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Abstract: Torsion mechanical waves have the capability to characterize shear stiffness moduli of soft
tissue. Under this hypothesis, a computational methodology is proposed to design and optimize
a piezoelectrics-based transmitter and receiver to generate and measure the response of torsional
ultrasonic waves. The procedure employed is divided into two steps: (i) a finite element method
(FEM) is developed to obtain a transmitted and received waveform as well as a resonance frequency
of a previous geometry validated with a semi-analytical simplified model and (ii) a probabilistic
optimality criteria of the design based on inverse problem from the estimation of robust probability
of detection (RPOD) to maximize the detection of the pathology defined in terms of changes of shear
stiffness. This study collects different options of design in two separated models, in transmission
and contact, respectively. The main contribution of this work describes a framework to establish
such as forward, inverse and optimization procedures to choose a set of appropriate parameters of a
transducer. This methodological framework may be generalizable for other different applications.

Keywords: torsional ultrasound; probability of detection; soft tissue mechanics; finite element
method; optimization; inverse problem

1. Introduction

Torsional ultrasonic waves can be used to characterize the biomechanics of soft tissue. The design
process of a torsional ultrasonic sensor has as a key point the use of piezoelectric materials [1,2].
Piezoelectric materials (PZT) are an inorganic compound that changes shape when an electric field
is induced. They are actually used in the design of sensors in several applications, such as music
microphones and instruments, precision positioning, cancellation of noise, motors, and ultrasonic
devices in our study.

This design problem provides two steps, the understanding of propagation of torsional waves
and the optimization of a transducer with the capacity to transmit and receive them. Additionally,
some applications require large displacements, such as improvement of micropositioning in robotics,
CD drivers, or control of trailing edge flaps of helicopters. For the rest, these transducers are able
to execute large circumferential displacements, it is necessary for smart structures, and they can be
adapted for a range of applications on a wide variety of requirements [3,4].

Several optimization criteria are available for ultrasonic transducers depending on specific
parameters being considered. For example, the use of central frequency and insertion loss (a factor
associated with frequencies that disappear through a filter). Furthermore, new variables as the case
of central frequency or the energy have been shown to be the most appropriate. Other new features
have been introduced that describe the waveform and amplitude spectra improving the inputs of the
optimization formulation, widening the range of applications as it is shown in this work [5,6].

The combined use of simulation based on finite elements analysis (FEA) and optimization methods
leads to a suitable way of designing ultrasonic sensors. This process needs the use of a global
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cost function that measures the maximization/minimization criterion and is calculated using the
model. Several design alternatives can be obtained using different parameters to optimize the cost
function [7,8].

The use of FEA together with the multi-objective decision facilitates an efficient design where
conflicts among several criteria such as acoustic effects, impedance, vibration of the sensors are
optimized, in addition to the design time [9,10].

Recently, sensors which can be used for similar applications have been designed. Bolt-Langevin
type transducers (BLT) are an example, composed of piezoelectric disks with a pair of elastic bodies
mounted at the ends which generate mechanical oscillations with a specific design frequency. They
mainly use longitudinal waves in the thickness direction. Additionally, there are some works taking
into account the torsional vibrations generated by the elastic part [11–14]. The main application of this
type of sensors was the generation of uniform micro-droplets [15], as well as in acoustic levitation
(NFAL), in non-destructive testing, and biomedical engineering [16,17].

Numerical analysis may be useful to consider other designs, setting the tolerance of each
parameter related to sensor efficiency within a particular range [18,19].

Torsional waves has also been used as guided waves in nondestructive testing of pipes [20,21],
in liquids inserting a bar in the fluid where waves are propagated to measure density [22,23], liquid
level [24], temperature [24], or viscosity [23].

One of the main applications of ultrasonic transducers in medicine is elastography with ultrasonic
longitudinal waves, where there exists a special interest in efficiency enhancements of sensor
desings [25–28]. Recently, a new field of investigation has been opened introducing the concept
of transversal waves to measure the shear modulus of soft tissue, due to the importance of correlating
it with many disorders [29,30].

Accordingly, the motivation of this study began with the aim at designing an optimized ultrasonic
sensor focus on clinical applications to obtain high levels of sensitivity in mechanical identification
of soft tissue. A part of the computational design of the transducer was described in detail [31].
In parallel to this, since the first design study, some reference works have emerged as another shear
ultrasonic sensor based on induced resonances [32] providing a new screening method for breast cancer
from wave viscoelasticity imaging [33]. The last approaches in this line of research have improved
developing the generation of remote adaptive torsional shear waves (ATSW) using an octagonal phased
array to improve displacements and reducing the dispersion of shear wave speeds. The ATSW method
also reveal that it is possible to estimate the viscoelasticity of biological tissues when small biases in
lesion appear [34,35]. Torsional waves has also been used to characterized mechanical properties of
tissues like liver [36] or vocal fold [37,38].

The transducer is going to be adapted at facing preterm birth assessment in direct contact with
cervix, since the survival and morbidity carries a burden in the health care system [39]. The prevalence
of preterm birth is between 8.1–12.7% of all births in European countries [40].

The concept of shear waves to evaluate cervix stiffness to birth prediction has been considered
with another physical principle, Supersonic Shear Imaging (SSI), without separation between P and S
waves and high energy levels, since shear waves are generated using the nonlinear acoustic radiation
force [29,41]. On the other hand, direct contact can be avoided.

This paper describes the complete view of the methodology that has been used to design the
torsinal wave transducer for soft tissue evaluation in direct contact, dividing it in two phases. The first
one studies only the torsional propagation in tissue and how the excitation conditions are optimized
using an inverse problem. It is based on a finite element model (FEM) of the tissue by FEAP open
software. The second phase optimize the transducer design adding the FEM of the transducer and
using a inverse problem that maximize, what the authors call the robust probability of detection
(RPOD) [31], as a measure of the sensibility of the transducer. The probability of detection (POD) [42]
of the transducer as a function of a model parameter measures the probability of the transducer to
detect a specific small change in that parameter. The RPOD concept is introduced to deal with more
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than one parameter, conservatively selecting the worse POD of the parameters as the representative
POD of the transducer. This definition of RPOD will be used in an inversion procedure to optimize the
parameters of the transducer that maximize the RPOD.

2. Methods

The optimization of the proposed design of the torsional wave transducer has been undertaken in
two phases:

• Phase 1: Modelization of the torsional wave propagation in tissue, including a sensitivity test on
the parameters of the excitation wave.

• Phase 2: Joint modelization of tissue-transducer interaction. Optimization of the transducer under
maximum POD (Probability Of Detection) criterion.

The purpose of phase 1 is to test the capacity of the torsional wave model and the inverse
method to identify changes in mechanical properties of a multilayered tissue, independently on the
transducer that is used. Additionally, the POD estimator is checked as the tool to measure sensitivity.
Phase 2 incorporates the modelization of the proposed transducer design and uses the POD estimator
to optimize the transducer design maximizing sensitivity measure. Both phases use a similar (not
identical) inverse problem design. The common parts of the inverse problem and POD are firstly
presented, and afterwards the phases.

In this work, POD is the algorithm to measure sensitivity and may be defined as the probability
of the transducer and the reconstruction algorithm to detect changes on the mechanical properties
of the tissue, given the presence of uncertainties, mainly, signal noise. A multilayered tissue will be
supposed, four layers in phase 1 (Figure 1) just to test the multilayer capacity, and two layers in phase 2
(dermic and connective, Figure 2). The mechanical parameters are Young Modulus and Reynolds
attenuation in phase 1 for each layer, and shear moduli for both layers of phase 2.

Figure 1. Left: geometry, layers, transducers and mesh. Following pictures: three instants of torsional
propagation t= 280, 460 and 680 µs, using a simpler mesh.
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Figure 2. Torsional transducer at instants t = 9, 18, 117, 135 µs. Tissue is the soil.
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2.1. Robust Probability of Detection

A plausible pathology may be inferred when enough changes in the mechanical properties of the
tissue layers are detected. Let P be a specific parametrization for POD study, consisting of a vector
with the mechanical properties under study. For instance for phase 2 shear moduli G, P = (Gc Gd)

(c connective and d dermic). A pathological change implies that the healthy state presents values of
reference r on the parameters, and pathology would exist in case that enough variation is observed
p = (∆Gc ∆Gd). If Pk is a generic element of the array P, pk = ∆Pk = Pk − Pr

k , being Np the size of
the array.

The mathematical definition of the probability of detection (POD) is presented as the probability
that the modifications on the received signal (SIGNAL) given the emergence of pathology surpasses the
signal noise level (NOISE),

POD = P
(
| SIGNAL | 2

| NOISE | 2 > 1
)

(1)

The variables that determines the POD estimation for a specific location are the severity of the
pathology (p) and the noise level σ. The following deduction will be shown for one single parameter
pk, considering that this calculation will have to be repeated Np times, one for each parameter of p.

As signal and noise changes depend on several parameters pk, a robust POD (RPOD), is defined
so that the RPOD is the POD of the less favorable case, the POD of the parameter with worst POD.

RPOD = min
k

POD(pk) POD(pk) = P

(
|SIGNAL(pk)|2

|NOISE(pk)|2
> 1

)
(2)

The linear nature of the physical models that will be used, assumes a linear relation between
measurements and mechanical properties. The measurement dependency with noise will also be
suppose to be linear. Under these two assumptions of linearity, the measurements may be developed
as a Taylor expansion of first order, centered at the healthy case and the absence of noise.

ψi(pk, σ) = ψi(0, 0) + pk
∂ψi
∂pk

(0, 0)︸ ︷︷ ︸
SIGNAL

+ σ
∂ψi
∂σ

(0, 0)︸ ︷︷ ︸
NOISE

+hot (3)

being i = 1, ..., N the receiving points. ψi(0, 0) are the measurements in the absence of pathology and
noise at point i, the second term the linear variation of the measurement given the only presence of
the pathology, which has been labeled as SIGNAL, and the third term the linear variation due to the
presence of noise and healthy conditions, labeled NOISE.

The second term of the sum may be approximately expressed as a finite difference, but introducing
a very small degradation pk0 → 0 instead of a pure healthy state to assure that the FEM computational
implementation of the models captures the perturbations produced at small pk, and compute
ψi,pk

(pk0, 0) ≈ ψi,pk
(0, 0),

∂ψi
∂pk

(pk0, 0) = ψi,pk
(pk0, 0) =

ψi(pk0 + ∆pk, 0)− ψi(pk0, 0)
∆pk

For the RPOD calculation, the FEM algorithm must be run Np + 1 times. The first one, to calculate
the signal applying the mechanical properties of reference (representing no degradation), ψi(pk0, 0),
and Np additional signals altering each parameter of the parametrization, ψi,pk

(pk0 + ∆pk, 0).
The noise term of the Taylor series on Equation (3) is proposed to be,

∂ψi
∂σ

= ξiRMS(ψFEM
i ) = ξiRMS RMS(g) =

√√√√ 1
M

M−1

∑
j=0

g(tj)2 (4)
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with ξi a random variable (noise generator) applied over the root mean square (RMS) of the simulated
signal. (RMS) defined for any sampled function g in time domain g(tj) at M samples.

Equations (3) and (4), and the relationship |Yi|2 = 1
m ∑m

i=1 Y2
i , can be applied on Equation (1),

POD = P

(
p2

k
1
N ∑N

i=1(ψi,pk
(0, 0))2

σ2RMS2 1
N ∑N

i=1 ξ2
i

> 1

)
= P

(
p2

k >
RMS2σ2 ∑N

i=1 ξ2
i

Sk

)
(5)

being,

Sk =
N

∑
i=1

(ψi,pk
(0, 0))2 (6)

The POD may be reinterpreted in terms of parameter noise, so that it is the probability of a specific
stochastic mechanical property p2

k , having the following cumulative probability density function,

POD = F

(
RMS2σ2 ∑N

i=1 ξ2
i

Sk

)
(7)

which represents the noise distribution function in terms of the parameter pk (in this case, a mechanical
property of the material). That is, how the noise distribution function of the signal is translated
through the direct model into a random variation of the parameter values. In order to detect a
variation of the mechanical properties originated by a pathological zone, this variation must exceed
this parameter-noise level, a fact that defines the POD.

Following techniques of the theory of error propagation and Monte Carlo sampling, the
noise of the signals at receiving locations can be assumed to behave as a normal distribution [42],
and consequently, the squared sum of the noise ξi follows a chi-square distribution, given that
∑N

i=1 ξ2
i −→ χ2

N (e.g., [43]). Its parameter is the number N of degrees of freedom, corresponding to
the number of receiving locations. This Chi-square distribution may be approximately assumed as a
normal N distribution in the case of N > 10, with N − 2/3 the mean and

√
2N the standard deviation,

χ2(N) ≈ N (N − 2/3,
√

2N). In (7) it leads to,

p2
k −→ N

[
RMS2 σ2 (N − 2/3)

Sk
,

RMS2 σ2
√

2N
Sk

]
(8)

expression that is only valid for noise with Gaussian distribution.
As this probability density function f posses a cumulative probability F(x) =

∫ x
−∞ f (y)dy, and

being its inverse x = G(F(x)), the pathology to noise ratio pk/σ can be deduced from (8) for a fixed
and desired POD value as,

pk
σ

=

√√√√RMS2 (N − 2/3)
Sk

(
1 + G[POD]

√
2N

N − 2/3

)
(9)

This is the final formula, where a specific value of POD can be fixed, to obtain the relationship of
the alteration of the mechanical property pk against noise, around the mechanical property’s value
of reference.

2.2. Inverse Problem

Two different IP approaches has been used. In phase 1 to adjust the mechanical properties of the
tissue that minimize the difference between simulated and experimental signals (misfit function), and
in phase 2 to optimize the transducer parameters that maximize the RPOD.

Although the target is different, both approaches present similarities. On one hand, Genetic
Algorithms (GA) are used, mainly because they are global search algorithms. It implies that the search
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for the optimal parameters is made by reasonably exploring the whole parameter space, so that falling
in local maxima or minima is avoided (see [42,44] for more detailed information on the algoritm that is
used). On the other hand, the cost functional will serve the optimization criterion. If f is the function to
optimize (misfit in phase 1 and RPOD in phase 2), a modified version f l has been reported to improve
convergence of the GA. [45],

f l = log ( f + ε) (10)

being ε a very small value ensuring the logarithm’s existence.

2.3. Phase 1: Modelization of Torsional Wave Propagation in Tissue

Phase 1 aims at checking the suitability of the propagation model and the inverse problem for
optimization purposes with torsional waves. Additionally, the POD estimator is implemented and
tested. Table 1 shows the steps followed in this phase.

In order to show the capability of torsional waves to characterize changes in mechanical properties
of soft tissue, a direct contact emitter-receiver configuration on a layered tissue with parallel interfaces
is hypothesized (see Figure 1). Torsional waves are generated and propagated through the normal
direction to the layer interfaces and are collected on the opposite face of the tissue. Each layer is
assumed to be isotropic. A total tissue of 40 mm with four layers of the same thickness will be assumed
in this study.

Several important points are remarked as a summary,

• A linear elastic, attenuating and multilayered physical model, solved by finite elements, was used
to simulate the torsional wave propagation.

• An inverse problem is proposed to characterize the mechanical properties of the tissue and
detect pathology.

• The inverse problem is applied to several sets of excitation parameters (geometry and emitted
waveforms), to see the capability of the method to select that with best detection.

• The use of the semi-analytic POD estimator with the selected excitation, to measure its capability
of detection.

• The calculation process is outlined in Figure 3.

Step 1 defines the problem and the four sets of excitation parameters. The adopted ranges of
variation of the parameters are a frequency ( f ) range of (2, 20) kHz, bandwidth (b) of (0.5 f , f ) and a
transducer radius (r) range of (10, 20) mm.

Within the mentioned ranges, four arbitrary candidates are shown in Table 2.

4 sets of excitation
parameters

Selection of the sets
Sets of tissue

mechanical properties

Create first generation
of individuals

Simulated
FEM

signals
Experimental

signals

f l
Individual with

min( f l)

Last

Inverse Problem

generation?

Run for each of the 4 sets

Select transducer
with best approach to

Winner

reference values

POD Curves
Less favorable POD curve

(tournament, mutation and crossover)
Create next generation

with genetic algorithm

-

+

Yes
No

Figure 3. Calculation method for phase 1.
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Table 1. Methodology of phase 1.

Step Target Outcome Tools or Inputs

1. Problem
configuration

Problem geometry, boundary
conditions, configuration, sets
of excitation parameters

Problem definition.
4 sets of excitation parameters
to test

2. Forward
physical model
selection

Simulate propagation with the
excitation parameters

Physical model: differential
equations

Outcome from step 1: geometry,
materials, etc.

3. Finite element
model (FEM)

Computational
implementation of the physical
model

Computational code of the
model

Outcomes from steps 1 and 2.

4. Discretization
study and FEM
test

Convergence study
Balance computational
burden-time
Assure accuracy of simulations

Spatial element
Time interval
FEM checked

Forward model (FEM)
Geometrical parameters and
tissue mechanical properties
L-S wave speed check

5. Inverse problem
with genetic
algorithm (GA)

Design and implementation
Evaluate GA’s convergence
- Quality of identification
- Convergence speed
Apply IP to 4 excitation
parameter sets

Observed right behaviour and
identification on the
mechanical properties of the
tissue
Winner: excitation parameter
set with best identification

FEM
Cost functional for GA
optimization: misfit function
Synthetic signals

6. POD evaluation
of the winner

POD estimator evaluation
Checking coherency on results

Graphics of POD on
modifications of mechanical
parameters of tissue
No perceived anomalies

Forward model
Winner parameter set
POD estimator

Table 2. Sets of excitation parameters under test.

Transducer f (kHz) b (kHz) r (mm)

Design 1 6.32 6.32 10
Design 2 20 20 10
Design 3 2 1 10
Design 4 6.32 3.16 20

Following with steps 2 and 3, the torsional propagation process is described using a 3D
physical model consisting of standard linear elastic equations with Rayleigh attenuation. Equilibrium,
constitutive and kinematic equations are,

σji,j + bi = ρüi + Rρu̇i

{
σij = cijklεkl
εkl =

1
2 (uk,l + ul,k)

(11)

being σij the stress tensor , εij the strain tensor, ui the displacement vector, bi volumetric forces,
ρ material’s density, R the Rayleigh damping coefficient, cijkl the fourth-order stiffness tensor of
material properties.

These equations are applied over every layer of the tissue considering continuity on displacement
and stress through the interfaces. Every layer is supposed homogeneous and isotropic. In the
case hereby treated, four layers of soft tissue with different mechanical properties are assumed for
algorithmic testing purposes. The first and last layers are assumed to be the same tissue features, as
it use to happen in many experiences, for instance, with epithelial tissue in emission and reception.
In such conditions, the parameters P of the model are the mechanical properties of every layer, in
this case, their Young moduli E and Rayleigh attenuation R, which can be presented in the vector
P = (E4R4E3R3E2R2E1R1), being in this case Np = 8, the number of parameters. But a simpler
parametrization will be used to improve IP convergence using Np = 4 parameters, p = (E3R3E2R2),
assuming the rest of the parameters constant, as indicated in Table 3.
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Table 3. Parameters of the layered soft tissue. Poisson’s ratio depends on E.

Material Young Modulus Poisson Ratio Density Thickness Attenuation
E (MPa) ν ρ (kg/m3) a (mm) R ( dB

MHz·mm )

Layer 1 20 0.48 1070 10 1836.07
Layer 2 E2 ∈ [2 ∼ 15] ν2 920 10 R2 ∈ [1 ∼ 5]
Layer 3 E3 ∈ [15 ∼ 50] ν3 1070 10 R3 ∈ [1 ∼ 5]
Layer 4 20 0.48 1070 10 1836.07

The forward problem is performed using a 3D FEM model implemented in FEAP package [46].
Solid hexaedric elements with 8 nodes are used in 26 blocks to generate a structured mesh (Figure 1),
so that remeshing perturbation is avoided on sensitivity analysis. The material’s diameter being
simulated is 100 mm. Other FEM parameters: total time 3000 µs, incremental time 20 µs and mesh
extension (radius) 50 mm.

Summarizing, the model system is defined by the specimen materials (steel and four layers of
tissue, Table 3), geometry and the boundary conditions: at the cylindrical axis, r = 0 mm (being r
the radial direction), null displacements at the points; energy absorbing face at the external face at
r = 100 mm to avoid reflections; and free displacements at the rest of the mesh points. The input is
introduced as an applied displacement with the shape of a spike pulse.

Two criteria have been tested to verify the validity of the FEM model. First, a mesh convergence
test has been carried out, introducing a trade-off between computational cost and numerical precision.
Second, a verification of compressional (p) and shear (s) wave speeds have been compared to the time
of arrival of the first wavefront.

In the second criteria, the speed of compressional cp and shear cs waves are estimated, in
relationship to the bulk modulus K of all layers (and consequently to Young’s modulus E) by,

K =
E

3(1− 2ν)
= ρ

(
c2

p −
4
3

c2
s

)
(12)

cp =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
=

√
K + 4

3 G
ρ

=

√
M
ρ

cs =

√
G
ρ

(13)

In particular, for ρ = 1070 kg/m3, E = 20 MPa and ν = 0.3, tp = 0.6 µs and ts = 1.1 µs is
the time used for compression and shear waves to propagate with speeds cs = 0.05 ∼ 0.5 km/s
and cp = 0.94 ∼ 1 km/s. For ν = 0.49, the corresponding times are tp = 0.25 µs and ts = 1.16 µs.
If ρ = 1000 kg/m3 and cp = 1.5 km/s, M = 2.25 GPa and estimation of total time is t = 1.46 µs for
maximum time of propagation of waves across the soft tissue.

For the inverse problem calculation, shown in Figure 3, let ψ0 be the samples of the received
signals in the case of healthy tissue, ψx the samples of the received signal of the test with the soft tissue
on its unknown current state, and ψ the samples of the simulated signal on reception. The discrepancy
against the healthy state may initially be described by,

Φ =
ψ− ψ0

RMS(ψ0)
(14)

The misfit or discrepancy between simulated and experimental signals is defined as the residual
γ = Φx −Φ. The definition of the fitness function f is generated as a quadratic form from the residual
vector γ of size M,

f =
1
2
|γ|2 =

1
2

1
M

M

∑
j=1

γ2
j (15)

Synthetic signals are created as experimental signals. Four received signals are calculated using
the FEM model, one for each of the four set of excitation parameters. In order to transform these
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signals, avoiding exact matching between experiment and simulation, random Gaussian white noise is
added (same function for all signals).

Finally, for POD estimation of the best excitation conditions, four curves will be obtained, one for
each parameter of the vector p. The less favorable is considered.

2.4. Phase 2: Tissue-Transducer Modelization, Optimization with RPOD

The conceptual transducer design to be optimized is shown in Figures 2 and 4. A central inner
disk with four piezoelectric emitters electrically joined, create a circumferential shear displacement
of the disk, which is transmitted to a thin double-layered tissue (dermic and connective, Figure 2,
bottom area), and from it to the external circular crown where four piezoelectric elements captures the
shear movement generating one signal. The time of flight is measured to infer shear moduli of the
tissue layers.

The shear moduli of the layers P = (Gc Gd) (c connective, d dermic) vary when pathologic changes
occur, p = (∆Gc ∆Gd), ∆Gk = Gk − Gr

k, k = c, d, and this change must be greater than noise level.

Receiver

Emitter

Figure 4. Transducer geometry. Piezoelectric elements in dark gray. Emitters at the inner disk.

Table 4 summarizes the methodology of this phase.
The forward model (Step 1) includes the coupled electrical-mechanical piezoelectric effect, under

the following constitutive equations,

T =CE · S + eT · E (16)

D =e · S− εS · E (17)

being T the stress tensor, S strain tensor, E electric field, D charge-density displacement, CE piezoelectric
stiffness matrix, e piezoelectric coupling coefficient matrix, eT its transpose and εS permittivity
coefficient matrix.

Equilibrium and kinematic relationships are as follows,

∇ ·D = 0; E = −∇φ (18)

∇S · T = 0; S =
1
2
(∇u +∇uT) (19)

with φ the electric potential and u = (u1u2u3) the vector field of displacements.
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Table 4. Methodology of phase 2.

Step Target Results Tools or Inputs

1. Selection of the
forward model

Simulate generation,
propagation, and reception of
waves

Physical model: differential
equations

Initial transducer design:
geometry, materials, etc.

2. Finite element
model (FEM)

Computational
implementation of the physical
model

Computational code of
the model

Physical model
Boundary conditions(geometry
and properties of conceptual
design, etc.)

3. Discretization
analysis

Convergence enhancement
Balance computational
burden-time

Spatial element
Time interval

FEM
Initial geometry and
mechanical properties

4. Validation of
FEM results

Check accuracy on simulations Test discrepancies using
simplified models

Approximated analytic model
of torsional waves for
comparison [31].

5. Sensitivity test
on mechanical
properties of tissue
and parameters of
the transducer
geometry [31]

To know the response to
transducer geometry and
tissue propagation
Select materials
Reduce P-wave generation and
propagation
Maximize amplitude of
received torsional wave
New check of the FEM

Material influence
Select a transducer geometry
among tested vanishing
P-wave
Ranges of mechanical
properties in tissue with low
P-wave propagation
Ranges of P-wave existence

FEM
Materials to test
Variation ranges of the
transducer parameters
(geometry)

6. Inverse problem
as a new test of the
forward problem

New check of the FEM
Quality of identification of
tissue mechanical properties

Valid identification of
mechanical properties (Gc Gd)
of the tissue (Figure 5a)

FEM
Cost function for GA
optimization: Misfit function

7. Evaluation of
RPOD for best
sensor in step
5 [31]

Test RPOD estimator
Evaluate POD for three values
of tissue shear modulus of
reference (0.3, 3 and 30 kPa)
Testing coherency on results

POD graphics (Figure 6) on a
range of values of (Gr

c , Gr
d)

Select the initial parameters for
optimization
No apparent anomalies

FEM
POD estimator

8. Transducer
optimization with
best RPOD
criterion

Find transducer design
(geometry) with maximum
RPOD
Evaluate improvement in
RPOD

Select the optimal geometric
design with the worst response
to mechanical properties
Quantification of improvement

FEM
RPOD estimator
GA design with RPOD as
function to maximize

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Model parameter [Pa]

P
O

D
 ,

 n
o

is
e

=
0

.0
0

%

Improvement 17199.5% − design: 1.9 0.8 2.8 5.4 10.2 11.8 1.6 4.6

 

 

Optimal

Reference

(a)

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

Generation

O
p

ti
m

a
lit

y
, −

lo
g

(p
/n

|P
O

D
=

9
9

.9
%

)

 

 

Best value

Mean

(b)

Figure 5. Result of the RPOD optimization process in phase 2. (a) RPOD functions of the optimized
transducer design and the reference design; (b) evolution through generations; best design captured in
27th generation.
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Figure 6. RPOD evaluation (Step 7) of phase 2, for different shear modulus values of reference.

FEAP software is used to solve the FEM algorithm. The mesh and the stress distribution at
different instants can be seen in Figure 2 (see [31] for more detail).

The transducer parameters represents and an 8 dimensional space (pw, pl, pt, dpe, dr, rpe, rw, drt)
as depicted in Figure 4. A sensitivity analysis of this parameters determines their range of variation
that will be used in next steps. Additionally, another sensitivity analysis of the parameters (Gr

dGr
c) on

the POD is performed for values 0.3, 3 and 30 kPa, which is shown in Figure 6.
The RPOD optimization runs an inverse problem that searches for the optimal transducer

parameters that maximize the RPOD. The RPOD calculation considers a 2-dimensional space of
tissue mechanical parameters of reference (Gr

dGr
c) to explore a wide range of possible tissues.

Figure 7 shows the schematics of the GA, being Equation (9) the optimization criterion.
A generation of Nd = 20 specific individuals (transducers designs) from the 8D space are firstly
selected. For each individual d, the parameters [Skj]d (Equation (6)) are calculated for Nj = 10 samples
of the 2D space (Gr

dGr
c), selected using a Montecarlo procedure, obtaining 2xNj values of Skj . Then, the

values of [
pkj
σ ]d (see Equation (9)) are calculated for a fixed desired level of 99.9% POD. The minimum

value [ p
σ ]d is selected, thus implementing the Robust POD idea (RPOD), where any other values

of reference (Gr
dGr

c) for the individual d will have a better POD. So, among all individuals of the
generation, d = 1...Nd, that with maximum RPOD is selected (higher value [ p

σ ]). A new generation
is formed combining the features of the transducers from the first generation with operations of
tournament, mutation, and cross-over [44] and the process is repeated until 50th generation has been
calculated. The overall winner, is the transducer design with optimized capacity of detection.
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Figure 7. Optimization process maximizing RPOD with the genetic algorithm.

3. Results

Beginning with phase 1, Table 5, shows the optimized mechanical properties that corresponds to
the minimized misfit function(discrepancy) between experimental (synthetic) signals and simulated
signals, for each of the 4 sets of excitation parameters. Design 3 presents the better minimization of the
fitness function, since is the one that best approaches the reference values of the mechanical properties.

Table 5. Adjusted parameter for each set of excitation conditions including the relative error against
reference values. Thus, Number 3 is the optimal design.

IP Results E3 (MPa) E2 (MPa) R3 (10−3) R2 (10−3) f (kHz) b (kHz) rs (mm)

Reference Values 27.3861 5.4772 2.2361 2.2361
Design 1 30.4330 (11%) 5.3381 (3%) 1.6567 (26%) 3.3893 (52%) 6.32 6.32 10
Design 2 25.2412 (8%) 5.9172 (8%) 1.7507 (22%) 3.2839 (47%) 20 20 10
Design 3 29.1313 (6%) 5.1269 (6%) 2.4648 (10%) 1.7845 (20%) 2 1 10
Design 4 30.6323 (12%) 5.0484 (8%) 2.5155 (12%) 1.7478 (22%) 6.32 3.16 20

Figure 8a shows the POD estimation of the selected Design Number 3 for increasing degraded
values for a fixed noise level 10%. There are four curves of cumulative probability, one for each
parameter pk. Initially, the less favourable curve would be the one with higher displacement to the
right, but taking relative variations instead of absolute values, it results in E2, so it is conservatively
taken as the one which determines the probability of detection. The convergence evolution through
generations for Design number 1 is shown in Figure 8b.
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Figure 8. Results of phase 1. (a) POD dependency on mechanical properties; (b) convergence evolution
of Design 1.

The POD curves show that the properties of the second layer can be detected to a level of
∆E2 = 0.5 MPa (9.12% of the reference value of the property) and ∆R2 = 100 (4.47% respectively) with
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a probability above 99%, under the simulated noise. Similarly, properties of third layer ∆E3 = 1 MPa
(3.65% of the reference value) and ∆R3 = 100 (4.47%) are detectable with probability above 99%.
These figures are compatible with the detectability based on the global minima of the fitness function
(with results in Table 5, Design 3). In a conservative position, the POD curve of the selected design in
the presented situation can be determined by that of the parameter of E2, that is the less favorable curve.

The excitation of Design 3 has been found to provide the higher sensitivity to pathology
and, therefore, accurate identifiability, where a frequency range between 0.2 and 2 MHz delivers
stable results.

The second phase presents the following results: (a) the optimized transducer with the best
geometry (winner), shown in Table 6, that maximizes RPOD, applied on the less favorable values of
shear moduli of the reference; (b) the evolution of the convergence process through the generations, in
Figure 5b; (c) the sampled function of eight dimensions pk

σ (pw, pl, pt, dpe, dr, rpe, rw, drt) used as the
criterion decision in the maximization process.

Figure 5a shows the RPOD function of the winner transducer and the initial of the reference.
The optimization presents a improvement of 17,199.5% (172-times better) in sensibility (in RPOD),
detecting lower changes in the mechanical properties.

The configuration of the optimized transducer produces an excitation with a central frequency
of 28 kHz.

Table 6. Optimized transducer, along with assumed ranges and the initial values of reference.

Design Parameters (mm) Range Initial Optimal LabelValue Value

Piezoelectric Length (0.5, 2) 1 0.8 pl
Piezoelectric Width (0.75, 2) 1 1.9 pw

Piezoelectric Thickness (0.4, 4) 2 2.8 pt
Disc Radius (1.75, 5.75) 4.25 5.1 dr

Disc Piezoelectric Eccentricity (1.5, 3.5) 2.5 2.7 dpe
Ring Width (1.5, 2.5) 2 1.6 rw

Ring Piezoelectric Eccentricity (5.75, 8.5) 7.5 5.9 rpe
Disc-Ring Thickness (3, 13) 8 4.6 drt

4. Discussion and Conclusions

A strategy to optimize the design parameters of a torsional shear ultrasonic transducer, based
on the inverse problem, has been developed. The main points of the methodology are a forward
procedure based on FEM and analytical simplified validation with a sensibility analysis, and an inverse
procedure to maximize the transducer sensitivity using a POD estimator which is developed in a
robust manner to improve outcomes. Previously, in the first phase a similar methodology is performed
to study just the propagation of torsional shear waves across the soft tissue. The parameters of the
excitation waves and dimensions has been adjusted looking for the maximum reduction of undesired
P wave emissions. The results obtained in both cases are the design parameters and biomechanical
clear identification of the mechanical properties of the soft tissue layers within the expected ranges
of variation.

This general methodology of a transducer optimization based on maximizing the probability of
detection, together with the use of torsional waves, can open an additional line of research to obtain
transducers for soft tissue evaluation at low levels of acoustic energy.

In a second step, the desired geometry of the transducer has been manufactured and currently
facing adjustments of its functional performance. In the following work, this torsional ultrasonic design
will be experimentally validated and improved characterizing mechanical properties in quasi-fluids
and soft tissues. The experimental setup will be performed using tissue mimicking phantoms proving a
sensor sensitivity study (in terms of angles of incidence and pressures) assessing the robustness of a new
proposed elastography technique based on torsional quantitative principles. Three rheological models
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will be fitted with the experimental data beside a static independent testing method. The results of the
previous rheological tests will be compared with the transducer reconstruction of the biomechanical
parameters from the propagated torsional wave.

The transducer manufacturing is presenting the following challenges. The material of the ring,
the steel, has been changed to polylactic acid (PLA) to obtain a better amplitude of the received wave,
the same occurs with the emitter disk that has been replaced by a small motor with a PLA disk in the
contact surface. The whole analytical modelization is still under investigation due to the complexity to
make the problem tractable, although this is not affecting the functionality of the transducer. On the
contrary, minimization of mechanical and electronic cross-talk effects between emission and reception
are being faced before proceeding to the experimental validation.

Safer tests based on ultrasonic techniques than those using ionizing radiations are being
investigated and some good results have been arisen, like those of Yonetsu [47] using quantitative
sonography, showing a capacity to characterize tumors and differentiate their benign and malignant
nature. As changes in consistency of tumors alters their mechanics, mechanical waves could represent
an impacting method of diagnosis because of its direct nature of detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/6/1402/s1.
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