Laplacian of Gaussian functions. In this way, we construct

6http://www.bee-biometrics.org/
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the models randomly selecting 2000 fragments from the desired zone and, after that,

we separate the 90% of the samples to train the classifier and the rest of the consid-

ered images are used to perform the test.

We have used in the experiments two boosting classifiers, given that they have

been proved to be effective in several classification applications. First AdaBoost [34]

(with decision stumps), that is the most commonly used version of this technique, and

second JointBoosting [112], a more recently development of this system characterized

by the possibility of its application in multi-class case.

We have performed a 10-fold cross-validation test in all the cases and we show

for each experiment the mean of the rates and the corresponding confidence interval.

Discussion The results of the experiments performed using the set of controlled

images are included in table 3.11. We can see that the accuracies obtained using only

external features or only internal features are quite similar, although the best result

considering these sets separately is achieved using external features and classifying

with JointBoosting. Nevertheless, in controlled environments the best accuracy that

we have obtained is 96.77%, considering external and internal features together and

classifying also with JointBoosting.

The achieved accuracy rates in the experiments performed using the images ac-

quired in uncontrolled environments are included in table 3.12. We can see again

that the results obtained using only external or only internal features are also quite

similar. And, like before, the best result considering only one of these feature sets is

obtained using external features and JointBoosting classifier. Nevertheless, the best

global accuracy achieved with this image set is obtained again considering both inter-

nal and external features together and classifying with JointBoosting. This accuracy

rate is 91.72% and also in this case we have the lowest confidence interval.

From the results obtained by our experiments we can conclude that the presented

system allows to obtain information from face images useful for gender classification.

For this reason, we think that it can be extended to other computer vision classifi-

cation problems such as subject verification or subject recognition. Moreover, since
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our method is valid to extract features from any face zone, we have compared the

usefulness of external against internal features and it has been shown that both sets

of features play an important role in gender classification purposes. For this reason,

we propose to use this external face zone information to improve the current face

classification methods that consider only internal features.

3.5 Discussion

In this chapter, we have introduced and studied the use of Gaussian-based oriented

multiscale filter banks in three tasks: (i) object categorization (deciding what class

label is assigned to an object present in an image) in images, (ii) object part specific

localization in images, and (iii) gender recognition (female/male) in images.

In order to study the benefits of this family of filters, we have adopted the use

of the HMAX framework [104]. Using filters responses as input, HMAX is able to

generate local image features that are invariant to translation and are able to absorb,

at some degree, small in-plane rotations and changes in scale.

Diverse classifiers (i.e. SVM, AdaBoost, JointBoosting) have been used in order

to evaluate the performance of the proposed features on the tasks listed above.

In the task of object categorization, we have carried out experiments on

Caltech-101, Caltech-selected and Caltech-animals datasets. The results show that

features based on Gaussian filter responses are competitive in this task compared to

the Gabor-based features proposed by Serre et al. [104], being the former computa-

tionally simpler than the latter. Although Caltech-animals dataset is hard due to

the fact that it is composed of articulated objects, the achieved categorization results

are promising. Through the different experiments, and thanks to the share boosting

approach [113], we have observed that many local image features are shared among

diverse object categories.

In the task of object part specific localization, we have defined the concept

of image template using as basis the image representations provided by HMAX at
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level C1. The goal of the experiments in this task is to evaluate how these templates

behave under different image perturbations (e.g. diverse noise, lighting changes, in-

plane rotations,...). The results show fair robustness against the evaluated image

perturbations, and therefore highlighting this method as a suitable approach to be

taken into account for the target task.

As a closing application, we have made use of the proposed local features to

define a method for gender recognition. FRGC database (cluttered and uncluttered

background) has been used in experiments to train gender classifiers on external and

internal facial features, independently or jointly. The results support the idea that

external facial features (hair, ears, chin,...) are as descriptive as the internal ones

(eyes, nose, mouth,...) for classifying gender.

Finally, additional experiments can be found in appendix Ap. A.2, where an

empirical comparison of HMAX versus SIFT features is carried out. Supporting our

intuition, the results show that HMAX based features have a greater capability of

generalization compared to the SIFT based ones.

Part of the research included in this chapter has been already published on the

following papers:

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Categorización de objetos a

partir de caracteŕısticas inspiradas en el funcionamiento del SVH. Congreso

Español de Informática (CEDI). Granada, Spain, September 2005: [72]

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Empirical study of multi-

scale filter banks for object categorization. International Conference on Pattern

Recognition (ICPR). Hong Kong, China, August 2006: [69]

• A. Lapedriza and M.J. Maŕın-Jiménez and J. Vitria. Gender recognition in

non controlled environments. International Conference on Pattern Recognition

(ICPR). Hong Kong, China, August 2006 : [51]

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Sharing visual features for
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animal categorization. International Conference on Image Analysis and Recog-

nition (ICIAR). Povoa de Varzim, Portugal, September 2006: [70] (oral).

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Matching deformable features

based on oriented multi-scale filter banks. International Conference on Artic-

ulated Motion and Deformable Objects (AMDO). Puerto de Andraxt, Spain,

July 2006: [68]

• P. Moreno, M.J. Maŕın-Jiménez, A. Bernardino, J. Santos-Victor, and N. Pérez

de la Blanca. A comparative study of local descriptors for object category recog-

nition: SIFT vs HMAX. Iberian Conference on Pattern Recognition and Image

Analysis (IbPRIA). Girona, Spain, June 2007: [78] (oral).

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Empirical study of multi-scale

filter banks for object categorization. Book chapter in book ‘Pattern Recogni-

tion: Progress, Directions and Applications’, 2006: [67].
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Chapter 4

Human upper-body detection and

its applications

In this chapter we focus on images and videos where persons are present. In partic-

ular, our interest are the kind of images where the body person is visible mostly from

the waist.

Fistly, we design and train a human upper-body (frontal and profile) detector suitable

to be used in video sequences from TV shows or feature films. Then, a method of

2D human pose estimation (i.e. layout of the head, torso and arms) is described

and evaluated. Finally, applications where the previous methods are used are also

discussed: searching a video for a particular human pose; and searching a video for

people interacting in various ways (e.g. two people facing each other)).

4.1 Using gradients to find human upper-bodies

In most shots of movies and TV shows, only the upper-body of persons is visible.

In this situation, full body detectors [17] or even face detectors [118] tend to fail.

Imagine for example a person viewed from the back. To cope with this situation,

we have trained an upper-body detector using the approach of Dalal and Triggs

57
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(a) (b) (c) (d)

Figure 4.1: Upper-bodies. Averaged gradient magnitudes from upper-body train-
ing samples: (a) original frontal set, (b) extended frontal set, (c) original profile set,
(d) extended profile set

Figure 4.2: HOG representation of upper-bodies. Examples of HOG descriptor
for diverse images included in the training dataset.

[17], which achieves state-of-the-art performance on the related task of full-body

pedestrian detection. Image windows are spatially subdivided into tiles and each

is described by a Histogram of Oriented Gradients (Fig. 4.1). A sliding-window

mechanism then localizes the objects. At each location and scale the window is

classified by an SVM as containing the object or not. Photometric normalization

within multiple overlapping blocks of tiles makes the method particularly robust to

lighting variations.

Figure Fig. 4.2 shows diverse examples of HOG descriptors for upper-body im-

ages. Some of them correspond to frontal views and others to back views.
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4.1.1 Upper-body datasets

We have collected data from feature films to build a frontal and profile view datasets

for training two detectors: one specialized in nearly frontal views, and other focused

in nearly profile views. We have put both datasets publicly online in the following

address:

http://www.robots.ox.ac.uk/~vgg/software/UpperBody/

Upper-body frontal dataset

The training data for the frontal detector consists of 96 video frames from three

movies (Run Lola run, Pretty woman, Groundhog day, figure Fig. 4.3), manually

annotated with a bounding-box enclosing a frontal (or back view) upper-body. The

images have been selected to maximize diversity, and include many different actors,

with only a few images of each, wearing different clothes and/or in different poses.

The samples have been gathered by annotating 3 points on each upper-body: the

top of the head and the two armpits. Afterwards, a bounding box, based on the

three marked points, was automatically defined around each upper-body instance.

In such a way that a small proportion of background was included in the cropped

window.

Upper-body profile dataset

The training data for the profile detector consists of 194 video frames from 5 movies

(Run Lola run, Pretty woman, Groundhog day, Lost in space, Charade, figure Fig. 4.3),

manually annotated with a bounding-box enclosing a profile view upper-body. As in

the case of the frontal dataset, the images have been selected to maximize diversity,

and include many different actors, with only a few images of each, wearing different

clothes and/or in different poses.

The samples have been gathered by annotating 3 points on each upper-body: the

top of the head, the chest and the back. Afterwards, a bounding box, based on the
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Figure 4.3: Upper-body training samples. Top set: frontal and back points of
view. Bottom set: profile point of view. Note the variability in appearace: clothing
(glasses, hats,...), gender, background.
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three marked points, was automatically defined around each upper-body instance.

In such a way that a small proportion of background was included in the cropped

window.

4.1.2 Temporal association

When video is available, after applying the upper-body detector to every frame in

the shot independently, we associate the resulting bounding-boxes over time by max-

imizing their temporal continuity. This produces tracks, each connecting detections

of the same person.

Temporal association is cast as a grouping problem [106], where the elements

to be grouped are bounding-boxes. As similarity measure we use the area of the

intersection divided by the area of the union (IoU), which subsumes both location and

scale information, damped over time. We group detections based on these similarities

using the Clique Partitioning algorithm of [30], under the constraint that no two

detections from the same frame can be grouped. Essentially, this forms groups

maximizing the IoU between nearby time frames.

This algorithm is very rapid, taking less than a second per shot, and is robust

to missed detections, because a high IoU attracts bounding-boxes even across a gap

of several frames. Moreover, the procedure allows persons to overlap partially or to

pass in front of each other, because IoU injects a preference for continuity scale in

the grouping process, in addition to location, which acts as a disambiguation factor.

In general, the ‘detect & associate’ paradigm is substantially more robust than

regular tracking, as recently demonstrated by several authors [86, 106].

4.1.3 Implementation details

For training the upper-body detector (both frontal and profile), we have used the

software provided by N. Dalal (http://pascal.inrialpes.fr/soft/olt/).

Following Laptev [52], the positive training set is augmented by perturbing the



62 CHAPTER 4. UPPER-BODY DETECTION AND APPLICATIONS

a

1 765432
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Figure 4.4: Extended training set. Augmenting the training set for the upper-
body frontal detector by artificially perturbing the original training examples. (a1)
original example; (a2)-(b6): additional examples generated by adding every combi-
nation of horizontal reflection, two degrees of rotation, three degrees of shear. (c2-d6)
same for the original example in (c1).

original examples with small rotations and shears, and by mirroring (only for the

frontal case) them horizontally (figure 4.4). This improves the generalization ability

of the classifier. By presenting it during training with misalignments and variations,

it has a better chance of noticing true characteristics of the pattern, as opposed to

details specific to individual images. For the frontal detector, the augmented training

set is 12 times larger and contains more than 1000 examples. All the images have

been scaled to a common size: 100 × 90 (width, height). For the profile one, all

the samples have been processed (mirroring) in order to have all of them looking at

the same direction. In this case, the augmented training set is 7 times larger and

contains more than 1300 examples. And the images have been scaled to 68 × 100

(width, height).

For training the detectors, the negative set of images from “INRIA Person dataset”
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Figure 4.5: INRIA person dataset. Examples of images included in the dataset.
Top row: test data. Bottom row: negative training samples.

1has been used. Some examples are shown in the bottom row of Fig. 4.5.

For tuning the training parameters of the detector, an additional set of images

(extracted from Buffy the Vampire Slayer) were used for validation.

Bootstrapping is used during training in order to include “hard” negative exam-

ples into the final detector training. That is, training is performed in two rounds. In

the first round, a positive training set and a negative training set are used for gener-

ating a first version of the detector. This just trained detector is run on a negative

test set. We keep track of the image windows where the detector has returned high

scores. Then, the N negative image windows with the highest scores are included

into the negative training set, augmenting it. In the second round, the detector is

trained with the previous positive training set plus the agmented negative training

set.

4.1.4 Experiments and Results

Frontal detector. We choose an operating point of 90% detection-rate at 0.5 false-

positives per image (fig. 4.6). This per-frame detection-rate translates into an almost

perfect per-track detection-rate after temporal association (see 4.1.2). Although

individual detections might be missed, entire tracks are much more robust. Moreover,

1http://pascal.inrialpes.fr/data/human/
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Figure 4.6: Upper-body frontal performance. Left: IoU ratio equal to 0.25.
Right: IoU ratio equal to 0.5 (PASCAL challenge standard)

we remove most false-positives by weeding out tracks shorter than 20 frames.

In practice, this detector works well for viewpoints up to 30 degrees away from

straight frontal, and also detects back views (figure 4.7).

We have evaluated the frontal detector on 164 frames from the TV show Buffy

the vampire slayer (figure 4.7). The detector works very well, and achieves 91%

detection-rate at 0.5 false-positives per image (a detection is counted as correct if

the intersection of the ground-truth bounding-box with the output of the detector

exceeds 50%). Augmenting the training set with perturbed examples has a significant

positive impact of performance, as a detector trained only of the original 96 examples

only achieves 83% detection rate at 0.5 FPPI. When video is available, this per-

frame detection-rate translates into an almost perfect per-track detection-rate after

temporal association (see 4.1.2). Although individual detections might be missed,

entire tracks are much more robust. Moreover, we can remove most false-positives

by weeding out tracks shorter than 20 frames.

In figure Fig.4.8, a detection is counted as positive if the ratio of the intersection

over union (rIoU) of the detection bounding-box and the ground-truth bounding-box

exceeds 0.25.
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Figure 4.7: Upper-body frontal detections on Buffy the Vampire Slayer

TV-show. Each row shows frames from different shots.

As the plot on the left shows, the upper-body frontal detector works very well, and

achieves about 90% detection-rate for one false-positive every 3 images. The false-

positive rate can be drastically reduced when video is available, using the tracking

method define above. As expected, the original full-body detector is not successful

on this data.

The plot on the right is a sanity check, to make sure our detector works also on

the INRIA Person dataset (see top row of Fig. 4.5), by detecting fully visible persons

by their upper-body. The performance is somewhat lower than in the Buffy test

set because upper-bodies appear smaller. The original full-body detector performs

somewhat better, as it can exploit the additional discriminative power of legs.

Profile detector. We firstly thought that a profile view detector should be able to

detect people both facing to the right and to the left. So, the training set for profile

views was populated by including (among others image transformations) horizontal
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Figure 4.8: Upper-body VS full-body detector. Left: evaluation on Buffy test
set. Right: evaluation on INRIA person test set.

mirrors of the images. The detector trained with this dataset resulted to work poorly.

However, once we decided to include just a single view (to the right in this case) in

the dataset, the detection performance significantly increased. This is represented in

figure Fig. 4.9.

We have also evaluated the profile detector, on 95 frames from Buffy. With 75%

detection rate at 0.5 FPPI (see figure Fig. 4.9), the performance is somewhat lower

than for the frontal case. However, it is still good enough to reliably localize people

in video (where missing a few frames is not a problem).

4.1.5 Discussion

The greater success of the frontal detector is probably due to the greater distinctive-

ness of the head+shoulder silhouette when seen from the front (Fig. 4.1).

In practice, the frontal detector works well for viewpoints up to 30 degrees away

from straight frontal, and also detects back views (figure 4.7). Similarly, the side

detector also tolerates deviations from perfect side views, and the two detectors

together cover the whole spectrum of viewpoints around the vertical axis.
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Figure 4.9: Upper-body profile. (a) Performance comparison: monoview VS
multiview. Monoview version improves the multiview one in 20%. (b) Influence of
extended training set in detector performance. The non-populated set stacks in real
positive detections earlier than populated.

Software for using our upper-body detector can be downloaded from:

http://www.robots.ox.ac.uk/~vgg/software/UpperBody/

4.2 Upper-body detection applications

In this section we present some applications where we have used our upper-body

detector.

4.2.1 Initialization of an automatic human pose estimator

In human pose estimation, the goal is to localize the parts of the human body. If

we focus in the upper body region (from the hips), we aim to localize the head, the

torso, the lower arms and the upper arms. See some examples of pose estimation in

figure Fig. 4.11.
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Figure 4.10: Upper-body profile detections on Buffy the Vampire Slayer

TV-show. Note the variety of situations where the detector fires.

a

b

1 2 3 4

Figure 4.11: Pose estimation. In most of these frames, only the upper-body (from
the hips) of the person is visible. Therefore, the pose estimator aims to localize the
head, torso and arms. These results have been extracted from Ferrari et al. [27].

In this work, we use the frontal upper-body detector to define the initial region

where the pose estimation algorithm should be run. Once the area is restricted, a

model based on a pictorial structure [93] is used to estimate the location of the body

parts. In this context, the upper-body detections not only help to restrict the search

area, but also to estimate the person scale. Moreover, a initial estimation of head

location can be inferred by the knowlegde encoded in the upper-body bounding-box

(i.e. the head should be around the middle of the top half of the bounding-box).

This system works on a variety of hard imaging conditions (e.g. Fig. 4.11.b.4) where

the system would probably fail without the help of the location and scale estimation

provided by the upper-body detector.
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We have made available for download an annotated set of human poses (see

Ap. A.1.2) at:

http://www.robots.ox.ac.uk/~vgg/data/stickmen/index.html

a b

Figure 4.12: Graphical model for pose estimation. Nodes represent head, torso,
upper arms and lower arms. Φ indicates unary potentials (associated to parts li),
and Ψ indicates pairwise potentials.

Technical details

The processing stages we define to perform the pose estimation are: (i) human

detection (by using the frontal upper-body detector); (ii) foreground highlighting (by

running Grabcut segmentation [97], which removes part of the background clutter);

(iii) single-frame parsing (pose estimation [93] on the less-cluttered image); and,

(iv) spatio-temporal parsing (re-parsing difficult frames by using appearance models

from easier frames, i.e. where the system is confident about the estimated pose).

Upper-body detection. Firstly, we run the frontal upper-body detection with

temporal-association, see section Sec.4.1.2. This rectricts the location and scale

where the body parts are searched.
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Figure 4.13: Foreground highlighting. Left: upper-body detection and enlarged
region. Middle: subregions for initializing Grabcut. Right: foreground region output
by Grabcut.

Foreground highlighting. We restrict the search area further by exploiting prior

knowledge about the structure of the detection window. Relative to it, some areas

are very likely to contain part of the person, whereas other areas are very unlikely.

Therefore, the second stage is to run Grabcut segmentation [97] to remove part

of the background clutter. The algorithm is initialized by using prior information

(thanks to the previous stage) about the probable location of the head and the torso.

Figure Fig. 4.13 shows the result of running Grabcut segmentation on the enlarged

region of the upper-body detection. Different areas are defined for learning the color

models needed by the segmentation algorithm: B is background, F is foreground, and

U is unused.

Single-frame parsing. The pictorial model used for image parsing is defined by

the following equation:

P (L|I) ∝ exp

(

∑

i,j∈E

Ψ(li, lj) +
∑

i

Φ(li)

)

(4.1)

The binary potential Ψ(li, lj) (i.e. edges in figure Fig. 4.12.a) corresponds to a

spatial prior on the relative position of parts (e.g. it enforces the upper arms to be

attached to the torso).
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The unary potential Φ(li) (i.e. nodes in figure Fig. 4.12.a) corresponds to the

local image evidence for a part in a particular position. Since the model structure E

is a tree, inference is performed efficiently by the sum-product algorithm [8].

The key idea of [93] lies in the special treatment of Φ. Since the appearance of

neither the parts nor the background is known at the start, only edge features are

used. A first inference based on edges delivers soft estimates of body part positions,

which are used to build appearance models of the parts . Inference in then repeated

using an updated Φ incorporating both edges and appearance. The process can be

iterated further, but in this paper we stop at this point. The technique is applicable

to quite complex images because (i) the appearance of body parts is a powerful cue,

and (ii) appearance models can be learnt from the image itself through the above

two-step process.

The appearance models used in [93] are color histograms over the RGB cube

discretized into 16× 16× 16 bins. We refer to each bin as a color c. Each part li has

foreground and background likelihoods p(c|fg) and p(c|bg). These are learnt from

a part-specific soft-assignment of pixels to foreground/background derived from the

posterior of the part position p(li|I) returned by parsing. The posterior for a pixel to

be foreground given its color p(fg|c) is computed using Bayes’ rule and used during

the next parse.

Spatio-temporal parsing. Parsing treats each frame independently, ignoring the

temporal dimension of video. However, all detections in a track cover the same

person, and people wear the same clothes throughout a shot. As a consequence, the

appearance of body parts is quite stable over a track. In addition to this continuity

of appearance, video offers also continuity of geometry: the position of body parts

changes smoothly between subsequent frames. Therefore, in this stage, we exploit

the continuity of appearance for improving pose estimations in particularly difficult

frames, and the continuity of geometry for disambiguiating multiple modes in the

positions of body parts, which are hard to resolve based on individual frames.

The idea is to find the subset of frames where the system is confident of having
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found the correct pose, integrate their appearance models, and use them to parse

the whole track again. This improves pose estimation in frameswhere parsing has

either failed or is inaccurate, because appearance is a strong cue about the location

of parts.

We extend the single-frame person model of [93] to include dependencies between

body parts over time. The extended model has a node for every body part in every

frame of a continuous temporal window.

Quantitative results

We have applied our pose estimation technique to four episodes of Buffy the vampire

slayer, for a total of more than 70000 video frames over about 1000 shots.

We quantitatively assess these results on 69 shots divided equally among three

episodes. We have annotated the ground-truth pose for four frames spread roughly

evenly throughout the shot, by marking each body part by one line segment [12].

Frames were picked where the person is visible at least to the waist and the arms fit

inside the image. This was the sole selection criterion. In terms of imaging conditions,

shots of all degrees of difficulty have been included. A body part returned by the

algorithm is considered correct if its segment endpoints lie within 50% of the length

of the ground-truth segment from their annotated location.

The initial detector found an upper-body in 88% of the 69× 4 = 276 annotated

frames. Our method correctly estimates 59.4% [27] of the 276×6 = 1656 body parts

in these frames.

Extending the purely kinematic model of [27] with repulsive priors [29] brings

a improvement to 62.6%, thanks to alleviating the double-counting problem (some-

times the parser tries to place the two arms in the same location).

4.2.2 Specific human pose detection

Using the pose estimation system [27, 29] as base, we developed a pose retrieval

system published in [28].
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ba c

Figure 4.14: Pose classes dataset. (a) Pose hips. (b) Pose rest. (c) Pose folded.

After performing the pose estimation in the query and database images, similarity

functions are defined and used for sortening the images based on their similarity with

the query pose. Poses named hips, rest and folded are used in the experiments. Our

pose classes database is publicly available at:

http://www.robots.ox.ac.uk/~vgg/data/buffy_pose_classes/index.html

Examples included in the pose dataset can be viewed in figure Fig. 4.14. We

have named these poses (from left to right) hips (both hands on the hips), rest

(arms resting close to the body) and folded (arms folded).

Technical details

We introduce the proposed pose descriptors along with similarity measures.

Pose descriptors. The procedure in [27] outputs a track of pose estimates for each

person in a shot. For each frame in a track, the pose estimate E = {Ei}i=1..N consists

of the posterior marginal distributions Ei = P (li = (x, y, θ)) over the position of

each body part i , where N is the number of parts. Location (x, y) is in the scale-

normalized coordinate frame centered on the person’s head delivered by the initial

upper body detection, making the representation translation and scale invariant.

Moreover, the pose estimation process factors out variations due to clothing and

background, making E well suited for pose retrieval, as it conveys a purely spatial

arrangements of body parts.

We present three pose descriptors derived from E. Of course there is a wide range

of descriptors that could be derived and here we only probe three points, varying the
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dimension of the descriptor and what is represented from E. Each one is chosen to

emphasize different aspects, e.g. whether absolute position (relative to the original

upper body detection) should be used, or only relative (to allow for translation errors

in the original detection).

Descriptor A: part positions. A simple descriptor is obtained by downsizing E

to make it more compact and robust to small shifts and intra-class variation. Each

Ei is initially a 141 × 159 × 24 discrete distribution over (x, y, θ), and it is resized

down separately to 20 × 16 × 8 bins. The overall descriptor dA(E) is composed of

the 6 resized Ei, and has 20× 16× 8× 6 = 15360 values.

Descriptor B: part orientations, relative locations, and relative orienta-

tions. The second descriptor encodes the relative locations and relative orientations

between pairs of body parts, in addition to absolute orientations of individual body

parts.

The probability P (loi = θ) that part li has orientation θ is obtained by marginal-

izing out location

P (loi = θ) =
∑

(x,y)

P (li = (x, y, θ)) (4.2)

The probability P (r(loi , l
o
j ) = ρ) that the relative orientation r(loi , l

o
j ) from part li to

lj is ρ is

P (r(loi , l
o
j ) = ρ) =

∑

(θi,θj)

P (loi = θi) · P (loj = θj) · 1(r(θi, θj) = ρ) (4.3)

where r(·, ·) is a circular difference operator, and the indicator function 1(·) is 1 when

the argument is true, and 0 otherwise. This sums the product of the probabilities of

the parts taking on a pair of orientations, over all pairs leading to relative orientation

ρ. It can be implemented efficiently by building a 2D table T (loi , l
o
j ) = P (loi =

θi) · P (loj = θj) and summing over the diagonals (each diagonal corresponds to a

different ρ).

The probability P (lxyi − lxyj = δ) of relative location δ = (δx, δy) is built in

an analogous way. It involves the 4D table T (lxi , l
y
i , l

x
j , l

y
j ), and summing over lines

corresponding to constant δ.
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By recording geometric relations between parts, this descriptor can capture local

structures characteristic for a pose, such as the right angle between the upper and

lower arm in the ‘hips’ pose (figure 4.14). Moreover, locations of individual parts are

not included, only relative locations between parts. This makes the descriptor fully

translation invariant, and unaffected by inaccurate initial detections.

To compose the overall descriptor, a distribution over θ is computed using (4.2)

for each body part, and distributions over ρ and over δ are computed (4.3) for each

pair of body parts. For the upper-body case, there are 15 pairs and the overall

descriptor is the collection of these 6 + 15 + 15 = 36 distributions. Each orientation

distribution, and each relative orientation distribution, has 24 bins. The relative

location is downsized to 7 × 9, resulting in 24 · 6 + 24 · 15 + 9 · 7 · 15 = 1449 total

values.

Descriptor C: part soft-segmentations. The third descriptor is based on soft-

segmentations. For each body part li, we derive a soft-segmentation of the image

pixels as belonging to li or not. This is achieved by convolving a rectangle repre-

senting the body part with its corresponding distribution P (li). Every pixel in the

soft-segmentation takes on a value in [0, 1], and can be interpreted as the probability

that it belongs to li.

Each soft-segmentation is now downsized to 20× 16 for compactness and robust-

ness, leading to an overall descriptor of dimensionality 20 × 16 × 6 = 1920. As this

descriptor captures the silhouette of individual body parts separately, it provides a

more distinctive representation of pose compared to a single global silhouette, e.g.

as used in [9, 48].

Similarity measures. Each descriptor type (A–C) has an accompanying similarity

measure sim(dq, df ):

Descriptor A. The combined Bhattacharyya similarity ρ of the descriptor di for each

body part i: simA(dq, df ) =
∑

i ρ(d
i
q, d

i
f ). As argued in [15], ρ(a, b) =

∑

j

√

a(j) · b(j)

is a suitable measure of the similarity between two discrete distributions a, b (with j

running over the histogram bins).



76 CHAPTER 4. UPPER-BODY DETECTION AND APPLICATIONS

Descriptor B. The combined Bhattacharyya similarity over all descriptor compo-

nents: orientation for each body part, relative orientation and relative location for

each pair of body parts.

Descriptor C. The sum over the similarity of the soft-segmentations di for each part:

simC(dq, df ) =
∑

i d
i
q · d

i
f . The dot-product · computes the overlap area between two

soft-segmentations, and therefore is a suitable similarity measure.

Experiments and results

We evaluate the previous pose descriptors against a HOG-based system. The HOG-

based system uses a single HOG descriptor to describe an enlarged region defined

around the upper-body detection bounding-box. In addition, we have defined two

working modes: query mode and classifier mode.

In query mode, a single image is shown to the system. The region around the

detected person is described either by the pose descriptors (A,B,C) or by the HOG

descriptor. Then, we compare the descriptor associated to query image against all

the descriptors associated to the database (frames from video shots).

In classifier mode, training data is needed to train discriminative classifiers (i.e.

SVM with linear kernel), for an specific pose class, with either pose descriptors or

HOG descriptors extracted from the enlarged region around the person.

The experiments have been carried out on video shots extracted from episodes of

Buffy: TVS.

Experiment 1: query mode. For each pose we select 7 query frames from the

5 Buffy episodes. Having several queries for each pose allows to average out per-

formance variations due to different queries, leading to more stable quantitative

evaluations. Each query is searched for in all 5 episodes, which form the retrieval

database for this experiment. For each query, performance is assessed by the average

precision (AP), which is the area under the precision/recall curve. As a summary

measure for each pose, we compute the mean AP over its 7 queries (mAP). Three
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A B C HOG instances chance

hips 26.3 24.8 25.5 8.0 31 / 983 3.2 %
rest 38.7 39.9 34.0 16.9 108 / 950 11.4 %
folded 14.5 15.4 14.3 8.1 49 / 991 4.9 %

Table 4.1: Experiment 1. Query mode (test set = episodes 1–6). For each pose and
descriptor, the table reports the mean average precision (mAP) over 7 query frames. The
fifth column shows the number of instances of the pose in the database, versus the total
number of shots searched (the number of shot varies due to different poses having different
numbers of shots marked as ambiguous in the ground-truth). The last column shows the
corresponding chance level.

queries for each pose are shown in figure 4.14. In all quantitative evaluations, we run

the search over all shots containing at least one upper body track.

As table 4.1 shows, pose retrieval based on articulated pose estimation performs

substantially better than the HOG baseline , on all poses, and for all three descrip-

tors we propose. As the query pose occurs infrequently in the database, absolute

performance is much better than chance (e.g. ‘hips’ occurs only in 3% of the shots),

and we consider it very good given the high challenge posed by the task 2. Notice

how HOG also performs better than chance, because shots with frames very similar

to the query are highly ranked, but it fails to generalize.

Interestingly, no single descriptor outperforms the others for all poses, but the

more complex descriptors A and B do somewhat better than C on average.

Experiment 2: classifier mode. We evaluate here the classifier mode. For each

pose we use episodes 2 and 3 as the set used to train the classifier. The positive

training set S+ contains all time intervals over which a person holds the pose (also

marked in the ground-truth). The classifier is then tested on the remaining episodes

(4,5,6). Again we assess performance using mAP. In order to compare fairly to query

mode, for each pose we re-run using only query frames from episodes 2 and 3 and

2 The pose retrieval task is harder than simply classifying images into three pose classes. For
each query the entire database of 5 full-length episodes is searched, which contains many different
poses.
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Classifier Mode Query mode

A B C HOG A B C HOG
hips 9.2 16.8 10.8 6.8 33.9 19.9 21.3 1.7
rest 48.2 38.7 41.1 18.4 36.8 31.6 29.3 15.2
folded 8.6 12.1 13.1 13.6 9.7 10.9 9.8 10.2

Table 4.2: Experiment 2. Left columns: classifier mode (test set = episodes 4–6). Right
columns: query mode on same test episodes 4–6 and using only queries from episodes 2
and 3. Each entry reports AP for a different combination of pose and descriptor, averaged
over 3 runs (as the negative training samples S− are randomly sampled).

searching only on episodes 4–6 (there are 3 such queries for hips, 3 for rest, and 2

for folded). Results are given in table 4.2.

First, the three articulated pose descriptors A–C do better than HOG on hips and

rest also in classifier mode. This highlights their suitability for pose retrieval. On

folded, descriptor C performs about as well as HOG. Second, when compared on the

same test data, HOG performs better in classifier mode than in query mode, for all

poses. This confirms our expectations as it can learn to suppress background clutter

and to generalize to other clothing/people, to some extent. Third, the articulated

pose descriptors, which do well already in query mode, benefit from classifier mode

when there is enough training data (i.e. on the rest pose). There are only 16 instances

of hips in episodes 2 and 3, and 11 of folded, whereas there are 39 of rest.

4.2.3 TRECVid challenge

In TRECVid challenge (video retrieval evaluation) 3the goal is to retrieve video shots

from a set of videos that satisfy a given query. For example, “shots where there are

two people looking at each other in the country side”.

For queries where people are involved, we can use our upper-body detector com-

bined with the temporal association approach of the detections, to retrieve them.

In figure Fig. 4.16, the represented concept is “people looking at each other”.

3http://www-nlpir.nist.gov/projects/trecvid/
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Figure 4.15: Use of the upper-body detector on TRECVID challenge. Each
row shows frames from different shots. Top row matches query ”‘single person”’.
Bottom row matches query “two people”.

Figure 4.16: Use of the upper-body detector on TRECVID challenge. These
frames come from a shot that satisfies query “people looking at each other”. In this
case, we use the direction information provided by the upper-body profile detector.

We have made use of the directional information encoded in the upper-body profile

detector. This is to say, since such detector is tuned to detect persons looking at the

right, we run twice the detector on the original and mirror image, replacing double

detections with the one with the highest confidence score and keeping the direction

information. So, once we build temporal tracks, we assign (by majority voting) a

direction label to each one. Finally, we can retrieve the shots where there exists

simultaneously (in time) at least two tracks with different directions.

We have also used the upper-body tracks to retrieve shots where there are exactly

or at least N persons. We can also use the temporal information, to retrieve shots
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where there are people approaching or getting away.

These approaches, among others, have been used by the Oxford University team

in TRECVid’07 [90] and TRECVid’08 [91].

4.3 Discussion

In this chapter, we have presented two new upper-body (i.e. head and shoulders)

detectors, that cover frontal/back and profile viewpoints. Using as base these detec-

tors, we have developed applications for (i) human pose estimation, (ii) pose based

image/video retrieval, and (iii) content-based video description.

The main motivation for building upper-body detectors is to be able to deal with

the detection of people in situations where a face detector or a full-body detector

fails. For example, a person viewed up to the hips or viewed from the back. In

general, they are suitable for video shots coming from TV shows or feature films.

We have combined HOG descriptors [17] with SVM classifiers (linear kernel) to create

such detectors. We have gathered training samples from feature films and tested the

trained detectors on video frames from ‘Buffy: TVS’ TV show. The achieved results

are quite satisfactory and are improved when a video sequence is available. The latter

is due to the fact that we can use temporary constraints to remove false positives.

Ramanan [93] proposed a method for pose estimation based on appearance (image

gradients and color) that works for objects of a predefined size. We extend his

method by including a set of preprocessing steps that make our method to work in

more general situations. These new steps include (i) person localization and scale

estimation based on upper-body detections, (ii) foreground highlighting (i.e. clutter

reduction), and, (iii) appearance transfer (between frames), when video is available.

Additionally, we contribute a new annotated test dataset suitable to evaluate human

pose estimation methods.

Afterwards, we explore the idea of retrieving image/video based on the pose held

by people depicted there. We build and evaluate a system to do that, based on the
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pose estimator developed previously. In order to allow future comparisons with our

work, we contribute an annotated dataset of pose classes (i.e. hips, rest and folded).

Finally, we use the information provided by the upper-body detectors as cues

for retrieving video shots based on semantic queries. For example, we are able to

retrieve video shots where there are ‘just one person’, ‘many people’, ‘people facing

each other’,... In particular, the proposed strategies are evaluated on TRECVid

challenge.

Part of the research included in this chapter has been already published on the

following papers:

• J. Philbin, O. Chum, J. Sivic, V. Ferrari, M.J. Maŕın-Jiménez, A. Bosch,

N. Apostolof and A. Zisserman. Oxford TRECVid Nootebook Paper 2007.

TRECVid 2007: [90]

• J. Philbin, M.J. Maŕın-Jiménez, S. Srinivasan, A. Zisserman, M. Jain, S. Vem-

pati, P. Sankar and C.V. Jawahar. Oxford/IIIT TRECVid Nootebook Paper

2008. TRECVid 2008: [91]

• V. Ferrari, M.J. Maŕın-Jiménez and A. Zisserman. Progressive search space

reduction for human pose estimation. International Conference on Computer

Vision and Pattern Recognition (CVPR). Anchorage, June 2008: [27]

• V. Ferrari, M.J. Maŕın-Jiménez and A. Zisserman. Pose search: retrieving

people using their pose. International Conference on Computer Vision and

Pattern Recognition (CVPR). Miami, June 2009: [28] (oral).

• V. Ferrari, M.J. Maŕın Jiménez and A. Zisserman. 2D Human Pose Estimation

in TV Shows. Book chapter in book ‘Statistical and Geometrical Approaches

to Visual Motion Analysis’, 2009: [29].
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Chapter 5

Accumulated Histograms of

Optical Flow and Restricted

Boltzmann Machines for Human

Action Recognition

In the first part of this chapter, we present a new motion descriptor based on op-

tical flow. Then, we introduce the usage of models based on Restricted Boltzmann

Machines in the human action recognition problem.

5.1 Introduction

In the last few years, the amount of freely available videos in the Internet is growing

very quickly. However, currently, the only way of finding videos of interest is based

on tags, manually added to them. This manual annotation implies a high cost and,

usually, it is not very exhaustive. For instance, in Youtube or Metacafe, videos are

tagged with keywords by the users and grouped into categories. Frequently, the tags

refer to the full length video and sometimes the tags are just subjective words, e.g.

83
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fun, awesome,... On the other hand, we could be interested in localizing specific

shots in a target feature film where something happens (e.g. people boxing) or the

instants where a goal is scored in a football match.

Currently, retrieving videos from databases based on visual content is a challeng-

ing task where much effort is being put on it by the research community. Let us

name for example TRECVid challenge [107], where the aim is to retrieve video shots

by using high-level queries. For example, “people getting into a car” or “a children

walking with an adult”.

From all the possible categories that we could enumerate to categorize a video,

we are interested in those where there is a person performing an action. Let us say

walking, running, jumping, handwaving,...

Therefore, in this chapter we tackle the problem of Human Action Recognition

(HAR) in video sequences. We investigate on the automatic learning of high-level

features for better describing the human actions.

5.2 Human action recognition approaches

In the last decade different parametric and non-parametric approaches have been

proposed in order to obtain good video sequence classifiers for HAR (see [75]).

Nevertheless, video-sequence classification of human motion is a challenging and

open problem, at the root of which is the need of finding invariant characterizations

of complex 3D human motions from 2D features [94].

The most interesting invariances are those covering the viewpoint and motion of

the camera, type of camera, subject performance, lighting, clothe and background

changes [94, 103]. In this context, searching for specific 2D features that code the

highest possible discriminative information on 3D motion is a very relevant research

problem.

Different middle-level features have been proposed in the recent past years [19,

105, 102, 18, 54, 22]. In this chapter, we present an approach that is reminiscent of
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some of these ideas, since we use the low level information provided by optical flow,

but processed in a different way.

In contrast to approaches based on body parts, our approach can be categorized

as holistic [75]. That is, we focus on the human body as a whole. So, from now on,

we will focus on the window that contains the target person.

Optical Flow (OF) has been shown to be a promising way of describing human

motion on low resolution images [19]. Dollar et al. [18] create descriptors from

cuboids of OF. Inspired by [19], Fathi and Mori [22] build mid-level motion features.

Laptev et al. [57, 55] get reasonable results on detecting realistic actions (on movies)

by using 3D volumes of Histograms of Oriented Gradient (HoG) and Optical Flow

(HoF). The biologically inspired system presented by Jhuang et al. [45] also uses OF

as a basic feature. A related system is the one proposed by Schindler and Van Gool

[99, 100].

Note that many of these approaches use not only OF but also shape-based fea-

tures. In contrast, we are interested in evaluating the capacity of OF individually

for representing human motion.

5.3 Accumulated Histograms of Optical Flow: aHOF

For each image, we focus our interest on the Bounding Box (BB) area enclosing

the actor performing the action. On each image, we estimate the BB by using a

simple thresholding method based on that given on [85], approximating size and

mass center, and smoothed along the sequence. BBs proportional to the relative size

of the object in the image, and large enough to enclose the entire person, regardless

of his pose, have been used (Fig. 5.1.a). All the frames are scaled to the same size

40× 40 pixels. Then the Farnebäck’s algorithm [21] is used to estimate the optical

flow value on each pixel.

The idea of using optical flow features from the interior of the bounding box
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a cb

Figure 5.1: How to compute aHOF descriptor. (a) BB enclosing person, with super-
imposed grid (8x4). (b) Top: optical flow inside the selected grid cell for the visible single
frame. Bottom: in each aHOF cell, each column (one per orientation) is a histogram of
OF magnitudes (i.e. 8 orientations × 4 magnitudes). (c) aHOF computed from 20 frames
around the visible one. Note that in the areas with low motion (e.g. bottom half) most of
the vectors vote in the lowest magnitude bins. (Intensity coding: white = 1, black = 0).

was firstly suggested in [19], although here we use it to propose a different im-

age descriptor. The optical flow from each frame is represented by a set of ori-

entation×magnitude histograms (HOF) from non-overlapped regions (grid) of the

cropped window. Each optical flow vector votes into the bin associated to its mag-

nitude and orientation. The sequence-descriptor, named aHOF (accumulated His-

togram of Optical Flow), is a normalized version of the image descriptor accumulated

along the sequence. Therefore, a bin (i, j, k) of a aHOF H is computed as:

H(li, oj ,mk) =
∑

t

H t(li, oj ,mk)

, where li, oj and mk are the spatial location, orientation and magnitude bins, re-

spectively, and H t is the HOF computed at time t. The normalization is given by

each orientation independently on each histogram (see Fig. 5.1.b). Here each bin is

considered a binary variable whose value is the probability of taking value 1.

In practice, we associate multiple descriptors to each observed sequence, that is,

one aHOF-descriptor for each subsequence of a fixed number of frames. Fig. 5.2 shows
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Figure 5.2: Examples of aHOF for different actions. Top row shows the optical flow
estimated for the displayed frame. Bottom row represents the aHOF descriptor computed
for the subsequence of 20 frames around that frame.

the aHOF representation for different actions in KTH database. The descriptor has

been computed from a window of 20 frames around the displayed frame.

5.4 Evaluation of aHOF: experiments and results

We test our approach on two publicly available databases that have been widely

used in action recognition: KTH human motion dataset [102] and Weizmann human

action dataset [9].

KTH database. This database contains a total of 2391 sequences, where 25 actors

performs 6 classes of actions (walking, running, jogging, boxing, hand clapping and

hand waving). The sequences were taken in 4 different scenarios: outdoors (s1),

outdoors with scale variation (s2), outdoors with different clothes (s3) and indoors

(s4). Some examples are shown in Fig.5.3. As in [102], we split the database in 16

actors for training and 9 for test.

In our experiments, we consider KTH as 5 different datasets: each one of the 4

scenario is a different dataset, and the mixture of the 4 scenarios is the fifth one. In

this way we make our results comparable with others appeared in the literature.

Weizmann database. This database consists of 93 videos, where 9 people perform

10 different actions: walking, running, jumping, jumping in place, galloping sideways,
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Figure 5.3: KTH dataset. Typical examples of actions included in KTH dataset.
From left to right: boxing, handclapping, handwaving, jogging, running, walking.

jumping jack, bending, skipping, one-hand waving and two-hands waving. Some

examples are shown if Fig.A.7.

5.4.1 Experimental setup

For all the experiments, we use 8-bins for orientation and 4-bins for magnitude:

(−∞, 0.5], (0.5, 1.5], (1.5, 2.5], (2.5,+∞). Before normalizing each cell in magnitude,

we add 1 to all the bins to avoid zeros. The full descriptor for each image is a

1024-vector with values in (0, 1).

We assign a class label to a full video sequence by classifying multiple subse-

quences (same length) of the video, with SVM or GentleBoost (see [39]), and taking

a final decision by majority voting on the subsequences. We convert the binary class-

fiers in multiclass ones by using the one-vs-all approach. Both classifiers are also

compared with KNN.

5.4.2 Results

All the results we show in this subsection, come from averaging the results of 10

repetitions of the experiment with different pairs of training/test sets.

Grid configuration. We carried out experiments with three different grid config-

urations: 2× 1, 4× 2 and 8× 4 in order to define the best grid size for aHOF. Table

5.1 shows that 8× 4 provides the best results. Note that the so simple configuration



5.4. EVALUATION OF AHOF: EXPERIMENTS AND RESULTS 89

Figure 5.4: Features selected by GentleBoost from raw aHOF. Spatial loca-
tion of features selected by each class-specific GentleBoost classifier. The lighter the
pixel the greater the contribution to the classification. From left to right: boxing,
handclapping, handwaving, jogging, running, walking.

1NN 5NN 9NN

2x1 87.4 87.5 87.6
4x2 92.2 92.9 93.3
8x4 94.0 94.5 94.3

Table 5.1: aHOF grid configuration. This table shows the influence of the selected
grid configuration in the classification performance. Classification is done with kNN.

2 × 1 (nearly upper body and lower body separation) is able to classify correctly

more than the 87% of the sequences.

10 15 20 25 30 Full

Seqs 94.4 94.8 94.6 95.0 94.4 93.7
Subseqs 86.2 89.6 91.9 93.0 93.9 93.7

Table 5.2: Different lengths of subsequences. Classification results with Gentle-
Boost on aHOF vectors by using subsequences of different lengths. KTH database.

Subsequence length space. We are firstly interested in evaluating the perfor-

mance of the raw aHOF features in the classification task. Moreover, we explore the

length space of the subsequences used to classify the full sequences. Subsequences

are extracted each 2 frames from the full length sequence. In order to evaluate these

features, we have chosen a binary GentleBoost classifier, in a one-vs-all framework.
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In table 5.2, we show the performance of classification both for the individual sub-

sequences and the full sequences.

In terms of subsequence, the longer the subsequence, the higher the classification

performance. However, in terms of full-length sequences, the use of intermediate

subsequence lengths offers the best results.

GentleBoost allows us to determine what features better distinguish each action

from the others. Fig. 5.4 shows the location of the features selected by GentleBoost

from the original aHOFs for one of the training/test sets. For actions implying

displacement (e.g. walking, jogging), the most selected features are located on the

bottom half of the grid. However, for those actions where the arms motion define

the action (e.g. handwaving), GentleBoost prefers features from the top half.

For the following experiments, we will always use subsequences of length 20 frames

to compute the aHOF descriptors.

Evaluating aHOF with different classifiers. Tables 5.3 and 5.4 show classifi-

cation results on subsequences (length 20) and full-lenght sequences, respectively, by

using KNN classifiers. Each column represents the percentage of correct classification

by using different values of K in the KNN classifier.

Scenario 1 5 9 13 17 21 25 29 33 37

e1 93.6 93.8 93.8 93.9 93.9 94.0 93.9 93.9 93.8 93.7
e2 86.6 87.2 87.5 87.9 88.3 88.5 88.7 88.9 89.0 89.0
e3 89.9 90.3 90.3 90.4 90.4 90.3 90.3 90.4 90.3 90.3
e4 93.5 93.6 93.6 93.6 93.6 93.7 93.6 93.6 93.6 93.5
e134 93.1 93.3 93.4 93.4 93.4 93.4 93.3 93.3 93.3 93.3
e1234 90.8 91.1 91.3 91.3 91.4 91.5 91.6 91.6 91.6 91.6

Table 5.3: Classifying subsequences (len 20). KNN on KTH by using aHOF.

Scenario 3 results to be the hardest. In our opinion that is due to the loose

clothes used by the actors, and whose movement creates a great amount of OF

vectors irrelevant to the target action.
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Scenario 1 5 9 13 17 21 25 29 33 37

e1 94.8 94.6 95.2 95.5 95.6 95.7 95.9 96.0 96.0 96.0
e2 93.3 93.0 93.0 93.0 93.1 92.8 93.3 93.4 93.6 93.6
e3 90.5 90.9 91.4 91.5 91.4 91.6 91.4 91.4 91.4 91.3
e4 96.4 96.4 95.9 96.0 95.7 95.9 95.8 95.8 95.7 96.0
e134 94.6 95.2 95.1 95.1 95.1 95.1 95.1 95.2 95.2 95.1
e1234 94.0 94.5 94.3 94.3 94.3 94.4 94.4 94.5 94.6 94.6

Table 5.4: Classifying full sequences (subseqs. len. 20). KNN on KTH by
using aHOF.

Subseqs Seqs
Scenario GB SVM GB SVM

e1 92.6 92.3 95.6 95.1
e2 92.0 90.5 97.1 96.3
e3 89.3 87.4 89.8 88.2
e4 94.2 94.3 97.1 97.6
e1234 91.9 92.1 94.6 94.8

Table 5.5: Classifying full sequences (subseqs. len. 20). KNN on KTH by
using aHOF.

Table Tab. 5.6 represents the confusion matrix for the classification with SVM

on the mixed scenario e1234 (see Table Tab. 5.5 for global performance). Note that

the greatest confusion is located in action jogging with actions walking and running.

Even for a human observer that action is easy to be confused with any of the other

two.

Weizmann DB. Table 5.7 shows KNN classification results onWeizmann database,

with leave-one-out strategy on the actors (i.e. averaged on 9 runs).

Our best result here is 94.3% of correct classification on the subsequences and

91.9% on the full-length sequences, by using SVM as base classifier (see table Tab. 5.8).

Confusion matrix is shown in table Tab. 5.9. Note that the greatest confusion is

located in run with skip. Probably, due to the fact that both actions implies fast

displacement and the motion field is quite similar.
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box hclap hwave jog run walk
box 98.6 1.2 0.2 0.0 0.0 0.0
hclap 4.9 92.2 2.8 0.0 0.0 0.0
hwave 1.6 0.2 98.2 0.0 0.0 0.0
jog 0.0 0.5 0.0 89.9 6.0 3.5
run 0.0 0.0 0.1 8.3 91.3 0.3
walk 0.2 0.6 0.0 0.2 0.4 98.6

Table 5.6: Confusion matrix on KTH - scenario e1234. Percentages corre-
sponding to full-length sequences. SVM is used for classifying subsequeces of length
20. The greatest confusion is located in jogging with walking and running. Even for
a human observer that action is easy to be confused with any of the other two.

1 5 9 13 17 21 25 29 33 37

Subseqs 93.0 93.9 93.9 93.5 93.6 92.3 91.6 91.7 91.7 90.6
Seqs 91.1 91.1 91.1 91.1 91.1 88.9 88.1 88.1 89.6 88.9

Table 5.7: Results on Weizmann. KNN by using aHOF.

Subseqs Seqs

GB 92.8 91.9
SVM 94.3 91.9

Table 5.8: Classifying actions (subseqs. len. 20). GentleBoost and SVM on
Weizmann by using aHOF.
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wave1 wave2 jump pjump side walk bend jack run skip
wave1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wave2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
jump 0.0 0.0 88.9 0.0 0.0 0.0 0.0 0.0 0.0 11.1
pjump 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
side 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
bend 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
jack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
run 0.0 0.0 0.0 0.0 11.1 0.0 0.0 0.0 66.7 22.2
skip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 83.3

Table 5.9: Confusion matrix on Weizmann. Percentages corresponding to full-
length sequences. SVM is used for classifying subsequeces of length 20. The greatest
confusion is located in run with skip. Both actions implies fast displacement.
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5.5 RBM and Multilayer Architectures

Hinton [42, 40] introduced a new algorithm allowing to learn high level semantic

features from raw data by using Restricted Boltzmann Machines (RBMs). In [58],

Larrochelle and Bengio introduced the Discriminative Restricted Boltzmann Machine

model (DBRM) as a discriminative alternative to the generative RBMmodel. In [98],

a distance measure is proposed on the feature space in order to get good features for

non-parametric classifiers.

Some of these algorithms have shown to be very successful in some image clas-

sification problems [41, 111, 120], where the raw data distributions are represented

by the pixel gray level values. However, in our case, the motion describing the ac-

tion is not explicitly represented in the raw image and a representation of it must

be introduced. Here we evaluate the efficacy of these architectures to encode better

features from the raw data descriptor in the different learning setups.

In [6], a deep discussion on the shortcomings of one-layer classifiers, when used on

complex problems, is given, at the same time that alternative multilayer approaches

(RBM and DBN) are suggested. Following this idea, we evaluate the features coded

by these new architectures on the HAR task.

Therefore, in this section, we firstly overview Restricted Boltzmann Machines and

Deep Belief Networks. Then, alternative RBM-based models are also introduced.

5.5.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite

connectivity graph (see 5.5.a). That is, an undirected graphical model where only

connections between units in different layers are allowed. A RBM with m hidden

variables hi is a parametric model of the joint distribution between the hidden vector

h and the vector of observed variables x, of the form

P (x,h) =
1

Z
e−Energy(x,h)



5.5. RBM AND MULTILAYER ARCHITECTURES 95

where

Energy(x,h) = −bTx− cTh− hTWx

is a bilinear function in x and h with W a matrix and b, c vectors, and

Z =
∑

h

e−Energy(x,h)

being the partition function (see [5]). It can be shown that the conditional distri-

butions P (x|h) and P (h|x) are independent conditional distributions, that is

P (h|x) =
∏

i

P (hi|x), P (x|h) =
∏

j

P (xj|h)

Furthermore, for the case of binary variables we get

P (hi|x) = sigm(ci +Wix), P (xj|h) = sigm(bj +Wjh) (5.1)

where sigm(x) = (1 + e−x)−1 is the logistic sigmoidal function and Wi and Wj

represent the i-row and j-column respectively of the W-matrix.

Learning parameters: Contrastive Divergence

Learning RBMs maximizing the gradient log-likelihood needs of averaging from the

equilibrium distribution p(x, h) what means a prohibitive cost. The Contrastive

Divergence (CD) criteria proposed by Hinton, [40], only needs to get samples from

the data distribution p0, and the one step Gibbs sampling distribution p1, what

implies an affordable cost. The parameter updating equations give updating values

proportional to averages difference from these two distributions. That is,

∆wij ∝< vihj >p0 − < vihj >p1 (5.2)
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h

x

W

a b

Figure 5.5: RBM and Deep Belief Network. (a) Example of a RBM with 3
observed and 2 hidden units. (b) Example of a DBN with l hidden layers. The
upward arrows only play a role in the training phase. W ′

i is W T
i (Wi transpose)

when a RBM is trained. The number of units per layer can be different.

where < vihj > means average (using the subindex distribution) of the number of

times that hidden unit j is on for the visible variable i. The equations for the bias

bi and cj are similar.

5.5.2 Multilayer models: DBN

Adding a new layer to a RBM, a generalized multilayer model can be obtained.

A Deep Belief Network (DBN) with l hidden layers is a mixed graphical model

representing the joint distribution between the observed values x and the l hidden

layers hk, by

P (x,h1, · · · ,hl) =
l−2
∏

k=0

P (hk|hk+1)P (hl−1,hl)

(see fig.5.5) where x = h0 and each conditional distribution P (hk−1|hk) can be seen

as the conditional distribution of the visible units of a RBM associated with the

(k − 1, k) layers in the DBN hierarchy.
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Learning a DBN model is a very hard optimization problem requiring of a very

good initial solution. In [42] a strategy based on training a RBM on each two

layers using CD is proposed to obtain the initial solution. Going bottom-up in the

layer-hierarchy, each pair of consecutive layers is considered as an independent RBM

model, with observed data the values of the lower layer. In the first RBM, values for

W0,b0, c0 are estimated using CD from the observed samples. Observed values for

the h1 layer are generated from P(h1|h0). The process is repeated on (h1,h2) using

h1 as observed data, and so on till the l−1 layer. From this initial solution, different

fine tuning criteria for supervised and non-supervised experiments can be used. In

the supervised case, a backpropagation algorithm from the classification error is

applied fixing W ′
i = W T

i (transpose). In the non-supervised case, the multiclass

cross-entropy error function, −
∑

i pi log p̃i is used, where pi and p̃i are the observed

and reconstructed data respectively. In order to compute this latter value, each

sample is encoded up until the top layer, and then, decoded until the bottom layer.

In this case, a different set of parameters are fitted on each layer for the upward and

downward pass.

In [42, 6] is shown that the log-likelihood of a DBN can be better approximated

with increasing number of layers. In this way, the top layer vector of supervised

experiments can be seen as a more abstract feature vector with higher discriminating

power for the trained classification task.

5.5.3 Other RBM-based models

Depending on the target function used, different RBM models can be defined. In

these section, we present two models that are defined with the aim of obtaining

better data representations in terms of classification.
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RBM with Nonlinear NCA.

Salakhutdinov and Hinton [98] proposed to estimate the weights W by minimizing

the ONCA criteria in order to define a good distance for non-parametric classifiers:

ONCA =
N
∑

a=1

∑

b:cb=k

pab (5.3)

pab =
exp(−

∥

∥f(xa|W )− f(xb|W )
∥

∥

2
)

∑

z 6=a exp(−‖f(xa|W )− f(xz|W )‖2)
(5.4)

where f(x|W ) is a multi-layered network parametrized by the weight vector W, N

is the number of training samples, and cb is the class label of sample b.

Discriminative RBM.

Larochelle and Bengio [58] propose the DRBM architecture to learn RBM using a

discriminative approach. They add the label y to the visible data layer and models

the following distribution:

p(y,x,h) ∝ exp {E(y,x,h)} (5.5)

where,

E(y,x,h) = −hTWx− bTx− cTh− dT~y − hTU~y

with parameters Θ = (W,b, c,d,U) and ~y = (1y=i)
C

i=1 for C classes. Two objective

functions can be used with this model:

Ogen = −

N
∑

i=1

log p(yi,xi); Odisc = −

N
∑

i=1

log p(yi|xi) (5.6)

where Ogen is the cost function for a generative model, and Odisc is the cost function

for a discriminative model. Both cost functions can be combined in a single one
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(hybrid):

Ohybrid = Odisc + αOgen (5.7)

Semisupervised training can be performed with DRBM models by using the following

cost function:

Osemi = Odisc + β

(

−

N
∑

i=1

log p(xi)

)

. (5.8)

where Odisc is applied only to the labelled samples.

5.6 Evaluation of RBM-based models: experiments

and results

5.6.1 Databases and evaluation methodology.

In this section we evaluate the quality of the features learnt by RBM/DBN in terms

of classification on the actions databases used in the previous experiments (5.4):

KTH and Weizmann.

Here we present a comparative study between the descriptor generated by RBM

and DBN models, and the descriptor built up from raw features. We run supervised

and non-supervised experiments on RBM and DBN. In all cases, a non-supervised

common pre-training stage consisting in training a RBM for each two consecutive

layers has been used. Equations 5.2 with learning-rate τ = 0.1 and momentum

α = 0.9 on sample batches of size 100 have been used. The batch average value

is used as the update. From 120 to 200 epochs are run for the full training. From

the 120-th epoch, training is stopped if variation of the update gradient magnitude

from iteration t − 1 to t is lower than 0.01. A different number of batches are used

depending on the length of the sequences in the database. For KTH, 14, 74, 16

and 28 batches, for scenarios 1-4, respectively. For Weizmann, we use 15. The Wij-

parameters are initialized to small random numbers (<0.1) and the others parameters

to 0.
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In the supervised experiments, the fine-tuning stage is carried out using a stan-

dard backpropagation algorithm using the label classification error measured on a

new output layer. A layer with as many units as classes (from now on, short-code), is

added to the 1024 top sigmoidal-layer (from now on, long-code). The connection be-

tween these two layers uses a SoftMax criteria to generate the short-code (label) from

the long one, while the reverse connection remains sigmoidal. In the non-supervised

case we train models with several hidden sigmoidal layers and one output lineal layer

(τ = 0.001) of the same size. In [109] it is shown that DBNs with finite width and

an exponential number of layers can fit any distribution. Here we fix the width of

all the hidden layers to the width of the visible one (1024). Therefore, the number

of training parameters for each RBM is (1024x1024)W + (1024)b + (1024)c.

5.6.2 Experiments with classic RBM models: RBM/DBN

Experimental setup

aHOF parameters. As in the final experiments of section Sec.5.4, the cropped

window (from the BB) is divided in 8x4 (rows× cols) cells. For all the experiments,

we use 8-bins for orientation and 4-bins for magnitude. The full descriptor for each

image is a 1024-vector with values in (0, 1).

Classifiers. We assign a class label to a full video sequence by classifying multiple

subsequences (same length) of the video, with SVM or GentleBoost (see [39]), and

taking a final decision by majority voting on the subsequences. We convert the

binary classfiers in multiclass ones by using the one-vs-all approach. Both classifiers

are also compared with KNN and the SoftMax classifier. In this context, SoftMax

classifier assigns to each sample the index of the maximum value in its short-code 1

From now on, by short-code we denote the code generated by the top layer in

the discriminative RBM, which comes from hidden units modeled by a soft-max

distribution. Six units for the experiments on KTH, and ten for Weizmann. We will

1The top layer of the discriminative DBN is trained to assign value 1 to the position of its class,
and 0 to the other positions
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use long-codes for the codes generated for the layer situated just before the top layer.

Here 1024 dimensions.

All the results we show in this subsection, come from averaging the results of 10

repetitions of the experiment with different pairs of training/test sets.

Results on KTH dataset

Multilayer results.

cba

Figure 5.6: RBM codes. Stacked vector of features for the 6 different actions in
KTH. (a) aHOF data, (b) 1024-codes, (c) 6-codes. The darker the pixel, the greater
the probability of taking value 1. Note in (b) the sparsity gained by encoding aHOF
features in (a). For clarity, vectors in (c) have been scaled in width.

L SMax 1NN 5NN SVM SVM-6 GB GB-6

1024 95.4 94.3 94.5 96.0 95.7 95.5 95.8

Table 5.10: Classification performance on KTH with high-level features.
Mean performance is reported for the four scenarios mixed in a single dataset. Dif-
ferent classifiers and codes are compared. Subsequences have length 20.

We begin by learning high-level features from the 1024-aHOF vectors with a 1024-

1024-6 (input-hidden-top) architecture. In table 5.10, five classifiers are compared on

short and long codes: (i) SoftMax, (ii) KNN on long-codes, (iii) SVM (radial basis)

on long-codes, (iv) GentleBoost on long-codes, (v) SVM on short-codes (SVM-6),

and (vi) GentleBoost on short-codes (GB-6). Notice that none of these results are

on raw aHOF features.



102 CHAPTER 5. AHOF AND RBM FOR HUMAN ACTION RECOGNITION

box hclap hwave jog run walk
box 99.6 0.3 0.1 0.0 0.0 0.0
hclap 4.4 92.8 2.8 0.0 0.0 0.0
hwave 0.1 0.5 99.4 0.0 0.0 0.0
jog 0.0 0.5 0.0 94.0 3.0 2.5
run 0.0 0.0 0.0 7.5 92.0 0.5
walk 0.1 0.5 0.0 0.8 0.3 98.4

Table 5.11: Confusion matrix for KTH. Scenarios 1+2+3+4. SVM on 1024 codes
(from 1024-1024-6). Rows are the true classes, and columns the predicted ones.

Table 5.11 shows the confusion matrix on KTH for our best result (SVM-code-

1024). Note that the highest confusions are running with jogging and handclapping

with boxing.

Grid space. This experiment shows the influence of the selected grid configuration

in the classification performance. We use a 1024-1024-6 architecture on subsequences

of length 20, and three different grid configurations: 2×1, 4×2 and 8×4. The results

reported in Table 5.12 have been generated by the intrinsic SoftMax classifier. Row

Seqs shows the classification of the full sequences, whereas Subseqs corresponds to the

classification of the individual subsequences. The performance achieved for the full

sequences is greater than the one achieved for the subsequences, since the majority

voting scheme filters out a significant quantity of misclassified subsequences.

2x1 4x2 8x4

Seqs 85.5 93.6 95.4
Subseqs 85.3 89.8 92.3

Table 5.12: Grid configuration comparison. On the mixed KTH dataset we
evaluate different grid configurations. Classification is done by SoftMax.

Note that the so simple configuration 2× 1 is able to classify correctly more than

the 85% of the sequences.
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One-layer VS multilayer. In this experiment we are interested in studying the

effect of the number of intermediate hidden layers.

Scenario 1 Scenario 2

L SMax 1NN SVM SMax 1NN SVM

aHOF - 94.8 95.1 - 93.3 96.3
1024 95.0 95.7 95.0 96.6 92.9 97.0
1024-1024 95.2 95.8 95.5 96.7 93.3 97.5

1024-1024-1024 94.9 95.1 95.2 96.2 93.6 96.3

Scenario 3 Scenario 4

L SMax 1NN SVM SMax 1NN SVM

aHOF - 90.5 88.2 - 96.4 97.6

1024 91.7 91.7 91.3 95.7 94.4 96.2
1024-1024 92.0 91.9 92.4 95.0 93.8 96.1
1024-1024-1024 92.7 92.6 92.3 94.5 93.8 94.8

Table 5.13: One-layer VS multilayer. Different number of intermediate hidden
layers are compared by using various classifiers. Row aHOF refers to the raw input
data, so SoftMax (SMax column) classification can not be applied.

In particular, we carry out experiments with the following hidden layer architec-

tures: 1024-6, 1024-1024-6 and 1024-1024-1024-6. The first layer is always the visible

one (input data) and the last one (6 hidden units) is the SoftMax one. In table 5.13

we show a comparative of the classification performance for each separate scenario.

Note that in general, rbm-codes achieves better results than original aHOF fea-

tures. On the other hand, more than one layer seems to offer better results on the

most complex scenarios (ie. scenario 3).

Comparison with the state-of-the-art. A comparison of our method with the

state-of-the-art performance, on KTH database, can be seen in table 5.14. Note that

we get half error with respect to the best result published up to our knowledge [54],

with the same experimental setup. We report results for each scenario trained and

tested independently, as long as the results for the mixed scenarios dataset. The

result reported by Laptev et al. [54] corresponds to the mixed scenarios dataset,

directly comparable with our Avg. Unfortunately, only Jhuang et al. [45] publish

the individual results per scenario (here their Avg. score is the mean of the separate
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scenarios). In our case the mean of the 4 separate scenarios is 94.9%.

Method Avg.(%) s1 s2 s3 s4

aHOF+RBM+SVM 96.0 95.0 97.0 91.3 96.2
Laptev et al. [54] 91.8 - - - -
Jhuang et al. [45] 91.6 96.0 86.1 88.7 95.7
Fathi&Mori [22] 90.5 - - - -
Zhang et al. [124] 91.3 - - - -
Schindler&Van Gool [100] 92.7 - - - -

Table 5.14: Comparison with the state-of-the-art on KTH. Avg. column shows
the global result reported by each author on the full database. Columns s1-s4 show
the results per scenario. ’-’ indicates that such result is not available.

Long-code vs short-code. Figure 5.6 shows a graphical comparative of the

amount of information provided by each one of the codes used: raw, 1024-vector

and 6-vector. The classification results shown in table 5.10 emphasize that a very

high percentage of the long-code information is redundant and can be coded in few

bits.

Unsupervised learning. In the previous experiments, class labels have been used

Scenario 1 Scenario 2
L 1NN 5NN 1NN 5NN
aHOF 94.8 94.6 93.3 93.0
1024 95.3 94.8 91.2 92.0
1024-1024 93.1 91.6 85.1 82.2
1024-1024-1024 79.4 81.0 67.0 69.7

Scenario 3 Scenario 4
L 1NN 5NN 1NN 5NN
aHOF 90.5 90.9 96.4 96.4
1024 89.0 88.8 92.0 91.9
1024-1024 85.1 84.3 87.9 87.0
1024-1024-1024 71.7 72.5 80.3 83.2

Table 5.15: Classifying with unsupervised learned features. This results are
obtained by using the codes generated by autoencoders trained with unlabeled data.
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during the fine-tuning of the DBN parameters. However, in this experiment, we carry

out a totally unsupervised encoding of the aHOF data. See table 5.15 for a compar-

ison of the classification performance achieved by codes from different architectures

in a Nearest Neighbor framework. After using KNN to classify the subsequences,

majority voting is used to classify the full length sequences. The results show that

only in one of the four scenarios, the 1024 codes behaves better than the raw aHOF

codes. Attract our attention the fact that the use of more than one hidden layer

does not help to get a better sequence classification.

Results on Weizmann dataset

On this database we perform a short classification experiment with the best configu-

rations obtained for KTH database. In particular, we use a 1024-1024-10 architecture

on 8x4 aHOF features from subsequences of length 25 frames. Now the top layer has

10 hidden units, as much as action categories.

Table 5.16 contains results obtained with different classifiers. The results we show

come from averaging on a leave-one-out evaluation: 8 actors for training and 1 for

testing. On average, for our best result, the system fails 3 sequences out of 93. With

the same evaluation criterion, some authors have reported perfect classification on

this dataset (e.g.[22, 100]).

L SMax 1NN SVM SVM-10 GB GB-10

1024 96.3 89.6 94.1 96.3 92.6 96.3

Table 5.16: Classification on Weizmann. Results on sequence classification by
using different classifiers and codes.

Results on VIHASI dataset

In the previous experiments, the input features are based on optical flow. However, in

this experiment, we are going to use binary images (silhouettes) representing different
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Figure 5.7: Typical examples from VIHASI used in our experiments. They
have been cropped and resized to a common size of 42 × 42 pixels. Pixel intensity
has been inverted for representation purposes.

instants (poses) of the performed actions. In particular, we use VIHASI database

(appendix A.1.3).

The original resolution of the images is 640 × 480, but for our experiments the

images have been cropped and resized to a common size 42 × 42 pixels. Fig. 5.7

shows typical examples of the actors and actions that can be found in this database.

Since this database contains actions performed with different points of view of

the camera, we have mixed different cameras in the experiments.

The evaluation of classification performance has been carried out under a leave-

one-out strategy on the actors. Therefore, the reported performance is the average

of 11 repetitions.

Encoding action poses with RBM. In this experiment, we learn RBM-codes,

with different layouts, for the input frames and evaluate the quality of the learn
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Figure 5.8: RBM hidden layer. 20 first set of weights learnt for visible to hidden
connections in RBM for model with hidden layer= 200 from table Tab. 5.17, cameras
C6+CN6.

features by using a classification criterium, i.e. a KNN classifier is used. Table 5.17

shows the classification performance per frame (i.e. each frame is classified in an

isolated way as belonging to a single action), for cameras C3+CN3, C6+CN6 and

C9+CN9, respectively. Note that the camera point of view is single in each of these

experiments.

C3+CN3 C6+CN6 C9+CN9
L 1NN 5NN 1NN 5NN 1NN 5NN

100 95.6 95.3 93.9 94.0 95.7 95.8
100 100 94.7 94.3 92.7 93.0 94.5 94.5
200 96.9 96.9 95.0 94.8 96.4 96.6
200 200 96.5 96.3 94.4 94.8 96.0 96.0
500 97.3 97.2 95.6 95.6 97.0 97.0
500 500 97.2 97.1 95.2 95.5 96.9 97.0
1000 97.5 97.6 95.7 95.8 97.2 97.3
1000 1000 97.5 97.2 95.5 95.7 97.0 97.1

Orig-subseq 97.6 97.0 95.6 95.5 97.1 97.1

Table 5.17: RBMs on VIHASI. Percentage of correct classification per frame,
using KNN. On cameras C3+CN3, C6+CN6, C9+CN9. Left column indicates the
architecture setup.

Figure Fig. 5.8 shows weights learnt for visible to hidden connections in RBM for

model with hidden layer= 200.

In table 5.18, we are mixing cameras C6+CN6 with C16+CN16, whose points of
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view are opposite.

L 1NN 5NN

100 92.9 93.0
100 100 91.7 91.8
200 95.0 95.1
200 200 94.5 94.6
500 95.7 95.7
500 500 95.6 95.4
1000 95.9 96.0
1000 1000 95.5 95.5
1764 95.8 95.8
2000 95.8 95.8

Orig-subseq 95.5 95.3

Table 5.18: Classification on VIHASI. Percentage of correct classification per
frame, using KNN. On cameras C6+CN6, C16+CN16.

Since RBM is a generative model, we have run 1000 Gibbs sampling steps on some

models learnt in the experiment summarized on table Tab. 5.18 with 500, 1000 and

1764 hidden units. Figure Fig. 5.9 shows 50 random samples generated by initializing

the hidden units randomly (with probability 0.05 of being activated). Notice that

most of the samples mimic human poses.

Points of view in experiment for table 5.19 change smoothly in cameras C3+CN3,

C6+CN6 and C9+CN9.

L 1NN 5NN

1764 95.5 95.5
2000 95.6 95.5

Orig-subseq 95.3 95.0

Table 5.19: Classification on VIHASI. Percentage of correct classification per
frame, using KNN. On cameras C3+CN3, C6+CN6, C9+CN9.



5.6. EVALUATIONOF RBM-BASEDMODELS: EXPERIMENTS AND RESULTS109

a

b

c

Figure 5.9: Random samples generated by an RBM model on VIHASI. These
samples have been generated with 1000 Gibbs iterations by using models learnt on C6C16.
(a) 500 hidden units. (b) 1000 hidden units. (c) 1764 hidden units.
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Experiments with noisy images. In the following experiment, we are interested

in studying the robustness of the codes that can be learnt if the input samples are

contaminated with salt&pepper (S&P) noise or partial occlusions (see Fig. 5.10).

Figure 5.10: Silhouettes corrupted by noise. Top rows: original silhouettes
and silhouettes corrupted by salt&pepper noise (p = 0.3). Bottom rows: original
silhouettes and silhouettes partially occluded by 25 random rectangles.

Table 5.20 shows results on cameras C6+CN6 with S&P noise generated with

probability 0.30 and 0.40.

Table 5.21 shows classification results where learning has been carried out on

frames where partial occlusions are present. The occlusions have been generated

by drawing 25 solid rectangles (i.e. black) on the frames at random positions and

random side length in [3, 5].

Discussion. It is shown in these experiments that actions can be recognized by

using just single silhouettes of instant actions.

In the first group of experiments, the results show that the information of the
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S&P = 0.3 S&P = 0.4
L 1NN 5NN 1NN 5NN

50 80.1 81.0 78.5 78.5
100 90.5 89.6 88.6 87.7
150 94.3 92.7 94.3 92.8
500 99.9 98.4 99.9 97.7
1000 100.0 98.3 100.0 98.1

Orig-subseq 100.0 98.2 100.0 96.9

Table 5.20: VIHASI. Percentage of correct classification per frame. Cameras
C6+CN6. Salt and pepper noise is added to the images with probabilty 0.30 (left)
and 0.40 (right)

L 1NN 5NN

500 95.3 95.5
1000 95.5 95.8
Orig-subseq 95.6 95.5

Table 5.21: VIHASI. Percentage of correct classification per frame. Cameras
C6+CN6. Frames are corrupted by artificial occlusions.

action represented by the binary images can be encoded in feature vectors whose

dimensionality is smaller than the original representation (i.e. 1764-dims) without a

significant loss in the classification performance. For example, table Tab. 5.18, with

the learnt codes of length 500 the classification performance is even greater than the

one achieved by the raw data. Moreover, if we choose rbm-codes with length 100

(< 6% of the original size), the classification performance worsens less than 2%.

When different cameras are mixed in the same experiment, the rbm-codes offer

better performance than the raw data. See for instance tables Tab. 5.19 5.18.

If we now focus in the experiments where noise has been added to the samples

(tables Tab. 5.20,5.21), we can firstly notice that with rbm-codes not longer than 1000

(in contrast to 1764-dims in the raw data), the classification performance achieved

in similar or even better. Furthermore, with half dimensions (i.e. 500, approx. 28%

of original length) the performance only decreases about 0.1%.
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Finally, we notice that as in the aHOF-based experiments, the use of more than

one hidden layer does not offer better performance, as we might expect (i.e. table

Tab. 5.17). This is something to be further studied.

5.6.3 Experiments with alternative RBM models.

Unsupervised and Supervised Code Learning.

In this experiment, we are interested in evaluate four different feature encoding archi-

tectures: (i) a RBM trained as an autoencoder (unsupervised) (denoted AE ); (ii) a

DRBM model trained in a supervised way using Ogen cost function (eq. 5.6) (denoted

DG); (iii) a DRBM model trained by using Odisc cost function (eq. 5.6); and, (iv) a

RBM trained with objective function NCA (eq. 5.4). We try different length codes

(hidden units), from 12 up to 512 (half of the original vector dimensionality). In

table 5.22, we show a comparative of the classification results using an 1NN classifier

on the codes generated by the different models. It is remarkable that the maximum

scores, in bold, for the four scenarios belong to only one code length. This points

out the need of a minimum number of units to represent the data complexity.

In figure Fig. 5.11 we show the 2D representation of the six actions in KTH,

scenario 1, obtained by applying Principal Component Analysis (PCA) on the aHOF

samples (computed on video subsequences of length 20).

The plots in subfigure 5.11.a show the PCA representation of the original aHOF

vectors. On the other hand, the plots in subfigure 5.11.b represent the 128-codes

obtained by applying a trained DRBM model. In the top left plot of subfigure a

(PCA components 1 and 2), we can distinguish two big groups. On the left, the

actions where displacement is present (jogging, running and walking) , and on the

right, the actions where motion is mainly located in the upper body of the person

(boxing, handclapping and handwaving). Note that the actions with no-displacement

are very overlapped in the representation.
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a

b

Figure 5.11: PCA on features. (a) PCA on original data (scenario 1). (b) PCA on
DRBM 128-codes (scenario 1). Note the better separation of the classes in the DRBM
space when compared to the original one.
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L AE DG DRBM NCA
12 62.4 86.4 94.4 71.7

S1 128 94.1 94.4 94.5 95.4
256 94.6 93.5 94.3 95.7
512 94.4 94.4 94.6 95.5
L AE DG DRBM NCA
12 75.6 71.6 95.8 70.7

S2 128 94.0 92.8 95.6 96.5
256 93.0 91.7 95.4 96.1
512 93.8 90.8 95.6 96.0
L AE DG DRBM NCA
12 55.9 73.4 86.9 59.8

S3 128 89.3 89.7 87.0 92.2
256 90.6 89.7 87.7 93.3
512 90.6 90.5 87.9 93.6
L AE DG DRBM NCA
12 76.3 77.6 95.4 76.6

S4 128 73.2 92.0 96.3 94.1
256 93.7 91.9 96.4 96.0
512 93.7 92.0 96.4 95.3

Table 5.22: Unsupervised vs Supervised. This table shows a classification compar-
ative between an unsupervised trained model (AE) y three different supervised models
(DG,DBRM,NCA)(see text). In bold, the best results for all code vectors.

However, if we now focus in the representation obtained in subfigure 5.11.b, we

notice that classes are now better separated. See for example the bottom right corner

subplot (PCA components 2 and 3).

Other interesting point is the fact that in the original aHOF representation, there

are two distinguishable groups (see 5.11.a, PCA components 2 and 3) internal to

actions where action is performed by people heading at right or left (e.g. walking

left, walking right). Nevertheless, the DRBM representation groups those samples

in a single group (see 5.11.b).
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6 12 128 256 512 1024

4u+4l 68.1 84.8 94.8 94.1 94.4 95.0
8u+4l 61.3 67.4 93.2 92.5 92.0 92.9
12u+4l 49.0 60.5 93.2 89.6 91.2 92.0

Table 5.23: Semi-supervised learning with DRBM. Four labeled plus 4, 8 and
12 unlabeled actors, on scenario 1.

Semisupervised Learning.

Table 5.23 shows how the classification performance changes with the proportion of

unlabelled actors added during training. Results are averaged on 5 different train-

ing/test sets. β = 0.1. We have selected scenario 1 for this experiment.

As can be seen in the results, in order to use shorter codes we need a greater

proportion of labelled data than the one needed for larger codes. Note that with

128-codes the model seems to reach a maximum in the performance.

Hybrid DRBM VS Semisupervised DRBM

Table 5.24 shows a comparative between a supervised Hybrid-DRBM (eq. 5.7) and

a semisupervised DRBM (eq. 5.8). In both cases, only 8 labelled actors are used for

training. In the semisupervised case, 8 extra unlabelled actors are used. Test is done

on the remaining 9 actors. Results are averaged on 5 different training/test sets. For

the hybrid model β = 0.01 is used, and α = 0.1 is used for the semisupervised model.

We have selected scenario 1 for this experiment.

12 128 256 512

DRBM 68.7 93.9 93.3 92.1
Hyb 91.9 92.5 92.6 92.6

Table 5.24: Hybrid DRBM vs Semisupervised DRBM. First row is a semisupervised
DRBM, and second row is an Hybrid DRBM.
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Discussion.

The main conclusion from tables Tab. 5.23, 5.24 is that the length of the hidden

layer is very important when using unsupervised samples in the training set. In

semi-supervised learning this length can be shorten according to the proportion of

labeled samples in the learning set.

In all the experiments, the scores associated with the length (L) show one local

maximum, although we do not have a clear explanation for this fact, we think that

this length represents the shortest one that explains the data complexity. In this

way, these results contrast with theoretical results where the longer the hidden layer

the better the data is represented.

Clearly, the estimation of the shortest hidden layer needed to encode the data

with unsupervised or semi-supervised learning techniques, remains an interesting

open problem for these architectures.

5.7 Discussion and Conclusions

In the first part of this chapter, we have presented a new motion descriptor (aHOF)

based on histograms of optical flow. This descriptor has been extensively evaluated,

with state-of-the-art classifiers (SVM and GentleBoost), on two public databases:

KTH and Weizmann. These datasets are widely used in the evaluation of systems

designed for human action recognition.

Our descriptor achieves a 94.6% percentage of correct classification on the mixed

scenarios of KTH. This result improves on the state-of-the-art published papers (up

to our knowledge): 91.8% Laptev et al. [54], 91.6% Jhuang et al. [45] or 90.5%

Fathi&Mori [22].

The design of this descriptor could allow the development of an online classifica-

tion system. That is, once a new frame comes into the system, the aHOF descriptor

(unnormalized) could be updated by simply adding the contribution of the new frame,
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and by substracting the contribution of the oldest frame. Therefore, the named clas-

sification of subsequences can be really seen as the classification of single frames,

but taking into account the history of the N (subsequence length) previously seen

frames.

Important in our approach is the idea of generating discriminating high-level

features from low level information. In this way, we do not have to select complex

features from data but to generate on each case the most adequate. Important also

is to emphasize the on-line learning property of the new architectures. New data can

be included with a few iterations of the learning algorithms.

Table 5.2 and table 5.13 (first row on each subtable) shows that the proposed de-

scriptor improves the state-of-the-art results on the KTH database even in such very

difficult conditions as using 10-length subsequences. What supports its definition.

In the multilayer experiments, we show how much is gained by using the new

features on three classifiers of different complexity. From the results can be concluded

that the three classifiers behave similarly, pointing out to the number of layers as

the most important factor, table 5.13. We carried out experiments with higher

number of layers but no improving was obtained. It is important to remark that the

optimum number of layers and the number of units per layer remain still being open

questions. The results in table 5.10 shows that the use of the information provided

by the hidden units clearly improves the best score obtained from the raw descriptor

(see table 5.2). Table 5.14, shows that our proposal improves the state-of-the-art

performance in separate scenarios and globally. Note that in three of the scenarios,

the classification performance is above 95%. In our opinion, the low result achieved

in scenario 3 is due to the loose clothes (e.g. raincoat) used in that scenario by the

actors, what highly corrupts the quality of the computed optical flow in the person

boundaries. Although much work has to be done in order to understand deeply this

approach, this result is very encouraging.

In the unsupervised experiments, different multilayer autoencoders are fitted.

Table 5.15 shows the KNN classification results on the KTH database using the
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(16+9) experimental setup. It can be observed that using one hidden layer the results

are comparable with the state-of-the-art. This shows that these models are able to

learn very complex probability distributions from a reduced number of samples.

However, the score decrease when number of hidden layers increase. This could be

explained by the bias introduced by the DBN learning algorithm (see [5]).

It is also interesting to remark from table 5.2 the score obtained on the short-

codes and long-codes respectively. Although the short-code have a lighter loss in

performance, the result is promising, since it shows that these models are able to

encode all the information contained in a sequence in a very few numbers.

The experiments carried out on silhouette images suggest that human poses are

enough to describe actions. Moreover, they can be satisfactorily encoded by RBM-

based models in shorter vectors, and also used for recognition. Additional experi-

ments show that RBM-based encoding is able to learn the meaningful information

represented in the silhouettes despite the added noise.

Part of the research included in this chapter has been already published on the

following paper:

• M.J. Maŕın-Jiménez, N. Pérez de la Blanca, M.A. Mendoza, M. Lucena and

J.M. Fuertes. Learning action descriptors for recognition. International Work-

shop on Image Analysis for Multimedia Interactive Services (WIAMIS). Lon-

don, UK, May 2009: [71] (oral). Awarded as Best Student Paper.



Chapter 6

Conclusions and Future Work

This chapter presents a summary of the thesis and the main contributions of the

research included in it.

6.1 Summary and contributions of the thesis

In this thesis we have proposed models and techniques to tackle different aspects in

the problems of object detection and categorization and human action recognition.

In chapter 3, we address the problem of object detection and categorization in

still images by using oriented multi-scale filter banks. These filter banks are used in

a HVS-inspired feature extraction framework: HMAX. In this context, we study the

behaviour of diverse families of filters, mainly based on the Gaussian function and its

derivatives. Through an extensive study, in terms of classification, we show that apart

from the Gabor filter (used in the original formulation of HMAX), it is possible to use

other filter banks whose computation burden is smaller and obtaining classification

results similar o better. Finally, we present applications where these kind of features

are used: (i) object categorization (to assign a class label to an object present in an

image), (ii) part specific localization, and, (iii) gender recognition (male/female) by

using external and internal facial features.

119
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In chapter 4, we develop an upper-body detector (head and shoulders) based on

the HOG (histograms of oriented gradients) descriptor. In particular, two detectors

are produced: a frontal (and back) view detector, and, a profile view detector. This

combination of detectors allows us to cover nearly 360 degrees viewpoints. These

detectors are suitable to be used on video sequences extracted from feature films and

TV shows, where most of the time the person is only visible up to the hips. The

frontal detector has been used as part of more complex and higher level applications:

(i) human pose estimation (spatial localization of head, torso and arms), (ii) image

and video sequence retrieval where there are people holding a target pose, and, (iii)

video sequence retrieval where there are people involved in situations described by a

query (TRECVid challenge).

In chapter 5, firstly, a new motion descriptor is presented. It is based on the

temporal accumulation of histograms of optical flow (aHOF). The aHOF descriptor

is evaluated in the problem of HAR in video sequences by using the two most used

datasets in the literature and with diverse classifiers as kNN, SVM and GentleBoost.

The results show that the classification performance achieved with this descriptor

are comparable to the state-of-the-art and even better in some situations. Moreover,

the fact that independently of the chosen classifier the recognition results are similar

highlights that the discrimination comes from the descriptor by itself and not from

the classification technique.

In the second part of chapter 5, we present a empirical study of classification

techniques applied to HAR in video sequences, specially focusing in recent techniques

based on RBM models. The variety of experiments presented in this chapter show

that by using multilayer models based on RBM, it is possible to generate feature

vectors with a potential of discrimination similar to the original one. As base features,

aHOF vectors or binary silhouettes from video frames are used as input to either

kNN and SVM classifiers, or multilayer classifiers based on RBM. In particular, the

new feature vectors improve on the recognition results provided by aHOF on KTH

database.
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6.2 Related publications

In this section we list the publications derived from the research included in this

dissertation.

Refereed Conferences.

Chapter 3:

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Categorización de objetos a
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Español de Informática (CEDI) 2005: [72]
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animal categorization. International Conference on Image Analysis and Recog-
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6.3 Further work

Regarding the chapter 3 about object detection based on filter banks, we aim to

extend the methodology to not only decide if the object is present in the image, but

also to include information that allows us to delimit the area of the image where the

object is located. For example, we could learn a graphical model to relate the parts.

Other possible work is to extend the technique to the temporal domain, and apply

it, for example, to retrieve videos that include objects of target categories.

With regard to the upper-body detection, we find interesting to explore the defi-

nition of a common framework to integrate, in a natural manner, different detectors

related to people (eg. face, upper-body, full-body) in order to make easier their use

in person based applications. About human pose estimation, the pose estimation for

non-frontal views is still an open issue in our work.

In the final task of human action recognition on video sequences, we have used

either static features (i.e. silhouettes) or dynamic (i.e. optical flow). As future work

we intend to explore how to integrate both kind of features (static and dynamic) in

a RBM-based framework, applied to the problem of human action recognition.

On the other hand, we have limited the recognition of human actions to those

where just one individual is performing an action. However, actions involving more

than one person (e.g. hand-shaking, hugging,...) are also of our interest. So, we aim

to study how to adapt the approaches presented in chapter 5 to these situations.

Finally, the previous ideas could integrate in a single framework centered on the

person. The first step would be to detect persons in video sequences. Then, their pose

would be estimated at each video frame. And the final step would be to recognize

the action performed by the person based on the motion of the body parts.
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Appendix A

Appendices

This chapter includes additional information useful for the comprehension of this

thesis.

A.1 Datasets

This section describes the databases used during the thesis, both for object detection

and categorization, and for human action recognition.

A.1.1 Object detection and categorization

Caltech 101 Object Categories

The Caltech 101-object categories 1 database is one of the most used ones for ob-

ject categorization. It contains images of objects grouped into 101 categories, plus

a background category commonly used as the negative set. This is a very chal-

lenging database because the objects are embedded in cluttered backgrounds and

have different scales and poses. The name of the categories are: accordion, air-

planes, anchor, ant, barrel, bass, beaver, binocular, bonsai, brain, brontosaurus,

1The Caltech-101 database is available at http://www.vision.caltech.edu/
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buddha, butterfly, camera, cannon, car-side, ceiling-fan, cellphone, chair, chande-

lier, cougar-body, cougar-face, crab, crayfish, crocodile, crocodile-head, cup, dalma-

tian, dollar-bill, dolphin, dragonfly, electric-guitar, elephant, emu, euphonium, ewer,

Faces, Faces-easy, ferry, flamingo, flamingo-head, garfield, gerenuk, gramophone,

grand-piano, hawksbill, headphone, hedgehog, helicopter, ibis, inline-skate, joshua-

tree, kangaroo, ketch, lamp, laptop, Leopards, llama, lobster, lotus, mandolin, mayfly,

menorah, metronome, minaret, Motorbikes, nautilus, octopus, okapi, pagoda, panda,

pigeon, pizza, platypus, pyramid, revolver, rhino, rooster, saxophone, schooner, scis-

sors, scorpion, sea-horse, snoopy, soccer-ball, stapler, starfish, stegosaurus, stop-sign,

strawberry, sunflower, tick, trilobite, umbrella, watch, water-lilly, wheelchair, wild-

cat, windsor-chair, wrench, yin-yang, Background-Google.

Figure A.1: Caltech-101 dataset. Typical examples of selected categories from
Caltech 101 dataset

Typical images from this database are shown in figures Fig. A.1 and Fig. A.2.

This database has been used in experiments of chapter Ch.3.

Other object datasets

These datasets have been used in experiments of appendix A.2.

VGG Camels. Description: 356 images of camels, variable size.

This dataset can be downloaded from:

http://www.robots.ox.ac.uk/~vgg/data3.html
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Figure A.2: Caltech-animals dataset. Typical examples of selected categories
from Caltech 101 dataset: animals

Figure A.3: Camel dataset.
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Figure A.4: Guitar dataset.

Caltech Guitars. Description: 1030 images of guitar(s), variable size.

This dataset can be downloaded from:

http://www.robots.ox.ac.uk/~vgg/data3.html

A.1.2 Human pose

Buffy Stickmen dataset

Buffy Stickmen dataset contains more than 350 frames with annotated poses (one

segment per upper body part). Figure Fig.A.5 shows typical examples included in

the dataset.

Figure A.5: Buffy stickmen dataset. Typical examples of annotated poses (body part
segments are overlaid).

It can be downloaded from:

http://www.robots.ox.ac.uk/~vgg/data/stickmen/index.html
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This database has been used in experiments of chapter Ch.4.

A.1.3 Human action recognition

KTH actions dataset

Figure A.6: KTH database. Typical examples from KTH database.

This database contains a total of 2391 sequences, where 25 actors performs 6

classes of actions (walking, running, jogging, boxing, hand clapping and hand wav-

ing). The sequences were taken in 4 different scenarios: outdoors (s1), outdoors

with scale variation (s2), outdoors with different clothes (s3) and indoors (s4). Some

examples are shown in Fig.A.6.2.Each row contains frames from a single scenario,

and each column is a different action.

In our experiments, we consider KTH as 5 different datasets: each one of the 4

scenario is a different dataset, and the mixture of the 4 scenarios is the fifth one. In

this way we make our results comparable with others appeared in the literature.

2The original image can be downloaded from http://www.nada.kth.se/cvap/actions/actions.gif
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This database can be currently downloaded at:

http://www.nada.kth.se/cvap/actions/

This dataset has been used in experiments of chapters Ch. 5, 5.

Weizmann actions dataset

Figure A.7: Weizmann database. Typical examples from Weizmann database. Each
image represents a different action.

This database consists of 93 videos, where 9 people perform 10 different actions:

walking, running, jumping, jumping in place, galloping sideways, jumping jack, bend-

ing, skipping, one-hand waving and two-hands waving. Typical examples are shown

in figure Fig. A.7.

This database can be currently downloaded at:

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

This dataset has been used in experiments of chapters Ch. 5, 5.
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VIHASI

This dataset [92] contains 20 actions performed by 11 different virtual actors. The

action names are: Collapse, Granade, HangOnBar, HeroDoorSlam, HeroSmash,

JumpFromObject, JumpGetOnBar, JumpOverObject, Kicks, Knockout, Knockout-

Spin, Punch, Run, RunPullObject, RunPushObject, RunTurn90Left, RunTurn90Right,

StandLookAround, Walk, WalkTurn180.

This database can be currently downloaded at:

http://dipersec.king.ac.uk/VIHASI/

Figure A.8: VIHASI database. Typical examples from VIHASI database at original
aspect ratio (640× 480)

Typical examples are shown in fig. A.8 at original aspect ratio (640×480 pixels).

For our experiments (see Sec.5.6.2), the frames have been cropped and resized to

a common size of 42× 42 pixels. Several examples involving all actors and different

cameras are shown in figure Fig. A.9.

This dataset has been used in experiments of chapter Ch. 5.
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Figure A.9: VIHASI database. Cropped images from VIHASI that have been used in
our experiments. They have been resized to a common size of 42 × 42 pixels. The pixel
intensity has been inverted for respresentation purposes.
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A.2 Standard Model: HMAX

This appendix includes description of HMAX model and experiments comparing it

with SIFT descriptor.

A.2.1 HMAX description

The steps of the HMAX model to generate C2 features (see [104] for details) are the

following:

1. Compute S1 maps: the target image is convolved with a bank of oriented filters

with various scales.

2. Compute C1 maps: pairs of S1 maps (of different scales) are subsampled and

combined, by using the max operator, to generate bands.

3. Only during training: extract patches Pi of various sizes ni × ni and all orien-

tations from C1 maps, at random positions.

4. Compute S2 maps: for each C1 map, compute the correlation Y with the

patches Pi: Y = exp(−γ‖X − Pi‖
2), where X are all the possible windows in

C1 with the same size as Pi, γ is a tunable parameter.

5. Compute C2 features: compute the max over all positions and bands for each

S2i map, obtaining a single value C2i for each patch Pi.

In figures Fig. A.10, A.11, A.12, input image is processed to obtain S1 and C1

maps. These maps are computed by using Gabor, first order Gaussian derivative

and second order Gaussian derivative filters, respectively. Filter sizes are 7× 7 and

9× 9, and filter width σFB1 = 1.75 and σFB2 = 2.25.
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C1 level 1

S1 scale 1

S1 scale 2

FB scale 1

FB scale 2

Input image

Figure A.10: HMAX algorithm applied to example image. Stages in the
HMAX model to compute C1 features. Filter bank: Gabor real part.
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C1 level 1

S1 scale 1

S1 scale 2

FB scale 1

FB scale 2

Input image

Figure A.11: HMAX algorithm applied to example image. Stages in the
HMAX model to compute C1 features. Filter bank: first order Gaussian derivative.
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C1 level 1

S1 scale 1

S1 scale 2

FB scale 1

FB scale 2

Input image

Figure A.12: HMAX algorithm applied to example image. Stages in the
HMAX model to compute C1 features. Filter bank: second order Gaussian deriva-
tive.
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A.2.2 Comparing HMAX with SIFT

The research presented in this section is a joint work with Plinio Moreno and others,

published in [78].

Our aim is to compare the features generated by applying HMAX combined with

the filters we propose in chapter 3 versus the features described by SIFT [65].

Object Detection Experiment

In this group of experiments we model an object category by a set of local descriptors

(SIFT/HMAX). Local descriptors are computed in positive (objects) and negative

(background) class samples for each object category. We select N points from train-

ing set images of object class c, and compute local descriptor uc
i at selected points

{(x1, y1), . . . , (xi, yi), . . . , (xN , yN)}. (A.1)

With SIFT descriptors, u is the gradient histogram vector 3and, with HMAX de-

scriptor u is the patch Pi described in Section 3.2 (Chapter 3). During training,

for all cases, we select points searching for local maxima of Difference of Gaussians

(DoG), but in original HMAX points are selected at random.

In order to detect an instance of the category modelled in a new image we:

1. Select J interest point locations by applying DoG operator. But in original

HMAX, all the image points are candidates (see section 3.2 ).

2. Compute local descriptors in the new image uj, j = 1, . . . , J at interest point

locations.

3. Create class-similarity feature vector v = [v1, . . . , vi, . . . , vN ] by matching each

3The SIFT local descriptor is the concatenation of the several gradient orientation histograms
for all subregions: u = (hr(1,1)

, . . . , hr(l,m)
, . . . , hr(4,4)

)
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Figure A.13: Dataset. Typical images from selected databases.

class model point descriptor uc
i against all image descriptors uj.

vi =







ccmini ‖u
c
i − uj‖

2 SIFT

maxj exp(−γ‖Pi − uj‖
2) HMAX

(A.2)

4. Classify v as object or background image, with a binary classifier.

The experiments are performed over a set of classes provided by Caltech 4. More

samples in Appendix A.1.1.: airplanes side, cars side, cars rear, camels, faces, gui-

tars, leaves, leopards and motorbikes side, plus Google things dataset [25]. We use

category Google things as negative samples. Each positive training set is comprised

of 100 images drawn at random, and 100 images drawn at random from the unseen

samples for testing. Figure A.13 shows some sample images from each category. For

all experiments, images have a fixed size (height 140 pixels), keeping the original

image aspect ratio and converted to gray-scale format. We vary the number of local

descriptors that represent an object category, N = {5, 10, 25, 50, 100, 250, 500}. In

order to evaluate the influence of the learning algorithm, we utilize two classifiers:

SVM [83] with linear kernel5, and AdaBoost [34] with decision stumps.

The experimental set-up for each kind of local descriptor is: (i) original HMAX,

4Datasets are available at: http://www.robots.ox.ac.uk/˜vgg/data3.html
5Implementation provided by libsvm[13]
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(ii) HMAX computed at DoG, (iii) SIFT non-rotation-invariant (NRI), (iv) original

SIFT, (v) SIFT-Gabor, and (vi) SIFT-Gabor NRI.

Results and discussion. In Table A.1, we show the mean results of detection for

10 repetitions at equilibrium point (i.e. when the false positive rate = miss rate),

along with confidence interval (at 95%). We only show results for 10 and 500 features.

In Fig. A.14 we see performance evolution as a function of the number of features,

in the case of rigid (airplanes) and articulated (leopards) objects. For the remaining

categories, results are shown in figs. A.15 and A.16.

Local descriptors can be clustered in three groups using the average performance:

HMAX-based descriptors, SIFT-NRI descriptors, and SIFT descriptors. HMAX-

based descriptors have the best performance, followed by SIFT-NRI descriptors and

SIFT descriptors. The separation between the groups depends on the learning al-

gorithm, in the case of SVM the distance between groups is large. In the case of

AdaBoost groups are closer to each other, and for some categories (motorbikes, air-

planes and leopards) all descriptors have practically the same performance. We see

that in average, results provided by SVM are better than the AdaBoost ones.

Although in [77] is concluded that SIFT-Gabor descriptor improves SIFT distinc-

tiveness on average for image region matching, we cannot apply this conclusion to ob-

ject category recognition. In the case of AdaBoost algorithm SIFT and SIFT-Gabor

have practically the same performance, while in the case of SVM SIFT performs

slightly better than SIFT-Gabor.

HMAX is able to discriminate categories, attaining rates over 80% in most of

the cases with a small number of features (e.g. 10), showing that a discriminative

descriptor can detect objects in categories with very challenging images, like leopards

and camels, using an appearance model. Other remarkable data is that HMAX-DoG

works better with car-side and motorbikes, since DoG operator is able to locate the

most representative parts, e.g. the wheels.
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Table A.1: Results for all the categories. (TF: type of feature. NF: number
of features). On average over all the categories and using SVM, HMAX-Rand gets
84.2%, versus the 73.9% of regular SIFT. For each experiment, the best result is in
bold face.

Support Vector Machines

Airplane Camel Car-side Car-rear
TF/NF 10 500 10 500 10 500 10 500

H-Rand 87.3, 2.2 95.9, 1.0 70.4, 3.1 84.3, 2.2 87.9, 4.0 98.1, 1.5 93.0, 1.1 97.7, 0.8
H-DoG 80.3, 2.6 94.9, 0.8 70.2, 3.9 83.9, 1.4 88.9, 3.8 99.5, 0.9 86.6, 1.8 97.0, 0.7
Sift 74.6, 1.8 89.1, 1.0 63.9, 2.4 76.1, 1.7 72.9, 3.4 87.9, 3.7 73.7, 2.7 88.4, 2.1

G-Sift 69.7, 2.9 88.6, 1.5 57.3, 1.8 77.2, 2.2 69.1, 5.6 87.0, 2.0 67.2, 2.1 85.8, 1.7
SiftNRI 78.0, 3.2 92.4, 1.3 63.1, 3.8 77.8, 1.9 79.2, 3.4 90.8, 2.2 86.9, 1.8 93.1, 1.2

G-SiftNRI 74.8, 2.6 92.8, 1.5 62.1, 3.4 75.9, 1.9 72.5, 4.9 87.4, 2.2 80.2, 1.9 90.7, 1.2

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

79.8, 3.4 96.6, 0.7 87.1, 4.0 96.7, 1.1 88.6, 3.1 98.3, 0.6 81.4, 3.4 95.7, 0.9 81.9, 3.4 93.7, 0.9
82.7, 1.8 96.0, 0.6 82.9, 4.0 95.9, 0.8 84.6, 2.0 98.3, 0.9 70.9, 3.9 94.2, 1.3 81.6, 2.3 94.7, 0.7
74.8, 3.3 88.4, 1.8 66.4, 3.0 81.1, 1.5 81.5, 3.5 92.6, 1.1 81.7, 2.5 87.8, 1.1 75.2, 2.3 87.9, 1.4
73.6, 2.9 85.2, 1.9 70.1, 1.9 82.3, 1.1 81.0, 3.3 92.4, 1.0 78.0, 3.0 89.6, 1.3 69.0, 2.6 86.9, 1.4
84.4, 3.4 92.8, 1.2 65.2, 3.3 85.4, 1.0 79.1, 2.8 92.6, 0.9 81.6, 1.7 92.4, 1.2 75.4, 2.4 90.9, 1.7
84.6, 3.3 91.8, 1.2 69.0, 3.8 86.1, 1.6 79.1, 3.3 91.7, 1.3 76.9, 3.2 91.8, 1.4 72.0, 2.9 89.6, 0.7

AdaBoost

Airplane Camel Car-side Car-rear
TF/NF 10 500 10 500 10 500 10 500

H-Rand 81.0, 0.7 94.3, 1.1 67.7, 3.3 83.1, 1.0 84.1, 2.8 94.2, 2.0 90.1, 5.1 98.3, 0.7
H-DoG 77.8, 3.6 93.2, 1.3 63.9, 4.5 79.1, 1.8 85.5, 5.5 96.6, 1.3 74.1, 15.7 96.4, 1.3
Sift 75.3, 3.3 90.6, 1.5 65.1, 1.9 73.8, 1.6 74.9, 4.0 88.9, 2.1 76.3, 2.6 89.8, 1.6

G-Sift 73.0, 4.1 90.2, 1.2 60.6, 2.4 77.3, 2.0 70.5, 4.7 87.0, 3.5 69.7, 1.5 87.2, 2.0
SiftNRI 79.8, 3.2 93.1, 1.1 65.0, 3.4 78.1, 1.5 81.6, 4.9 90.8, 2.2 89.6, 0.7 94.9, 1.2

G-SiftNRI 77.9, 2.4 94.2, 1.2 62.2, 2.9 74.8, 2.3 78.3, 3.8 89.9, 2.0 83.8, 1.3 92.3, 0.9

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

77.1, 4.7 94.9, 1.1 83.7, 7.1 96.6, 1.0 83.1, 6.2 97.7, 0.7 76.8, 2.8 85.6, 1.1 74.7, 4.8 92.0, 1.7
74.4, 6.1 95.7, 1.2 78.0, 6.9 92.7, 1.5 76.0, 4.6 97.0, 0.9 70.2, 5.5 83.1, 2.0 75.2, 3.7 93.4, 0.9
78.3, 3.1 90.8, 1.2 66.0, 3.4 79.9, 1.1 84.2, 3.2 92.6, 1.1 83.6, 2.2 87.0, 1.2 77.9, 1.7 90.7, 1.4
75.3, 3.3 87.4, 1.7 71.6, 2.6 83.4, 2.6 81.1, 4.3 92.9, 1.3 81.2, 1.8 89.7, 2.2 70.8, 2.9 88.9, 1.2
87.6, 2.7 94.3, 0.8 67.2, 2.8 86.4, 1.4 81.0, 3.6 92.9, 1.5 84.4, 1.5 92.8, 1.2 80.4, 2.6 93.7, 1.1
86.1, 2.8 92.6, 1.3 69.9, 4.3 87.4, 1.0 81.7, 3.8 92.2, 1.9 78.1, 1.9 91.7, 1.0 75.4, 2.3 92.3, 1.2
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Figure A.14: Features comparison. Comparison of performance depending on the
type and number of features representing the images. The used classifiers are SVM
and AdaBoost.
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Figure A.15: Features comparison. Comparison of performance depending on the
type and number of features representing the images. The used classifiers are SVM
and AdaBoost.
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Figure A.16: Features comparison. Comparison of performance depending on the
type and number of features representing the images. The used classifiers are SVM
and AdaBoost.
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A.3 Equations related to RBM parameter learn-

ing.

This appendix includes the derivatives of functions involved in RBM parameter learn-

ing.

A.3.1 Basic definitions

A sigmoid function is defined by

σ(x) =
1

1 + exp−x
(A.3)

A.3.2 Derivatives for RBM parameters learning

Let E be the error function that we want to minimize. It depends on tk (the k-th

position of target label t), and yk (the k-th position of proposed label y).

Esmax = −
∑

k

(tk · log(yk)) (A.4)

∂Esmax

∂wkj

= hk · (yk − tk) (A.5)

Where wkj is a weight parameter in the soft-max classifier (top-layer) and hk is a

RBM hidden unit defined as:

hk = σ

(

∑

l

W h
lk · xl

)

(A.6)

Since biases are included in W (bottom row), x (data vector) contains an extra

position with value 1 at the end.
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To estimate weight parameters in RBM we have to compute:

∂E

∂W h
lk

=
∑

m

∂E

∂hm

·
∂hm

∂W h
lk

(A.7)

Where

∂E

∂hm

=
∑

j

(yj − tj) · wmj (A.8)

and
∂hm

∂W h
lk

= [σm · (1− σm)] · χl (A.9)

Therefore, using eq. A.8 and eq. A.9 in eq. A.7, we get

∂E

∂W h
lk

=
∑

m

[

∑

j

(yj − tj) · wmj

]

· [σm · (1− σm)] · χl (A.10)

where χl represents the observed data vector.
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A.4 Glossary and Abbreviations

Glossary of terms and abbreviations used in this document.

A.4.1 Glossary

Object Any item of interest represented in the image. It can be an animal, an

object, a person, ...

Object category Set of objects that share common features.

Optical flow Vector that describes the apparent motion of the pixel intensities.

A.4.2 Abbreviations

aHOF Accumulated histograms of optical flow.

BB Bounding box.

DBN Deep belief network.

FB Filter bank.

HAR Human action recognition

HOF Histogram of optical flow.

HOG Histogram of oriented gradients.

HVS Human visual system.

OF Optical Flow.

PCA Principal Component Analysis.

RBM Restricted Boltzmann Machine.

SIFT Scale-Invariant Feature Transform.
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Director : Dr. Nicolás Pérez de la Blanca Capilla





Abstract

La cantidad de imagenes y videos en nuestra vida diaria ha crecido vertiginosa-

mente en los ultimos años. El motivo principal es la proliferación de dispositivos

de captura de imágenes y v́ıdeo (cámaras de fotos, webcams o teléfonos móviles) a

precios asequibles.

Sitios de compartición de fotos como Picasa c©o Flickr c©; redes sociales como

Facebook c©o MySpace c©; o sitios de compartición de v́ıdeos como YouTube c©o

Metacafe c©, ofrecen una gran cantidad de información visual lista para ser descar-

gada en nuestras computadoras o dispositivos móviles.

Actualmente, la mayoŕıa de las búsquedas de imágenes o v́ıdeos que realizamos

en sitios online o computadores personales, están basadas en el texto asociado a los

ficheros que los contienen (ej. nombre de fichero, etiquetas,...). Generalmente, la

información aportada por el texto asociado es pobre, en comparación con la riqueza

descriptiva de la información visual contenida en dichas imágenes o v́ıdeos. Por tanto,

seŕıa conveniente el desarrollo de métodos de búsqueda automáticos para colecciones

de imágenes y/o v́ıdeos, que hiciesen uso del contenido visual codificado en ellas.

Esta tesis se centra en los problemas de detección y categorización automática

de objetos en imágenes y en el reconocimiento de acciones humanas en secuencias

de v́ıdeo. Las aproximaciónes usadas para tratar estos problemas están basadas en

modelos de apariencia.





Chapter 6

Conclusiones y Trabajo Futuro

Este caṕıtulo presenta un resumen de la tesis y las principales contribuciones de la

investigación incluida en ésta.

6.1 Resumen y contribuciones de la tesis

En esta tesis se proponen modelos y técnicas para abordar distintos aspectos en los

problemas de detección y categorización de objetos en imágenes y reconocimiento de

acciones humanas en secuencias de v́ıdeo.

En el caṕıtulo 3, se aborda el problema de detección y categorización de objetos

en imágenes mediante el uso de bancos de filtros orientados y multiescala, dentro

de un marco de extracción de caracteŕısticas inspirado en el sistema visual humano:

HMAX. En este contexto, estudiamos el comportamiento de diversas familias de fil-

tros, principalmente basados en la función Gaussiana y sus derivadas. Mediante un

amplio estudio, en términos de clasificación, mostramos que además del filtro de Ga-

bor usado en la formulación original de HMAX, es posible usar otros bancos de filtros

cuyo cálculo es más simple obteniendo resultados de clasificación iguales o superiores.

Mostramos finalmente aplicaciones de estas caracteŕısticas en los problemas de (i)
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categorización de objetos (asignación de la etiqueta clase a un objeto individual rep-

resentado en la imagen), (ii) localización de partes espećıficas de un objeto, y, (iii)

reconocimiento de género (hombre/mujer) usando caracteŕısticas internas y externas

de las caras.

En el caṕıtulo 4, se desarrolla un detector de upper-bodies (cabeza más hombros)

basado en el descriptor HOG (histogramas de gradientes orientados). En concreto,

se obtiene un detector para puntos de vista frontal (y de espaldas), y otro para vistas

de perfil. Esta combinación de detectores nos permite cubrir prácticamente vistas de

360 grados, y son principalmente adecuados para secuencias de v́ıdeo extráıdas de

peĺıculas y series de televisión, donde generalmente sólo es visible la mitad superior

del tronco de la persona. El detector frontal se ha usado dentro de aplicaciones

más complejas como son (i) la estimación de pose humana (localización espacial de

cabeza, tronco y brazos), (ii) la recuperación de imágenes o escenas de v́ıdeo donde

aparece una persona en una pose determinada, y, (iii) recuperación de secuencias de

v́ıdeo donde aparecen personas en situaciones determinadas por una consulta (reto

TRECVid).

En el caṕıtulo 5, en una primera parte, se presenta un nuevo descriptor de

movimiento basado en la acumulación temporal de histogramas de flujo óptico (aHOF).

El descriptor aHOF es evaluado en el problema de reconocimiento de acciones hu-

manas en v́ıdeo sobre la dos bases de datos actualmente más utilizadas en la literatura

y usando diversos clasificadores como son kNN, SVM y GentleBoost. Los resultados

del estudio muestran que el rendimiento en términos de clasificación ofrecidos por

este nuevo descriptor son comparables al estado del arte e incluso superiores en algu-

nas situaciones. Además, el hecho de que independientemente del clasificador elegido

los resultados de clasificación sean similares, pone de manifiesto que la discriminación

proviene del descriptor como tal y no de la técnica de clasificación.

En la segunda parte del caṕıtulo 5 se presenta un estudio emṕırico de técnicas

de clasificación aplicadas al problema de reconocimiento de acciones humanas en

v́ıdeo, haciendo especial énfasis en técnicas recientes basadas en modelos RBM. Los
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diversos experimentos desarrollados en el caṕıtulo muestran que haciendo uso de

modelos multicapa basados en RBM se pueden generar vectores de caracteŕısticas

más cortos que en el espacio original manteniendo una calidad de discriminación

similar a la original. Como caracteŕısticas básicas se usan vectores aHOF o frames

de v́ıdeo con siluetas binarias de personas. Los vectores generados son usados o

bien como datos de entrada para clasificadores kNN y SVM, o bien directamente

clasificados por modelos multicapa basados en RBM. En concreto, los nuevos vectores

de caracteŕısticas mejoran los resultados de reconocimiento obtenidos por aHOF, en

los primeros experimentos del caṕıtulo, sobre la base de datos KTH.

6.2 Publicaciones derivadas

En esta sección se listan las publicaciones derivadas de la investigación incluida en

esta tesis.

Congresos con proceso de revisión.

Caṕıtulo 3:

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Categorización de objetos a

partir de caracteŕısticas inspiradas en el funcionamiento del SVH. Congreso

Español de Informática (CEDI) 2005: [72]

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Sharing visual features for

animal categorization. International Conference on Image Analysis and Recog-

nition (ICIAR) 2006: [70] (oral)

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Empirical study of multi-

scale filter banks for object categorization. International Conference on Pattern

Recognition (ICPR) 2006: [69]

• A. Lapedriza and M.J. Maŕın-Jiménez and J. Vitria. Gender recognition in

non controlled environments. International Conference on Pattern Recognition



122 CHAPTER 6. CONCLUSIONES Y TRABAJO FUTURO

(ICPR) 2006: [51]

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Matching deformable features

based on oriented multi-scale filter banks. International Conference on Articu-

lated Motion and Deformable Objects (AMDO) 2006: [68]

• P. Moreno, M.J. Maŕın-Jiménez, A. Bernardino, J. Santos-Victor, and N. Pérez

de la Blanca. A comparative study of local descriptors for object category recog-

nition: SIFT vs HMAX. Iberian Conference on Pattern Recognition and Image

Analysis (IbPRIA) 2007: [78] (oral)

Caṕıtulo 4:

• J. Philbin, O. Chum, J. Sivic, V. Ferrari, M.J. Maŕın-Jiménez, A. Bosch,

N. Apostolof and A. Zisserman. Oxford TRECVid Nootebook Paper 2007.

TRECVid 2007: [90]

• J. Philbin, M.J. Maŕın-Jiménez, S. Srinivasan, A. Zisserman, M. Jain, S. Vem-

pati, P. Sankar and C.V. Jawahar. Oxford/IIIT TRECVid Nootebook Paper

2008. TRECVid 2008: [91]

• V. Ferrari, M.J. Maŕın-Jiménez and A. Zisserman. Progressive search space

reduction for human pose estimation. International Conference on Computer

Vision and Pattern Recognition (CVPR) 2008: [27]

• V. Ferrari, M.J. Maŕın-Jiménez and A. Zisserman. Pose search: retrieving

people using their pose. International Conference on Computer Vision and

Pattern Recognition (CVPR) 2009: [28] (oral)

Caṕıtulo 5:

• M.J. Maŕın-Jiménez, N. Pérez de la Blanca, M.A. Mendoza, M. Lucena and

J.M. Fuertes. Learning action descriptors for recognition. International Work-

shop on Image Analysis for Multimedia Interactive Services (WIAMIS) 2009:

[71] (oral). Premiado con la distinción Best Student Paper.
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Caṕıtulos de libros con proceso de revisión.

• M.J. Maŕın-Jiménez and N. Pérez de la Blanca. Empirical study of multi-scale

filter banks for object categorization. Caṕıtulo en libro “Pattern Recognition:

Progress, Directions and Applications”, 2006: [67]. Contenidos correspondi-

entes al caṕıtulo 3.

• V. Ferrari, M.J. Maŕın Jiménez and A. Zisserman. 2D Human Pose Estimation

in TV Shows. Caṕıtulo en libro “Statistical and Geometrical Approaches to

Visual Motion Analysis”, 2009: [29]. Contenidos correspondientes al caṕıtulo

4.

6.3 Trabajo futuro

En referencia al caṕıtulo 3 de detección de objetos usando filtros, consideramos de

interés extender la metodoloǵıa para no sólo decidir si el objeto está presente en

la imagen, sino para también incluir información que nos permita delimitar la zona

de la imagen donde está localizado el objeto. Por ejemplo, podŕıamos aprender un

modelo gráfico que relacionase las partes. Otra posible ĺınea de trabajo, consistiŕıa

en extender la técnica al dominio temporal y aplicarlo, por ejemplo, la recuperación

de v́ıdeos que incluyan objetos de interés.

Respecto a la parte de detección de upper-bodies, podŕıa ser de interés definir

un marco de trabajo donde se combinen de formal natural diferentes detectores

relacionados con personas (ej. cara, upper-body, cuerpo completo) para facilitar su

uso en aplicaciones basadas en la persona. En lo que concierne a la estimación de la

pose humana, queda por estudiar la estimación de la pose para puntos de vista no

frontales (o de espaldas).

En la tarea final de reconocimiento de acciones en v́ıdeo, se ha hecho uso de

caracteŕısticas estáticas (i.e. siluetas) o dinámicas (i.e. flujo óptico). Como trabajo

futuro, pretendemos explorar cómo integrar ambos tipos de caracteŕısticas (estáticas
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y dinámicas) en un marco basado en modelos RBM, aplicado al problema de re-

conocimiento de acciones humanas.

Por otro lado, hemos limitado el reconocimiento de acciones humanas a aquéllas

donde sólo una persona desarrolla una acción. Sin embargo, también son de nuestro

interés acciones que involucran a más de una persona (ej. dar un apretón de manos,

abrazarse,...). Por tanto, estudiaremos cómo adaptar las aproximaciones presentadas

en el caṕıtulo 5 a estas situaciones.

Finalmente, lo expuesto anteriormente podŕıa integrarse en un marco de trabajo

centrado en la persona donde se comenzase por hacer una detección de personas

en v́ıdeo, seguida de un proceso de estimación de pose, y donde, finalmente, se

interpretase la acción realizada por la persona en función del movimiento de sus

partes del cuerpo.


	Agradecimientos
	Acknowledgements
	Abstract

	Introduction
	Objectives
	Motivation
	Challenges
	Challenges on object detection/recognition
	Challenges on human action recognition

	Contributions
	Outline of the thesis

	Literature Review and Methods
	Object detection
	Human Action Recognition
	Classifiers
	Support Vector Machines
	Boosting-based classifiers
	Restricted Boltzmann Machines


	Filtering Images To Find Objects
	Introduction
	Filter banks
	Non Gaussian Filters
	Experiments and Results
	Object categorization results
	Describing object categories with non category specific patches.
	Specific part localization
	Application: gender recognition

	Discussion

	Upper-Body detection and applications
	Using gradients to find human upper-bodies
	Upper-body datasets
	Temporal association
	Implementation details
	Experiments and Results
	Discussion

	Upper-body detection applications
	Initialization of an automatic human pose estimator
	Specific human pose detection
	TRECVid challenge

	Discussion

	aHOF and RBM for Human Action Recognition
	Introduction
	Human action recognition approaches
	Accumulated Histograms of Optical Flow: aHOF
	Evaluation of aHOF: experiments and results
	Experimental setup
	Results

	RBM and Multilayer Architectures
	Restricted Boltzmann Machines
	Multilayer models: DBN
	Other RBM-based models

	Evaluation of RBM-based models: experiments and results
	Databases and evaluation methodology.
	Experiments with classic RBM models: RBM/DBN
	Experiments with alternative RBM models.

	Discussion and Conclusions

	Conclusions and Future Work
	Summary and contributions of the thesis
	Related publications
	Further work

	Appendices
	Datasets
	Object detection and categorization
	Human pose
	Human action recognition

	Standard Model: HMAX
	HMAX description
	Comparing HMAX with SIFT

	Equations related to RBM parameter learning.
	Basic definitions
	Derivatives for RBM parameters learning

	Glossary and Abbreviations
	Glossary
	Abbreviations


	Bibliography
	Español




