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Abstract 
The human brain, thanks to the evolution, has developed efficient biological structures able to 

perform a wide range of complex tasks. This is also the case of one of its centres: the 

cerebellum. This structure plays a fundamental role in different motor control tasks such as 

coordination of movements or calibration of sensorimotor relationship. In this thesis 

computational models of the cerebellum have been developed in order to achieve better 

understanding of the biological mechanisms that confer the cerebellum its motor control and 

learning capabilities. Simulated and real robots have been used in this work as emulated 

bodies to control. Thus we aim to validate several hypotheses about the cerebellum operation 

when performing different motor control tasks such as object manipulation, eye blink classical 

conditioning (EBCC) or vestibulo-ocular reflex (VOR) experiments.  

The scope of this thesis is the development of biologically inspired control systems based in 

cerebellar models able to perform different motor control tasks using biomorphic robots in 

real time. This work can be subdivided in three main blocks: (i) development of all the tools 

needed for this study, (ii) development of a cerebellar model based in data obtained with 

biological experiments, and (iii) validation of the cerebellar models embedding these ones in 

control schemes able to perform different motor control tasks with biomorphic robots in real 

time.  

An upgraded version of the EDLUT simulator has been used as the main simulation tool for this 

study. EDLUT is an efficient spiking neural network simulator developed by our research group 

at the University of Granada. It was conceived as a small tool capable of efficiently simulate 

medium-scale spiking neural networks. In this thesis we have systematically improved the 

efficiency and functionality of EDLUT. We have parallelized its simulation in multicore CPU-

GPU co-processing architectures, developed new and efficient event-driven and time-driven 

simulation methods and implemented new neuron models and learning rules. Additionally, we 

have included new modules and features in EDLUT related with the robotic control in real 

time. EDLUT-simulation spiking neural models can now connect with many (simulated or real) 

robotic devices using TCP/IP connections. Communication interfaces able to translate the 

cerebellar signals (spikes) in robotic signal (analogical signals) and vice versa have also been 

implemented within EDLUT. Finally, EDLUT incorporates a real time supervisor able to ensure 

that a simulation is performed in real time. Thus, EDLUT is now more than a simple spiking 

neural network simulator. It is a simulation tool able to create biologically inspired control 

schemes based in spiking neural networks to perform different motor control tasks using 

biomorphic robots in real time. 

Starting from a cerebellar model previously developed by our research group, two new 

plasticity mechanisms at deep cerebellar nuclei (DCN) level have been proposed and 

implemented, conferring to the cerebellar model with learning consolidation and gain 

adaptation capabilities. We have also propose a new neural model for Purkinje cells able to 

replicate its tri-modal spike modes (tonic, silence and bursting) and a new Inferior Olive (IO) 

layer interconnected with electrical coupling able to better codify the error signal. Finally, a 

new synaptic connection from the IO to the DCN cells have been proposed and included. All 

these new elements, based in theoretical hypotheses and experimental results in the 

literature, have increased the biological plausibility of our cerebellar model.  
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Finally we have analysed how each one of the above-mentioned elements affects the 

behaviour of the whole cerebellar model when performing motor control experiments as a 

test-bench: a manipulation object task with a robotic arm, an EBCC experiment with a 

simulated environment or a VOR experiment with a robotic head. 

This work has been partially supported by the FPU national grant program, the European 

projects REALNET (FP7-270434) and HBP (FP7-604102), the Marie Curie grant (658479- Spike 

Control) and the French government research program “Investissements d'avenir through the 

Robotex Equipment of Excellence (ANR-10-EQPX-44)”. We gratefully acknowledge the support 

of NVIDIA Corporation with the donation of two Titan GPUs for current EDLUT development. 
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Resumen 
El cerebro humano, gracias a la evolución, ha desarrollado eficientes estructuras biológicas 

capaces de realizar un amplio rango de tareas complejas. Este es también el caso de uno de 

sus centros: el cerebelo. Esta estructura juega un papel fundamental en diferentes tareas de 

control motor tales como la coordinación de movimientos o la calibración de la relación 

sensoriomotora. En esta tesis hemos desarrollado modelos computacionales del cerebelo para 

entender mejor los mecanismos biológicos que le confieren al cerebelo sus capacidades de 

control y aprendizaje motor. En este trabajo se han usado robots simulados y reales como 

cuerpos emulados que controlar. De esta forma tratamos de validar las hipótesis propuestas 

sobre la operación del cerebelo cuando este realizar diferentes tareas de control motor tales 

como manipulación de objetos o recreación de los experimentos de condicionamiento clásico 

del parpadeo (EBCC) o reflejo vestíbulo-ocular (VOR).  

Esta tesis pretende abarcar el desarrollo de sistemas de control biológicamente inspirados 

basados en modelos cerebelares capaces de realizar diferentes tares de control motor usando 

robots biomorficos en tiempo real. Este trabajo se puede subdividir en tres bloques 

principales: (i) desarrollo de todas las herramientas necesarias para este estudio, (ii) desarrollo 

de un modelo cerebelar basado en datos obtenidos de experimentos biológicos, y (iii) 

validación de los modelos cerebelares embebiéndolos en esquemas de control capaces de 

realizar diferentes tareas de control motor usando robots biomorficos en tiempo real. 

Una versión actualizada del simulador EDLUT ha sido usada como la principal herramienta de 

simulación para este estudio. EDLUT es un simulador eficiente de redes neuronales de 

impulsos desarrollado por nuestro grupo de investigación en la Universidad de Granada. Este 

fue concebido como una pequeña herramienta capaz de simular de forma eficiente redes 

neuronales de media escala. En esta tesis hemos mejorado sistemáticamente la eficiencia y 

funcionalidad de EDLUT. Hemos paralelizado su simulación en arquitecturas de 

coprocesamiento CPU-GPU multinúcleo, desarrollado nuevos y eficientes métodos de 

simulación dirigidos por eventos y por tiempo e implementado nuevos modelos de neurona y 

leyes de aprendizaje. Además hemos incluido en EDLUT nuevos módulos y características 

relacionadas con el control robótico en tiempo real. Las redes neuronales simuladas en EDLUT 

pueden ser ahora conectadas con diversos robots (simulados o reales) usando conexiones 

TCP/IP. También se han implementado en EDLUT interfaces de comunicación capaces de 

traducir las señales del cerebelo (impulsos) en señales para el robot (señales analógicas) y 

viceversa. Por último, EDLUT incorpora un supervisor de tiempo real capaz de asegurar que 

una simulación se realiza en tiempo real. Por lo tanto, EDLUT es ahora más que un simple 

simulador de redes neuronales de impulsos. EDLUT es una herramienta de simulación capaz de 

crear sistemas de control biológicamente inspirados basados en redes neuronales de impulsos 

para realizar diferentes tareas de control motor utilizando robots biomórficos en tiempo real. 

Partiendo de un modelo cerebelar previamente desarrollado por nuestro grupo de 

investigación, dos nuevos mecanismos de plasticidad sináptica a nivel de los núcleos cerebelos 

profundos (DCN) han sido propuestos e implementados, confiriéndole al modelo nuevas 

capacidades de consolidación del aprendizaje y adaptación de la ganancia. También hemos 
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propuesto un nuevo modelo de neurona capaz de reproducir los tres estados de una célula de 

Purkinje (tónico, silencioso y ráfaga), así como una nueva capa de la Oliva Inferior (IO) con 

acoplamiento eléctrico entre sus neuronas. Por último, una nueva conexión sináptica desde la 

IO hasta los DCN ha sido propuesta e incluida en el modelo. Todos estos nuevos elementos, 

basados en hipótesis teóricas y resultados experimentales en la literatura, han incrementado 

la plausibilidad biológica de nuestro modelo cerebelar.  

Por último hemos analizado cómo cada uno de los elementos anteriormente mencionados 

afecta al comportamiento del modelo cerebelar cuando este realiza experimentos de control 

motor como banco de pruebas: una tarea de manipulación de objetos con un brazo robótico, 

un experimento EBCC con un entorno simulado o un experimento VOR con una cabeza 

robótica.  

Este trabajo ha sido parcialmente apoyado por una beca nacional del programa FPU, los 

proyector Europeos REALNET (FP7-270434) y HBP (FP7-604102), la beca Marie Curie (658479- 

Spike Control) y el programa de investigación “Investissements d'avenir through the Robotex 

Equipment of Excellence (ANR-10-EQPX-44)” del gobierno Francés. Agradecemos también el 

apoyo de la corporación NVIDIA por la donación de dos GPUs Titan para el desarrollo de 

EDLUT.  
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Chapter 1: Introduction 
One of the main challenges that human beings face in 21st century is to understand the 

biological principles of consciousness and mental processes through which we perceive, act, 

learn and remember (Kandel et al. 2000). The knowledge of these biological principles in 

nervous systems can bring us several benefits. Firstly, further understanding of the brain helps 

us to design better and more effective treatments for neurodegenerative diseases such as 

Huntington, Parkinson and all forms of dementia. Secondly, the brain can be considered as one 

of the best information processing systems: huge storage and processing capabilities with very 

low power consumption and reliability against failures (aging). Deeper knowledge on how 

biological systems process the information will allow the development of new generations of 

processing architectures able to replicate this astonishing performance.  

The cerebellum (Latin for “little brain”) is a very important brain region for vertebrates such as 

humans. It is well known that the cerebellum plays a fundamental role in different motor 

control features such as coordination and accurate movements (Thach, Goodkin, and Keating 

1992), although it seems to be also involved in other cognitive functions such as attention and 

language, and in regulating fear and pleasure responses (Wolf, Rapoport, and Schweizer 2009). 

It has been observed that cerebellar damages produce disorders in fine movement, 

equilibrium, posture, and motor learning (Fine, Ionita, and Lohr 2002).  

Understanding the biological mechanisms involved in the cerebellum require its study from 

many different methodological approaches, been all of them interconnected. This thesis 

addresses the study of the cerebellum from the point of view of computational neuroscience. 

It is an interdisciplinary science that links diverse fields such as neuroscience, cognitive science 

and psychology with electrical engineering, computer science, mathematics, and physics. Due 

to the fast increase of computational resource availability in the last decades, computational 

neuroscience has emerged as a powerful tool able to test and validate brain hypotheses 

proposed by neuroscientists. Computational neuroscientists use mathematical models and 

computer simulations to study neural systems at different levels. Depending on the level of 

detail and the size of the structure under simulation (from a molecular level in a single neuron 

to a large and intricate neural network with distributed plasticity), the computational 

requirements may drastically differ.  

Computational models of various brain regions have been developed and studied for more 

than thirty years in order to analyse brain function. Computational neuroscience is the natural 

complement of experimental brain research, since it focuses on specific mechanisms and 

models which are only partially observable in physiological studies. In particular, the cerebellar 

control loop (the focus of this thesis) has been extensively modelled since Marr (Marr 1969) 

and Albus (Albus 1971) proposed elegant explanations on how the cerebellum operates as a 

forward-controller in mammals.  

The simulation of a nervous system model connected to a body (embodiment) can help to 

better understand how certain capabilities of the nervous system emerge based on cellular 

characteristics, network topology, or local synaptic adaptation mechanisms. In this thesis we 
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have focussed on understanding the role of the cerebellum in coordinated movements 

(voluntary or reflex) and object manipulation. For that reason, we need a “body” able to 

perform these motor tasks when it is controlled by our cerebellar models. We have used both 

virtual (simulated) and real robots to emulate a body. Nevertheless, several considerations 

have to be taken into account. While the human body encodes the sensorimotor information 

using neural population coding (each neuron encoding the signal presents a distribution of 

responses over some set of inputs), robots use encoders which return the relative position and 

velocity (analogical signals) of each joint. A translation from analogical domain sensor inputs of 

robots to spike-based patterns compatible with the spiking neural network is required. 

Additionally, the output responses of the cerebellum based in spikes must be translated to the 

analogical domain of the robot actuators. Finally, real robots impose a real-time (RT) 

constriction. When we carry out a simulation connected to a real robot, the simulation time 

must evolve at the same speed than the RT (physical time), otherwise the robot cannot be 

properly operated. The dynamics of the robot (such as momentum of different links) and 

dynamic environment make this RT operation to be a hard/strict constraint. 

In this thesis we have embedded several cerebellar models in different closed-loop schemes 

able to control the movement of biomorphic robots in RT. This integration aims the following 

goals: (i) validation of the hypotheses presented in each cerebellar model using different 

motor control tasks as benchmarks, and (ii) development of innovative control schemes for the 

next generation of biomorphic robots. 

For this study we have developed and upgraded our own spiking neural network simulator: 

EDLUT (Ros et al. 2006, Garrido et al. 2011, Luque et al. 2014, Naveros et al. 2015, Naveros et 

al. 2017). This tool is oriented to the efficient simulation of medium-scale (tens of thousands of 

neurons) neural networks using simplified point neuron models (Leaky Integrate-and-Fire (LIF), 

Adaptive exponential integrate-and-fire (AdEx), Izhikevich and Hodgkin-Huxley (HH)) and 

plasticity mechanisms in RT. In our case we have used EDLUT to develop cerebellar models 

embedded in closed-loop schemes able to control the movement of biomorphic robots in RT. 

The RT constraint, which demands the execution of the simulated neural network at a 

determined speed, is fundamental when we operate with real robots in which the time is a 

physical variable that we cannot control. In this thesis we have drastically improved EDLUT 

performance using different parallelisation and simulation techniques, thus allowing the 

simulation of more complex and larger neural networks in RT. Additionally, a specialised 

closed-loop control scheme together with a RT supervisor has been also developed to deal 

with the RT constriction.  

1.1 The cerebellum 

The cerebellum has the appearance of a separate structure attached to the bottom of the 

brain, tucked underneath the cerebral hemispheres. This structure has been deeply 

investigated for more than a century since Camillo Golgi and Santiago Ramón y Cajal studied 

the anatomical organization of the cerebellar cortex (Golgi 1906, Cajal 1894). Although the 

cerebellum just accounts for approximately 10% of the brain’s volume, it contains over 50% of 

the total number of neurons in the brain (Llinas, Walton, and Lang 2004). It can be subdivided 

in two major parts: an internal section called deep cerebellar nuclei (DCN) covered by a highly 

convoluted sheet of tissue called cerebellar cortex. While the DCN represents the output 
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structure of the cerebellum, the cerebellar cortex conveys the main input to the cerebellum 

and contains most of the neurons in the cerebellum (Purves et al. 2008). Within the cerebellar 

cortex there are several types of neurons with a highly regular arrangement, being Purkinje 

cells (PCs) and granule cells (GCs) the most characteristic ones. This complex neural 

organization gives rise to a massive signal-processing capability (Eccles, Ito, and Szentágothai 

1967). 

In light of some studies, the central nervous system has been suggested to plan and execute 

sequentially voluntary movements. Thus, the cerebellum would not initiate voluntary 

movement, but it would rather contribute to its coordination, precision and accurate timing 

using a feedback loop for muscle movement (Ito 1970, 2006). In accordance to this hypothesis, 

the brain might first plan the optimal trajectory in task-space coordinates, translate them into 

intrinsic-body coordinates, and finally, generate the necessary motor commands (Houk, 

Buckingham, and Barto 1996, Nakano et al. 1999, Todorov 2004, Hwang and Shadmehr 2005, 

Izawa et al. 2012, Passot, Luque, and Arleo 2013).  

 

Figure 1 Feedforward cerebellar control loop (adapted from (Luque et al. 2016)). 
The adaptive cerebellar module embedded in a feedforward control loop delivers corrective torque 
values (τcorrective) to compensate for deviation in the crude inverse dynamics module when manipulating 
objects of significant weight. 

On the one hand, the cerebrocerebellum–parvocellular red nucleus system is thought to 

provide a crude internal neural model of the inverse-dynamics of the musculoskeletal system, 

which is acquired whilst monitoring the desired trajectory (Kawato, Furukawa, and Suzuki 

1987). On the other hand, the spinocerebellum–magnocellular red nucleus system is thought 

to hold an internal neural accurate model of the musculoskeletal body dynamics learnt 

through sensing voluntary movements (Kawato, Furukawa, and Suzuki 1987). According to the 

previous theory, the associative cortex would be in charge of providing the desired trajectory 

in body coordinates and conveying them to the motor cortex. Then it would generate the 

optimal motor commands to operate our limbs using an inverse dynamic model and would 
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send this ones to the lower motor neurons in the brainstem and spinal cord (Siciliano and 

Khatib 2016). The cerebellum also receives the desired trajectory together with the sensory 

information coming from the spinal cord and other parts of the brain (Siegel and Sapru 2006) 

and generates motor command corrections according to predictable errors occurring when 

executing a movement using the musculoskeletal body dynamic model. Thus, the crude 

inverse-dynamic model works together with the dynamic model provided by the cerebellum 

embedded in a feedforward control loop (Fig. 1). 

Learning and adaptation mechanisms play a crucial role in cerebellar motor control. Several 

theoretical models developed in last decades try to explain how the cerebellum calibrates the 

relation between sensorial inputs and motor commands using synaptic plasticity mechanisms. 

Most of these models extend the theories proposed by David Marr (Marr 1969) and James 

Albus (Albus 1971) based on the observation that each PC receives two dramatically different 

types of inputs: (i) thousands of weak inputs coming from GC along the parallel fibres (PF) and 

(ii) a single and extremely strong input coming from an Inferior Olive (IO) cell along a climbing 

fibre (CF). The strength of these CFs is so intense (due to the numerous synaptic contacts 

existing between each CF and PC dendrites) that a simple action potential from the IO 

generates a so-called complex spike in the target PC (a fast initial large-amplitude spike 

followed by a high-frequency burst and a period of non-activity (Schmolesky et al. 2002)).  

 

Figure 2 Cerebellar architecture (adapted from (Luque et al. 2016)). 
Our cerebellar model is composed of mossy fibres (MF), granule cells (GC), parallel fibres (PF), Purkinje 
cells (PC), climbing fibres (CF) and deep cerebellar nuclei cells (DCN). Long-term synaptic plasticity for PC 
and DCN afferents are indicated with two coloured symbols; long-term potentiation (LTP) in blue and 
long-term depression (LTD) in magenta. 

The basic concept of Marr-Albus theory relies on the fact that PFs (i.e. the axons of GCs) 

propagate sensorimotor information to PCs while CFs (i.e. the axons of IO cells) propagate 

teaching signals that codify the movement error. These teaching signals induce long-lasting 

changes in the strength of PFs. Observations of long-term depression (LTD) in PF inputs have 

provided support for theories of this type, but their validity remains controversial (Purves et al. 

2008). In this thesis we have extended this model including two additional plasticity 

mechanisms at DCN level. These new plasticity mechanisms help to consolidate the learning of 



  1.1 The cerebellum 

- 27 - 
 

PC level at DCN level and optimise the operational range of DCN cells. Figure 2 represents a 

scheme of the cerebellar model including the three proposed plasticity mechanisms. 

The eye blink classical conditioning (EBCC) (Thompson 1990) and the vestibulo-ocular reflex 

(VOR) (Leigh and Zee 2015) are broadly assumed as the paradigms that better reveal cerebellar 

learning characteristics. The EBCC is a relatively simple procedure that consists of pairing an 

auditory or visual stimulus (the conditioned stimulus (CS)) with an eye blink eliciting 

unconditioned stimulus (US) (e.g. a mild puff of air to the cornea). By contrast, the VOR is a bit 

more complicated procedure in which the activation of the vestibular system causes eye 

movements. This reflex stabilizes images on the retinas during head movement by producing 

eye movements in the opposite direction to the head movement, thus preserving the image on 

the centre of the visual field. Both experiments have been recreated using our cerebellar 

models. 

In this thesis we have focused on understanding the mechanisms used by the cerebellum in 

two main functions related to motor control: 

 Coordination of voluntary movements: The realization of most of the movements involves 

the activation of a number of different muscle groups in a temporally coordinated fashion. 

One major function of the cerebellum is to coordinate the timing and force of the 

operation of different muscle groups to produce fluid limb or body movements. 

 Motor learning: The cerebellum plays a major role in adapting and fine-tuning motor 

commands to make accurate movements through a trial-and-error process. The 

cerebellum must be constantly adjusting the sensorimotor relationships in order to 

compensate changes in its body (e.g. a tennis player that uses a new racquet with different 

weight or dimensions) or in the environment (e.g. to play in a grass court or in a hard 

court). 

1.2 Computational neuroscience: simulation tools 
In the last years, the spiking neural network simulation tools have experienced a fast evolution 

from little tailor-made simulators for specific experiments to very complex and general 

purpose simulators able to perform a wide range of experiments. Currently there exists an 

extensive number of simulation tools specialised in different kind of simulations. (i) NEURON 

(Hines and Carnevale 1997) and GENESIS (Bower and Beeman 1998) are the reference when 

detailed biophysical models of neurons are to be simulated. (ii) NEST (Gewaltig and Diesmann 

2007) is the reference when huge neural networks (billions of neurons and trillions of 

synapses) are to be simulated in supercomputers using simplified point neuron models (where 

the morphology is not relevant). (iii) Spikey (Pfeil et al. 2012, Schemmel et al. 2010) is a 

neuromorphic simulator based in analogical circuits (condensers and resistors) over a silicon 

wafer. It performs simulations between 1000 and 10,000 times faster than RT. This incredible 

speed-up rate can be used to perform intensive parameter analysis of neural networks in short 

periods of time. (iv) SpiNNaker (Khan et al. 2008) is a tailor-made massively parallel computer 

architecture based in ARM processors distributed in a toroidal topology. The whole machine is 

planned to contain one million ARM processors and will be able to perform simulations with 

up to one billion simple neurons. A deeper review about this topic can be found in (Brette et 

al. 2007). 
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The work developed in this thesis follows the research lines of our group at the University of 

Granada in the last years. It aims the development of biologically inspired cerebellar models 

embedded in closed-loop control schemes able to perform different motor control tasks with 

real robots in RT. Due to the shortage of available tools able to meet the requirements needed 

for this embodiment experiments, our group decided to develop our own simulation tool: 

EDLUT.  

1.2.1 Simulation strategies: time-driven vs event-driven 

Each spiking neural network simulator must perform at least three different tasks: (i) 

computation of the dynamic evolution of each neuron (normally defined by a set of differential 

equations that need to be integrated over the time), (ii) generation and propagation of spikes, 

and (iii) computation of the plasticity mechanisms that modify the synaptic weights. These 

tasks can be carried out using two different families of simulation methods: time-driven and 

event-driven simulation methods. The main difference between both methods refers to the 

way in which they manage the simulation time evolution, especially for the computation of the 

neural dynamic evolution. A deeper review about this topic can be found in (Brette et al. 

2007). 

Most of the simulators use time-driven simulation methods based on fixed-step integration 

since this scheme allows the simulation of the majority of neuron, synapse and learning rule 

models. These methods divide the simulation time into short time steps of fixed size and 

evaluate the dynamic evolution of each neuron integrating its differential equation system in 

each step (Iserles 2009). The main drawback of fixed-step integration methods is the limited 

efficiency when the neural activity to process is sparse or when the neural complexity is high 

(in terms of number of differential equations per neuron). In this case it could be 

recommended to use variable-step integration methods (Iserles 2009). These methods 

iteratively adapt the simulation step size as a function of the neural dynamic evolution of each 

neuron (this evolution depends on the neural activity and the model complexity). However, 

variable-step integration methods are not exempt of drawbacks (deeply discussed in the 

second journal article included in this thesis (Naveros et al. 2017)). Thus, variable-step 

integration methods are usually restricted to simulators specialised in the simulation of a few 

neurons with very complex neural modes (e.g. NEURON or GENESIS). 

Alternatively, event-driven simulation methods emerged as a solution to the low efficiency of 

fixed-step integration methods when neural networks with low activity had to be simulated. 

There are several regions in the brain characterised by this sparse activity (e.g. the GCs at the 

cerebellar cortex account for half of the neurons of the whole brain, receive between three 

and six input synapses with very sparse activity and most of them remain silent and barely 

generates spikes). The main strength of event-driven simulation methods relies in the fact that 

the neural dynamic evolution is only computed and updated when a new event modifies the 

normal evolution of a neuron (i.e. when an input spike is received or an output spike is 

produced). Several event-driven simulation methods have been developed and incorporated in 

different spiking neural network simulators (Mattia and Del Giudice 2000, Delorme and Thorpe 

2003, Reutimann, Giugliano, and Fusi 2003, Rudolph and Destexhe 2006, Pecevski, Kappel, and 

Jonke 2014). The main drawback of these methods is the fact that only relatively simple neural 

models based on equations that can be evaluated at arbitrary times can be implemented (e.g. 
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Spike-Response Model). This restriction limits the number of neural models that can be 

simulated using these techniques (limitation that time-driven methods do not suffer). 

1.2.2 The evolution of EDLUT simulator 

Our research group at the University of Granada has been studying the cerebellum for more 

than a decade. Inside the cerebellum, the GCs are, by far, the most numerous neurons 

(accounting for half of the neurons of the whole brain) and present low input connectivity 

ratios with sparse activity levels. Trying to exploit these features our research group developed 

the very first EDLUT version following an event-driven simulation scheme based in look-up 

tables (Ros et al. 2006). This innovative method computes in an initial stage the neural 

dynamic evolution of whatever kind of neural model with low complexity (up to four or five 

differential equations) and stores this one in look-up tables that will be posteriorly used during 

the simulation time. Neural models such as LIF, AdEx, Izhikevich and HH can be pre-computed 

in look-up tables. For a deeper review about this topic we recommend the reading of Dr. 

Carrillo’s thesis (Carrillo 2009).   

However, there exist different types of neurons in the cerebellum with very different 

connectivity and activity ratios. As we have previously commented, the GCs are perfect 

candidates to be simulated using event-driven methods due to its sparse activity. By contrast, 

PCs (large neurons integrating activity from up to 100,000 input synapses) fit better with time-

driven simulation methods. Thus, the efficient simulation of the cerebellum requires two 

different technical approaches. For that reason, Dr. Jesús Garrido (co-supervisor of this thesis) 

upgraded the EDLUT kernel toward a hybrid event- and time-driven simulation scheme able to 

use both simulation methods simultaneously (Garrido et al. 2011). Just fixed-step integration 

methods were implemented. Thus EDLUT could take advantage of the strengths and mitigate 

the drawbacks of both simulation methods (event-driven methods based in look-up tables for 

relatively simple neural models with low activity rates (as the GCs) and time-driven methods 

based in fixed-step integration methods for complex neural models with high activity rates (as 

the PCs). For a deeper review about this topic we recommend the reading of Dr. Garrido’s 

thesis (Garrido 2012). 

1.3 Motivation 
Traditionally, the neuroscience has studied biological systems by using in vitro and in vivo 

experiments. In vitro (Latin for within the glass) refers to the technique of performing a given 

procedure in a controlled environment outside of a living organism. Thus the experiment can 

be perfectly controlled although just simple behaviours and characteristics can be studied. By 

contrast, in vivo (Latin for “within the living”) refers to experimentation using a whole, living 

organism as opposed to a partial or dead organism. This technique allows more complex 

systems and behaviours to be studied, although the control over the experimental conditions 

and the measures that can be registered are notably more limited. Recently, computational 

neuroscience with its in silico (performed on computer or via computer simulation) 

experiments has emerged as a third approach to study the brain. In this thesis we have used 

the results obtained with experimental observation (mainly in rats and mouse) to create a 

computational model of the cerebellum. This model serves a double function: (i) validate the 

hypothesis raised by in vitro and in vivo experiments, and (ii) propose new hypothesis that can 
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be validated by in vitro and in vivo experiments. Thus, computational neuroscience 

experiments are a perfect complement for animal experimentation. 

Performing embodiment experiments in RT is a complex task that requires a specialised 

simulation tool. The journal articles published before this thesis and related with the 

development of EDLUT (Ros et al. 2006, Garrido et al. 2011) show the extraordinary potential 

of EDLUT to efficiently simulate cerebellar models. However, previous EDLUT versions lacked 

the efficiency to perform experiments in RT with reasonably large and complex models. A 

remarkable improvement of EDLUT performance as well as the development of a RT 

mechanism and a robot interface are then required.  

Focusing in the cerebellum, it is well know that this structure plays a fundamental role in the 

coordination and learning of movements. Neuroscientists perform behavioural experiments 

such as EBCC, VOR or manipulation tasks to study the cerebellum, observing how it controls 

the body. We replicate this methodology by studying our cerebellar models embedded in 

closed-loop schemes able to control the movement of simulated or real robots in RT. Thus we 

can better appreciate the influence of cerebellar models in the robot behaviour. This 

configuration allows the exploration of different features of the cerebellar model (neuron 

models, interconnectivity topology, plasticity mechanisms, etc.) and how they affect the robot 

behaviour. Additionally, robot behaviours can be compared with the ones observed by the 

neuroscientists using animals (or humans), thus validating or refuting the theories studied.  

From the point of view of robotics systems, the cerebellum is able to coordinate the 

movement of hundreds of muscles with astonishing reliability and low power consumption. 

Additionally, it is able to learn new tasks by repeating the movements and observing the 

consequences. By mimicking these features in robotic controllers can deeply improve the 

functionality and autonomy of ground-breaking biomorphic robots.  

Finally, from the point of view of information processing, the human brain represents a very 

powerful and energy efficient processing system robust against failures (aging). Understanding 

how the biological systems manage to process information from hundreds of sources will allow 

the development of new generations of processing architectures with never-seen-before 

capabilities. 

1.4 Objectives 

This thesis aims to create cerebellar models that explain the biological mechanisms allowing 

the cerebellum to perform different motor control tasks. In order to validate these models, 

they have been embedded in different closed-loop control schemes and have been exposed to 

demanding motor control tasks using simulated or real robots in RT. The secondary aim of this 

work is the implementation of novel biologically inspired control schemes able to control the 

new generation of biomorphic robots. Finally, the third aim this work addresses is the 

development of the simulation tools that enable this study, exploring new and efficient 

simulation methods, control schemes, communication interfaces and RT supervisors.  

In order to achieve these objectives, this thesis addresses the following separate goals: 
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 Development of the simulation tools required to create spiking-neural-network-based 

control systems for real robots. This goal can be subdivided in: 

 Development of an ultra-fast spiking network simulator (EDLUT) for medium-scale 

networks. Implementation of different parallelization techniques in Central Processing 

Units (CPUs) and Graphics Processing Units (GPUs) to increase its computational 

performance. 

 Implementation of efficient event-driven and time-driven simulation methods for 

neural models such as LIF, AdEx, Izhikevich and HH. 

 Integration of the neural network simulator within a robotic environment (able to 

manage simulated and real robots) to facilitate the experimentation using biological 

control schemes. 

 Enhancing the simulation software with the capability of ensuring RT simulations with 

robots. 

 Implementation of a cerebellar model using the tools previously developed. This goal can 

be subdivided in: 

 Study of how the different elements of the cerebellar model (neurons and synapses) 

contribute to its motor control skills. It requires the implementation and evaluation of 

complex neuron and synapsis models in EDLUT, with especial attention to the nucleo-

olivary system (Purkinje, DCN and IO cells). 

 Study of different plasticity mechanisms at Purkinje and DCN level that allow the 

cerebellar models to acquire new skills.  

 Validation of the proposed cerebellar models by means of its inclusion in closed-loop 

control schemes performing different motor control tasks with simulated or real robots in 

RT. 

1.5 Our contribution 

With the RT restriction in mind this thesis has deeply improved the efficiency and functionality 

of EDLUT. Regarding the efficiency, our main contributions are covered in the first (Naveros et 

al. 2015) and second (Naveros et al. 2017) journal articles included in this thesis, but also in the 

additional results pending for publication included in the fourth chapter of this thesis. 

Nowadays, most CPUs include several physical or virtual (hyper threading) cores. For that 

reason we have parallelised EDLUT kernel (event-driven and time-driven simulation methods) 

in CPU by using Open Multi-Processing (OpenMP). This is an application programming 

interface (API) that supports multi-platform shared memory multiprocessing programming in 

C++. Additionally, a few years ago NVIDIA developed Compute Unified Device Architecture 

(CUDA), a parallel computing platform and API model that allows software developers to use 

CUDA-enabled GPUs for general purpose processing programs exploiting data parallelism. Each 

CUDA-enabled GPU has hundreds or even thousands of CUDA cores able to execute in parallel 

the same code over multiple data. The computation of the neural dynamic evolution in time-

driven models using fixed-step integration methods is a task that perfectly copes with the 

parallel architecture of CUDA. For that reason we have upgraded EDLUT toward a CPU-GPU co-

processing platform in which the GPU (using CUDA) computes time-driven neural models while 

the CPU (using OpenMP) calculates time-driven and event-driven neural models. The spike 

generation and propagation, as well as the plasticity mechanism are processed by the CPU in 

parallel using OpenMP. All these new features are covered in (Naveros et al. 2015).  
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We have also developed new and efficient event-driven and time-driven simulation methods 

to make them capable to deal with complex neural models. For the event-driven methods we 

have restructured the look-up tables and developed an efficient activity propagation 

mechanism. For time-driven methods in CPU and GPU we have developed a new bi-fixed-step 

integration method that takes advantage of the strength and mitigates the weaknesses of 

fixed-step and variable-step integration methods. This upgrade is covered in (Naveros et al. 

2017). 

Finally, in the additional results section of this thesis we have exposed how different 

developments related with the computation of neurons, synapses and plasticity mechanisms 

have been included in EDLUT.  

Regarding the functionality of EDLUT, our main contributions are covered in the remaining 

journal articles included in this thesis (Luque et al. 2014, Luque et al. 2016) and the additional 

results section. New neural models and learning rules required for our cerebellar models have 

been implemented in EDLUT. We have also equipped EDLUT with an integrated robotic 

software framework. This framework allows the implementation of different closed-loop 

control schemes in which our cerebellar models are embedded. EDLUT includes now: (i) an 

interface that translates analogical signals generated by the robots into spikes that the 

cerebellar model understands and vice versa, (ii) a communication interface using TCP/IP 

connections between the control scheme and the robot interface (that can be executed in the 

same or different computers), and (iii) a RT supervisor that ensures the RT constraint. 

Additionally, EDLUT kernel has been modified to allow the simulation of neural elements 

(spikes generation and propagation, plasticity mechanism, neural dynamic evolution, etc.) to 

be temporally disabled in order to comply with the RT constraints. This feature is controlled by 

the RT supervisor, which may speed-up or speed-down the simulation.  

In addition to this, we have made extensive usage of these implemented tools to study the 

cerebellum. We have studied how the different neurons, synapses and plasticity mechanisms 

that have been experimentally reported in the cerebellum contribute to its motor control 

skills. More concretely we have focused our study in the closed-loop containing the IO, 

Purkinje and DCN cells (closing the loop from DCN to IO through the body). Although the IO 

cells are not considered as part of the cerebellum, it is believed that their axons (CFs) carry a 

teaching signal encoding the error to the cerebellum and influence the synaptic weight 

modification of PFs (Ito and Kano 1982, Ito 2001). We have studied the relationship between 

these three neurons in several demanding motor control and motor learning tasks with robots: 

(i) manipulation of heavy/light objects using a simulated robotic arm (Luque et al. 2014, Luque 

et al. 2016), (ii) recreation of an EBCC experiment using a simulated environment (Antonietti et 

al. 2016), and (iii) recreation of a VOR experiments using a simulated and real iCub robot 

(additional results section).  

Regarding the plasticity mechanisms, three spike-timing dependent plasticity (STDP) 

mechanisms implementing LTP and LTD at three different groups of synapses (PFs to PCs, MFs 

to DCN and PCs to DCN) are evaluated in this thesis (Luque et al. 2016). We have seen how in a 

first learning stage the CF activity at PC level influences the synaptic weight adaptation of their 

afferent PFs (axons coming from GCs) to minimise the error in the motor tasks. This error 
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signal is computed in the IO cells and convey to the PCs through the CFs. In a second learning 

stage the PC activity at DCN level influences the synaptic weight adaptation of their afferent 

MFs. Thus, the learning is consolidated by transferring part of the information stored in the 

PFs/PCs synapses to the MFs/DCN afferent synapses. Additionally, these mechanisms act as a 

gain adaptation mechanism able to optimize the operational range of DCN cells. 

Finally, we have proposed in the last stage of this thesis (additional results section) a new 

cerebellar model with three main contributions: (i) a detailed neural model for PCs able to 

replicate its tri-modal spike modes, namely tonic, silence and bursting (Forrest 2008), (ii) an IO 

layer interconnected with electrical coupling able to better codify the error signal, and (iii) a 

new synaptic connection from IO to DCN cells. We have validated this new cerebellar model 

using a VOR experiment with a simulated and real iCub robot in RT. This is the first experiment 

in which we have used a real robot (instead of simulated ones as previously). We have also 

developed in this work an asynchronous inner/outer closed-loop control scheme to facilitate 

the control of real robots. This control scheme takes advantage of the difference between the 

biological propagation delay of spikes through nerves and the artificial propagation delay of 

spikes through artificial systems to relax the RT constraint. This control scheme has been 

explained in more detail in the second chapter of this thesis. 

1.6 Project framework 

The work described in this document has been developed in the framework of two European 

projects: “Realistic Real-time Networks: computation dynamics in the cerebellum” (REALNET 

(FP7-270434)) and “Human Brain Project” (HBP (FP7-604102)). The last part of this thesis 

(additional results section) has been developed in collaboration with the research group lead 

by Angelo Arleo at the Pierre and Marie Curie University (UPMC), Paris. 

The REALNET project was a continuation of the European project SENSOPAC (IST-028056). 

REALNET (funded under the 7th EU Framework Information and Communication Technologies 

work program) started in February, 2011 and finished in February, 2014. The main goal of this 

project was to elaborate realistic spiking networks and use them, together with experimental 

recording of network activity, to investigate the theoretical basis of central network 

computation. A cerebellar circuit was used as a use case for this study. Based on experimental 

data, this project developed the very first realistic real-time model of the cerebellum and 

connected it to robotic systems to evaluate circuit functioning under closed-loop conditions. 

Within this project our research group at the University of Granada was focused in the 

development of EDLUT simulator to cope with realistic biological structures in RT increasing 

the performance of the simulations. 

More recently our research group is involved in the HBP project. This is a European 

Commission Future and Emerging Technologies Flagship. It was launched in October 2013, and 

is scheduled to run for ten years. The HBP aims to put in place a cutting-edge, ICT-based 

scientific Research Infrastructure for brain research, cognitive neuroscience and brain-inspired 

computing. The HBP is divided in 12 subprojects. Our research group at the University of 

Granada is currently integrated in the subproject 10: Neurorobotics Platform. This one offers 

scientists and technology developers a software and hardware infrastructure that allows pre-

validated brain models to be connected to detailed simulations of robot bodies and 
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environments. Inside this subproject, the University of Granada is integrated in the Work 

Package 10.1 Closed-Loop Experiments (Data-Driven Brain Models), developing the subtask 

10.1.4 Cerebellar motor control. Here we have followed with the development of our 

cerebellar model, validating this one in closed-loop experiments. 

Finally, the doctoral candidate has made a six-month stay in the Angelo Arleo’s group at the 

UPMC, partly funded by a mobility FPU grant of the Spanish Education Ministry. During this 

period we have developed and validated a more realistic cerebellar model embedded in a 

closed-loop control scheme able to recreate a VOR experiment using a simulated and real iCub 

robot in RT.  

1.7 Chapter organization 

This document has been organized in chapters for the sake of readability and organization. 

Each chapter can be described as follows: 

 Chapter 1 is a brief introduction of computational neuroscience and cerebellar models 

applied to close-loop experiments using biomorphic robots. This chapter also describes the 

motivation of this thesis. 

 Chapter 2 contextualizes the work presented in thesis regarding to previous works. 

 Chapter 3 enumerates the main contributions of this thesis and future work. 

 Chapter 4 is a compendium of the journal articles that support this thesis, including a brief 

description about the journals and the quality indexes of the publications. It also includes 

additional results pending for publication. 

 Chapter 5 is the chapter 1 in Spanish. 

 Chapter 6 is the chapter 3 in Spanish. 

 Annex includes the four journal articles that compose this thesis. 
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Chapter 2: Thesis contextualization 
The work developed in this thesis follows the research lines that our group at the University of 

Granada has developed in the last years. Our group aims the development of biologically 

inspired cerebellar models able to perform different motor control tasks with real robots in RT. 

All the journal articles that compose this thesis are oriented to this goal. 

In the previous chapter we have put in context EDLUT. We have exposed the different 

simulation strategies that can be used (event-driven and time-driven), as well as a list of the 

most important simulation tools. We have also exposed the evolution of EDLUT, passing from 

an event-driven simulation scheme to a hybrid event- and time-driven simulation scheme. 

Finally, we have summarised all the new contributions to EDLUT compiled in the journal 

articles and additional results section included in this thesis. 

In this chapter we put in context the cerebellar models and control schemes developed in this 

thesis, linking them with previous versions developed by our research group. Thus, we hope it 

will be easier for the reader to understand the cerebellar models presented in this thesis. 

2.1 Previous cerebellar models  
The cerebellar models and control schemes presented in this thesis are evolutions of the ones 

proposed by Dr. Niceto Luque (co-supervisor of this thesis) in his own thesis. A brief 

description of the work done by Dr. Luque in his thesis (Luque 2014) can help to better 

understand the work done in this one.  

The main aim of Dr. Luque’s thesis lied in the study and implementation of functional 

cerebellar models embedded in different controls schemes to perform motor control task with 

simulated robotics arms. This work was structured in four journal articles as follows. 

The first article (Luque, Garrido, Carrillo, Coenen, et al. 2011) proposed a simplified model of a 

cerebellum formed by four different kinds of neurons (MFs, PCs, DCN and CFs) and one 

learning mechanism (a STDP rule in PFs driven by CFs). This model did not include GCs. It 

connected directly the MFs with the PCs, acting this synapses as the PFs. The main 

contribution of this article was the development of a STDP rule able to calibrate the 

sensorimotor relationship and compensate the sensory propagation delay in a spiking 

cerebellar model. This plasticity was implemented using LTP and LTD mechanisms. The LTP 

mechanism produced a fixed synaptic efficacy increase in the PFs that propagated spikes to a 

PC. The LTD mechanism produced a synaptic efficacy decrease in the PFs that propagated spike 

to a PC before the arrival to the same cell of a spike coming from a CF. This mechanism was 

able to compensate the propagation delay using a mathematical function with a peak in the 

propagation delay.   

This cerebellar model was embedded in a control loop. For the experimental work they used a 

simulated version of a biomorphic robotic arm with low power actuators that tried to emulate 

a real human arm. They studied how the cerebellar model, thanks to the STDP mechanism, 

was able to build up corrective models to compensate deviation in the target trajectory of the 



2. Thesis contextualization   

- 36 - 
 

robotic arm when the dynamics of the robot was altered due to manipulation of heavy objects 

(whose mass significantly affected the basic model dynamics). 

The second article (Luque, Garrido, et al. 2011a) proposed a more realistic cerebellar model 

including a GC layer. As in the previous article, the cerebellar model was embedded in a 

control loop to manage the movement of a simulated robotic arm when it manipulated 

different objects that could modify its basic model dynamics. In this work they explored 

different configurations for the sensor representation supply to the cerebellum through the 

MFs (explicit, implicit and the combination of both ones), and how these one could be 

efficiently used for a corrective model abstraction corresponding to different manipulated 

objects. 

The third article (Luque, Garrido, Carrillo, Tolu, et al. 2011) studied how the previous cerebellar 

model performing the same manipulation task could be embedded in diverse control loops: 

forward, recurrent, and a combination of both architectures. These ones were able to infer 

corrective models which compensated deviation in the robot trajectory when the dynamics 

and kinematics of the controlled robotic arm were altered due to the manipulation of different 

object. They also studied how the noise (related to the inherent noise of the muscle spindle 

signal) introduced to the cerebellum through the MFs could affect to the model. The main goal 

of this article was to make a comparative evaluation of these control architectures which 

showed how forward and recurrent architectures complement each other in the framework of 

manipulation task and how robustly they behaved in the presence of noise. 

The last article (Luque et al. 2012) was a study of how the sensory-motor information in a 

common robot scenario could be encoded in an optimal representation that transfer from the 

robotic analogical domain to the biological digital (spikes) domain. 

2.2 Cerebellar models embedded in closed-loop control scheme for 

robot control in real time 
The human brain, thanks to the evolution during millions of years, has developed one of the 

best control systems known. During the last years it has emerged a new tendency that tries to 

emulate these biological control systems in order to design robotic controllers (Arbib, Metta, 

and van der Smagt 2008). Since it is known that the cerebellum is involved in control and 

learning of smooth coordinated movements, an accurate understanding of the cerebellar 

operation should help to improve biologically inspired control systems for biomorphic robots. 

As we have previously commented the best way to understand the biological mechanisms that 

confer the cerebellum its performance is studying it as part of a more complex system. For this 

reason we have embedded our cerebellar models in different control schemes able to perform 

motor control tasks using biomorphic robots (embodiment). Thus we can explore the effect 

that experimentally-supported characteristics have in the operation of biomorphic robots. 

When the associative cortex generates the desired trajectory in body coordinates (Fig. 1), it is 

sent to the motor cortex and the cerebellum (reaching the PCs through the PFs, Fig. 2). 

Similarly, the cerebellum also receives sensory information coming from the spinal cord and 

other brain regions. The motor cortex and the cerebellum generate then the motor commands 

that are transported to the muscles. This propagation through the nerves is at a limited speed, 
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producing a certain delay in the effective motor response (Flash and Hogan 1985). Once the 

muscles receive the motor commands, the contraction/relaxation is produced, generating in 

this way the movement.  

Additionally, the sensorial system sends information to the brain regarding the consequence of 

the movements (e.g. the effective positions/velocities of the body along the movement). 

However, these signals also arrive to the brain with some propagation delay. The sensorial 

information is processed in several brain regions (including the cerebellum and the Inferior 

Olivary nucleus). It is thought that the IO cells compare the desired and real trajectories and 

generate teaching signals encoding the error of the movement (Fig. 1). The teaching signals 

arrive to the PCs in the cerebellum through the CFs (Fig. 2). Nevertheless, the CF activity 

conveying the teaching signal is delayed, due to consecutive brain-to-motor and sensorial-to-

brain delays, with respect to the PF activity (representing desired trajectory information). 

Depending on the distance between the brain and the muscles, the total propagation delay 

(the sum of both propagation delays) can take values between 100 and 150 ms (Flash and 

Hogan 1985). It is believed that the cerebellum is able to compensate this propagation delay 

using a learning mechanism at PC level that correlates CF and PF activities. When a spike 

arrives to a PC through a CF at time T, it modifies the synaptic weights of all those PFs that 

propagated spikes to that PC using a convolution kernel with a peak in time T minus the total 

propagation delay (Luque, Garrido, Carrillo, Coenen, et al. 2011).  

This propagation delay is a biological constraint due to the limited propagation speed of 

nerves. By contrast, the propagation speed of artificial systems is usually much higher and its 

magnitude depends on the system topology (where the control system and the robot are 

physically placed) and the technology used to communicate the system modules. In a normal 

configuration in which the control scheme and the robot interface are executed in two 

different computer in the same room connected through an Ethernet connection, the artificial 

propagation delay can be a few milliseconds.  

In a closed-loop scheme able to control the movement of a robot, the control scheme must 

periodically send motor commands to the robot and the robot sends back information to the 

control system. A reasonable period for this communication is 2ms. This bidirectional 

communication can be implemented using two different communication techniques: 

synchronous and asynchronous communications.  

In the synchronous approach, both elements (cerebellar model and robot interface) deploy the 

simulation at the same speed (both ones use the same “simulation time”). Thus, if one 

element blocks the time evolution (e.g. the cerebellar model has to process an activity peak), 

the other element will have to pause its operation (e.g. the robot does not receive motor 

commands). This is not a big deal if we work with simulated robots in which the time is 

another variable that can be conveniently set. However, this is a very important issue when we 

work with real robots. In this case the time is a physical variable that evolves at a constant 

speed (RT). We cannot allow the cerebellar model to block the simulation. We need a RT 

supervisor that ensures that each simulation time period of 2ms is performed in 2ms of RT 

(speeding-up the simulation by momentary disabling some neural elements such as spikes or 
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plasticity mechanisms or speeding-down the simulation by halting it). This first option has been 

implemented in the third journal article included in this thesis (Luque et al. 2014). 

By contrast, the asynchronous approach can take advantage of the difference between the 

biological and the artificial propagation delays. Since biologically inspired control schemes 

based on cerebellar models are able to deal with this long delay (between 50 and 75ms in each 

direction), we can use this feature in our own benefit by uncoupling the simulation of the 

control scheme (cerebellar model) and the robot interface for a period of time equivalent to 

the biological propagation delay (between 50 and 75ms) minus the artificial propagation delay 

(usually a few milliseconds). For instance, when we are controlling the movement of a robotic 

arm we may set the communication period to 2ms and the biological propagation delay to 

50ms (100ms in total). If the artificial propagation delay (the time that our artificial system 

spends in connect our cerebellar model with the robot) is 10ms, there is a difference of 40ms 

between the biological and artificial propagation delays. By using buffers to accumulate the 

messages sent in both directions, we can uncouple the simulation time of both elements until 

40ms (the simulation time of the cerebellar model must be always greater or equal than the 

simulation time of the robot, but the difference between both ones must be lower than 40ms). 

This asynchronous approach is harder to build than the synchronous one, but is the best 

option when we have to deal with real robots. In this case, the simulation time of the robot 

interface must evolve at the same speed that the physical time (RT). However, the simulation 

time of the cerebellar model has a margin of up to 40ms with respect to the RT. When the 

cerebellar activity is low, the cerebellar model can advance the simulation time up to 40ms 

with respect to the RT. When the cerebellar activity is high, the cerebellar model can use these 

40ms to process all the activity without blocking the robot operation and without disabling any 

neural element (just are disabled when the simulation time is close to the RT boundary). This 

additional time reduces the RT exigencies with respect to the synchronous approach and 

allows easier implementation of the RT supervisor. This second choice has been implemented 

in the additional results section of this thesis. 

2.3 New cerebellar models 
The cerebellar models presented in this thesis have been developed in close collaboration with 

Dr. Luque (expert in this field). In the fourth article of this thesis (Luque et al. 2016) we have 

proposed two new plasticity mechanisms related with the DCN cells. Thus our cerebellar 

model implements plasticity mechanism in three different groups of synapses (PFs to PCs, MFs 

to DCN and PCs to DCN). The two new plasticity mechanisms have a dual functionality. The 

first one is to act as a gain adaptation mechanism able to optimize the working range of DCN 

cells. The second one allows the consolidation of the synaptic memories that are formed at PFs 

to PCs by transferring this synaptic topology to the MFs to DCN cells. This new cerebellar 

model has been tested over two different closed-loop schemes able to control the movement 

of a simulated robotic arm: (i) a feedback control loop to deliver corrective actions to 

compensate the existing difference between a controlled variable (real trajectory) and a 

demanding reference variable (desired trajectory), and (ii) a feedforward control loop to 

deliver corrective torque values to compensate for deviations in the crude inverse dynamic 

module when the robotic arm manipulates an object of significant weight along a predefined 

trajectory.  
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Additionally, the cerebellar model proposed in the previous article has been also used to 

recreate an EBCC experiment (Antonietti et al. 2016) at the Polytechnic of Milan. We have 

collaborated with this University in the framework of the European project REALNET. We have 

supplied the cerebellar model running in EDLUT that they have used to recreate the EBCC 

experiment.  

Finally, the EBCC (already simulated with our cerebellar model) together with the VOR are 

broadly assumed as the paradigms that better reveal cerebellar learning. For that reason we 

have implemented in the last stage of this thesis a VOR experiment with a real robot (iCub) in 

RT. This work is included in the additional result section of this thesis. This is the first work in 

which we have been able to carry out an experiment using a real robot in RT. Taking the step 

from simulated robots to real robots has been an arduous task. We have implemented an 

asynchronous inner/outer closed-loop control scheme able to take advantage of the difference 

between the biological and artificial propagation delays in order to manage the movement of 

the iCub robot in RT. We have also implemented a RT supervisor similar to the one proposed in 

(Luque et al. 2014) able to ensure the RT restriction (in this case, since the simulation is 

asynchronous, the RT supervisor has to manage the time evolution of the cerebellar model and 

robot interface). Regarding the cerebellar model, we have included three new biological 

features in the new version proposed for this experiment: (i) a more complex neural model for 

the PCs able to recreate its tri-modal spike modes namely tonic, silence and bursting, (ii) a 

proper IO layer with electrical coupling between its neurons, and (iii) a new synapse from IO to 

DCN cells. All this new features have been tested in the VOR experiment. 
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Chapter 3: Conclusions and future work 
This chapter shows a summary of the main contributions presented in this thesis, the 

conclusion that can be extracted and a proposal for future work.  

3.1 Revisiting the thesis objectives 
This thesis aims three complementary objectives:  

 The development of the simulation tools that enable this study, exploring new and 

efficient simulation methods, control schemes, communication interfaces and RT 

supervisors. This has been fulfilled through the development of the EDLUT platform 

integrating different features that allow very efficient computation. A complete study of its 

performance capability and how it can be optimised has been carried out. 

 Creating cerebellar models that explain the biological mechanisms allowing the cerebellum 

and some related centres to perform different motor control tasks. This objective is 

fulfilled by the development of cerebellar models which integrate new features such as 

distributed plasticity mechanisms (PFs to PCs driven by CFs, MFs to DCN cells driven by PCs 

and PCs to DCN cells), complex cell models (such as the tri-modal PC model), an IO layer 

able to better codify de error signal using electrical coupling and a specific synapse from IO 

to DCN layers.  

 Implementation of novel biologically inspired control schemes able to control the new 

generation of biomorphic robots. The cerebellar models have been embedded in different 

closed-loop control schemes and have been exposed to demanding motor control tasks 

using simulated or real robots in RT. This has been done within biologically inspired control 

schemes, thus fulfilling this third objective. 

3.2 Main contributions 

 An ultra-fast spiking neural network simulator (EDLUT) based on hybrid event- and time-

driven simulations has been developed and upgraded. A wide range of simulation 

techniques have been applied to this simulator with the idea of increasing its 

computational performance. Thus we have made possible the goal of performing motor 

control tasks with real robot in RT using biologically inspired cerebellar models. 

 The EDLUT kernel, able to perform hybrid event- and time-driven simulations, has 

been parallelized in multicore CPUs using OpenMP.  

 The time-driven simulation methods have been also parallelized in CPU-GPU co-

processing platforms using CUDA. The GPU just computes the neural dynamic 

evolution while the spike generation and propagation is executed in the CPU. 

 New event-driven and time-driven simulation methods specialised in the simulation of 

relatively complex neural models (AdEx and HH) have been developed. A new 

mechanism able to re-organise the look-up tables together with a new protocol to 

generate and process synchronous activity have been developed for the event-driven 

methods. For the time-driven methods in CPU and GPU, a new bi-fixed-step 

integration method has been developed. This integration method is a hybrid between 
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fixed-step and variable-step integration methods able to take advantage of the 

strengths and mitigate the weaknesses of both ones. 

 Several upgrading in the computation of the neural dynamic evolution, generation and 

propagation of spikes and updating of synaptic weight using different plasticity 

mechanism have been developed. 

 EDLUT kernel has been modified in order to allow the momentary disabling of neural 

elements (spikes generation and propagation, plasticity mechanism, neural dynamic 

evolution, etc.) to comply with the RT constraint imposed by real robots. This feature is 

controlled by a RT supervisor, which can speed-up or speed-down the simulation. 

 Additional features beyond the simulation of spiking neural networks have been 

integrated in EDLUT.  

 It allows now the implementation of different closed-loop control schemes in which 

our cerebellar models are embedded using synchronous or asynchronous simulations. 

 A robot plant simulator able to simulate a wide range of robots. 

 A communication interface able to convert the analogical signals of robots to spikes 

that neural networks can process and vice versa. 

 A communication interface able to connect the control scheme with the robot 

interface of whatever simulated or real robot using TCP/IP connections. 

 An incremental version of a biologically plausible cerebellar model has been developed. 

 Three different plasticity mechanisms have been proposed in our cerebellar model 

(PFs to PCs driven by CFs, MFs to DCN cells driven by PCs and PCs to DCN cells). These 

plasticity mechanisms generate three main contributions to the cerebellar model 

behaviour.  

 Calibrate in a first stage the sensorimotor relationship using the first plasticity 

mechanism at PC level. 

 Consolidate in a second stage the synaptic memory that is formed in the first 

plasticity mechanism at PC level by replicating this synaptic memory distribution in 

the second plasticity mechanism at DCN level.  

 The third plasticity mechanism acts as a gain adaptation mechanism able to 

optimize the working range of DCN cells.  

 A new complex neural model able to replicate the tri-modal spike modes of PCs has 

been included in the cerebellar model.  

 A proper IO layer implementing electrical coupling between its neurons has been 

included in the cerebellar model. This electrical coupling helps to better codifying the 

error signal. 

 A new synapse from IO to DCN cell has been evaluated. 

 The cerebellar models proposed have been validated in different motor control and motor 

learning tasks. 

 Manipulation tasks of heavy/light objects that impact the basic model dynamics of a 

simulated robotic arm in RT. 

 Recreation of an EBCC experiment using a simulated environment.  

 Recreation of a VOR experiment using a simulated and a real iCub robot in RT. 
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3.3 Conclusions 
In this thesis we have tried to bring some light to the motor control theory related to the 

cerebellum, proposing and studying cerebellar models based on hypothesis and results 

extracted from the biology. These cerebellar models have been evaluated in different motor 

control tasks using simulated and real robots (embodiment) in RT. Additionally, in this thesis 

we have developed and integrated in a single tool (EDLUT) all the elements required for these 

embodiment experiments.   

When the simulation of spiking neural networks capable of interacting with simulated or real 

robots in RT is required, an efficient spiking neural network simulator with RT simulation 

capabilities is mandatory. With this idea in mind we have developed EDLUT, an open source 

spiking neural network simulator with a hybrid event- and time-driven simulation scheme 

parallelized in multicore CPU-GPU co-processing platforms and a RT supervisor. This hybrid 

scheme offers several simulation techniques that can be used conjointly to speed-up the 

simulation of different neural layers within the same neural networks (e.g. event-driven 

methods for the GC layer and time-driven methods for PC layer). Additionally, this simulator 

integrates a robotic software framework able to implement different closed-loop control 

schemes to manage simulated or real robots in RT. 

Regarding the cerebellar models proposed in this thesis we have shown how a biologically 

inspired cerebellar model can be used to perform different motor controls tasks such as 

manipulation of heavy/light objects, EBCC and VOR experiments. Several new features have 

been proposed and studied in our cerebellar model: (i) Two additional plasticity mechanisms at 

DCN level able to consolidate the learning at Purkinje level and adjust the output range of DCN 

cells, (ii) a complex neural model for PCs able to recreate its tri-modal spike modes, (iii) a new 

IO layer with electrical coupling able to better codify the error, and (iv) a new synapses from IO 

to DCN cells. Nevertheless, we are yet quite far of fully understanding all the features of a 

cerebellum, being able to recreate a perfect cerebellar model. For that reason we need to 

follow with this study in the future. 

3.4 Future work 
The first step after this thesis will be the publication of all the results that are yet pending for 

publication. These ones will be divided in two separated (although related) articles. The first 

one will address the cerebellar model from the point of view of neuroscience. We will present 

how all the elements included in our cerebellar model are biologically plausible and how they 

contribute to the cerebellar model. The second article will be much more technical, focusing in 

the technical issues that we have had to deal with in order to recreate a VOR experiment using 

a simulated and real iCub robot in RT.  

After that we will try to follow exploring the capabilities of our cerebellar model. Recent in vivo 

and in vitro studies (Bidoret et al. 2009, Bouvier et al. 2016) have observed how the plasticity 

mechanism of PFs to PCs is driven by the activity of CFs. These studies propose that the LTD 

and LTP mechanisms of PFs require a determined activity to modify the synaptic weight. This 

activity must be in bursts of at least 2 spikes for LTD or 5 spikes for LTP in order to induce a 

synaptic weight modification. Additionally, the spikes inside these bursts must have a high 

frequency (200Hz). For shorter bursts or with lower frequencies no synaptic weight 
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modifications are observed. Additionally, the authors of these studies have proposed a 

mathematical model able to recreate this behaviour. In future versions of our cerebellar model 

we will replace our plasticity mechanism at PF level with this new version, evaluating how it 

can modify the dynamics of the model with respect to our previous version. Additionally, since 

this new learning rule requires the GC layer to generate bursts at high frequency, we will need 

to re-design a new GC layer able to meet these new requirements. With this goal in mind we 

will collaborate with Dr. Jesús Garrido (co-supervisor of this thesis and expert in the GC layer). 

He has extensively studied the MF, GC and Golgi cell (GoC) layers, evaluating different 

distributed plasticity mechanisms (Garrido et al. 2016, Mapelli et al. 2015, Luque, Garrido, et 

al. 2011a, D'Angelo et al. 2009, D’Angelo et al. 2016). We will integrate his MF, GC and GoC 

layers with our PC, DCN and IO layers, thus building our most complex and biologically 

plausible cerebellar model. Finally we will include in our cerebellar model two new types of 

interneurons: basket and stellate cells. These cells receive excitatory synapses from the PFs 

and inhibit the PCs. The working hypothesis is that these layers help to better differentiate the 

PF patters at PC level and optimise the working range of PCs.  

Regarding the development of our simulator EDLUT, we have drastically improved in this thesis 

the computational performance of this tool, making it capable of simulate more complex 

cerebellar models in RT. In the next steps after this thesis we are planning to follow with the 

development of our cerebellar model, increasing its neural and mathematical complexity, but 

at the same time we also want to perform RT experiments with real robots. As we have seen in 

this thesis, the combination of both options at the same time will require to go on with the 

development of EDLUT, exploring new ways to increase its computational performance. In this 

sense we will explore the parallelization of EDLUT in clusters, but taking always into account 

the RT constraint that real robots impose.  

We will also explore how to optimise the new plasticity mechanism at PF level. This new 

plasticity mechanism uses two state variables and one differential equation for each PF. The 

state variables experiment a direct increment each time a spike arrives thought the PF or CF 

respectively and an exponential decrement over the time. In our last cerebellar model we have 

implemented 400,000 PFs. Thus we will have to evaluate 800,000 exponential decrement 

functions and 400,000 differential equations, generating a huge computational workload. We 

will implement and compare three different configurations: fixed-step and variable-step 

integration methods in CPU and fixed-step integration methods in CPU-GPU co-processing 

platforms (the direct increment of the state variables will be computed in CPU, while the 

exponential decrement and the differential equation integration will be computed in GPU).  

Finally, as we have previously expressed, we will further evaluate the new features of our 

cerebellar model when it is involved in different motor control task using simulated or real 

robots in RT.  
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Chapter 4: Results 
This chapter summarises the results obtained during this thesis. The chapter is divided in two 

main sections; published results and pending-for-publication results. The first section 

enumerates and ranks the journal articles obtained whereas the second section presents a 

more in depth explanation of those results that are to be published.  

4.1 Published journal articles included in this thesis 
1. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation 

Schemes Using Parallel CPU-GPU Co-Processing: A Case Study. 

Naveros, F., Luque, N. R., Garrido, J. A., Carrillo, R. R., Anguita, M., & Ros, E. (2015). A 

spiking neural simulator integrating event-driven and time-driven computation schemes 

using parallel CPU-GPU co-processing: a case study. IEEE transactions on neural networks 

and learning systems, 26(7), 1567-1574. 

Status: Published in 2015 

Impact Factor (JCR 2015): 4.854 

Category: 

 Computer Science, Artificial Intelligence. Ranking 7/130, Quartile in Category: Q1. 

 Computer Science, Hardware & Architecture. Ranking 1/51, Quartile in Category: 

Q1. 

 Computer Science, Theory & Methods. Ranking 3/105, Quartile in Category: Q1. 

 Engineering, Electrical and Electronic. Ranking 10/257, Quartile in Category: Q1. 

2. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co- Processing for Spiking 

Neural Networks. 

Naveros, F., Garrido, J. A., Carrillo, R. R., Ros, E., & Luque, N. R. (2017). Event-and Time-

Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks. 

Frontiers in Neuroinformatics, 11. 

Status: Accepted in 2017 

Impact Factor (JCR 2015): 3,047 

Category: 

 Mathematical & Computational Biology. Ranking 6/56, Quartile in Category: Q1. 

 Neurosciences. Ranking 107/256, Quartile in Category: Q2. 

3. Integrated neural and robotic simulations. Simulation of cerebellar neurobiological 

substrate for an object-oriented dynamic model abstraction process. 

Luque, N. R., Carrillo, R. R., Naveros, F., Garrido, J. A., & Sáez-Lara, M. J. (2014). Integrated 

neural and robotic simulations. Simulation of cerebellar neurobiological substrate for an 
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object-oriented dynamic model abstraction process. Robotics and Autonomous Systems, 

62(12), 1702-1716. 

Status: Published in 2014 

Impact Factor (JCR 2014): 2,326 

Subject Category: 

 Automation & Control Systems. Ranking 31/52, Quartile in Category: Q3 

 Computer Science, Artificial Intelligence. Ranking 68/123, Quartile in Category: Q3 

 Robotics. Ranking 11/23, Quartile in Category: Q2 

4. Distributed Cerebellar Motor learning: A Spike-Timing-Dependent Plasticity Model. 

Luque, N. R., Garrido, J. A., Naveros, F., Carrillo, R. R., D'Angelo, E., & Ros, E. (2016). 

Distributed cerebellar motor learning: a spike-timing-dependent plasticity model. Frontiers 

in computational neuroscience, 10. 

Status: Published in 2016 

Impact Factor (JCR 2015): 2,635 

Subject Category: 

 Mathematical & Computational Biology. Ranking 7/56, Quartile in Category: Q1. 

 Neurosciences. Ranking 133/256, Quartile in Category: Q3. 

4.1.1 Other published journal articles in collaboration with EU partners 

5. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in 

Eye Blink Conditioning Paradigms. 

Antonietti, A., Casellato, C., Garrido, J. A., Luque, N. R., Naveros, F., Ros, E., D’Angelo, E., 

Pedrocchi, A. (2016). Spiking neural network with distributed plasticity reproduces 

cerebellar learning in eye blink conditioning paradigms. IEEE Transactions on Biomedical 

Engineering, 63(1), 210-219. 

Status: Published in 2016 

Impact Factor (JCR 2015): 2,468 

Subject Category: 

 Engineering, Biomedical. Ranking 22/76, Quartile in Category: Q2. 

4.1.2 International peer-reviewed proceedings 

1. CPU-GPU hybrid platform for efficient spiking neural-network simulation. 

Naveros, F., Luque, N. R., Garrido, J. A., Carrillo, R. R., & Ros, E. (2013). CPU-GPU hybrid 
platform for efficient spiking neural-network simulation. BMC Neuroscience, 14(1), P328. 
This is a contribution to the CNS 2013, Paris. 
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4.2 Results pending for publication 
As the reader may envisage, the work here presented is the result of a gradual process whose 

zenith is yet to come. The ultimate goal of the thesis here presented is to integrate the 

cerebellar circuit modelling within RT “behavioural and cognitive tasks”. This is a compromise 

approach based on the assumption that most cerebellar functions involve the cooperative 

computation of several neural subcircuits.  

Many computational models about the cerebro-cerebellar loop have been proposed since 

(Marr 1969, Albus 1971), thus providing elegant explanations about the core of the forward 

controller operation that cerebro-cerebellar loop seems to carry out. Nevertheless, these 

computational theories tend to focus in one part of the cerebellar circuitry and then 

extrapolating the obtained conclusions to the completely cerebro-cerebellar system. It is also 

true that functional features are not either suddenly going to emerge from modelling all the 

cerebellar parts together since small deviations in many of the estimated network parameters 

(Sporns 2006) can cause large deviations in resultant global behaviour. But, it is also true that 

simulating nervous systems "connected" to a body (agent or robot with sensors and actuators) 

can be of great interest for studying how certain capabilities of the nervous system (e.g. the 

role of the cerebellum in coordinated movements and object manipulation) are based on 

cellular characteristics, nervous system topology or local synaptic adaptation mechanisms. This 

last work presents an integrative approach that tries to build the bridge between task specific 

experimentation and Systems Neuroscience models. 

This integrative approach allows studying the role of certain nervous systems under what it is 

called "behavioural/cognitive tasks". This is closely related to the concept of "embodied 

cognition" (Pfeifer and Bongard 2007), in which the main aim of the CNS is to solve and 

facilitate the body interaction with the environment. Therefore, it is crucial to study nervous 

system models within the framework of its interaction with a body (sensors and actuators) and 

environment. 

To that aim, the ingredients for our embodied cognition approach are:  

1. The vestibulo-ocular reflex (VOR) experiment as our behavioural/cognitive task. The VOR is 

a reflexive eye movement largely used for testing cerebellar malfunctions. 

2. The cerebellar model as the neural structure responsible for facilitating the body 

interaction. 

3. The humanoid iCub robot as the front end human-like body.  

In subsequence sections, we explain how each ingredient has been implemented, how they 

operate and how they have been put together to work as a whole (embodied system). Here we 

have included a brief summary of the work done to avoid any copyright infringements with the 

eventual publications. 

4.2.1 What is the vestibulo-ocular reflex (VOR)? 

The VOR is a reflexive eye movement that stabilises the images on the retina during head 

rotations by contralateral eye movements that maintain the image in the centre of the visual 

field (Fig. 3A). The VOR is effective up to head direction speeds of 50 deg/sec, and its latency 

period is extremely short (~10 ms). The VOR depends on the vestibular system, which detects 



4. Results 

- 48 - 
 

head rotation. Therefore, VOR does not depend on vision and it works both in light and 

darkness conditions. The vestibular system can detect both rotational and translational head 

movements through the stimulation of semicircular canals and otolithic organs respectively 

(Rabbitt, Damiano, and Grant 2004). Thus, both angular and linear movements elicit the VOR: 

rotational (r-VOR) and translational (t-VOR). Head oscillations can involve a combination of 

translational and rotational movements, which results in combined r- and t-VOR.  

 

Figure 3 Vestibular Ocular Reflex (VOR). 
(A) VOR stabilises the images on the retina during head rotations by contralateral eye movements that 

maintain the image still on the fovea. (B) In VOR, head movements are compared against induced eye 

movements using the VOR-gain and the VOR-phase. The VOR-gain is calculated by using a Fourier 

analysis. VOR-gain is the ratio of the first harmonic amplitudes obtained from the input signal and the 

actual cerebellar output signal. The lag of the VOR-phase is calculated by using cross-correlation 

between the reference variable (input) and the actual cerebellar output. 

In head oscillation tests, head and eye movements are usually compared thanks to a sine-wave 

stimulus used as reference variable (head velocity) and controlled variable (eye velocity). The 

temporal difference between these two curves, called VOR phase shift, is traditionally given in 

degrees whilst the ratio of amplitude of eye rotation and head rotation, called VOR gain, is 

non-dimensional (Fig. 3B). For natural head rotation frequencies (0.5-5.0 Hz), the VOR gain is 

close to 1.0 whilst phase shift is close to 180 degrees. That is, equally-sized head and eye 
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movements are in counter-phase as they are synchronously occurring in opposite directions 

(Leigh and Zee 2015). 

VOR’s nature is purely feed-forward since it induces prompt compensatory eye movements as 

consequence of head movements. VOR is mediated by a control system in which adaptation is 

directly driven by sensorimotor errors: the cerebellum (Figure 4). The existing mismatch 

between head movements (signalled by the vestibular organ) and the incoming information to 

the cerebellum about eye movements represents sensory errors, which are called retinal slips. 

The feed-forward adaptive control mediated by the cerebellum aims at minimising these 

retinal slips. 

 

Figure 4 Vestibular and cerebellar scheme. 
Connections from the vestibular organ via the vestibular nucleus to the oculomotor nucleus forming the 

three-neuron reflex arc and connections to the cerebellum. 

The VOR, together with EBCC, are broadly assumed as the paradigm that better reveals 

cerebellar learning.  

4.2.2 Cerebellar spiking neural network model 

The cerebellar model is a complete upgrading of (Luque et al. 2016). It is modelled as a 

forward controller capable of compensating head movements by producing contralateral eye 

movements. The connectivity and the topology of the simulated cerebellar network involve 

five neural sub-populations (Eccles, Ito, and Szentágothai 1967, Ito 1984, Voogd and Glickstein 

1998, Medina and Mauk 1999, 2000). The population of MFs conveys the sensory signals from 

the vestibular organ and the eyes, providing the input to the cerebellar network. MFs project 

excitatory afferents onto GC and DCN. PCs integrate the input from the PFs (i.e. the axons of 

GCs) as well as the error signal (difference between the head and eye movements) from the 

CFs (i.e. the axons of IO cells). Finally, the DCN cells generate the output activity of the 

cerebellum. DCNs close the cerebellar loop with the excitatory synapses coming from the MFs 

and the IO together with the inhibitory synapses coming from the PCs.  
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Mossy fibres (MFs). 100 MFs have been modelled as LIF neurons. These fibres generate 

excitatory synapses that connect with all DCN cells. MF activity is generated following a 

sinusoidal shape (1Hz with a step size of 0.002 ms) to encode head movements (Lisberger and 

Fuchs 1978, Arenz et al. 2008, Clopath et al. 2014) consistently with the functional principles of 

VOR in cerebellar-control (Clopath et al. 2014). The overall MF activity consists of non-

overlapping activations of equally sized neural subpopulations that allow a constant firing rate.  

Granular cells (GCs). The granular layer includes 2000 GCs implementing a state generator 

(Yamazaki and Tanaka 2005, 2007, 2009, Honda et al. 2011). This means that the granular layer 

generates a sequence of active neuron populations without recurrence in the presence of a 

constant MF input (Fujita 1982). The granular layer generates non-overlapped spatiotemporal 

patterns that are repeatedly activated in the same sequence during each one-second learning 

trial. The passage of time is represented by 500 different states that consist of four activated 

non-overlapped GCs per time-step (2ms). 

Purkinje cells (PCs). PCs have been modelled using a detailed neural model consisting of a 

single compartment with five ionic currents (two groups of 100 cells for agonist/antagonist 

muscles). This new model is able to replicate the complex spikes observed in PCs. THE previous 

PC model (Luque et al. 2016) did not exhibit the tri-modal spike modes namely tonic, silence 

and bursting (Forrest 2008)).  

Inferior olive cells (IOs) and climbing fibres (CFs). 200 IO cells have been modelled as LIF 

neurons (two groups of 100 cells for agonist/antagonist muscles). Each CF, from an IO cell, 

contacts with one PC and one DCN. IO cells are interconnected via gap-junctions whose 

electrical coupling activates ensembles of IO cells. Gap-junctions are electrically coupled 

following preferred directions. There is not always a direct correlation between vicinity and the 

direction of the electrical coupling transmission within the inferior olive network (Devor and 

Yarom 2002). The nearest IO cells are not always the cells that are coupled in the first place. 

We have tried to mimic this “preferred directions” by using a certain IO network topology. 

Each group of 100 cells is divided in four 5x5 squares. The preferred paths are disposed radially 

from one corner of each 5x5 square to the other three corners. Finally, the external input 

activity of IO cells has been generated with a probabilistic Poisson process. Given the 

normalised error signal ε(t) and a random number η(t) between 0 and 1, an IO cell receives an 

input spike if ε(t)>η(t) (Boucheny et al. 2005, Luque, Garrido, et al. 2011b). These input stimuli 

together with the electrical coupling between IO cells generate the CF activity. Thus, a single 

CF spike encodes well-timed information regarding the instantaneous error. Furthermore, the 

probabilistic spike sampling of the error ensures a proper representation of the whole error 

region over trials, while maintaining the CF activity below 10 Hz per fibre (similar to 

electrophysiological data (Kuroda et al. 2001)). The evolution of the error can be sampled 

accurately even at such a low frequency (Carrillo et al. 2008, Luque, Garrido, et al. 2011b).  

Deep Cerebellar Nuclei (DCN) cells. 200 DCN cells have been modelled as LIF neurons (two 

groups of 100 cells for agonist/antagonist muscles). Each DCN cell receives an inhibitory 

afferent from a PC and an excitatory afferent from the IO cell that is also contacting that PC. 

DCN cells also receive excitatory projections from all MFs (which determine the baseline DCN 

activity). Thus, the subcircuit IO–PC–DCN is organised in a single microcomplex. DCN spike 
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trains are translated into analogue output signals through averaging the spiking output given 

by each DCN subpopulation (one subpopulation for each agonist/antagonist group of muscles) 

(Eqs. 1 and 2): 

𝐷𝐶𝑁𝑖(𝑡) = ∫ 𝛿𝐷𝐶𝑁𝑠𝑝𝑖𝑘𝑒
(𝑡) · 𝑑𝑡

𝑡+𝑇𝑠𝑡𝑒𝑝

𝑡

 (1) 

𝐷𝐶𝑁𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) = ∑ 𝐷𝐶𝑁𝑖(𝑡)

𝑁=100

𝑖=1

 (2) 

We have summarised in Table 1 the neural topology used by our cerebellar model. 

Table 1. Neural network topology 

Neurons Synapses 

Pre-synaptic cells 

(number) 

Post-synaptic cells 

(number) 
Number Type 

Initial 
weight 

Weight 
range 

2000 GC 200 PC 400000 AMPA 4 [0, 10] 

200 IO 200 PC 200 AMPA 40 - 

100 MF 200 DCN 20000 AMPA 0 [0, 1] 

200 PC 200 DCN 200 GABA 1.5 - 

200 IO 200 DCN 200 NMDA 7 - 

IO to IO  320 EC 5 - 

4.2.3 Neural models 

DCN cell model 

DCN cells are modelled as LIF neurons with excitatory (AMPA and NMDA) and inhibitory 

(GABA) chemical synapses (Eqs. 3 to 9). 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  (3) 

𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝐿 · (𝑉 + 𝐸𝐿) (4) 

𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = −(𝑔𝐴𝑀𝑃𝐴(𝑡) + 𝑔𝑁𝑀𝐷𝐴(𝑡) · 𝑔𝑁𝑀𝐷𝐴_𝐼𝑁𝐹) · (𝑉 − 𝐸𝐴𝑀𝑃𝐴) − 𝑔𝐺𝐴𝐵𝐴(𝑡) · (𝑉 − 𝐸𝐺𝐴𝐵𝐴) (5) 

𝑔𝐴𝑀𝑃𝐴(𝑡) = 𝑔𝐴𝑀𝑃𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐴𝑀𝑃𝐴  (6) 

𝑔𝑁𝑀𝐷𝐴(𝑡) = 𝑔𝑁𝑀𝐷𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝑁𝑀𝐷𝐴  (7) 

𝑔𝐺𝐴𝐵𝐴(𝑡) = 𝑔𝐺𝐴𝐵𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐺𝐴𝐵𝐴  (8) 

𝑔𝑁𝑀𝐷𝐴_𝐼𝑁𝐹 =
1

1 + 𝑒−62·𝑉 ·
1.2

3.57

 (9) 

Where Cm denotes de membrane capacitance, V the membrane potential, Iinternal the internal 

currents and Iexternal the external currents. EL is the resting potential and gL the conductance 

responsible for the passive decay term toward the resting potential. Conductaces gAMPA, gNMDA 

and gGABA integrate all the contributions received by each receptor type (AMPA, NMDA, GABA) 

through individual synapses. These conductances are defined as decaying exponential 

functions (Gerstner and Kistler 2002, Ros et al. 2006). 
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IO cell model 

IO cells are modelled as LIF neurons with excitatory (AMPA) and inhibitory (GABA) chemical 

synapses and electrical coupling (EC) synapses (Eqs. 10 to 15). From a functional point of view, 

the interneuron communication through electrical synapses differs significantly from the 

communication through chemical synapses. The main difference lies in the communication 

speed. Chemical synapses hold a significant synaptic delay. There is an elapsed time since the 

action potential reaches the presynaptic connection and the released neurotransmitter 

interacts with the receptor producing the response in the postsynaptic cell (a few 

milliseconds). By contrast, the electrical synapse delay is negligible. This high speed in 

intercellular communication allows the simultaneous functional coupling (synchronisation) of 

neural networks interconnected by electrical synapses. 

The electrical-synapse intercellular channels allow the bidirectional flow of ions in almost any 

situation. Most of the intercellular channels conforming the electrical synapses are voltage 

dependent, that is, their conductance varies according to the difference of potential on both 

sides of the membranes conforming the electrical bond. In some specialised gap junctions, this 

“sensitivity” to the voltage difference allows the conduction of the depolarising currents in just 

one direction (rectifying electrical synapses). IO cells exhibit this peculiar electrophysiological 

property. They are coupled by electrotonic gap junctions located on the dendrites (Llinas, 

Baker, and Sotelo 1974, Sotelo, Llinas, and Baker 1974). 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  (10) 

𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝐿 · (𝑉 + 𝐸𝐿) (11) 

𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝐴𝑀𝑃𝐴(𝑡) · (𝑉 − 𝐸𝐴𝑀𝑃𝐴) − 𝑔𝐺𝐴𝐵𝐴(𝑡) · (𝑉 − 𝐸𝐺𝐴𝐵𝐴) − 𝐼𝐸𝐶  (12) 

𝑔𝐴𝑀𝑃𝐴(𝑡) = 𝑔𝐴𝑀𝑃𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐴𝑀𝑃𝐴  (13) 

𝑔𝐺𝐴𝐵𝐴(𝑡) = 𝑔𝐺𝐴𝐵𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐺𝐴𝐵𝐴  (14) 

𝐼𝐸𝐶 = ∑ 𝑤𝑖 · (𝑉 − 𝑉𝑖) · (0.6 · 𝑒
−

(𝑉−𝑉𝑖)2

502 + 0.4)

𝑁

𝑖=𝑁

 (15) 

Where Cm denotes de membrane capacitance, V the membrane potential, Iinternal the internal 

currents and Iexternal the external currents. EL is the resting potential and gL the conductance 

responsible for the passive decay term toward the resting potential. Conductaces gAMPA and 

gGABA integrate all the contributions received by each chemical receptor type (AMPA, GABA) 

through individual synapses. These conductances are defined as decaying exponential 

functions (Gerstner and Kistler 2002, Ros et al. 2006). Finally, IEC represent the total current 

injected through the EC synapses (Schweighofer, Doya, and Kawato 1999), where wi denotes 

the synaptic weight of the synapses between the neuron i and the target neuron, V the 

membrane potential of the target neuron and Vi the membrane potential of neuron i. N is the 

total number of input synapses received by the target neuron. Finally, for a correct operation 

of the electrical synapses, this model needs to emulate the depolarization and 

hyperpolarization phases of an action potential. We have incorporated a simple threshold 
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process that enables the generation of a triangular voltage function each time the LIF neuron 

fires (Bezzi et al. 2004).  

Purkinje cell model 

Purkinje cells present three spiking modes: tonic, bursting and silence (Forrest 2008). PF 

excitatory inputs drive PCs into its tonic/silence modes whereas CF excitatory inputs drive PCs 

into its bursting/silence modes. Simple spikes of PCs are elicited typically at high frequencies 

(Thach 1967, Raman and Bean 1999) and complex spikes at low frequencies. Complex spikes 

consist of a fast initial large-amplitude spike followed by a high-frequency burst (Schmolesky et 

al. 2002). This burst is made of several slower spikelets of smaller amplitude separated from 

one another by 2 - 3ms (Schmolesky et al. 2002, Najafi and Medina 2013, Eccles, Ito, and 

Szentágothai 1967). After each burst, a spike pause prevents PCs from resuming either their 

tonic or bursting firing for a period that depends on the length of the complex spike (Mathy et 

al. 2009).  

The detailed PC model is based on (Miyasho et al. 2001, Middleton et al. 2008) and consists of 

a single compartment with five ionic currents and two excitatory (AMPA) and inhibitory 

(GABA) chemical synapses (Eqs. 16 to 22). 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +

𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝐴𝑟𝑒𝑎
 (16) 

𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝑘 · 𝑛4 · (𝑉 + 95) − 𝑔𝑁𝑎 · 𝑚0[𝑉]3 · ℎ · (𝑉 − 50) − 𝑔𝐶𝑎 · 𝑐2 · (𝑉 − 125) − 𝑔𝐿(𝑉 + 70)
− 𝑔𝑀 · 𝑀 · (𝑉 + 95) (17) 

𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝐴𝑀𝑃𝐴(𝑡) · (𝑉 − 𝐸𝐴𝑀𝑃𝐴) − 𝑔𝐺𝐴𝐵𝐴(𝑡) · (𝑉 − 𝐸𝐺𝐴𝐵𝐴) (18) 

𝑔𝐴𝑀𝑃𝐴(𝑡) = 𝑔𝐴𝑀𝑃𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐴𝑀𝑃𝐴 (19) 

𝑔𝐺𝐴𝐵𝐴(𝑡) = 𝑔𝐺𝐴𝐵𝐴(𝑡0) · 𝑒
(𝑡−𝑡0)

𝜏𝐺𝐴𝐵𝐴 (20) 

Where V denotes the membrane potential, Iinternal the internal currents and Iexternal the external 

currents. The membrane capacitance (Cm) and the membrane area are defined in Table 2. 

Conductaces gAMPA and gGABA integrate all the contributions received by each chemical receptor 

type (AMPA, GABA) through individual synapses. These conductances are defined as decaying 

exponential functions (Gerstner and Kistler 2002, Ros et al. 2006). Finally, gK is a delayed 

rectifier potassium current, gNa a transient inactivating sodium current, gCa a high-threshold 

non-inactivating calcium current, gL a leak current, and gM a muscarinic receptor suppressed 

potassium current (see Table 3).  

Table 2. Geometrical parameters. 

Geometrical parameters 

Cylinder length of the soma 15µm 

Radius of the soma 8 µm 

Membrane Capacitance (Cm) 1 µF/cm
2
  

Axial resistivity 100 Ω/cm (axon) 250 Ω/cm (dendrites) 

Number of segments 1 
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Table 3. Ionic conductance densities. 

Conductance type Soma (mho/cm
2
) 

gK delayed rectifier potassium current 0.01 

gNa transient inactivation sodium current 0.125 

gCa high threshold 0.001 

gM muscarinic receptor 0.75 

gL leak current (anomalous rectifier) 0.02 

The dynamics evolution of each gating variable (n, h, c, and M) can be computed with the 

following differential equation: 

𝑥̇ =
𝑥0[𝑉] − 𝑥

𝜏𝑥[𝑉]
 (21) 

where x indicates the variables n, h, c, and M. The implemented equilibrium function is 

determined by the term x0[V] and time constant τx[V] (Table 4). 

Table 4. Ionic conductance kinetic parameters. 

Conductance type 
Steady–state 

Activation/Inactivation 
Time constant (ms) 

𝒈𝑲  delayed rectifier 

potassium current 
𝑥0[𝑉] =

1

1 + 𝑒
−𝑉−29.5

10

 𝜏𝑥[𝑉] = 0.25 + 4.35 · 𝑒
−|𝑉+10|

10  

𝒈𝑵𝒂  transient 

inactivating sodium 

current 

𝑥0[𝑉] =
1

1 + 𝑒
𝑉−59.4

10.7

 𝜏𝑥[𝑉] = 0.15 +
1.15

1 + 𝑒
𝑉+33.5

15

 

𝒎𝟎[𝑽] 𝑚0[𝑉] =
1

1 + 𝑒
−𝑉−48

10

· 𝑚  

 Forward Rate Function    Backward Rate Function    

𝒈𝑪𝒂 high threshold 𝛼 =
1.6

1 + 𝑒−0.0072(𝑉−5)
 𝛽 =

0.02 · (𝑉 + 8.9)

𝑒
𝑉+8.9

5

 

𝒈𝑴 muscarinic 

receptor suppressed 

potassium current 

𝛼 =
0.3

1 + 𝑒
−𝑉−2

5

 

 

𝛽 = 0.001 · 𝑒
−𝑉−70

18  

 
Steady–state 

Activation/Inactivation 
Time constant(ms) 

 𝑥0[𝑉] =
𝛼

𝛼 + 𝛽
 𝜏𝑥[𝑉] =

1

𝛼 + 𝛽
 

The sodium activation variable has been replaced and approximated by its equilibrium 

function m0[V]. The M-current presents a temporal evolution significantly slower than the rest 

of variables. Each internal spike in the neuron generates a fast increase of M-current that takes 

several milliseconds to return to its stable state. A high M-current prevents the PC from 

entering in its tonic mode (when the neuron generates spikes due to the PFs activity). Complex 

spike cause an M-current rapid increase that depends, in turn, on the size of the spikelet 

within the burst. PC tonic mode resumes when M-current decreases. 
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First, we have validated the detailed PC model in the NEURON simulator. Subsequently, we 

have reduced the PC model for fast spiking neural network simulation. In the reduced PC 

model, IK and INa currents are implemented through a simple threshold process that triggers 

the generation of a triangular voltage function each time the neuron fires (Bezzi et al. 2004). 

This triangular voltage depolarisation drives the state of ion channels similarly to the original 

voltage depolarisation during the spike generation. The final internal current is: 

𝐼𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑔𝐶𝑎 · 𝑐2 · (𝑉 − 125) − 𝑔𝐿(𝑉 + 70) − 𝑔𝑀 · 𝑀 · (𝑉 + 95) (22) 

4.2.4 Synaptic plasticity 

The overall input-output function of the cerebellar network model has been made adaptive 

through STDP mechanism at different sites. These STDP mechanisms balance long-term 

potentiation (LTP) and long-term depression (LTD) (see (Luque et al. 2016) for an in-depth 

review of the implemented synaptic mechanisms).  

PFs–PCs synaptic plasticity: The LTD/LTP balance at PFs–PCs synapses is based on the 

following rules (Eqs. 23 and 24):  

𝐿𝑇𝐷 ∆𝑤𝑃𝐹𝑗−𝑃𝐶𝑖
(𝑡) = ∫ 𝑘 (

𝑡 − 𝑡𝐼𝑂𝑠𝑝𝑖𝑘𝑒

𝜏𝐿𝑇𝐷

)

𝐼𝑂𝑠𝑝𝑖𝑘𝑒

−∞

· 𝛿𝐺𝐶𝑠𝑝𝑖𝑘𝑒
(𝑡) · 𝑑𝑡        𝑖𝑓 𝑃𝐹𝑗  𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑡 𝑡 

 

(23) 

𝐿𝑇𝑃 ∆𝑤𝑃𝐹𝑗−𝑃𝐶𝑖
(𝑡) =∝                                                                               𝑎𝑙𝑤𝑎𝑦𝑠 (24) 

where ∆WPFj–PCi(t) denotes the weight change between the jth PF and the target ith PC; τLTD is the 

time constant that compensates the sensorimotor delay; δGC is the delta Dirac function 

corresponding to an afferent spike from a PF; and the kernel function k(x) is defined as: 

𝑘(𝑥) = 𝑒−𝑥 · sin (𝑥)20 (25) 

The effect on the presynaptic spikes arriving through PFs is maximal over the 100 ms time 

window before CF spike arrival, thus accounting for the sensorimotor pathway delay (Kawato 

and Gomi 1992, Luque, Garrido, et al. 2011a, Luque, Garrido, et al. 2011b, Luque, Garrido, 

Carrillo, Tolu, et al. 2011). Note that the kernel k(x) allows the computation to be run on an 

event-driven simulation scheme as EDLUT (Ros et al. 2006, Luque, Garrido, et al. 2011a, Luque, 

Garrido, et al. 2011b, Luque, Garrido, Carrillo, Tolu, et al. 2011), which avoids integrating the 

whole kernel upon each new spike arrival. Finally, as shown in Eq. 24, the amount of LTP at PFs 

is fixed, with an increase in synaptic efficacy equal to α each time a spike arrives through a PF 

to the targeted PC.  

MFs–DCN synaptic plasticity: The LTD/LTP dynamics at MFs – DCN synapses is based on the 

following rules (Eqs. 26 and 27): 

𝐿𝑇𝐷 ∆𝑤𝑀𝐹𝑗−𝐷𝐶𝑁𝑖
(𝑡) = ∫ 𝑘 (

𝑡 − 𝑡𝑃𝐶𝑠𝑝𝑖𝑘𝑒

𝜎𝑀𝐹−𝐷𝐶𝑁

)

∞

−∞

· 𝛿𝑀𝐹𝑠𝑝𝑖𝑘𝑒
(𝑡) · 𝑑𝑡       𝑖𝑓 𝑀𝐹𝑗  𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑡 𝑡 

 

(26) 

𝐿𝑇𝑃 ∆𝑤𝑀𝐹𝑗−𝐷𝐶𝑁𝑖
(𝑡) =∝                                                                         𝑎𝑙𝑤𝑎𝑦𝑠 (27) 
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with ∆WMFj–DCNi(t) denoting the weight change between the jth MF and the target ith DCN. σMF-DCN 

standing for the temporal width of the kernel; δMF representing the delta Dirac function that 

defines a MF spike; and the integrative kernel function k(x) defined as: 

𝑘(𝑥) = 𝑒−|𝑥| · cos (𝑥)2 (28) 

Note that there is no needs to compensate the sensorimotor pathway delay at this site 

because it is already done in the previous learning rule (τLTD in Eq. 23). 

The STDP rule defined by Eq. 26 produces a synaptic efficacy decrease (LTD) when a spike from 

the PC reaches the targeted DCN neuron. The amount of synaptic decrement (LTD) depends on 

the activity arrived through the MFs. This activity is convolved with the integrative kernel 

defined in Eq. (28). This LTD mechanism considers those MF spikes that arrive after/before the 

PC spike arrival within the time window defined by the kernel. The amount of LTP at MF - DCN 

synapses is fixed, with an increase in synaptic efficacy equal to α each time a spike arrives 

through a MF to the targeted DCN. 

4.2.5 VOR plant model 

The VOR plant model implemented represents the VOR as a continuous-time mathematical 

model with two poles, whose parameters are adjusted by means of recursive methods to fit 

experimental and clinical observations (Skavenski and Robinson 1973, Robinson 1981, Gordon, 

Furman, and Kamen 1989): 

𝑒(𝑘𝑇), 𝐸(𝑠): 𝑒𝑦𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 (𝑜𝑢𝑡𝑝𝑢𝑡) (29) 

ℎ(𝑘𝑇), 𝐻(𝑠): ℎ𝑒𝑎𝑑 𝑚𝑜𝑡𝑖𝑜𝑛 (𝑖𝑛𝑝𝑢𝑡) (30) 

𝑉𝑂𝑅(𝑠) =
𝐸(𝑠)

𝐻(𝑠)
=

𝐾 · 𝑇𝑐1 · 𝑠

(𝑇𝑐1 · 𝑠 + 1) · (𝑇𝑐2 · 𝑠 + 1)
· 𝑒−𝑠𝜏𝑑𝑒𝑙𝑎𝑦 (31) 

There are four parameters in the model: Q=[K, TC1, TC2, τdelay]. The delay parameter 

τdelay captures the fact that there exists some delay in communicating the signals from the 

inner ear to the brain and eyes. This delay is consequence of the time needed for chemical 

neurotransmitters to traverse the synaptic clefts between nerve cells. Based on the number of 

synapses involved in the VOR, this delay is expected to be around 5 ms (Skavenski and 

Robinson 1973, Robinson 1981). The gain parameter K models the fact that the eyes do not 

perfectly cope the movement of the head. This parameter is assumed to be between 0.6 and 1 

(Skavenski and Robinson 1973, Robinson 1981). The Tc1 parameter represents the dynamics 

associated with the semicircular canals as well as some additional neural processing. The 

canals are high-pass filters, because after a subject has been put into rotational motion, the 

neural active membranes in the canals slowly relax back to resting position, so the canals stop 

sensing motion. Based on mechanical characteristics of the canals, combined with additional 

neural processing which prolongs this time constant to improve the accuracy of the VOR, the 

Tc1 parameter is estimated to be around 15 seconds, and assumed to be between 10 and 30 

seconds (Skavenski and Robinson 1973, Robinson 1981). Finally, the Tc2 parameter captures 

the dynamics of the oculomotor plant, i.e. the eye and the muscles and tissues attached to it. 

For the Tc2 parameter, we will assume that it is between 0.005 and 0.05 seconds.  
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To find the temporal response for the VOR transfer function, we need to calculate the inverse 

Laplace transform. The inverse Laplace transform outcome consists of an equivalent 

differential equation system defined in the same time domain than the spiking cerebellar 

network (note that the delay is modelled and inserted within the control loop). 

𝑉𝑂𝑅(𝑠) =
𝐸(𝑠)

𝐻(𝑠)
=

𝐾 · 𝑇𝑐1 · 𝑠

(𝑇𝑐1 · 𝑠 + 1) · (𝑇𝑐2 · 𝑠 + 1)
=

𝐾 · 𝑇𝑐1

𝑇𝑐1 · 𝑇𝑐2
· 𝑠

𝑠2 + 𝑠 ·
(𝑇𝑐1 · 𝑇𝑐2)
𝑇𝑐1 · 𝑇𝑐2

+
1

𝑇𝑐1 · 𝑇𝑐2

·
𝑍(𝑠)

𝑍(𝑠)

=
(𝑏1 · 𝑠 + 𝑏0) · 𝑍(𝑠)

(𝑠2 + 𝑎1 · 𝑠 + 𝑎0) · 𝑍(𝑠)
 

(32) 

Where: 

𝑎0 =
1

𝑇𝑐1 · 𝑇𝑐2

;  𝑎1 =
(𝑇𝑐1 · 𝑇𝑐2)

𝑇𝑐1 · 𝑇𝑐2

;   𝑏0 = 0;  𝑏1 =
𝐾 · 𝑇𝑐1

𝑇𝑐1 · 𝑇𝑐2

 (33) 

Thus we obtain: 

𝐸(𝑠) = (𝑏1 · 𝑠 + 𝑏0) · 𝑍(𝑠) = 𝑒(𝑡) = 𝑏1 ·
𝑑𝑧

𝑑𝑡
+ 𝑏0 · 𝑧(𝑡) (34) 

𝐻(𝑠) = (𝑠2 + 𝑎1 · 𝑠 + 𝑎0) · 𝑍(𝑠) = ℎ(𝑡) =
𝑑2𝑧

𝑑𝑡
+ 𝑎1 ·

𝑑𝑧

𝑑𝑡
+ 𝑎0 · 𝑧(𝑡) (35) 

Where the state variables are: 

𝑦 = 𝑒(𝑡);   𝑥1 = 𝑧(𝑡);  𝑥2 = 𝑥̇1 =
𝑑𝑥1

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
 

(36) 

Substituting: 

𝑑2𝑧

𝑑𝑡
= −𝑎1 ·

𝑑𝑧

𝑑𝑡
− 𝑎0 · 𝑧(𝑡) + ℎ(𝑡);  𝑥̇2 = −𝑎1 · 𝑥2 − 𝑎0 · 𝑥1 + ℎ(𝑡) 

(37) 

It is a differential equation system given by: 

𝑥̇1 = 𝑥2 (38) 

𝑥̇2 = −𝑎1 · 𝑥2 − 𝑎0 · 𝑥1 + ℎ(𝑡) (39) 

𝑦 = 𝑏0 · 𝑥1 + 𝑏1 · 𝑥2 (40) 

And the canonical form of the linear difference equation system is: 

[
𝑥̇1

𝑥̇2
] = [

0 1

−𝑎0 −𝑎1
] · [

𝑥1

𝑥2
] + [

0

ℎ(𝑡)
] (41) 

𝑦 = [𝑏0 𝑏1] · [
𝑥1

𝑥2
] (42) 

4.2.6 ICub robot 

The iCub robot, used as front-end body, consists of 53 motors able to operate head, arms, 

hands, waist and legs. The ICub robot can see, hear and move. It can also sense it body 

position (proprioception) and sense its movement (using accelerometers and gyroscopes) 

(Tsagarakis et al. 2007). The VOR protocol only requires the head and eye movement. The neck 
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consists of a 3-d.o.f. serial chain of rotations, with the 3 d.o.f. placed in a configuration that 

best represents human movements. The eye mechanism has also a total of 3 d.o.f. Both eyes 

can pan (independently) and tilt (simultaneously). The pan movement is driven by a belt 

system, with the iCub motor behind the eye ball. The eyes (common) tilt movement is 

actuated by a belt system placed in the middle of the two eyes. Each belt subsystem has a 

tension adjustment mechanism. The calculation of the actuators characteristics is based on the 

desired specifications and the moment of inertia, as well as the various components, weight, 

given by CAD software. For driving this mechanism, DC micro motors (Faulhaber) equipped 

with planetary gearheads (Gysin) and optical encoders have been used. Each joint uses an 

overload clutch system that increases the robustness of the mechanism, by absorbing (by 

sliding) different kinds of impacts and efforts during its interaction with the external world 

(Beira et al. 2006).  

For the robot interface we have used YARP (Yet Another Robot Platform) (Metta, Fitzpatrick, 

and Natale 2006). Using this tool we can send motor command and read robot sensor 

information. Finally, we have used the virtual version of iCub as a tool for testing our cerebellar 

algorithms to quickly check for any major problems prior to use the physical robot.  

4.2.7 Control loop 

Structural embodiment requires the robot agent, the cerebellar neural network and the 

environment to be coupled in a way that they can produce effects on one another. The 

information (i.e. sensory or motor information) must flow in either direction between the 

environment and the robot agent and its neural network. The control loop allows structural 

embodiment, thus facilitating the communication flow amongst the body, its neural structure 

and the environment.  

A control scheme and a robot interface (using YARP) able to manage the interaction between 

neural network simulation and the robot agent sensors and actuators are mandatory. Both 

elements are independent and interconnected via TCP/IP connections (they can be run in the 

same or in different computers). The inner/outer control loop architecture allows us to 

uncouple the robot internal clock from the cerebellar neural internal clock. The control loop 

establishes a common time framework through with both elements are able to maintain a 

dialogue (2ms). The cerebellar neural simulation (inner loop) operates in simulation time 

whereas the robot sensorimotor system (outer loop) operates in RT. The control loop makes 

compatible these two time domains. This conciliation is vital for several reasons (Ott et al. 

2006). 

 The outer loop and robot interface program operate in RT (Fig. 5). Conversely, the inner 

loop may operate faster or slower than RT (simulation time) depending on the cerebellar 

neural network features and simulation conditions (Fig. 5). Thus, these two control loops 

operate asynchronously. Particularly, our robotic sensorimotor delay is approximately 15 

ms whereas the biological sensorimotor delay has been fixed to 50 ms. The inner loop uses 

the temporal difference between these two delays to allow neural dynamic pre-

processing. The computed neural outcome is made available to the outer loop prior to RT 

without neural information losses. The control-loop global structure stores synchronous 

message between loops in buffers. The RT supervisor manages the inner/outer control 
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loop updates and accesses to these buffers to ensure the overall exact time evolution and 

synchronisation.  

 The cerebellar output commands computed within the inner loop (non-linear terms) are 

meant to achieve high neural dynamic precision at high computation speed with 

independency of what the outer loop needs. The structure of the inner loop control 

remains fixed; what control designers may modify more freely to customise the control 

system architecture is mainly in the outer loop. Thus, the outer loop can be totally 

modified without restrictions to achieve several other goals without the need to modify 

the dedicated inner loop control. For instance, additional compensation terms may be 

included in the outer loop to enhance robustness to parametric uncertainty, unknown 

dynamics, external disturbances that may occur when controlling a real servomotor, etc. 

What we propose with this control architecture is a way to isolate the VOR control from 

the regulation in velocity and position of the motors that command the robot eye and 

head movements. 

Drawing an analogy between the inner/outer control loop (Fig. 5) and the presented 

composed control architecture, the inner loop corresponds to the forward architecture that 

supplies the cerebellar corrections and the outer control loop corresponds to the feedback 

architecture that supplies the position/velocity corrections to the motors. 

 

Figure 5 Cerebellar inner/outer VOR robot control loop. 
The inner loop corresponds to the forward architecture that supplies the cerebellar corrections in VOR 
protocols (horizontal and vertical VOR). Reference signals are always velocities in angular coordinates. 
The cerebellar controller operates two pairs of muscles in agonist/antagonist configuration to cope the 
eye velocity movements (controlled variable) with the head velocity (reference variable in counter-
phase). Assuming an ideal robot where neither motor dynamics nor environmental interaction is 
involved, inner loop operation may operate the robot in open loop. The outer control loop corresponds to 
the feedback architecture that supplies the position/velocity corrections to the motors. Since this control 
loop architecture allows us to uncouple the inner from the outer loop, the use of two different time 
domains (simulate and real) is possible.  
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4.2.8 RT supervisor and EDLUT upgrading towards RT 

A RT supervisor, implemented within EDLUT, operates as a watchdog. In our experiment, RT 

constitutes a boundary that the neural dynamic computation must not surpass. RT supervisor 

compares the simulation time of the inner loop with RT. The RT supervisor is constantly 

calculating a variable named “restriction level”. This variable can take five different values. 

Each different value triggers different countermeasures affecting the neural dynamics 

computation within the inner loop (Table 5). The higher the value of the variable, the more 

drastic the countermeasures upon the RT pursuit.  

Table 5. Real time restriction levels. 

Restriction level Contingency tasks 

-1 
The simulation time is way ahead RT. The neural dynamic computation time has to 

be halted for a short period of time. 

0 
Standard simulation. Neural dynamic computation is ahead RT. No 

countermeasures are needed.  

1 
The neural dynamic computation time is close to RT. learning rules are disengaged 

to speed-up the neural dynamic computation. 

2 

The neural dynamic computation time is close to RT even with learning rules already 

disabled. Spikes propagation and neuron model updates are then disengaged too to 

further speed-up the neural dynamic computation. 

3 

The neural dynamic computation time is close to RT even with learning rules, spikes 

propagation and neuron model updates disengaged. All the non-vital neural 

dynamic computation is disengaged (i.e. internal spike generation, periodic weight 

saving operation, etc.). 

The experimental VOR process normally maintains its restriction level values between -1 and 0. 

Only when a large computational load is to be processed (i.e. an occasional large neural 

activity workload), restriction level values may take values from 1 to 3. EDLUT disengages 

some neural dynamic computation elements thus causing slightly modifications over the final 

cerebellar outcome. A restriction level value between 1 and 3 constantly means that EDLUT 

does not meet the neural dynamic computation requirements. The outcome, therefore, would 

drastically differ from what it was expected.  

Six computational threads have been used for this experiment; 2 for the inner/outer loop, 2 for 

both communication interfaces, 1 for the RT supervisor and 1 for the robot interface using 

YARP (see Fig. 5).  

Upgrading neural model. The neural dynamic integration. 

Purkinje, DCN and IO cells are not worth to be implemented as time-driven neural models in 

GPU due to their low numbers. On the other hand, the high neural activity to be processed 

discourages the implementation of event-driven neural models. Time-driven neural models 

are, therefore, used in CPU.  

The neural dynamic integration generates a high computational workload in time-driven 

neural model. To diminish the overall computational workload, we have pre-computed in look-

up tables some costly mathematical functions: 
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a) The exponential functions used to compute the evolution of the conductances related with 

the chemical and electrical synapses (Eqs. 6, 7, 8, 13, 14, 15, 19 and 20).  

b) GNMDA_INF in DCN model (Eq. 9). 

c) x0[V] and τx[V] functions in PC model (Table 3). 

Upgrading the generation and propagation of spikes 

The generation of internal spikes and propagated spikes events, their insertion and extraction 

from the event queues and their final processing constitute a time-consuming computational 

load in EDLUT (Ros et al. 2006). Two new complex events able to unify in a single event several 

internal spikes or propagated spike events helped to minimise the timing in generating and 

propagating spikes.  

Upgrading plasticity mechanisms  

The plasticity mechanisms also constitute a time-consuming computational load 

(approximately the half of the simulation time). EDLUT incorporates two specific 

improvements that reduce the impact of the computation of the plasticity mechanisms over 

the simulation time. 

 Pre-computation of kernel functions in look-up tables: The LTD kernels (eqs. 25 and 28) 

allow accumulative computation in an event-driven simulation scheme (Luque et al. 2016). 

These kernels are now pre-computed in look-up tables. The accumulation of the kernel 

effect of each spike is now stored in a buffer instead of using state variables. This buffer 

accumulates the arrival time of the last spikes through each PF and MF (delta Dirac 

function corresponding to an afferent spike in eqs. 23 and 26). Then, the LTD functions 

(eqs. 23 and 26) use the precomputed kernels and the time of the last spikes to compute 

the synaptic weight modification.  

 Minimization of cache failures when reading synapses in RAM: EDLUT allocates the 

neural network (neurons and synapses) in RAM memory. Correlative neurons and 

synapses defined in the network file are loaded in correlative RAM memory positions 

(initial order in Fig. 6). This correlative order in RAM does not ensure the minimisation of 

cache failures when the synapses are to be read and/or modified during the neural 

network simulation. However, this correlative order can be reorganised for that purpose.  

There are mainly two ways to reorganise the synapses: following an OUTPUT or INPUT 

configuration (output and input order in Fig. 6): 

1. OUTPUT configuration minimises the number of cache failures when the spikes are to 

be propagated and EDLUT needs access to the output synapses of each neuron.  

2. INPUT configuration minimises the number of cache failures when a neuron generates 

a post-synaptic spike in traditional STDP rules or receives a teaching signal in driven 

STDP rules and EDLUT needs to modify the synaptic weights of all the “input” synapses 

to that neuron with STDP rules.  

OUTPUT and INPUT configurations are, in principle, mutually exclusive. Nevertheless, we 

have designed a mechanism that minimises the number of “INPUT” cache failures when 

the synapses are reordered following an “OUTPUT” configuration. This is a two-step 
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mechanism; firstly, EDLUT computes the synaptic weight modification for all the input 

synapses, but it stores these values in an auxiliary array linked to the target neuron instead 

of directly modify the synaptic weights. So far, EDLUT does not read the input synapses 

and does not cause cache failures. Secondly, before spike propagation through the 

affected synapses by STDP learning, EDLUT reads the auxiliary array at the target neurons 

and modifies the synaptic weights. EDLUT, therefore, only reads “OUTPUT” synapses.   

 

Figure 6 Synaptic order in RAM memory. 
This figure represents three different ways to order the synapses in RAM memory. 

4.2.9 Results 

The first step in the roadmap to embed the cerebellar network on a real body has been to use 

the simulated iCub robot as the front-end. A Rotational VOR experimentation in the horizontal 

plane with the iCub robot has been used as test bed. The cerebellum learns to compensate the 

eye movements (cerebellar adaptation) to stabilise the images captured by the cameras in the 

eyes while iCub robot described a rotational head movement. 

 

Figure 7 The iCub simulator performing the VOR test. 
(Left) Image showing the VOR performance before (initial learning stage) and after (final learning stage) 

learning. Down in the figure, for each learning state there are two windows: the visual scene given by the 

ocular cameras (left) and its optical flow (right), which gives a better description of the accuracy of the 

reflex itself. The optical flow represents the pattern of apparent motion of objects, surfaces, and edges in 

the visual scene given by the ocular cameras. This is caused by the relative motion between an observer 

(a camera) and the scene. For a perfect VOR, the optical flow should be zero. The gradient of a pixel 

movement is given by the length of coloured arrows. The greater the length of the arrows are, the 

greater the optical flow and the greater the movement. (Right) Mean Absolute Error (MAE) curve 

obtained during VOR adaptation. VOR is learnt in about 100 seconds with an overall error about 10% of 

the initial value. 
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As a metric to measure how well the cerebellum is recreating the VOR, we have used two 

different options. The first one computes the optical flow of the visual scene captured by the 

cameras in the eyes. For a perfect VOR, the optical flow must be zero. The second one 

computes the mean absolute error (MAE) over the sum of the head and eyes trajectories for 

each one-second trial. For a perfect VOR, the amplitude of both signals must be the same with 

opposed signs, being zero the MAE. As indicated in figure 7, the VOR is learnt roughly in about 

100 seconds with high precision (an overall error about 10% of the initial value). 

Once all the system has been tested with the simulated iCub, we move on to the real robot. 

The main difference between the simulated and the real iCub is the artificial propagation delay 

(considerably higher in the real robot but lower than the biological sensorimotor delay). The 

results obtained with the real robot (Fig. 8) are consistent with the results obtained with the 

iCub simulator (Fig. 7). 

 

Figure 8 The iCub robot performing the VOR test. 
(Left) Image showing the VOR performance before (initial learning stage) and after (final learning stage) 

learning. Down in the figure, for each learning state there are two windows: the visual scene given by the 

ocular cameras (left) and its optical flow (right), which gives a better description of the accuracy of the 

reflex itself. The optical flow represents the pattern of apparent motion of objects, surfaces, and edges in 

the visual scene given by the ocular cameras. This is caused by the relative motion between an observer 

(a camera) and the scene. For a perfect VOR, the optical flow should be zero. The gradient of a pixel 

movement is given by the length of coloured arrows. The greater the length of the arrows are, the 

greater the optical flow and the greater the movement. (Right) Mean Absolute Error (MAE) curve 

obtained during VOR adaptation. VOR is learnt in about 100 seconds with an overall error about 10% of 

the initial value. 

4.2.10 Results into perspective  

A brief summary reporting robotics VOR experiments may provide a measure of significance 

and impact of our preliminary results. Two main families can be found combining cerebellar 

controllers and robotics solving the embodied cognition approach: machine learning and 

cerebellar-based families.  

The machine learning family solves the embodied cognition approach without devoting 

attention to the biological restrictions imposed by the neural structures within the nervous 

system; the end (the performance) justifies the means. The algorithms mediating the 

cerebellar role operation are claimed to be inspired in the cerebellar architecture, functionality 

or both. However, the parallelisms to be drawn between the cerebellar operation/architecture 
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and the algorithms proposed are generally constrained to a general overview of the cerebellar 

adaptive mechanisms. The solutions provided are usually purely speculative and difficult to 

refute/validate from a cellular/neural network point of view. Some examples are here 

summarised: 

 A learning system derived from the biologically inspired principle of feedback-error 

learning (FEL) (Kawato 1990) combined with non-parametric statistical learning networks is 

presented in (Shibata and Schaal 2001). FEL approximately maps the sensory error into 

motor error. The motor error, subsequently, is used to train a neural network through 

supervised learning. While the biology used the cerebellum for this neural network 

implementing supervised learning, the authors of this work propose a recursive least 

squares algorithm (RLS) based on a Newton-like method. RLS presents a very fast 

convergence and robustness without the need for costly parameter adjustments. This 

system is able to acquire a high performance visual stabilization reflex in a humanoid robot 

but the biological plausibility is lacking.  

 Marr-Albus theory commonly assumes the teaching signal (from CFs) as the motor error. 

This assumption demands complex neural structures that are able to estimate non-

observable motor errors from their observables sensory consequences. A recurrent control 

architecture with a controller that decorrelates the sensory error from the motor error is 

presented in (Porrill, Dean, and Stone 2004). This model considers the cerebellum like a 

bank of adaptive linear filters supervised by  the CF activity (Fujita 1982). This model was 

used to simulate a VOR.  

 The locally weight projection regression (LWPR) (Vijayakumar and Schaal 2000) is a 

nonlinear function approximator that operates in high dimensional spaces. This algorithm 

is able to cope with redundant dimensions and irrelevant inputs. A cerebellar model in 

which the granular and molecular layers (including also the interneurons (Wulff et al. 

2009)) have been modelled using this LWPR algorithm is presented in (Tolu et al. 2012, 

Tolu et al. 2013). The input to the PCs is the output of the LWPR algorithm. This cerebellar 

model have been used to create a gaze stabilization system in (Vannucci et al. 2016). This 

system integrates eye stabilization (opto-kinetic reflex (OKR) and vestibule-ocular reflex 

(VOR)) together with head stabilization (vestibulocollic reflex (VCR)). They have tested this 

system using a simulated iCub robot. 

On the contrary, cerebellar-based families solve the embodied cognition approach by taking 

the biological restriction imposed by the cerebellar neural structures as granted. The 

cerebellar algorithm performance is a consequence, not the main cause. The cerebellar 

algorithms are biologically constrained and they share a family resemblance with the 

cerebellar anatomy. The solution provided, although speculative, give us a closer and clearer 

view of the cerebellar computation primaries. The main aim here is to drive basic cerebellar 

research by proposing working cerebellar hypotheses that can be either refuted or validated 

from a cellular or neural network point of view. This family can be subdivided in two main 

categories: analogue cerebellar models and spiking cerebellar models.  

 Analogue cerebellar models. They usually present higher abstraction levels than spiking 

models. For that reason, they are usually easier to implement and more computationally 

efficient, but less biological plausible. An analogue cerebellar model in which the role of 
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distributed plasticity over PC and DCN layer is presented in (Garrido Alcazar et al. 2013). 

This cerebellar model have been used in (Casellato et al. 2015) to recreate an EBCC and 

VOR experiment using 2DOF robotic arm in RT (1st DOF emulating the neck, 2nd DOF 

emulating the eyes). In this case the RT requirements are easy to cope with due to the 

simplicity and efficiency of the analogue cerebellar model.   

 Spiking cerebellar models. They are more akin to biology. They try to mimic the cerebellar 

neural communication by using spikes. These spikes are propagated within cerebellar sub-

circuits that attempt to mimic the cerebellar architecture. Interestingly, the emerging 

behaviour from the dialogue between the neural code and the different cerebellar sub-

circuits is intended to cope with the behaviours observed in biology. Conciliating realistic 

spiking cerebellar models with behavioural outcomes (i.e. VOR) remains an open issue. 

There exists computational models that partly address this problem (i.e. modelling and 

interconnecting certain sub-circuits (Solinas, Nieus, and D’Angelo 2010) or certain spiking 

features (Latorre et al. 2013)). Nevertheless, reconstructing the path from cellular to 

behaviour level remains elusive. Our spiking cerebellar model proposes an attempt to 

construct this path. The model itself is a biological and computational upgrading of 

(Luque et al. 2016) (i.e. complex spikes in PCs, electrical coupling at IO, etc.). To the best 

of our knowledge, this is one amongst the first initiatives that are able to combine this 

level of neural detail with several neural adaptive mechanisms working all together to 

operate a humanoid in a VOR experiment in RTs. 
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Capítulo 5: Introducción 
Uno de los retos principales a los que la humanidad se enfrenta en el siglo XXI es entender los 

principios biológicos de la consciencia y los procesos mentales a través de los que percibimos, 

actuamos, aprendemos y recordamos (Kandel et al. 2000). El conocimiento de estos principios 

en el sistema nervioso puede reportarnos numerosos beneficios. En primer lugar, un mayor 

entendimiento del cerebro nos ayudará a diseñar tratamientos mejores y más eficientes 

contra enfermedades neurodegenerativas tales como Huntington, Parkinson y todo tipo de 

demencias. En segundo lugar, el cerebro puede ser considerado como uno de los mejores 

sistemas de procesamiento de información: una enorme capacidad de almacenamiento y 

procesamiento de información junto con bajos niveles de consumo energético y fiabilidad 

contra fallos por envejecimiento. Un mayor conocimiento de cómo los sistemas biológicos 

procesan la información nos permitirá desarrollar nuevas generaciones de arquitecturas de 

procesamiento capaces de replicar estas extraordinarias capacidades.  

El cerebelo (“pequeño cerebelo” del Latín) es una región del cerebro muy importante para los 

vertebrados tales como los humanos. Se sabe que el cerebelo juega un papel fundamental en 

distintas características del control moto tales como la coordinación y precisión de 

movimientos (Thach, Goodkin, and Keating 1992), aunque parece que también está envuelto 

en otras funciones cognitivas como puedan ser la atención y el lenguaje o en la regulación de 

las respuestas frente al miedo y el placer (Wolf, Rapoport, and Schweizer 2009). Se ha 

observado que daños en el cerebelo producen desordenes en la precisión de movimientos, 

equilibrio, postura y aprendizaje motor (Fine, Ionita, and Lohr 2002).  

Entender los mecanismos biológicos que le confieren al cerebelo sus capacidades requiere de 

su estudio usando diferentes metodologías, estando todas ellas interconectadas. Esta tesis 

aborda el estudio del cerebelo desde el punto de vista de la neurociencia computacional. Esta 

es una ciencia interdisciplinar que uno diversos campos de estudio tales como la neurociencia, 

ciencia cognitiva y psicología con la ingeniería electrónica, ciencias de la computación, 

matemáticas y física. Debido al rápido incremento de recursos computacionales disponibles en 

las últimas décadas, la neurociencia computacional ha emergido como una poderosa 

herramienta capaz de testear y validad las hipótesis propuestas por los neurocientíficos sobre 

el cerebro. Los neurocientíficos computacionales usan modelos matemáticos y simulaciones 

por ordenador para estudiar el sistema nervioso a distintos niveles. Dependiendo del nivel de 

detalle y el tamaño de la estructura simulada (desde niveles moleculares en una sola neurona 

hasta grandes e intrincadas redes neuronales con plasticidad distribuida), los requerimientos 

computacionales pueden diferir drásticamente.  

Modelos computacionales de varias regiones del cerebro han sido desarrollados y estudiados 

por más de treinta años con el objetivo de analizar la función cerebral. La ciencia 

computacional es un complemento natural a la investigación experimental en el cerebro, ya 

que se centra en mecanismos específicos y modelos que únicamente pueden ser parcialmente 

observados en estudios fisiológicos. En concreto, el lazo de control cerebelar (el foco de esta 

tesis) ha sido extensamente modelado desde que Marr (Marr 1969) y Albus (Albus 1971) 
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propusieron una explicación elegante de como el cerebelo opera como un controlador 

anticipativo en los mamíferos. 

La simulación de un modelo de sistema nervioso conectado a un cuerpo puede ayudar a 

entender mejor como ciertas capacidades del sistema nervioso emergen en base a distintas 

características celulares, topologías de red o mecanismos de adaptación sináptica a nivel local. 

En esta tesis nos hemos centrado en entender el papel que desempeña el cerebelo en la 

coordinación de movimientos (voluntarios o reflejos) y en la manipulación de objetos. Por esta 

razón necesitamos un “cuerpo” capaz de realizar estas tareas motoras cuando es controlado 

por nuestros modelos de cerebelo. En esta tesis hemos usado tanto robots virtuales 

(simulados) como reales para emular este cuerpo. Sin embargo, varias consideraciones han de 

tenerse en cuenta. Mientras que el cuerpo humano codifica la información sensoriomotora 

usando codificación en población neuronal (cada neurona que codifica la señal presenta una 

distribución de respuesta sobre el conjunto de entradas), los robots usan codificadores que 

devuelven la posición y velocidad relativas (señales analógicas) de cada articulación. Una 

traducción o conversión desde el dominio analógico de los sensores del robot hasta un patrón 

basado en impulsos compatible con las redes neuronales de impulsos es requerido. Además, la 

respuesta de salida del cerebelo basada en impulsos debe ser también convertida al dominio 

analógico empleado por los actuadores (motores) del robot. Finalmente, los robots reales 

imponen una condición o restricción de tiempo real (RT). Cuando llevamos a cabo una 

simulación conectada a un robot real, el tiempo de simulación debe evolucionar a la misma 

velocidad que el RT (tiempo físico), de lo contrario el robot no puede ser correctamente 

controlado. La dinámica del robot (cantidad de movimiento de los distintos elementos) y la 

dinámica del ambiente hacen de esta operación en RT una ardua restricción.   

En esta tesis hemos embebido varios modelos cerebelares en diferentes esquemas de lazo 

cerrado capaces de controlar el movimiento de robot biomórficos en RT. Esta integración 

persigue los siguientes objetivos: (i) validación de las hipótesis presentadas en cada uno de los 

modelos cerebelares usando diferentes tareas de control motor como estándar de 

comparación, y (ii) desarrollo de innovadores esquemas de control para la próxima generación 

de robot biomórficos. 

Para este estudio hemos desarrollado y actualizado nuestro propio simulador de redes 

neuronales de impulsos: EDLUT (Ros et al. 2006, Garrido et al. 2011, Luque et al. 2014, Naveros 

et al. 2015, Naveros et al. 2017). Esta herramienta está orientada a la simulación eficiente de 

redes neuronales de media escala (decenas de miles de neuronas) usando modelos puntuales 

simplificados de neuronas (Leaky Integrate-and-Fire (LIF), Adaptive exponential integrate-and-

fire (AdEx), Izhikevich and Hodgkin-Huxley (HH)) y mecanismos de plasticidad sináptica en RT. 

En nuestro caso hemos usado EDLUT para crear modelos cerebelares embebidos en esquemas 

de lazo cerrado capaces de controlar el movimiento de robots biomórficos en RT. La limitación 

o restricción de RT, la cual demanda ejecutar la simulación de la red neuronal a una 

determinada velocidad, es fundamental cuando trabajamos con robots reales en los cuales el 

tiempo es una variable física que no podemos controlar. En esta tesis hemos mejorado 

drásticamente el rendimiento de EDLUT usando diferentes técnicas de paralelización y 

simulación, permitiendo así la simulación de redes neuronales más grandes y complejas en RT. 
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También se han desarrollado un esquema de control en lazo cerrado y un supervisor de RT 

para tratar con la constricción de RT.   

5.1 El cerebelo 
El cerebelo tiene la apariencia de una estructura separada situada al fondo del cerebro, debajo 

de los hemisferios cerebrales. Esta estructura ha sido ampliamente estudiada durante más de 

un siglos desde que Camilo Golgi y Santiago Ramón y Cajal estudiaron la organización 

anatómica del córtex cerebelar (Golgi 1906, Cajal 1894). Aunque el cerebelo solo cuenta con 

aproximadamente el 10% del volumen del cerebro, este contiene aproximadamente el 50% del 

número total de neuronas del mismo (Llinas, Walton, and Lang 2004). El cerebelo se subdivide 

en dos partes principales: una sección interna formada por los núcleos cerebelosos profundos 

(DCN) cubierta por una capa de tejido altamente plegada llamada córtex cerebeloso. Mientras 

que los DCN representan la estructura de salida del cerebelo, el córtex cerebeloso representa 

la entrada principal al cerebelo, conteniendo la mayoría de las neuronas del mismo (Purves et 

al. 2008). Dentro del córtex cerebeloso hay varios tipos de neuronas con una distribución 

altamente regular, siendo las células de Purkinje (PCs) y las células granulares (GCs) las más 

características. Esta compleja organización neural da lugar a una masiva capacidad de 

procesamiento de señales (Eccles, Ito, and Szentágothai 1967). 

A la luz de algunos estudios, se ha sugerido que el sistema nervioso central planifica y ejecuta 

secuencialmente los movimientos voluntarios. De esta forma el cerebelo no iniciaría los 

movimientos voluntarios, aunque sí que contribuiría a su coordinación y precisión usando 

bucles de retroalimentación para el movimiento muscular (Ito 1970, 2006). De acuerdo con 

esta hipótesis, el cerebro podría en primer lugar planear una trayectoria óptima en la espacio 

de coordenadas físico (donde se realiza la tarea), traducirla al espacio de coordenadas 

intrínseco del cuerpo, y finalmente generar los comandos motores necesarios para llevar a 

cabo dicha tarea (Houk, Buckingham, and Barto 1996, Nakano et al. 1999, Todorov 2004, 

Hwang and Shadmehr 2005, Izawa et al. 2012, Passot, Luque, and Arleo 2013).   

Por un lado se cree que el sistema formado por el núcleo rojo parvocelular-neocerebelo 

proporciona un modelo neural crudo interno de la dinámica inversa del sistema musculo-

esqueletal, el cual es adquirido mientras se monitorean las trayectorias deseadas (Kawato, 

Furukawa, and Suzuki 1987). Por otro lado se cree que el sistema formado por el núcleo rojo 

magnocelular-espinocerebelo proporciona un preciso modelo neural interno de la dinámica 

del sistema musculo-esqueletal, el cual es adquirido mientras se monitorean los movimiento 

voluntarios (Kawato, Furukawa, and Suzuki 1987). De acuerdo a esta teoría, el córtex 

asociativo estaría al cargo de proporcionar la trayectoria deseada en el espacio de 

coordenadas intrínseco del cuerpo y propagarlo hasta el córtex motor. Este generaría entonces 

los comandos motores óptimos para operar nuestros miembros usando el modelo dinámico 

inverso, enviándolos a las neuronas motoras inferiores en el tronco encefálico y la médula 

espinal (Siciliano and Khatib 2016). El cerebelo también recibiría las trayectorias deseadas 

junto con la información sensorial preveniente de la médula espinal y otras partes del cerebro 

(Siegel and Sapru 2006). Usando esta información y el modelo dinámico musculo-esqueletal, el 

cerebelo sería capaz de generar correcciones en los comandos motores de acuerdo a errores 

predecibles que se producen cuando se realiza un movimiento. De esta forma, el modelo 
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crudo dinámico inverso trabaja conjuntamente con el modelo dinámico provisto por el 

cerebelo embebido en lazo de control anticipativo (Fig. 9). 

 

Figure 9 Ciclo de control cerebelar anticipativo (adaptado de (Luque et al. 2016)). 
El módulo cerebelar adaptativo embebido en un ciclo de control anticipativo genera valores correctivos 
de torque (τcorrective) para compensar la desviación producida por el modelo dinámico crudo inverso 
cuando se manipulan objetos con un peso significativo. 

Los mecanismos de aprendizaje y adaptación del cerebelo juegan un papel crucial en el control 

motor. Varios modelos teóricos desarrollados en las últimas décadas tratan de explicar cómo 

el cerebelo es capaz de calibrar la relación entre las entradas sensoriales y los comandos 

motores usando mecanismos de plasticidad sináptica. La mayoría de estos modelos son 

extensiones de las teorías propuestas por David Marr (Marr 1969) y James Albus (Albus 1971) 

basadas en la observación que cada PC recibe dos tipos de sinapsis de entrada drásticamente 

distintas: (i) miles de entradas débiles provenientes de las GC a través de las fibras paralelas 

(PF) y (ii) una única y extremadamente fuerte entrada proveniente de una célula de la Oliva 

Inferior (IO) a través de una fibra trepadora (CF). La fuerza de estas CF es tan intensa (debido a 

los numerosos contactos sinápticos existentes entre cada CF y el árbol dendrítico de cada PC) 

que un solo potencial de acción de una célula de la IO genera un impulso complejo en la PC de 

destino (un impulso inicial de gran amplitud seguido de una ráfaga de alta frecuencia y un 

periodo de no actividad (Schmolesky et al. 2002)).  

El concepto básico de la teoría Marr-Albus recae en el hecho de que las PFs (i.e. los axones de 

las GC) propagan la información sensoriomotora a las PCs mientras que las CFs (i.e. los axones 

de las células de la IO) propagan señales de aprendizaje que codifican el error de movimiento. 

Estas señales de aprendizaje inducen cambios de larga duración en la fuerza de las PFs. 

Observaciones de depresiones a largo plazo (LTD) in las PFs de entrada dan soporte a teorías 

de este tipo, pero su validez sigue siendo controvertida (Purves et al. 2008). En esta tesis 

hemos extendido este modelo incluyendo dos nuevos mecanismos de plasticidad a nivel de los 

DCN. Estos nuevos mecanismos de plasticidad ayudan a consolidar el aprendizaje en las PCs a 
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nivel de los DCN y optimiza el rango de operación de los DCN. La figura 10 representa un 

esquema del modelo de cerebelo incluyendo los tres mecanismos de plasticidad propuestos. 

 

Figure 10 Arquitectura cerebelar (adaptado de (Luque et al. 2016)). 
Nuestro modelo cerebelar se compone de fibras musgosas (FM), células granulares (GC), fibras paralelas 
(PF), células de Purkinje (PC), fibras trepadoras (CF) y células de los núcleos cerebelosos profundos (DCN). 
La plasticidad sináptica a largo plazo para las aferentes de las PCs y los DCN se indican con dos símbolos 
coloreados; potenciación a largo plazo (LTP) en azul y depresión a largo plazo (LTD) en magenta. 

El condicionamiento clásico del parpadeo (EBCC) (Thompson 1990) y el reflejo vestíbulo-ocular 

(VOR) (Leigh and Zee 2015) son ampliamente reconocidos como los paradigmas que mejor 

revelan las características del aprendizaje cerebelar. El EBCC es un procedimiento 

relativamente sencillo que consiste en emparejar un estímulo auditorio o visual (estímulo 

condicionado (CE)) con un estímulo incondicionado (UE) (e.g. un leve soplo de aire en la 

córnea) que provoca un parpadeo en el ojo. Por el contrario, el VOR es un procedimiento un 

poco más complicado en el cual la activación del sistema vestibular causa movimientos en el 

ojo. Este reflejo estabiliza las imágenes en la retina durante el movimiento de la cabeza 

produciendo el movimiento de los ojos en la dirección opuesta al movimiento de la cabeza, 

preservando así la imagen en el centro del campo visual. Ambos experimentos han sido 

recreados usando nuestros modelos cerebelares.  

En esta tesis nos hemos centrado en entender los mecanismos usados por el cerebelo en dos 

funciones principales relacionadas con el control motor: 

 Coordinación de movimientos voluntarios: La realización de la mayoría de los movimientos 

requieren de la activación de diferentes grupos musculares coordinados en el tiempo. Una 

de las funciones principales del cerebelo es coordinar el tiempo y la fuerza que deben 

aplicar cada grupo muscular para producir movimientos fluidos del cuerpo. 

 Aprendizaje motor: El cerebelo juega un papel fundamental en la adaptación y ajuste fino 

de los comandos motores para realizar movimientos precisos a través del proceso de 

ensayo y error. El cerebelo debe estar constantemente ajustando la relación 

sensoriomotora para compensar cambios en el cuerpo (e.g. un jugador de tenis que usa 

una nueva raqueta con un peso o dimensiones diferentes) o en el entorno (e.g. jugar en 

una pista de césped o en una pista rápida). 
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5.2 Neurociencia computacional: herramientas de simulación 
En los últimos años, las herramientas de simulación de redes neuronales de impulsos han 

experimentado una rápida evolución desde pequeños simuladores hechos a medida para 

experimentos específicos hasta complejos simuladores de propósito general capaces de llevar 

a cabo un amplio rango de experimentos. Actualmente existe un extenso número de 

herramientas de simulación especializadas en distintos ámbitos de simulación. (i) NEURON 

(Hines and Carnevale 1997) y GENESIS (Bower and Beeman 1998) son la referencia cuando se 

quiere simular modelos biofísicos detallados de neuronas. (ii) NEST (Gewaltig and Diesmann 

2007) es la referencia cuando se quiere simular redes neuronales inmensas (miles de millones 

de neuronas y billones de sinapsis) en superordenadores usando modelos puntuales 

simplificados de neurona (donde la morfología no es relevante). (iii) Spikey (Pfeil et al. 2012, 

Schemmel et al. 2010) es un simulador neuromórfico basado en circuitos analógicos 

(condensadores y resistencias) sobre una oblea de silicio. Este realiza simulaciones entre 1000 

y 10,000 veces más rápido que RT. Esta increíble tasa de aceleración se puede usar para llevar 

acabo análisis intensivos de parámetros en redes neuronales en cortos periodos de tiempo. (iv) 

SpiNNaker (Khan et al. 2008) usa una arquitectura de cómputo masivamente paralela hecha a 

medida basada en procesadores ARM distribuidos en una topología toroidal. Se planea que la 

máquina al completo contenga un millón de procesadores ARM y sea capaz de llevar a cabo 

simulaciones con hasta mil millones de neuronas simples. Para una revisión más profunda 

sobre este tema (Brette et al. 2007). 

El trabajo desarrollado en esta tesis sigue las líneas de investigación que nuestro grupo en la 

Universidad de Granada ha desarrollado durante los últimos años. Su objetivo principal es 

desarrollar modelos cerebelares biológicamente inspirados embebidos en esquemas de 

control en lazo cerrado capaces de llevar a cabo diferentes tareas de control motor con robots 

reales en RT. Debido a la escasez de herramientas capaces de cumplir con los requisitos 

necesarios para estos experimentos con robots, nuestro grupo decidió desarrollar nuestra 

propia herramienta de simulación: EDLUT. 

5.2.1 Estrategias de simulación: dirigidas por tiempo vs dirigidas por eventos 

Cada simulador de redes neuronales de impulsos debe realizar al menos tres tareas diferentes: 

(i) computar la evolución dinámica de cada neurona (normalmente definida por un conjunto 

de ecuaciones diferenciales que deben ser integradas en el tiempo), (ii) generación y 

propagación de los impulsos, y (iii) computación de los mecanismos de plasticidad que 

modifican los pesos sinápticos. Estas tareas se pueden llevar a cabo usando dos familias 

distintas de métodos de simulación: métodos de simulación dirigidos por tiempo o dirigidos 

por eventos. La principal diferencia entre ambos métodos recae en la forma en que cada uno 

maneja la evolución del tiempo, especialmente para computar la evolución de la dinámica 

neuronal. Para una revisión más profunda sobre este tema (Brette et al. 2007). 

La mayoría de los simuladores usan métodos de simulación dirigidos por tiempo basados en 

integradores de paso fijo, dado que estos esquemas permiten la simulación de la mayoría de 

los modelos de neurona, sinapsis y ley de aprendizaje. Estos métodos dividen el tiempo de 

simulación en pequeños pasos de tiempo de tamaño fijo y evalúan la evolución dinámica de 

cada neurona integrando sus ecuaciones diferenciales en cada paso (Iserles 2009). El principal 

inconveniente de estos métodos de integración de paso fijo es su limitada eficiencia cuando la 



 5.2 Neurociencia computacional: herramientas de simulación 
 

- 73 - 
 

actividad neuronal a procesar es dispersa o cuando la complejidad neuronal es elevada (en 

términos de número de ecuaciones diferenciales por neurona). En este caso podría ser 

recomendable usar métodos de integración de paso variable (Iserles 2009). Estos métodos 

adaptan de forma iterativa el tamaño del paso de integración en función de la evolución 

dinámica de cada neurona (esta evolución depende a su vez de la actividad neuronal y la 

complejidad del modelo). Sin embargo, los métodos de integración de paso variable no están 

exentos de inconvenientes (discutidos todos ellos en el segundo artículo incluido en esta tesis 

(Naveros et al. 2017)). De esta forma, los métodos de integración de paso variables están 

normalmente restringidos a simuladores especializados en la simulación de unas pocas 

neuronas con modelos muy complejos (e.g. NEURON o GENESIS). 

En respuesta a este problema surgieron los métodos de simulación dirigidos por eventos como 

posible solución a la baja eficiencia de los métodos de integración de paso fijo cuando se 

simulaban redes neuronales con baja actividad. Hay varias regiones del cerebro que se 

caracterizan por poseer una actividad dispersa (e.g. las GCs en el córtex cerebelar representan 

la mitad de la neuronas de todo el cerebro, reciben entre tres y seis sinapsis de entrada con 

una actividad muy dispersa y la mayoría de ellas permanecen en silencio y apenas generan 

impulsos). La principal fortaleza de estos métodos de simulación dirigidos por eventos recae en 

el hecho de que la evolución dinámica neuronal solo se computa y actualiza cuando un nuevo 

evento modifica la evolución normal de una neurona (i.e. cuando un impulso de entrada es 

recibido o un impulso de salida es generado). Varios métodos de simulación dirigidos por 

eventos han sido desarrollados e incorporados en diferentes simuladores de redes neuronales 

(Mattia and Del Giudice 2000, Delorme and Thorpe 2003, Reutimann, Giugliano, and Fusi 2003, 

Rudolph and Destexhe 2006, Pecevski, Kappel, and Jonke 2014). El principal inconveniente de 

todos estos métodos es el hecho de que únicamente modelos neuronales relativamente 

sencillos basados en ecuaciones que pueden ser evaluadas en tiempos arbitrarios pueden ser 

implementados (e.g. Spike-Response Model). Esta restricción limita el número de modelos de 

neurona que pueden ser simulados usando estas técnicas (limitación que los métodos dirigidos 

por tiempo no sufren). 

5.2.2 La evolución del simulador EDLUT 

Nuestro grupo de investigación en la Universidad de Granada ha estado estudiando el cerebelo 

durante más de una década. Dentro del cerebelo, las GCs son, de lejos, las neuronas más 

numerosas (representando la mitad de las neuronas de todo el cerebro). Estas neuronas 

presentan ratios de conectividad de entrada bajos junto con niveles de actividad dispersos. 

Tratando de explotar esta característica, nuestro grupo de investigación desarrolló la primera 

versión de EDLUT usando un esquema de simulación dirigido por eventos basados en tablas de 

consulta (Ros et al. 2006). Este innovador método computa en una fase inicial la evolución 

dinámica neuronal de cualquier modelo de neurona con una baja complejidad (hasta cuatro o 

cinco ecuaciones diferenciales) y la almacena en tablas de consulta que posteriormente usará 

durante el tiempo de simulación. Modelos neuronales tales como LIF, AdEx, Izhikevich y HH 

pueden ser precomputados en tablas de consulta. Para una revisión más profunda de este 

tema recomendamos la lectura de la tesis del Dr. Carrillo (Carrillo 2009).  

Sin embargo, existen diferentes tipos de neuronas en el cerebelo con ratios de conectividad y 

actividad muy diferentes. Tal y como hemos comentado anteriormente, las GCs son el perfecto 
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candidato para una simulación dirigida por eventos debido a su actividad dispersa. Por el 

contrario, las PCs (grandes neuronas integrando la actividad de hasta 100,000 sinapsis de 

entrada) encajan mejor con los métodos de simulación dirigidos por tiempo. De esta forma, la 

simulación eficiente del cerebelo requiere de dos técnicas de simulación diferentes. Por este 

motivo, el Dr. Jesús Garrido (co-director de esta tesis) actualizó el núcleo de EDLUT hacia un 

esquema de simulación hibrido dirigido por eventos y por tiempo capaz de usar ambos 

métodos conjuntamente en la misma red (Garrido et al. 2011). En este caso solo se 

implementaron métodos de integración de paso fijo. Así EDLUT podía aprovechar los puntos 

fuertes y mitigar las debilidades de ambos métodos de simulación (métodos dirigidos por 

eventos basados en tablas de consulta para modelos de neurona relativamente sencillos con 

ratios de actividad bajos (como las GCs) y métodos de simulación dirigidos por tiempo basados 

en métodos de integración de paso fijo para modelos de neurona más complejos con tasas de 

actividad más elevadas (como las PCs). Para una revisión más profunda de este tema 

recomendamos la lectura de la tesis del Dr. Garrido (Garrido 2012). 

5.3 Motivación 
Tradicionalmente, la neurociencia ha estudiado los sistemas biológicos usando experimentos 

in vitro e in vivo. El término in vitro (“entre vidrio” del Latín) se refiere a la técnica que lleva a 

cabo un procedimiento en un entorno controlado fuera de un organismo vivo. De esta forma el 

experimento puede ser perfectamente controlado, aunque únicamente se pueden estudiar 

comportamientos y características relativamente sencillos. Por el contrario, el término in vivo 

(“dentro de lo vivo” del Latín) se refiere a los experimentos usando organismo vivos completos 

(en oposición a organismo muertos o parte de ellos). Esta técnica permite el estudio de 

sistemas y comportamientos mucho más complejos, aunque el control sobre las condiciones 

del experimento y las mediciones que se pueden realizar están notablemente más limitadas. 

Recientemente, la neurociencia computacional con sus experimentos in silico (hechos por 

computadora o vía simulación computacional) ha emergido como una tercera opción para el 

estudio del cerebro. En esta tesis hemos usado los resultados obtenidos mediante la 

observación experimental (principalmente en ratas y ratones) para crear un modelo 

computacional del cerebelo. Este modelo presenta una doble funcionalidad: (i) validad las 

hipótesis derivadas de los experimentos in vivo e in vitro, y (ii) proponer nuevas hipótesis que 

pueden ser validadas por los experimentos in vivo e in vitro. De esta forma podemos decir que 

los experimentos de la neurociencia computacional son el perfecto complemento a los 

experimentos con animales. 

Realizar esto experimentos con un cuerpo artificial en RT es una tarea compleja que requiere 

de herramientas de simulación especializadas. Los artículos de revista publicados previamente 

a esta tesis relacionados con el desarrollo de EDLUT (Ros et al. 2006, Garrido et al. 2011) 

muestran el extraordinario potencial de EDLUT para la simulación eficiente de modelos 

cerebelares. Sin embargo, las versiones previas de EDLUT a esta tesis carecían de la eficiencia 

necesaria para realizar experimentos en RT con modelos razonablemente grandes y complejos. 

De esta forma era necesaria una mejora considerable del rendimiento de EDLUT, el desarrollo 

de mecanismos de RT y una interfaz para los robots. 

Centrándonos en el cerebelo, es bien sabido que esta estructura juega un papel fundamental 

en la coordinación y aprendizaje de movimientos. Los neurocientíficos realizan experimentos 
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conductuales tales como EBCC, VOR o manipulación de objetos para estudiar el cerebelo, 

observando como este es capaz de controlar el cuerpo. Nosotros replicamos esta metodología 

estudiando nuestros modelos cerebelares embebidos en esquemas de lazo cerrado capaces de 

controlar el movimiento de robots simulados o reales en RT. De esta forma podemos apreciar 

mejor la influencia que ejercen nuestros modelos cerebelares en el comportamiento del robot. 

Esta configuración permite explorar diferentes características del modelo (modelos de 

neuronas, topología de interconexionado, mecanismos de plasticidad sináptica, etc.) y como 

afectan al comportamiento del robot. Además, estos comportamientos del robot pueden ser 

comparados con los observados por los neurocientíficos en animales (o humanos), validando o 

refutando de esta forma las teorías estudiadas. 

Desde el punto de vista de los sistemas robóticos, el cerebelo es capaz de coordinar el 

movimientos de cientos de músculos con una increíble precisión y bajo consumo energético. 

También es capaz de aprender nuevas tareas o habilidades repitiendo el mismo movimiento y 

observando las consecuencias. Replicar estas características en los controladores robóticos 

puede mejorar profundamente la funcionalidad y autonomía de las nuevas generaciones de 

robots biomórficos.  

Por último, desde el punto de vista del procesamiento de información, el cerebro humano 

representa un sistema de procesamiento realmente potente, energéticamente eficiente y 

robusto ante fallos por envejecimiento. Entender como los sistemas biológicos son capaces de 

procesar la información de cientos de fuentes nos ayudará a desarrollar nuevas generaciones 

de arquitecturas de procesamiento con capacidades nunca antes vistas. 

5.4 Objetivos 

Esta tesis pretende crear modelos cerebelares que expliquen los mecanismos biológicos que le 

confieren al cerebelo la capacidad de realizar diferentes tareas de control motor. Con el 

objetivo de validar los modelos, estos han sido embebidos en diferentes esquemas de control 

de lazo cerrado y expuestos a exigentes tareas de control motor usando robots simulados o 

reales en RT. Otro objetivo de esta tesis es implementar nuevos esquemas de control 

biológicamente inspirados para controlar las nuevas generaciones de robots biomórficos. El 

último objetivo de esta tesis es desarrollar las herramientas de simulación que permitan llevar 

a cabo los dos objetivos anteriormente propuestos, explorando nuevos y eficientes métodos 

de simulación, esquemas de control, interfaces de comunicación y supervisores de RT. 

Para conseguir estos objetivos, esta tesis aborda los siguientes puntos: 

 Desarrollo de las herramientas de simulación requeridas para crear un sistema de control 

para robots reales basado en redes neuronales de impulsos. Este objetivo se puede 

subdividir en: 

 Desarrollo de un simulador de redes neuronales (EDLUT) ultra rápido para redes de 

media escala. Implementar diferentes técnicas de paralelización en CPUs y GPUs para 

incrementar su rendimiento computacional. 

 Implementar nuevos métodos de simulación más eficiente dirigidos por eventos y por 

tiempo orientados a modelos de neurona tales como LIF, AdEx, Izhikevich y HH.  
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 Integración de un entorno robótico (capaz de controlar robots simulados y reales) en 

el simulador de redes neuronales para facilitar la experimentación usando esquemas 

de control bioinspirados. 

  Mejorar el simulador añadiéndolo la capacidad de asegurar simulaciones en RT con 

robots. 

 Implementación de un modelo cerebelar usando las herramientas anteriormente 

desarrolladas. Este objetivo se puede subdividir en: 

 Estudiar como los diferentes elementos del modelo cerebelar (neuronas y sinapsis) 

contribuyen a sus habilidades motoras. Esto requiere la implementación y evaluación 

de complejos modelos de neurona y sinapsis en EDLUT, tomando especial atención a 

las PCs, DCN y IO. 

 Estudiar diferentes mecanismos de plasticidad sináptica a nivel de las PCs y DCN que le 

permiten al modelo cerebelar adquirir nuevas habilidades. 

 Validación de los modelos cerebelares propuestos mediante su inclusión en esquemas de 

control de lazo cerrado para realizar diferentes tareas de control motor con robots 

simulados o reales en RT. 

5.5 Nuestra contribución 

Siempre con la restricción de RT en mente, esta tesis a mejorar profundamente la eficiencia y 

funcionalidad de EDLUT. Con respecto a la eficiente, nuestras contribuciones principales se 

recogen en los dos primeros artículos incluidos en esta tesis (Naveros et al. 2015, Naveros et 

al. 2017), pero también en los resultados adicionales pendientes de publicación incluidos en el 

cuarto capítulo de esta tesis. Hoy en día, la mayoría de las CPUs incluyen varios núcleos físicos 

o virtuales. Por esta razón hemos paralelizado el núcleo de EDLUT (métodos dirigidos por 

eventos y por tiempo) en CPU usando OpenMP. Esta es una API que soporta la programación 

multiplataforma de programas de multiprocesamiento usando memoria compartida en C++. 

Además, hace unos cuando años NVIDIA desarrollo CUDA, una nueva arquitectura de 

procesamiento en GPUs y una API. CUDA permite desarrollar código que se puede ejecutar en 

las GPUs con arquitectura CUDA para realizar tareas de propósito general explotando el 

paralelismo a nivel de dato. El cómputo de la evolución dinámica neuronal en los métodos de 

simulación dirigidos por tiempo que usan integración de paso fijo es una tarea que cumple 

perfectamente con los requisitos de la arquitectura paralela de CUDA. Por esta razón hemos 

actualizado EDLUT hacia una plataforma de co-procesamiento CPU-GPU en la que la GPU 

(usando CUDA) computa modelos de neurona dirigidos por tiempo mientras que la CPU 

(usando OpenMP) computa modelos de neurona dirigidos por eventos y por tiempo. Tanto la 

generación y propagación de impulsos como los mecanismos de plasticidad se procesan 

paralelamente en la CPU usando OpenMP. Todas estas nuevas características se cubren en 

(Naveros et al. 2015).  

También hemos desarrollados nuevos y eficientes métodos de simulación dirigidos por 

eventos y por tiempo capaces de tratar con modelos de neurona más complejos. Para los 

métodos dirigidos por eventos hemos reestructurado las tablas de consulta y desarrollado un 

nuevo mecanismo para generar y propagar de forma mucho más eficiente la actividad 

síncrona. Para los métodos dirigidos por tiempo de la CPU y la GPU hemos desarrollado los 

métodos de integración de doble paso fijo. Estos son capaces de aprovechar los puntos fuertes 
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y mitigar las debilidades de los métodos de integración de paso fijo y paso variable. Todas 

estas nuevas características se cubren en (Naveros et al. 2017). 

Por último, en la sección de resultados adicionales de esta tesis hemos expuesto como 

diferentes desarrollos relacionados con la computación de neuronas, sinapsis y mecanismos de 

plasticidad se han incluido en EDLUT. 

En lo referente a la funcionalidad de EDLUT, nuestras principales contribuciones están 

cubiertas en el resto de artículos que componen esta tesis (Luque et al. 2014, Luque et al. 

2016) y en la sección de resultados adicionales. Hemos implementados en EDLUT nuevos 

modelos de neurona y leyes de aprendizaje necesarios para nuestros modelos cerebelares. 

También hemos equipado EDLUT con un entorno de trabajo para robots. Este entorno permite 

implementar diferentes esquemas de control en los que poder embeber nuestros modelos 

cerebelares. EDLUT incluye ahora: (i) una interfaz que transforma las señales analógicas 

generadas por los robots en impulsos que las redes neuronales son capaces de entender y 

viceversa, (ii) una interfaz de comunicación TCP/IP capaz de conectar los esquema de control 

con la interfaz del robot (que pueden ser ejecutados en el mismo o en diferentes 

computadores), y (iii) un supervisor de RT que asegura el cumplimiento de la restricción de RT. 

Además, el núcleo de EDLUT ha sido modificado para permitir que la simulación de algunos 

elementos neuronales (generación y propagación de impulsos, mecanismo de plasticidad, 

evolución de la dinámica neuronal, etc.) puedan ser temporalmente deshabilitados con el 

objetivo de cumplir la restricción de RT. Esta nueva característica es controlada por el 

supervisor de RT, el cual puede acelerar o decelerar la simulación. 

Además de esto, en esta tesis hemos hecho un extenso uso de todas estas herramientas para 

estudiar el cerebelo. Hemos estudiado como diferentes neuronas, sinapsis y mecanismos de 

plasticidad que han sido reportados experimentalmente en el cerebelo contribuyen a sus 

habilidades de control motor. Más concretamente hemos centrado nuestro estudio en el lazo 

cerrado formado por la IO, PCs y DCN (cerrando el lazo desde los DCN hasta la IO a través del 

cuerpo). Aunque la IO no se considera parte del cerebelo, se cree que sus axones (CFs) 

transportan hasta el cerebelo una señal de aprendizaje que codifica el error e influye en la 

modificación del peso sináptico de las PFs (Ito and Kano 1982, Ito 2001). Hemos estudiado la 

relación existente entre estos tres grupos de neuronas en varias tareas de control y 

aprendizaje motor con robots: (i) manipulación de objetos pesados/ligeros usando un brazo 

robótico simulado (Luque et al. 2014, Luque et al. 2016), (ii) recreación de un experimento 

EBCC usando un entorno simulado (Antonietti et al. 2016), y (iii) recreación de un experimento 

VOR usando un robot iCub simulado y también real (sección de resultados adicionales). 

Con respecto a los mecanismo de plasticidad sináptica, tres mecanismo de plasticidad 

dependiente del tiempo del impulso (STDP) implementando LTP y LTD en tres grupos de 

sinapsis (PFs a PCs, MFs a DCN y PCs a DCN) son evaluados en esta tesis (Luque et al. 2016). 

Hemos visto como en una primera fase del aprendizaje la actividad de las CFs a nivel de las PCs 

influye en la adaptación del peso sináptico de sus PFs aferentes (axones provenientes de las 

GCs) con el objetivo de minimizar el error en la tarea motora. Esta señal de error se computa 

en las células de la IO y se transmiten a las PCs a través de las CFs. En una segunda fase del 

aprendizaje, la actividad de las PCs que llega a los DCN influyen en la adaptación del peso 
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sináptico de sus MFs aferentes. De esta forma el aprendizaje es consolidado mediante la 

transferencia de parte de la información almacenada en las sinapsis PFs/PCs hacia las sinapsis 

MFs/DCN. Además, estos mecanismos actúan como un mecanismo de adaptación de ganancia 

capaz de optimizar el rango operacional de las células de los DCN. 

Por último, en la última fase de esta tesis hemos propuesto un nuevo modelo cerebelar con 

tres contribuciones principales (sección de resultados adicionales): (i) un modelo neuronal 

detallado de las PCs capaz de replicar sus tres estados de actividad llamados tónico, silencioso 

y ráfaga (Forrest 2008), (ii) una nueva capa IO interconectada mediante acoplamiento eléctrico 

capaz de codificar la señal de error de forma más eficiente, y (iii) una nueva conexión sináptica 

de la IO hasta los DCN. Hemos validad este nuevo modelo cerebelar usando un experimento 

VOR con un robot iCub simulado y real en RT. Este es el primer experimento en el que hemos 

usado un robot real (en vez de un robot simulado como en los anteriores trabajos). Para este 

trabajo hemos desarrollado un esquema de control de lazo cerrado de entrada/salida 

asíncrono para facilitar el control del robot real. Este esquema de control aprovecha la 

diferencia de tiempo entre el tiempo de propagación biológico de los impulsos a través de los 

nervios y el tiempo de propagación artificial de los impulsos a través de los sistemas artificiales 

para relajar la constricción de RT. Este esquema de control ha sido detallado en mayor 

profundidad en el segundo capítulo de esta tesis.  

5.6 Marco del proyecto 

El trabajo descrito en este documento ha sido desarrollado en el marco de dos proyectos 

Europeos: “Realistic Real-time Networks: computation dynamics in the cerebellum” (REALNET 

(FP7-270434)) y “Human Brain Project” (HBP (FP7-604102)). La última parte de esta tesis 

(sección de resultados adicionales) ha sido desarrollada en colaboración con el grupo de 

investigación liderado por Angelo Arleo en la Universidad Pierre y Marie Curie (UPMC), París. 

El proyecto REALNET era una continuación del proyecto Europeo SENSOPAC (IST-028056). 

REALNET (fundado bajo el 7º programa marco de la UE de tecnologías de la información y la 

comunicación) empezó en febrero de 2011 y terminó en febrero de 2014. El objetivo principal 

de este proyecto era elaborar una red neuronal realista y usarla, junto con registros 

experimentales de la actividad de redes biológicas, para investigar las bases teóricas de 

cómputo del sistema nervioso central. Se usó un circuito cerebelar como caso de estudio. 

Basado en datos experimentales, este proyecto desarrolló el primer modelo realista en tiempo 

real de un cerebelo y lo conectó a un sistema robótico para evaluar la funcionalidad del 

circuito bajo condiciones de lazo cerrado. Dentro de este proyecto, nuestro grupo de 

investigación perteneciente a la Universidad de Granada estaba centrado en el desarrollo del 

simulador EDLUT para hacerlo capaz de simular estas estructuras biológicas realistas en tiempo 

real incrementando el rendimiento de las simulaciones. 

Más recientemente nuestro grupo está envuelto en el proyecto HBP. Este es un proyecto 

insignia de la Comisión Europeo para las tecnologías emergentes del futuro. Fue lanzado en 

octubre de 2013, y está programado que dure diez años. El HBP tiene como objetivo poner en 

marcha una infraestructura científica de vanguardia para investigar el cerebro, la neurociencia 

cognitiva y la computación inspirada en el cerebro. El HBP se divide en 12 subproyectos. 

Nuestro grupo de investigación perteneciente a la Universidad de Granada se encuentra 
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actualmente integrado en el subproyecto 10: Plataforma Neurorobótica. Esta plataforma 

ofrece a los científicos y desarrolladores tecnológicos una infraestructura software y hardware 

que permite conectar modelos de cerebelo prevalidados a cuerpos robóticos y entornos 

detalladamente simulados. Dentro de este subproyecto, la Universidad de Granada se integra 

en el paquete de trabajo 10.1 Experimentos en lazo cerrado (modelos de cerebro dirigidos por 

datos), desarrollando la subtarea 10.1.4 control motor cerebelar. Aquí hemos continuado con 

el desarrollo de nuestro modelo cerebelar, validándolo en experimentos de lazo cerrado.  

Finalmente, el doctorando ha hecho una estancia de seis meses en el grupo de investigación 

liderado por Angelo Arleo en la UPMC, financiado parcialmente por una beca de movilidad 

asociada a las FPUs del Ministerio de Educación Español. Durante este periodo hemos 

desarrollado y validado un modelo cerebelar más realista embebido en un esquema de control 

de lazo cerrado capaz de recrear un experimento VOR usando un robot simulado y real en RT. 

5.7 Organización de los capítulos 

Este documento ha sido organizado en capítulos por razones de legibilidad y organización. 

Cada capítulo contiene: 

 El capítulo 1 es una breve introducción a la neurociencia computacional y los modelos 

cerebelares aplicados a experimentos de lazo cerrado usando robots biomorficos. Este 

capítulo también describe la motivación de esta tesis. 

 El capítulo 2 contextualiza el trabajo presentado en esta tesis con respecto a trabajos 

previos. 

 El capítulo 3 enumera las contribuciones principales de esta tesis y el trabajo futuro. 

 El capítulo 4 es un compendio de los artículos de revista que dan soporte a esta tesis, 

incluyendo una breve descripción sobre las revistas y los índices de calidad de las 

publicaciones. Este capítulo también incluye una sección de resultado adicionales 

pendientes de publicar. 

 El capítulo 5 es el capítulo 1 escrito en español. 

 El capítulo 6 es el capítulo 3 escrito en español. 

 El anexo incluye los cuatro artículos de revista que componen esta tesis. 
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Capítulo 6: Conclusiones y Trabajo Futuro 
Este capítulo muestra un resumen de las principales contribuciones presentadas en esta tesis, 

las conclusiones que pueden ser extraídas y una propuesta para trabajo futuro. 

6.1 Revisando los objetivos de la tesis 
Esta tesis persigues tres objetivos complementarios: 

 Desarrollar las herramientas de simulación que habilitan este estudio, explorando nuevos y 

eficientes métodos de simulación, esquemas de control, interfaces de comunicación y 

supervisores de RT. Esto se ha logrado a través del desarrollo de la plataforma EDLUT, 

integrando diferentes técnicas que permiten un cómputo muy eficiente. Se ha realizado un 

estudio completo de su capacidad de rendimiento y como optimizarlo. 

 Crear modelos cerebelares que expliquen los mecanismos biológicos que permiten que el 

cerebelo y algunos centros relacionados realicen diferentes tareas de control motor. Este 

objetivo se cumple mediante el desarrollo de modelos cerebelares que integran nuevas 

características biológicas tales como mecanismos de plasticidad sináptica distribuidos en 

distintas capas (de PFs a PCs dirigido por las CFs, de MFs a los DCN dirigido por las PCs y de 

las PCs a los DCN), complejos modelos neuronales (modelo tri-modal de las PCs), una capa 

de la IO capaz de codificar mejor la señal de error usando acoplamiento eléctrico y una 

nueva sinapsis de las capas IO a DCN.  

 Implementación de novedosos esquemas de control biológicamente inspirados capaces de 

controlar las nuevas generaciones de robots biomórficos. Los modelos cerebelares han 

sido embebidos en diferentes esquemas de control en lazo cerrado y expuestos a 

exigentes tareas de control motor utilizando robots simulados o reales en RT. Esto se ha 

hecho usando esquemas de control biológicamente plausibles, cumpliendo así con este 

tercer objetivo.  

6.2 Contribuciones principales 
 Hemos desarrollado y actualizado un eficiente simulador de redes neuronales de impulsos 

(EDLUT) basado en simulaciones hibridas dirigidas por eventos y por tiempo. Se le han 

aplicado un amplio rango de técnicas de simulación con la idea de incrementar su 

rendimiento computacional. Así hemos hecho posible el objetivo de realizar tareas de 

control motor con robots reales en RT utilizando modelos cerebelares biológicamente 

inspirados. 

 El núcleo de EDLUT, capaz de realizar simulaciones hibridas dirigidas por eventos y por 

tiempo, ha si paralelizado en CPUs multinúcleo usando OpenMP. 

 Los métodos de simulación dirigidos por tiempo han sido también paralelizados en 

plataformas de coprocesamiento CPU-GPU usando CUDA. La GPU únicamente 

computa la evolución de la dinámica neuronal mientras que la generación y 

propagación de impulsos se siguen procesando en la CPU. 

 Se han desarrollado nuevos métodos de simulación dirigidos por eventos y por tiempo 

especializados en la simulación de modelos de neurona relativamente complejos (AdEx 

y HH). Para los métodos dirigidos por eventos se ha desarrollado un nuevo mecanismo 
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capaz de reordenar las tablas de consulta junto con un nuevo protocolo para generar y 

procesar actividad síncrona de forma mucho más eficiente. Para los métodos dirigidos 

por tiempo de la CPU y la GPU se ha desarrollado un nuevo método de integración de 

doble paso fijo. Este método es un hibrido entre los métodos de paso fijo y paso 

variable capaz de explotar las fortalezas y mitigar las debilidades de ambos al mismo 

tiempo.  

 Se han desarrollado varias mejoras en lo referente a la computación de la evolución de 

la dinámica neuronal, la generación y propagación de impulsos y la actualización de los 

pesos sinápticos usando mecanismo de plasticidad. 

 El núcleo de EDLUT ha sido modificado con el objetivo de permitir la deshabilitación 

momentánea de elementos neurales (generación y propagación de impulsos, 

mecanismos de plasticidad, evolución de la dinámica neuronal, etc.) para cumplir con 

las restricciones de RT impuestas por los robots reales. Esta característica la controla 

automáticamente un supervisor de RT, el cual puede acelerar o decelerar la 

simulación.   

 Se han integrado en EDLUT nuevas características adicionales más allá de la simulación de 

redes neuronales de impulsos tales como: 

 Implementar diferentes esquemas de control en lazo cerrado en los que poder 

embeber nuestros modelos cerebelares usando simulaciones síncronas o asíncronas. 

 Un simulador capaz de simular la planta de un amplio rango de robots. 

 Una interfaz de comunicación capaz de convertir las señales analógicas de los robots 

en impulsos que las redes neuronales puedan entender y viceversa. 

 Una interfaz de comunicación capaz de conectar el esquema de control con la interfaz 

de cualquier robot simulado o real usando conexiones TCP/IP. 

 También se ha desarrollado una versión incremental de un modelo cerebelar 

biológicamente plausible. 

 Se han propuesto tres mecanismos de plasticidad diferentes en nuestro modelo de 

cerebelo (de PFs a PCs dirigido por las CFs, de MFs a los DCN dirigido por las PCs y de 

las PCs a los DCN). Estos mecanismos generan tres contribuciones principales al 

comportamiento del modelo cerebelar.  

 Calibrar en una primera fase la relación sensoriomotora usando el primer 

mecanismo de plasticidad a nivel de las PCs. 

 Consolidar en una segunda fase la memoria sináptica formada con el primer 

mecanismo de plasticidad a nivel de las PCs mediante la replicación de esta 

distribución de memoria sináptica en el segundo mecanismo de plasticidad a nivel 

de los DCN.  

 El tercer mecanismo de plasticidad actúa como un mecanismo de adaptación de 

ganancia que optimiza el rango de trabajos de los DCN.  

 Se ha incluido en el modelo cerebelar un nuevo modelo de neurona más complejo 

capaz de replicar los tres estados de actividad de las PCs. 

 También se ha incluido una nueva capa IO que implementa acoplamiento eléctrico 

entre sus neuronas. Este acoplamiento ayuda a codificar mejor la señal de error. 

 Por último se ha evaluado una nueva sinapsis desde la IO a los DCN. 

 Los modelos cerebelares propuestos han sido validados en diferentes tareas de control y 

aprendizaje motor. 
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 Manipulación de objetos pesados/ligeros que modifican el modelo básico dinámico de 

un brazo robótico simulado en RT. 

 Recreación de un experimento EBCC usando un entorno simulado. 

 Recreación de un experimento VOR usando un robot iCub simulado y real en RT. 

6.3 Conclusiones 
En esa tesis hemos tratado de arrojar alguna luz sobre la teoría de control motor relacionada 

con el cerebelo, proponiendo y estudiando modelos cerebelares basados en hipótesis y 

resultados extraídos de la biología. Estos modelos han sido evaluados en diferentes tares de 

control motor usando robots simulados y reales en RT. Además, en esta tesis hemos 

desarrollado e integrado en una sola herramienta (EDLUT) todos los elementos requeridos por 

este tipo de experimentos. 

Cuando se requiere la simulación de redes neuronales de impulsos capaces de interactuar con 

robots simulados o reales en RT, es obligatorio utilizar un simulador que asegure esta 

condición de RT. Con esta idea en mente hemos desarrollado EDLUT, un simulador de código 

abierto para redes neuronales de impulsos con un esquema de simulación híbrido dirigido por 

eventos y por tiempo. Dicho simulador ha sido paralelizado en plataformas de 

coprocesamiento CPU-GPU multinúcleo habilitando un supervisor de RT. Este esquema hibrido 

nos brinda múltiples técnicas de simulación que pueden ser usadas conjuntamente para 

acelerar la simulación de diferentes capas neuronales dentro de la misma red (e.g. métodos 

dirigidos por eventos para las GCs y dirigidos por tiempo para las PCs). Además, este simulador 

integra el software necesario para implementar esquemas de control en lazo cerrado capaces 

de controlar robots simulados o reales en RT.  

En cuanto a los modelos cerebelares propuestos en esta tesis, hemos demostrado cómo un 

modelo biológicamente inspirado puede ser usado para diversas tares de control motor tales 

como manipulación de objetos o los experimentos EBCC y VOR. Así mismo se han propuesto y 

estudiado varías características nuevas sobre nuestro modelo de cerebelo: (i) Dos nuevos 

mecanismo de plasticidad sináptica a nivel de los DCN capaces de consolidar el aprendizaje a 

nivel de las PCs y ajustar el rango dinámico de salida de los DCN, (ii) un nuevo modelo de 

neurona más complejo capaz de recrear los tres estados de actividad de las PCs, (iii) una nueva 

capa IO capaz de codificar mejor la señal de error utilizando acoplamiento eléctrico entre sus 

neuronas, y (iv) una nueva sinapsis desde la IO a los DCN. Sin embargo, todavía estamos 

bastante lejos de entender todas las características de cerebelo, siendo capaces de recrear un 

modelo cerebelar perfecto. Por este mismo motivo debemos seguir investigando esta área en 

el futuro. 

6.4 Trabajo futuro 
El primer paso que deberemos dar una vez finalizada esta tesis será proceder a la publicación 

de los resultados pendientes de publicación del cuarto capítulo. Estos resultados se dividirán 

en dos artículos separados (aunque ambos relacionados). El primero abordará el modelo de 

cerebelo desde el punto de vista de la neurociencia. Presentaremos como todos los elementos 

incluidos en nuestro modelo son biológicamente plausibles, a la vez que demostraremos como 

contribuyen al comportamiento de nuestro modelo cerebelar. El segundo artículo será mucho 
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más técnico, centrándonos en los problemas técnicos que hemos tenido que abordar para 

poder recrear un experimento VOR usando un robot iCub simulado y real en RT. 

Después de esto trataremos de seguir explorando las capacidades de nuestro modelo 

cerebelar. Recientes estudios in vivo e in vitro (Bidoret et al. 2009, Bouvier et al. 2016) han 

observado como los mecanismo de plasticidad de las PFs a las PCs están controlados por la 

actividad de las CFs. Estos estudios proponen que los mecanismo LTD y LTP de las PFs 

requieren una determinada actividad para modificar el peso sináptico. Esta actividad debe 

darse en ráfagas de 2 impulsos para LTD o 5 impulsos para LTP y producir así una modificación 

del peso sináptico. Además, los impulsos dentro de estás ráfagas deben poseer una alta 

frecuencia (200Hz). Para ráfagas más cortas o con una menor frecuencia no se observaron 

modificaciones del peso sináptico. Así mismo, los autores de estos estudios han propuesto un 

modelo matemático capaz de recrear este comportamiento. En futuras versiones de nuestro 

modelo cerebelar sustituiremos nuestra ley de aprendizaje en las PFs por esta nueva versión, 

evaluando como este cambio puede modificar la dinámica del modelo respecto con la versión 

anterior. De hecho, dado que esta nueva ley de aprendizaje requiere que las GCs generen 

ráfagas de actividad a una determinada frecuencia, necesitaremos también rediseñar la capa 

de las GCs para que cumplan estos requisitos. Con este objetivo en mente colaboraremos con 

el Dr. Jesús Garrido (codirector de esta tesis y experto en la capa de las GCs). Él ha estudiado 

extensamente las capas formadas por las MFs, GCs y células Golgi (GoCs), evaluando 

diferentes mecanismos de plasticidad distribuida (Garrido et al. 2016, Mapelli et al. 2015, 

Luque, Garrido, et al. 2011a, D'Angelo et al. 2009, D’Angelo et al. 2016). Trataremos de 

integrar sus capas MFs, GCs y GoCs con nuestras capas IO, PCs y DCN, construyendo de esta 

forma nuestro modelo cerebelar biológicamente plausible más complejo hasta la fecha. Por 

último incluiremos en nuestro modelo dos nuevos tipos de interneuronas: basket y stellate. 

Estas células reciben sinapsis excitatorias de las PFs e inhiben a las PCs. La hipótesis propuesta 

es que estas capas intermedias ayudan a las PCs a diferenciar mejor los patrones en las PFs, al 

tiempo que optimizan el rango de trabajo de las PCs. 

Con respecto al desarrollo de nuestro simulador EDLUT, a lo largo de esta tesis hemos 

mejorado drásticamente el rendimiento computacional de esta herramienta, haciéndola capaz 

de simular modelos cerebelares más complejos en RT. Tras esta tesis planeamos seguir 

desarrollando nuestro modelo cerebelar, incrementando su complejidad neuronal y 

matemática, pero al mismo tiempo deseamos poder seguir realizando experimentos con 

robots reales en RT. Como hemos visto en esta tesis, la combinación de ambas opciones al 

mismo tiempo requerirá seguir con el desarrollo de EDLUT, explorando nuevas formas de 

incrementar su rendimiento computacional. En este sentido exploraremos la paralelización de 

EDLUT en clusters, pero teniendo siempre en cuenta la restricción de RT que imponen los 

robots reales. 

También exploraremos como optimizar el nuevo mecanismo de plasticidad en las PFs. Este 

nuevo mecanismo utiliza dos variables de estado y una ecuación diferencial para cada PF. Las 

variables de estado experimentan un incremento directo cada vez que un impulso llega a 

través de una PF o CF respectivamente y un decremento exponencial con el tiempo. En 

nuestro último modelo cerebelar hemos implementado 400,000 PFs. De esta forma 

deberemos evaluar 800,000 funciones de decremento exponencial y 400,000 ecuaciones 
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diferenciales, generando una enorme carga computacional. Implementaremos y 

compararemos tres configuraciones distintas: métodos de integración de paso fijo y de paso 

variable en CPU y de paso fijo en una plataforma de coprocesamiento CPU-GPU (el incremento 

directo de las variables de estado se realizará en la CPU, mientras que los decrementos 

exponenciales así como la integración de la ecuación diferencial se realizará en la GPU).  

Por último, como hemos expresado anteriormente, evaluaremos las nuevas características de 

nuestro modelo cerebelar cuando este esté envuelto en diferentes tares de control motor 

usando robots simulados o reales en RT. 
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Abstract — Time-driven simulation methods in 

traditional CPU architectures perform well and precisely 

when simulating small-scale spiking neural networks. 

Nevertheless, they still have drawbacks when simulating 

large-scale systems. Conversely, event-driven simulation 

methods in CPUs and time-driven simulation methods in 

graphic processing units (GPUs) can outperform CPU 

time-driven methods under certain conditions. With this 

performance improvement in mind, we have developed 

an event-and-time-driven spiking neural network 

simulator suitable for a hybrid CPU-GPU platform. Our 

neural simulator is able to efficiently simulate bio-

inspired spiking neural networks consisting of different 

neural models which can be distributed heterogeneously 

in both small layers and large layers or subsystems. For 

the sake of efficiency, the low-activity parts of the neural 

network can be simulated in CPU by using event-driven 

methods whilst the high-activity subsystems can be 

simulated in either CPU (a few neurons) or GPU 

(thousands or millions of neurons) by using time-driven 

methods. In this work, we have undertaken a 

comparative study of these different simulation methods. 

For benchmarking the different simulation methods and 

platforms, we have used a cerebellar-inspired neural-

network model consisting of a very dense granular layer 

and a Purkinje layer with a smaller number of cells 

(according to biological ratios). Thus, this cerebellar-like 

network includes a dense diverging neural layer 

(increasing the dimensionality of its internal 

representation and sparse coding) and a converging 

neural layer (integration) as many other biologically 

inspired and also artificial neural networks. 

Index Terms — co-processing CPU-GPU, EDLUT, 

event-driven execution, real time, simulation, spiking 

neural network, time-driven execution. 
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I. INTRODUCTION 
NE of the main challenges addressed by 
neuroscientists in the twenty-first century consists 

of understanding the biological principles of 
consciousness and mental processes through which we 
perceive, act, learn and remember [1]. But 
understanding the computing principles involved 
requires simulations at different levels of detail and at 
different scales. Within the context of neurorobotics, 
the possibility of simulating biologically plausible 
neural networks connected to  
an active agent such as a robot [2] [3] [4] allows us to 
study behavioral features using body-brain closed-loop 
experiments. Nevertheless, this imposes strict 
constraints on computation time (ideally, real-time 
simulations for perception-action set ups with real 
robots).  

Studying brain computational principles is the main 
goal of computational neuroscience, where widely used 
neural simulators such as GENESIS [5], NEURON [6], 
Brian [7], and NEST [8] play a fundamental role. 
These neural simulators usually calculate neuronal 
dynamics using time-driven simulation methods. These 
methods divide the total simulation time into small 
time steps and update each neural-state variable in each 
time step by means of numerical analysis methods [9]. 
This iterative updating process represents a heavy 
computational load, which depends linearly on the 
number of neurons and neural variables. This 
computational load may also depend on the number of 
synapses if we use synapse models with intrinsic 
dynamics that need to be computed continuously. For 
synapses where the parameters can be calculated 
within the event-driven scheme, the computational load 
would only be slightly affected by the spike 
propagation and learning rule application processes. 
Hence, this total computational load makes large-scale 
neural network simulations in real-time almost 
intractable if directly iterative numerical methods are 
used. 

 Alternatively, different approaches and techniques 
have been developed over the last decades; event-
driven neural network simulations [10] [11] [12], 
neural network simulations in high-performance 
platforms such as field programmable gate-array 
circuits (FPGAs) [13] [14], very large-scale integration 
(VLSI) circuits [15], and graphic processor units 
(GPUs) [16] [17] [18] [19] [20], and finally, distributed 
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neural network simulations in clusters [21] represent 
different approaches for large scale simulation.  

As a starting point we chose the open source 
simulator EDLUT (event-driven neural simulator based 
on look-up tables). The very first EDLUT version 
incorporated only an event-driven simulation scheme 
into its design [10]. A further step in the technological 
development of this simulator made it capable of 
performing hybrid event-and-time-driven simulations 
[22]. Finally, to take full advantage of new multi-core 
CPU architectures, time-driven methods have been 
parallelized by using OpenMP.  

This article describes how EDLUT has been further 
developed so as to perform event-and-time-driven 
simulations in a hybrid CPU-GPU platform. This 
hybrid platform allows computing large-scale 
simulations efficiently on a single computer. Whilst 
event-driven simulation methods based on look-up 
tables are always running on CPU, iterative time-
driven simulation methods can be run either on CPU 
(single core and multi-core CPU architectures) or GPU, 
depending on the number of neurons to be computed (a 
layer of a few neurons can be more efficiently 
computed on CPU architecture, whilst GPU 
architectures are better suited for larger scale neural 
systems). This paper also presents a comparative study 
of all these simulation methods operating in our hybrid 
CPU-GPU simulator for event-and-time-driven 
simulations.  

II. SIMULATION METHODS IN A HYBRID CPU-GPU ARCHITECTURE 

According to Brette [23], an event-and-time-driven 
simulator, such as EDLUT, could be divided into three 
processing sections: a) neuronal dynamics (using time-
driven and/or event-driven methods), b) spike 
propagation, and c) event queue management. Thus the 
computation time can be divided in t_neu_dynamics, 
t_spike_prop and t_queue_manag, respectively. In fact, EDLUT 
uses several techniques to improve the neuronal 
dynamic computation, thus making this simulator 
perform better when the neural integration phase (a) 
prevails over others (b and c).  

Parallelizing time-driven methods in both CPU and 
GPU, would improve the performance of the simulator 
whilst maintaining its flexibility and accuracy [19]. 
This parallelization procedure enables the use of more 
complex time-driven neuron models and shorter 
integration time steps, thus obtaining more realistic and 
accurate results. Furthermore, event-driven methods 
(based on look-up tables) are best suited for simulating 
simple neuron models with high levels of performance 
and precision.  

Within the field of computational neuroscience, 
GPUs have also proven useful in speeding up the 
computation of time-driven simulation methods in 
some neural networks thanks to their particular parallel 
architecture. These GPUs depend on CPU hosts for 
their operations. When the CPU only initializes the 

simulation and the GPU computes the whole 
simulation, some constraints and simplifications have 
to be taken into account in order to parallelize the 
entire simulation in the GPU properly, as in NeMo [24] 
and GeNN [25], (i.e. adopting deterministic delay 
propagation, time-driven simulation, fixed step 
integration methods, avoiding event-driven simulation, 
etc.). Alternatively, when the GPU operates conjointly 
with the CPU (CPU-GPU platform) such constraints 
are no longer required since any parallelizable task can 
be independently performed on GPU, whilst sequential 
ones can be performed in CPU as in Brian [7] and our 
simulator. This means that whilst EDLUT is running, 
the GPU updates the neural-state variables in time-
driven methods and the CPU generates, propagates and 
receives spikes, processes learning rules, and updates 
the neural state variables in both time-driven and 
event-driven methods.  

To better understand how this hybrid CPU-GPU 
platform operates, we need to bear in mind GPU pros 
and cons as well as the implications of establishing a 
CPU-GPU communication process. The 
synchronization and communication bridge between 
the CPU and GPU represents the main bottleneck of 
this platform. The dialogue between these two 
architectures starts when the CPU commands the GPU 
to update its time-driven neurons. Before starting to 
work, the GPU consumes time (this is called 
synchronization time). Furthermore, there is another 
overhead time which occurs when the CPU updates the 
GPU with the newest variable values obtained (this 
overhead time is called transfer time). The number of 
neurons in the GPU must be high enough to 
compensate both overhead times and then to achieve 
good speed-up rates (compared to a CPU-only 
processing engine). Therefore it is clear that when 
using a hybrid CPU-GPU platform it becomes crucial 
to minimize both synchronization and transfer times. 
The GPU has to implement fixed step integration 
methods capable of updating all GPU neurons 
simultaneously, although the CPU can implement both 
fixed and variable step integration methods. 

For the comparative study, we have chosen the leaky 
integrate-and-fire neural model (LIF) because it 
requires only a few state variables to be implemented. 
A low number of state variables helps to maintain the 
synchronization and information transference between 
CPU and GPU per integration step time to a minimum 
and also facilitates the model implementation onto 
look-up tables for event-driven methods.  

A. Leaky integrate-and-fire model (LIF) 

The leaky integrate-and-fire model [26] was 
implemented using an event-driven method in CPU 
and a time-driven method in both CPU and GPU. 
Event-driven methods make use of characterization 
tables stored in a binary file, which are pre-calculated 
in a previous off-line stage [10]. They contain the 



particular look-up tables that characterize the dynamics 
of each cell and allow updating neural state variables 
discontinuously at any simulation time. Time-driven 
methods make use of a text file containing all the 
particular parameters which are required to configure 
each cell type (i.e. granule cell, Purkinje cell, etc.).  

The neural state is characterized by the membrane 
potential (Vm−c), which is expressed by (1): 

)())((

))((

cmrestrestcmGABAGABA

cmAMPAAMPA
cm

m

VEGVEtg

VEtg
dt

dV
C









        (1) 

where Cm denotes the membrane capacitance, EAMPA 

and EGABA represent the reversal potential of each 
synaptic conductance, and Erest is the resting potential 
(with Grest as the conductance responsible for the 
passive decay term towards the resting potential). The 
conductances gAMPA and gGABA integrate all the 
contributions received through individual synapses and 
are defined as decaying exponential functions. The 
parameters of the neural model and a more detailed 
description can be found in [26]. 

As shown in (1), the state of a neuron can be defined 
by using just three state variables: 
 Vm-c represents the membrane potential. When this 
variable reaches a specific threshold the neuron 
generates an output spike. 
 gAMPA and gGABA represent excitatory and inhibitory 
conductances that modify the membrane potential. 
These conductances decrease exponentially in each 
integration step and increase proportionally to the 
synaptic weight of their connections when an input 
spike arrives. 

To solve the LIF neuron model differential equation, 
a 4th - order Runge-Kutta method was implemented. 
This differential equation is processed off-line in 
event-driven methods [10] (to build up the neural 
characterization look-up-tables) and on-line in time-
driven methods [22]. In event-driven methods, the size 
of the look-up table is critical, affecting the accuracy of 
the simulation. The execution time is also affected 
because the number of cache failures is higher for large 
tables, but this impact is small. In time-driven methods, 
the key factor of the simulation is the integration step 
size, which drastically affects the accuracy and the 
execution time. 

Although in this study we only use this neuron 
model, our neural simulator also includes other neuron 
models, such as a Leaky Integrate and Fire neuron 
model with four synaptic conductance types (available 
for all the techniques described in this work), a Spike 
Response Model (for event-driven and time-driven in 
CPU), a Hodgkin-Huxley neuron model (so far only 
for event-driven in CPU), etc. 

 
 

B. Implementation 

As indicated in Section II.A the neural-state of the 
LIF neuron model can be defined by using just three 
state variables; its membrane potential and its 
excitatory and inhibitory conductances. In the time-
driven scheme, a vector in the CPU or GPU global 
memory stores the three neural-state variables of each 
neuron belonging to the same neural model (granule 
cell, Purkinje cell, etc.).  

When using CPU methods, these neural-state 
variables are stored in the CPU global memory. 
Therefore, with each spike arrival, the CPU updates its 
corresponding conductance. When using GPU 
methods, however, these neural-state variables are 
stored in the GPU global memory and cannot be 
directly modified by the CPU. In this case, an auxiliary 
incremental conductance vector with two values per 
neuron is created in the CPU global memory. The CPU 
stores the input spike effect for both conductances in 
this vector (excitatory and inhibitory conductance) at 
each integration step. When the GPU neurons are 
updated the auxiliary vector is transferred from the 
CPU to the GPU and is added to the conductance 
values stored in the GPU global memory. Thus, only 
one single transfer from the CPU to the GPU takes 
place for each integration step.  

Moreover, after the GPU neurons are updated, the 
GPU has to indicate to the CPU which neurons 
generate an output spike. To do this a Boolean vector, 
in which each position represents a neuron, is used. 
The GPU assigns the value ‘True’ to the corresponding 
Boolean vector position when its related neuron has to 
generate an output spike (its membrane potential 
reaches a specific threshold) or otherwise assigns the 
value ‘False’. When the neural updating has finished, 
the Boolean vector is transferred from the GPU to the 
CPU. Once again, just a single transfer from the GPU 
to the CPU takes place for each integration step. 
Finally, the CPU generates the output spikes in the 
corresponding neurons, inserting them into the event 
queue [10] [22], which stores all relevant events 
throughout the simulation process. It is worth 
mentioning that this CPU-GPU memory management 
and also the CPU-GPU communication procedure can 
be used with more complex neuron models (i.e. 
Izhikevich or Hodgkin-Huxley neuron models). 

Once the structure of the neural-state variables, their 
distribution within the memory hierarchies in a hybrid 
architecture, and the communication protocol between 
the CPU and GPU have been stated, it is time to define 
the five steps required to update the neural-state 
variables of each group of time-driven neurons in 
GPU: 

1. Transferring the auxiliary incremental 
conductance vector from the CPU to the GPU. 

2. Updating the neural-state variables with the new 
incoming conductance values. This updating is 
computed according to the neural model associated to 



each neuron group. If a particular neuron has to 
generate an output spike, the GPU assigns the value 
‘True’ in its corresponding Boolean vector position or 
‘False’ otherwise. 

3. Transferring the Boolean vector from the GPU to 
the CPU. 

4. Resetting the auxiliary incremental conductance 
vector. 

5. Generating the output spikes in the CPU by using 
the Boolean vector (these generated output spikes are 
stored in the event queue). 

Nevertheless, using the mapped-memory version 
(see appendix A), the GPU can perform the first and 
third steps automatically since it is capable of reading 
and writing CPU memory (the so-called auxiliary 
incremental conductance vector and Boolean vector).  

All these processes can be seen in the flow diagram 
of the new simulator (Fig. 1). 

 

 

Fig. 1. EDLUT simulator flow diagram. This figure shows the 
original flow diagram (white blocks) for event-driven and time-
driven methods in CPU and the added blocks for the time-driven 
method in the GPU. These new blocks are executed in the CPU 
(light-gray blocks) or GPU (dark-gray blocks). The light-gray 
blocks manage the input information towards the GPU and the 
output information from it. The dark-gray block updates the neural-
state variables in the GPU. An internal spike event [10] generates a 
spike inside a neuron. A propagate spike event [10] delivers all 
output spikes after an internal spike event. 

The hardware used for running these simulations 
consists of an ASUS P8Z68-VPRO motherboard, an 
Intel core i7 2600K 2nd-generation 3.4 GHz CPU (four 
real cores, eight virtual cores), 32 GB RAM memory 
DDR3 1333 MHz, and finally, an NVIDIA GTX 470 
GPU with 1280 MB RAM memory GDDR5. This 
GPU model supports mapped memory (see appendix 
A). All the CPU-GPU simulations use this technique. 

C. Neural network topology 

To measure the performance of the three simulation 
methods in our hybrid CPU-GPU implementation we 
ran different biologically plausible neural network 
simulations. A neural network representing an 
abstraction of the granular and Purkinje layers of the 

cerebellum [27] was built as shown in Fig. 2. The 
cerebellum was structured into micro-zones [28], each 
of which included ten thousand neurons distributed in 
three different layers, as described below: 
 Mossy fiber layer: an input layer consisting of 800 
neurons that receive and convey the input network 
activity to the second layer. This layer is implemented 
by means of an event-driven method since it is not 
necessary to update its neural-state variables. 
 Granular layer: consisting of 9,120 neurons that 
mimic cerebellar granule cells. These neurons have 
four, randomly chosen, input connections from the first 
layer corresponding to mossy fiber/granular layer 
connectivity in biological systems [29] [30]. These 
input connections have delays of 1ms. This layer is the 
most extensive and time-consuming section of the 
network. We implement this layer using a time-driven 
method, both in CPU and GPU, and an event-driven 
method in CPU to compare the performance achieved 
with each computing scheme.  
 Purkinje cell layer: an output layer consisting of 80 
output neurons that mimic cerebellar Purkinje cells. 
The connections between the granular and Purkinje 
layers are configured in such a way that each Purkinje 
neuron has an 80% probability of being contacted by 
all the granular neurons of its own micro-zone and a 
20% probability of being contacted by all the granular 
neurons in its two adjacent micro-zones [31]. These 
input connections have delays of 3ms. The number of 
input synapses (on average) to these neurons is very 
high (roughly 10 940 synapses per neuron), making an 
event-driven model somewhat unsuitable for this layer 
[22]. In addition, the quantity of neurons is not high 
enough to be run efficiently in a GPU; consequently, in 
the comparative study in following sections, this layer 
is implemented in a CPU using a time-driven method. 

All the connections are excitatory synapses, there 
being about 91.2 synapses per neuron in the network 
on average. This particular network does not use any 
learning rules, although the simulator can implement 
different STDP learning rules. 

 

Fig. 2. A neural network representing an abstraction of the granular 
and Purkinje layers of the cerebellum. The parallel fibers are the 
axons of the granular cells that eventually contact different Purkinje 
cells. 

This modular structure, organized in micro-zones in 
the cerebellum, can be seen in other areas of the brain 



(for instance cortical columns in the cortex [1]). These 
local neural structures have very intensive local 
connectivity but sparser connectivity with other micro-
areas (such as neighborhood micro-zones or cortical 
columns in the cortex). 

The input activity supplied to each micro-zone has 
been taken from a real simulation of a complete 
cerebellar model in a manipulation task using six 
micro-zones. This activity derives from the 
sensorimotor (proprioceptor) activity obtained from a 
3-joint robot arm executing a figure-of-eight-like 
trajectory in one second [4].  

The network performance was measured under three 
different input activity levels which generate 3, 10, and 
20 Hz average firing rate over all the neural network 
activity respectively during 10 seconds’ simulation 
time. These three input activity levels were obtained 
from the original input spike pattern. These new inputs 
correspond to 3, 6, and 9 executions of the figure-of-
eight-like trajectory during 10 seconds’ simulation 
time.  

For further details the reader may check and 
download the EDLUT source code from the project’s 
official website [32]. The configuration files, neuron 
models and input activity files used in this comparative 
study can be provided upon request. 

III. RESULTS 
This simulator incorporates different simulation 

techniques which can work conjointly. As indicated in 
the previous section, we are simulating a modular 
three-layer cerebellar spiking neural network where the 
input mossy fiber layer is always simulated by means 
of an event-driven method; the granular layer can be 
simulated by means of an event-driven method in CPU 
or a time-driven method in both CPU or GPU, and 
finally the Purkinje cell layer is always computed using 
a time-driven method in CPU. The characteristics of 
each simulation technique at granular layer level are 
evaluated in two different experiments: 

1) Different integration step sizes to be used in time-
driven methods and different look-up table sizes to be 
used in event-driven methods running in the already 
established three-layer cerebellar network 
particularized to a pre-fixed neural network size.  

2) Two fixed integration step sizes and two fixed 
look-up table sizes to be used in the established three-
layer cerebellar network scaled to different neural 
network sizes. These look-up tables are constructed for 
the event-driven simulation scheme, in order to obtain 
a similar accuracy to the time-driven simulation 
scheme with the two fixed integration steps.  

First experimental set up: We have evaluated the 
accuracy and performance of the simulation techniques 
(time-driven methods in CPU and GPU, and event-
driven methods in CPU) when adopting these different 
approaches for the granular layer simulation. The fixed 
neural network consists of a micro-zone containing 10 

thousand neurons and 620 thousand synapses. This 
neural network operates under three defined averaged 
firing rate neural network activities (3, 10, and 20 Hz).  

In order to compare the neural dynamics 
computation time (t_neu_dynamics) against the spike 
propagation and queue management time (t_spike_prop and 
t_queue_manag), a profiling of the time-driven CPU 
technique has been performed. The Y axis of Fig.3 
shows the execution time ratio between the total 
simulation time (t_neu_dynamics + t_spike_prop + t_queue_manag) 
and the time of the spike propagation and queue 
management (t_spike_prop + t_queue_manag). Fig.3 shows the 
ideal speed-up rate that could be achieved if the neural 
dynamics computation time (t_neu_dynamics) were reduced 
to zero when the time-driven CPU technique is used 
(see Amdahl’s law [33]).  

  

Fig. 3. Ideal speed-up rate that could be achieved by the time-
driven CPU technique. We show how the speed-up rate would 
behave if the neural dynamics computation time (t_neu_dynamics) were 
reduced towards zero and only the spike propagation and the queue 
management had to be processed (t_spike_prop and t_queue_manag). 
Simulations run using different integration-step with a neural 
network consisting of one micro-zone of 10 thousand neurons and 
620 thousand synapses. Three averaged firing rate neural network 
activities are used (3, 10, and 20 Hz respectively).  

Once the neural dynamics computation time impact 
has been pondered for the time-driven CPU technique, 
the aim of this experiment lies in measuring the impact 
of using different integration-steps and look-up table 
sizes in GPU and CPU respectively. We use the Van 
Rossum distance [34] with respect to a 1 µs-
integration-step-time-driven simulation in order to 
compare the accuracy of the results. We also compared 
the speed-up rate obtained with the time-driven method 
in GPU and the event-driven method in CPU compared 
to the stand alone time-driven method in CPU. 

As shown in Fig. 4.a., whilst decreasing the 
integration step size, both time-driven CPU and GPU 
simulation techniques achieve smaller Van Rossum 
distances, which means a higher accuracy (the smaller 
the Van Rossum distance values, the higher accuracy 
obtained and vice-versa). The event-driven CPU 
simulation technique at the second layer level (granular 
layer) (Fig. 4.c.), demands an increase of the look-up 
table size (see Table I) from 2.2 MB to 1750 MB to 
remain fairly comparable in terms of accuracy with 
respect to 1ms and 0.1ms time-driven simulations. We 
should bear in mind that the maximum accuracy that 
can be reached by the event-driven CPU simulations is 



limited by the amount of memory available in the CPU 
for storing look-up tables.  

 

Fig. 4. Simulations with different integration-step and look-up 
table sizes (equivalent in accuracy as indicated in Table I) in a 
neural network consisting of one micro-zone of 10 thousand 
neurons and 620 thousand synapses divided into three layers: the 
first one is event-driven, the third one is time-driven in CPU and 
the second one is computed using the three different simulation 
techniques: TD CPU time-driven in CPU; TD GPU time-
driven in GPU; ED CPU event-driven in CPU; and three 
averaged firing rate neural network activities (3, 10, and 20 Hz 
respectively). (a) Van Rossum distance for both TD CPU and TD 
GPU with respect to a 1 µs-integration-step-time-driven simulation 
with tau Van Rossum value=2ms [34]. (b) Speed-up rate, which is 
given as TD CPU/TD GPU execution time ratio. (c) Van Rossum 
distance for ED CPU (for look-up table sizes between 2.2 MB and 
1750 MB, see Table I). (d) Speed-up rate, which is given as TD 
CPU/ED CPU execution time ratio.  

TABLE I 
RELATIONSHIP BETWEEN THE INTEGRATION STEP SIZE OF FIG.4.A AND 

FIG.4.B AND THE LOOK-UP TABLE SIZE OF FIG.4.C AND FIG.4.D 
Integration time step (ms) Look-Up table Size (MB) 

1 2.2 
0.7 3.1 
0.5 4.2 
0.4 52.2 
0.3 245 
0.2 960 
0.1 1750 

Furthermore, a progressive reduction of the 
integration step size leads the time-driven GPU 
technique to achieve higher speed-up rates (Fig. 4.b.) 
whilst maintaining the degree of accuracy that the 
time-driven CPU technique obtains. The event-driven 
CPU technique is even able to reach higher speed-up 
rates (Fig. 4.d.) with similar levels of accuracy than 
time-driven CPU technique. When comparing both 
plots (Fig. 4.b.and Fig. 4.d.) with Fig. 3, it is clear that 
the event-driven technique performs better for the 
proposed small neural network. The event-driven 
technique reaches speed-up rates quite close to the 
ideal one whilst the GPU parallel hardware (due to the 

size of this small neural network) is not capable of 
operating at its maximum performance. 
 

 

Fig. 5. Ideal speed-up rate that could be achieved in the time-
driven CPU technique. We show how the speed-up rate would 
behave if the neural dynamics computation time (t_neu_dynamics) were 
reduced towards zero and only the spike propagation and the queue 
management had to be processed (t_spike_prop and t_queue_manag). Two 
fixed integration steps (1ms and 0.1ms) with three averaged firing 
rate neural network activities (3, 10, and 20 Hz) are used. 

 

Fig. 6. Speed-up rates achieved by TD CPU OpenMP (time-
driven in multi-core CPU with 8 cores) (a, b), TD GPU (time-
driven in GPU) (c, d) and ED CPU (event-driven in CPU) (e, f) 
techniques with respect to TD CPU (time-driven in CPU) according 
to the number of neurons. Two fixed integration steps (1ms and 
0.1ms) and two look-up tables (2,2 MB and 1750 MB) to achieve 
similar levels of accuracy with three averaged firing rate neural 
network activities (3, 10, and 20 Hz) are used.  

Second experimental set up (scalability): We have 
evaluated how our different simulation techniques 
evolve in terms of performance when the number of 
micro-zones increases. The techniques to be used at 
second layer (granular layer) are again time-driven 



methods in GPU and CPU (adding the possibility of 
using OpenMP to take full advantage of the multi-core 
architecture that the CPU presents), and event-driven 
methods in CPU. To that purpose we have 
implemented a network with an incremental number of 
micro-zones from 1 to 300 micro-zones (i.e. from 10 
thousand neurons and 620 thousand synapses to 3 
million neurons and 274 million synapses). 

First of all, the time-driven CPU technique demands 
a profiling (as already made for the first experiment in 
Fig.3) to compare and take into account the neural 
dynamics computation time against the spike 
propagation and queue management computation time. 
Fig. 5 shows the ideal speed-up rate that could be 
achieved if the neural dynamics computation time were 
reduced to zero when the time-driven CPU technique is 
used (see Amdahl’s law [33]).  

As shown in the first four plots of Figure 6, the 
shorter the integration step or the larger the neural 
network in time-driven techniques, the higher the 
speed-up rate of the parallel implementations. This 
speed-up rate reaches a maximum when those tasks to 
be parallelized in either CPU (6.a and 6.b) or GPU (6.c 
and 6.d) are large enough to take full advantage of the 
hardware. Conversely, event-driven techniques (Figs. 
6.e and 6.f) operate quite close to the optimum 
achievable performance (Figs. 5.a. and 5.b.). The 
inverse relationship between the neural network size 
and the speed-up rate in these figures is caused by the 
event queue management [10] [22]. 

IV. DISCUSSION 

As stated in the abstract, time-driven simulation 
techniques computed in CPU architectures achieve 
high performance at high precision when simulating 
small-scale spiking neural networks. Nevertheless, 
thanks to brand new features of the current PC 
architecture, our neural simulator is able to outperform 
this standalone CPU traditional approach using: 
 Multi-core CPU and GPU parallel architectures 

for time-driven simulations: the gradual increase of 
processing units in both architectures motivates the 
parallelization of processes for high performance 
computing.  
 Memory used as a computing resource in event-

driven simulations based on look-up tables: the huge 
amount of available memory in current PCs (up to 32 
GB on our hardware) makes this approach a powerful 
tool when simulating spiking neural networks [10] 
using event-driven schemes.  

The description of how these different simulation 
methods (event-driven and time-driven) and simulation 
platforms (multi-core CPU and GPU) are made 
naturally compatible constitutes the main contribution 
of this article (Fig.1). This hybrid simulator allows us 
to compute non-homogeneous simulations in the part 
of the neural network which is computed using event-

driven techniques (usually neural network layers with 
either low or sparse activity, independently of their 
size) whilst other parts of this neural network (the ones 
with higher activity or more complex neural models) 
can adopt time-driven simulation techniques (in CPU 
for small layers and using GPU for large layers). This 
means that the best simulation technique can be 
selected, taking into account the most suitable part of 
the neural system, aimed to obtain the best possible 
performance.  

Furthermore, the implementation of all these 
simulation techniques on the same platform allows us 
to characterize the performance evolution with each 
approach when different test-bed neural network sizes 
are simulated. For the evaluation study, we have used a 
cerebellar-like spiking neural network as a basis [27] 
which is a good example, as are many others in the 
brain, where very large layers (such as the granular 
layer) with sparse activity are interconnected to other 
smaller layers (such as the Purkinje layer) with a 
higher average activity. 

Regarding the simulation accuracy, time-driven 
methods, as is well known, only require the decrease of 
the integration step size to improve accuracy. Under 
these circumstances, when a high accuracy is 
demanded, the GPU simulation techniques reach their 
maximum performance compared to stand-alone CPU 
simulation techniques. On the other hand, event-driven 
methods based on look-up tables have to increase the 
size of their tables in order to achieve similar accuracy 
levels to time-driven methods (with shorter integration 
time steps). The final size of the look-up table depends 
on the number of neural state variables needed to 
define the neural model behavior and the required 
accuracy. Hence, event-driven methods perform 
optimally for simple neural models such as the one 
used in our simulations (LIF), with a medium level of 
accuracy. On the other hand, time-driven methods, 
especially when they run in GPU, are better suited for 
more complex neuron models. 

With regards to the performance when scaling up the 
neural network, we have run simulations from 
thousands of neurons and several hundreds of 
thousands of synapses to millions of neurons and 
several hundreds of millions of synapses, under 
different conditions (integration step sizes, look-up 
table sizes, and averaged firing rate activities). This 
allows the evaluation of the scalability of our different 
simulation techniques and the performance of the 
different processing platforms:  
 Time-driven CPU with 8 cores and GPU vs. time-

driven mono-core CPU: the larger the neural network 
or the smaller the averaged firing rate activity or the 
smaller the integration step are, the higher the speed-up 
rate (from x2 to x5 using OpenMP parallelism in CPU 
and from x4 to x27 using GPU). 
 Event-driven CPU vs. time-driven CPU: the higher 

accuracy or the smaller averaged firing rate activity, 



the higher the speed-up rate. Moreover, the smaller the 
neural network the easier the event queue management 
and the higher the speed-up rate (from x2 to x70) when 
using the event-driven technique. 

All this provides a clear picture of the relevance of 
adopting the right simulation technique and computing 
resources based on the neural network features. As we 
have shown, today's technology offers the possibility 
of simulating millions of neurons on a conventional PC 
(tens of thousands of neurons can be computed in real 
time). This is of crucial importance for embedded 
systems, in which the simulation needs to interact with 
a robot (body or sensors/actuators). For instance, using 
a 1ms integration step (equivalent to a 2,2MB look-up 
table in terms of accuracy when using an event-driven 
scheme) and a 10 Hz averaged firing rate neural 
network activity, our traditional time-driven CPU 
technique can simulate in real-time a neural network 
consisting of 10 thousand neurons and 624 thousand 
synapses. Our parallelized time-driven OpenMP CPU 
technique can simulate up to 20 thousand neurons and 
1.53 million synapses in real-time. Finally, our time-
driven GPU technique and event-driven CPU technique 
are able to simulate up to 50 thousand neurons and 
4.13 million synapses in real-time. The numbers of 
neurons and synapses in these examples are related 
with the neural structure described in Section II. 

The performance of the event-driven scheme does 
not depend directly on the size of the network but 
rather on the number of events to be processed. The 
maximum neural network size that EDLUT can 
simulate is constrained by the available RAM memory 
in the whole system (taking into account both CPU and 
GPU RAM memory). Using the cerebellar scheme set 
out above, we are able to evaluate up to 3 million 
neurons and 274 million synapses with high average 
firing rate neural network activity (20 Hz) using 32 GB 
CPU RAM and 1.28 GB GPU RAM. This simulation 
on a conventional single computer takes only 987.44 
seconds to compute 10 seconds’ of simulation time 
with our time-driven GPU technique and 1623.96 
seconds with our event-driven CPU technique. 

V. CONCLUSIONS 
In order to develop a powerful simulator capable of 

dealing with neural networks of very different 
properties (e.g. neural networks ranging from small to 
very large, from low and sparse activity to very high 
activity and able to accommodate from simple to 
complex neural models), it is mandatory to integrate 
different simulation techniques (with their own pros 
and cons) on the same simulator.  

Throughout this work, we have described a simulator 
which integrates different simulation methods (event-
driven and time-driven schemes) with different 
simulation techniques (time-driven methods in CPU 
and GPU, and event-driven methods in CPU) that 
make use of different processing platforms (single-core 

and multi-core CPU as well as GPU) in the same 
simulation. We have studied in detail the pros and cons 
of each option. To the best of our knowledge this is the 
first simulator that includes all these different 
simulation alternatives, thus allowing a simulation 
performance characterization study such as the one 
presented in this paper.  

Finally, the next step in our large-scale neural 
network simulator development will be to implement 
our simulator EDLUT in CPU/GPU clusters, thus 
improving the spike propagation and queue 
management time. At the same time, we intend to work 
on implementing more complex and realistic neural 
models (i.e. Izhikevich and Hodgkin-Huxley models), 
taking advantage of the large computing power of the 
GPU (these neuron models are defined by more than 
one differential equation, however their state variables 
can still be kept within GPU memory thus transferring 
just their conductances from CPU to GPU). 

APPENDIX A 
EDLUT has been re-programmed to make it 

compatible with CUDA for NVIDIA GPUs. 

 

Fig. 7. Speed-up rate achieved by the mapped memory version 
of TD GPU (time-driven in GPU) compared to the simple version 
of TD GPU according to the number of neurons. Two fixed 
integration steps (1ms and 0.1ms) (a, b) are used. 

The GPU memory should be able to store the neural-
state variables of millions or even tens of millions of 
neurons. The GPU global memory is used to store 
these variables. To reduce the time consuming impact 
of the CPU-GPU communication our simulation 
scheme is able to adjust its operation depending on 
certain GPU features: 

- Legacy GPUs: the CPU writes/reads the GPU 
global memory. This option is available in all GPU 
models. 

- Non-legacy GPUs: some advanced GPU models 
incorporate the so-called mapped memory technique. 
This feature allows the GPU to directly access pre-
allocated sections of CPU memory. The simulator is 
able to check automatically for the presence of this 
GPU feature and adopts the best possible option. 

Fig. 7 shows the differences between the two GPU 
implementations. The mapped memory version 
performs faster than the version without mapped 
memory, especially when the neural network size 
and/or the integration step size are small. 



 

REFERENCES 
[1]  E. Kandel, J. Schwartz and T. Jessell, Principles of neural 

science, 4th ed., Elseiver, 2000.  
[2]  R. R. Carrillo, E. Ros, C. Boucheny and O. Coenen, "A real-

time spiking cerebellum model for learning robot control," 
Biosystems, vol. 94, no. 1-2, pp. 18-27, 2008.  

[3]  N. Luque, J. Garrido, R. Carrillo, O. Coenen and E. Ros, 
"Cerebellar Input Configuration Toward Object Model 
Abstraction in Manipulation Tasks," IEEE T. Neural Networ., 

vol. 22, no. 8, pp. 1321-1328, 2011.  
[4]  N. Luque, J. Garrido, R. Carrillo, O. Coenen and E. Ros, 

"Cerebellarlike Corrective Model Inference Engine for 
Manipulation Tasks," IEEE T. Syst. Man Cyb., vol. 41, no. 5, 
pp. 1299-1312, 2011.  

[5]  J. Bower and D. Beeman, The Book of GENESIS: Exploring 
Realistic Neural Models with the GEneral Simulation System, 
2nd ed., Heidelberg: Springer, 1998.  

[6]  M. Hines and N. Carnevale, "The NEURON simulation 
environment," Neural Comput., vol. 9, no. 6, pp. 1179-1209, 
1997.  

[7]  D. Goodman and R. Brette, "The brian simulator," Frontiers 

in neuroscience, vol. 3, no. 2, pp. 192-7, 2009.  
[8]  M.-O. Gewaltig and M. Diesmann, "NEST (NEural 

Simulation Tool)," Scholarpedia, vol. 2, no. 4, p. 1430, 2007.  
[9]  R. O'Reilly and Y. Munakata, "Computational Explorations in 

Cognitive Neuroscience: Understanding the Mind by 
Simulating the Brain," MIT Press, 2000.  

[10]  E. Ros, R. Carrillo, E. Ortigosa, B. Barbour and R. Agís, 
"Event-driven simulation scheme for spiking neural networks 
using lookup tables to characterize neuronal dynamics," 
Neural Comput., vol. 18, no. 12, pp. 2959-2993, 2006.  

[11]  M. Rudolph-Lilith, M. Dubois and A. Destexhe, "Analytical 
Integrate-and-Fire Neuron Models with Conductance-Based 
Dynamics and Realistic Postsynaptic Potential Time Course 
for Event-Driven Simulation Strategies," Neural Comput., vol. 
24, no. 6, pp. 1426-1461, 2012.  

[12]  A. Delorme and S. Thorpe, "SpikeNET: an event-driven 
simulation package for modelling large networks of spiking 
neurons," Network-Comp. Neural, vol. 14, no. 4, pp. 613-627, 
2003.  

[13]  E. Ros, E. Ortigosa, R. Agís, R. Carrillo and M. Arnold, 
"Real-Time Computing Platform for Spiking Neurons (RT-
Spike)," IEEE T. Neural Networ., vol. 17, no. 4, pp. 1050-
1063, 2006.  

[14]  M. Pearson, A. Pipe, B. Mitchinson, K. Gurney, C. Melhuish, 
I. Gilhespy and M. Nibouche, "Implementing Spiking Neural 
Network for Real-Time Signal-Processing and Control 
Applications: A Model-Validated FPGA Approach," IEEE T. 

Neural Networ., vol. 18, no. 5, pp. 1472-1487, 2007.  
[15]  H. Chen, S. Saïghi, L. Buhry and S. Renaud, "Real-Time 

Simulation of Biologically Realistic Stochastic Neuron in 
VLSI," IEEE T. Neural Networ., vol. 21, no. 9, pp. 1511-1517, 
2010.  

[16]  A. K. Fidjeland and M. P. Shanahan, "Accelerated Simulation 
of Spiking Neural Networks Using GPUs," in IJCNN, 
Barcelona, Spain, 2010.  

[17]  J. Nageswaran, N. Dutt, J. Krichmar, A. Nicolau and A. 
Veidenbaum, "Efficient simulation of large-scale Spiking 
Neural Networks using CUDA graphics processors," in 
IJCNN, Atlanta, 2009.  

[18]  A. Ahmadi and H. Soleimani, "A GPU base simulation of 
multilayer spiking neural networks," in 19th ICEE, Amirkabir, 
2011.  

[19]  R. Brette and D. Goodman, "Simulation spiking neural 

network on GPU," Network, vol. 23, no. 4, pp. 167-182, 2012.  
[20]  M. Richert, J. M. Nageswaran, N. Dutti and J. L. Krichmar, 

"An efficient simulation environment for modeling large-scale 
cortical processing," Frontiers in neuroinformatics, vol. 5, p. 
19, 2011.  

[21]  C. Chen and T. Taha, "Spiking Neural Networks on High 
Performance Computer Clusters," in Conference on Optics 

and Photonics for Information Processing V, San Diego, 2011.  
[22]  J. Garrido, R. Carrillo, N. Luque and E. Ros, "Event and Time 

Driven Hybrid Simulation of Spiking Neural Networks," 
Advances in Computational Intelligence, pp. 554-561, 2011.  

[23]  R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. 
M. Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. 
J. Harris, M. Zirpe, T. Natschlaeger, D. Pecevske, B. 
Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, 
E. Muller, A. P. Davison, S. El Boustani and A. Destexhe, 
"Simulation of networks of spiking neurons: A review of tools 
and strategies," J. Comput. Neurosci., vol. 23, no. 3, pp. 349-
398, 2007.  

[24]  A. K. Fidjeland, E. B. Roesch, M. P. Shanahan and W. Luk, 
"NeMo: A Platform for Neural Modelling of Spiking Neurons 
Using GPUs.," in ASAP 2009. 20th IEEE International 

Conference on, Boston, 2009.  
[25]  T. Nowotny, "GeNN.," [Online]. Available: 

http://sourceforge.net/projects/genn/. 
[26]  W. Gerstner and W. Kistler, "Spiking Neuron Models," 

Cambridge University Press, 2002.  
[27]  J. Voogd and M. Glickstein, "The anatomy of the cerebellum," 

Trends Neurosci., vol. 21, no. 9, pp. 370-375, 1998.  
[28]  O. Oscarsson, "Spatial distribution of climbing and mossy 

fibre inputs into the cerebellar cortex," in In Afferent and 

Intrinsic Organization of Laminated Structures in the Brain, 
Berlin, Springer-Verlag, 1976, pp. 34-42. 

[29]  J. Eccles, M. Ito and J. Szentágothai, The Cerebellum as a 
Neuronal Machine, Springer-Verlag, 1967.  

[30]  P. Chadderton, T. Margrie and M. Häusser, "Integration of 
quanta in cerebellar granule cells during sensory processing," 
Nature, vol. 428, no. 6985, pp. 856-860, 2004.  

[31]  S. Solinas, T. Nieus and E. D'Angelo, "A realistic large-scale 
model of the cerebellum granular layer predicts circuit spatio-
temporal filtering properties," Frontiers in Cellular 

Neuroscience, vol. 4, no. 12, 2010.  
[32]  "EDLUT official web site," [Online]. Available: 

http://edlut.googlecode.com. 
[33]  G. Amdahl, "Validity of the Single Processor Approach to 

Achieving Large-Scale Computing Capabilities," in AFIPS 

Conference Proceedings, 1967.  
[34]  C. Houghton and T. Kreyz, "On the efficient calculation of 

Van Rossum distances," Network-Comp. Neural, vol. 23, no. 
1-2, pp. 48-58, 2012.  

 
 
 



 



METHODS
published: 07 February 2017

doi: 10.3389/fninf.2017.00007

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2017 | Volume 11 | Article 7

Edited by:

Pedro Antonio Valdes-Sosa,

Joint China Cuba Lab for Frontiers

Reaearch in Translational

Neurotechnology, Cuba

Reviewed by:

Hans Ekkehard Plesser,

Norwegian University of Life Sciences,

Norway

Jayram Moorkanikara Nageswaran,

Brain Corporation, USA

*Correspondence:

Eduardo Ros

eros@ugr.es

Niceto R. Luque

niceto.luque@inserm.fr

Received: 09 August 2016

Accepted: 18 January 2017

Published: 07 February 2017

Citation:

Naveros F, Garrido JA, Carrillo RR,

Ros E and Luque NR (2017) Event-

and Time-Driven Techniques Using

Parallel CPU-GPU Co-processing for

Spiking Neural Networks.

Front. Neuroinform. 11:7.

doi: 10.3389/fninf.2017.00007

Event- and Time-Driven Techniques
Using Parallel CPU-GPU
Co-processing for Spiking Neural
Networks
Francisco Naveros 1, Jesus A. Garrido 1, Richard R. Carrillo 1, Eduardo Ros 1* and

Niceto R. Luque 2, 3*

1Department of Computer Architecture and Technology, Research Centre for Information and Communication Technologies,

University of Granada, Granada, Spain, 2 Vision Institute, Aging in Vision and Action Lab, Paris, France, 3CNRS, INSERM,

Pierre and Marie Curie University, Paris, France

Modeling and simulating the neural structures which make up our central neural

system is instrumental for deciphering the computational neural cues beneath.

Higher levels of biological plausibility usually impose higher levels of complexity in

mathematical modeling, from neural to behavioral levels. This paper focuses on

overcoming the simulation problems (accuracy and performance) derived from using

higher levels of mathematical complexity at a neural level. This study proposes different

techniques for simulating neural models that hold incremental levels of mathematical

complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx),

and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity).

The studied techniques are classified into two main families depending on how the

neural-model dynamic evaluation is computed: the event-driven or the time-driven

families.Whilst event-driven techniques pre-compile and store the neural dynamics within

look-up tables, time-driven techniques compute the neural dynamics iteratively during

the simulation time. We propose two modifications for the event-driven family: a look-up

table recombination to better cope with the incremental neural complexity together with

a better handling of the synchronous input activity. Regarding the time-driven family, we

propose a modification in computing the neural dynamics: the bi-fixed-step integration

method. This method automatically adjusts the simulation step size to better cope with

the stiffness of the neural model dynamics running in CPU platforms. One version of this

method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the

performance and accuracy of these modifications evolve with increasing levels of neural

complexity. We also demonstrate how the proposed modifications which constitute

the main contribution of this study systematically outperform the traditional event- and

time-driven techniques under increasing levels of neural complexity.

Keywords: event- and time-driven techniques, CPU, GPU, look-up table, spiking neural models, bi-fixed-step

integration methods
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INTRODUCTION

Artificial neural networks (NNs) have been studied since the
early 1940’s (Mcculloch and Pitts, 1943). These NNs were born
as mathematically tractable algorithms that attempted to abstract
the learning mechanisms underlying our brain. The natural
evolution of these NNs has lately resulted in diverse paradigms
including SpikingNeural Networks (SNNs) (Ghosh-Dastidar and
Adeli, 2009). These SNNs render a higher biological plausibility
by bringing the concept of spike-timing into play. The idea
behind the spike-timing concept is based on equipping the
neural units (neurons) with the capability to emit spikes when
their membrane potentials reach a specific dynamic range (firing
regime). Leaky integrate-and-fire (LIF) models, for instance, emit
spikes when their membrane potentials reach a specific firing
threshold. When a spike is fired, it travels from the source neuron
to the target neurons. The spike arrivals to the target neuronsmay
increase or decrease their corresponding membrane potentials
depending on their synaptic types and synaptic weights. The
spike timing, that is, when a spike is either produced or received,
constitutes the foundation for processing the neural information
in SNNs and is fundamental to understand brain processing
based on spike-timing codification.

Spiking Neural Networks (SNNs) will be considered as highly
parallelizable algorithms in which each neural-processing unit
(neuron) sends and receives data (spikes) from other neurons.
These SNNs are mainly defined by three key factors:

(a) The neural model that defines each neural-processing unit
(neurons).

(b) The neural network topology, that is, how the neural-
processing units (neurons) are interconnected.

(c) The learning mechanisms that drive adaptation within the
SNN at both neural and network level.

The parallelizable algorithmic nature of SNNs makes them
perfect candidates for being implemented within a wide variety
of specific hardware platforms, such as field programmable gate-
array circuits (FPGAs) (Ros et al., 2006b; Agis et al., 2007),
very large-scale integration circuits (VLSI) (Pelayo et al., 1997;
Schemmel et al., 2010) or specific purpose clusters, such as
SpiNNaker (Furber et al., 2013) which are better suited for
parallel processing. However, the wide-spread availability of
general-purpose computers has drifted the SNN algorithmic
development effort toward using hardware architectures better
suited for sequential processing (Neumann, 1958). These
general-purpose hardware architectures designed for sequential
processing (also for parallel processing in the case of GPUs)
do require tailor-made (customized) solutions that allow highly
parallelizable SNN algorithms to run efficiently.

Two main groups of techniques are traditionally used for
simulating the neural units (neurons) of SNNs within general-
purpose computers: event-driven and time-driven techniques
(Brette et al., 2007). Whilst the first technique only computes the
neural dynamics of a neuronwhen it is affected by a spiking-event
(generation and propagation of neural activity), the second one
iteratively updates the neural dynamics of all neurons in each
simulation step time. Both groups have pros and cons (Brette

et al., 2007) and the best choice depends on the SNN inner
features. In this study, we have focused our efforts on developing
tailor-made event-driven and time-driven solutions to overcome
the architectural and processing computational problems derived
from using a general-purpose computer for simulating SNNs.We
have studied how the mathematical complexity of several neural
models may affect the simulation accuracy and computational
performance when different simulation techniques are used over
a standard SNN configuration.

METHODS

In this section we further explain the mechanisms that allow us to
study the relationship amongst the neural dynamic complexity,
simulation accuracy, and computational performance in SNNs.
The benchmark analysis of well-established neural models helps
to better understand this relationship. Three well-known neural
models are chosen, based on their mathematical complexity and
biological plausibility (see Appendix A for further details):

(a) The leaky integrate-and-fire (LIF) (Gerstner and Kistler,
2002) model. It is composed of one differential equation
and two exponential decay functions for both excitatory
and inhibitory conductances. It is extremely efficient in
computational terms; however it cannot account for a wide
range of biological properties.

(b) The adaptive exponential integrate-and-fire (AdEx) (Brette
and Gerstner, 2005) model. It is composed of two differential
equations and two exponential decay functions for both
excitatory and inhibitory conductances. This model is only
slightly more complex than the LIF from a computational
point of view; however it can be consideredmore biologically
plausible since it is able to reproduce a wide range of firing
regimes (bursting, short-term adaptation, etc.).

(c) The Hodgkin-Huxley (HH) (Hodgkin and Huxley, 1952)
model. It is composed of four differential equations
and two exponential decay functions for both excitatory
and inhibitory conductances. Its neural dynamics requires
more computational resources; however, its differential
equations closely match the neural processes that govern the
spike generation. This biophysical model reproduces rather
realistic physiological properties (considering ion channel
activation and deactivation features).

To run the benchmark analysis, we use the spiking neural
network simulator EDLUT (Ros et al., 2006a) as the working
framework. EDLUT is an efficient open source simulator mainly
oriented to real time simulations that allows the processing
of specific parts of the neural network using different neural
dynamic evaluation techniques. To adopt an extensively used
benchmark methodology, we follow the recommendations given
by Brette et al. (2007) to evaluate the performance of the
neural network simulation techniques (different neural network
sizes, connectivity ratios, firing rates, and neural models).
By means of this benchmark, we specifically evaluate how
the mathematical model complexity of neurons affects the
computational performance and simulation accuracy when
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different simulation techniques are used. The synthetic nature of
the benchmark here proposed is based on previous benchmark
studies (Brette et al., 2007). This benchmark emulates those
neural networks which are composed of neurons with a medium
to low number of input synapses (up to 1,280 input synapses
per neuron). The simulation performance results may change
significantly when simulating biologically realistic experiments
(e.g., cortical networks) which require a much larger number of
incoming synapses (up to 10,000 synapses per neuron) and firing
rates (van Albada et al., 2015).

The source code is available for readers at URL: www.ugr.es/~
nluque/restringido/Event_and_Time_Driven_Techniques.rar
(user: REVIEWER, password: REVIEWER). All the additional
material needed for the benchmark analyses (neural network,
synaptic weight, input activity and neuron model description
files, as well as the scripts to compile the look-up tables) are also
located at the same URL.

Neural Dynamic Evaluation
Techniques-Why and for What?
EDLUT implements two different neural dynamic evaluation
techniques: (a) event-driven neural techniques based on pre-
computed look-up tables for CPU platforms (Ros et al., 2006a),
and (b) time-driven neural techniques for both CPU (Garrido
et al., 2011) and GPU (Naveros et al., 2015) platforms. EDLUT
allows the combination of both neural techniques on the same
simulation.

Event-driven techniques are better suited for neural network
layers with low and sparse activity whose network units
(neurons) present low mathematical complexity. Pre-compiling
and allocating the dynamic evolution of a neural model
within look-up tables allows the updating of its neural state
discontinuously, i.e., at different time intervals. Thus, the neural-
state update process during simulation becomes very efficient,
requiring only a few accesses to these look-up tables. This
technique can be applied to a wide variety of neurons of diverse
mathematical complexity. The bottleneck of this computational
scheme lies in two factors: (a) the dimensionality of the look-up
tables, and (b) the number of look-up table readouts (the number
of input and output spikes that are to be processed). The higher
the neural mathematical complexity is, the higher the number of
state variables, and therefore, the higher the dimensionality and
the number of look-up tables needed. Higher numbers of look-
up tables involve time-consuming data queries. Larger look-up
tables also involve slower look-up table readouts. The number
of readouts, in turn, depends on the number of events to be
processed (input propagated spikes and output internal spikes;
Ros et al., 2006a).

On the other hand, the time-driven neural technique
outperforms the event-driven neural technique for neural
network layers that present high interconnectivity ratios,
high neural activities and high levels of neural mathematical
complexity. This technique takes full advantage of parallel
computing resources at CPU and GPU platforms. CPU time-
driven techniques perform better for small and medium-size
groups of neurons with a low-medium mathematical complexity

(from one neuron to several thousands of neurons, depending
on the mathematical complexity), whereas GPU time-driven
techniques perform better for large-size groups of neurons with
high mathematical complexity (from thousands to millions of
neurons; Naveros et al., 2015).

When the neural network layers present high heterogeneity,
both simulation techniques should be used concurrently. One
example of a heterogeneous neural network can be found in
the cerebellum, where the large granular layer with low and
sparse activity (Luque et al., 2011a; Garrido et al., 2013b, 2016) is
combined with other smaller layers dealing with higher activity
rates (i.e., large-convergence neurons, such as Purkinje cells
Luque et al., 2016).

Event-Driven Neuron Models
The implementation of event-driven neuron models has
previously been stated in Mattia and Del Giudice (2000),
Delorme and Thorpe (2003), Reutimann et al. (2003), Rudolph
and Destexhe (2006), and Pecevski et al. (2014). Particularly,
the neural simulator EDLUT implements an event-driven neural
technique based on look-up tables. See Ros et al. (2006a) for a
comprehensive description on EDLUT event-driven simulation
techniques. Compared to previous studies (Naveros et al.,
2015), in this paper we propose two independent contributions
over EDLUT event-driven simulation techniques. The first
contribution increases the performance by compacting the look-
up table structure and improving the look-up table indexing.
The second one increases the performance by improving the
processing of synchronous activity. With the integration of these
two new simulation techniques with the original one we can
simulate each neuron model using four different configurations
for event-driven neuron models: direct (the original one),
combined, synchronous and combined synchronous event-
driven neuron models. Below, we summarize the properties of
these two new simulation techniques.

Combined Look-Up Tables for Complex Neuron

Models
EDLUT pre-compiles the solution of each neural model equation
into look-up tables (a look-up table per state variable). EDLUT
inherently requires up to two additional state variables. The first
additional state variable stores the timing of a predicted spike-
firing event, whereas the second state variable stores its ending
(in some cases both variables remain equal). Each look-up table
dimension is indexed by a neural state variable. EDLUT neural
simulation uses look-up table data queries to update the neural
state variables.

The higher the mathematical complexity the neural model is,
the more state variables that are needed, and the more look-up
tables that are then required. Concomitantly, the dimensionality
of the look-up tables also increases with the number of coupled
state variables. The dimensionality and number of look-up tables
are, therefore, imposed by the neural model complexity. The only
way to control the look-up table size is by adjusting the look-
up table granularity (the number of coordinates per dimension).
Obviously, the degree of granularity has a direct impact on the
accuracy and performance of the neural simulation.
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Computing data queries using large look-up tables
constitutes the most time consuming operation of all the
neural dynamic evaluations. Therefore, reducing the number
of look-up table readouts needed per neural model would
reduce the neural dynamic evaluation time, thus increasing
the overall simulation performance. Aiming to reduce the
number of look-up tables, we have created a new event-
driven method that recombines the look-up tables that
share index values. Thus, we are able to reduce the number
of look-up tables and make them more compact than the
original ones (considering all of them as a whole). See

Figure 1. The combined look-up tables are described as
follows (see Appendix A for further details about neural model
descriptions):

Leaky Integrated-and-Fire Model (LIF)
• One look-up table with four dimensions storing the forecast

values of the membrane potential: V = f(∆t, gAMPA, gGABA,
V). The neural state variables associated to each dimension
are the elapsed time since the last update (∆t), the previous
excitatory (gAMPA) and inhibitory (gGABA) conductances and
the previous membrane potential (V).

FIGURE 1 | The recombination mechanism of look-up tables for a HH model. The left side of the panel shows the original look-up table structure (eight tables)

whilst the right side of the panel shows the recombined look-up table structure (four tables).
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• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One look-up table of three dimensions storing the forecast
values about the time of the next firing event and the ending of
the refractory period (tf , te) = f(gAMPA, gGABA, V). The neural
state variables associated to each dimension are the current
excitatory (gAMPA) and inhibitory (gGABA) conductances and
the current membrane potential (V). Although the LIF model
presents a constant refractory period (and could be easily
implemented ad-hoc), we use the look-up table te, which stores
the evolution of the refractory period, to maintain the same
event-driven simulation structure for all the neural models
(LIF, AdEx and HH).

Adaptive Exponential Integrate-and-Fire Model

(AdEx)
• One look-up table of five dimensions storing the forecast

values of the membrane potential and membrane adaptation
variable: [V, w] = f(∆t, gAMPA, gGABA, w, V). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t), the previous excitatory (gAMPA)
and inhibitory (gGABA) conductances, the previous membrane
adaptation variable (w) and the previous membrane potential
(V).

• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One table of four dimensions for storing the forecast values
about the time of the next firing event: tf = f(gAMPA, gGABA,
w, V). The neural state variables associated to each dimension
are the current excitatory (gAMPA) and inhibitory (gGABA)
conductances, the current membrane adaptation variable (w)
and the current membrane potential (V). Just one additional
table is needed since this model does not include a refractory
period.

Hodgkin-Huxley Model (HH)
• One look-up table of seven dimensions storing the forecast

values of the membrane potential and the three ionic current
activation variables: [V, m, h, n] = f(∆t, gAMPA, gGABA, m, h,
n, V). The neural state variables associated to each dimension
are the elapsed time since the last update (∆t), the previous
excitatory (gAMPA) and inhibitory (gGABA) conductances, the
previous ionic current activation values (m, h, and n) and
finally the previous membrane potential (V).

• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time

since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One look-up table of six dimensions storing the forecast values
about the time of the next firing event and the start of the
hyperpolarization phase: [tf , te] = f(gAMPA, gGABA, m, h, n,
V). The neural state variables associated to each dimension
are the current excitatory (gAMPA) and inhibitory (gGABA)
conductances, the current ionic current activation values (m,
h, and n) and finally the current membrane potential (V). The
look-up table te prevents EDLUT from duplicating internal
spikes during the HH depolarization phase.

The combination of look-up tables minimizes the overall
number of look-up tables for complex neuron models, since
this combination allows one look-up table to store several state
variables. This also means that a single look-up table readout can
now update several state variables at a time. Thus, we are able
to increase the computational performance of complex neuron
models without modifying their accuracy.

Synchronous Event-Driven Neuron Models
Each time that an event-driven neuron is affected by an event,
(input propagated spikes or output internal spikes) its neural
state ought to be updated. After this update, EDLUTmust predict
whether the new neural state will make the neuron emit a spike
in subsequent time steps (Ros et al., 2006a). EDLUT implements
a two-stage mechanism able to handle the generation and
propagation of the spikes. When EDLUT predicts a spike firing
at any time, an internal-spike event is then created and inserted
in the event queue. If another event modifies the spike-firing
prediction, the internal-spike event is discarded; otherwise, the
spike is eventually generated in the neural soma. A propagated-
spike event is then generated and inserted in the event queue.
This propagated-spike event is responsible for delivering the
generated spike through all the neural output synapses. It holds
a time stamp equivalent to the timing of its corresponding
internal-spike event plus the propagation delay. When a neuron
possesses several synapses with different propagation delays, the
propagated-spike mechanism generates sequential propagated-
spike events depending on the propagation delay values. The
synaptic propagation delays are always fixed at multiples of 0.1
ms. If not, EDLUT rounds the delay within the network file to
the nearest multiple of 0.1 ms.

To sum up, EDLUT triggers a three-step process in each
neuron that receives a spike through a propagated-spike event
(the most common event):

(a) When a spike arrives to an event-driven neuron, its neural
state variables are updated.

(b) The spike increments the neural conductance associated
with the synapse that propagates the spike.

(c) A prediction about the generation of a spike is made. If this
prediction is positive, an internal spike event is inserted in
the event queue.

This three-step process presents performance losses when the
neural input activity is synchronous. When n spikes reach a
neuron at the same time, the first n-1 predictions (and its
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correspondent internal spikes) would be discarded and only the
nth taken into account. Knowing beforehand the number of
synchronous spike arrivals per time step and per neuron would
allow us to compute only one prediction per neuron, the nth
prediction.

We have developed a new synchronous event-driven method
able to efficiently compute synchronous neural input activity and
able to generate synchronous output activity. When a group of
synchronous spikes arrives to a neuron (being simulated within a
synchronous event-driven method) the neural state variables are
updated conjointly and a single internal spike prediction is done.
This process is done in three steps:

(a) When the first spike of a group of synchronous spikes
arrives to a synchronous event-driven neuron, its neural
state variables are updated. Thus, these neural state variables
will be already updated for the rest of the synchronous spikes.

(b) Each synchronous spike increments the neural conductance
associated with the synapse that propagates the spike.

(c) Once EDLUT verifies that all the synchronous spikes have
been processed thanks to an additional event, only one
prediction about the generation of an output spike is made.
If this prediction is positive, just one internal spike event is
inserted in the event queue.

Thus, we only make one neural state update and one activity
prediction for each group of synchronous spikes. Obviously, the
additional event that helps to verify the processing of all the
synchronous input spikes may cause a performance loss if the
neural input activity is asynchronous (incoming activity is not
grouped into tight time slots).

This new synchronous event-driven technique can also
synchronize the neural spike propagation, thus allowing
the efficient interconnection amongst synchronous event-
driven neurons. This technique uses a parameter named
synchronization period (tsync) that is defined in the description
file of each event-driven neural model. The synchronization
period value is fixed and equal or greater than zero. Each
internal-spike event can be processed at any time step; however,
its corresponding propagated-spike events are generated as
if the internal-spike were processed at multiples of tsync.
When tsync is zero, the output activity is asynchronous
and the neural network units (neurons) behave as direct
event-driven neuron models. If tsync is greater than zero,
the output activity is then synchronous and the neural
network units (neurons) can be interconnected to other
synchronous event-driven models, thus increasing the overall
performance but at the expense of accuracy. These synchronous
models efficiently compute input activity coming from either
time-driven or synchronous event-driven neuron models.
Conversely, when the input activity comes from other types
of event-driven neuron models the computational performance
drops.

These kinds of synchronous neural layers can typically be
found in neural networks that process sensory information, such
as the olfactory (Schoppa, 2006) (30–70Hz), auditory (Doesburg
et al., 2012) (30–50Hz), or visual (Eckhorn et al., 1990) (35–80
Hz) systems.

Time-Driven Neuron Models
EDLUT implements time-driven neuron models for both
CPU (Garrido et al., 2011) and GPU (Naveros et al., 2015)
platforms. These models are defined by a set of differential
and non-differential equations that have to be computed during
the simulation time. These equations must be solved using
differential equation solvers given within a certain integration
method. There are mainly two families of integration methods
regarding their integration step size: a) fixed-step integration
methods, and b) variable-step integration methods (Iserles,
2009).

Fixed-Step Integration Methods
Fixed-step integration methods are suited for parallelization in
both CPU and GPU platforms (Naveros et al., 2015) since these
methods favor synchronicity during the integration process. A
single integration event manages the integration process of a
large number of neurons (just one event for each integration step
must be generated, inserted in the event queue, extracted from
the event queue, processed and deleted). Thus, the computation
overhead caused by non-directly related tasks to the integration
processes remains low. However, the maximum fixed-step size
that can be used is constrained by the stiffness of the differential
equations that define each neural model. This constraint makes
fixed-step integration methods to not be well suited for solving
complex neural models whose differential equations are rather
stiff.

Variable-Step Integration Methods
Variable-step integration methods iteratively adapt their
integration step size to the neural dynamics. They are iteratively
maintaining a balance between the simulation step size and the
accuracy as the integration process deploys. This adaptation
mechanism makes variable-step integration methods better
suited for solving complex neural models whose differential
equations are rather stiff. However, this flexibility comes at a
cost:

• Their parallelization in CPU platforms is arduous and almost
intractable in GPU platforms.

• The computation overhead caused by the estimation of the
integration step size can be high.

• The integration process of each neuron has to be managed
individually (one event per neuron). For each integration
step an event must be generated, stored in the event queue,
extracted from the event queue, processed and deleted. This
overhead is determinant when the number of neurons is
relatively high (thousands of neurons) and the activity is also
high.

• The performance of these methods is heavily related with the
neural activity. A high network activity increases the firing
ratios of the neural network units (neurons). In this case,
the solutions for the neural differential equations are mostly
located around the neural firing working points. To maintain
accuracy around a firing working point, the integration step
size needs to be reduced. The computation time per neural unit
is then increased.
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The computational overhead caused by all these drawbacks
makes these methods unadvisable for efficient simulations when
the number of neural units (neurons) is relatively high. For this
reason, we do not implement variable-step integration methods
in EDLUT.

A New Integration Method; The Bi-Fixed-Step

Integration Method
This new integration method tries to take advantage of the
strengths and mitigate the weaknesses of fixed-step and variable-
step integration methods. This integration method uses two
fixed-steps for each neuron: a global fixed-step size (Tg) and
local fixed-step size (Tl). Tg is multiple of Tl (Mgl = Tg/Tl).
Tg synchronizes the integration processes of all network units
(neurons) that are defined by the same neural model. This allows
us to manage the integration process of a group of similar
neurons using just a single integration event, as the fixed-step
integration methods do. On the other hand, Tl can scale down
the integration step size of one neuron when needed. When
Tl is used instead of Tg, the integration method performs Mgl

consecutive integrations within Tg. This allows us to adapt the
integration step size to the dynamic evolution of each neuron, as
the variable-step integrationmethods do. Figure 2 shows how the
implementation of this integrationmethod within CPU andGPU
platforms differs in order to cope with their different hardware
properties.

When EDLUT runs a simulation, the generated “events”
are sorted depending on their time stamps in an event queue.
When a new event is processed, its corresponding time stamp
establishes the new “simulation time.” A new bi-fixed integration
event produces a simulation time updating which is multiple
of the global time step. The spike generation process cannot
be triggered at any local time step but at the global step time,
otherwise the generated spikes would carry incoherent time
stamp values (lower than the actual simulation time). Therefore,
the spikes to be generated are detected at local time steps but only
generated at global time steps.

Bi-fixed-step integration method for differential equation

solvers in CPU
Two additional elements per neuron model are defined: a
hysteresis cycle given by two membrane potential thresholds (Vs

as the upper bound and Ve as the lower bound) and a period of
time Tp for the hyperpolarization phase in neural models, such as
the HH. These parameters drive the switching of the integration
step size from global to local and vice versa.

This method starts the integration process of a certain
group of neurons using the global integration step size Tg

for each neuron. The membrane potential of each neuron is
then compared with the threshold value Vs after each global
integration step. When the resulting membrane potential is >Vs,
the integration result is discarded and the integration step size
is scaled down to the local step size Tl just for that neuron. The
integration process is reinitialized using the new local step size.
This local step size is maintained until the membrane potential
decays to Ve and a certain period of time Tp has passed. Once

this double condition is filled, the integration step size is re-
scaled up to the global step size Tg (see Figure 2A for a complete
workflow diagram). Figure 3 shows an example of this adaptation
mechanism over the LIF, AdEx, and HHmodels.

The state variables, in most neuron models, usually present
a slow evolution during simulation time (very low velocity
gradient). It is at the spike phase when these state variables evolve
faster (very high velocity gradient). By using a Vs threshold lower
than the actual “functional” spike threshold we are able to predict
a spike phase beforehand. The bi-fixed-step integration method
uses this prediction to reduce the integration step size before an
eventual spike phase. Tg extra period sets the hyperpolarization
time after the spike generation. During Tg, the state variables
present very high velocity gradients and, therefore, reduced
integration step sizes are to be maintained (e.g., Tg can be used
to properly integrate the hyperpolarization phase of HH models
after the depolarization phase).

This method is easily parallelizable in CPU and can
be managed with just one integration event, as in fixed-
step integration methods. Additionally, it can outperform the
simulation of complex neuron model with stiff equations thanks
to its adaptation mechanism, as in variable-step integration
methods.

Bi-fixed-step integration method for differential equation

solvers in GPU
GPU hardware requires all the simulated neurons of a neural
model to run exactly the same code at the same time.
Additionally, these neurons must also access the RAM memory
following a concurrent scheme. As reported in Naveros et al.
(2015), the synchronization period and transference of data
between CPU and GPU processors account for most of the
performance losses in a hybrid CPU-GPU neural simulation.
To minimize these losses, CPU and GPU processors are
synchronized at each Tg global integration step time. Then the
GPU integrates all its neurons using the local integration step Tl.
After the integration process, the GPU reports to the CPU which
neurons fired a spike (see Figure 2B for a complete workflow
diagram).

This method is easily parallelizable in GPU and can be
managed with just one integration event, as in fixed-step
integration methods. Additionally, a short local step (Tl) can
accurately compute the simulation of complex neuron model
with stiff equations whereas a large global step (Tg) reduces the
number of synchronizations and data transferences betweenCPU
and GPU processors and increases the overall performance. This
bi-fixed-step integration method is suited to comply with hybrid
CPU-GPU platforms since it maximizes the GPU workload and
minimizes the communication between both processors.

To sum up, EDLUT can now operate with time-driven
neuron models that can use different fixed-step or bi-fixed-step
integration methods for both the CPU and GPU platforms. The
following differential equation solvers have been implemented
using fixed-step integration methods: Euler, 2nd and 4th order
Runge-Kutta, and 1st to 6th order Backward Differentiation
Formula (BDF). The following differential equation solvers
have been implemented using bi-fixed-step integration methods:
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FIGURE 2 | Bi-fixed-step integration method flow diagram for CPU (A) and GPU (B) platforms. Since Tl is divisor of Tg, these integration methods can integrate

a period of time Tg making Mgl consecutive integrations with a step-sizes of Tl.

Euler, 2nd and 4th order Runge-Kutta, and 2nd order Backward
Differentiation Formula (BDF). This last differential equation
solver implements a fixed-leading coefficient technique (Skeel,
1986) to handle the variation of the integration step size.

In this paper, we have only evaluated the simulation accuracy
and computational performance of 4th order Runge-Kutta
solvers in both fixed-step and bi-fixed-step integration methods

in both CPU and GPU platforms. Table 1 shows the integration
parameters used by each neuron model for each integration
method.

Test-Bed Experiments
We have adapted the benchmark proposed by Brette et al. (2007)
as our initial neural network setup for our experiments. The
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FIGURE 3 | Comparison between fixed-step and bi-fixed-step integration methods in CPU for LIF, AdEx, and HH models. Each row shows the ideal

membrane potential and the integrated membrane potential for a LIF, AdEx, and HH model, respectively. The left-hand column (A,D, and G) shows the fixed-step

integration results. The central and right-hand columns show the bi-fixed-step integration results. The central column (B,E, and H) shows the moment when the

membrane potential overpasses the threshold Vs. The last integrated result is then discarded and the integration step size is scaled down to Tl. The right-hand

column (C,F and I) shows the moment when the membrane potential underpasses the threshold Ve, a time > Tp has elapsed and the integration step size is then

scaled up to Tg.

initial setup consists of 5000 neurons divided into two layers. The
first layer (input layer) holds 1000 excitatory neurons and it just
conveys the input activity to the second layer. The second layer
consists of 4000 neurons where 80% are excitatory neurons and
the remaining 20% are inhibitory neurons. The neurons at this
2nd layer are modeled as LIF, AdEx or HH models.

Each second-layer neuron is the target of 10 randomly chosen
neurons from the first layer. Each second-layer neuron is also
the target of eighty randomly chosen neurons from the same
layer, following a recurrent topology. All these synapses include
a 0.1 ms propagation delay. This neural network topology is
summarized in Table 2.

The input activity supplied to each input neuron is randomly
generated using a Poisson process with exponential inter-spike-
interval distribution and mean frequency of 5 Hz. This input
activity generates a mean firing rate activity of 10 Hz in the
second layer.

We measured the simulation accuracy and computational
performance of the aforementioned integration methods over
three different neural models (LIF, AdEx, and HH). These neural
models are simulated using two different dynamic evaluation
techniques: event-driven and time-driven techniques.

Within event-driven dynamic evaluation techniques,
four different event-driven integration methods are
applied:

(a) Direct event-driven integration methods.
(b) Combined event-driven integration methods.
(c) Synchronous event-driven integration methods.
(d) Combined synchronous event-driven integration methods.

Within time-driven dynamic evaluation techniques, two different
integration methods implementing a 4th order Runge-Kutta
differential equation solver are applied in both CPU and GPU
platforms:
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TABLE 1 | Summary of parameters for event-driven and time-driven

simulation techniques for LIF, AdEx, and HH models.

LIF AdEx HH

Synchronization period (ms) 1.0 1.0 1.0

Fixed-step size (ms) 0.5 0.5 1.0/15.0

Global fixed-step size (ms) 1.0 1.0 1.0

Local fixed-step size (ms) 0.25 0.25 1.0/15.0

Threshold Vs (mV) −53.0 −50.0 −57.0

Threshold Ve (mV) −53.0 −50.0 −57.0

Period Tp (ms) 0.0 0.0 1.0

(a) Fixed-step integration methods.
(b) Bi-fixed-step integration methods.

To properly compare all these integration methods, we studied
the simulation accuracy that each can offer. We used the
van Rossum distance (Van Rossum, 2001) with a tau of 1ms
(maximum size of integration step periods for event-driven
methods and synchronization periods for even-driven methods)
as a metric of accuracy.We use this metric to compare a reference
activity file and a tested activity file (both files containing the
spike time stamps associated to all the spikes emitted by the
neural network units). The reference activity files are obtained
using a time-driven simulation technique running in CPU with
a fixed-step integration method using a 4th order Runge-Kutta
solver and a fixed 1µs integration step size for each neural model
(LIF, AdEx, and HH). The tested activity files are obtained using
the mentioned integration methods of the two different dynamic
evaluation techniques (event-driven and time-driven) for each
neural model (LIF, AdEx, and HH).

Additionally, we wanted to study the computational
performance of each integration method. We measured the
execution time spent by each integration technique over a
set of four different experiments that simulate 1 s of neural
activity. These four experiments characterize the computational
performance of the mentioned integration methods.

The hardware running these Benchmark analyses consists of
an ASUS Z87 DELUXE mother board, an Intel Core i7-4,770k
processor, 32 GB of DDR3 1,333 MHz RAM memory, and
a NVIDIA GeForce GTX TITAN graphic processor unit with
6144 MB RAM memory GDDR5 and 2,688 CUDA cores. The
compilers used are those that are integrated in visual studio 2008
together with CUDA 6.0.

All the experiments are CPU parallelized by using two
OpenMP threads as described in a previous paper (Naveros
et al., 2015). These threads parallelize the spike generation and
propagation for the event-driven and time-driven models. The
neural dynamic computation of the event-driven and time-
driven models in CPU is also parallelized by using the two
OpenMP threads. The neural dynamic computation of the time-
driven models in GPU is parallelized by using all the GPU
cores.

Simulation Parameter Analyses
We quantified the effects of using different simulation techniques
on the simulation accuracy and the computational performance.
In particular, we measured the impact of scaling the look-up

table size and the synchronization time-period for event-driven
techniques. For time-driven techniques, we measured the impact
of scaling the integration time-step sizes.

For these analyses, our initial neural network setup is modified
as defined in Table 3. A third neural layer replicating the
second layer properties is inserted and the recurrent topology is
modified. The 2nd and the 3rd layer are now interconnected by
those synapses from the 2nd layer that were previously modeling
the recurrent topology of our initial setup. This initial recurrent
topology rapidly propagated and increased small errors through
the recurrent synapses. Under these circumstances, accuracy
cannot be properly measured. Adding this 3rd layer allowed
us to circumvent this problem and better evaluate the accuracy
degradation in a well-defined experiment.

We stimulated this new setup with five different input patterns
generated using a Poisson process with exponential inter-spike-
interval distribution and mean frequency of 5Hz. We measured
the simulation accuracy of the 3rd neural layer by applying
the van Rossum distances as previously explained. Thus, we
were able to evaluate the effect of the synchronization period
over accuracy when several layers of synchronous event-driven
models are interconnected. Similarly, we also evaluated the effect
of the integration step size over accuracy when several layers
of time-driven models are interconnected. The computational
performance is given by the mean execution time that the new
setup spends in computing 1 s of simulation when it is stimulated
with the five different input activity patterns.

Scalability Analyses
We quantified the effects of scaling up the number of neurons
within our initial setup over the computational performance. In
particular, we measured the impact of scaling up the second layer
size for the event-driven and time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 4. Nine different variations over our initial
setup are simulated. The 2nd layer is geometrically scaled up from
1,000 to 256,000 by a common ratio and scale factor of r = 2 and
a = 1,000, respectively (number of neurons = a·rn, where n ǫ

[0, 8]).

Input Activity Analyses
We quantified the effects of scaling up the input activity levels
over the computational performance. In particular, we measured
the impact of scaling up our neural network mean-firing rate
through different input activity levels for the event-driven and
time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 5. Fifteen different input activity levels scaled
up from 2 to 16 Hz stimulate our neural network. These input
activity levels generate mean firing rates in the second neural
layer of between 2 and 40 Hz.

Connectivity Analyses
We quantified the effects of scaling up the number of synapses
over the computational performance. In particular, we measured
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TABLE 2 | Summary of cells and synapses implemented.

Initial Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of

excitatory synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (4,000) LIF, AdEx, or

HH neurons

40,000 40,000 (7 nS)

2nd layer (4,000) LIF, AdEx, or

HH neurons

2nd layer (4,000) LIF, AdEx, or

HH neurons

320,000 256,000 (0.5 nS) 64,000 (2.5 nS)

Initial values providing the reference framework for comparisons in subsequent experiments.

TABLE 3 | Summary of cells and synapses implemented for parameter analysis experiment (accuracy and performance).

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1,000) input

neurons

2nd layer (4,000) LIF, AdEx, or HH

neurons

40,000 40,000 (7 nS)

Input layer (1,000) input

neurons

3rd layer (4,000) LIF, AdEx, or HH

neurons

40,000 40,000 (7 nS)

2nd layer (4,000) LIF, AdEx or

HH neurons

3rd layer (4,000) LIF, AdEx, or HH

neurons

320,000 256,000 (0.5 nS) 64,000 (2.5 nS)

TABLE 4 | Summary of cells and synapses implemented for neural network scalability experiment.

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of synapses Number of

excitatory synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (from 1,000 to 256,000)

LIF, AdEx, or HH neurons

From 10,000 to

256,0000

From 10,000 to

2,560,000 (7 nS)

2nd layer (from 1,000 to

256,000) LIF, AdEx, or HH

neurons

2nd layer (from 1,000 to 256,000)

LIF, AdEx, or HH neurons

From 80,000 to

20,480,000

From 64,000 to

16,384,000 (0.5 nS)

From 16,000 to

4,096,000 (2.5 nS)

TABLE 5 | Summary of cells and synapses implemented for neural network input activity scaling (input average firing rate) experiment.

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (16,000) LIF, AdEx, or

HH neurons

160,000 160,000 (7 nS)

2nd layer (16,000) LIF, AdEx, or

HH neurons

2nd layer (16,000) LIF, AdEx, or

HH neurons

1,280,000 1,024,000 (0.5 nS) 256,000 (2.5 nS)

TABLE 6 | Summary of cells and synapses implemented for neural network interconnection scalability experiment.

Network

Configuration

Pre-synaptic cell

(number)

Post-synaptic cell (number) Number of synapses Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1000)

input neurons

2nd layer (16,000) LIF, AdEx,

or HH neurons

160,000 160,000 (7 nS)

2nd layer (16,000)

LIF, AdEx, or HH

neurons

2nd layer (16,000) LIF, AdEx,

or HH neurons

From 160,000 to

20,480,000

From 128,000 to 16,384,000

(from 0.5 to 0.03125 nS)

From 32,000 to 4,096,000

(from 2.5 to 0.15625 nS)

the impact of increasing the number of recurrent synapses for the
event-driven and time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 6. The number of recurrent synapses are

geometrically scaled up from 10 to 1,280 by a common ratio
and scale factor of r = 2 and a = 10, respectively (number of
recurrent synapses = a·rn, where n ǫ [0, 7]). Maintaining the
mean firing rate in the second neural layer at approximately
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10 Hz requires the recurrent synaptic weights to be adapted
depending on the number of recurrent synapses. The initial
neural network maintains 80 synapses as in the previous cases
(the weights of excitatory and inhibitory synapses are set to 0.5
and 2.5 nS, respectively). Neural networks with a lower number
of synapses [10, 40] require the synaptic weights to remain the
same. Neural networks with larger number of synapses [160,
1280] require the synaptic weights to be divided by the common
ratio r = 2 in each iteration (the weights of excitatory and
inhibitory synapses are ranged from 0.25 to 0.03125 and from
1.25 to 0.15625, respectively).

RESULTS

This section shows the results obtained by the four test-bed
experiments described in the methods section. Each experiment
evaluated eight different neural dynamic simulation techniques
over LIF, AdEx, and HH neuron models in terms of accuracy
and/or performance (see Methods). Thus, we evaluated how the
proposed simulation techniques perform with neural models of
different mathematical complexity.

Simulation Parameter Results: The
Look-Up Table, Synchronization Period
and Integration Step Size Implications
In this experiment, we computed the neural network defined
in Table 3 using five different input spike patterns with a
Poisson process and mean firing rate of 5 Hz. We measured
the simulation accuracy over the third neural layer and the
computational performance over the whole simulation time
when the look-up table size, the synchronization period, or the
integration step size are scaled up.

Look-Up Table Size Implications
As previously stated, the look-up table size directly affects
the neural model simulation accuracy and computational
performance for event-driven simulation techniques. This is of
special importance for neural models with high mathematical
complexity. The number of state variables in a model determines
the number of look-up tables and their dimensions. Since the
number of state variables is given by the neural model (LIF, AdEx,
or HH), the granularity level of each look-up table dimension
is the only independent parameter that can be freely selected to
adjust the look-up table size. The more complex the model is,
the lower granularity levels that are required to keep the look-up
table size manageable (HH granularity level <AdEx granularity
level <LIF granularity level). Consequently, the higher the
complexity of the neural models is, the lower accuracy that is
obtained when the total look-up table sizes are fixed.

Here, we have evaluated four pre-compiled look-up tables
with different levels of granularity for each neural model. In
subsequent experiments, the event-driven models will use the
largest look-up tables to keep the highest possible level of
accuracy.

Figure 4 shows the simulation accuracy and computational
performance of direct and combined event-driven integration
methods with respect to the four sets of look-up tables with
different levels of granularity for each of our three neural models
(LIF, AdEx, and HH). As shown, the larger the look-up table
size is, the higher the accuracy (smaller van Rossum distances
with respect to the reference simulation pattern; Figure 4A)
but at the cost of a worse performance (higher execution
times; Figure 4B). The simulation accuracy for both integration
methods (direct and combined) remains the same since the look-
up table recombination of the second integration method does
not affect the neural dynamics. The simulation accuracy for one

FIGURE 4 | Simulation accuracy and computational performance for direct and combined event-driven integration methods. (A) Mean simulation

accuracy obtained with direct and combined event-driven integration methods depending on the look-up table sizes for five different input spike patterns. (B)

Computation time spent by direct and combined event-driven integration methods in running 1 s of simulation over five different input spike patterns (averaged). Four

different look-up table sizes for each neural model are used. The neural network defined in Table 3 is simulated using both integration methods over LIF, AdEx, and

HH models. The standard deviation of simulation accuracy and computational performance obtained is negligible; we only represent the mean values. Both integration

methods present identical accuracy results.
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of these integration methods is, therefore, representative for both
in the plots of Figure 4.

Figure 4B also compares the computational performance
of direct and combined event-driven integration methods.
The more mathematically complex the neural model is, the
more look-up tables can be combined and the higher the
computational performance results of combined event-driven
integration methods with respect to the direct ones.

Synchronization Period Size Implications
The synchronization period of synchronous and combined
synchronous event-driven integration methods affects the neural
model simulation accuracy and the computational performance.
As in the previous case, the simulation accuracy of both
integration methods remains the same since the look-up
table recombination does not affect the neural dynamics. The
simulation accuracy for one of these integration methods is,
therefore, representative for both in plots of Figure 5.

Both integration methods minimize the number of spike
predictions when the input activity is synchronous (seemethods).
Adjusting the step size of the synchronization period in the
second neural layer allows us to control the synchronicity of the
input activity driven toward the third neural layer (see Table 3).

Figure 5 shows to what extent the synchronization period
affects the simulation accuracy (Figures 5A,C, and E) and
the computational performance (Figures 5B,D, and F) for
each of our three neural models (LIF, AdEx, and HH),
respectively. The larger the synchronization period is, the
higher the computational performance (shorter execution
times). Regarding simulation accuracy, event-driven methods
are comparable in accuracy to time-driven methods for LIF
and AdEx models. Conversely, event-driven methods present
larger accuracy errors for the HH model due to RAM capacity
limitations (huge look-up tables would be required to achieve
similar accuracy rates).

Integration Step Size Implications
Likewise, simulation accuracy and computational performance in
time driven simulation techniques using fixed-step and bi-fixed-
step integrationmethods are tightly related to the integration step
sizes. The simulation accuracy for both methods in CPU and
GPU platforms is almost identical. For the sake of readability,
we only show the accuracy results of CPU methods in Figure 5.
Figure 5 shows to what extent the decrease of the integration
step size affects the simulation accuracy and the computational
performance. The smaller the integration step sizes are, the more
accurate the results that are obtained (Figures 5A,C, and E) but
at the cost of slower simulations (Figures 5B,D, and F). When
comparing the computational performance of fixed-step and bi-
fixed-step integration methods in both platforms, CPU and GPU,
it is demonstrated that the more complex the neural model is, the
better performance results that are obtained by the bi-fixed-step
methods with respect to the fixed-step ones.

Scalability Results: Implications When
Increasing the Number of Network Units
This section studies the computational performance for the
event-driven and time-driven simulation techniques when the

neural network size is scaled up. We have measured the
computational performance of our two different dynamic
evaluation techniques when they are applied to different neural
network sizes (Table 4) under equal input activity patterns (a set
of random input patterns with 5 Hz mean frequency).

Figure 6 shows in the column on the left (Figures 6A,D,
and G) the computational performance of our four event-
driven integration methods (direct, combined, synchronous,
and combined synchronous event-driven integration methods)
for LIF, AdEx and HH neural models, respectively. The
central column (Figures 6B,E, and H) shows the computational
performance of our four time-driven simulation methods (fixed-
step and bi-fixed-step integration methods in both CPU and
GPU platforms) for the same three neural models. The column
on the right (Figures 6C,F, and I) shows the speed-up achieved
by the combined synchronous event-driven methods, the fixed-
step and bi-fixed-step integration methods in GPU with respect
to the direct event-driven methods, the fixed-step and bi-fixed-
step integration methods in CPU for the same three neural
models.

The six CPU methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods as well
as fixed-step and bi-fixed-step integration methods) present a
linear behavior. The computation time linearly increases with
the number of neurons. Similarly, the two GPU integration
methods (fixed-step and bi-fixed-step integration methods)
perform linearly with the number of neurons (the computation
time increases with the number of neurons). However, when the
number of neurons to be simulated is under a certain boundary,
the time spent in the synchronization and transference of data
between CPU and GPU processors dominates over the neural
computation time. In this case, the speed-up of GPU methods
with respect to the CPU ones decreases, as shown in Figure 6,
right column.

Input Activity Results: Implication When
Increasing the Mean Firing Activity
This section studies the computational performance of the event-
driven and time-driven simulation techniques as the mean firing
activity of the neural network increases. The neural network
described in Table 5 has been simulated using fifteen different
input activity patterns whose mean firing rate frequency ranges
from 2 to 16 Hz.

Figure 7 shows in the column on the left (Figures 7A,C,
and E) the computational performance of our four event-
driven integration methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods) for
LIF, AdEx, and HH neural models, respectively. The column
on the right (Figures 7B, D, and F) shows the computational
performance of the four time-driven simulation methods (fixed-
step and bi-fixed-step integration methods in both CPU and
GPU platforms) for the LIF, AdEx, and HH neural models,
respectively.

Figure 7 clearly shows how event-driven schemes are sensitive
to the level of input activity, whilst the impact of the input
activity on time-driven integration methods is marginal. When
comparing amongst event-driven integration methods, the
results clearly show the improvements of the combined and
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FIGURE 5 | Simulation accuracy and computational performance of synchronous and combined synchronous event-driven integration methods

depending on the synchronization periods. Simulation accuracy and computational performance of fixed-step and bi-fixed-step integration methods in CPU and

GPU platforms depending on the integration step size. One-second simulation of the neural networks defined in Table 3 is shown. Five different input spike patterns

of 5Hz that generate mean firing rate activities of 10 Hz in the third neural layer are used. The left-hand column (A,C, and E) of the panel shows the simulation

accuracy and the right-hand column (B,D, and F) the computational performance obtained by the synchronous and combined synchronous event-driven integration

methods depending on the synchronization period for LIF, AdEx, and HH models, respectively (the synchronization period is plotted over x-axis). Both columns also

show the simulation accuracy and computational performance of fixed-step and bi-fixed-step integration methods in CPU and GPU platforms depending on the

integration steps (the global integration step size of fixed-step and bi-fixed-step integration methods are plotted over x-axis. The local step sizes for bi-fixed-step

integration methods are 0.25 ms for LIF and AdEx models and 1/15 ms for HH model). The standard deviation of the simulation accuracy and the computational

performance obtained is negligible; we only represent the mean values. Synchronous and combined synchronous event-driven integration methods present identical

accuracy results. CPU and GPU time-driven integration methods present almost identical accuracy results. The stiffness of HH model constrains the maximum step

size that fixed-step integration methods can use. Beyond this step size, the differential equations cannot properly be integrated for this model.

synchronous integration methods. The slope of the result series
(i.e., the impact of the average activity on the simulation
performance) decreases when these integration methods are
adopted in the simulation scheme. When comparing amongst
time-driven methods, the improvements of using bi-fixed-step
methods (leading to 2-fold performance levels compared to
fixed-step methods) and GPU as co-processing engine (leading

to 5-fold performance levels compared to CPU approaches)
are also clear in the obtained results. Amongst the four time-
driven integration methods proposed, the bi-fixed-step method
in CPU is the most severely affected by the increasing of the
mean firing activity within the neural network. The overhead
time spent in deploying the adaptationmechanism (see methods)
makes these integrationmethods unadvisable for scenarios where
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FIGURE 6 | Computational performance obtained from the eight integration methods proposed for LIF, AdEx and HH neural models depending on the

number of neurons within the second neural layer. One-second simulation of the neural networks defined in Table 4 is shown. A mean input activity of 5Hz that

generates a mean firing rate activity of 10 Hz in the second neural layer is used. The left-hand column (A,D, and G) of the panel shows the computational performance

of the four event-driven integration methods (direct, combined, synchronous, and combined synchronous event-driven methods) for LIF, AdEx, and HH neural models,

respectively. The central column (B,E, and H) of the panel shows the computational performance of the four time-driven integration methods (fixed-step and

bi-fixed-step integration methods in both CPU and GPU platforms) for the same three neural models. The right-hand column (C,F, and I) of the panel shows the

speed-up achieved by the combined synchronous event-driven methods, the fixed-step and bi-fixed-step integration methods in GPU respect to the direct

event-driven methods, the fixed-step and bi-fixed-step integration methods in CPU for the same three neural models.

the neural network presents very high levels of constant firing
activity.

Connectivity Results: Implications When
Increasing the Number of Synapses in the
Recurrent Topology
This section studies the computational performance for the
event-driven and time-driven simulation techniques as the

number of synapses in the recurrent topology of our neural
network increases. The neural network described in Table 6 has
been simulated using a random input activity with a mean firing
rate of 5 Hz.

Figure 8 shows in the column on the left (Figures 8A,C,
and E) the computational performance of our four event-
driven integration methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods) for
LIF, AdEx, and HH neural models, respectively. The column on
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FIGURE 7 | Computational performance obtained from the eight simulation methods proposed for LIF, AdEx, and HH neural models depending on the

mean firing rate activity in the second neural layer. One-second simulation of the neural networks defined in Table 5 is shown. The neural input activity ranges

from 1 to 10 Hz on average. The mean neural activity obtained at the second layer is plotted over x-axis. The left-hand column (A,C, and E) of the panel shows the

computational performance of the four event-driven integration methods (direct, synchronous, combined, and combined synchronous event-driven integration

methods) for LIF, AdEx, and HH neural models, respectively. The right-hand column (B,D, and F) of the panel shows the computational performance of the four

time-driven integration methods (fixed-step and bi-fixed-step integration methods in both CPU and GPU platforms) for the same three neural models.

the right (B, D, and F) shows the computational performance
of our four time-driven integration methods (fixed-step and bi-
fixed-step integration methods in both CPU and GPU platforms)
for the LIF, AdEx, and HH neural models, respectively. The
firing rate activity remains quite stable (between 8 and 12Hz),
although the number of propagated spikes increases due to
the higher number of synapses. The computation time (the
measured variable) depends on the computational workload.
This workload, in turn, depends on the number of internal
spikes and recurrent synapses (number of propagated spikes

= number of internal spikes · number of recurrent synapses).
The number of propagated spikes is plotted in x-axis instead
of the number of recurrent synapses to better compare the
computation time of all the simulationmethods under equivalent
neural activity conditions. Each mark in Figure 8 corresponds to
a number of recurrent synapses (10, 20, 40, 80, 160, 320, 640, and
1280) since this is the parameter that can be directly set in the
network definition and thus in the simulation experiment.

The simulation performance in event-driven integration
methods significantly decreases as the number of propagated
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FIGURE 8 | Computational performance of the eight simulation methods proposed for LIF, AdEx, and HH neural models depending on the number of

propagated spikes that are determined by the number recurrent synapses. One-second simulation of the neural networks defined in Table 6 is shown. The

number of recurrent synapses is geometrically scaled up (10, 20, 40, 80, 160, 320, 640, and 1,280). A mean input activity of 5 Hz is used. This input activity generates

a mean firing rate activity of between 8 and 12 Hz within the second neural layer. The number of propagated spikes increments proportionally with the number of

synapses (number of propagated spikes = number of internal spikes · number of recurrent synapses). The mean number of propagated spikes that arrives to the

second layer is plotted over x-axis. The left-hand column (A,C, and E) of the panel shows the computational performance of the four event-driven integration methods

(direct, synchronous, combined, and combined synchronous event-driven integration methods) for LIF, AdEx, and HH neural models, respectively. The right-hand

column (B,D, and F) shows the computational performance of the four time-driven integration methods (fixed-step and bi-fixed-step integration methods in both CPU

and GPU platforms) for the same three neural models.

spikes increases. Nevertheless, we can see a significant
improvement when synchronous event-driven integration
methods are used since they are optimized for computing
higher levels of synchronous activity. Conversely, the simulation
performance in time-driven integration methods suffers
little direct impact as the number of propagated spikes

increases. The results show the improvement achieved with the
bi-fixed-step integration methods either with or without GPU
co-processing.

When comparing amongst event- and time-driven methods,
GPU time-driven methods have the best-in-class performance
(see Figures 7, 8). Incremental levels of input activity cause an
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incremental number of propagated spikes thus favoring GPU
time-driven methods. On the other hand, tend-to-zero input
activity levels favor event-driven methods. The event-driven
performance obtained under these low input activities is usually
equal to or better than GPU time-driven performance.

DISCUSSION

Throughout this paper, different neural dynamic evaluation
techniques are developed. Within the event-driven methods: the
combined integration methods based on the combination of
look-up tables and the synchronous integration methods based
on the optimization of processing synchronous activities. These
two integration method are clear improvements with respect
to previously described event-driven neural dynamic evaluation
techniques (Ros et al., 2006a). As far as the time-driven methods
are concerned, the bi-fixed-step integration methods and the
CPU-GPU co-processing significantly increase the performance
of time-driven neural dynamic evaluation techniques.

The quality level of each proposed integration method
is given in terms of neural accuracy and computational
performance when simulating three neural models of
incremental mathematical complexity (LIF, AdEx, and HH).
These neural models are set up (Table 7) for reproducing similar
activity patterns. All the simulation methods shall provide
similar accuracy results to make them comparable. Fixed-step
and bi-fixed-step time-driven integration methods for LIF and
AdEx models are set up (Table 1) for obtaining similar accuracy
results than event-driven methods (Figure 5). LIF and AdEx
models are compiled in look-up tables of 249 and 712 MB,
respectively (Figure 4).

The higher complexity of the HH model imposes a large
storage memory capacity. An event-driven HH model with
comparable accuracy levels to bi-fixed-step time-driven HH
model would require up to 14 GB of storage memory capacity
(estimation extrapolated from Figure 4A). In this benchmark,
the HH model has been compiled in look-up tables of 1195

TABLE 7 | Summary of parameters for LIF, AdEx and HH neural models.

LIF AdEx HH

C 0.19e–9 F C 110 pF C 120 pF

EL −0.065 V EL −65 mV EL −65 mV

gL 10e–9 S gL 10 nS gL 10 nS

VT −0.050 V VT −50 mV VT −52 mV

Tref 0.0025 s ∆T 2 mV gNa 20 nS

EAMPA 0.0 V τw 50 ms ENa 50 mV

EGABA −0.080 V A 1 nS gKd 6000 nS

τAMPA 0.005 s B 9 pA EK −90 mV

τGABA 0.010 s Vr −80 mV EAMPA 0.0 mV

EAMPA 0.0 mV EGABA −80 mV

EGABA −80 mV τAMPA 5 ms

τAMPA 5 ms τGABA 10 ms

τGABA 10 ms

MB that obtain larger accuracy errors results than the equivalent
time-driven methods.

Event-Driven Main Functional Aspects
The main functional aspects in relation to the event-driven
integration methods can be summarized as follows:

• The number of state variables defining a neural model
represents, broadly speaking, the complexity of a neural
model. When this number increases linearly, the memory
requirements to allocate the pre-compiled look-up tables of
the event-driven neural models increases geometrically. Thus,
reducing the level of granularity of each dimension is the
only way to reduce the total look-up table size, but this
reduction directly affects the simulation accuracy (as shown
in Figure 4A). The more complex the neural models are or
the smaller the look-up table sizes are, the higher van Rossum
distance values (less accuracy) that are obtained. Boundaries in
accuracy andmemory capacity constrain the maximum neural
complexity that these event-driven techniques can handle.

• The recombination of look-up tables improves the
computational performance, maintaining the simulation
accuracy. Actually, the combined event-driven integration
methods slightly increase the computation time when the
neural model complexity increases because the neural
state update process of several variables using combined
look-up tables is slightly more complex than the update
of just one variable. Larger look-up table sizes cause
higher rates of cache failures and, therefore, losses in
computational performance (see Figure 4). This means that
the computational performance is more impacted by the total
look-up table size than by the mathematical complexity (the
number of state variables) of the neural model, although both
the mathematical complexity and the look-up table size are
related.

• The computation mechanism used by synchronous methods
to deal with synchronous activity significantly improves the
computational performance. When a synchronous event-
driven neuron receives input synapses coming from other
synchronous event-driven neurons or time-driven neurons,
the computational performance enhancement depends on
either the synchronization period or the integration step
size of the previous layers. The larger the synchronization
period or the integration step size of the previous layers
are, the more synchronous the activity that arrives to the
synchronous model and the higher performance levels with
respect to the direct non-synchronized integration methods
(see Figures 5–8). Regarding the simulation accuracy, the
look-up tables are precompiled maintaining a certain degree
of precision. A lager synchronization period only generates
a negligible error in the spike generation time which, in
turn, causes small oscillations in the van Rossum distance
measurements (Figure 5).

• Both neural dynamic evaluation techniques (the combination
of look-up tables and synchronization of activity) are
simultaneously applied by the combined synchronous event-
driven method. This simulation technique outperforms the
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rest of event-driven techniques. This is more significant when
the mathematical complexity of the neural models increases
(see Figures 5–8).

• The main factor that finally constrains the computational
performance of all these event-driven methods is the number
of events that need to be processed. These events are mainly
internal and propagated spikes (Ros et al., 2006a) that linearly
increase with the neural activity. Time-driven integration
methods are preferred rather than event-driven integration
methods for those neural networks with high levels of neural
activity (see Figures 7, 8). Conversely, there are particular
cases in which the event-driven integration methods can
be the best option. There are, actually, biologically realistic
SNNs in which parts of their inner layers present a very low
and sparse neural activity, such as the granular cells in the
cerebellum (D’Angelo et al., 2016) or the mushroom bodies
within the olfactory system in Drosophila (Serrano et al.,
2013). The importance of these particular networks cannot
be overlooked (i.e., just the granular cerebellar layer accounts
for half of the neurons of the whole brain, its neurons receive
between three and six input synapses with a low and very
sparse activity, with most of them remaining silent and barely
generating spikes). In these cases, event-driven integration
methods perform better than time-driven integration
methods.

Time-Driven Main Functional Aspects
The main functional aspects in relation to the time-driven
integration methods can be summarized as follows:

• Hybrid CPU-GPU integration methods perform better
than CPU methods. This is specifically relevant when the
mathematical complexity of the neural models increases. GPU
hardware architecture performs better computing parallel
tasks than CPU architecture. The computation of the neural
dynamics is a pure parallelizable task and consequently, GPU-
friendly. In a hybrid CPU-GPU platform, the GPU only
processes the neural dynamics, whilst the spike generation
and propagation are processed in the CPU. When the
mathematical complexity of the neural models increases, the
workload assigned to the GPU increases, whilst the workload
of the CPU remains equal. For this reason, CPU-GPU neural
models perform better than purely CPU neural models,
especially when the mathematical complexity of the neural
models increases. This increase in performance is shown in
Figures 5–8.

• Bi-fixed-step integration methods outperform fixed-step
integration methods for both CPU and GPU platforms
when the mathematical complexity of the neural model
increases (see Figures 5–8). Complex neural models usually
demand small integration step sizes to better cope with the
stiffness of their neural model equations during the spike
shape generation. Figures 5E,F show how the maximum
step size on a fixed-step integration method is constrained
due to the differential equation stiffness (HH model).
The adaptation mechanism used by the CPU bi-fixed-step
integration methods improves the simulation performance by

enlarging the simulation step size during those neural dynamic
intervals out of the spike phase.

• The adaptation mechanism of the integration step size for
GPU bi-fixed-step integration methods increases performance
thanks to the minimization of the time spent in the
synchronization and transfer of data between the CPU and
GPU processors.

• Whilst CPU integration methods are better suited for small-
medium groups of neurons (from one neuron to several
thousands of neurons, depending on the mathematical
complexity), the GPU integration methods are better
suited for larger numbers of neurons (from thousands to
millions of neurons). The computation time invested in the
synchronization period and data transferences between CPU
and GPU platforms dominates over the computation time
invested in solving the neural dynamics when the number of
neurons within the network is small (see Figure 6). In this
case, the computational performance of the GPU integration
methods reaches a plateau.

• The adaptation mechanism that the bi-fixed-step integration
method uses in CPU may decrease the computational
performance when the mean firing rate over the neural
network is quite high. When the neural activity increases, the
ratio of use between the local and global step also increases.
The computational workload for the neural dynamic increases
and the performance drops (see how the computation time
increases in Figure 7).

EDLUT Hybrid Architecture into
Perspective
EDLUT is a simulator mainly oriented to efficiently simulate
medium-scale neural networks (tens of thousands of neurons)
pursuing real time simulations. EDLUT uses point neural models,
such as LIF, AdEx or HH. EDLUT information transmission
relies on spike timing rather than on the particular spike shape.
What matters is when the spike is emitted rather than how the
spike is generated. Neurons are just means to an end needed
toward understanding the behavior of the neural network behind.
The neural communication mechanisms are deployed at network
level at very high simulation speeds on a single multicore
computer, thus facilitating real time embodiment experiments
(Carrillo et al., 2008; Luque et al., 2011a,b, 2014a,b, 2016; Garrido
et al., 2013a; Casellato et al., 2014; Antonietti et al., 2016). In these
neurorobotic experimental set-ups the neural network and the
body are coupled as a single entity.

Conversely, NEURON (Hines and Carnevale, 1997) is mainly
designed for the simulation of very complex and detailed neural
models. What matters here is how the spike was generated rather
than when it was emitted. Understanding neurons themselves is
the goal. To be as biologically plausible as possible, NEURON is
conceived to deal with high levels of mathematical complexity
that usually require time-driven simulation methods (either
fixed- or variable-step integration methods). The computational
cost here highly depends on the mathematical complexity which
makes the simulation of hundreds or tens of hundreds neurons
conforming a network almost computationally intractable. Using
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NEURON for the benchmark analysis proposed here would be
out of context.

NEURON, lately, seems to be increasing its field of application
toward medium- large-scale neural networks (see Lytton et al.,
2016) that are comprised of highly simplified neural models
(i.e., Izhikevich or the four dimensional HH models). Note
that the time-driven simulation techniques here proposed may
have a direct impact on NEURON if this tendency is finally
consolidated.

In contrast, BRIAN (Goodman and Romain, 2009) and NEST
(Gewaltig and Diesmann, 2007) are simulators often considered
to be playing in the same league as EDLUT. As is the case
with EDLUT, Brian claims to be mainly oriented to efficiently
simulate medium-scale neural networks (tens of thousands of
neurons) while NEST is designed for very large-scale neural
networks (up to 1.86 billion neurons connected by 11.1 trillion
synapses on the Japanese K supercomputer; Kunkel et al.,
2014). These simulators mainly implement point neuron models,
although some models with few compartments can be simulated.
Similarly, they consider neurons to be just means to an end.
They use neurons to understand the behavior of the neural
network behind. Both are natively implementing time-driven
simulation methods in CPU and particularly BRIAN also
implements a hybrid CPU-GPU co-processing scheme for time-
driven models. Having said that, the conclusions and approaches
proposed in the paper regarding time-driven methods would
have a direct impact on Brian and a substantial impact on
NEST since CPU-GPU co-processing is still missing. The other
fundamental pillar of the methodology proposed here, the event-
driven scheme, is not included in BRIAN but it does exist in
NEST. Whilst the event-driven EDLUT framework (originally an
event-driven scheme) was adapted to also perform time-driven
neural simulations (Garrido et al., 2011), the time-driven NEST
framework (originally a time-driven scheme) was adapted to also
perform event-driven neural simulations (Morrison et al., 2007;
Hanuschkin et al., 2010). Thus, both simulators can perform
combined event- and time-driven simulations. In fact, NEST
proposes an event-drivenmethod that presents similarities to our
synchronous event-driven method. Both event-driven methods
minimize the number of spike predictions by processing all the
synchronous input spikes conjointly and thus make only one
prediction.

CONCLUSIONS

The way forward in computational neuroscience lies in the
simulation of biologically plausible computational models of
different nervous centers (cerebellum, inferior olive, cuneate
nucleus, etc.) to better understand how the information
is processed within these nervous centers. Computational
neuroscience allows the study of these nervous center models
without experimental restrictions using neural models that have
been developed and validated according to experimental cellular
data.

These nervous center models can be simulated in different
conditions and circumstances to give a consistent idea about

how they may operate. In many cases, these models are
becoming a fundamental tool in the neuroscience hypothesis-
experimentation cycle. The computational models allow
researchers to test their hypotheses in simulation. This fact leads
to making a better hypothesis and better experiments designed
with a greater probability of success.

The road to model and simulate nervous centers
has been progressively paved with increasing levels of
mathematical complexity to include more and more biological
features. However, this mathematical complexity comes at a
computational cost (i.e., neural accuracy and computational
performance). In this paper, we have proposed several new neural
dynamic evaluation techniques to cope with the incremental
mathematical complexity of well-known neural models (LIF,
AdEx, and HH):

(a) The combined synchronous event-driven integration
method combines the look-up tables to minimize the
number of look-up table data queries needed to update
the neural state variables during the simulation process.
Additionally, this method also minimizes the look-up table
data queries, making just one prediction about the emission
of an output spike for each group of synchronous input
spikes that arrive to each neuron.

(b) The bi-fixed-step integration method (optimized also in
GPU) in which the neural dynamic equations that define
the complex neural models (as HH) are accurately solved by
switching between two time steps of different lengths during
the simulation process.

All these integration methods, with their own pros and cons,
are meant to be used concurrently to increase the computational
performance when simulating heterogeneous SNNs (such as
those previously studied in Naveros et al., 2015). These
heterogeneous SNNs consist of several layers with different
neural properties, thus trying to mimic the neural heterogeneity
found in different brain regions, such as the cerebellum
(D’Angelo et al., 2016; Luque et al., 2016) or the cuneate nucleus
(Bologna et al., 2011). The simulation platform used in this
study integrates all these neural dynamic evaluation techniques
in such a way that parts of the neural network (with low
and sparse activity) can be simulated efficiently with event-
driven methods (which have been optimized to more efficiently
deal with relatively-complex neural models and synchronous
activity) and parts of the neural networks (with higher activity
in terms of number of spikes) can be simulated with time-
driven methods (which have been optimized with bi-fixed-step
integration methods and the capability of using highly parallel
hardware, such as GPU engines). See Appendix B for a simulation
accuracy study of neural networks with combined event- and
time-driven methods.

Choosing the most appropriate method or combination of
methods for each neural center model to be simulated is a
trade-off amongst three elements:

1. The neural network architecture (number of neurons, neural
model complexity, number of input and output synapses,
mean firing rates, etc.).
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2. The hardware restrictions (number of CPU and GPU cores,
RAM size).

3. The simulation requirements and target (minimizing the
execution time, maximizing accuracy, etc.).

Finally, this study has been done using neural networks
with medium-low connectivity ratios (from 10 to 1280 input
synapses per neuron) oriented to fast simulations. However,
the simulation performance results may change significantly
when simulating neural networks with larger connectivity ratios
(for example 10,000 input synapses per neuron). In this case
the spike propagation task is usually more time consuming
than the neural dynamics update task for time-driven methods.
Nevertheless, as can be seen in Figure 8, our synchronous
event-driven method improves its performance in relation to
the direct event-driven method when the number of synapses
increases.
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APPENDIX A 

LIF, AdEx and HH models are here described in full detail. 
They have been configured in such a way that their I-F 
curves are similar and generate similar activity levels at the 
neural system. Thus, we can properly compare their results 
over our four tests. 

Leaky integrated-and-fire model (LIF) 

The neural state is defined by the membrane potential (V), 
which is expressed by (Eq.1): 

IEVg
dt

dV
C LL  )(  (1) 

where C denotes the membrane capacitance, gL the 
conductance responsible for the passive decay term 
towards the resting potential, EL the resting potential and I 
the synaptic interaction (defined in section d). LIF model 
(Gerstner and Kistler 2002) has a firing threshold VT. Once 
V reaches this threshold, an output spikes is generated and 
the membrane potential is reset to EL. The membrane 
potential remains being EL for the whole refractory period 
Tref (all these parameters are included in Table 7). 

Adaptive exponential integrated-and-fire model 
(AdEx) 

The neural state is defined by the membrane potential (V) 
and the adaptation variable (w), which are expressed by 
(Eq. 2): 
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where C denotes the membrane capacitance, gL the 
conductance responsible for the passive decay term 
towards the resting potential, EL the resting potential and ΔT 
the threshold slope factor. VT is the effective threshold 
potential, I the synaptic interaction (defined in section d), τw 
the adaptation time constant and a the sub threshold 
adaptation conductance. AdEx model (Brette and Gerstner 
2005) has a reset threshold at zero mV. When V exceeds 
this threshold, an output spikes is generated and the state 
variables are set to V=Vr and w=w+b. Vr denotes the reset 
potential and b the spike triggered adaptation mechanism 
(all this parameters are included in Table 7). 

Hodgkin-Huxley model (HH) 

The neural state is defined by the membrane potential (V) 
and three dimensionless gating variables (m), (h) and (n) 
that take values between 0 and 1. These variables are 
associated with the sodium channel activation, the sodium 
channel inactivation and the potassium channel activation 
respectively (Eq. 3): 
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where C denotes the membrane capacitance, gL the 
conductance responsible for the passive decay term 
towards the resting potential and EL the resting potential. 
ḡNA and ḡK are the maximum value of the sodium and 
potassium conductances and I the synaptic interaction 
(defined in section d) (all these parameters are included in 
Table 7). HH model equations (Hodgkin and Huxley 1952) 
do not inherently implement a firing threshold. Conversely, 
EDLUT needs an eventual threshold for the membrane 
potential as to predict a spike generation. Setting a 
functional firing threshold (-30 mV) allows us to simulate 
HH models using EDLUT computational kernel. αi and βi 
are rate constants for the i

th
 ion channel which is only 

voltage-dependent (Eq. 4). αi and βi are pre-compiled and 
stored in a look-up table for time-driven neural models 
running in CPUs. Pre-compiling αi and βi parameters in 
look-up tables is not convenient for GPU neural models 
since the RAM memory access is neither coalescent nor 
constant for all neurons at the same time. 
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where VT adjusts the threshold potential. 

Synapse properties 

All these models hold the same synaptic interaction 
mechanism based on excitatory and inhibitory 
conductances. Equation 5 defines the input current injected 
to each neuron and the exponential decay functions for 
both conductances: 
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where V represents the membrane potential and EAMPA and 
EGABA the reversal potential of the excitatory and inhibitory 
synaptic conductances. gAMPA and gGABA stands for the 



excitatory and inhibitory conductances that integrate all the 
contributions received through individual synapses. Both 
conductances are defined as exponential decay function 
where τAMPA and τGABA represent the exponential decay time 
constants, t0 the last ending time and t1 the current time (all 
these parameters are included in Table VII).  

Whilst the LIF model includes the refractory period, the HH 
model includes the depolarization and hyperpolarization 
periods. The maximum operating frequencies for these 
models are constrained by these time periods. Conversely, 
the maximum operating frequency for an AdEx model 
depends on several parameters. Setting the AdEx 
excitatory conductance to a maximum of 30 nS, limits its 
maximum operating frequency without modifying the AdEx 
internal dynamics. 

APPENDIX B 

One arising question derived from the simulation methods 
here proposed is the possibility of combining event-driven 
and time-driven integration methods in the same simulation. 
The EDLUT simulator allows us to not only evaluate the 
accuracy of these simulation methods individually but also 
the accuracy obtained when they are combined. This 
appendix compares the simulation accuracy results 
obtained when combining event- and time-driven methods 
with the results obtained when event-driven and time-driven 
methods are used separately. 

To perform this comparison, a “control neural network” was 
first defined to be used as an initial reference. This control 
neural network was the original benchmark configuration 
(see section 2.4.1 Simulation parameter analysis) in which 
the second and third neural layers were computed by either 
event-driven methods only or time-driven methods only. We 
compared the “control benchmark configuration” with two 
“combined” neural configurations for the three neural 
models described (LIF, AdEx and HH): 

 A first configuration in which the second neural 

layer was computed by event-driven methods and the third 

neural layer was computed by time-driven methods. 

 A second configuration in which the second neural 

layer was computed by time-driven methods and the third 

neural layer was computed by event-driven methods. 

For the sake of simplicity, only the direct method was taken 
into account amongst the event-driven integration methods. 
The combined and synchronous event-driven methods 
presented quite similar behaviors in terms of accuracy. 
Each neural model used two different look-up table sizes 
taken from Figure 4: LIF: 29 MB worst and 249 MB best 
case scenario, AdEx: 81 MB worst and 712 MB best case 
scenario and HH: 303 MB worst and 1195 MB best case 
scenario.  

Similarly, only the fixed-step and bi-fixed-step integration 
methods in CPU were taken into account amongst time-
driven integration methods. The GPU time-driven methods 
presented quite similar behaviors in terms of accuracy. 
Each neural model was simulated using different integration 
step sizes [0 - 1 ms]. The local step size for bi-fixed-step 
integration methods was 0.25 ms for both LIF and AdEx 
models, and 1/15 ms for HH model.  

The uncombined simulation methods define a region (Fig. 
1, left column) delimited by the worst and the best accuracy 
results obtained when simulating our “control neural 
network”. As expected, the results obtained for the 
combined simulation methods are mostly included in this 
region. The combined simulations present comparable 
accuracy results with respect to the uncombined event-
driven or time-driven simulation methods. As shown in 
Figure 1, when the integration step size tends to zero, the 
accuracy obtained with time-driven methods improves, 
whilst event-driven methods provide worse accuracy. 
Combined methods obtain accuracy results right in 
between these two extremes; not as good as time-driven 
methods but not as bad as event-driven methods. Likewise, 
when the simulation step size becomes larger (1ms), the 
event-driven method accuracy remains better than the time-
driven method accuracy. The combined methods, again, 
obtain accuracy results approximately in between these two 
methods. 

Figure 1 also reveals a fact that ought to be taken into 
consideration when combining event- and time-driven 
methods. The sequence in combining event- and time-
driven methods for simulating consecutive neural layers 
matters. The commutative property cannot be applied. The 
accuracy obtained with the event- and time-driven network 
configuration and the time- and event-driven network 
configuration differs. The event- and time-driven 
combination always presents higher van Rossum distances 
(worse accuracy) than the time- and event-driven 
combination. This is caused by two main factors: 

 Worse accuracy is usually obtained by event-

driven methods compared to time-driven methods in equal 

conditions. A second neural layer using event-driven 

methods delivers larger accuracy errors into the third neural 

layer. These accuracy errors are then propagated and 

increased in the third neural layer.  

 Event-driven methods, in the second neural layer, 
generate spikes asynchronously, that is, with a high time 
resolution. However, time-driven methods, in the third 
neural layer, process all the input spikes synchronously at 
each global integration step time. That is, all the inputs 
spikes are computed in time slots of multiple of the global 
integration step. The time resolution obtained by the 
second neural layer is diminished by the third neural layer. 

The benchmark used here, due to its particular features 
(i.e. connectivity ratios, firing activity, etc.), does not offer 
the best deal for event- and time-driven combined methods 
in terms of performance. On the contrary, as demonstrated 
in (Naveros et al. 2015), some cerebellar-based 
benchmarks are able to use event- and time-driven 
combined methods to improve computational performance 
without compromising accuracy. The optimal approach is to 
adopt an event-driven scheme for sparse activity neurons 
and a time-driven scheme for intensive activity neurons. As 
argued throughout this paper, choosing time-driven only, 
even-driven only or event- and time-driven combined 
methods is always a tradeoff between accuracy, 
computational performance and the peculiarities of the 
neural network to be computed. 

 



 

FIGURE 1 | Simulation accuracy of uncombined event- and time-driven methods vs combined event- and time-driven methods for LIF, 
AdEx and HH neural models. A 1-s simulation of the neural networks defined in Table 3 is shown. Five different input spike patterns of 5 Hz that 
generate mean firing rate activities of 10 Hz in the third neural layer are used. The left-hand column (A,D, and G) of the panel shows the simulation 
accuracy when either event-driven methods only or time-driven methods only are used in the second and third neural layer. The central column 
(B,E, and H) shows the accuracy results obtained when combining event-driven methods for the second neural layer and time-driven methods for 
the third neural layer. The right-hand column (C,F, and I) shows the accuracy results obtained when combining time-driven methods for the second 
neural layer and event-driven methods for the third neural layer. Worst and best accuracy results obtained by the uncombined simulation methods 
(left column) define the boundaries of an accuracy area (grey shaded area). This area is compared with the accuracy results obtained with the 
combined simulation methods (central and right columns). The accuracy results obtained by these combined methods are expected to define a 
boundary area mostly included within the area defined by the uncombined simulation methods. The direct event-driven methods use two look-up 
table sizes per each neural model (LIF: 29 and 249 MB; AdEx: 81 and 712 MB; HH: 303 and 1,195 MB). The fixed and bi-fixed-step integration 
methods in CPU evaluate several integration step sizes for each neural model. The global integration step size for fixed and bi-fixed-step 
integration methods is plotted over x-axis. The standard deviation of the simulation accuracy obtained is negligible; we only represent the mean 
values. 
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Abstract 
Experimental studies of the Central Nervous 
System (CNS) at multiple organization levels aim 
at understanding how information is represented 
and processed by the brain’s neurobiological 
substrate. The information processed within 
different neural subsystems is neurocomputed 
using distributed and dynamic patterns of neural 
activity. These emerging patterns can be hardly 
understood by merely taking into account 
individual cell activities. Studying how these 
patterns are elicited in the CNS under specific 
behavioral tasks has become a groundbreaking 
research topic in system neuroscience. This 
methodology of synthetic behavioral 
experimentation is also motivated by the concept 
of embodied neuroscience, according to which 
the primary goal of the CNS is to solve/facilitate 
the body–environment interaction. 

With the aim to bridge the gap between 
system neuroscience and biological control, this 
paper presents how the CNS neural structures can 
be connected/integrated within a body agent; in 
particular, an efficient neural simulator based on 
EDLUT has been integrated within a simulated 

robotic environment to facilitate the 
implementation of object manipulating closed 
loop experiments (action–perception loop). This 
kind of experiment allows the study of the neural 
abstraction process of dynamic models that 
occurs within our neural structures when 
manipulating objects. 

The neural simulator, communication 
interfaces, and a robot platform have been 
efficiently integrated enabling real time 
simulations. The cerebellum is thought to play a 
crucial role in human-body interaction with a 
primary function related to motor control which 
makes it the perfect candidate to start building an 
embodied nervous system as illustrated in the 
simulations performed in this work. 

1. Introduction 

Computational models of various brain 
regions have been developed and studied for 
more than thirty years in order to analyze central 
brain functions. Computational neuroscience 
(CN) is the natural complement of experimental 
brain research, since it focuses on specific 
mechanisms and models which are only partially 



 
 

observed in anatomical or physiological studies. 
In particular, the cerebro-cerebellar loop has been 
extensively modeled since Marr and Albus [1,2], 
providing elegant explanations on how the 
forward controller operation of the cerebro-
cerebellar loop seems to work. Nevertheless, 
these computational theories tend to focus on one 
part of the cerebellar circuitry and then, to 
extrapolate the obtained conclusions to the whole 
cerebro-cerebellar system. Simulating nervous 
systems “connected” to a body (agent or robot 
with sensors and actuators) is of interest for 
studying how certain capabilities of the nervous 
system (e.g. the role of the cerebellum in 
coordinated movements and object manipulation) 
are based on cellular characteristics, nervous 
system topology, or local synaptic adaptation 
mechanisms. This represents an integrative 
approach which aims to build the bridge between 
task specific experimentation (equivalent to 
“awake animal testing”) and system neuroscience 
models. 

This integrative approach allows us to study 
the role of certain nervous systems within 
“behavioral tasks” [3]. For this purpose, it is 
crucial to study nervous system models within the 
framework of their interaction with a body 
(sensors and actuators) and the environment. 

This paper describes an integrated approach 
to the cerebellar circuit modeling within real time 
“behavioral tasks”. The paper describes briefly: 
(a) a cerebellar model based on point neurons 
capable of being simulated in real-time. The 
model maintains biological interconnectivity 
ratios in functional medium-scale networks 
(rather than an ad-hoc neural network particularly 
designed for a specific behavioral task) that are 
embedded in biologically plausible control loops. 
(b) Testing the role of plasticity at parallel fibers-
Purkinje cells. (c) Embedding the neural system 
model into a cerebro-cerebellar control loop 
connected to a Light Weight Robot (LWR) 
performing repetitive fast manipulations along 
benchmark trajectories. In order to address these 
three aims, we have integrated a neural simulator 
based on EDLUT [4] with a simulated robotic 
environment to facilitate the implementation of 
object-manipulating closed-loop experiments 
(action–perception closed loops). 

These experiments allow us to study the 
neural abstraction process of dynamic models (of 
objects being manipulated) that occurs within our 
neural structures in fast manipulation tasks [5–7]. 
The neural simulator, the communication 
interface, and the simulated robotic platform have 
been developed and integrated taking into 
account computational efficiency as a major 
requirement in order to enable real time 
simulations. This platform allows us to study 
different neural representation and processing 
schemes in a specific task within a brain–body 
interaction framework. 

1.1. Functional cerebellar models; a brief 

overview  

Among Embodied System Neuroscience 
models, the well-organized structure of the 
cerebellum has received special attention from 
researchers belonging to very different fields. On 
one hand, neurophysiologists have studied and 
proposed detailed models and descriptions 
according to experimentally recorded cells and 
synaptic properties. However, it is not yet clear 
how specific properties of these current detailed 
models facilitate specific tasks at a behavioral 
level. On the other hand, engineers have proposed 
artificial approaches (only related with biology at 
a very high level) for biologically relevant tasks 
such as accurate and coordinated movements. 
Based on these opposed approaches, several 
cerebellar modeling frameworks have been 
proposed: 

In state-generator models, the granule cell 
layer presents on/off type “granule” entities that 
provide a sparse coding of the state space (Marr–
Albus Model [1,2], CMAC [8–10] model, or 
Yamazaki and Tanaka model [11–14]). These 
models succeed in explaining some traditional 
cerebellum-involving tasks such as eyelid 
conditioning [15] or motor control tasks [6,7,16]. 
In functional models, only the functional 
abstraction of specific cerebellar operations is 
considered: MPFIM model [17], Adaptive Filter 
model [18–22], APG model [23], or LWPR 
model [24,25]. Although in some cases, these 
models are also used to explain how the 
cerebellum works, these can be seen as problem 
solving approaches (that use internal structures 



 
 

not constrained to biologically plausible features). 
These functional models are also used to study 
the potential role of the cerebellum in tasks such 
as eyelid conditioning, the vestibule ocular reflex 
(VOR), or movement correction [24,25]. Finally, 
cellular level models capture the biophysical 
features of the cerebellar neuronal topology and 
processing, and can be evaluated in the 
framework of neurophysiological experiments. 
These models aim to be as biologically plausible 
as possible. But due to their inherent complexity, 
their application in the context of large-scale 
cerebellar modeling and computation remains 
limited. The very first approximations in this field 
were developed based on the simplified models 
of Schweighofer–Arbib [26,27]. 

1.2. How to embody the cerebellar circuitry  

The cerebellar network has been at the core of 
neurocomputational theories since the 1960s, 
when Eccles proposed the Beam Theory [28] and 
Marr and Albus, the Motor Learning Theory 
[1,2]. Later on, Ito developed the forward 
controller theory [4,29–32]. Since then, the view 
has been crystallized on two main concepts that 
can be synthesized as follows; the way the 
cerebellum operates is by decorrelating the inputs 
in the granular layer and detecting known 
patterns in Purkinje cells. Pattern recognition is 
regulated by memory storage at the parallel-fiber-
Purkinje-cell synapse. When unfamiliar patterns 
are detected repeatedly, the Purkinje cells change 
their firing rate and regulate activity in the deep 
cerebellar nuclei (DCN), thereby emitting the 
corrective terms used for highly accurate motions 
(skillful control performance). 

Despite its attractiveness and simplicity, this 
theory only partially accounts for the capabilities 
of the cerebellum. Furthermore, recent 
experimental data indicate that the cerebellar 
system is much more complex than initially 
stated. Just to make a very short survey, the 
mechanisms of the granular layer go far beyond 
simple decorrelation [33], long-term synaptic 
plasticity does not occur only at the parallel fibers 
(PF) [33–35], the inferior olive (IO) operates as a 
complex timing system and not simply to drive 
Purkinje cell plasticity [36], the Purkinje cells and 
the DCN cells have operative states that go far 

beyond the concept of firing rate regulation [37]. 
The core idea is that our knowledge on the 
functioning of neuronal networks of the 
cerebellum is still rather vague, and that we have 
to develop new computational tools to investigate 
cerebellar network dynamics beyond the current 
existing paradigms. 

The available neurophysiological data (which 
is essential for understanding the functional 
organization of the cerebellum and related 
structures) has to be analyzed to investigate the 
particular processing capabilities of each neuron 
and of its internal dynamics. Emphasis must be 
put on proving how the network processing 
capabilities are supported by the low-level 
characteristics of each neuron type. Many of the 
specific cerebellar neural types have already been 
implemented in Python–NEURON–EDLUT 
software simulators [38,39] and there are even 
specific repositories gathering different kinds of 
models [40,41]. 

1.3. Modeling the cerebellar circuits  

When modeling the cerebellar circuit with a 
bottom-up approach, the cerebellar network needs 
to be modeled aiming at the construction and 
generation of a complete cerebellar functional 
network, tested in realistic functional conditions 
and endowed with plasticity rules. This process 
demands the comprehension of the interplay that 
occurs between the Granular-and-molecular-layer 
subcircuit and the PC–DCN–IO subcircuit. 

Whilst the granular layer and molecular layer 
neurons can be largely reconstructed starting 
from precise existing models, the DCN-and-IO 
subcircuits are not modeled in detail. Therefore, 
the PC–DCN–IO circuit requires basic modeling 
to achieve functional properties. An initial model 
of the DCN can be constructed based on [42,43]. 
As a starting point, the IO can be modeled at a 
functional level, i.e. as a module translating 
“error related signals” into activity that modulates 
learning at the PF–PC synapses. Also at this 
stage, although different plasticity sites have been 
reported [34,35], most cerebellar functional 
models are based solely on the PF–PC adaptation 
mechanism modulated by the IO activity (which 
delivers the teaching signals). 



 
 

Once all the subcircuits and long-term 
synaptic plasticity are implemented and tested 
separately, the functional operation of a complete 
circuit can be tested. The first step lies on 
developing an appropriate connectivity between 
the modular subcircuits. The connection map 
between the IO and PCs via climbing fibers, the 
convergence of PCs to DCN neurons [44] and the 
mossy fiber (MF) projections to the DCN [45], 
and the granular layer have been extensively 
described in the literature and should be 
reconstructed respecting the known 
convergence/divergence ratios. 

2. Material and methods 

2.1. The real-time neural simulator: EDLUT 

Common event-driven simulators [46,47] use 
simple neural models whose dynamics are 
described by equations which can be 
discontinuously evaluated at arbitrary times (e.g. 
current based integrate-and-fire models). But 
even when using simple neural models, the firing-
time prediction which is necessary for an event-
driven simulation may be complex [48,49]. 

An EDLUT (Event-Driven neural simulator 
based on LookUp Tables) was implemented [4] 
to simulate neural models whose internal 
dynamics is defined by a set of differential 
equations (for instance, the Hodgkin and Huxley 
model [50]) adopting an event-driven simulation 
scheme. This software is an open source project 
[51] for efficient simulation of biological neural 
networks. It is of particular interest in the field of 
neurobotics and embedded neural computing in 
which real-time processing is required, for 
example, for experiments which include 
perception–action loops. 

EDLUT uses an intensive preliminary 
simulation stage in which a neural model is 
characterized, i.e. massive simulations of a single 
cell are done with different initial conditions. At 
this stage, samples of the neural variables at 
different times are stored in lookup tables. This 
preliminary stage can be seen as a cell model 
compilation stage. These tables are calculated 
using time-consuming numerical analysis (e.g. 
Runge-Kutta method). However, once they are 
generated, the network simulation can be run 

efficiently through the event-driven method, just 
by accessing tables when the neural state must be 
updated or predicted. 

EDLUT uses lookup tables which store all the 
possible values (with certain precision) of the 
neural-model state variables [52] in addition to 
the future states (firing times) [53]. Therefore, a 
whole neural model is encoded in each set of 
model-characterization tables. In this way, the 
simulator takes advantage of the increasing 
memory resources available to perform efficient 
simulations with very limited computation 
requirements. The event-driven simulation 
scheme based on lookup tables uses memory 
access intensively, instead of CPU computation 
power for the neural variable updates. 

The initial EDLUT processing scheme 
allowed fast simulation of complex neural 
models. Nonetheless, this scheme is constrained 
by the number of state variables of a neural 
model because this determines the number of 
dimensions of the required lookup tables. But in 
later versions [54], the EDLUT was upgraded to 
provide a hybrid time-and-event driven 
simulation method. This hybrid scheme allows 
the concurrent simulation of some neuronal 
models using the event-driven method (the 
models which can be translated into lookup 
tables) and other models using the time-driven 
method in the same network. 

2.2. The cerebellar model 

We have used leaky integrate-and-fire neural 
models (LIF) [50] whose synapses are modeled 
as conductances. The general model has been 
then adapted for different neural types. The LIF 
neural state is characterized by the membrane 
potential (Vm-c ) expressed by Eq. (1): 
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where Cm stands for the membrane 
capacitance, EAMPA and EGABA denote the reversal 
potentials of the synaptic conductances, and 
finally, Erest represents the resting potential (being 
Grest the conductance responsible for the passive 
decay term towards the resting potential). The 
gAMPA and gGABA conductances integrate all the 



 
 

contributions received through individual 
synapses and are defined as decaying exponential 
functions. The parameters of the neural model [5–
7] and a more detailed description can be found 
in [5–7,51]. 

Therefore, the state of a neuron is defined 
with just three variables: 

Vm-c represents the membrane potential. When 
this variable reaches a specific threshold, the 
neuron generates an output spike. 

gAMPA and gGABA represent excitatory and 
inhibitory conductances respectively that affect 
the membrane potential. These conductances 
decrease exponentially in each integration step 
and increase proportionally to the synaptic weight 
of their connections when an input spike arrives. 

To solve the LIF neuron model differential 
equation, the EDLUT simulator incorporates 
different integrative methods. This differential 
equation is processed off-line using a short 
integration step to achieve good accuracy (it does 
not directly affect the computation time during 
system neural simulations, since the neural model 
is computed and stored in lookup tables in a 
preliminary neural characterization stage). 

All the different characterized neural types 
have been interconnected following a cerebellar 
topology structured into micro-zones distributed 
in different layers, as described below (Fig. 1): 

Mossy fibers (MFs) (248). These mossy fibers 
drive the contextual information and sensory joint 
information (related with the manipulated object 
and desired/actual positions and velocities). The 
mossy fiber model is based on leaky integrate-
and-fire neuron dynamics whose input current is 
provided by a set of overlapping receptive fields 
covering the joint value space of the input signals 
(see Fig. 2). 

Granular layer (GCs) (1500). This layer 
behaves as an abstraction of a simplified 
cerebellar granular layer. The information 
provided by the mossy fibers is translated into a 
sparse representation. Each granular cell (GC) 
receives four excitatory input connections; three 
connections randomly chosen from joint-related 
mossy fibers and the other one, from a context-
related mossy fiber [7]. 

Parallel fibers (PFs) (1500). They represent 
the output axons of the granular layer. The 
manipulated object model abstraction is stored in 
learned weights at the PF–PC connections. 

Climbing fibers (CFs) (48). The climbing 
fibers are the axons of the Inferior Olive cells. 
This layer consists of 6 groups of 8 climbing 
fibers each. The IO output (encoding a teaching 
signal related to the error) is translated into spikes 
using leaky integrate-and-fire neuron dynamics 
whose input current is in this case proportional to  

 
Fig. 1. Cerebellar architecture. Color representation indicates signals from different sources such as different cuneate 
receptive fields or proprioceptors. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article). 



 
 

 

 
Fig. 2. Population coding of input (proprioceptors) signals. The joint angle position (input signal) provided by a joint 
encoder which covers the joint range is translated into a population coding whilst a certain trajectory is followed using a 
set of tuning receptive fields (Gaussian like curves) which represent the current injected into spiking neurons by different 
sensory receptors (proprioceptors). Each proprioceptor’s value (output signal) is integrated using an integrate-and-fire 
neuron model and determines the activity response of an input neuron (as is the case of Mossy Fiber neurons belonging to 
the cerebellar circuitry). Lower plots illustrate how two trajectories (encoder angle varying in time) defined in a single 
joint produce spiking patterns when the contributions to the integrate neurons are integrated through the sensory receptive 
fields.

the error signal. The CFs drive the IO outputs to 
the Purkinje cells for supervised learning at PF–
PC connections. More details on this learning rule 
can be found in [6]. 

Purkinje cells (PC) (48). These cells are 
divided into 6 groups of 8 cells. Each GC is 
connected to 80% of the PCs which are also 
receiving their corresponding teaching signals 
from the CFs. 

Deep cerebellar nuclei cells (DCN) (24). The 
cerebellar output is generated using 6 groups of 
these cells (2 groups per joint) whose activity is 
capable of providing corrective torques for a 
specified cerebellar input. Corrective torque 

values per joint are encoded by a couple of these 
groups, one group compensating positive errors 
(agonist) whilst the other one is dedicated to 
compensate negative errors (antagonist). Each 
DCN neuron group receives excitation from 
every MF cell and inhibition from the two 
corresponding PCs. The sub-circuit PC–DCN–IO 
then is organized into six microzones; three of 
them generating joint positive corrections (one 
per joint) and the other three, generating joint 
negative corrections (one per joint). Mind that as 
it will be explained below, we use three joints in 
our robot experiments. 



 
 

2.3. The cerebellar model 

Neural population coding is traditionally used 
for sensorimotor representation. Each neuron 
belonging to a certain system presents a 
distribution of responses over some set of inputs. 
Hence, the response of many system neurons over 
a set of certain inputs represents the system state 
[55,56]. In a reaching movement, the arm 
direction is encoded by means of neurons whose 
input current changes with the cosine of the 
difference between the stimulus angle and the 
preferred direction of the cell [57] (Cosine 
tuning). Each cell has a preferred direction and 
receives input current depending on how a 
movement is aligned to its preferred feature. 
However, a simple reaching movement involves 
extracting spatial information including visual 
acquisition of the target, coordination of multi-
modal proprioceptive signals, and a proper motor 
command generation to drive a proper motor 
response towards the target [58].Common 
reaching movements towards a target that we 
have already seen involve an internal 
representation of the target and limb positions, 
and also a coordinate transformation between 
different internal reference frames. A spiking 
population coding is used as internal 
representation and can be adapted as indicated 
below to be embedded into a control loop. 

The integration of computational models with 
neurophysiological observations in order to 
understand the main problems in motor control 
requires not only the cerebellum functionality to 
be considered but also its biological architecture 
(cell-network topology). This requires the 
development of two “translation processes” in 
order to interact with a robot agent: (1) 
Translation from analog domain sensor inputs to 
spike based patterns compatible with a spiking 
cerebellar network. (2) Translation from spike 
domain cerebellar outputs to analog domain 
actuator commands to be delivered to the robot 
agent. 

2.3.1. From sensors to spikes 

When a target reaching movement is 
executed, different body parts, such as muscles, 
tendons, or joints are articulated depending on 
their body location [59] along the followed 

trajectory. Sensory proprioceptors are activated 
according to the movement; thus, a time-varying 
set of stimuli is produced, and its corresponding 
neural population varying activity is generated. In 
contrast, in a robot scenario, the only available 
proprioception sensory information is supplied by 
an encoder output per link. Hence, a translation 
from the joint position/velocity measures to a 
time-varying set of stimuli is required. At this 
point, finding out an optimal biologically 
plausible encoding scheme that allows 
“biological decoders” (as the ones we assume at 
the granular and molecular layers of the 
cerebellum) to take advantage of the 
representation is a non-trivial issue. It is assumed 
that the firing rate of an individual sensory 
receptor follows a neural response which is 
characterized by Eq. (2) (also equivalent to a 
cosine tuning curve, that is, the firing rate of the 
neurons varies with the angle between the 
preferred direction of the sensory receptors and 
the sensed position) [60]. Therefore, a reaching 
movement execution will be represented with a 
sparse population of active cells which are 
varying with time. This coding mechanism leads 
to a representation of the current sensorial state 
during the trajectory execution in an 
unambiguous way. 

The output of each receptor is given by Eq. 
(2); 

𝐼𝑁𝑖(𝑡) = 𝑟0 + 𝑟𝑚𝑎𝑥 ∑ 𝑒−(𝜃−𝜃𝑝𝑟𝑒𝑓−2𝜋𝑛)
2

/2𝜎2

𝑛      (2) 

Where [r0, rmax] is the joint range in radians, θ 
is the actual position, θpref is the preferred 
direction of the receptor, σ is the amplitude of the 
receptive field associated to the receptor, and 
finally, 2πn is a subtractive term used to refer the 
actual position to the first-360-degrees (the 
maximal range of any revolute joint is 360°). 

Receptors are distributed along the range of 
each joint, being their receptive fields overlapped 
(as peripheral nerve receptive fields are). Each 
value of a proprioceptor output signal is 
integrated using an integrate-and-fire neuron 
model whose dynamics is defined in Eq. (3) (see 
illustration in Fig. 2). In the case of an arm 
system, this determines the output activity that 
drives the Cuneate Nucleus (CN) activity 
emulating the way the Mossy Fiber activity from 



 
 

cells in the CN handles information from 
forelimb muscle spindles [61].  
𝜏𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
= −𝑣𝑖(𝑡) + 𝑅𝑖𝐼𝑁𝑖                                   (3) 

 
Related to the leakage integrate and fire cell 

dynamics, τmi is the resting time constant, vi the 
membrane potential, INi the input current, and Ri 
is related to the resting conductance of the 
membrane. 

2.3.2. From spikes to actuators, decoding the 

cerebellar output 

Spiking modeled neurons elicit pulsed signals 
usually named action potentials or spikes. It is 
believed that the shape of these spikes only 
carries minimal information whilst the core of the 
information is carried by the spike time arrival 
[62,63]. The action potential waveforms (voltage 
curve profile) elicited by those neurons is usually 
translated into a set of binary symbols (0 or 1) 
representing an instant in which an action 
potential occurs (1) or does not (0). The 
generated binary waveform conforms a spike 
train and the obtained pattern of spikes belonging 
to a certain time-frame generates the spike binary 
code; the columns corresponding to the array of 
spikes are also named neural activation patterns. 
It is then clear that, somehow, the translation of 
these neural activation patterns into meaningful 
analog output signals has to be implemented for 
interfacing actual robot actuators with analog 
signals. 

Assuming that the goal is to decode rather 
than to analyze the behavior of biological 
neurons, it seems reasonable to use a 
mathematical approach such as linear filtering, 
particularly, a Finite Impulse Response filter 
(FIR), to accomplish this task [64]. 

Defining the spike train as 𝑥(𝑡) =
∑ 𝛿(𝑡 − 𝑡𝑗)𝑁

𝑗=𝑡  where jt stands for the set of firing 
times of the corresponding neuron and being the 
FIR response defined as  h t  then the stimulus 
can be written as follows. 

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠(𝑡) = (ℎ ∗ 𝑡)(𝑡) = ∑ ℎ(𝑡 − 𝑡𝑗)𝑁
𝑗=𝑡     (4) 

As noticed from Eq. (4), converting spike 
trains into analog signals is a quite 

straightforward implementation. Nevertheless, 
despite the widespread use of FIR filters for such 
purpose, an undesired delay is introduced in the 
generated analog signal. This delay is strongly 
related to the number of filter coefficients as well 
as to the shape of the filter kernel. To mitigate 
this effect and to make the conversion more 
efficient, an exponentially-decaying kernel can be 
implemented, as seen in Eq. (5). Thus, at each 
time step, the output signal value only depends on 
its previous value and on the input spikes in the 
same time step. Therefore, this filter can be 
implemented by recursively updating the last 
value of the output signal. Actually, the choice of 
such exponential kernel is double folded. The 
kernel is able to mitigate the delay problem and 
bears a strong resemblance to postsynaptic 
currents [62,63], thus facilitating a possible 
biological interpretation. 

𝐾𝑒𝑟𝑛𝑒𝑙 = ℎ(𝑡) = 𝑒−
𝑀

𝜏                                       (5) 
Where M is the number of filter taps (one 

integration step size) and τ is the decay factor. 

2.3.3. Equivalency with an integrative neuron 

Integrative neurons are capable of both 
analyzing and interpreting sensory input just 
taking into account their actual state, the 
incoming information, and their previous states as 
well. Once the computation of those three 
elements is done, the resulting information can be 
transmitted to motor neurons or other integrative 
neurons. Assuming a leaky integrate-and-fire 
model for the integrative neuron, the model looks 
like Eq. (3). This model forces the input current 
to exceed a threshold Ith = Vth/Ri for the cell i to 
fire; otherwise, it will simply leak out any charge 
in the membrane potential. The firing frequency 
is thus defined in Eq. (6): 

𝑓(𝐼) = {
0,                                                     𝐼𝑁𝑖 ≤ 𝐼𝑡ℎ

[𝑡𝑟𝑒𝑓 − 𝜏𝑚𝑖𝑙𝑜𝑔 (1 −
𝑉𝑡ℎ

𝐼𝑁𝑖𝑅𝑖
)]

−1
, 𝐼𝑁𝑖 > 𝐼𝑡ℎ   

} (6) 

Where tref   is a refractory period and τmi is the 
resting time constant. Solving the differential 
equation (3), the membrane potential is expressed 
as follows:   

𝑣𝑖(𝑡) = 𝑅𝑖𝐼𝑁𝑖(𝑡) +
(𝑉𝑅𝑒𝑠𝑡−𝑅𝑖𝐼𝑁𝑖(𝑡))

𝑒(𝑡/𝜏𝑚𝑖)
                     (7) 



 
 

The functionality of the selected FIR 
described in Eqs. (4) and (5) can be read in terms 
of a biological interpretation just by making an 
analogy between the proposed exponential-
decaying kernel and the behavior of an integrative 
neuron whose dynamics is defined using Eq. (7) 
(stimulus(t) ≈ Vj(t)). The resulting shapes of both 
sides of this analogy hold a remarkable 
resemblance due to the exponential-decaying 
kernel that governs both the neural dynamics and 
the FIR kernel. An engineering strategy usually 
adopts the FIR based approach, because it allows 
us to easily adapt the output values to the control 
signal which is demanded for accurate control. In 
such a way, the effect of each spike elicited by 
any cerebellar nuclei cell (output cerebellar cells) 
can be easily pondered thanks to the FIR filter, 
thus facilitating the correlation between the 
cerebellar output spikes and their corresponding 
corrective output signals. It is clear then that this 
conversion can be also processed by using any 
Integrate and Fire-like neuron; however, doing 
so, the influence of each spike on the output does 
not always remain clear. 

2.4. Cerebellar control loop; a plausible 

implementation 

It is widely assumed that the cerebellum, 
acting as a control module, is embedded in a 
feedforward control loop [65–67]. A feedforward 
control system is able to evaluate both the 
incoming sensory information from the 
environment and the information provided by the 
system itself (proprioception) before the motor 
control action is sent to the body. This means that 
the controller manages the sensory information to 
deliver the best motor commands to accomplish 
the desired movement. At that point, we must 
bear in mind that once a pure feedforward system 
sends the corresponding control actions, it is not 
possible to modify them. 

On one hand, a feedforward control system is 
able to deliver the precise set of motor commands 
for the body-plant and to make corrections during 
the movement without continuously checking the 
motor control output [26,27]. Conversely, the 
feedforward controller requires a previous trial-
and-error learning process in order to later 
recognize (in a recall stage) all the possible 

sensorial states that may be reached. In a real 
manipulation task, the environmental conditions 
are constantly changing and the feedforward 
controller must continuously tune its motor 
commands to cope with these changeable 
environmental conditions [68]. According to this 
scheme, the cerebellum operates as a feedforward 
controller for the motor commands which are 
originated in the motor cortex (Fig. 3). The brain 
is able to plan and learn the optimal trajectory of 
a movement in intrinsic coordinates [23,68–71]. 
This operation consists of three main tasks: the 
desired trajectory computation in external 
coordinates, the task-space translation into body 
coordinates, and the motor command generation 
[72]. In order to deal with the aforementioned 
changeable environmental conditions, the system 
needs to incorporate a Feedback-Error Learning 
(FEL) scheme [73] by means of the cerebellum 
operating in conjunction with a crude inverse 
dynamic model of the arm-plant [74]. It has been 
proposed that the association cortex provides the 
motor cortex with the desired trajectory in body 
coordinates. In the motor cortex, the motor 
command is calculated by using an inverse 
dynamic arm model (for a review, see [75]). The 

spinocerebellum–magnocellular red nucleus 

system provides an accurate model of 
musculoskeletal dynamics, which is learned with 
practice by sensing the motor command 
consequences in terms of executed movements 
(proprioception). The cerebrocerebellum- 

parvocellular red nucleus system, which projects 
back to the motor cortex, provides a crude 
inverse-dynamic model of the musculoskeletal 
system, which is acquired whilst monitoring the 
desired trajectory [73]. The crude inverse-
dynamic model works together with the dynamic 
model provided by the cerebellum embedded in a 
feedforward control loop thus updating motor 
commands according to predictable errors 
occurring when executing a movement. It learns 
and stores models of the skeleto-muscular system 
providing the precise timing control of agonist–
antagonist muscle pair groups in addition to the 
needed force and stiffness control [76]. 
Obviously, the muscle flexion–contraction 
precise timing and the needed force in a 
manipulation task depend on the weight to be  



 
 

 

Fig. 3. (A) Benchmark trajectory to be performed consisting of sinusoidal components. The trajectory is shown in both 
joint coordinate and Cartesian coordinates (eight-like trajectory). The receptive fields are distributed covering the whole 
range determined by the joint coordinates. (B) Implemented cerebellar control loop. The cerebellum infers a corrective 
model that produces effective corrective commands in order to compensate the existing mismatch between the crude 
inverse dynamic robot model and the actual base dynamic plant model. The desired arm states are generated according to 
the Cartesian trajectory to be followed (positions (𝑄d), velocities (𝑄̇d) and accelerations (𝑄̈d)) by the trajectory generator 
(a crude inverse kinematicmodel representing the output of the associative cortex and othermotor areas). These desired 
armstates in joint coordinates are used at each time step to compute desired torque commands (crude inverse dynamic 
robot model). They are also used as input to the cerebellum which produces the predictive corrective commands 
(τcorrective) which are added to these crude torque commands (τdesired). The final total torque addition is supplied to the 
robot plant. The difference between the actual robot trajectory and the desired one is used to calculate the climbing fiber 
activity which is supplied to the cerebellum as a teaching input signal (for adapting PF–PC synaptic weights). 

handled (more concretely, on the dynamic model 
of the object under manipulation), the cerebellum 
being crucial for delivering this proper timing, 
force, and coordination; these appropriate 
corrective terms are learned through a trial-and-
error process [68]. 

2.5. Simulated robot integration: robot and 

training trajectory 

Behavioral experiments with an embodied 
cerebellar system require the integration of a real 
or simulated robot in the control loop. The 



 
 

simulated robot is intended to follow a specific 
trajectory whilst the cerebellar model learns to 
provide corrective torques for the robot actuators. 
The robot-control experiment results are intended 
to assess the effects on performance caused by 
concrete neural properties, cerebellar subcircuits, 
or adaptive mechanisms (synaptic plasticity). 
This robot-control experimentation demands 
human-like robots whose intrinsic dynamics is 
somewhat similar to their biological counterparts. 
This requirement motivates the use of lightweight 
robots (LWR) such as the Kuka lightweight robot 
developed by DLR [77,78]. 

As mentioned above, the main role of the 
cerebellum seems to be related to human motor 
control, especially in those tasks where timing 
and force are critical. Therefore, those 
manipulation tasks able to modify the dynamics 
of the arm-plant whilst performing certain 
movements would constitute the paradigm to 
follow. These LWR robots are capable of being 
dynamically modified when manipulating 
different payload contexts under certain kind of 
movements. This motivates the definition of a 
benchmark trajectory capable of revealing the 
dynamic properties of a LWR. According to the 
proposals in [76,79], fast movements in a smooth 
pursuit task consisting of vertical and horizontal 
sinusoidal components are good candidates in 
order to reveal the robot dynamics. Examples of 
different benchmark trajectories can be checked 
in [74,76,80]. Considerations related to the 
communication interface delay and the friction 
force of the robot joints need to be taken into 
account (see Appendix). 

2.6. The integrated neurobotics simulation 

platform 

These techniques are now included into an 
integrated software platform able to combine 
realistic robotic experiments (running in real 
time) with cerebellar like modules that work as 
corrective engines. This platform aims to 
facilitate the study of how the adaptive neural 
information coding mechanisms underlying the 
ability of humans to interact with their 
environment is handled by means of an effective 
adaptation at the cerebellum. The simulator of the 
robotic LWR arm, the control loop, and the 

cerebellar module were implemented in C/C++ 
following previous developments [5–7,24,25]. 
The software platform source code has been made 
available at: 
https://code.google.com/p/edlut/source/browse/br
anches/EDLUT_with_Robot. 

The core of the neural simulator was 
implemented taking EDLUT [4] source code as 
the basis. EDLUT was then provided with an 
interface library as well as with a robot library 
able to dynamically define and model different 
lightweight robot configurations. In this work, we 
use a rough approximation of a Kuka LWR [77]. 

2.7. A practical running example 

The aim of this working example is to show 
how a cerebellar model based on [7] within a 
“perception–action” closed-loop [5–7,74] is used 
in order to control a simulated LWR [77] arm by 
means of the developed software platform. 
Vertical and horizontal sinusoidal composed 
trajectory-following tasks [5–7,74] will be run in 
order to reveal the robot dynamics (see Fig. 3) 
with different payloads to be manipulated. The 
input pathways to the artificial cerebellum will be 
MFs and CFs. The cerebellar output is translated 
into torque commands for each joint through 
conversion modules [5–7], following the 
approach described in the previous section. 

3. Results 

Using this cerebellar architecture, a 1000 trial 
execution (each trial takes one second) following 
the principles already presented in [7] has been 
performed, obtaining the raster plot shown in Fig. 
4. This figure represents a snapshot of one trial 
execution representing a cerebellar simulation of 
one second eight-like trajectory operating 3 
revolute joints (joint 1, joint 2, and joint 3 
indicated in Fig. 3) of a LWR defined in [5–7] 
when manipulating a 10 kg payload. This 
snapshot corresponds to two particular moments 
during the learning process; the initial learning 
stage (left column plots) and the final learning 
stage (right column plots). Mind that, as can be 
seen in Fig. 4, at the initial learning stage (0–1 s 
period), no cerebellar action has been learned yet 
(Fig. 4(E)), whilst at the final learning stage  



 
 

 
Fig. 4. Cerebellar activity monitoring one second simulation snapshot at the beginning of the learning process (left plots) 
and at the end of the learning process (right plots). Left Y axes are used for the neuron number in the network. The bottom 
legend indicates how these neurons are related to different joints and agonist or antagonist micro-complexes by using 
different colors. Plots C–F include two overlapped representations, the spike patterns related to the left Y axis and a 
continuous line referred to the right Y axis at each plot. (A) (B) Translation of the desired/actual joint positions/velocities 
into mossy fiber activity at the beginning of the learning process (A) and at the final learning stage (B). (C) (D) Evolution 
of the climbing fiber activity during the learning process and its corresponding error current proportional to the actual 
position and velocity error. (C) High error current translated into spikes at the initial learning stage. (D) Lower error 
current translated into spikes at the end of the learning process. (E) (F) Cerebellar output during the learning process and 
the corresponding generated analog corrective action. (E) Cerebellar output at the beginning of the learning process. No 
spikes are elicited at the DCNs, the corrective actions are zero. (F) Cerebellar output at the end of the learning process. The 
spike output activity is translated into corrective actions for each robot joint. Each couple of micro-complexes is related to 
a certain robot joint (agonist and antagonist terms). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article). 



 
 

(999–1000 s period), the learning process is well 
settled down (Fig. 4(F)) and corrective terms are 
delivered through DCNs. 

As we see, all plots represent activity along 
time using dots (in plots A and B, each dot 
represents a spike) or short vertical markers when 
the number of neurons being monitored is lower 
(plots C, D, E, and F). Fig. 4(A) represents a 
raster plot of the input activity that is reaching the 
cerebellar architecture through mossy fibers at the 
initial learning stage. As explained before, mossy 
fibers are able to elicit a set of spike trains related 
to the desired and actual positions and velocities 
(according to the scheme illustrated in Fig. 2) 
presented by the robot arm along the eight-like 
trajectory movement. Each joint position and 
velocity is translated into spikes by using three 
groups (one for position and another one for 
velocity for each joint) of 20 mossy fibers. Each 
of these groups is activated by its corresponding 
set of receptive fields (Fig. 2) that are covering 
the operative range of the input variable. At this 
initial learning stage, the actual trajectory is far 
from the desired one, thus position/velocity 
values only activate part of the population of 
mossy fibers (compared to the activation of the 
mossy fibers encoding the desired trajectory). 
However, as Fig. 4(B) shows, at the final learning 
stage, both actual position/velocity values can 
properly cover the operative range of the input 
variables. It can be seen that at this final learning 
stage, the activation of the mossy fibers related to 
the desired trajectory is similar to the activation 
profile of the mossy fiber group related to the 
actual trajectory (encoding actual position and 
velocity along the movement execution). 

The activity of mossy fibers reaches the 
granular cell layer. The granular layer operates 
adopting the model functionality described in 
[13–15] by Yamazaki and Tanaka, that is, it 
behaves as a state generator. A state generator 
machine is capable of representing each time step 
(in our simulations, this is 0.002 s) as an 
unambiguous time stamp (with a unique spike 
pattern representation), thus facilitating the 
learning process (see [7]). 

As indicated in the description of the 
cerebellar architecture, the Purkinje cell activity 
is divided into 6 well-defined sets of spike trains 

representing the generated spiking activity related 
to the output agonist/antagonist joint micro 
complexes for each robot joint (joint 1, joint 2, 
and joint 3). Each pair of these 6 well-defined 
sets is related to each agonist/antagonist 
corrective action for the three joints. As 
aforementioned, the inferior olive activity 
(spiking patterns Fig. 4(C), (D)) is in charge of 
encoding the error signal (Fig. 4(C), (D) colored 
lines) that has to be compensated by the 
cerebellar corrective terms; here, we can see that 
there are also 6 well-defined areas related to 
micro-complexes encoding the positive/negative 
corrective actions for the three robot joints. Fig. 
4(C), (D) illustrates how the inferior olive spike 
distribution during the trajectory execution 
remains proportional to the received error signals 
which in turn, are related to the actual 
position/velocity errors. In these figures, it is 
shown how just a positive corrective action is 
demanded in joints 2 and 3 whilst both positive 
and negative actions are demanded in joint 1 
along the whole eight-like trajectory execution. 
The error directionality (either positive or 
negative error) is also illustrated in Fig. 4(C) and 
(D). Obviously, at the initial learning stage, the 
amplitude of the encoded error signal to be 
translated into spikes is high as well as the 
number of spikes elicited by the inferior olive 
since the learning process has barely started (Fig. 
4(C)). On the contrary, once the learning process 
is well settled down, the expected amplitude of 
the encoded error signal to be translated into 
spikes and the numbers of elicited spikes by the 
inferior olive decreased significantly at this final 
learning stage (Fig. 4(D)). The Inferior Olive cell 
activity is constrained between 1 and 10 Hz, 
according to neurophysiological data [81]. 

Finally, DCN generated output activity is 
plotted in Fig. 4(E) and (F). At the beginning of 
the learning stage, a negligible cerebellar output 
is provided (Fig. 4(E)) whilst at the final learning 
stage (Fig. 4(F)), an appropriate cerebellar output 
corrective action is generated. Error corrections 
are accomplished by changes in the activity of 
PCs that, in turn, affect the activity of the DCN, 
which eventually is translated into analog torque 
correction signals (also plotted in Fig. 4(E) and 
(F), with continuous lines) following principles  



 
 

 
Fig. 5. Robotic performance (system behavior) in a 
manipulation task. The manipulation of a 10 kg payload 
whilst executing an eight-like trajectory reveals the inner 
robot dynamics. The benchmark trajectory execution takes 
one second in each trial. (A) Snapshot of the execution of 
the eight-like trajectory in joint coordinates (position) 
belonging to the initial learning stage (top plots) and the 
final learning stage (bottom plots). (B) Snapshot of the 
execution of the eight-like velocity trajectory in joint 
coordinates (velocity) belonging to the initial learning stage 
(top plots) and the final learning stage (bottom plots). (C) 
Averaged Mean Absolute Error (during each trial) obtained 
along the learning process computing the addition of the 
individual MAEs corresponding to each robot joint. Four 
different simulations with different initial random values at 
PF–PC synaptic weights have been used. The shadowed 
area is defined between the maximum and minimum values 

among the four simulations in each trial. The red curve is 
the average of the four simulations. (D) Cartesian 
coordinate evolution during the learning process. At the 
initial learning stage, the LWR is not capable of properly 
handling the attached payload. At the final learning stage, 
the cerebellum is able to provide the appropriate corrective 
torque values achieving almost the aimed target trajectory. 
(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this 
article). 
already presented in the previous section. Each 
group of 4 DCN cells encodes the positive or 
negative corrective term which is eventually 
translated into a joint corrective torque. The 
higher/lower the activity at each micro complex 
is, the higher/lower its corresponding corrective 
torque is. In fact, the final activity at the DCN 
(which represents the actual corrective terms 
being produced) is the result of the subtraction of 
the PC activity (since its connection to DCN is 
inhibitory) which is specific and learned (through 
supervised learning at the granular cell-Purkinje 
cell synapses) from a general (nonspecific) 
activity term (from mossy fibers) which is 
approximately constant. Mind that, although the 
corrections of the DCN after learning may seem 
very irregular with high frequency terms 
(continuous lines Fig. 4(E) and (F)), the actual 
contributions are smoothed out by the motor 
system (in this case, the actual motor gears). 

3.1. Robotic input/output 

As briefly described in this work, cerebellar 
neural models are a current open issue whose 
operating basis is not yet well determined due to 
their working complexity principles. New tools 
for massive simulations (with multiple 
parameters) and state monitoring capabilities are 
necessary to identify how certain 
neural/subcircuit/neural layer features are related 
to the cerebellar functionality. Therefore, relating 
the cerebellar operation with the system in which 
the cerebellum is embodied seems to be the 
natural step forward. The presented integrated 
software platform is able to establish this 
interconnection between these two elements as 
shown in Figs. 4 and 5. Monitored snapshots of 
the whole cerebellar activity are related with their 
corresponding robot performance curve (system 
behavior). These snapshots facilitate the 



 
 

interpretation of the results giving a better insight 
about what is going on during embodied 
experimentation (behavioral experiments as the 
manipulation task illustrated in the previous 
section). Fig. 5 is an illustrative example of the 
sort of performance curves that can be obtained 
by using the presented software platform. Here, 
the robot arm is manipulating a 10 kg payload 
whilst executing a one second eight-like 
trajectory able to reveal the inner robot dynamics. 
Fig. 5(A) and (B), represent a snapshot of this 
one second eight-like trajectory execution in joint 
coordinates belonging to the initial learning stage 
(first row plots) and the final learning stage 
(position and velocity) (second row plots). The 
target trajectory at each joint is plotted in blue 
(continuous line) whilst the actual trajectory at 
each joint is plotted in red (dashed line). The 
error directionality (position and velocity error) is 
shown in these plots (either positive or negative 
error). As mentioned before, during the 
manipulation of objects with a significant weight, 
the arm–object platform dynamics differ from the 
original arm dynamics. This translates into a 
continuous negative error at the 2nd and 3rd joints 
which activates just one of the two inferior olive 
micro complexes (related to each joint) during the 
simulation. Additionally, Fig. 5(C) shows the 
Mean Absolute Error (MAE) obtained along the 
learning process. Finally, plot 5(D) represents just 
an example of how the obtained Cartesian 
coordinates of the tip of the robot arm evolve 
during the learning process. As shown, at the 
initial learning stage, the LWR is not capable of 
properly handling the attached payload; there is 
no acquired cerebellar corrective model for the 10 
kg payload. Therefore, no corrective torque 
values are supplied yet. At the final learning 
stage, the cerebellum is able to provide the 
appropriate corrective torque terms achieving 
almost the aimed target trajectory. 

Fig. 6 shows the same kind of 
experimentation conducted in Fig. 5 but 
extrapolated to different masses so as to reveal 
the capabilities and features that the learning at 
PF–PC synapses endows. Fig. 6(A) and (B), 
represent the MAE evolution whilst the robot arm 
is manipulating different payloads (10, 6 and 2.5 
kg respectively) whether independently or 

consecutively. In Fig. 6(A) the learning process is 
reset, which means that all the synaptic weights at 
PF–PC are randomly chosen at the end of the 
learning of each payload whilst in Fig. 6(B) the 
learning process is not reset at the end of each 
payload learning. As can be seen, the learning is 
not destructive; the incoming learning process 
takes advantage of the previous learning process 
as indicated by the lower initial starting MAE 
error after switching between contexts. Fig. 6(C) 
points out the normalized performance that each 
of the aforementioned experiments achieves. Fig. 
6(D) demonstrates how the learning process is 
compatible with incremental learning. Here, the 
payloads are switched every 50 trials (between 10 
kg/6 kg in the left plot and 6 kg/2.5 kg in the right 
plot) thus showing how the learning process can 
simultaneously abstract two different payloads 
(two different dynamic models) that are only 
marginally interfering with each other. 

3.2. Real time simulation 

The computation load when simulating 
spiking neurons is high and needs to be done 
efficiently for controlling robots in real time. 
When any event-driven simulator is confronted 
with a massive amount of data to be processed 
online, this approach suffers due to the 
discontinuous flow of data to be computed. In 
fact, the learning process must be done online, in 
real time, as the robot is moving. A mechanism to 
ensure real time when processing all the neural 
activity involved during the simulation process 
has been implemented. During a neural 
simulation, all neural updates have to be 
processed in chronological order. However, 
during the neural simulation, future events may 
appear (i.e. events that occurred due to delayed 
spike firings or neural connections presenting 
delays). To manage this situation, a heap data 
structure able to efficiently insert and extract 
ordered events is required. Controlling the CPU 
time consumption of each time step allows real-
time simulation. Although the calculation of the 
dynamics and kinematics of the robot (for 
instance, using a Newton Euler algorithm [74]) 
involves a constant number of operations at each 
time step, the neural simulation computational 
cost depends on the neural activity. 

 



 
 

 
Fig. 6. Independent Learning vs. Incremental Learning. (A) Manipulation of 10, 6, and 2.5 kg independently. The learning 
process is reset (synaptic weights at PF–PC are randomly chosen at the end of the learning process of each payload). (B) 
Manipulation of 10, 6, and 2.5 kg consecutively. The learning process is not reset at the end of the each payload learning. 
The learning is not destructive; the incoming learning process takes advantage of the previous learning process as 
indicated by the lower initial starting MAE error after switching between contexts (objects under manipulation). The zoom 
in the graph shows how the system behaves when these new objects are presented again (300 iterations each). This 
demonstrates that the learning is done with only low interference between the object model dynamics being learned 
(abstracted). (C) Normalized initial error values (obtained in the ten-first trial errors per payload, 10 kg initial error has 



 
 

been taken as the worse possible scenario) obtained at the beginning of the learning process with independent learning (left 
plots) and consecutive or incremental learning (right plots). The normalized average and standard deviation of MAE 
values (of the last 100 trials of each learning process) with independent learning (left plot) and consecutive or incremental 
learning (right plot) are also shown. In any case, incremental learning outperforms independent learning. (D) Incremental 
learning. Switching payloads every 50 trials (between 10 kg/6 kg in the left plot and 6 kg/2.5 kg in the right plot). It is 
shown how the learning can simultaneously abstract two different payloads (two different dynamic models) only 
marginally interfering with each other. 

We have implemented a watchdog timer 
supervising each simulation time step. When the 
simulation process is consuming more time than a 
certain predefined constraint percentage of the 
total robot communication step time, the 
simulator skips noncritical event processing, thus 
keeping the simulation running in time (see Fig. 
7). In our example, the total computation time has 
to remain below 2 ms, since the communication 
between the neural simulator and the robot 
platform is sliced in 2 ms intervals. As shown in 
Fig. 7(A), the computation time of each 
simulation slice (of 2 ms) consumes less than 2 
ms. The “computation time” includes the 
cerebellar simulation time, the robotic simulation 
time, and the communication time between them. 
At each simulation step, the cerebellum updates 
and computes its internal neural states thus 
eliciting a set of generated spikes. There exists a 
close relationship between the number of 
generated spikes and the consumed 
computational time (Fig. 7(A) and (B)). In the 
end, a trade-off decision has to be taken. A 
watchdog ensures that the boundary will not be 
surpassed. 

This illustrative simulation is composed by 
1871 neurons and 69 603 synapses. We have used 
simple point neurons (parameterized according to 
different cerebellar neuron types) with three state 
variables (membrane potential and the excitatory 
and inhibitory conductances). Thus, 5613 state 
variables need to be continuously updated. 
During one second of simulation, the network 
produces 9890 spikes and 69 603 synaptic weight 
modifications (through spike time dependent 
plasticity at the parallel fiber to Purkinje cell 
synapses). All this needs to be computed within 
the real-time constraint. The simulation was run 
on a CPU consisting of a Pentium i7 3770k 3.4 
GHz processor with 8 GB RAM all mounted on 
an ASUS P8Zseries motherboard. 

 
Fig. 7. Real time monitoring. The total computation time 
has to remain below 2 ms, because the communication 
between the neural simulator and the robot platform (real or 
simulated) is sliced in intervals of 2 ms. 

4. Discussion 

Along this paper, we have outlined how the 
EDLUT neural simulator has been equipped with 
an integrated robotic software framework. The 
dialog between these two elements, the EDLUT 
and the robotic software, is mediated by an 
efficient bidirectional interface (analog signals to 
spike patterns and vice versa) able to process 
sensory data from the robot agent and generate 
the appropriate robot motor commands. As a 
running embodied nervous system example, we 
have implemented and described a cerebellar 
architecture within a robotic control closed-loop 
where the robot features allow the exploitation of 
the cerebellar potential in a manipulating control 
task. This manipulation task aims to follow a 
specific desired trajectory consisting of sinusoidal 
components with the robotic arm manipulating a 
punctual mass. This punctual mass (representing 
the object under manipulation) affects the global 
dynamic model of the arm + object plant. The 
cerebellar system aims to provide corrective 
torque terms to compensate the existing mismatch 
between the arm dynamic model and the one of 



 
 

the arm + object under manipulation. These 
corrective torque terms are refined as the 
cerebellum acquires the dynamic model of the 
object under manipulation. This can be 
considered an abstraction process based on just 
the synaptic plasticity mechanism between the 
parallel fibers and the Purkinje cells. 

The interest of this integrated neurobotics 
software platform can be outlined in two main 
points: for accelerating the development of 
biologically plausible control architectures 
cooperating with robot agents and for studying 
how certain capabilities of the cerebellum in 
coordinated motion and object manipulation are 
based on cellular characteristics, nervous system 
topology, or local synaptic adaptation 
mechanisms. In fact, a rich dynamical 
environment (i.e. highly reconfigurable robot 
model dynamics and reconfigurable cerebellar 
control loops) is a powerful tool to explore 
neurophysiological hypotheses from a functional 
point of view. All this also needs to be 
complemented with an appropriate monitoring 
and evaluation methodology. Here, it has been 
addressed not only just the way in which the 
neural activity can be plotted and interpreted by 
considering the micro-complex biologically 
plausible cerebellar organization, but also the 
neural activity contributions to agonist and 
antagonist motor system outputs thanks to the 
continuous monitoring of the target and actual 
joint trajectories. 

Furthermore, the performance obtained is also 
remarkable. Although a simulation achieving 
real-time could be considered to be irrelevant, it 
is a critical non-trivial issue in embodied system 
neuroscience. When doing experiments with a 
real neuro-operated body, real-time operation 
becomes a major requirement. We have shown 
how this integrated software framework fulfils 
real-time requirement enabling a future real-robot 
cerebellar spiking control. In fact, the software 
framework integrating the neural simulator, the 
robotic simulator and all the communication and 
monitoring components has been developed with 
demanding real-time constraints. 

5. Conclusions 

In this paper, we show how a cerebellar 
structure integrated in the control loop as an 
adaptive feedforward model can learn to abstract 
model dynamics of objects being manipulated. 
We use an integrated simulation platform 
consisting of a real-time spiking neural simulator 
(EDLUT) and a simulated robot (LWR). This 
platform allows us to monitor the cell activity at 
different layers in terms of spike patterns as well 
as the contribution that they produce in terms of 
actual corrective torques within the control loop 
before learning the object model, and also 
eventually in the corrected trajectory (closer to 
the goal trajectory) after the learning process 
converges. The possibility of monitoring each 
cell activity allows us to interpret how the whole 
network works, receiving distributed spike 
patterns from the mossy fibers, producing sparse 
coding at the granular layer and adapting the 
weights between the granular layer and the 
Purkinje cells through supervised learning driven 
by the inferior olive activity (which is related to 
the actual error at each instant of the trajectory 
execution). The cerebellum integrated in the 
control loop with the presented configuration 
(actual and desired positions/velocities reaching 
the cerebellum through mossy fibers), performs 
the model abstraction process, as a function 
approximation problem (with the object under 
manipulation on-the-loop). 

In the final experiments done (Fig. 6(A), (B) 
and (C)), we demonstrate that the presented 
architecture can learn dynamic models 
incrementally (with low interference with each 
other). In fact, learning a new model takes 
advantage of previous learned weights (related to 
previous objects under manipulation) but without 
destroying these previous models (Fig. 6(D)). 
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Appendix A. considerations related to 

benchmark trajectory accuracy; 

communication interface delay 

When a real robot is connected to the 
controller (cerebellar base controller), its 
communication interface introduces a delay each 
time that the joint positions are obtained and the 
joint motor torques are set. This delay limits the 
frequency in which the controller can interact 
with the robot. Thus, the robot communication 
interface determines the minimum control cycle 
time. The robot trajectory accuracy decreases as 
the control cycle time increases, since, for 
example, the robot motor torque set points remain 
constant during each cycle. Therefore, the 
suitability of a concrete communication interface 
(bus) depends on the trajectory accuracy decline 
which is acceptable. It is of importance then to 
take this limitation into account when developing 
realistic real-time software towards embodied 
system neuroscience. Spiking cerebellar updating 
usually demands simulation step times in the 
millisecond scale (1–2 ms) [5–7] making this bus 
delay consideration an important factor to be 
considered when designing cerebellar control 
stages. 

 
Fig. A.1. Possible consequences of the interface delay: 
snapshot of the cerebellar torque supplied to a LWR robot 
[77] (after being kept constant for several milliseconds as 
indicated in different traces). 

Just as an example, Fig. A.1 illustrates the 
inaccuracy introduced by different bus 
transmission delays for different conducted 
experiments using a simulated lightweight robot 
[77] and an eight-shaped test trajectory. In order 
to simulate the effect of a communication bus, the 
torque generated by the controller is repeatedly 

kept constant for a period (control cycle time). 
When the robot input torque is increasing, the bus 
delay produces an average torque below the 
desired one (with negligible bus delay). The 
opposite occurs when the input torque is 
decreasing. Therefore, the joint angle error 
caused by the transmission time is related to the 
desired angle value and velocity during the 
trajectory execution. 

Appendix B. Considerations related to 

the friction force of the robot joints 

There are several forces that affect the 
expected robot dynamic model. When these 
forces are not properly taken into account, an 
open-loop controller for an ideal robot may fail to 
produce accurate movements. The most relevant 
perturbing forces that can be easily found in 
simple robotic arms can be summarized as 
follows: 

Force exerted by the wires attached to the 

robot motors (for supping current and measuring 

angle encoder inputs/outputs): These forces 
remain relatively low. They can pull or push the 
robot’s joints when the arm is in certain positions, 
facilitating or hindering the movement in certain 
directions. Since these forces are usually very 
low, it can be assumed that they will be 
compensated thanks to the adaptability of the 
cerebellar controller.  

Inner dry friction forces of the robot joints: 
The two regimes of dry friction are static friction 
(the joint remains static) and kinetic friction 
(between moving surfaces of the joint). 
Sometimes the static friction of some robots is 
very significant. This friction force can be also 
compensated by the cerebellar controller. 
Nevertheless, when the magnitude of this force is 
comparable or higher than the rest of the force 
that the cerebellar controller must exert (to 
compensate for other deviations from the ideal 
dynamic model), the precision of the adaptive 
cerebellar module to compensate these other 
deviations is low. This occurs because if the 
cerebellar output force range increases, the 
resolution of its output per force unit decreases. 
This output range increase is equivalent to 
multiplying the output by a factor; therefore, the 



 
 

inaccuracy of this output would also be 
multiplied. 

Accurately compensating the effect of the 
friction forces can sometimes become 
considerably complex, depending on the used 
compensation technique (this force is not the 
same in all the possible joint angles); in fact, the 
friction term proves to be crucial when 
controlling light-weight robot arms with high-
ratio gear boxes because there are no standard 
methodologies/techniques to control these robots 
without massive modeling [76]. However a 
complex technique to fully compensate this force 
is not needed since the cerebellar module can 
conveniently compensate it (when it is relatively 
low). Thus, in this case, the goal of the 
compensation technique should not be to fully 
compensate for these perturbations, but to keep 
them in a range domain where the cerebellar 
module can learn to accurately correct the 
movement deviations. 
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Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents

from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic

currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought

to be also adaptive, embedding interesting properties in the framework of accurate

movements. We show that distributed spike-timing-dependent plasticity mechanisms

(STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers

to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells)

in close-loop simulations provide an explanation for the complex learning properties of

the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar

spiking model. In this newmodel, deep cerebellar nuclei embed a dual functionality: deep

cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow

memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping

the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep

cerebellar nuclei afferents allows the accommodation of synaptic memories that were

formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers

to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to

modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward

optimizing its working range).

Keywords: cerebellar nuclei, spike-timing-dependent plasticity, motor learning consolidation, cerebellar

modeling, cerebellar motor control

INTRODUCTION

Since Marr (1969) and Albus (1971), the cerebellar loop has been extensively modeled providing
smart explanations on how the forward-controller operations in biological systems seem to work.
The classic long-term synaptic plasticity between parallel fibers (PF) and Purkinje cells (PC) [driven
by the inferior olive (IO) action] stands at the core of those processes related to sensorimotor
adaptation and motor control. However, this adaptation mechanism can be enhanced with

Abbreviations: PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule cell; GoC, Golgi cell; PC, Purkinje cell;

DCN, deep cerebellar nuclei; IO, inferior olive; MLI, molecular layer interneuron; MAE, mean average error; EBCC, eye blink

classical conditioning; VOR, vestibulo-ocular reflex.
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complementary plasticity sites at the cerebellar circuit.
Particularly, in this work we explore how STDP at Deep
Cerebellar Nuclei efficiently complements the classical PF–PC
long-term plasticity as an efficient adaptive gain term and
memory consolidation resource.

Plasticity in Deep Cerebellar Nuclei
It is worth revisiting the original theories based on the structural
analysis of cerebellar connectivity (Eccles, 1967; Eccles et al.,
1967; Marr, 1969; Albus, 1971; Fujita, 1982). In those theories,
the cerebellum was proposed to act as a timing and learning
machine. The granular layer was hypothesized to recode the
input spatiotemporal activity into sparse somatosensory activity.
Then, only the relevant patterns were learnt and stored at
PF–PC synapses under the supervised control of the teaching
signal supplied by climbing fibers (CF). In light of different
electrophysiological findings, it has been suggested that the CFs
convey sensory feedback from comparing proprioceptive and
predicted signals. CFs could indeed provide quantitative error
estimation (Bazzigaluppi et al., 2012; De Gruijl et al., 2012) that,
in turn, would be able to improve motor performance through
specifically depressing the PF (PF–LTD) synapses that are more
correlated to motor errors.

Although since the early 70s, plasticity in the cerebellar cortex
was widely accepted and established, demonstrations of synaptic
plasticity in cerebellar learning at cerebellar nucleus cells were
studied significantly later. It was at the end of the 1990s when
the analysis of the circuit-cerebellar basis for learning eye-
movement yielded insight into a plausible two-state learning
mechanism (Shadmehr and Brashers-Krug, 1997; Shadmehr
and Holcomb, 1997). That is, whilst a fast learning process
occurs in the cerebellar cortex (granular and molecular layer,
involving PF–PC plasticity), a slow consolidation process occurs
in deeper structures (possibly, at the deep cerebellar nuclei, DCN;
Shadmehr and Brashers-Krug, 1997; Shadmehr and Holcomb,
1997; Medina and Mauk, 2000; Ohyama et al., 2006).

The main idea behind this speculative scheme lies on
assuming that PF and PC outcomes are mediated by upstream-
processing-nervous centers and, in turn, PC outcome shapes
the output of its corresponding DCN-target neurons (Miles and
Lisberger, 1981; Zhang and Linden, 2006; Zheng and Raman,
2010). This two-state learning mechanism was motivated by the
fact that DCN neurons are innervated by excitatory synapses
from mossy fibers (MFs) as well as by inhibitory synapses
from PCs. The interplay between these excitatory and inhibitory
connections has not been well-established yet. However, evidence
of synaptic-plasticity traces at MFs (Racine et al., 1986; Medina
and Mauk, 1999; Ohyama et al., 2006; Pugh and Raman, 2006;
Zhang and Linden, 2006; Yang and Lisberger, 2014) and at PC
synapses (Morishita and Sastry, 1996; Aizenman et al., 1998;
Ouardouz and Sastry, 2000; Masuda and Amari, 2008) in the
cerebellar nuclei and their vestibular nucleus (VN) counterparts
has recently been encountered. This motivates the development
of an adequate mechanistic model toward better understanding
the potential of the DCN plasticity role.

Deep nucleus plasticity is assumed to be supervised and,
according to different hypotheses, it is thought to be responsible

for storing granular layer patterns that are correlated with the
teaching signal generated by PCs (Hansel et al., 2001; Boyden
et al., 2004; Gao et al., 2012). This plasticity comprises several
mechanisms generating LTP and LTD at MF–DCN (Bagnall and
du Lac, 2006; Pugh and Raman, 2006) and PC–DCN synapses
(Morishita and Sastry, 1996; Aizenman et al., 1998; Ouardouz
and Sastry, 2000). MF–DCN and PF–DCN plasticity are indeed
thought to be important in controlling cerebellar learning in
the context of the eye-blink classic conditioning (EBCC; Medina
and Mauk, 1999, 2000). The equivalent forms of plasticity in the
VN are also important in controlling cerebellar learning in the
vestibulo-ocular reflex (VOR; Masuda and Amari, 2008).

Recent works based on a simplistic cerebellar model have
proposed that the MF–DCN and PC–DCN synaptic plasticity
mechanisms are an adaptive cerebellar-gain control (Garrido
et al., 2013a; Luque et al., 2014b). Nevertheless, those works were
focused just on the functional role of these DCN learning rules,
without answering the question of how these learning rules may
take place as STDPmechanisms. Twomain issues were addressed
within these computational approaches:

• Firstly, the proposed adaptive gain controller (Garrido et al.,
2013a; Luque et al., 2014b) at the cerebellum was equipped
with suitable learning and memory mechanisms whose nature
is still under debate (Carey, 2011; Yang and Lisberger, 2014).

• Secondly, the gain-control system involving the cerebellum
was capable of optimizing its performance within wider
operative ranges; concretely, keeping PF–PC adaptation
mechanisms within their optimal working range.

Conversely, these approaches still lack two key features that are
addressed in the present work in a more realistic and biologically
plausible scenario:

i. Whilst MF–DCN and PC–DCN plasticity played a key role
in generating the gain controller, the way through which the
slow learning consolidation process occurred was still missing.
The level of detail of those previous computational approaches
prevented this feature from being properly addressed.

ii. It was not clear how to implement the analog conceptual
model of these previous approaches into a spiking-based
model compatible with spiking signal processing and then
endowed with long-term spike-timing-dependent plasticity
mechanisms.

Now, in this work, we have studied the impact of distributed
cerebellar spike-time synaptic plasticity on both gain adaptation
and learning consolidation when performing a manipulating
task. To that purpose, we have used a cerebellar spiking-
based model embedded in closed loops. The working hypothesis
assumes that there exist three learning sites; one located in
the cerebellar cortex (PF–PC) and the other two located at the
DCN innervations (MF–DCN and PC–DCN), all including LTP
and LTD (Figure 1A). We found that our simulations captured
the adaptive features proposed in the analog models regarding
self-adaptive-gain control recalibration over a broad dynamic
range involving manipulation of a heavy mass. Furthermore,
we confirmed how MF–DCN innervations broadly stored what
was already learnt at PF–PC. PC–DCN was also revealed as a
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FIGURE 1 | Schematic representation of the main cerebellar layers, cerebellar cells and connections, as well as plasticity sites considered. Working

hypothesis of cerebellar learning in a manipulation task. (A) Cerebellar architecture. Colored representation indicates signals from different sources such as different

cuneate receptive fields or proprioceptors. Pathways involved in long-term synaptic plasticity for DCN and PC afferents are indicated with two colored symbols;

long-term potentiation in blue and long-term depression in magenta. PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule cell; PC, Purkinje cell; DCN,

deep cerebellar nuclei. (B) Conceptual cerebellar block-diagram. Each cerebellar layer is put in relation to its functionality according to the cerebellar model hypothesis

being adopted. MF input layer conveys sequences of spikes acting as time-evolving states (raw state generator) which present a constant firing rate, thus supplying

the excitatory activity required by the DCN to start operating. The cerebellar granular layer operates as a state generator that is reinitialized with the onset of a new

trial. The PC function acts as a state-error correlator; each state is correlated with the error signal that reaches the PCs through the CFs and represents the difference

between the controlled variable (actual cerebellar output value) and the reference variable (set point). By repeating pairings of PF states and CF error signals, trial after

trial, an association between these two sets is formed thanks to the PF–PC long-term plasticity action driven by the activity at CFs (supervised learning). A learnt

corrective action is therefore deployed to anticipate the incoming error. This association implies either a reduction or increase of PC firing at different step times. Finally,

the temporally correlated signals from PCs are inverted (due to the inhibitory nature of the PC–DCN connection) and conveyed to the DCN which, in turn, receives

inputs coming from MF afferents (excitatory). The DCN operates like an adder/subtractor able to adaptively modulate the output DCN gain which enables learning

consolidation (adapted from Garrido et al., 2013a). (C) During each manipulation trial, the onset of the movement makes MFs convey sequences of spikes that

present a constant firing rate and time-evolving states simultaneously. This MF constant firing-rate initialization, in turn, allows PFs to start generating a non-recurrent

sequence of firing states (Yamazaki and Tanaka, 2007b, 2009). To that aim, groups of non-overlapped MFs are correlatively activated during the simulation. Each

colored MF group represents a certain state able to determine univocally a certain time-period within the simulation (D) The figure presents the GC coding

(Continued)
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FIGURE 1 | Continued

strategy: in our model, the states correspond directly to non-overlapped GCs activated at each time-step simulation. Each PF group represents a certain state able to

determine univocally a certain simulation step-time within the simulation (E) Each CF carries the teaching spikes. CF cell response follows a probabilistic Poisson

process. A single spike reports time-information regarding the instantaneous error and the probabilistic spike sampling of the error ensures that the whole error region

is accurately represented over trials (F) The generated DCN spike train is translated into meaningful analog output signals by using a Finite Impulse Response filter

(FIR).

fundamental plasticity site in charge of adapting the DCN-output
firing rate.

MATERIALS AND METHODS

Within this section, the working principles of the proposed
mechanistic spiking cerebellar model are described.
Furthermore, the major functional hypotheses related to
the granular layer, PC layer, and DCN are linked to the cerebellar
underlying structure (Figure 1B). The section is also divided into
two main blocks. The first block describes the cerebellar topology
to be used and the implemented spike-timing-dependent
plasticity mechanisms. The second block consists of two case
studies: Case study A uses a simplified cerebellar control loop
seeking to reveal the functional interplay amongst distributed
plasticity cerebellar sites, whereas Case study B uses a cerebellar
control loop designed to operate a simulated robotic arm (able to
manipulate heavy masses) that can exploit the potential of using
distributed cerebellar plasticity in quantitative and qualitative
evaluation experiments.

Cerebellar Computational Model
Considerations
A cerebellar spiking model was implemented using the EDLUT
simulator (http://edlut.googlecode.com; Ros et al., 2006;
Naveros et al., 2015). This model intended to capture the
essence of the main properties of synaptic cerebellar topology
and its neuronal elements. This work aimed to investigate
the synaptic-weight plasticity at multiple connections. The
simulations were done using leaky integrate-and-fire (LIF) neural
models whereas synapses were simplified using conductance
based exponential models (Gerstner and Kistler, 2002). The
work was focused on the IO–PC–DCN subcircuit, thus the
granular layer was also simplified. That is, the granular
layer was implemented as a state generator following the
liquid-state-machine principles (Yamazaki and Tanaka, 2007a,
2009; see the Cerebellar-Network Organization Section).
All the implemented code is at the disposal of the reader
at http://www.ugr.es/∼nluque/restringido/CODE.rar (user:
REVIEWER, password REVIEWER).

Cerebellar Network Organization
The connectivity and topology of the cerebellar network sought
to abstract the general cerebellar principles taking inspiration
from Eccles et al. (1967), Ito (1984), Voogd and Glickstein
(1998) andMedina andMauk (1999, 2000). Our cerebellar model
consisted of four main layers (Figure 1A) connected as indicated
in Table 1:

• Mossy fibers (MFs): (100) MFs were modeled as leaky I&F
neurons. According to existing models of eyelid-conditioning
cerebellar control (Medina and Mauk, 1999; Yamazaki and
Tanaka, 2007b, 2009), MFs are hypothesized to convey
sequences of spikes which present a constant firing rate
during the conditioned-stimulus-presentation phase. In our
simplified model, MFs were correlatively activated in non-
overlapped and equally-sized neural clusters ensuring a
constant firing rate during the execution of each learning trial
whilst they remained silent when the learning trial came to its
end. The learning trial start was defined by the onset of MF
activity thus forcing the granular layer to generate its state
sequence, and supplying the base-line excitatory activity that
DCN needed to start operating (Figure 1C).

• Granular cells (GCs): (2000) similarly to other models
(Yamazaki and Tanaka, 2005, 2007a, 2009; Honda et al., 2011),
the granular layer was implemented as a state generator, that
is, the granular layer generated a sequence of active neuron
populations without recurrence. The sequential activation of
these neuron populations was able to represent the passage
of time. When the learning process began, the granular layer
produced non-overlapped time patterns that were repeatedly
activated in the same sequence during each learning trial (1
s; Figures 1C,D). Having 1 s learning process in a 2ms time-
step simulation demanded 500 different states, which involved
four non-overlapped GCs activated per time-step simulation.
PF–PC synaptic conductances were set to an initial value (5
nS) at the beginning of the simulation, and were modified by
the STDP mechanism during the training process. Note that
the whole model aims to adopt cell realistic ratios, although
the actual number of simulated neurons is much smaller than
a full size rat model. A reduced version of the cerebellum (2000
GCs) where each PC just received activity from 2000 PFs was
modeled. Since in a full model of the cerebellum, each PC
should receive activity from about 150,000 PFs (Brunel et al.,
2004), PF–PC weight values were scaled to obtain a similar
relative PC excitation.

• Purkinje Cells (PCs): We have defined two case studies: (20)
Purkinje cells in case study A, (60) Purkinje cells in case
study B.

Case study A; the cerebellar circuit was modeled as a closed
loop able to supply a corrective signal to counterbalance
the existing difference between a controlled variable (actual
cerebellar output value) and a demanding reference variable
(set point). This was equivalent to a cerebellar model
compensating the error that one degree-of-freedom (DoF)
manipulator could undergo (see Control Loop Section and
Figure 3A). Within this loop, 20 PCs inhibited two DCNs
that, in turn, counterbalanced the error curve. CFs (2) were
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TABLE 1 | Summary of cerebellar cells and synapses implemented in Case A and Case B simulations.

Case A Case B

Presynaptic cell (number) Postsynaptic cell Number of synapses Presynaptic cell (number) Postsynaptic cell Number of synapses

Mossy Fibers(100) Granular Cells 8000 Mossy Fibers(100) Granular Cells 8000

Deep Cerebellar Nuclei 200 Deep Cerebellar Nuclei 600

Climbing Fibers(2) Purkinje Cells 20 Climbing Fibers(6) Purkinje Cells 60

Granular Cells(1000) Purkinje Cells 40,000 Granular Cells(1000) Purkinje Cells 120,000

Purkinje cell(20) Deep Cerebellar Nuclei 20 Purkinje cell(60) Deep Cerebellar Nuclei 60

Deep Cerebellar Nuclei(2) – – Deep Cerebellar Nuclei(6) – –

assumed to transmit the difference between the set point
curve and the actual one. CFs closed the loop providing
input to the PCs. This layer was divided into two groups
of 10 Purkinje cells each all receiving activity through each
granular layer cell. One group was in charge of correcting the
negative errors (providing activity toward enhancing output
cerebellar corrective activity) and the other group was in
charge of corrective positive errors. This set up mimics the
existing interplay between agonist and antagonist muscles
at biological systems. Each 10 PC group was innervated by
its corresponding CF that, in turn, was also in charge of
carrying the teaching signal corresponding to the negative
or the positive part of the error being estimated. Every
subgroup of PCs finally inhibited a cell of the DCN that, again,
counterbalanced the negative or the positive part of the error
curve.

Case study B; the cerebellar circuit was modeled within a
closed loop designed to operate a simulated robotic arm of
3 DoFs (see Control Loop Section and Figure 3B). In this
set up, we scaled up the cerebellar model. Within this loop,
60 PCs inhibited six DCN that, in turn, counterbalanced the
error undergone by the simulated robotic arm. CFs (6) were
assumed to transmit the difference between the simulated
robotic arm desired-trajectory curves and the actual ones.
CFs closed the loop providing teaching input to the PCs.
The PC layer was divided into three groups of 20 PC cells
each that were in charge of correcting their corresponding
simulated robotic arm DoF. Each group was also subdivided
into two groups of 10 Purkinje cells and innervated by each
granular layer cell. Each subgroup of the PCs was aimed to
provide the positive or negative necessary corrections. Each
PC subgroup was innervated by its corresponding CF which,
in turn, carried the teaching signal corresponding to either the
negative or the positive part of the actual error at each DoF.
Every group of PCs finally inhibited a cell of the DCN that,
again, counterbalanced the negative or the positive part of the
actual error.

• Climbing fibers (CFs): (2) Climbing fibers in case study A.
(6) Climbing fibers in case study B. Each CF carried the
teaching spikes (obtained from error signals) from the IO
to a PC subgroup. CF cell response followed a probabilistic
Poisson process. Given the normalized error signal ε(t) and a
random number η(t) between 0 and 1, the cell fired a spike

if ε(t) > η(t); otherwise, it remained silent (Boucheny et al.,
2005; Luque et al., 2011a). In this way, a single spike reported
accurately timed information regarding the instantaneous
error; furthermore, the probabilistic spike sampling of the
error ensured that the whole error region was accurately
represented over trials with a constrained CF activity below
10 spikes per second, per fiber. Hence, the error evolution is
accurately sampled even at a low frequency (Carrillo et al.,
2008; Luque et al., 2011a). This firing behavior is similar to the
ones obtained in physiological recordings (Kuroda et al., 2001;
Figure 1E).

• Deep Cerebellar Nuclei (DCN): (2) Deep Cerebellar Nucleus
cells in case study A, (6) Deep Cerebellar Nucleus cells in
case study B. The generated DCN spike train is translated into
meaningful analog output signals by using a Finite Impulse
Response filter (FIR). We adopted this mathematical approach
(Schrauwen and van Campenhout, 2003) because we assumed,
at this stage, that the goal is to decode rather than to analyze
the behavior of biological neurons.

Defining the spike train as x(t) =
∑N

j=t δ(t − tj), where tj
stands for the set of firing times of the corresponding neuron,
N is the number of events in the spike train, and being the FIR
response defined as h(t), then the stimulus can be written as
follows (Equation 1):

stimulus (t) =
(

h ∗ x
)

(t) =
∑N

j= t
h

(

t − tj
)

j = 1 to N

(1)
Despite the widespread use of FIR filters for such purpose, an
undesired delay is introduced in the generated analog signal.
This delay is strongly related to the number of filter coefficients
and to the shape of the filter kernel. In order to mitigate
this effect and to make the conversion more efficient, an
exponentially-decaying kernel is implemented Equation (2).
At each time step, the output signal value only depends on
its previous value and on the input spikes in the same time
step and, therefore, this filter is implemented by recursively
updating the last value of the output signal. Actually, the
choice of such exponential kernel is double folded. The
kernel is able to mitigate the delay problem and bears a
strong resemblance to postsynaptic currents (van Rossum,
2001; Victor, 2005), thus facilitating a biological interpretation.
Furthermore, as demonstrated in Luque et al. (2014a), this FIR
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filter is equivalent to an integrative neuron (Figure 1F).

Kernel = e−
M
τ , whereM = 1 (2)

where M is the number of filter taps (one-tap per integration
step 0.002 s) and τ is the decaying factor.

In case study A, the cerebellum output was generated
by a single group of these DCN cells; one of the cells
handled positive error corrections whereas the other one
handled negative error corrections. Each DCN neuron
received excitation from every MF and inhibition from its
corresponding 10 PC group. In this way, the sub-circuit PC–
DCN–IO was organized in a single microzone.

In case study B, the cerebellum output was generated by
three groups of these cells. The cerebellar corrective output
(torque) for each DoF was encoded by a group of these cells
(two subgroups per DoF) whose activity provided corrective
actions to the specified robot-arm commands. Each neuron
group in the DCN received excitation from every MF and
inhibition from its corresponding PC group. In this way, the
sub-circuit PC–DCN–IO was organized in three microzones.

In both cases, DCN synaptic conductances were set to
initial values of 0 nS at the beginning of the simulation, and
were modified by the STDP mechanisms during the training
process.

Synaptic Plasticity
The impact of distributed cerebellar synaptic plasticity on
gain adaptation and learning consolidation using close-loop
experiments has been explored. It has been assumed that there
are at least three learning sites, one in the cerebellar cortex
(PF–PC) and two at the DCN (MF–DCN and PC–DCN),
all of them generating LTP and/or LTD. Unlike the previous
analog cerebellar model (Garrido et al., 2013a; Luque et al.,
2014b), where each cerebellar layer was implemented as a set
of parameter values corresponding to the firing rate of the
neural population, the spiking model presented here preserves
the timing information of the elicited spikes at each cerebellar
layer and the adaptation mechanisms are based on Spike Time
Dependent Synaptic Plasticity (STDP). Now we summarize these
multiple forms of synaptic plasticity.

PF–PC Synaptic Plasticity
This is, by far, the most widely investigated cerebellar plasticity
mechanism as evidenced by the vast number of studies
supporting the existence of multiple forms of LTD (Ito and
Kano, 1982; Boyden et al., 2004; Coesmans et al., 2004) and LTP
(Hansel et al., 2001; Boyden et al., 2004; Coesmans et al., 2004)
plasticity mechanisms. Two important features were considered
when implementing this synaptic plasticity mechanism:

i. The synaptic efficacy change for each PF connection had to
be driven by pre-synaptic activity (spike-timing-dependent
plasticity) and had to be instantaneous.

ii. Since the sensorimotor pathway delay is roughly ∼100ms,
the learning mechanism had to learn to provide corrective
predictions to compensate this inner sensorimotor delay
(Figure 2A).

To this aim, this plasticity mechanism was implemented
including LTD and LTP as follows (Luque et al., 2011a):

• LTD produced a synaptic efficacy decrease when a spike from
the IO reached the target PC through the CF. The amount
of the weight decrement depended on the previous activity
arrived through the PF. This previous activity was convolved
with an integrative kernel as defined by Equation (3).

k (x) = e−x
· sin (x)20 (3)

where x is used as intermediate variable to get a compacted
definition of the kernel, x is then substituted in Equation (4)
by the independent variable t.

This mainly took into account those PF spikes which
arrived 100ms before the CF spike arrival. This correction was
facilitated by a time-logged “eligibility trace,” which evaluated
the past activity of the afferent PF (Sutton and Barto, 1981;
Barto et al., 1983; Kettner et al., 1997; Boucheny et al., 2005).
This trace aimed to calculate the correspondence in time
between spikes from the IO (error-related activity) and the
previous activity of the PF that was temporally correlated
to this error signal. The eligibility trace idea stemmed from
experimental evidence showing that a spike in the climbing
fiber afferent to a Purkinje cell was more likely to depress a PF–
PC synapse if the corresponding PF had been firing between 50
and 150ms before the IO spike (through CF) arrived at the PC
(Kettner et al., 1997; Boucheny et al., 2005; Ros et al., 2006).

• LTP produced a fixed increase in synaptic efficacy each time
a spike arrived through a PF to the corresponding targeted
PC as defined by Equation (4). This mechanism allowed us to
capture how the LTD process could be inverted when the PF
stimulation was followed by spikes from the IO or by a strong
depression of the Purkinje cell membrane potential (according
to neurophysiologists studies; Lev-Ram et al., 2003).

The chosen mathematical-model kernel allowed accumulative
computation in an event-driven simulation scheme as adopted
by the EDLUT simulator (Ros et al., 2006; Luque et al., 2011a,b).
This avoids the necessity of integrating the whole correlation
kernel upon each new arrival of a spike. This correlation kernel,
despite being computationally efficient, suffered from a second
marginal peak whose impact could be considered to be negligible
(<5% of the main peak height). This is indicated in the following
Equation (4).

LTD.△WPFj−PCi (t) =

∫ IOspike

−∞

k

(

t − tIOspike

τLTD

)

· δGCspike
(t) · dt

if PFj is active at t

LTP.△WPFj−PCi
(t) = α Const. otherwise (4)

where 1WPFj−PCi(t) represents the weight change between the

jth PF and the target ith PC. τLTD stands for the time constant that
compensates the sensorimotor delay and δGC stands for the delta
Dirac function defining a GC spike. For an in-depth review of the
inner features of this kind of kernel (see Ros et al., 2006; Luque
et al., 2011a).
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FIGURE 2 | Spike-timing–dependent learning rules at PF–PC, MF–DCN, and PC–DCN synapses. (A) Representation of PF–PC LTD correlation kernel. A

synaptic efficacy decrease occurs at PF–PC innervations when a spike from the IO reaches a target PC through a CF. The weight decrement percentage depends on

the previous activity arrived through the corresponding PF (100ms before the CF spike arrival) in order to compensate the sensorimotor pathway. The PF–PC

LTP—synaptic-efficacy increase is considered to remain constant. (B) Representation of MF–DCN LTD correlation kernel. A synaptic efficacy decrease occurs at

MF–DCN innervations when a spike from the PC reaches a target DCN. Near-coincident pre- and post-synaptic MF–DCN spikes which arrive close to PC–DCN spike

arrival cause a depression at MF excitatory synapses. MF–DCN LTP-synaptic-efficacy increase is also considered to remain constant. (C) Representation of two

PC–DCN alternative correlation kernels. Classical inhibitory STDP modifies the synapse efficacy at PC–DCN innervations depending on DCN activity. Near-coincident

pre-synaptic PC–DCN spikes before post-synaptic DCN-action potentials cause long-term potentiation action whereas PC–DCN spike arrivals after post-synaptic

DCN-action potentials cause long-term depression action. The second inhibitory-STDP kernel potentiates the synapse efficacy at PC–DCN innervations after a

DCN-action potential each time a near-coincident pre- and postsynaptic PC-spike arrives whereas every presynaptic PC spike leads to synaptic depression.

MF–DCN Synaptic Plasticity
MF–DCN synaptic plasticity has been reported to depend on the
intensity of the DCN cell excitation (Racine et al., 1986; Medina
and Mauk, 1999; Bastian, 2006; Pugh and Raman, 2006; Zhang
and Linden, 2006; Figure 2B). It has been implemented bymeans
of a mathematical kernel defined by Equation (5):

k (x) = e−|x·β|
· cos (x)2 (5)

where x is used as intermediate variable to get a compacted
definition of the kernel, x is then substituted in Equation (6)
by the independent variable t. β is a constant factor used
for mitigating the impact of the second marginal peak that
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this kernel suffers.

LTD.△WMFj−DCNi (t) =

∫

+∞

−∞

k

(

t − tPCspike

σMF−DCN

)

· δMFspike (t)

·dt if PCj is active at t

LTP.△WMFj−DCNi
(t) = α Const. otherwise (6)

where 1WMFj−DCNi(t) denotes the weight change between

the jth MF and the target ith DCN, σMF−DCN stands for the
window-time width of the kernel, and δMF stands for the delta
Dirac function that defines a MF spike. As evidenced, there is
no need to compensate the sensorimotor pathway delay at this
plastic site since it is already compensated by the PF–PC kernel.
LTD and LTP actions are then characterized as follows:

• LTD produced a synaptic efficacy decrease when a spike from
the PC reached a targeted DCN. The amount of the weight
decrement depended on the activity arrived through the MFs.
This activity was convolved with the integrative kernel defined
in Equation (5). This mainly considered those MF spikes
that arrived after/before the PC–DCN spike arrival within the
window-time-width defined by the kernel.

• LTP produced a fixed increase in synaptic efficacy each time
a spike arrived through an MF to the corresponding targeted
DCN as defined by Equation (6). This mechanism allowed the
compensation of the LTD if necessary and prevents any weight
saturation as proven in Luque et al. (2011a).

Despite the fact that this MF–DCN synaptic-plasticity
mechanism looks very much like the mathematical expression
given by PF–PC synaptic plasticity, it presents two significant
differences:

i. The first one lies on the reduced capability of MFs, compared
to PFs, to generate sequences of non-recurrent states. As
aforementioned, the MF–DCN activity compared to the
analog approaches described at Garrido et al. (2013a) and
Luque et al. (2014b) is now capable of codifying the passage
of time. It does so by using groups of active mossy neurons
that are sequentially activated. However, it uses a significantly
lower number of consecutive non-recurrent time stamps than
the 500 able to be generated by the granular layer (Yamazaki
and Tanaka, 2007b, 2009; Yamazaki and Nagao, 2012).

In Garrido et al. (2013a) and Luque et al. (2014b), the
MF–DCN connection was implemented as a state generator
able of generating only one state; the amplitude at this state
was equivalent to the base current able to excite DCN cells.
Plasticity at this site was capable of varying the amount
of injected current that operated DCN by modifying the
amount of excitation that DCN received at this connection
(gain controller). However, a single-state generator was not
able to generate the mentioned 500 time stamps (PF–PC).
Nevertheless, having a state generator made out of clusters
of non-overlapped neurons at MF–DCN allows us to roughly
store or “translate” the timing sequence that is generated by
a state generator holding 500 states. Given the fact that the
cerebellar networks holds 2000 GCs, the simulation step-size
is 2ms, and the trajectory time is 1 s; 500 different states

are, therefore, generated by groups of four non-overlapped
neurons at PF–PC level. The 100 MFs have been clustered in
groups of four non-overlapped neurons obtaining 25 states at
MF–DCN level to roughly store the PF–PC synaptic weight
distribution facilitated by those 500 different states.

ii. The second main difference concerns the connection driving
LTD and LTP. Whilst the PF–PC plasticity was driven by
the CF activity, the MF–DCN plasticity was driven by the
PC activity. This mechanism optimized the activity range
in the whole inhibitory pathway comprising MF–PF–PC–
DCN connections: high PC activity caused MF–DCN LTD,
whilst low PC activity causedMF–DCN LTP. This mechanism
implemented an effective cerebellar gain controller able to
adapt its output activity to minimize the amount of inhibition
generated in the MF–PF–PC–DCN inhibitory loop.

PC–DCN Synaptic Plasticity
PC–DCN synaptic plasticity was reported to depend on the
intensity of DCN and PC cells (Morishita and Sastry, 1996;
Aizenman et al., 1998; Ouardouz and Sastry, 2000; Masuda and
Amari, 2008). Moreover, plasticity at inhibitory synapses was
revealed as a fundamental homeostatic mechanism in balancing
the excitatory and inhibitory cell inputs (Medina and Mauk,
1999; Kleberg et al., 2014) at DCNs capable of conforming
synaptic memories related to activity patterns (Vogels et al.,
2011). Taking inspiration from (Medina and Mauk, 1999) and
recent studies (Vogels et al., 2011; Kleberg et al., 2014), the
synaptic plasticity mechanism was implemented following two
possible valid kernels (Figure 2C):

i. A classical inhibitory-STDP learning rule (iSTDP; Equation 7)

LTP.△WPCj−DCNi
(t) = e

−

(

tDCNpost
−tDCNpre
τ1

)

if tDCNpost > tDCNpre

LTD.△WPCj−DCNi
(t) = e

−

(

tDCNpre−tDCNpost
τ2

)

if tDCNpre > tDCNpost (7)

where 1WPCj−DCNi(t) is the weight change between the jth PC

and the target ith DCN. τ1 stands for the time constant for
the LTP expression and τ2 stands for the time constant for the
LTD expression.

ii. An inhibitory-STDP learning rule based on near-coincident
pre and postsynaptic spikes able to potentiate inhibitory
synapses, whereas every presynaptic spike causes synaptic
depression (Equation 10).

△WPCj−DCNi
(t) =

∫

+∞

−∞



LTPmax · e
−

∣

∣

∣

∣

tDCNpost
−tDCNpre

σPC−DCN

∣

∣

∣

∣

·

cos

(

tDCNpost − tDCNpre

σPC−DCN

)2

− LTDmax

)

· dt

(8)
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where 1WPCj−DCNi(t) is the weight change between the jth

PC and the target ith DCN, σPC−DCN stands for window-
time width of the kernel, and LTPmax/LTPmax stand for
the maximum weight depression or potentiation change per
simulation step.

These two plausible kernels mainly consider those spikes
received by DCN through PC innervation within the window-
time-width defined per each kernel.

Cerebellar Control Loop
Case study A (Figure 3A)
The adopted control loop for the cerebellar architecture of
Case-study-A was based on the traditional forward cerebellar
control architecture. Within this architecture, the cerebellum
attempted to minimize the existing difference between the
controlled variable (actual cerebellar output value) and the
reference variable (set point) via manipulation of the controlled
variable. The reference variable (Equation 9) was a 1-s curve
(2ms time-step simulation) made out of Gaussian functions that
was repeatedly iteratively presented to the cerebellar model.

reference variable (t) = e
−

(

t− T
4

)2

σ
2
ref

− e
−

(

t− 3·T
4

)2

σ
2
ref (9)

where σref stands for the Gaussian standard deviation and T
stands for the time period.

This curve (Equation 9) changed its direction and module
from the minimum possible value (normalized) to its maximum

possible value twice per period. The cerebellar output action
demanded a fine balance between the negative/positive output
micro-complex actions to match the reference variable. It is
worth mentioning that the IO frequency ranged between 1
and 10Hz. Thus, according to the network already presented,
each IO codified whether the error was positive or negative
during 0.5 s (depending on the activated CF). Hence, no more
than five spikes per IO and period (1 s) were obtained in the
worst possible scenario. These directional and module changes
combined with the IO biological low rate sampling constraint
made the cerebellum operate at the limits of its learning
performance.

Case study B (Figure 3B)
The adopted control loop was based on the traditional feed-
forward architecture along with a crude inverse dynamic model
of the simulated robotic arm. An inverse kinematic module
translated the desired trajectory into arm-joint coordinates
and fed an inverse dynamic module based on a recursive
Newton-Euler algorithm. This algorithm generated crude step-
by-step motor commands (torques) corresponding to the desired
trajectory.

In light of some studies, the central nervous system has been
suggested to plan and execute sequentially voluntary movements.
In accordance to this hypothesis, the brain might first plan the
optimal trajectory in task-space coordinates, translate them into
intrinsic-body coordinates, and finally, generate the necessary
motor commands (Houk et al., 1996; Nakano et al., 1999;

FIGURE 3 | Case study cerebellar control loops. (A) Case study A, the adaptive cerebellar module embedded in a control loop delivers corrective actions to

compensate the existing difference between a controlled variable [actual cerebellar output value y(t)] and a demanding reference variable [set point x(t)]. (B) Case

study B, the adaptive cerebellar module embedded in a feed forward control loop delivers corrective torque values (τcorrective) to compensate for deviations in the

crude inverse dynamic module when manipulating an object of significant weight along an eight-like trajectory. In this feed-forward control loop, the cerebellum

receives a teaching error-dependent signal and the desired arm state (Qd , ˙Qd , ¨Qd ) so as to produce the adaptive corrective actions.
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Todorov, 2004; Hwang and Shadmehr, 2005; Izawa et al., 2012;
Passot et al., 2013). According to these studies, the association
cortex would be in charge of providing the desired trajectory in
body coordinates and conveying them to the motor cortex which,
in turn, would generate the optimal motor commands to operate
our limbs. On the one hand, the spinocerebellum–magnocellular
red nucleus system is thought to hold an internal neural accurate
model of the musculoskeletal body dynamics learnt through
sensing voluntary movements (Kawato et al., 1987). On the other
hand, the cerebrocerebellum–parvocellular red nucleus system is
thought to provide a crude internal neural model of the inverse-
dynamics of the musculoskeletal system (Kawato et al., 1987).
The crude inverse-dynamic model shall work conjointly with the
dynamic model (given by the spinocerebellum–magnocellular
red nucleus system) in order to get the ongoingmotor commands
updated to match a possible predictable error when executing a
movement.

Together with the feed forward control loop, a simulated-
light-weight robot (LWR) arm was integrated. The simulated-
robot-plant physical characteristics can be dynamically modified
to manipulate different payloads (punctual masses). This LWR
(Hirzinger et al., 2000; Albu-Schäffer et al., 2007) model is
a 7-DOF arm robot consisting of revolute joints where only
the first (labeled as Q1), second (Q2), and fifth joint (Q3)
were operated in our experiments while maintaining the others
fixed (rigid).

Similarly to Case study A, the main aim when selecting a
benchmark trajectory was to challenge the cerebellar learning
limits. Case study B needed to reveal the dynamic properties of
a simulated-robot-plant. Choosing fast movements in a smooth
pursuit task consisting of vertical and horizontal sinusoidal
components (Kettner et al., 1997; van Der Smagt, 2000; 1 s for
the whole target trajectory) allowed us to study how inertial
components (when manipulating objects) were inferred by the
cerebellar architecture (Luque et al., 2014b). The selected target
trajectory described an “8-shape” defined by Equation (12) in
joint coordinates.

Qn (t) = An · sin
((

−4 · π · t3 + 6 · π · t2
)

+ Cn

)

where n =

{

1, · · · , number of links
}

(10)

where An and Cn = n·π/4 represent the amplitude and phase
of each robot joint. The followed trajectory is based on cubic
spline technique so as to provide continuity and a zero initial
velocity per link, which fulfills the implementation requirements
of a physical robot controller. This trajectory is easy to perform
despite the non-linearity in the robot joint angles, since joint
velocities and accelerations are constricted to small bounds
depending on the amplitude and phase. To finally quantify
and evaluate the movement performance in terms of accuracy,
the average of the Mean Absolute Error (MAE) per robot
joint was calculated. The estimation of this measurement was
monitored in each trial, thus allowing the quantification
of the global-movement accuracy evolution during the
learning process.

RESULTS

We tested the hypothesis of cerebellar gain-controller operation
assuming that the MF–DCN synaptic weights were capable
of obtaining the maximum corrective cerebellar values whilst
the difference between the maximum and minimum corrective
cerebellar values were supplied by PC–DCN synaptic weights.
We also tested the learning consolidation hypothesis by
endowing these two connectivity sites with plasticity, thereby
generating an internal adaptive gain controller fully compatible
with the two-state learning mechanism proposed by Shadmehr
and Brashers-Krug (1997), Shadmehr and Holcomb (1997),
Medina and Mauk (2000), and Ohyama et al. (2006). Whilst case
study A, due to its inherent simplicity, helped to demonstrate
and validate our premises, case study B helped to extrapolate
our premises to a more demanding scenario where the cerebellar
model delivered to a simulated-robotic arm the corrective actions
needed to compensate for dynamic deviations produced when
manipulating heavy point masses. Furthermore, case B also
helped to evaluate how the distributed learning scheme was
scalable in terms of joints.

Illustrative movies of learning simulations for case study A
and case study B during the manipulation of a 6-kg load are
available in the Supplemental Material.

MF–DCN STDP Allows Learning
Consolidation
In order to determine the impact of MF–DCN STDP in
learning consolidation, in case-study-A, the cerebellar network
was equipped with plasticity at PF–PC and MF–DCN synapses.
Our first simulation was carried out to demonstrate not just, how
MF–DCN could implement a gain-controller, but also how the
PF–PC learning was transferred into MF–DCN synapses.

Within the feed-forward control loop, the cerebellum in case
study A, attempted to minimize the existing difference between
the controlled variable (current cerebellar output) and the
reference variable (following the 1-s curve made out of Gaussian
functions; Figure 4C). The reference variable was iteratively
presented over 2500 iterations. PF–PC synaptic conductances
were set to an initial value of 5 nS, MF–DCN initial conditions
started from zero, and PC–DCN synaptic weights were fixed
with pre-calculated values that ensured a proper inhibitory PC–
DCN action. In order to better discern the synaptic weight
distribution shape that was transferred from PF–PC synapses
into MF–DCN, the initial synaptic weights at those synaptic sites
were set to equal values. This set-up configuration facilitated
the perception at a glance of a continuous surface representing
PF–PC synaptic distribution copying the reference variable. We
also made simulations with random initialization of synaptic
weights leading us to similar results but in these simulations,
it was difficult to obtain a visual verification of the learning
consolidation process (see Supplementary Material).

As evidenced, the reference variable changed its direction
and module from the minimum possible value (normalized)
to its maximum possible value twice each period, which
required a fine balance between the cerebellar micro-complex
negative/positive output (Figure 4C). Despite this demanding
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FIGURE 4 | PF–PC and MF–DCN learning rule interplay: learning consolidation. Case study A. PF–PC and MF–DCN synaptic weight distribution at the end of

the learning process. The cerebellum tries to counterbalance the existing mismatch between the actual cerebellar output and the reference variable; a 1-s curve made

out of Gaussian functions which is iteratively presented to the cerebellum over 2500 iterations. The exponential weight distribution at PF–PC shows that the corrective

action is properly stored at these afferents. Learning rule at PC–DCN connections is deactivated. Synaptic weights are fixed with pre-calculated values ensuring a

proper inhibitory PC–DCN action. (A) Two micro-complexes that are conformed by 10 PCs each and innervated, in turn, by 2000 PFs. These micro-complexes are

responsible for the correct balance between the negative and the positive cerebellar correction. One micro-complex is in charge of delivering the positive corrective

action whilst the other one delivers the negative corrective action. Each of the two output DCN cells is, in turn, innervated by one of the two micro-complexes. (B) The

Gaussian-like weight distribution at PF–PC is transferred in counter phase to MF–DCN synapses. The reduced MF number of non-recurrent states enables learning

consolidation; however, the obtained synaptic weight-distribution shape adopts a discretized version of the PF–PC weight-distribution shape. (C) The injected error is

properly counterbalanced thanks to the action of these two learning laws. DCN output activity (spikes in black) is transformed into its proportional analog value (in red)

and, later on, subtracted from the reference variable (in blue).

scenario, after the synaptic weight adaptation process at PF–
PC connections (Figures 4A,B), the Gaussian shape that the
reference variable presented, was copied and stored at PF–PC
synaptic weights, thus constituting the first learning stage needed

to deliver the cerebellar corrective action. Then, PF–PC learning
triggered MF–DCN learning process which was able to lead MF–
DCN synaptic weights to their local maximum values allowing
plasticity to store temporally correlated information (the weight
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distribution at PF–PC was inversely copied at MF–DCN;
Figure 4D).

The constrained capability of MFs, compared to PFs, when
generating sequences of non-recurrent states was immediately
reflected in the MF–DCN synaptic weight shape (Figure 4B).
Although the reduced MF number of non-recurrent states
enabled learning consolidation, the obtained synaptic weight-
distribution shape, through the adaptation process at this site,
was forced to adopt an inverse discretized version of the PF–PC
weight-distribution shape.

MF–DCN and PC–DCN STDP Interplay
toward Adaptive Gain Controller
In order to evaluate the existing interplay amongst different
forms of plasticity at PF–PC, MF–DCN, and PC–DCN synapses,
respectively, case-study-A cerebellar network was sequentially
added with the aforementioned adaptive mechanisms (Equations
3, 5, and 7). In previous works, we demonstrated that plasticity
at PF–PC synapses could not account for preventing PC activity
saturation per se (Garrido et al., 2013a; Luque et al., 2014b). To
circumvent this limitation, MF–DCN and PC–DCN plasticity
mechanisms were implemented, thus allowing PC activity to keep
on operating within its optimal working range. Nevertheless,
how such analog plasticity mechanisms would be re-designed
and counterbalanced to take into account the spiking cerebellar
nature remained an open issue.

This has motivated the work presented here. Case-study-A
cerebellar network attempted to minimize the existing difference
between the controlled variable and the reference variable (1 s
duration) over 5000 iterations (Figure 5C). PF–PC synaptic
conductances were set to an initial value of 5 nS, MF–DCN initial
conditions started from zero (Figure 5D), and PC–DCN synaptic
weights were set to either zero initial values, random values, or
higher values than needed (Figures 5E,F). As expected, the STDP
learning rule located at this site was able to self-regulate PC-DCN
synaptic weights in order to adequate the optimal working range
demanded by both DCN and PC (Figures 5E,F).

Whilst the consolidation process was settling down (what was
learnt at PF–PC synapses (Figure 5A) was transferred in counter
phase to MF–DCN synapses; Figure 5B), it was possible to
verify the double-learning time-scale behavior already indicated
in recent behavioral and computational studies (Shadmehr and
Brashers-Krug, 1997; Shadmehr andHolcomb, 1997;Medina and
Mauk, 2000; Ohyama et al., 2006; Garrido et al., 2013a; Luque
et al., 2014b; Movies S1, S2 in Supplementary Material). MF–
DCN and PC–DCN averaged synaptic weights (averaged gains)
stabilized slower than those at PF–PC synapses, since learning at
MF–DCN and PC–DCN synapses depended on the PC activity.
As shown in Movies S1, S2, there was a fast learning process, in
which temporal information was inferred and stored at PF–PC
synapses. Meanwhile, there also was a slow learning process, in
which the adaptation of cerebellar excitatory and inhibitory gain
values in the DCN took place. This second slow learning process
could be, in turn, split into two components related to the MF–
DCN and PF–PC connections with time-constants of 750–2500
trials and 2500–5000 trials, respectively. Figures 5D,E.

iSTDP Shape Impacts on PC–DCN
Synapses
Within the case-study-A cerebellar configuration, PC–DCN
iSTDP remains as the only inhibitory pathway to the cerebellar
nuclei, and therefore, the only mechanism capable of reducing
the cerebellar output and preventing MF–DCN from saturation.
iSTDP is known to act as a fundamental mechanism in both;
balancing the excitatory and inhibitory DCN inputs (Medina
and Mauk, 1999; Kleberg et al., 2014), and conforming synaptic
memories related to activity patterns (Vogels et al., 2011).
Nevertheless, the shape held by the iSTDP at PC–DCN synapses
is not yet well-known (the exact adaptation mechanism remains
an open issue).

In order to identify the influence that the iSTDP shape may
exert on the cerebellar output, two biologically plausible learning
kernels were tested. The first one was implemented following
the traditional STDP Hebbian kernel shape (Equation 7) whereas
the second one was implemented following Medina and Mauk
approach (Medina and Mauk, 1999), also adopted in recent
studies (Vogels et al., 2011; Kleberg et al., 2014; Equation 10).
The first step that needed to be proven was the robustness of
the shape of these two kernels. Based on Vogels et al. (2011),
these two kernels suited well our experimental test-bench, since
both fulfilled two main conditions: the postsynaptic activity
potentiated the activated inhibitory synapses together with the
fact that in absence of postsynaptic firing, the inhibitory synapses
decayed.

Case-study-A was used for a comparative study of both
approaches. Again, the cerebellar network attempted tominimize
the existing difference between the controlled variable and the
reference variable (1-s duration) over 10,000 iterations. PF–
PC synaptic conductances were set to an initial value of 5 nS,
MF–DCN initial conditions started from zero (Figure 7A), and
PC–DCN synaptic weights were set to a zero initial value as
well (Figure 7B). As expected, according to the aforementioned
premises, both kernels showed a similar ability to correlate (more
concretely, to reverse-correlate) the activity arriving from PCs
with DCN output activity (Figure 6B). Both kernels did indeed
obtain a similar behavior in terms of maximal reverse-correlation
values and speed of convergence (Figure 6A).

Nevertheless, the second kernel exhibited a better
performance in terms of stability and overall gain value
(Figure 7C) but at the cost of a lower convergence speed
(Figure 7E). Due to the initial conditions for DCN innervations
were set initially to zero, a post-synaptic spike scenario
dominated during the learning process, thus making the
Hebbian approach faster than the symmetric kernel in terms
of convergence speed (see Figure 2C). STDP Hebbian kernel
shape has been traditionally used for spatiotemporal detection
and learning of hidden spike patterns from a neural activity
background by correlating post-synaptic and pre-synaptic
activity (Masquelier et al., 2009). However, an inhibitory-STDP
learning kernel based on near-coincident pre and post-synaptic
spike seemed to be more useful for balancing the DCN excitation
and inhibition inputs (Figures 7B,C) and for selectively
propagating the correlated spiking activity from PC to DCN
(Figure 7D).

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Luque et al. Distributed Cerebellar Motor Learning

FIGURE 5 | MF–DCN and PC–DCN STDP learning rules working conjointly as an adjustable gain controller. Case study A. (A) PF–PC synaptic weight

distribution at the end of the learning process. The cerebellum counterbalances the existing difference between the actual cerebellar output and the reference curve

which is iteratively presented to the cerebellum over 5000 iterations. The Gaussian-like weight distribution at PF–PC synapses shows that the corrective action is

properly stored at these afferents. (B) Two micro-complexes that are conformed by 10 PCs each and innervated, in turn, by 2000 PFs are responsible for managing

the trade-off between the negative and the positive cerebellar corrective action. The Gaussian-like weight distribution at PFs is inversely transferred at MF–DCN

synapses. (C) The reference curve acting as an error is counterbalanced. DCN output activity is transformed into its proportional analog value (in red) and, later on,

subtracted from the reference variable (in blue). (D,E) The initial conditions established for synaptic weights at MF–DCN start from zero whilst PC–DCN innervations

start from either a higher or lower value than needed. MF–DCN and PC–DCN averaged synaptic weights (averaged gains) get stabilized more slowly than those at

PF–PC synapses, since learning at MF–DCN and PC–DCN synapses depended on the PC activity. MF–DCN and PC–DCN averaged synaptic weights (averaged

gains) are modified when PF–PC weights tend to be saturated. This learning process at MF–DCN and PC–DCN connection can be split into two components with

time-constants of 750–2500 trials and 2500–5000 trials, respectively. (F) The initial conditions established for synaptic weights at MF–DCN start from zero whilst

PC–DCN innervations start from random values. Red and gray shaded areas delimit the synaptic weight space in which the synaptic PC–DCN synaptic values evolve

during the learning process for each micro-complex. Dotted lines indicate the averaged PC–DCN synaptic weight value obtained per micro-complex. The learning rule

at PC–DCN self-regulates the synaptic weights obtaining the optimal firing rate demanded by both DCN and PC.
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FIGURE 6 | Inhibitory plasticity at PC–DCN synapses with two possible STDP kernels, Classic i-STDP Hebbian rule, or Symmetric i-STDP. Case study A.

(A) Reverse cross-correlation evolution at PC–DCN synapses. Since the postsynaptic activity potentiates the activated inhibitory synapses and the inhibitory synapses

decay in the absence of postsynaptic activity in both kernels, they obtain a similar performance in terms of maximal reverse correlation values and convergence speed

(Vogels et al., 2011). (B) Distribution of the reverse cross-correlation between spike trains from PC output and DCN output. For the sake of simplicity, only the Classic

i-STDP Hebbian rule is shown. Three consecutive snapshots of the DCN input/output activity are shown, where the way in which a PC is able to modulate the DCN

activity can be seen.

Testing Distributed Cerebellar Plasticity in
a Robotic Manipulation Task
In order to quantify and extrapolate the aforementioned
STDP distributed plasticity features, case-study B cerebellar
network was faced with a more demanding scenario. Our
last simulation was intended to show how the self-regulation
of MF–DCN and PC–DCN synapses by means of STDP
learning rules is able to deliver to a simulated-robotic arm
the corrective actions needed to compensate for dynamic
deviations produced when manipulating heavy point masses
(6 kg).

Within the feed forward control architecture presented by
case-study-B, the cerebellum attempted to minimize the existing
difference between the controlled variable (current cerebellar
output) and the reference variable (1 s eight-like trajectory to be
followed by the robotic manipulator) during a manipulation task
repeated 10,000 trials (Figure 8). PF–PC synaptic conductances
were set to an initial value of 5 nS, MF–DCN initial conditions
started from zero (Figure 8D), and PC–DCN synaptic weights
were set to a zero initial value as well (Figure 8E). After DCN
synaptic weight adaptation (Figures 8D,E), the cerebellum was
able to deliver proper corrective torques reducing the error
of the robot-arm movement (Figures 8F,G). Once the synaptic
weights were stabilized, both PC and DCN neurons exploited

their dynamic gain adaptation range (Figures 8D,E) allowing the
cerebellum to operate near its optimal performance.

The cerebellum exhibited its ability to act as both an adaptive
gain-controller (Figures 8D,E) and a distributed-learning storage
architecture (what was learned at PF–PC synapses (Figure 8A)
was then transferred in counter phase to MF–DCN synapses;
Figures 8B,C). However, the difference between controlled and
reference variable was not directly related because the cerebellar
corrective action was delivered in torque commands (Figure 3B)
and the proprioception state estimations were acquired in joint-
angle coordinates.

It should be clarified that the proposed STDP mechanisms,
and therefore their involvements, are not restricted to any specific
test-bed framework, and could be extrapolated to other common
but simpler test-bed frameworks such as EBCC and VOR.

DISCUSSION

This work presents a mechanistic spiking cerebellar model
endowed with several STDP learning rules located at
different synaptic sites. They are tested embedded in close-
loop simulations. These close-loop simulations challenge
the cerebellum with two tasks with different degrees of
complexity. However, the main observation regarding the
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FIGURE 7 | Inhibitory plasticity at PC–DCN synapses. Kernel shape impact. Classic i-STDP Hebbian rule vs. Symmetric i-STDP. Case study A. (A,B) Whilst

MF–DCN averaged synaptic weights (averaged gains) exhibit a similar behavior in both configurations (Classic i-STDP Hebbian and Symmetric i-STDP), PC–DCN

averaged synaptic weights (averaged gains) differ. (C) The second kernel presents a better performance in terms of gain stability and global gain (a lower global gain

value obtains the same correction action). (D) The symmetric i-STDP kernel achieves a better balance for the DCN excitation and inhibition inputs. Symmetric i-STDP

better propagates selectively the correlated spiking activity from PC to DCN. Symmetric i-STDP always leads to higher maximal-spiking reverse-correlation values

between PC afferent and DCN output for the two DCN cells. (E) Averaged Convergence Speed for Classic i-STDP Hebbian kernel is higher than Symmetric i-STDP.

Hebbian kernel converges faster at the cost of a lower gain stability and global gain.

learning mechanisms at DCN synapses remains valid in all of
them:

i. Plasticity at DCN synapses is double-folded:

• It is able to operate as a gain adaptation mechanism

allowing the PFs to prevent saturation, thus making the

learning mechanisms between PFs and PCs more accurate
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FIGURE 8 | Functionality of PF–PC, MF–DCN, and PC–DCN learning rules working conjointly in a manipulating robotic task. Case B. (A) Cross-sections

of the synaptic weight distribution surface at PF–PC connections at the end of the learning process. There are two cross-sections per articulated robotic joint; purple

and blue cross-sections correspond to the first joint, red and orange to the second joint, and black and gray to the third one. The weight distribution at PF–PC shows

that the corrective action is properly stored at these afferents. Each of the six micro-complexes is formed by 10 PCs and innervated, in turn; by 2000 PFs. (B,C) Each

pair of micro-complexes is in charge for the correct balance between the negative and the positive cerebellar correction per each operated robot joint. One

micro-complex of each pair delivers the positive corrective action per joint whilst the other one delivers the negative corrective action per joint. The weight distribution

at PF–PC is transferred in counter phase to MF–DCN. Despite the reduced MF number of non-recurrent states, MF–DCN synapses are able to consolidate the

learning. The obtained synaptic weight-distribution shape adopts a discretized version of the PF–PC weight-distribution shape. Since the error to be corrected at the

(Continued)
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FIGURE 8 | Continued

second and third joint is unidirectional (always negative), only the antagonist correction action is delivered. (D,E) MF–DCN and PC–DCN averaged synaptic weights

(averaged gains) are stabilized more slowly than those at PF–PC synapses. MF–DCN and PC–DCN synapses depended on PC activity and are modified when some

PF–PC weights tend to be saturated. Since PCs corresponding to the first joint are operating in their proper range, there is almost no need for gain regulation (not the

case of consolidation) (F) Medium Average Error (MAE) evolution. The error curve to be corrected is the difference between controlled (robot actual position and

velocities) and reference variables (desired position and velocities Figure 3B). Controlled and reference variables are not directly related (or in the same; representation

space) to cerebellar corrective actions since corrective actions are delivered in torque values whilst controlled and reference variables are taken in joint values. Despite

this demanding scenario, the cerebellum is able to supply corrective torque values which decrease the error up to 77, 8% in a 6 kg manipulation task (almost max

robot load) when all the learning rules are active. (G) Robotic joint angle corrections obtained at the end of the learning process.

(keeping their plasticity capability within their working
range).

• DCN has also proven to be fundamental for the slow
memory consolidation process. A plausible two-state
learning mechanism (Shadmehr and Brashers-Krug, 1997;
Shadmehr and Holcomb, 1997) based on STDP has
been shown. According to several evidences (Shadmehr
and Brashers-Krug, 1997; Shadmehr and Holcomb, 1997;
Medina and Mauk, 2000; Ohyama et al., 2006), the
cerebellar cortex seems to undergo a fast learning process
at initial learning stages while the consolidation process
seems to occur in deeper structures (more likely at DCN
innervations).

ii Inhibitory-STDP learning kernel based on near-coincident
pre and post-synaptic spike has proven to be rather efficient
for balancing the DCN excitation and inhibition inputs and
for selectively propagating the correlated spiking activity from
PCs to DCN. Nevertheless, it has been shown that the shape
of the learning kernel at this site (as concluded also in Vogels
et al., 2011) remains valid upon two related conditions:

• Postsynaptic activity shall potentiate those activated
inhibitory synapses.

• In absence of postsynaptic firing, the inhibitory synapses
shall decay.

Biological Realism and Model Limitations
Some simplifications and assumptions have been made to
generate a mathematically tractable cerebellar model that is
biologically realistic as well. The limitations imposed were
profusely discussed in Garrido et al. (2013a) and Luque et al.
(2014b); however, in light of new spiking features held by our
approach, those limitations are here revisited:

(a) The main assumption at granular layer level is its
functionality as a state generator. The state generator model
is grounded in neurophysiologic observations of granule
cell connectivity. Granule cells are comprised in a recurrent
inhibitory network with Golgi cells, thus pointing to the
fact that the input layer of the cerebellum may act as a
recurrent circuit. The state-generatormodel has revealed that
modeled granule cells present a randomly repetitive behavior
in active/inactive state transitions (Yamazaki and Tanaka,
2009). Furthermore, this model has also shown that the
sparse population of active cells changes with the passage of
the time (POT) and no recurrence of active cell populations

is exhibited. Consequently, a specific time interval can be
univocally represented by means of a sequence of active
cells belonging to a certain population. In other words,
the state-generator model is able to represent the POT by
means of a sparse-population coding scheme, thus allowing
the cerebellum to operate like a liquid state machine (LSM;
Maass et al., 2002; Yamazaki and Tanaka, 2007a) or an
Echo state network (Jaeger, 2007). The cerebellar granule
cell layer can be seen as an LSM; each LSM neuron receives
time varying inputs from external sources (as the cerebellum
receives varying sensorimotor inputs through mossy fibers)
and from other neurons as well (this role is played in the
cerebellum by different interneurons such as Golgi cells,
Lugaro cells, unipolar brush cells, etc.). These LSM neurons
are randomly connected to each other (as Granule cells
are interconnected via Golgi cells in a recurrent loop).
This structural analogy leads us to think that the recurrent
nature of both neural networks, cerebellar granule layer and
LSM, may operate in a similar manner. That is, the time
varying inputs are turned into spatio-temporal patterns of
neural activations; the granular layer acts as the reservoir
of interacting spiking neurons within a recurrent topology,
whilst Purkinje cells act as readout neurons. The strength of
the cerebellum acting like an LSM lies in the possibility of
obtaining whichever needed mathematical operation so as to
perform a certain task such as eyelid conditioning or motor
control tasks.

Since the exact function of the granular layer is not fully
resolved, an assessment of its involvements remains to be
established besides a biologically precise representation of
plasticity mechanisms underneath (i.e., Solinas et al., 2010)
that could substantially modify the core conclusion of this
model.

(b) MF input layer was assumed to maintain not only a constant
firing rate, but also time-evolving states simultaneously (25
different states with four non-overlapped MFs activated per
state). Making use of time-evolving states at MF layer level
has, within this article, proven to be vital for the learning
consolidation process. Despite this, it was assumed that the
granular layer circuit was also capable of generating time-
evolving states even in the presence of a constant MF input
thanks to its inner dynamics (Fujita, 1982; Yamazaki and
Tanaka, 2007a). DCN activity has, indeed, been traditionally
related with both the excitatory-activity integration coming
from MFs and the inhibitory-activity integration from PCs.
The number of MFs and CFs in comparison to granule
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cells (GCs) is very low. Thus, these fibers (MFs and CFs)
are very limited for generating a sparse representation of
different cerebellar states. In fact, even though MFs in our
model were able to generate 25 different states, their role
could be understood more as a baseline global activity or
bias term provider per generated state rather than a proper
state generator that is more the role of the granular-cell-layer.
This fact pointed out that the reported synaptic plasticity at
MF–DCN synapses (Racine et al., 1986; Medina and Mauk,
1999; Pugh and Raman, 2006; Zhang and Linden, 2006) could
induce the adjustment of gain control through plasticity at
DCN synapses whilst the learning consolidation was roughly
preserved at these MF–DCN synapses.

(c) Cerebellar feedback is needed to minimize the existing
difference between the controlled variable (actual cerebellar
output value) and the reference variable (set point) via
manipulation of the controlled variable. We assumed the
teaching signal to come only through the CFs; however,
there is no general agreement regarding neither the type of
information conveyed by CFs nor their potential role (Ito,
2013; Luque et al., 2014b). Furthermore, there exist evidences
pointing to the fact that cerebellar feedback is bounced back
toward the motor cortex (Kawato et al., 1987; Siciliano and
Khatib, 2008) together with the teaching signal, which is also
received and correlated at a granular layer level (Krichmar
et al., 1997; Kistler and Leo van Hemmen, 1999; Anastasio,
2001; Rothganger and Anastasio, 2009). Incorporating these
elements is thought to further enhance the level of flexibility
and accuracy in motor control and learning.

(d) We have included within the model what is, to our
knowledge, the most complex set of STDP plasticity
mechanisms interacting with each other within the cerebellar
network. Nevertheless, there are multiple sub-forms of
plasticity which are still missing such as plasticity at MF–
GC, GO–GC, MF–GO connections, etc., as well as PC and
GC intrinsic excitability (Hansel et al., 2001; Gao et al., 2012;
Garrido et al., 2013b).

(e) The theoretical network here presented is rather
oversimplified compared to the real cerebellar network.
The physiological implications may have been overlooked
but must not be ignored. As an example, the role of
the inhibitory PC collaterals, the complex structure of
the PC dendritic tree, the operation of DCN cells with
their characteristic postsynaptic rebounds, or the theta
oscillations and resonance in the granular layer, amongst
many other physiological evidences, shall need to be
fully addressed. Nevertheless, the way in which all these
physiology implications interact, how they reciprocally
improve their operations, and how they are understandable
in the framework of a complex cerebellar operation remains
a future challenge.

(f) MF–DCN and PC–DCN STDP plasticity mechanisms were
implemented according to some principles suggested by
Medina and Mauk (2000), Masuda and Amari (2008), and
Vogels et al. (2011), where DCN played the role of a
further cerebellar learning vessel besides PF–PC synapses.
However, the underlying mechanism that the cerebellar
nuclei may experience in cerebellar learning has only been

suggested at experimental single-cell level and supported by
behavioral observations (EBCC and VOR). MF–DCN and
PC–DCN STDP plasticity mechanisms therefore still have to
be specifically demonstrated and characterized.

CONCLUSION

Our results propose an explanation for the existing interplay
between the excitatory and inhibitory synapses at DCN afferents
by means of STDP mechanisms. This balance allows the PC
outcome to shape the output of its corresponding DCN-
target neuron which may effectively implement a cerebellar
gain control fully compatible with the two-state learning
mechanism suggested by Shadmehr and Brashers-Krug (1997),
Shadmehr and Holcomb (1997), and Shadmehr and Mussa-
Ivaldi (2012). Moreover, those STDP assemblies at MF–DCN
and PC–DCN synapses have proven to be effective to explain
how long-term memories can be transferred and stored from
PF–PC to MF–DCN synapses. In fact, the experimentation
revealed how MF–DCN synapses could effectively copy a
discretized version of the PF–PC weight distribution shape
in counter-phase. This learning consolidation process operated
much as was demonstrated in Vogels et al. (2011); that is,
PC, MF, or DCN cells do not compete with each other,
exhibiting a winner-take-all behavior. On the contrary, the
cerebellar PC–DCN, MF–DCN innervations stay inactive until
PC activity starts modulating MF–DCN connections (thus
favoring excitation), whilst DCN activity is able to self-
modulate PC–DCN innervations (thus favoring inhibition).
STDP learning rule at inhibitory synapses facilitates a self-
organized balance of excitation and inhibition at DCN
innervations.

Our results also suggest that the understanding of STDP
mechanisms in motor learning requires not only studying their
molecular basis. Rather, they show that this understanding
must be accompanied by parallel insights regarding how the
interactions amongst these plasticity mechanisms and the
different cerebellar sub-circuitries allow distributed learning and
neural homeostatic balance.
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Movie S1 | Learning simulation. Synaptic weight evolution during Case A study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 6000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS; MF-DCN and PC-DCN initial conditions started from zero. Only

one every 100 trials is shown. (Top left) 3D view of the synaptic weight distribution

at PF–PC synapses. (Top right) Sagittal axis of the synaptic weight distribution at

MF-DCN synapses. (Second right) The cerebellum counterbalances the existing

difference between the actual cerebellar output (in red) and the reference curve (in

blue) which is iteratively presented to the cerebellum over 5000 iterations. (First

and second plot of the bottom row). Evolution of the averaged gain at MF-DCN

and PC-DCN synaptic weights at first and second micro-complexes which supply

agonist (red line) or antagonist (black line) cerebellar corrective actions.

Movie S2 | Learning simulation. Synaptic weight evolution during Case A study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 10,000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS, MF-DCN initial conditions started from zero whilst PC-DCN

initial conditions were set to a higher value than demanded. Only one every 100

trials is shown. (Top left) 3D view of the synaptic weight distribution at PF–PC

synapses. (Top right) Sagittal axis of the synaptic weight distribution at MF-DCN

synapses. (Second right) The cerebellum counterbalances the existing difference

between the actual cerebellar output (in red) and the reference curve (in blue)

which is iteratively presented to the cerebellum over 10,000 iterations. (First and

second plot of the bottom row). Evolution of the averaged gain at MF-DCN and

PC-DCN synaptic weights at the first and second micro-complexes which supply

an agonist (red line) or antagonist (black line) cerebellar corrective action.

Movie S3 | Learning simulation. Synaptic weight evolution during Case B study

is plotted. Simulations were run using plasticity mechanisms at PF–PC, MF-DCN,

and PC-DCN along 10,000 trials. PF–PC synaptic conductances were set to an

initial value of 5 nS, MF-DCN and PC-DCN initial conditions started from zero.

Only one every 100 trials is shown. (Top left) Sagittal axis 3D view of the synaptic

weight distribution at PF–PC synapses. (Top right) Sagittal axis 3D view of the

synaptic weight distribution at MF-DCN synapses. (Second row plots) Evolution of

the averaged gains at MF-DCN synaptic weights from the first to sixth

micro-complex. Each micro-complex supplies an agonist (red line) or antagonist

(black line) cerebellar corrective action in each robot joint. The error curve to be

corrected is the difference between controlled (robot actual position and velocities)

and reference variables (desired position and velocities). (Third row plots) Evolution

of the averaged gain at PC-DCN synaptic weights from the first to sixth

micro-complexes. Each micro-complex supplies an agonist (red line) or antagonist

(black line) cerebellar corrective action at its corresponding robot

joint.

Figure S1 | (A) PF–PC synaptic weight distribution at the beginning of the

learning process at 1, 15, and 25 s (CASE A). The exponential weight distribution

at PF–PC shows that the corrective action is properly stored at these afferents.

Synaptic weights at PF–PC synapses are randomly initialized unlike in previous

experimentations, where these weights were set to equal values in order to better

perceive at a glance the shape of the synaptic weight distribution at this site. (B)

MF-DCN averaged gains for 2, 3, 6, 8, and 10 kg, respectively, when the learning

process has settled down (CASE B). MF-DCN synapses depended on PC activity

and are modified when some PF–PC weights tend to be saturated. The heavier

the payload to be manipulated by the lightweight robot, the more cerebellar gain is

demanded for counterbalancing the dynamic existing mismatch between the

crude inverse controller and the robot plant. Since the error is unidirectional in

joints 2 and 3, the gain is unidirectional as well. In joint 1, the error to be

compensated is bidirectional, and therefore, the gain has to be

bidirectional.
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APPENDIX: NEURAL AND SYNAPSE
MODELS

Neuron models were implemented using slightly modified
versions of the LIF model (Gerstner and Kistler, 2002). In the
LIF model, the neural state is characterized by the membrane
potential (Vm−c) defined by the differential equation (Equation
A1). This equation includes the effect of chemical synapses [α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
gamma-aminobutyric acid (GABA) receptors] and the resting
conductance (Grest),

Cm ·

dVm−c

dt
= gAMPA (t) · (EAMPA − Vm−c) +

+ gGABA (t) · (EGABA − Vm−c) + Grest · (Erest − Vm−c) (A1)

where Cm denotes the membrane capacitance, EAMPA and EGABA
stand for the reversal potential of each synaptic conductance,
and Erest represents the resting potential (with Grest being the
conductance responsible for the passive decay term toward the
resting potential). Conductances gAMPA and gGABA integrate all

TABLE A1 | Parameters of the cell types.

Parameter Granule cell Purkinje cell DCN cell

Refractory period (ms) 1 2 1

Membrane capacitance (pF) 2 400 2

∗Total excitatory peak conductance 1 nS·100 1.3 nS·175,000·10%* 1 nS·7

Total inhibitory peak conductance 1 nS·200 3 nS·150 30 nS·1

Threshold (mV) −40 −52 −40

Resting potential (mV) −70 −70 −70

Resting conductance (nS) 0.2 16 0.2

Resting time constant (τrest; ms) 10 25 10

Excitatory-synapse time constant (τAMPA; ms) 0.5 0.5 0.5

Inhibitory-synapse time constant (τGABA; ms) 10 1.6 10

Parameters obtained from the following papers:

Granule cell (GC; Silver et al., 1996; Tia et al., 1996; Nusser et al., 1997; D’Angelo et al., 1998; Rossi and Hamann, 1998) and Purkinje cell (PC; D’Angelo et al., 1993, 1998, 2001;

Nieus et al., 2006). DCN data were extracted from unpublished material from Prof. D’Angelo’s lab.

*Where 10% means the ratio of active connections PF–PC (out of the total 175,000 PFs).

the contributions received by each receptor type (AMPA and
GABA) through individual synapses and are defined as decaying
exponential functions which provide reasonable accuracy at a low
computational cost (Gerstner and Kistler, 2002; Ros et al., 2006;
Equation A2).

gAMPA (t) =

{

0, t ≤ t0
gAMPA (t0) · e

−(t−t0)/τAMPA , t > t0

gGABA (t) =

{

0, t ≤ t0
gGABA (t0) · e

−(t−t0)/τGABA , t > t0
(A2)

where t represents the simulation time whilst t0 denotes
the arrival instant of an input spike. gAMPA stands for the
AMPA receptor which provides excitation, and gGABA stands
for the GABA receptor-mediated conductance, which provides
inhibition. Finally, τAMPA and τGABA are the decaying time
constants of each receptor type. The parameters defining each
cell type and synaptic receptor that have been chosen to model
granule cell, Purkinje cell, and deep nucleus dynamics are
included in Table A1.
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