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Abstract

The amount of available images and videos in our everyday life has grown very
quickly in the last few years. Mainly due to the proliferation of cheap image and
video capture devices (photo cameras, webcams or cell phones), and the spread of
the Internet accessibility.

Sites for photo sharing like Picasa(©or Flickr(c); social networks like Facebook(©)or
MySpace(©); or video sharing sites like YouTube(©or Metacafe(©), offer a huge amount
of visual data ready to be downloaded in our computers or mobile phones. Currently,
most of the searches, performed in online sites and on personal computers, are based
on the text associated to the files. In general, the textual information is usually poor
compared to the rich information provided by the visual content. Therefore, it is
necessary efficient ways of searching photos and/or videos in collections, making use
of the visual content encoded in them.

This thesis focuses in the problems of automatic object detection and categoriza-
tion in still images, and the recognition of human actions on video sequences. We

address these tasks by using appearance based models.






Chapter 1

Introduction

The amount of available images and videos in our everyday life has grown very quickly
in the last few years. Mainly due to the proliferation of cheap image and video capture
devices (photo cameras, webcams or cell phones), and the spread of the Internet
accessibility.

Sites for photo sharing like Picasa©or Flickn(c); social networks like Facebook(c)or
MySpace(©); or video sharing sites like YouTube(©or Metacafe(©), offer a huge amount
of visual data ready to be downloaded in our computers or mobile phones. Currently,
most of the searches, performed in online sites and on personal computers, are based
on the text associated to the files. In general, the textual information is usually poor
compared to the rich information provided by the visual content. Therefore, it is
necessary efficient ways of searching,in an automatic way, photos and/or videos in
collections, making use of the visual content encoded in them.

This chapter will first describe the thesis objectives and motivations. We will then
answer why it is a challenge and what we have achieved over the last years. An

outline of the thesis is finally given.
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Figure 1.1: Objectives of the thesis. a) Is the target object in the image?. b)
What is the region occupied by the object?. ¢) What is happening in the video
sequence?

1.1 Objectives

The objective of this work is twofold: i) object detection and categorization in still

images, and i) human action recognition in video sequences.

Our first goal is to decide whether an object of a target category is present in
a given image or not. For example, in figure Fig. [[.Jla, we could be interested in
knowing if there is a car wheel, a photocamera or a person in that image, without

knowing the exact position of any of such “entities”.

Afterwards, in image Fig. [[LIlb, we could say that the upper-body (head and
shoulders) of the person depicted in it, is located in the pixels enclosed by the yellow

bounding box. So our goal would be the detection or localization of the target object.

Finally, provided that we have a video sequence, we would like to know what
the target object is doing along time. For example, we could say that the person in
image Fig. [[LTlc is waving both hands.

To sum up, we aim to explore the stages that go from the detection of an object
in a single image, to the recognition of the behaviour of such object in a sequence
of images. In the intermediate stages, our goal is to delimit the pixels of the image
that define the object and/or its parts.



1.2. MOTIVATION )

1.2 Motivation

In our everyday life, we successfully carry out many object detection operations.
Whitout being aware of that, we are capable of finding where our keys or our favourite
book are. If we go walking along the street, we have no problem to know where a
traffic light or a bin are. Moreover, we are not only capable of detecting an object of
a target class, but also to identify it. That is to say, in a place crowded of people, we
are able to distinguish an adquirance. Or we are able to say which is our car from
those parked in a public garage. In addition, we are able to learn, without apparent
effort, new classes of objects from a small amount of examples, and new individual

instances.

Currently, new applications where it is necessary the use of object detection are
emerging. For example, image retrieval from huge databases, as it is the Internet
or the film archives in TV broadcast companies. Also, the description of a scene
through the objects that compound it, for instance, to manipulate them later. Video
surveillance is other emerging application, for example, in an airport or public park-
ing. Or systems to control the access to resctricted areas. For the latter cases, these

systems must be fast and robust, since their performance is critical.

However, there are not definitive solutions to solve those problems, and this is

why object and motion recognition are still open problems.

1.3 Challenges

In this section we state the main challenges we face when dealing with the problems

of object and action recognition.
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Figure 1.2: Intra-class variability. Each row shows a collection of objects of the
same class (octopus, chair, panda) but with different aspect, size, color,... Images
extracted from Caltech-101 dataset [1].
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Figure 1.3: Inter-class variability. In these pairs of classes (left: bull and oz;
right: horse and donkey) the differences amongst them are small at first glance.

1.3.1 Challenges on object detection/recognition

The main challenges in object detection and recognition are: a) the big intra-class
variability, b) the small inter-class variabity, c¢) the illumination, d) the camera point-
of-view, e) the occlusions, f) the object deformations, and, g) the clutter in back-
ground.

We expand those concepts in the following paragraphs:

e In figure Fig[l.2] although each row contains examples of object instances from
the same classes, the visual differences amongst them are quite significative.
This concept is known as intra-class variability. An object recognition sys-
tem has to be able to learn the features that makes the different instances be

members of the same class.

e An ideal system should be able to distinguish amongst objects of different
classes although the differences between are subtle (i.e. small inter-class
variability). See figure Fig[l.3l

e Different illuminations are used on the same object in figure Fig. [L4l (bottom
row). Depending on the illumination, the same object could be perceived as
different. Pay attention, for example, to the different shadows on the mug

surface.



8 CHAPTER 1. INTRODUCTION

Figure 1.4: Challenges on object detection. Top row: different points of view
of the same object. Bottom row: different illuminations on the same object. Images
extracted from ALOI dataset [36].

e Depending on the camera point of view from which the object is seen, differ-
ent parts are visible. Therefore, different views should be naturally managed by
a robust object recognition system. Top row of figure Fig. [[L4] shows different

views of the same mug.

e Some portions of the objects can be occluded depending on the viewpoint. For
deformable objects, as persons or animals, these occlusions can be originated

by their own parts.

e The object deformations are due to the relative position of its constitutive
parts. The different appearances of articulated objects makes hard learning
their shapes as a whole. See, for example, top and bottom rows of figure
Fig. [L2

e Objects usually do not appear on flat backgrounds but they are surronded by
clutter. That increases the difficulty of distinguishing the object features from

the ones appearing in the background.
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1.3.2 Challenges on human action recognition

2 A b thd

Figure 1.5: Challenges on action recognition. Different points of view of same
action: walking. Even for humans, viewing this action frontally, it is more difficult
to recognize it than when it is viewed from the side. Images extracted from VIHASI
dataset [2].

In contrast to what one might infer from their own ability to solve the human
action recognition task in fractions of seconds and with a very small error rate, there
exists a wide range of difficulties that need to be overcome by an automatic system,
and that are handled very well by humans.

For example, depending on the camera viewpoint (see Fig. [LT)) parts of the
body can be occluded, making more difficult the recognition of the action. Bad
lighting conditions can generate moving shadows that prevent the system from
following the actual human motion.

Other common distractors are the moving objects placed in the background.
Imagine for example a crowded street scene where there are not only people or car
moving but also trees swinging or shop advertisements blinking. We must add to this
list, the fact that different people usually perform same named actions at different

velocity.

1.4 Contributions

Our contributions in this research can be divided in four main themes, summarized

below.
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Use of filter banks for object categorization. In the work described in chapter
B we propose: (i) the combination of oriented Gaussian-based filters (zero, first and
second order derivatives) in a HMAX-based framework [104], along with a proposed
Forstner’s filter and Haar-like filters [118]; and, (i) the evualation of the proposed
framework in the problems of object categorization [69, [67, [70, 78], object part-
specific localization [68] and gender recognition [51]. In addition, appendix [A.2.2]
shows a comparison [78] between SIFT descriptor and HMAX.

Upper-body detection and applications. In the work presented in chapter [4]
we begin by developing and evaluating two upper-body detectors (frontal/back and
profile views). Then, we build on top of it, the following applications: (i) upper-
body human pose estimation [27, 29]; (i) retrieval of video shots where there are
persons holding an especific body pose [28]; and, (iii) content-based video retrieval
focused on persons [90, OI]. Derived from this work, we publicly release four related
datasets: two for training an upper-body detector (frontal and profile views), one for
evaluating upper-body pose estimation algorithms, and one for training pose specific
detectors. Along with these datasets, software for detecting frontal upper-bodies is

also released.

Human motion descriptor. In the research described in the first part of chap-
ter Bl we contribute a new motion descriptor (aHOF [71]) based on the temporal
accumulation of histograms of oriented optical flow. We show through a wide ex-
perimental evaluation, that our descriptor can be used for human action recognition
obtaining recognition results that equal or improve the state-of-the-art on current

human action datasets.

Machine learning techniques for human motion encoding. In the second
part of chapter B, we thoroughly show how recent multi-layer models based on Re-
stricted Boltzmann Machines (RBM) can be used for learning features suitable for

human action recognition [7I]. In our study, the basis features are either video
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sequences described by aHOF or simple binary silhouettes. Diverse single-layer clas-
sifiers (e.g. SVM or GentleBoost) are compared. In general, the features learnt by
RBM-based models offer a classification performance at least equal to the original

features, but with lower dimensionality.

1.5 Outline of the thesis

The structure of the thesis is as follows:

In chapter [2 we do a review of the literature regarding the main issues of this
research: object detection and recognition in still images, and human action recogni-
tion in video sequences. We also include a brief review on the classification methods
that we use in our work.

In chapter B we propose and study the use of a set of filter banks for object cate-
gorization and object part-specific localization. These filter banks include Gaussian-
based filters (i.e. zero, first and second order derivatives), a Forstner-like filter and
Haar-like filters. Some contents of this chapter were developed in collaboration with
Dr. Agata Lapedriza et al. and Dr. Plinio Moreno et al., during my research stays
at the Computer Vision Cente of Barcelona (Spain) and the Instituto Superior
TécnicoH of Lisbon (Portugal), respectively.

In chapter [l we present a new upper-body dectector (frontal and side view) based
on Histograms of Oriented Gradients, along with some applications, as human pose
estimation or content-based video retrieval. The contents of this chapter contains
joint work with Dr. Vittorio Ferrari and Prof. Andrew Zisserman, during my research
stay at Visual Geometry Group’s laboratoryH at the University of Oxford.

In the first part of chapter Bl we present a new human motion descriptor based
on Histograms of Optical Flow. This motion descriptor accummulates histograms

of optical flow along time, what makes it robust to the common noisy estimation of

LCVC: http://www.cvc.uab.es/index.asp?idioma=en
2VisLab: http://www.isr.ist.utl.pt/vislab/
3VGG: http://www.robots.ox.ac.uk/ vegg/
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optical flow. We evaluate the performance of our descriptor on the state-of-the-art
datasets. Our results equal or improve the state-of-the-art on the reported results on
those datasets. In the second part, we study how we can use Restricted Boltzmann
Machines based models for learning human motion and use them for human action
recognition. We use diverse classifiers (i.e. kNN, SVM, GentleBoost and RBM-based
classifiers) to evaluate the quality of the learnt features. Static (i.e. silhouettes) and
dynamic (i.e. optical flow) features are used as basis.

Finally, chapter [l presents the conclusions of this work along with the contribu-
tions of the thesis and future work derived of this research.

At the end of the document, there are a set of appendices that include a glossary of
technical terms and abbreviations used in this work; information about the databases

used in the experiments; and complementary information for the chapters.



Chapter 2
Literature Review and Methods

In this chapter, we review the literature and methods related to the topics discussed

in this thesis.

2.1 Object detection

Terms like object detection, object localization, object categorization or object recog-
nitton are sometimes used indistinctly in the literature. We will use them in this

thesis with the following meanings:

e Object detection: we can say that an object of a target class has been de-
tected, if it is present anywhere in the image. In some contexts, it also involves

localization.

e Object localization: the localization process not only involves to decide that
an object is present in the image, but also to define the image window where

it is located.

e Object categorization: if we assume that there is an object in the image, ob-
ject categorization aims to decide which is its category (class) from a set of

predefined ones.

13
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Figure 2.1: Object representation. (a) Representation of the object face as a
whole. (b) Representation of the object as a set of parts with relation between them.
(c) Representation of the object as a set of parts without explicit relation between
them (bag of visual words). [Image extracted from Caltech 101 dataset [1]]

e Object recognition: the goal of an object recognition task is to assign a “proper
name” to a given object. For example, from a group of people, we would like

to say who of them is our friend John.

In the literature, we can find two main approaches for object detection (see
Fig. 21)): (i) to consider the object as a whole (i.e. holistic model) [101, (64, [17,
[10, 14]; and, (7i) to consider the object as a set of parts (part-based model), either
with a defined spatial relation [76], 4, 62, [59] 26|, 23], or without such relation [104].

Schneiderman and Kanade [TI01] learn probability distributions of quantized 2D
wavelet coefficients to define car and face detectors, for specific viewpoints. Liu [64]
defines multivariate normal distributions to model face and non-face classes, where
1D Harr wavelets are used to generate image features in combination with discrimi-
nating feature analysis. Dalal and Triggs[17] propose to represent pedestrians (nearly
frontal and back viewpoints) with a set of spatially localized histograms of oriented
gradients (HOG). Bosch et al. [10] represent objects of more than one hundred cat-
egories by computing HOG descriptors at diverse pyramidal levels. Chum and Zis-
serman [I4] optimize a cost function that generates a region of interest around class
instances. Image regions are represented by spatially localized histograms of visual

words (from SIFT descriptors).
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Mohan et al. [76] build head, legs, left arm, and right arm detectors, based on Haar
wavelets. Then, they combine the detections with the learnt spatial relations of the
body parts to locate people (nearly frontal and back viewpoints) in images. Agarwal
and Roth [4] build a side view car detector by learning spatial relations between
visual words (gray-levels) extracted around interest points (i.e. local maxima of
Foerstner operator responses). Fei-Fei et al. [62] propose a generative probabilistic
model, which represents the shape and appearance of a constellation of features
belonging to an object. This model can be trained in an incremental manner with
few samples of each one of the 101 classes used for its evaluation. Leibe et al. [59]
use visual words, integrated in a probabilistic framework, to simultaneously detect
and segment rigid and articulated objects (i.e. cars and cows). Ferrari et al. [26]
are able to localize boudaries of specific object classes by using a deformable shape
model and by learning the relative position of object parts with regards to the object
center. Felzenswalb et al. [23] build object detectors for different classes based on

deformable parts and where the parts are represented by HOG descriptors.

[ d

Figure 2.2: Image features. (a) Original color image. (b) Gradient modulus (from
Sobel mask). (c) Response to Gabor filter (§ = 3/4). (d) HoG representation . [Left
image extracted from ETHZ shapes dataset [26].]

Holistic models are simpler, since there does not exist the concept of parts and
hence it is not necessary to explicitly learn their relations. On the other hand,
part-based models are more flexible against partial occlusions and more robust to
viewpoint changes [3] [50].

Traditionally, most of the object detection systems are optimized to work with a
particular class of objects, for example, faces [101] [64], or cars [I01} 4, [61]. Human
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beings are able to recognize any object following the same criterium, independently
of its category. Recently, there have emerged systems that are able to satisfactorily
manage any kind of objects following a common metodology [4, 24, [62], [T04].

Common features used to describe image regions are: (i) raw pixel intensity
levels; (ii) spatial gradients (Fig. 2.2lb); (i) texture measurements based on filter
responses [I17] (Fig. Z2c); (iv) intensity and color histograms; (v) histograms of
spatial gradients: SIFT [65], HoG [17] (Fig. 22ld); and, (vi) textons [66].

2.2 Human Action Recognition

a b C d

Figure 2.3: Action representation. (a) Original video frame with BB around
the person. (b) KLT point trajectories. (c¢) Optical flow vectors inside the BB. (d)
Foreground mask extracted by background subtraction.

A video consist of massive amounts of raw information in the form of spatio-
temporal pixel intensity variations. However, such information has to be processed
in order to delimit the information relevant for the target task. An experiment carried
out by Johansson [46] showed that humans can recognize patterns of movements from
points of light placed at a few body joints with no additional information.

Different surveys present and discuss the advances in human action recognition
(HAR) in the last few years: [35, [75, 87, [115]. Here, we review the main approaches

that are relevant to our work.
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The main kind of features that are used in the literature for addressing the prob-
lem of motion description are: (i) features based on shapes [9, 119, B7, 44] (see
Fig. 23ld); (ii) features based on optical flow (see Fig. 2:3lc) or point trajecto-
ries [19, B2] (see Fig. 23b); (iii) features from combination of shape and motion
[45], 100, @9]; and, (iv) spatio-temporal features from local video patches (bag of
visual words) [123], 53], 102], [47, 18, 81 [79, 56l 105, 80]. Raw pixel intensities [81],
spatial and temporal gradients [79] or optical flow [47] can be used inside the local

spatio-temporal patches.

Whereas, the previous referenced approaches do not model, in a explicit way,
the relations between the different body parts, Song et al. [108] propose a graphical

model to represent the spatial relations of the body parts.

Blank et al. [9] model human actions as 3D shapes induced by the silhouettes
in the space-time volume. Wang and Suter [119] represent human actions by using
sequences of human silhouettes. Hsiao et al. [44] define fuzzy temporal intervals and

use temporal shape contexts to describe human actions.

Efros et al. [19] decompose optical flow in its horizontal and vertical components
to recognize simple actions of low resolution persons in video sequences. Oikonomopou-
los et al. [82] use the trajectory of spatio-temporal salient points to describe aerobic

exercises performed by people.

Jhuang et al. [45] address the problem of action recognition by using spatio-
temporal filter responses. Schindler and Van Gool [99] show that only a few video
frames are neccessary to recognize human actions by combining filter responses with

the goal of describing local shape and optical flow.

Zelnik-Manor and Irani [123] propose to use temporal events (represented with



18 CHAPTER 2. LITERATURE REVIEW AND METHODS

spatio-temporal gradients) to describe video sequences. Schiildt [102] build his-
tograms of occurrences of 3D visual (spatio-temporal) words to describe video se-
quences of human actions. Each 3D visual word is represented by a set of spatio-
temporal jets (derivatives). Dollar et al. [18] extract cuboids at each detected spatio-
temporal interest point (with a new operator) in video sequences. Fach cuboid is rep-
resented by either its pixel intensities, gradients or optical flow. Then, cuboid proto-
types are computed in order to be used as bins of occurrence histograms. Niebles and
Fei-Fei [79] propose a hierarchical model that can be characterized as a constellation
of bags- of-features, and that is able to combine both spatial and spatial-temporal
features in order to classify human actions. Shechtman and Irani [I05] introduce a
new correlation approach for spatio-temporal volumes that allows matching of hu-
man actions in video sequences. Laptev and Pérez 2007 [56] describe spatio-temporal

volumes by using histograms of spatial gradients and optical flow.

2.3 Classifiers

Both previous problems (object detection and action recognition) are commonly
approached by firstly extracting image/video features and, then, using them as input
of classifiers. During the learning stage, the classifier is trained by usually showing it
a huge variety of samples (feature vectors). Afterwards, during the test (recognition)
stage, feature vectors are extracted from the target item and given to the classifier
to deliver its opinion.

One classical classifier is Nearest Neighbour (kNN) [§]. kNN is a non-parametric
classifier. In its simpler formulation, it computes distances between the test vector
and all the training prototypes. It returns the class label corresponding to the major-
ity class found in the k nearest (most similar) prototypes. This approach generally
provides fair results, but its usage can be considered prohibitive if the amount of
training samples is huge (too many comparisons) or if the overlapping among the

classes is significative.
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Figure 2.4: Binary classifiers. (a) Support Vector Machine: circles outlined in
green represent the support vectors that define the border between the two classes.
(b) Boosting: the thick line represents the border between the two classes. It comes
from the combination of the weak classifiers defined by the dotted lines.

In the last few years, more sofisticated classifiers have arised. They have shown
a good trade-off in terms of testing time and classification performance in a wide
variety of problems [§].

In this section we do a brief review on the following classifiers (used in this the-
sis): Support Vector Machines, Boosting-based classifiers and Restricted Boltzmann

Machines.

2.3.1 Support Vector Machines

Support Vector Machines (SVM) [16], [84] are known as max-margin classifiers, since
they try to learn a hyperplane, in some feature space, in order to separate the positive
and negative training samples with a maximum margin.

Figure Fig. 2.4la represents a binary problem where the two classes are separated
as a function of the support vectors (outlined in green color).

Classical kernels are: linear, polynomial, radial basis functions (RBF), sigmoid,...

Some problems where SVM have been successfully used are: tracking [125], hu-

man action recognition [I02], object categorization [20], object detection [17, [8§],
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character recognition [11].

2.3.2 Boosting-based classifiers

Boosting [8] is a technique for combining multiple weak classifiers (or base learning
algorithms) to produce a form of committee (or strong classifier) whose performance
can be significantly better than that of any of the weak classifiers.

AdaBoost [33] calls a given weak classifier repeatedly in a series of rounds t =
1:T. One of the main ideas of the algorithm is to maintain a distribution or set of
weights over the training set. The weight of this distribution on training example ¢
on round ¢ is denoted Dy(i). Initially, all weights are set equally, but on each round,
the weights of incorrectly classified examples are increased so that the weak learner
is forced to focus on the hard examples in the training set.

Decision stumps (tree with a single node) are commonly used as weak classifiers.

GentleBoost [34] is a modification on AdaBoost where the update is done by
following Newton steps.

Figure Fig. 2.4lb represents a binary problem where two classes are separated
by a strong classifier (thick line) defined by the combination of two weak classifiers
(dotted lines).

Some problems where Boosting have been successfully used are: object detec-
tion [118, 63, 52] and activity recognition [114] [95].

JointBoosting

Recently, Torralba et al. [112],113] proposed a multi-class classifier based on boosting.
It is named JointBoosting.

Joint Boosting trains, simultaneously, several binary classfiers which share fea-
tures between them, improving this way the global performance of the classification.

In our experiments, we will use decision stumps as weak classifiers.
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2.3.3 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite
connectivity graph (see [B.5la). That is, an undirected graphical model where only
connections between units in different layers are allowed. A RBM with m hidden
variables h; is a parametric model of the joint distribution between the hidden vector
h and the vector of observed variables x.

Hinton [40] introduced a simple method for training these models, what makes
them attractive to be used in complex problems. In particular, the work in [41]
shows how to encode (into short codes) and classify (with high accuracy) handwritten
numbers using multilayer architectures based on RBM.

Recently, diverse variants of RBM models have arised and have been applied
to different problems. Memisevic et al. [74] apply RBM models to learn (in an
unsupervised way) image transformations. Taylor et al. [I10] learn human motion
by defining a temporal conditional-RBM model. Torralba et al. [IT1] use an approach
based on this model to encode images and then use the generated codes to retrieve

images from large databases.
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Chapter 3
Filtering Images To Find Objects

In this chapter, we pose the following question: how far can we go in the task of
object detection/categorization by using filter banks as our main tool?

Firstly, we introduce the concept of oriented multi-scale filter banks. Then, we study
how image features can be extracted by using filter responses and can be used under
the HMAX framework to build higher level semantic features. Finally, we evaluate
such features on the following three tasks: (i) image categorization; (ii) object part

localization; and (iii) gender recognition (female/male).

3.1 Introduction

The Marr‘s theory [73] supports that in the early stages of the vision process, there
are cells that respond to stimulus of primitive shapes, such as corners, edges, bars, etc.
Young [122] models these cells by using Gaussian derivative functions. Riesenhuber &
Poggio [96] propose a model for simulating the behavior of the Human Visual System
(HVS), at the early stages of vision process. This model, named HMAX, generates
features that exhibit interesting invariance properties (illumination, position, scale
and rotation). More recently, Serre et al. [104], based on HMAX, proposed a new

model for image categorization adding to the HMAX model a learning step and
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changing the original Gaussian filter bank by a Gabor filter bank. They argue that
the Gabor filter is much more suitable in order to detect local features. Nevertheless
no sufficient experimental support has been given.

Different local feature based approaches are used in the field of object catego-
rization in images. Serre et al. [104] use local features based on filter responses
to describe objects, achieving a high performance in the problem of object catego-
rization. On the other hand, different approaches using grey-scale image patches,
extracted from regions of interest, to represent parts of objects have been suggested,
Fei-Fei et al. [62], Agarwal et al. [3], Leibe [60]. But, at the moment, there is
not a clear advantage from any of these approaches. However, the non-parametric
and simple approach followed by Serre et al. [104] in his learning step suggests that
a lot of discriminative information can be learnt from the output of filter banks.
Computing anisotropic Gabor features is a heavy task that only is justified if the
experimental results show a clear advantage on any other type of filter bank.

The goal of this chapter is to carry out an experimental study in order to propose
a new set of simpler filter banks. We compare local features based on a Gabor filter
banks with the ones based on Gaussian derivative filter banks. These features will

be applied to the object categorization problem and specific part localisation task.

3.2 Filter banks

Koenderink et al. [49] propose a methodology to analyze the local geometry of the
images, based on the Gaussian function and its derivatives. Several optimization
methods are available to perform efficient filtering with those functions [116]. Fur-
thermore, steerable filters [32][89] (oriented filters whose response can be computed as
linear combination of other responses) can be defined in terms of Gaussian functions.

Yokono & Poggio [121] show, empirically, the excellent performance achieved by
features created with filters based on Gaussian functions, applied to the problem of

object recognition. In other published works, as Varma et al. [I17], Gaussian filter
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Figure 3.1: Sample filter banks. From top to bottom: Haar-like filters; Gabor;
first-order Gaussian derivatives plus zero-order Gaussian (right most); second-order
Gaussian derivatives plus Laplacian of Gaussian (right most)

banks are used to describe textures.

Our goal is to evaluate the capability of different filter banks, based on Gaussian
functions, for encoding information usable for object categorization. We will use the
biologically inspired HMAX model [104] to generate features.

In particular, HMAX consists of 4 types of features: S1, C1, S2 and C2. S1
features are the lowest level features, and they are computed as filter responses,
grouped into scales; C1 features are obtained by combining pairs of S1 scales with
the maximum operator; and, finally, C2 are the higher-level features, which are
computed as the maximum value of S2 from all the positions and scales. Where S2
featuresEI measure how good is the matching of one C1 feature in a target image.

The reader is referred to the appendix Ap.[A.2) for more details about this model
and example figures Fig. [A.10] [A.11] [A.12]

Due to the existence of a large amount of works based on Gaussian filters, we
propose to use filter banks compound by the Gaussian function and its oriented
derivatives as local descriptors, including them in the first level of HMAX.

The considered filters are defined by the following equations:

I Let P; and X be patches, of identical dimensions, extracted at C1 level from different images,
then, S2 is defined as: S2(P;, X) = exp(—v - || X — P;||?), where v is a tunable parameter.
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a) Isotropic Gaussian:

O, y) = — eXp<—$2+y2> (3.1)

2o 202

b) First order Gaussian derivative:

G'(z,y) = — e y—2> (3.2)

c¢) Second order Gaussian derivative:

2 2 2 2
Pla,y) = LT exp (—‘”’”— _ y—) (3.3)

2wo.0)

d) Laplacian of Gaussian:

(a2 4y - 20%) 22 + ¢
LG(z,y) = 5756 exp 5,2 (3.4)
e) Gabor (real part, as [104])
X2 442y 27
Gr(z,y) = exp (T) X COS <7) (3.5)

Where, o is the standard deviation, X = xcosf + ysinf and Y = —xsinf + y cos 6.
Figure FigB3.1lshows examples of the different filter banks studied in this chapter.

3.3 Non Gaussian Filters

Foerstner interest operator as a filter

In order to improve the information provided by the features, we propose to include,
in the lowest level, the responses of the Forstner operator [31], used to detect regions

of interest. For each image point, we can compute a ¢ value, in the range [0, 1], by
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a

Figure 3.2: Foerstner operator as a filter. Responses to the Foerstner filter (at
four scales) applied to the image on the left.

using equation [3.7]

N(z,y) = / M(z,y)dzdy ~ £ M, ; (3.6)
w
B A=A \? ddetN
=1 ()\1 + AQ) ~ (irN)? (3.7

Where M is the moments matrix, W is the neighborhood of the considered point
(z,y), and A\;, Ao are the eigenvalues of matrix N. ¢r refers to the matrix trace and

det to the matrix determinant.

The moments matrix M is defined by the image derivatives I, I, as follows:
I II
M = < N S > (3.8)
LI, I}

Haar like features

Viola and Jones, in their fast object detector [I1§], extract features with a family of
filters which are simplified versions of first and second order Gaussian derivatives.
Since these filters achieve very good results and are computable in a very efficient

way (thanks to the integral image technique [118]), we include them in our study.

The top row of Fig. 3.1l shows some of the Haar like filters that will be used in

the following experiments.
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3.4 Experiments and Results

In this section, we perform various experiments of object categorization and part-

specific localisation, based on the filters previously introduced.

3.4.1 Object categorization results

Given an input image, we want to decide whether an object of a specific class is
contained in the image or not. This task is addressed by computing HMAX-C2
features with a given filter bank and then training a classifier with those features.

The eight filter banks defined for this experiment are the following:

—_

Viola (2 edge filters, 1 bar filter and 1 special diagonal filter);
Gabor (as [104]);

anisotropic first-order Gaussian derivative;

w N

e~
N N e e e e N N

anisotropic second-order Gaussian derivative;

ot

(3) with an isotropic zero-order Gaussian;

D

(3) with a Laplacian of Gaussian and Forstner operator;

~J

(3), (4) with a zero order Gaussian, Laplacian of Gaussian and Forstner op;

o~ o~ o~ o~ o~ o~ o~ o~

oo

(4) with Forstner operator.

In these filter banks we have combined linear filters (Gaussian derivatives of
different orders) and non-linear filters (Forstner operator), in order to study if the
mixture of information of diverse nature enhances the quality of the features.

The Gabor filter and the anisotropic first and second order Gaussian derivatives
(with aspect-ratio equals 0.25) are oriented at 0, 45, 90 and 135 degrees. All the
filter banks contain 16 scales (as [104]).

The set of parameters used for the Gaussian-based filters, are included in table
Tab. B.Il For each Gaussian filter, a size F'S and a filter width o are defined. In
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particular, the standard deviation is equal to a quarter of the filter-mask size. The

minimum filter size is 7 pixels and the maximum is 37 pixels.

FS | 7 9 11 13 15 17 19 21
o | 1.75 225 275 325 3.75 425 475 5.25
FS | 23 25 27 29 31 33 35 37
o | 575 6.25 6.75 7.25 7.75 825 875 9.25

Table 3.1: Experiment parameters. Filter mask size (FS) and filter width (o)
for Gaussian-based filter banks.

Dataset: Caltech 101-object categories

Figure 3.3: Caltech 101 dataset. Typical examples from Caltech 101 object cat-
egories dataset. It includes faces, vehicles, animals, buildings, musical instruments
and a variety of different objects.

We have chosen the Caltech 101-object categoriesH to perform the object catego-
rization experiments. This database has become, nearly, the standard database for
object categorization. It contains images of objects grouped into 101 categories, plus

a background category commonly used as the negative set. This is a very challenging

2The Caltech-101 database is available at http://www.vision.caltech.edu,/
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database due to the high intra-class variability, the large number of classes and the
small number of training images per class. Figure shows some sample images
drawn from diverse categories of this database. All the images have been normalized
in size, so that the longer side had 140 pixels and the other side was proportional,

to preserve the aspect ratio.

More sample images and details can be found in appendix [A.T]

Multi-scale filter banks evaluation

We will compute biologically inspired features based on different filter banks. For
each feature set, we will train binary classifiers for testing the presence or absence
of objects in images from a particular category. The set of the negative samples
is compound by images of all categories but the current one, plus images from the
background category. We are interested in studying the capability of the features to
distinguish between different categories, and not only in distinguishing foreground

from background.

We will generate features (named C2) following the HMAX method and using the
same empirical tuned parameters proposed by Serre et al. in [104]. The evaluation of
the filters will be done following a strategy similar to the one used in [62]. From one
single category, we draw 30 random samples for training, and 50 different samples
for test, or less (the remaining ones) if there are not enough in the set. The training
and test negative set are both compound by 50 samples, randomly chosen following
the strategy previously explained. For each category and for each filter bank we will

repeat 10 times the experiment.

For this particular experiment, and in order to make a ‘robust’ comparison, we
have discarded the 15 categories that contains less than 40 samples. Therefore, we

use the 86 remaining categories to evaluate the filter banks.
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Figure 3.4: Selecting the number of patches. Evolution of performance versus
number of patches. Evaluated on five sample categories (faces, motorbikes, car-side,
watch, leopards), by using three different filter banks: Gabor, first order Gaussian
derivative and second order Gaussian derivative. About 300 patches, the achieved
performance is nearly steady.

Results on filter banks evaluation. During the patchH extraction process, we
have always taken the patches from a set of prefixed positions in the images. Thereby;,

the comparison is straightforward for all filter banks.

We have decided, empirically (Fig. B.4)), to use 300 patches (features) per category
and filter bank. If those 300 patches were selected (from a huge pool) for each
individual case, the individual performances would be better, but the comparison

would be unfair.

In order to avoid a possible dependence between the features and the type of
classifier used, we have trained and tested, for each repetition, two different classifiers:

AdaBoost (with decision stumps) [34] and Support Vector Machines (linear) [83].

3 In this context, a patch is a piece of a filtered image, extracted from a particular scale. It is
three dimensional: for each point of the patch, it contains the responses of all the different filters,
for a single scale.
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Viola Gabor FB-3 FB-4 FB-5 FB-6 FB-7 FB-8

AdaB 784,43 81.4,39 812,39 81.4,42 819,33 779,45 803,43 781,4.0
SVM 842,23 855,25 841,36 86.0,33 841,30 826,27 828,24 827,26

Table 3.2: Filter banks comparison. Results of binary classification (86 cate-
gories) using different filter banks: averaged performance and averaged confidence
intervals. First row: AdaBoost. Second row: SVM with linear kernel.

For training the AdaBoost classifiers, we have set two stop conditions: a maxi-
mum of 300 iterations (as many as features), or a training error rate lower than 107°.
On the other hand, for training the SVM classifiers, we have selected the parameters

through a cross-validation procedure.

The results obtained for each filter bank, from the classification process, are
summarized in table For each filter bank, we have computed the average of the
all classification ratios, achieved for all the picked out categories, and the average
of the confidence intervals (of the means). The top row refers to AdaBoost and
the botton row refers to Support Vector Machine. The performance is measured at

equilibrium-point (when the miss-ratio equals the false positive ratio).

Figure shows the averaged performance achieved, for the different filter banks,
by using AdaBoost and SVM. In general, by using this kind of features, SVM out-
performs AdaBoost.

If we focus on table [3.2] we see that the averaged performances are very similar.
Also, the averaged confidence intervals are overlapped. If we pay attention only at
the averaged performance, the filter bank based on second order Gaussian derivatives,

stands out slightly from the others.

Therefore, our conclusion for this experiment is that Gaussian filter banks rep-
resent a clear alternative in comparison to the Gabor filter bank. It is much better
in terms of computational burden and is slightly better in terms of categorization
efficacy. However, depending on the target category, one filter bank may be more

suitable than other.
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Figure 3.5: AdaBoost and SVM classifiers for comparing the filter banks.
From left to right: (1) Viola, (2) Gabor, (3) 1st deriv., (4) 2nd deriv, (5) 1st deriv.
with 0 order, (6) 1st deriv. with LoG and Forstner op., (7) GO, 10GD, 20GD, LoG,
Forstner, (8) 20GD and Forstner.

Multicategorization experiment: 10141 classes

In this experiment, we deal with the problem of multicategorization on the full
Caltech 101-object categories, included the background category. The training set
is compound by the mixture of 30 random samples drawn from each category, and
the test set is compound by the mixture of 50 different samples drawn from each
category (or the remaining, if it is less than 50). Each sample is enconded by using
4075 patches (as [104]), randomly extracted from the full training set. These features
are computed by using the oriented second order Gaussian derivative filter bank.

In order to perform the categorization process, we will use a Joint Boosting
classifier, proposed by Torralba et al. [112]. Joint Boosting trains, simultaneously,
several binary classfiers which share features between them, improving this way the
global performance of the classification.

Under these conditions, we have achieved an average 46.3% of global correct
categorization (chance is below 1% for this database), where more than 40 categories

are over 50% of correct categorization. By using only 2500 features, the performance
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Samples 5 10 15 20 30
Performance 22.7% 33.5% 39.5% 42.6% 46.3%

Table 3.3: Multicategorization Caltech-101. Global performance VS number of
training samples per category.

is about 44% (fig. B.6lc). On the other hand, if we use 15 samples per category for
training, we achieve a 39.5% rate. Figure B.0la shows the confusion matrix for the
101 categories plus background (by using 4075 features and 30 samples per category).
For each row, the highest value should belong to the diagonal.

At the dateH of this experiment was performed, other published results (using
diverse technics) on this database were: Serre 42% [104], Holub 40.1% [43], Grauman
43% [38], and, the best result up to that moment, Berg 48% [7].

Figure 3.6lb shows the histogram of the individual performances achieved for the
101 object categories, in the multiclass task. Note, that only 6 categories shows a
performance lower than 10%, and 17 categories are over 70%.

In figure B.6lc, we can see the evolution of the test performance, depending on
the number of patches used for encode the samples. With only 500 patches, the
performance is about 31%. If we use 2500 patches, the performance increases up to
44%.

Table shows how global performance evolves depending on the number of
samples per category used for training. These results are achieved by using 4075

patches and JointBoosting classifiers.

4In 2007, performance on Caltech-101 reached around 78% (30 positive training samples per
class)[10].
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Figure 3.6: 101 object categories learnt with 30 samples per category and
JointBoosting classifier. (a) Confusion matrix for 101-objects plus background
class. Global performance is over 46%. (b) Histogram of individual performances.
(c) Global test performance vs Number of features. (d) Training error yielded by
Joint Boosting. Y-axis: logarithmic.
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Features

Categories

(a)

Figure 3.7: Features shared on 101 object categories. (a) Left: first 50 shared
features selected by JointBoosting. (b) Right: the first 4 features, selected by Joint-
Boosting.

Figure B.6ld shows how the training error evolves, yielded by the Joint-Boosting
classifier, over the 101-object categories. The error decreases with the number of
iterations following a logarithmic behavior.

Figure B.7la shows how the first 50 features selected by JointBoosting, for the
joint categorization of the 101 categories, are shared between the 102 categories
(background is included as a category). The rows represent the features and the
columns are the categories. A black-filled cell means that the feature is used to
represent the category.

Figure B.7lb shows the first four features selected by JointBoosting, for the joint
categorization of the 101 object categories. The size of the first patch is 4x4 (with 4
orientations), and the size of the others is 8x8 (with 4 orientations).

In table B.4] we show which categories share the first 10 selected patches. Three

of those features are used only by one single category.
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# Feature Shared-Categories
1 yin yang
2 car side
3 pagoda, accordion
4 airplanes , wrench , ferry , car side , stapler , euphonium , mayfly , scissors ,

dollar bill , mandolin , ceiling fan , crocodile , dolphin
dollar bill, airplanes
trilobite , pagoda , minaret , cellphone , accordion
metronome , schooner , ketch , chandelier , scissors , binocular , dragonfly , lamp
Faces easy
inline skate , laptop , buddha , grand piano , schooner , panda , octopus , bonsai ,
snoopy , pyramid , brontosaurus , background , gramophone , metronome
10 scissors , headphone , accordion , yin yang , saxophone , windsor chair , stop sign ,
flamingo head , brontosaurus , dalmatian , butterfly , chandelier , binocular ,
cellphone , octopus , dragonfly , Faces , wrench

© 00 O Ut

Table 3.4: Feature sharing. First 10 shared features by categories.

37
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Figure 3.8: Caltech animals. Typical examples of animal categories from Caltech
101 dataset.

Multicategorization experiment: animal classes

Unlike cars, faces, bottles, etc., which are ’rigid’ objects, animals are flexible as
they are articulated. For example, there are many different profile views of a cat,
depending on how the tail or the paws are. Therefore, learning these classes of
objects results to be harder than the others whose different poses are invariants.

From Caltech 101 object categories, 35 of the them have been selected (Fig.
BA): ant, bass, beaver, brontosaurus, butterfly, cougar body, crab, crayfish, crocodile,
dalmatian, dolphin, dragonfly, elephant, emu, flamingo, gerenuk, hawksbill, hedgehog,
1bis, kangaroo, llama, lobster, octopus, okapi, panda, pigeon, platypus, rhino, rooster,
scorpion, sea horse, starfish, stegosaurus, tick, wild cat.

As we did on the full Caltech-101 dataset, we firstly extract 300 patches from the
training images, on prefixed locations to build the features vector. Then, we have
trained and tested, for each repetition, two different classifiers: AdaBoost (with
decision stumps) [34] and Support Vector Machines (linear kernel) [83] [13].

The results obtained for each filter bank, from the classification process, are
summarized in table B.5. For each filter bank, we have computed the average of
all correct classification ratios, achieved for all the 35 categories, and the average of

the confidence intervals (of the means). The top row refers to AdaBoost and the
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Figure 3.9: Animal categorization. Confusion matrix for Caltech 101 object
categories ’Animal subset’. Performance about 33%

botton row refers to Support Vector Machines. The performance is measured at

equilibrium-point (when the miss-ratio equals the false positive ratio).

- Viola First order Second order

AdaBoost  (79.6, 41)  (80.4, 4.0)  (80.6, 4.4)
SVM  (81.7,3.1) (81.8,3.3)  (83.3,3.5)

Table 3.5: Filter banks comparison. Results of classification using three different
filter banks: averaged performance and averaged confidence intervals. First row:
AdaBoost with decision stumps. Second row: SVM linear. The combination of SVM
with features based on second order Gaussian derivatives achieves the best mean
performance for the set of animals.

One-VS-all VS Multiclass approach In this experiment we are interested in
comparing two methods to be used with our features in the task of multicategoriza-
tion (we mean, to decide which is the category of the animal contained in the target
image). The methods are one-vs-all and JointBoosting.

The one-vs-all approach consists of training N binary classifiers (as many as
categories) where, for each classifier B;, the positive set is compound by samples from

class C; and the negative set is compound by samples from all the other categories.
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When a test sample comes, it is classified by all the N classifiers, and the assigned
label is the one belonging to the classifier with the greatest output. We have used
Support Vector Machines (with linear kernel) [83] as the binary classifiers.

On the other hand, Torralba et al. have proposed a procedure, named JointBoost-
ing [112], to generate boosting-based classifiers oriented to multiclass problems.

For this experiment, the training set is compound by the mixture of 20 random
samples drawn from each category, and the test set is compound by the mixture of
20 different samples drawn from each category (or the remaining, if it is less than
20). Each sample is encoded by using 4075 patches, randomly extracted from the
full training set. These features are computed by using the oriented second order
Gaussian derivative filter bank.

Under this conditions, JointBoosting system achieves 32.8% of correct rate cat-
egorization, and one-vs-all approach achieves 28.7%. Note that for this set (35
categories), chance is below 3%. Regarding computation time, each experiment with
JointBoosting has required seven hours, however each experiment with one-vs-all

has needed five days, on a state-of-the-art desktop PC H

Results by sharing features Having chosen the scheme compound by second
order Gaussian derivatives based features and JointBoosting classifiers, in this ex-
periment we intend to study in-depth what this scheme can achieve in the problem of
multicategorization on flexible object categories, in concrete, focused on categories
of animals. Also, JointBoosting allows to understand how the categories are related
by the shared features.

The basic experimental setup for this section is: 20 training samples per category,
and 20 test samples per category. We will repeat the experiments 10 times with
different randomly built pairs of sets.

Firstly, we will evaluate the performance of the system according to the number

of features (patches) used to encode each image. We will begin with 100 features

5 Details: both methods programmed in C, PC with processor at 3 GHz and 1024 MB RAM
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and we will finish with 4000 features.
Table shows the evolution of the mean global performance (multicategoriza-
tion) versus the number of used features. We can see figure B.10la for a graphical

representation. Note that with only 100 features, performance is over 17% (better
than chance, 3%).

N features 100 500 1000 1500 2000 2500 3000 3500 4000
Performance 17.5 25.1 27.1 289 302 312 32 322 328

Table 3.6: Evolution of global performance. With only 100 features, perfor-
mance is over 17% (note that chance is about 3%)

50 2 EE 00 35 o
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Figure 3.10: Multicategorization results over the 35 categories of animals.
(a) Performance (on average) vs number of patches. (b) Confusion matrix (on aver-
age). From top to bottom and left to right, categories are alphabetically sorted. (c)
Histogram (on average) of individual performances.

Figure BI0b shows the confusion matrix (on average) for the 35 categories of
animals, where the rows refers to the real category and columns to the assigned
category. In figure B.10lc we can see the histogram of the individual performances
achieved for the 35 object categories, in the multiclass task. Note, that more than

17 categories are over 30% correct classification ratio. If we study the results for
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each category, we notice that the hardest category is cougar (8.8%) and the easiest
category is dalmatian (68.8%).

We know that the animals involved in the experiments have parts in common,
and since we can know which features are shared by which categories, now we will
focus on the relations established by the classifiers.

The first and second features selected by JointBoosting are used for describing
the categories tick and hawksbill, respectively. Other shared features, or relations,

are:

e panda, stegosaurus, dalmatian.

dalmatian, elephant, cougar body.

dolphin, crocodile, bass.

dalmatian, elephant, panda.

e kangaroo, panda, dalmatian, pigeon, tick, butterfly.

dalmatian, stegosaurus, ant, octopus, butterfly, dragonfly, panda, dolphin.

panda, okapi, 1bis, rooster, bass, hawksbill, scorpion, dalmatian.

For example, we notice that panda and dalmatian share several features. Also, it
seems that dolphin, crocodile and bass have something in common.

In figure B.11] we can see the six patches selected by JointBoosting in the first
rounds of an experiment. There are patches of diverse sizes: 4x4, 8x8 and 12x12, all

of them represented with their four orientations.

Caltech selected categories database.

In this section, we focus on a subset of the Caltech categories: motorbikes, faces,

airplanes, leopards and car-side.
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(d) (e) (f)
Figure 3.11: Shared patches. Sample patches selected by JointBoosting, with their
sizes: (a)(b)(c) 4x4x4, (d)(e) 8x8x4, (f) 12x12x4. For representational purposes, the

four components (orientations) of the patches are joint. Lighter cells represent higher
responses.

The filter bank used for these experiments is based on second order Gaussian
derivatives, and its parameters are the same ones than in the previous sections. 2000

patches have been used to encode the samples.

Experiment 1 We have trained JointBoosting classifiers with an increasing num-
ber of samples (drawn at random), and tested with all the remaining ones. Figure
shows how the mean test performance, for 10 repetitions, evolves according to
the number of samples (per category) used for training. On the left, we show the
performance achieved when 4 categories are involved, and, on the right, when 5 cat-
egories are involved. With only 50 samples, these results are already comparable to

the ones shown in [43].

Experiment 2 By using 4-fold cross-validation (3 parts for training and 1 for
test), we have evaluated the performance of the JointBoosting classifier applied to
the Caltech selected categories. The experiment is carried out with the 4 categories
used in [24], 43] (all but car-side), and, also, with the five selected categories. Table
B.7 and table contains, respectively, the confusion matrix for the categorization
of the four and five categories. In both cases, individual performances (values of the
diagonal) are greater than 97%, and the greater confusion-error is found when air-

planes are classified as motorbikes. It calls our attention the fact that the individual
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Figure 3.12: Performance evolution. Performance versus number of training
samples, in multicategorization environment. Left: 4 categories. Right: 5 categories.

performances are slightly better for the 5-categories case. It could be due to the

patches contributed by the extra class.

- Motorbikes  Faces  airplanes Leopards

Motorbikes 99.75 0.13 0.13 0
Faces 1.38 98.62 0 0
Airplanes 2.38 0 97.50 0.13
Leopards 0.50 0.50 0 99.00

Table 3.7: Categorization results. Caltech selected (as [24]). Mean performance
from 4-fold cross-validation.

3.4.2 Describing object categories with non category specific

patches.

The goal of this experiment is to evaluate the capability of generalization of the
features generated with HMAX and the proposed filter banks. In particular, we
wonder if we could learn a category, without using patches extracted from samples
belonging to it. For this experiment we will use the Caltech-7 database (faces,
motorbikes, airplanes, leopards, cars rear, leaves and cars side), used in other papers

as [24]. Each category is randomly split into two separated sets of equal size, the
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Motorbikes  Faces  airplanes Leopards Car side

Motorbikes 99.87 0.13 0 0 0
Faces 1.15 98.85 0 0 0
Airplanes 2.00 0 98.00 0 0
Leopards 0.50 0.50 0 99.00 0
Car side 0.81 0 0 0.81 98.37

Table 3.8: Categorization results. Caltech selected (5 categories). Mean perfor-
mance from 4-fold cross-validation.

training and test sets. For each instance of this experiment, we extract patches from
all the categories but one, and we focus our attention on what happens with that
category.

We have extracted 285 patches from each category, therefore each sample is en-
coded with 1710 (285 x 6) patches. We train a Joint Boosting classifier with the
features extracted from 6 categories and test over the 7 categories. We repeat the
procedure 10 times for each excluded category. The filter bank used for this exper-
iment is compound by 4 oriented first order Gaussian derivatives, plus an isotropic

Laplacian of Gaussian.

No-face  No-moto  No-airp  No-leop  No-car_rear  No-leav  No-car_side

Global 94.7 93.7 94.8 96.8 95.9 95 93.5
Individual 98.7 96.9 96.5 94.0 88.9 91.4 88.5

Table 3.9: Categorization by using non-specific features. First row shows the
mean global performance (all categories) and, the second row shows the individual
performance (just the excluded category). It seems that the car rear and car side
categories need their own features to represent them in a better way.

Table shows the mean global multicategorization performance, and the indi-
vidual performance, achieved for each excluded category. We can see that all the
global results are near the 95% of correct categorization. These results suggest that
there are features that are shared between categories in a 'natural’ way, and hence
it encourages the search for the universal visual codebook, proposed in some works
[104].
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3.4.3 Specific part localization

The aim of the following experiments is to evaluate how well we can find specific

object parts (templates) in images under different conditions.

Template definition

Unlike classical templates based on patches of raw gray levels or templates based
on histograms, our approach is based on filter responses. In concrete, the template
building is addressed by the HMAX model [96][104]. The main idea is to convolve
the image with a filter bank compound by oriented filters at diverse scales. We will
use four orientations per scale (0, 45, 90 and 135 degrees).

Let F, be a filter bank compound by (s - o) filters grouped into s scales (an even
number) with o orientations per scale. Let F;. be the i-th scale of filter bank Fj,
compound by o oriented filters.

The steps for processing an image(or building the template) are the following:

1. Convolve the target image with a filter bank Fj,, obtaining a set S;, of s -0
convolved images. The filters must be normalized to zero mean and sum of
squares equals one, and also each convolution window of the target image.

Hence, values of filtered images will be in [-1,1].

2. For i = {1,3,5,7,...,s — 1}, in pairs (i, ¢ + 1), subsample S;. and S;;1. by
using a grid of size g; and selecting the local max value of each grid. Grids are
overlapped by v pixels. This is independently done for each orientation. At
the end of this step, the resultant images S; and Si+1 contain the local max

values (of each grid) for the o orientations.

3. Then, combine each pair 5’1 and Si+l in a single band C}; by selecting the max
value for each position between both scales (i, i + 1). As a result, s/2 bands

C; are obtained, where each one is compound by o elements.
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Template matching

Once we have defined our template T', we are interested in locating it in a new image.
We will select the position of the new image where the similarity function raises a

maximum. The proposed similarity measure M is based on the following expression:
M(T,X) = exp(—y - | F(T) = F(X)|]?) (3.9)

Where T is the template, X is the comparison region of the same size of T, ~
controls the steepness of the exponential function, F' is an indicator function and || ||

is the Euclidean norm. Values of M are in the interval [0, 1].

Experiments and results

£ ©.0 S

Figure 3.13: Part localization noise test. From top to bottom: lighting, speckle,
blurred, unsharp, motion, rotation.

In this experiment a target image is altered in different ways in order to test the

capability of our approach to perform a correct matching in adverse conditions. The
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experiment has been carried out with functions included in (©)Matlab 7.0. The six

kinds of alterations are:
1. Lighting change: pixel values are raised to an exponent each time.

2. Addition of multiplicative noise (speckle): mean zero and increasing variance
in [0.02:0.07:0.702].

3. Blurring: iteratively, a gaussian filter of size 5x5, with mean 0 and variance 1,

is applied to the image obtained in the previous iteration.

4. Unsharping: iteratively, an unsharp filter (for local contrast enhancement) of
size 3x3 and « (controls shape of the Laplacian) equals 0.1, is applied to the

image obtained in the previous iteration.

5. Motion noise: iteratively, a motion filter (pixels displacement in a fixed direc-
tion) with a displacement of 5 pixels in the 45 degrees direction, is applied to

the image obtained in the previous iteration.

6. In-plane rotation: several rotations 6 are applied to the original image. With
values 6 = [5: 5 : 50].

A template of size 8x8 (with the four orientations) is extracted around the left
eye, and the aim is to find its position in the diverse test images. The battery of
altered images is shown in figure B.13l Each row is compound by ten images. Note

that, even for us, some images are really hard.

Figure 3.14: Template matching responses. Part localization noise test results.
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In figure B.14] we see the similarity maps obtained for the lighting and rotation
test. The lightest pixel is the position chosen by our method as the best matching

position.

Test Lighting Speckle Blurring Unsharp Motion Rotation
% Hit 90 60 100 100 100 50

Table 3.10: Eye localization results. Percentage of correct matching for each test.

For evaluating the test, the matching is considered correct if the proposed tem-
plate position is not far from the real one more than 1 unit (in C; coordinates). The
percentages of correct matching for the different cases are shown in table .10l

In blurring, unsharping and motion test the results are really satisfactory, tem-
plate has been always precisely matched. Matching in lighting test fails only for the
first image (left in fig. B.13). On the other hand, in speckle test, matching begins
failing when variance of noise is greater than 0.5 (the seventh image in the second
row, fig. BI4); and matching in rotation test fails when angle is near 30 degrees.
However, these results suggest the interesting properties of robustness of this kind

of templates for matching in adverse noisy conditions.

3.4.4 Application: gender recognition

In this experiment, we deal with the problem of gender recognition in still images.
Classically, internal facial features (nose, eyes, mouth,...) are used for training a
system devoted to the recognition of gender. However, here we study the contribution
of external facial features (chin, ears,...) in the recognition process [51].

We perform experiments where external features are encoded by using HMAX on

the multi-scale filter banks proposed in the previous sections.

Methodology As stated above, our objective is to develop a method for extracting

features from all the zones of a human face image, even from the chin, ears or
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Figure 3.15: Internal and external features for gender recognition. Top rows
show image fragments from both internal and external parts of the face. Bottom
rows show approximate location and scale where those features were found during a
matching process.

head. Nevertheless, the external face areas are high variable and it is not possible to
establish directly in these zones a natural alignment. For this reason, we propose a

fragment based system to aim this purpose.

The general idea of the method can be divided in two steps. First, we select a
set of face fragments from any face zone that will be considered as a model. After
that, given an unseen face image, we weight the presence of each fragment in this
new image. Proceeding like this, we obtain a positive weight for each fragment, and
each weight is considered as a feature. Moreover, we obtain in this way an aligned

feature vector that can be processed by any known classifier.

To establish the model we select a set of fragments F' = {F}};—;. n obtained from
face images. This selection should be made using an appropriate criterion, depending
on the task we want to focus on and on the techniques that will be used to achieve
the objective. In our case we wanted a high quantity of different fragments to obtain
a rich and variable model. For this reason we have selected them randomly, adding

a high number of elements.
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Experiments and results. The experiments have been performed using the FRGC
Databaséa. We have considered separately two sets of images: on the one hand im-
ages acquired under controlled conditions, having uniform grey background, and on
the other hand images acquired in cluttered scenes. These sets are composed by 3440
and 1886 samples respectively. Some examples of these images can be seen in figure

Fig. B.15

AB JB
External 94.60% + 0.60% | 96.70% =+ 0.80%
Internal 94.66% £ 0.76% | 94.70% + 1.10%
Combination || 94.60% 4 0.60% | 96.77% + 0.47%

Table 3.11: Controlled environments. Gender recognition in controlled environ-

ments experiments: achieved results.

AB JB
External 87.38% £ 2.46% | 90.61% + 1.80%
Internal 87.04% + 3.16% | 89.77% + 2.34%
Combination || 87.99% £ 2.20% | 91.72% £ 1.56%

Table 3.12: Controlled environments. Gender recognition in uncontrolled envi-
ronments experiments: achieved results.

All the experiments have been performed three times: first considering only the
external features, second considering only the internal information and finally consid-
ering both feature sets together. With these results we are able to test the presented
feature extraction method and to compare the contribution of the external and the
internal face features separately. We encode the internal and the external informa-
tion following in both cases the feature extraction method explained in section 2. In
concrete, the filter bank selected for building the features is based on second order

Gaussian derivative and Laplacian of Gaussian functions. In this way, we construct

Shttp:/ /www.bee-biometrics.org/
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the models randomly selecting 2000 fragments from the desired zone and, after that,
we separate the 90% of the samples to train the classifier and the rest of the consid-
ered images are used to perform the test.

We have used in the experiments two boosting classifiers, given that they have
been proved to be effective in several classification applications. First AdaBoost [34]
(with decision stumps), that is the most commonly used version of this technique, and
second JointBoosting [112], a more recently development of this system characterized
by the possibility of its application in multi-class case.

We have performed a 10-fold cross-validation test in all the cases and we show

for each experiment the mean of the rates and the corresponding confidence interval.

Discussion The results of the experiments performed using the set of controlled
images are included in table B. 11l We can see that the accuracies obtained using only
external features or only internal features are quite similar, although the best result
considering these sets separately is achieved using external features and classifying
with JointBoosting. Nevertheless, in controlled environments the best accuracy that
we have obtained is 96.77%, considering external and internal features together and
classifying also with JointBoosting.

The achieved accuracy rates in the experiments performed using the images ac-
quired in uncontrolled environments are included in table B12l We can see again
that the results obtained using only external or only internal features are also quite
similar. And, like before, the best result considering only one of these feature sets is
obtained using external features and JointBoosting classifier. Nevertheless, the best
global accuracy achieved with this image set is obtained again considering both inter-
nal and external features together and classifying with JointBoosting. This accuracy
rate is 91.72% and also in this case we have the lowest confidence interval.

From the results obtained by our experiments we can conclude that the presented
system allows to obtain information from face images useful for gender classification.
For this reason, we think that it can be extended to other computer vision classifi-

cation problems such as subject verification or subject recognition. Moreover, since
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our method is valid to extract features from any face zone, we have compared the
usefulness of external against internal features and it has been shown that both sets
of features play an important role in gender classification purposes. For this reason,
we propose to use this external face zone information to improve the current face

classification methods that consider only internal features.

3.5 Discussion

In this chapter, we have introduced and studied the use of Gaussian-based oriented
multiscale filter banks in three tasks: (i) object categorization (deciding what class
label is assigned to an object present in an image) in images, (7i) object part specific
localization in images, and (i) gender recognition (female/male) in images.

In order to study the benefits of this family of filters, we have adopted the use
of the HMAX framework [104]. Using filters responses as input, HMAX is able to
generate local image features that are invariant to translation and are able to absorb,
at some degree, small in-plane rotations and changes in scale.

Diverse classifiers (i.e. SVM, AdaBoost, JointBoosting) have been used in order
to evaluate the performance of the proposed features on the tasks listed above.

In the task of object categorization, we have carried out experiments on
Caltech-101, Caltech-selected and Caltech-animals datasets. The results show that
features based on Gaussian filter responses are competitive in this task compared to
the Gabor-based features proposed by Serre et al. [104], being the former computa-
tionally simpler than the latter. Although Caltech-animals dataset is hard due to
the fact that it is composed of articulated objects, the achieved categorization results
are promising. Through the different experiments, and thanks to the share boosting
approach [113], we have observed that many local image features are shared among
diverse object categories.

In the task of object part specific localization, we have defined the concept

of image template using as basis the image representations provided by HMAX at
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level C1. The goal of the experiments in this task is to evaluate how these templates
behave under different image perturbations (e.g. diverse noise, lighting changes, in-
plane rotations,...). The results show fair robustness against the evaluated image
perturbations, and therefore highlighting this method as a suitable approach to be
taken into account for the target task.

As a closing application, we have made use of the proposed local features to
define a method for gender recognition. FRGC database (cluttered and uncluttered
background) has been used in experiments to train gender classifiers on external and
internal facial features, independently or jointly. The results support the idea that
external facial features (hair, ears, chin,...) are as descriptive as the internal ones
(eyes, nose, mouth,...) for classifying gender.

Finally, additional experiments can be found in appendix Ap. [A.2] where an
empirical comparison of HMAX versus SIFT features is carried out. Supporting our
intuition, the results show that HMAX based features have a greater capability of
generalization compared to the SIF'T based ones.

Part of the research included in this chapter has been already published on the

following papers:

e M.J. Marin-Jiménez and N. Pérez de la Blanca. Categorizacion de objetos a
partir de caracteristicas inspiradas en el funcionamiento del SVH. Congreso

Espanol de Informética (CEDI). Granada, Spain, September 2005: [72]

e M.J. Marin-Jiménez and N. Pérez de la Blanca. FEmpirical study of multi-
scale filter banks for object categorization. International Conference on Pattern
Recognition (ICPR). Hong Kong, China, August 2006: [69]

e A. Lapedriza and M.J. Marin-Jiménez and J. Vitria. Gender recognition in
non controlled environments. International Conference on Pattern Recognition
(ICPR). Hong Kong, China, August 2006 : [51]

e M.J. Marin-Jiménez and N. Pérez de la Blanca. Sharing visual features for
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animal categorization. International Conference on Image Analysis and Recog-
nition (ICIAR). Povoa de Varzim, Portugal, September 2006: [70] (oral).

e M.J. Marin-Jiménez and N. Pérez de la Blanca. Matching deformable features
based on oriented multi-scale filter banks. International Conference on Artic-
ulated Motion and Deformable Objects (AMDO). Puerto de Andraxt, Spain,
July 2006: [68]

e P. Moreno, M.J. Marin-Jiménez, A. Bernardino, J. Santos-Victor, and N. Pérez
de la Blanca. A comparative study of local descriptors for object category recog-
nition: SIFT vs HMAX. Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA). Girona, Spain, June 2007: 78] (oral).

e M.J. Marin-Jiménez and N. Pérez de la Blanca. Empirical study of multi-scale
filter banks for object categorization. Book chapter in book ‘Pattern Recogni-

tion: Progress, Directions and Applications’, 2006: [67].
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Chapter 4

Human upper-body detection and

its applications

In this chapter we focus on images and videos where persons are present. In partic-
ular, our interest are the kind of images where the body person is visible mostly from
the wazist.

Fistly, we design and train a human upper-body (frontal and profile) detector suitable
to be used in video sequences from TV shows or feature films. Then, a method of
2D human pose estimation (i.e. layout of the head, torso and arms) is described
and evaluated. Finally, applications where the previous methods are used are also
discussed: searching a video for a particular human pose; and searching a video for

people interacting in various ways (e.g. two people facing each other)).

4.1 Using gradients to find human upper-bodies

In most shots of movies and TV shows, only the upper-body of persons is visible.
In this situation, full body detectors [I7] or even face detectors [I1§] tend to fail.
Imagine for example a person viewed from the back. To cope with this situation,

we have trained an upper-body detector using the approach of Dalal and Triggs

57
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(a)

Figure 4.1: Upper-bodies. Averaged gradient magnitudes from upper-body train-
ing samples: (a) original frontal set, (b) extended frontal set, (c) original profile set,
(d) extended profile set

Figure 4.2: HOG representation of upper-bodies. Examples of HOG descriptor
for diverse images included in the training dataset.

[17], which achieves state-of-the-art performance on the related task of full-body
pedestrian detection. Image windows are spatially subdivided into tiles and each
is described by a Histogram of Oriented Gradients (Fig. L1]). A sliding-window
mechanism then localizes the objects. At each location and scale the window is
classified by an SVM as containing the object or not. Photometric normalization
within multiple overlapping blocks of tiles makes the method particularly robust to

lighting variations.

Figure Fig. shows diverse examples of HOG descriptors for upper-body im-

ages. Some of them correspond to frontal views and others to back views.
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4.1.1 Upper-body datasets

We have collected data from feature films to build a frontal and profile view datasets
for training two detectors: one specialized in nearly frontal views, and other focused
in nearly profile views. We have put both datasets publicly online in the following

address:

http://www.robots.ox.ac.uk/ vgg/software/UpperBody/

Upper-body frontal dataset

The training data for the frontal detector consists of 96 video frames from three
movies (Run Lola run, Pretty woman, Groundhog day, figure Fig. [3]), manually
annotated with a bounding-box enclosing a frontal (or back view) upper-body. The
images have been selected to maximize diversity, and include many different actors,
with only a few images of each, wearing different clothes and/or in different poses.
The samples have been gathered by annotating 3 points on each upper-body: the
top of the head and the two armpits. Afterwards, a bounding box, based on the
three marked points, was automatically defined around each upper-body instance.
In such a way that a small proportion of background was included in the cropped

window.

Upper-body profile dataset

The training data for the profile detector consists of 194 video frames from 5 movies
(Run Lola run, Pretty woman, Groundhog day, Lost in space, Charade, figure Fig.[1.3]),
manually annotated with a bounding-box enclosing a profile view upper-body. As in
the case of the frontal dataset, the images have been selected to maximize diversity,
and include many different actors, with only a few images of each, wearing different
clothes and/or in different poses.

The samples have been gathered by annotating 3 points on each upper-body: the
top of the head, the chest and the back. Afterwards, a bounding box, based on the
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Figure 4.3: Upper-body training samples. Top set: frontal and back points of
view. Bottom set: profile point of view. Note the variability in appearace: clothing
(glasses, hats,...), gender, background.
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three marked points, was automatically defined around each upper-body instance.
In such a way that a small proportion of background was included in the cropped

window.

4.1.2 Temporal association

When video is available, after applying the upper-body detector to every frame in
the shot independently, we associate the resulting bounding-boxes over time by max-
imizing their temporal continuity. This produces tracks, each connecting detections
of the same person.

Temporal association is cast as a grouping problem [106], where the elements
to be grouped are bounding-boxes. As similarity measure we use the area of the
intersection divided by the area of the union (IoU), which subsumes both location and
scale information, damped over time. We group detections based on these similarities
using the Clique Partitioning algorithm of [30], under the constraint that no two
detections from the same frame can be grouped. Essentially, this forms groups
maximizing the IoU between nearby time frames.

This algorithm is very rapid, taking less than a second per shot, and is robust
to missed detections, because a high IoU attracts bounding-boxes even across a gap
of several frames. Moreover, the procedure allows persons to overlap partially or to
pass in front of each other, because IoU injects a preference for continuity scale in
the grouping process, in addition to location, which acts as a disambiguation factor.

In general, the ‘detect & associate’ paradigm is substantially more robust than

regular tracking, as recently demonstrated by several authors [86], 106].

4.1.3 Implementation details

For training the upper-body detector (both frontal and profile), we have used the
software provided by N. Dalal (http://pascal.inrialpes.fr/soft/olt/).
Following Laptev [52], the positive training set is augmented by perturbing the
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Figure 4.4: Extended training set. Augmenting the training set for the upper-
body frontal detector by artificially perturbing the original training examples. (al)
original example; (a2)-(b6): additional examples generated by adding every combi-

nation of horizontal reflection, two degrees of rotation, three degrees of shear. (c2-d6)
same for the original example in (cl).

original examples with small rotations and shears, and by mirroring (only for the
frontal case) them horizontally (figure [£4]). This improves the generalization ability
of the classifier. By presenting it during training with misalignments and variations,
it has a better chance of noticing true characteristics of the pattern, as opposed to
details specific to individual images. For the frontal detector, the augmented training
set is 12 times larger and contains more than 1000 examples. All the images have
been scaled to a common size: 100 x 90 (width, height). For the profile one, all
the samples have been processed (mirroring) in order to have all of them looking at
the same direction. In this case, the augmented training set is 7 times larger and
contains more than 1300 examples. And the images have been scaled to 68 x 100
(width, height).

For training the detectors, the negative set of images from “INRIA Person dataset”
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Figure 4.5: INRIA person dataset. Examples of images included in the dataset.
Top row: test data. Bottom row: negative training samples.

Elhas been used. Some examples are shown in the bottom row of Fig.

For tuning the training parameters of the detector, an additional set of images
(extracted from Buffy the Vampire Slayer) were used for validation.

Bootstrapping is used during training in order to include “hard” negative exam-
ples into the final detector training. That is, training is performed in two rounds. In
the first round, a positive training set and a negative training set are used for gener-
ating a first version of the detector. This just trained detector is run on a negative
test set. We keep track of the image windows where the detector has returned high
scores. Then, the N negative image windows with the highest scores are included
into the negative training set, augmenting it. In the second round, the detector is
trained with the previous positive training set plus the agmented negative training

set.

4.1.4 Experiments and Results

Frontal detector. We choose an operating point of 90% detection-rate at 0.5 false-
positives per image (fig. EL0). This per-frame detection-rate translates into an almost
perfect per-track detection-rate after temporal association (see [E1.2). Although

individual detections might be missed, entire tracks are much more robust. Moreover,

Thttp://pascal.inrialpes.fr/data/human/
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Figure 4.6: Upper-body frontal performance. Left: IoU ratio equal to 0.25.
Right: IoU ratio equal to 0.5 (PASCAL challenge standard)

we remove most false-positives by weeding out tracks shorter than 20 frames.

In practice, this detector works well for viewpoints up to 30 degrees away from

straight frontal, and also detects back views (figure 7).

We have evaluated the frontal detector on 164 frames from the TV show Buffy
the vampire slayer (figure 7). The detector works very well, and achieves 91%
detection-rate at 0.5 false-positives per image (a detection is counted as correct if
the intersection of the ground-truth bounding-box with the output of the detector
exceeds 50%). Augmenting the training set with perturbed examples has a significant
positive impact of performance, as a detector trained only of the original 96 examples
only achieves 83% detection rate at 0.5 FPPI. When video is available, this per-
frame detection-rate translates into an almost perfect per-track detection-rate after
temporal association (see AI1.2]). Although individual detections might be missed,
entire tracks are much more robust. Moreover, we can remove most false-positives
by weeding out tracks shorter than 20 frames.

In figure FiglL8 a detection is counted as positive if the ratio of the intersection

over union (rloU) of the detection bounding-box and the ground-truth bounding-box
exceeds 0.25.
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Figure 4.7: Upper-body frontal detections on Buffy the Vampire Slayer
TV-show. Each row shows frames from different shots.

As the plot on the left shows, the upper-body frontal detector works very well, and
achieves about 90% detection-rate for one false-positive every 3 images. The false-
positive rate can be drastically reduced when video is available, using the tracking
method define above. As expected, the original full-body detector is not successful
on this data.

The plot on the right is a sanity check, to make sure our detector works also on
the INRIA Person dataset (see top row of Fig. [4.]), by detecting fully visible persons
by their upper-body. The performance is somewhat lower than in the Buffy test
set because upper-bodies appear smaller. The original full-body detector performs

somewhat better, as it can exploit the additional discriminative power of legs.

Profile detector. We firstly thought that a profile view detector should be able to
detect people both facing to the right and to the left. So, the training set for profile

views was populated by including (among others image transformations) horizontal
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Figure 4.8: Upper-body VS full-body detector. Left: evaluation on Buffy test
set. Right: evaluation on INRIA person test set.

mirrors of the images. The detector trained with this dataset resulted to work poorly.
However, once we decided to include just a single view (to the right in this case) in
the dataset, the detection performance significantly increased. This is represented in
figure Fig. .9

We have also evaluated the profile detector, on 95 frames from Buffy. With 75%
detection rate at 0.5 FPPI (see figure Fig. [4.9), the performance is somewhat lower
than for the frontal case. However, it is still good enough to reliably localize people

in video (where missing a few frames is not a problem).

4.1.5 Discussion

The greater success of the frontal detector is probably due to the greater distinctive-
ness of the head+shoulder silhouette when seen from the front (Fig. E.T]).

In practice, the frontal detector works well for viewpoints up to 30 degrees away
from straight frontal, and also detects back views (figure [4.7]). Similarly, the side
detector also tolerates deviations from perfect side views, and the two detectors

together cover the whole spectrum of viewpoints around the vertical axis.
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Figure 4.9: Upper-body profile. (a) Performance comparison: monoview VS
multiview. Monoview version improves the multiview one in 20%. (b) Influence of
extended training set in detector performance. The non-populated set stacks in real
positive detections earlier than populated.

Software for using our upper-body detector can be downloaded from:

http://www.robots.ox.ac.uk/ vgg/software/UpperBody/

4.2 Upper-body detection applications

In this section we present some applications where we have used our upper-body

detector.

4.2.1 Initialization of an automatic human pose estimator

In human pose estimation, the goal is to localize the parts of the human body. If
we focus in the upper body region (from the hips), we aim to localize the head, the

torso, the lower arms and the upper arms. See some examples of pose estimation in
figure Fig. [4.111
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Figure 4.10: Upper-body profile detections on Buffy the Vampire Slayer
TV-show. Note the variety of situations where the detector fires.

Figure 4.11: Pose estimation. In most of these frames, only the upper-body (from
the hips) of the person is visible. Therefore, the pose estimator aims to localize the
head, torso and arms. These results have been extracted from Ferrari et al. [27].

In this work, we use the frontal upper-body detector to define the initial region
where the pose estimation algorithm should be run. Once the area is restricted, a
model based on a pictorial structure [93] is used to estimate the location of the body
parts. In this context, the upper-body detections not only help to restrict the search
area, but also to estimate the person scale. Moreover, a initial estimation of head
location can be inferred by the knowlegde encoded in the upper-body bounding-box
(i.e. the head should be around the middle of the top half of the bounding-box).
This system works on a variety of hard imaging conditions (e.g. Fig. L.11lb.4) where
the system would probably fail without the help of the location and scale estimation

provided by the upper-body detector.
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We have made available for download an annotated set of human poses (see

Ap.[A12) at:

http://www.robots.ox.ac.uk/ vgg/data/stickmen/index.html

¥
e %o

k4 ¥

a b

Figure 4.12: Graphical model for pose estimation. Nodes represent head, torso,
upper arms and lower arms. ¢ indicates unary potentials (associated to parts [;),
and W indicates pairwise potentials.

Technical details

The processing stages we define to perform the pose estimation are: (i) human
detection (by using the frontal upper-body detector); (i) foreground highlighting (by
running Grabcut segmentation [97], which removes part of the background clutter);
(#i) single-frame parsing (pose estimation [93] on the less-cluttered image); and,
(iv) spatio-temporal parsing (re-parsing difficult frames by using appearance models

from easier frames, i.e. where the system is confident about the estimated pose).

Upper-body detection. Firstly, we run the frontal upper-body detection with
temporal-association, see section Secld.1.2l This rectricts the location and scale

where the body parts are searched.
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a

Figure 4.13: Foreground highlighting. Left: upper-body detection and enlarged
region. Middle: subregions for initializing Grabcut. Right: foreground region output
by Grabcut.

Foreground highlighting. We restrict the search area further by exploiting prior
knowledge about the structure of the detection window. Relative to it, some areas
are very likely to contain part of the person, whereas other areas are very unlikely.
Therefore, the second stage is to run Grabcut segmentation [97] to remove part
of the background clutter. The algorithm is initialized by using prior information
(thanks to the previous stage) about the probable location of the head and the torso.
Figure Fig.[d.13]shows the result of running Grabcut segmentation on the enlarged
region of the upper-body detection. Different areas are defined for learning the color
models needed by the segmentation algorithm: B is background, F is foreground, and

U is unused.

Single-frame parsing. The pictorial model used for image parsing is defined by

the following equation:

P(L|I) x exp (Z (L, 1) + Z <1><zi>> (4.1)

ij€E
The binary potential W(l;,[;) (i.e. edges in figure Fig. @12la) corresponds to a

spatial prior on the relative position of parts (e.g. it enforces the upper arms to be
attached to the torso).
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The unary potential ®(/;) (i.e. nodes in figure Fig. E12la) corresponds to the
local image evidence for a part in a particular position. Since the model structure E
is a tree, inference is performed efficiently by the sum-product algorithm [g].

The key idea of [93] lies in the special treatment of ®. Since the appearance of
neither the parts nor the background is known at the start, only edge features are
used. A first inference based on edges delivers soft estimates of body part positions,
which are used to build appearance models of the parts . Inference in then repeated
using an updated ® incorporating both edges and appearance. The process can be
iterated further, but in this paper we stop at this point. The technique is applicable
to quite complex images because (1) the appearance of body parts is a powerful cue,
and (i) appearance models can be learnt from the image itself through the above
two-step process.

The appearance models used in [93] are color histograms over the RGB cube
discretized into 16 x 16 x 16 bins. We refer to each bin as a color c¢. Each part [; has
foreground and background likelihoods p(c|fg) and p(c|bg). These are learnt from
a part-specific soft-assignment of pixels to foreground /background derived from the
posterior of the part position p(l;|I) returned by parsing. The posterior for a pixel to
be foreground given its color p(fg|c) is computed using Bayes’ rule and used during

the next parse.

Spatio-temporal parsing. Parsing treats each frame independently, ignoring the
temporal dimension of video. However, all detections in a track cover the same
person, and people wear the same clothes throughout a shot. As a consequence, the
appearance of body parts is quite stable over a track. In addition to this continuity
of appearance, video offers also continuity of geometry: the position of body parts
changes smoothly between subsequent frames. Therefore, in this stage, we exploit
the continuity of appearance for improving pose estimations in particularly difficult
frames, and the continuity of geometry for disambiguiating multiple modes in the
positions of body parts, which are hard to resolve based on individual frames.

The idea is to find the subset of frames where the system is confident of having
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found the correct pose, integrate their appearance models, and use them to parse
the whole track again. This improves pose estimation in frameswhere parsing has
either failed or is inaccurate, because appearance is a strong cue about the location
of parts.

We extend the single-frame person model of [93] to include dependencies between
body parts over time. The extended model has a node for every body part in every

frame of a continuous temporal window.

Quantitative results

We have applied our pose estimation technique to four episodes of Buffy the vampire
slayer, for a total of more than 70000 video frames over about 1000 shots.

We quantitatively assess these results on 69 shots divided equally among three
episodes. We have annotated the ground-truth pose for four frames spread roughly
evenly throughout the shot, by marking each body part by one line segment [12].
Frames were picked where the person is visible at least to the waist and the arms fit
inside the image. This was the sole selection criterion. In terms of imaging conditions,
shots of all degrees of difficulty have been included. A body part returned by the
algorithm is considered correct if its segment endpoints lie within 50% of the length
of the ground-truth segment from their annotated location.

The initial detector found an upper-body in 88% of the 69 x 4 = 276 annotated
frames. Our method correctly estimates 59.4% [27] of the 276 x 6 = 1656 body parts
in these frames.

Extending the purely kinematic model of [27] with repulsive priors [29] brings
a improvement to 62.6%, thanks to alleviating the double-counting problem (some-

times the parser tries to place the two arms in the same location).

4.2.2 Specific human pose detection

Using the pose estimation system [27, 29] as base, we developed a pose retrieval

system published in [2§].
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Figure 4.14: Pose classes dataset. (a) Pose hips. (b) Pose rest. (c¢) Pose folded.

After performing the pose estimation in the query and database images, similarity
functions are defined and used for sortening the images based on their similarity with
the query pose. Poses named hips, rest and folded are used in the experiments. Our

pose classes database is publicly available at:
http://www.robots.ox.ac.uk/ vgg/data/buffy_pose_classes/index.html

Examples included in the pose dataset can be viewed in figure Fig. 4.14. We
have named these poses (from left to right) hips (both hands on the hips), rest
(arms resting close to the body) and folded (arms folded).

Technical details

We introduce the proposed pose descriptors along with similarity measures.

Pose descriptors. The procedure in [27] outputs a track of pose estimates for each
person in a shot. For each frame in a track, the pose estimate F = {E;},—1_y consists
of the posterior marginal distributions E; = P (l; = (z,y,60)) over the position of
each body part ¢ , where N is the number of parts. Location (z,y) is in the scale-
normalized coordinate frame centered on the person’s head delivered by the initial
upper body detection, making the representation translation and scale invariant.
Moreover, the pose estimation process factors out variations due to clothing and
background, making E well suited for pose retrieval, as it conveys a purely spatial
arrangements of body parts.

We present three pose descriptors derived from E. Of course there is a wide range

of descriptors that could be derived and here we only probe three points, varying the
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dimension of the descriptor and what is represented from E. Each one is chosen to
emphasize different aspects, e.g. whether absolute position (relative to the original
upper body detection) should be used, or only relative (to allow for translation errors

in the original detection).

Descriptor A: part positions. A simple descriptor is obtained by downsizing F
to make it more compact and robust to small shifts and intra-class variation. Each
E; is initially a 141 x 159 x 24 discrete distribution over (z,y,#), and it is resized
down separately to 20 x 16 x 8 bins. The overall descriptor d4(F) is composed of
the 6 resized F;, and has 20 x 16 x 8 x 6 = 15360 values.

Descriptor B: part orientations, relative locations, and relative orienta-
tions. The second descriptor encodes the relative locations and relative orientations
between pairs of body parts, in addition to absolute orientations of individual body
parts.

The probability P(I¢ = 6) that part [; has orientation 6 is obtained by marginal-

izing out location

P =0)=7 P(li=(zy,0)) (4.2)
(z.y)
The probability P(r(l7,1?) = p) that the relative orientation r(lf,[$) from part I; to
l;is pis
P(r(19,19) = p) = Y P =0:)- P(I§ = 0;) - 1(r(6:,0;) = p) (4.3)

(6:,65)

where r(+,-) is a circular difference operator, and the indicator function 1(-) is 1 when
the argument is true, and 0 otherwise. This sums the product of the probabilities of
the parts taking on a pair of orientations, over all pairs leading to relative orientation
p- It can be implemented efficiently by building a 2D table T'(I¢,19) = P(l7 =
0;) - P(I§ = 0;) and summing over the diagonals (each diagonal corresponds to a
different p).

The probability P(l;¥ — 7Y = §) of relative location § = (d,,d,) is built in
an analogous way. It involves the 4D table T'(I7,17, I3, l;’), and summing over lines
corresponding to constant ¢.
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By recording geometric relations between parts, this descriptor can capture local
structures characteristic for a pose, such as the right angle between the upper and
lower arm in the ‘hips’ pose (figure L14]). Moreover, locations of individual parts are
not included, only relative locations between parts. This makes the descriptor fully
translation invariant, and unaffected by inaccurate initial detections.

To compose the overall descriptor, a distribution over 6 is computed using (4.2)

for each body part, and distributions over p and over ¢ are computed (£3) for each
pair of body parts. For the upper-body case, there are 15 pairs and the overall
descriptor is the collection of these 6 4+ 15 4 15 = 36 distributions. Each orientation
distribution, and each relative orientation distribution, has 24 bins. The relative
location is downsized to 7 x 9, resulting in 24 -6 +24 - 15+ 9 -7 - 15 = 1449 total
values.
Descriptor C: part soft-segmentations. The third descriptor is based on soft-
segmentations. For each body part [;, we derive a soft-segmentation of the image
pixels as belonging to [; or not. This is achieved by convolving a rectangle repre-
senting the body part with its corresponding distribution P(l;). Every pixel in the
soft-segmentation takes on a value in [0, 1], and can be interpreted as the probability
that it belongs to [;.

Each soft-segmentation is now downsized to 20 x 16 for compactness and robust-
ness, leading to an overall descriptor of dimensionality 20 x 16 x 6 = 1920. As this
descriptor captures the silhouette of individual body parts separately, it provides a
more distinctive representation of pose compared to a single global silhouette, e.g.
as used in [9, [48].

Similarity measures. FEach descriptor type (A—C) has an accompanying similarity
measure sim(dy, dy):

Descriptor A. The combined Bhattacharyya similarity p of the descriptor d’ for each
body part i: sima(dy, dy) = 37, p(d}, d%). As argued in [I5], p(a,b) = 3~ Va(s) - o(5)
is a suitable measure of the similarity between two discrete distributions a, b (with j

running over the histogram bins).
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Descriptor B. The combined Bhattacharyya similarity over all descriptor compo-
nents: orientation for each body part, relative orientation and relative location for
each pair of body parts.

Descriptor C. The sum over the similarity of the soft-segmentations d for each part:
simg(dg, df) = Y, d} - dj. The dot-product - computes the overlap area between two

soft-segmentations, and therefore is a suitable similarity measure.

Experiments and results

We evaluate the previous pose descriptors against a HOG-based system. The HOG-
based system uses a single HOG descriptor to describe an enlarged region defined
around the upper-body detection bounding-box. In addition, we have defined two
working modes: query mode and classifier mode.

In query mode, a single image is shown to the system. The region around the
detected person is described either by the pose descriptors (A,B,C) or by the HOG
descriptor. Then, we compare the descriptor associated to query image against all
the descriptors associated to the database (frames from video shots).

In classifier mode, training data is needed to train discriminative classifiers (i.e.
SVM with linear kernel), for an specific pose class, with either pose descriptors or
HOG descriptors extracted from the enlarged region around the person.

The experiments have been carried out on video shots extracted from episodes of
Buffy: TVS.

Experiment 1: query mode. For each pose we select 7 query frames from the
5 Bufty episodes. Having several queries for each pose allows to average out per-
formance variations due to different queries, leading to more stable quantitative
evaluations. Each query is searched for in all 5 episodes, which form the retrieval
database for this experiment. For each query, performance is assessed by the average
precision (AP), which is the area under the precision/recall curve. As a summary

measure for each pose, we compute the mean AP over its 7 queries (mAP). Three
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’ H A \ B \ C \ HOG \ instances \ chance ‘
hips 26.3 | 24.8 | 25.5 8.0 | 31 /983 3.2 %
rest 38.7 | 39.9 | 34.0 16.9 | 108 / 950 | 11.4 %
folded || 14.5 | 15.4 | 14.3 8.1 | 49 /991 4.9 %

Table 4.1: Experiment 1. Query mode (test set = episodes 1-6). For each pose and
descriptor, the table reports the mean average precision (mAP) over 7 query frames. The
fifth column shows the number of instances of the pose in the database, versus the total
number of shots searched (the number of shot varies due to different poses having different
numbers of shots marked as ambiguous in the ground-truth). The last column shows the
corresponding chance level.

queries for each pose are shown in figure[L.14l In all quantitative evaluations, we run
the search over all shots containing at least one upper body track.

As table .1l shows, pose retrieval based on articulated pose estimation performs
substantially better than the HOG baseline , on all poses, and for all three descrip-
tors we propose. As the query pose occurs infrequently in the database, absolute
performance is much better than chance (e.g. ‘hips’ occurs only in 3% of the shots),
and we consider it very good given the high challenge posed by the task . Notice
how HOG also performs better than chance, because shots with frames very similar
to the query are highly ranked, but it fails to generalize.

Interestingly, no single descriptor outperforms the others for all poses, but the

more complex descriptors A and B do somewhat better than C on average.

Experiment 2: classifier mode. We evaluate here the classifier mode. For each
pose we use episodes 2 and 3 as the set used to train the classifier. The positive
training set ST contains all time intervals over which a person holds the pose (also
marked in the ground-truth). The classifier is then tested on the remaining episodes
(4,5,6). Again we assess performance using mAP. In order to compare fairly to query

mode, for each pose we re-run using only query frames from episodes 2 and 3 and

2 The pose retrieval task is harder than simply classifying images into three pose classes. For
each query the entire database of 5 full-length episodes is searched, which contains many different
poses.
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’ \ Classifier Mode H Query mode ‘
A|l B C HOG A| B C | HOG
hips 9.2 | 16.8 | 10.8 6.8 | 33.9 | 19.9 | 21.3 1.7
rest 48.2 | 38.7 | 41.1 18.4 | 36.8 | 31.6 | 29.3 15.2
folded | 8.6 | 12.1 | 13.1 13.6 | 9.7 109 | 9.8 10.2

Table 4.2: Experiment 2. Left columns: classifier mode (test set = episodes 4-6). Right
columns: query mode on same test episodes 46 and using only queries from episodes 2
and 3. Each entry reports AP for a different combination of pose and descriptor, averaged
over 3 runs (as the negative training samples S~ are randomly sampled).

searching only on episodes 46 (there are 3 such queries for hips, 3 for rest, and 2
for folded). Results are given in table [4.2

First, the three articulated pose descriptors A-C do better than HOG on hips and
rest also in classifier mode. This highlights their suitability for pose retrieval. On
folded, descriptor C performs about as well as HOG. Second, when compared on the
same test data, HOG performs better in classifier mode than in query mode, for all
poses. This confirms our expectations as it can learn to suppress background clutter
and to generalize to other clothing/people, to some extent. Third, the articulated
pose descriptors, which do well already in query mode, benefit from classifier mode
when there is enough training data (i.e. on the rest pose). There are only 16 instances

of hips in episodes 2 and 3, and 11 of folded, whereas there are 39 of rest.

4.2.3 TRECVid challenge

In TRECVid challenge (video retrieval evaluation) che goal is to retrieve video shots
from a set of videos that satisfy a given query. For example, “shots where there are
two people looking at each other in the country side”.

For queries where people are involved, we can use our upper-body detector com-
bined with the temporal association approach of the detections, to retrieve them.

In figure Fig. [1.16] the represented concept is “people looking at each other”.

3http://www-nlpir.nist.gov/projects/trecvid/
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Figure 4.15: Use of the upper-body detector on TRECVID challenge. Each
row shows frames from different shots. Top row matches query ”‘single person”’.
Bottom row matches query “two people”.

Figure 4.16: Use of the upper-body detector on TRECVID challenge. These
frames come from a shot that satisfies query “people looking at each other”. In this
case, we use the direction information provided by the upper-body profile detector.

We have made use of the directional information encoded in the upper-body profile
detector. This is to say, since such detector is tuned to detect persons looking at the
right, we run twice the detector on the original and mirror image, replacing double
detections with the one with the highest confidence score and keeping the direction
information. So, once we build temporal tracks, we assign (by majority voting) a
direction label to each one. Finally, we can retrieve the shots where there exists
simultaneously (in time) at least two tracks with different directions.

We have also used the upper-body tracks to retrieve shots where there are exactly

or at least IV persons. We can also use the temporal information, to retrieve shots
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where there are people approaching or getting away.

These approaches, among others, have been used by the Oxford University team
in TRECVid’07 [90] and TRECVid’08 [91].

4.3 Discussion

In this chapter, we have presented two new upper-body (i.e. head and shoulders)
detectors, that cover frontal/back and profile viewpoints. Using as base these detec-
tors, we have developed applications for (i) human pose estimation, (ii) pose based
image/video retrieval, and (%ii) content-based video description.

The main motivation for building upper-body detectors is to be able to deal with
the detection of people in situations where a face detector or a full-body detector
fails. For example, a person viewed up to the hips or viewed from the back. In
general, they are suitable for video shots coming from TV shows or feature films.
We have combined HOG descriptors [17] with SVM classifiers (linear kernel) to create
such detectors. We have gathered training samples from feature films and tested the
trained detectors on video frames from ‘Buffy: TVS’ TV show. The achieved results
are quite satisfactory and are improved when a video sequence is available. The latter
is due to the fact that we can use temporary constraints to remove false positives.

Ramanan [93] proposed a method for pose estimation based on appearance (image
gradients and color) that works for objects of a predefined size. We extend his
method by including a set of preprocessing steps that make our method to work in
more general situations. These new steps include (i) person localization and scale
estimation based on upper-body detections, (7i) foreground highlighting (i.e. clutter
reduction), and, (i77) appearance transfer (between frames), when video is available.
Additionally, we contribute a new annotated test dataset suitable to evaluate human
pose estimation methods.

Afterwards, we explore the idea of retrieving image/video based on the pose held

by people depicted there. We build and evaluate a system to do that, based on the
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pose estimator developed previously. In order to allow future comparisons with our
work, we contribute an annotated dataset of pose classes (i.e. hips, rest and folded).

Finally, we use the information provided by the upper-body detectors as cues
for retrieving video shots based on semantic queries. For example, we are able to
retrieve video shots where there are ‘just one person’, ‘many people’, ‘people facing
each other’,... In particular, the proposed strategies are evaluated on TRECVid
challenge.

Part of the research included in this chapter has been already published on the

following papers:

e J. Philbin, O. Chum, J. Sivic, V. Ferrari, M.J. Marin-Jiménez, A. Bosch,
N. Apostolof and A. Zisserman. Oxford TRECVid Nootebook Paper 2007.
TRECVid 2007: [90]

e J. Philbin, M.J. Marin-Jiménez, S. Srinivasan, A. Zisserman, M. Jain, S. Vem-
pati, P. Sankar and C.V. Jawahar. Ozford/IIIT TRECVid Nootebook Paper
2008. TRECVid 2008: [91]

e V. Ferrari, M.J. Marin-Jiménez and A. Zisserman. Progressive search space
reduction for human pose estimation. International Conference on Computer

Vision and Pattern Recognition (CVPR). Anchorage, June 2008: [27]

e V. Ferrari, M.J. Marin-Jiménez and A. Zisserman. Pose search: retrieving
people using their pose. International Conference on Computer Vision and
Pattern Recognition (CVPR). Miami, June 2009: [28] (oral).

e V. Ferrari, M.J. Marin Jiménez and A. Zisserman. 2D Human Pose Estimation
i TV Shows. Book chapter in book ‘Statistical and Geometrical Approaches
to Visual Motion Analysis’; 2009: [29)].



82 CHAPTER 4. UPPER-BODY DETECTION AND APPLICATIONS



Chapter 5

Accumulated Histograms of
Optical Flow and Restricted
Boltzmann Machines for Human

Action Recognition

In the first part of this chapter, we present a new motion descriptor based on op-
tical flow. Then, we introduce the usage of models based on Restricted Boltzmann

Machines in the human action recognition problem.

5.1 Introduction

In the last few years, the amount of freely available videos in the Internet is growing
very quickly. However, currently, the only way of finding videos of interest is based
on tags, manually added to them. This manual annotation implies a high cost and,
usually, it is not very exhaustive. For instance, in Youtube or Metacafe, videos are
tagged with keywords by the users and grouped into categories. Frequently, the tags

refer to the full length video and sometimes the tags are just subjective words, e.g.

83
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fun, awesome,... On the other hand, we could be interested in localizing specific
shots in a target feature film where something happens (e.g. people bozing) or the
instants where a goal is scored in a football match.

Currently, retrieving videos from databases based on visual content is a challeng-
ing task where much effort is being put on it by the research community. Let us
name for example TRECVid challenge [107], where the aim is to retrieve video shots
by using high-level queries. For example, “people getting into a car” or “a children
walking with an adult”.

From all the possible categories that we could enumerate to categorize a video,
we are interested in those where there is a person performing an action. Let us say
walking, running, jumping, handwaving,...

Therefore, in this chapter we tackle the problem of Human Action Recognition
(HAR) in video sequences. We investigate on the automatic learning of high-level

features for better describing the human actions.

5.2 Human action recognition approaches

In the last decade different parametric and non-parametric approaches have been
proposed in order to obtain good video sequence classifiers for HAR (see [75]).
Nevertheless, video-sequence classification of human motion is a challenging and
open problem, at the root of which is the need of finding invariant characterizations
of complex 3D human motions from 2D features [94].

The most interesting invariances are those covering the viewpoint and motion of
the camera, type of camera, subject performance, lighting, clothe and background
changes [04, 103]. In this context, searching for specific 2D features that code the
highest possible discriminative information on 3D motion is a very relevant research
problem.

Different middle-level features have been proposed in the recent past years [19,

105, 102], 18, 54) 22]. In this chapter, we present an approach that is reminiscent of
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some of these ideas, since we use the low level information provided by optical flow,

but processed in a different way.

In contrast to approaches based on body parts, our approach can be categorized
as holistic [75]. That is, we focus on the human body as a whole. So, from now on,

we will focus on the window that contains the target person.

Optical Flow (OF) has been shown to be a promising way of describing human
motion on low resolution images [19]. Dollar et al. [18] create descriptors from
cuboids of OF. Inspired by [19], Fathi and Mori [22] build mid-level motion features.
Laptev et al. [57, [55] get reasonable results on detecting realistic actions (on movies)
by using 3D volumes of Histograms of Oriented Gradient (HoG) and Optical Flow
(HoF). The biologically inspired system presented by Jhuang et al. [45] also uses OF
as a basic feature. A related system is the one proposed by Schindler and Van Gool
[99, 100].

Note that many of these approaches use not only OF but also shape-based fea-
tures. In contrast, we are interested in evaluating the capacity of OF individually

for representing human motion.

5.3 Accumulated Histograms of Optical Flow: aHOF

For each image, we focus our interest on the Bounding Box (BB) area enclosing
the actor performing the action. On each image, we estimate the BB by using a
simple thresholding method based on that given on [85], approximating size and
mass center, and smoothed along the sequence. BBs proportional to the relative size
of the object in the image, and large enough to enclose the entire person, regardless
of his pose, have been used (Fig. BIla). All the frames are scaled to the same size
40 x 40 pixels. Then the Farnebéck’s algorithm [21] is used to estimate the optical

flow value on each pixel.

The idea of using optical flow features from the interior of the bounding box
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a

Figure 5.1: How to compute aHOF descriptor. (a) BB enclosing person, with super-
imposed grid (8x4). (b) Top: optical flow inside the selected grid cell for the visible single
frame. Bottom: in each aHOF cell, each column (one per orientation) is a histogram of
OF magnitudes (i.e. 8 orientations x 4 magnitudes). (¢) aHOF computed from 20 frames
around the visible one. Note that in the areas with low motion (e.g. bottom half) most of
the vectors vote in the lowest magnitude bins. (Intensity coding: white = 1, black = 0).

was firstly suggested in [19], although here we use it to propose a different im-
age descriptor. The optical flow from each frame is represented by a set of ori-
entation x magnitude histograms (HOF) from non-overlapped regions (grid) of the
cropped window. Each optical flow vector votes into the bin associated to its mag-
nitude and orientation. The sequence-descriptor, named aHOF (accumulated His-
togram of Optical Flow), is a normalized version of the image descriptor accumulated

along the sequence. Therefore, a bin (i, j, k) of a aHOF H is computed as:
H(ll, Oj, mk) = Z Ht(li, 0]', mk)
t

, where [;, o; and my, are the spatial location, orientation and magnitude bins, re-
spectively, and H' is the HOF computed at time ¢. The normalization is given by
each orientation independently on each histogram (see Fig. [5lb). Here each bin is
considered a binary variable whose value is the probability of taking value 1.

In practice, we associate multiple descriptors to each observed sequence, that is,

one aHOF-descriptor for each subsequence of a fixed number of frames. Fig.[5.2lshows
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Figure 5.2: Examples of aHOF for different actions. Top row shows the optical flow
estimated for the displayed frame. Bottom row represents the aHOF descriptor computed
for the subsequence of 20 frames around that frame.

the aHOF representation for different actions in KTH database. The descriptor has

been computed from a window of 20 frames around the displayed frame.

5.4 Evaluation of aHOF': experiments and results

We test our approach on two publicly available databases that have been widely
used in action recognition: KTH human motion dataset [102] and Weizmann human
action dataset [9].

KTH database. This database contains a total of 2391 sequences, where 25 actors
performs 6 classes of actions (walking, running, jogging, boxing, hand clapping and
hand waving). The sequences were taken in 4 different scenarios: outdoors (sl),
outdoors with scale variation (s2), outdoors with different clothes (s3) and indoors
(s4). Some examples are shown in Figlh3l As in [102], we split the database in 16
actors for training and 9 for test.

In our experiments, we consider KTH as 5 different datasets: each one of the 4
scenario is a different dataset, and the mixture of the 4 scenarios is the fifth one. In
this way we make our results comparable with others appeared in the literature.
Weizmann database. This database consists of 93 videos, where 9 people perform

10 different actions: walking, running, jumping, jumping in place, galloping sideways,
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Figure 5.3: KTH dataset. Typical examples of actions included in KTH dataset.
From left to right: boxing, handclapping, handwaving, jogging, running, walking.

}r-—h b

jumping jack, bending, skipping, one-hand waving and two-hands waving. Some
examples are shown if Fig[A7l

5.4.1 Experimental setup

For all the experiments, we use 8-bins for orientation and 4-bins for magnitude:
(—00,0.5],(0.5,1.5], (1.5, 2.5], (2.5, +00). Before normalizing each cell in magnitude,
we add 1 to all the bins to avoid zeros. The full descriptor for each image is a
1024-vector with values in (0, 1).

We assign a class label to a full video sequence by classifying multiple subse-
quences (same length) of the video, with SVM or GentleBoost (see [39]), and taking
a final decision by majority voting on the subsequences. We convert the binary class-
fiers in multiclass ones by using the one-vs-all approach. Both classifiers are also
compared with KNN.

5.4.2 Results

All the results we show in this subsection, come from averaging the results of 10

repetitions of the experiment with different pairs of training/test sets.

Grid configuration. We carried out experiments with three different grid config-
urations: 2 x 1,4 x 2 and 8 x 4 in order to define the best grid size for aHOF. Table
6.1 shows that 8 x 4 provides the best results. Note that the so simple configuration
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Figure 5.4: Features selected by GentleBoost from raw aHOF'. Spatial loca-
tion of features selected by each class-specific GentleBoost classifier. The lighter the
pixel the greater the contribution to the classification. From left to right: bozing,
handclapping, handwaving, jogging, running, walking.

y | INN 5NN 9NN |
2x1 [ 87.4 87.5 876
4x2 | 922 929 933
8x4 | 940 94.5 943

Table 5.1: aHOF grid configuration. This table shows the influence of the selected
grid configuration in the classification performance. Classification is done with kNN.

2 x 1 (nearly upper body and lower body separation) is able to classify correctly

more than the 87% of the sequences.

y | 10 15 20 25 30 Ful

Seqs 944 948 946 950 944 93.7
Subsegs | 86.2 89.6 919 93.0 939 93.7

Table 5.2: Different lengths of subsequences. Classification results with Gentle-
Boost on aHOF vectors by using subsequences of different lengths. KTH database.

Subsequence length space. We are firstly interested in evaluating the perfor-
mance of the raw aHOF features in the classification task. Moreover, we explore the
length space of the subsequences used to classify the full sequences. Subsequences
are extracted each 2 frames from the full length sequence. In order to evaluate these

features, we have chosen a binary GentleBoost classifier, in a one-vs-all framework.
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In table 5.2 we show the performance of classification both for the individual sub-
sequences and the full sequences.

In terms of subsequence, the longer the subsequence, the higher the classification
performance. However, in terms of full-length sequences, the use of intermediate
subsequence lengths offers the best results.

GentleBoost allows us to determine what features better distinguish each action
from the others. Fig. [5.4] shows the location of the features selected by GentleBoost
from the original aHOF's for one of the training/test sets. For actions implying
displacement (e.g. walking, jogging), the most selected features are located on the
bottom half of the grid. However, for those actions where the arms motion define
the action (e.g. handwaving), GentleBoost prefers features from the top half.

For the following experiments, we will always use subsequences of length 20 frames

to compute the aHOF descriptors.

Evaluating aHOF with different classifiers. Tables (.3 and [£.4] show classifi-
cation results on subsequences (length 20) and full-lenght sequences, respectively, by
using KNN classifiers. Each column represents the percentage of correct classification

by using different values of K in the KNN classifier.

[ Scenario [ 1 5 9 13 17 21 25 29 33 37

el 93.6 938 93.8 939 939 940 939 939 938 93.7
e2 86.6 872 87.5 879 883 885 8.7 889 89.0 89.0
e3 89.9 903 903 904 904 90.3 90.3 904 90.3 90.3
ed 93.5 936 93.6 936 93.6 93.7 93.6 93.6 93.6 93.5
el34 93.1 933 934 934 934 934 933 933 933 933
el234 90.8 91.1 913 913 914 915 916 91.6 916 91.6

Table 5.3: Classifying subsequences (len 20). KNN on KTH by using aHOF.

Scenario 3 results to be the hardest. In our opinion that is due to the loose
clothes used by the actors, and whose movement creates a great amount of OF

vectors irrelevant to the target action.
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Scenario | 1 5 9 13 17 21 25 29 33 37 |

el 94.8 946 952 955 956 957 959 96.0 96.0 96.0
e2 93.3 930 93.0 93.0 93.1 928 933 934 93.6 93.6
e3 90.5 909 914 915 914 916 914 914 914 913
ed 96.4 964 959 96.0 957 959 958 95.8 95.7 96.0
el34 946 952 951 951 951 951 951 952 952 95.1
el234 94.0 945 943 943 943 944 944 945 946 94.6

Table 5.4: Classifying full sequences (subseqgs. len. 20). KNN on KTH by
using aHOF.

Subseqs Seqs
Scenario | GB  SVM | GB SVM
el 92.6 923 | 956 95.1
e2 92.0 90.5 | 97.1 96.3
e3 89.3 87.4 | 89.8 88.2
ed 94.2 943 | 97.1 97.6
el234 91.9 921 | 946 94.8

Table 5.5: Classifying full sequences (subsegs. len. 20). KNN on KTH by
using aHOF.

Table Tab. represents the confusion matrix for the classification with SVM
on the mixed scenario €1234 (see Table Tab. for global performance). Note that
the greatest confusion is located in action jogging with actions walking and running.
Even for a human observer that action is easy to be confused with any of the other

two.

Weizmann DB. Table[b.7shows KNN classification results on Weizmann database,
with leave-one-out strategy on the actors (i.e. averaged on 9 runs).
Our best result here is 94.3% of correct classification on the subsequences and
91.9% on the full-length sequences, by using SVM as base classifier (see table Tab.[5.g)).
Confusion matrix is shown in table Tab. 5.9l Note that the greatest confusion is
located in run with skip. Probably, due to the fact that both actions implies fast

displacement and the motion field is quite similar.
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box  hclap hwave  jog run  walk
box 98.6 1.2 0.2 0.0 0.0 0.0
hclap 4.9 92.2 2.8 0.0 0.0 0.0
hwave | 1.6 0.2 98.2 0.0 0.0 0.0
jog 0.0 0.5 0.0 89.9 6.0 3.5
TUun 0.0 0.0 0.1 83 91.3 03
walk 0.2 0.6 0.0 0.2 0.4 98.6

Table 5.6: Confusion matrix on KTH - scenario el1234. Percentages corre-
sponding to full-length sequences. SVM is used for classifying subsequeces of length
20. The greatest confusion is located in jogging with walking and running. Even for
a human observer that action is easy to be confused with any of the other two.

y | 1 5 9 13 17 21 25 29 33 37 |

Subsegs | 93.0 939 939 93,5 93.6 923 91.6 91.7 91.7 90.6
Seqs 91.1 91.1 91.1 911 91.1 889 881 881 896 88.9

Table 5.7: Results on Weizmann. KNN by using aHOF.

’ \ Subseqs \ Seqs ‘
GB 92.8 91.9
SVM 94.3 91.9

Table 5.8: Classifying actions (subsegs. len. 20). GentleBoost and SVM on
Weizmann by using aHOF.
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wavel wave2 jump pjump  side walk bend jack run  skip
wavel | 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wave2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jump 0.0 0.0 88.9 0.0 0.0 0.0 0.0 0.0 0.0 111
pjump 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
side 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
bend 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
jack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
run 0.0 0.0 0.0 0.0 11.1 0.0 0.0 0.0 66.7 222
skip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 83.3

Table 5.9: Confusion matrix on Weizmann. Percentages corresponding to full-
length sequences. SVM is used for classifying subsequeces of length 20. The greatest
confusion is located in run with skip. Both actions implies fast displacement.
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5.5 RBM and Multilayer Architectures

Hinton [42] 40] introduced a new algorithm allowing to learn high level semantic
features from raw data by using Restricted Boltzmann Machines (RBMs). In [58],
Larrochelle and Bengio introduced the Discriminative Restricted Boltzmann Machine
model (DBRM) as a discriminative alternative to the generative RBM model. In [98],
a distance measure is proposed on the feature space in order to get good features for
non-parametric classifiers.

Some of these algorithms have shown to be very successful in some image clas-
sification problems [41l [ITT) 120], where the raw data distributions are represented
by the pixel gray level values. However, in our case, the motion describing the ac-
tion is not explicitly represented in the raw image and a representation of it must
be introduced. Here we evaluate the efficacy of these architectures to encode better
features from the raw data descriptor in the different learning setups.

In [6], a deep discussion on the shortcomings of one-layer classifiers, when used on
complex problems, is given, at the same time that alternative multilayer approaches
(RBM and DBN) are suggested. Following this idea, we evaluate the features coded
by these new architectures on the HAR task.

Therefore, in this section, we firstly overview Restricted Boltzmann Machines and

Deep Belief Networks. Then, alternative RBM-based models are also introduced.

5.5.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine with a bipartite
connectivity graph (see [(.5la). That is, an undirected graphical model where only
connections between units in different layers are allowed. A RBM with m hidden
variables h; is a parametric model of the joint distribution between the hidden vector

h and the vector of observed variables x, of the form

P(x,h) = e~ Brerauxt)
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where
Energy(x,h) = —bTx — cTh — hTWx

is a bilinear function in x and h with W a matrix and b, ¢ vectors, and

7 — Z e—Energy(x,h)
h

being the partition function (see [5]). It can be shown that the conditional distri-

butions P(x|h) and P(h|x) are independent conditional distributions, that is

P(h|x) = HP (h;|x), P(x|/h) = HP x;|h)

Furthermore, for the case of binary variables we get

P(h;|x) = sigm(c; + W;x), P(x;|h) = sigm(b; + W h) (5.1)

where sigm(z) = (1 + e %)~ is the logistic sigmoidal function and W; and W

represent the i-row and j-column respectively of the W-matrix.

Learning parameters: Contrastive Divergence

Learning RBMs maximizing the gradient log-likelihood needs of averaging from the
equilibrium distribution p(z,h) what means a prohibitive cost. The Contrastive
Divergence (CD) criteria proposed by Hinton, [40], only needs to get samples from
the data distribution py, and the one step Gibbs sampling distribution p;, what
implies an affordable cost. The parameter updating equations give updating values

proportional to averages difference from these two distributions. That is,

A’U)ij x< Uih]' Zpp — < Ul'hj >m (52)
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Figure 5.5: RBM and Deep Belief Network. (a) Example of a RBM with 3
observed and 2 hidden units. (b) Example of a DBN with [ hidden layers. The

upward arrows only play a role in the training phase. W/ is W' (W; transpose)

when a RBM is trained. The number of units per layer can be different.

where < v;h; > means average (using the subindex distribution) of the number of
times that hidden unit j is on for the visible variable 7. The equations for the bias

b; and c¢; are similar.

5.5.2 Multilayer models: DBN

Adding a new layer to a RBM, a generalized multilayer model can be obtained.
A Deep Belief Network (DBN) with [ hidden layers is a mixed graphical model
representing the joint distribution between the observed values x and the [ hidden

layers hy, by
1—2

P(x,hy, - hy) = [ [ PObgfhgsr) P(by -y, by)
k=0

(see figlhh]) where x = hg and each conditional distribution P(hy_1|hy) can be seen
as the conditional distribution of the visible units of a RBM associated with the
(k — 1, k) layers in the DBN hierarchy.
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Learning a DBN model is a very hard optimization problem requiring of a very
good initial solution. In [42] a strategy based on training a RBM on each two
layers using CD is proposed to obtain the initial solution. Going bottom-up in the
layer-hierarchy, each pair of consecutive layers is considered as an independent RBM
model, with observed data the values of the lower layer. In the first RBM, values for
Wy, by, cg are estimated using CD from the observed samples. Observed values for
the hy layer are generated from P(hy|hg). The process is repeated on (hy, hs) using
h; as observed data, and so on till the [ —1 layer. From this initial solution, different
fine tuning criteria for supervised and non-supervised experiments can be used. In
the supervised case, a backpropagation algorithm from the classification error is
applied fixing W/ = W[ (transpose). In the non-supervised case, the multiclass
cross-entropy error function, — ), p; log p; is used, where p; and p; are the observed
and reconstructed data respectively. In order to compute this latter value, each
sample is encoded up until the top layer, and then, decoded until the bottom layer.
In this case, a different set of parameters are fitted on each layer for the upward and

downward pass.

In [42] [6] is shown that the log-likelihood of a DBN can be better approximated
with increasing number of layers. In this way, the top layer vector of supervised
experiments can be seen as a more abstract feature vector with higher discriminating

power for the trained classification task.

5.5.3 Other RBM-based models

Depending on the target function used, different RBM models can be defined. In
these section, we present two models that are defined with the aim of obtaining

better data representations in terms of classification.
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RBM with Nonlinear NCA.

Salakhutdinov and Hinton [98] proposed to estimate the weights W by minimizing

the Onca criteria in order to define a good distance for non-parametric classifiers:

Onca = Z Z Dab (5.3)

exp(— || f(x* W) — FxW)|")
> e exp(— | f(xa W) — f(x=[W)|])

Pab = (54)

where f(z|W) is a multi-layered network parametrized by the weight vector W, N

is the number of training samples, and ¢ is the class label of sample b.

Discriminative RBM.

Larochelle and Bengio [58] propose the DRBM architecture to learn RBM using a
discriminative approach. They add the label y to the visible data layer and models
the following distribution:

p(y,x,h) < exp {E(y,x,h)} (5.5)
where,
E(y,x,h) = —h"Wx — b’x — c’h —d"§ — h" Uy

with parameters © = (W,b,c,d,U) and y = (1y:i)l'C:1 for C' classes. Two objective

functions can be used with this model:
Ogen = Z logp Yi, XZ Odzsc = Z logp yz|XZ (56)
=1

where Oy, is the cost function for a generative model, and Og;s. is the cost function

for a discriminative model. Both cost functions can be combined in a single one
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(hybrid):
Ohybm'd = Odisc + aOgen (57)

Semisupervised training can be performed with DRBM models by using the following

cost function:

N
Osemi = Odisc + ﬁ <_ Z logp(xz)) . (58)
i=1

where Oy, is applied only to the labelled samples.

5.6 Evaluation of RBM-based models: experiments

and results

5.6.1 Databases and evaluation methodology.

In this section we evaluate the quality of the features learnt by RBM/DBN in terms
of classification on the actions databases used in the previous experiments (B.4)):
KTH and Weizmann.

Here we present a comparative study between the descriptor generated by RBM
and DBN models, and the descriptor built up from raw features. We run supervised
and non-supervised experiments on RBM and DBN. In all cases, a non-supervised
common pre-training stage consisting in training a RBM for each two consecutive
layers has been used. Equations with learning-rate 7 = 0.1 and momentum
a = 0.9 on sample batches of size 100 have been used. The batch average value
is used as the update. From 120 to 200 epochs are run for the full training. From
the 120-th epoch, training is stopped if variation of the update gradient magnitude
from iteration ¢ — 1 to t is lower than 0.01. A different number of batches are used
depending on the length of the sequences in the database. For KTH, 14, 74, 16
and 28 batches, for scenarios 1-4, respectively. For Weizmann, we use 15. The W;-
parameters are initialized to small random numbers (<0.1) and the others parameters
to 0.
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In the supervised experiments, the fine-tuning stage is carried out using a stan-
dard backpropagation algorithm using the label classification error measured on a
new output layer. A layer with as many units as classes (from now on, short-code), is
added to the 1024 top sigmoidal-layer (from now on, long-code). The connection be-
tween these two layers uses a SoftMax criteria to generate the short-code (label) from
the long one, while the reverse connection remains sigmoidal. In the non-supervised
case we train models with several hidden sigmoidal layers and one output lineal layer
(1 = 0.001) of the same size. In [109] it is shown that DBNs with finite width and
an exponential number of layers can fit any distribution. Here we fix the width of
all the hidden layers to the width of the visible one (1024). Therefore, the number
of training parameters for each RBM is (1024x1024)W + (1024)b + (1024)c.

5.6.2 Experiments with classic RBM models: RBM/DBN

Experimental setup

aHOF parameters. As in the final experiments of section Sec[.4l the cropped
window (from the BB) is divided in 8x4 (rows X cols) cells. For all the experiments,
we use 8-bins for orientation and 4-bins for magnitude. The full descriptor for each
image is a 1024-vector with values in (0, 1).
Classifiers. We assign a class label to a full video sequence by classifying multiple
subsequences (same length) of the video, with SVM or GentleBoost (see [39]), and
taking a final decision by majority voting on the subsequences. We convert the
binary classfiers in multiclass ones by using the one-vs-all approach. Both classifiers
are also compared with KNN and the SoftMazx classifier. In this context, SoftMax
classifier assigns to each sample the index of the maximum value in its short-code H
From now on, by short-code we denote the code generated by the top layer in
the discriminative RBM, which comes from hidden units modeled by a soft-max

distribution. Six units for the experiments on KTH, and ten for Weizmann. We will

'The top layer of the discriminative DBN is trained to assign value 1 to the position of its class,
and 0 to the other positions
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use long-codes for the codes generated for the layer situated just before the top layer.
Here 1024 dimensions.
All the results we show in this subsection, come from averaging the results of 10

repetitions of the experiment with different pairs of training/test sets.

Results on KTH dataset

Multilayer results.
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Figure 5.6: RBM codes. Stacked vector of features for the 6 different actions in
KTH. (a) aHOF data, (b) 1024-codes, (c¢) 6-codes. The darker the pixel, the greater
the probability of taking value 1. Note in (b) the sparsity gained by encoding aHOF
features in (a). For clarity, vectors in (c) have been scaled in width.

[L [