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Universidad de Granada

Director: Dr. Antonio Mart́ınez Cegarra

3 de marzo de 2016



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editor: Universidad de Granada. Tesis Doctorales  
Autora:  María Calvo Cervera
ISBN: 978-84-9163-012-8  
URI: http://hdl.handle.net/10481/44554 
 

 

 





A Lourdes

i





Contents
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Prólogo

Esta memoria de tesis doctoral es presentada por Dña. Maŕıa Calvo Cervera para
optar al t́ıtulo de Doctora en Matemáticas por la Universidad de Granada, dentro
del programa oficial de Doctorado en F́ısica y Matemáticas (FisyMat). Se realiza por
tanto de acuerdo con las normas que regulan las enseñanzas oficiales de Doctorado
y del T́ıtulo de Doctor en la Universidad de Granada, aprobadas por Consejo de
Gobierno de la Universidad en su sesión de 2 de Mayo de 2012, donde se especifica
que “la tesis doctoral consistirá en un trabajo original de investigación elaborado por
el candidato en cualquier campo del conocimiento que se enmarcará en alguna de las
ĺıneas del programa de doctorado en el que está matriculado. Para garantizar, con
anterioridad a su presentación formal, la calidad del trabajo desarrollado se aportará,
al menos, una publicación aceptada o publicada en un medio de impacto en el ámbito
de conocimiento de la tesis doctoral firmada por el doctorando, que incluya parte de
los resultados de la tesis. La tesis podrá ser desarrollada y, en su caso, defendida, en
los idiomas habituales para la comunicación cient́ıfica en su campo de conocimiento.
Si la redacción de la tesis se realiza en otro idioma, deberá incluir un resumen en
español.”.

La presente memoria ha sido redactada en base a cinco art́ıculos de investigación,
tres de los cuales fueron publicados entre los años 2013-2015 [10, 16, 15] y los otros
dos [12, 13] actualmente están pendientes de publicación. Dichos art́ıculos se han
seleccionado teniendo en cuenta sobre todo su coherencia temática, pero también su
extensión en orden a que la tesis tenga un tamaño razonable. Todas estos traba-
jos están sometidos o han aparecido en revistas de relevancia internacional, incluidas
todas ellas en el Journal of Citations Reports e incluidas en las bases de datos Math-
SciNet (American Mathematical Society) y Zentralblatt für Mathematik (European
Mathematical Society).

Para optar a la mención internacional en el t́ıtulo de doctor, la mayor parte de
la memoria está escrita en inglés, idioma que actualmente es de mayoritario uso en
la comunicación cient́ıfica en el ámbito de las matemáticas, respetando aśı el idioma
en que los art́ıculos de investigación recopilados han sido o serán publicados. Al
redactarse en una lengua no oficial, sin embargo, incluimos un resumen también en
español.

Los resultados novedosos presentados en la memoria han sido obtenidos a lo largo
de los últimos años bajo la supervisión del Dr. Antonio Mart́ınez Cegarra en el Depar-
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vi Prólogo

tamento de Álgebra de la Universidad de Granada. En este tiempo, la doctoranda ha
sido alumna del Programa Oficial de Doctorado en F́ısica y Matemáticas (FisyMat);
desde Marzo de 2013 ha disfrutado de una Beca de Formación de Profesorado Univer-
sitario (FPU12/0112), financiada por el Ministerio de Educación, Cultura y Deportes
español, y ha realizado sus investigaciones en el marco del Grupo de Investigación
FQM-168, financiado por la Junta de Andalućıa, y del Proyecto de Investigación
MTM2011-22554, financiado por la Dirección General de Investigación del Gobierno
de España. Durante los meses de Mayo, Junio y Julio de 2013, la doctoranda realizó
una estancia de investigación en el École Polytechnique Fédérale de Lausanne, Suiza,
y durante los meses de Septiembre, Octubre, Noviembre y Diciembre de 2014, realizó
otra estancia en la Queen Mary University of London (Reino Unido).
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entre manos, es algo de admirar. Gracias por responder siempre a mis preguntas, del
tipo que sean y por los medios que sean.
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la carrera, primero ella sola y luego con Canela. Gracias por esos paseos en los que
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Abstract

Monoidal categories have been studied and used extensively in the literature. Monoidal
small groupoids, as found in particular in algebra and algebraic topology, are impor-
tant as mathematical objects in their own right. Most of the work in this thesis is
motivated by the structural analysis of several kinds of these monoidal groupoids,
whose final aim is to state and prove precise cohomological classification theorems
for them. Some of these results are established by means of known cohomology the-
ories for monoids, but others need suitable new ones. Therefore, the memory also
contributes to the study of monoids under an homological point of view.

This thesis is divided into five chapters, that contained the results obtained, and
a conclusion chapter in Spanish. All chapters can be read quite independently, al-
though most of the terminology and some technical arguments are shared between
them. Apart from a few minor notational changes that have been made to unify
our presentation, and that the full bibliography has been collected at the end of the
thesis, Chapter 1 has appeared as [10] in the journal Semigroup Forum (2013), Chap-
ter 3 as [16] in Semigroup Forum (2015), Chapter 4 as [15] in Mathematics (2015),
while Chapters 2 and 5 correspond to the papers [12] and [13], which are pending of
publication.

In Chapter 1 we analyze the structure of arbitrary monoidal groupoids, that is,
small categoriesM in which all arrows are invertible, enriched with a monoidal struc-
ture by a tensor product ⊗ :M×M→M, an unit object I, and corresponding co-
herent associativity and unit constraints ax,y,z : (x⊗y)⊗z ∼= x⊗(y⊗z), lx : I⊗x ∼= x,
and rx : x ⊗ I ∼= x. Strongly inspired by Schreier’s analysis of group extensions [67]
and its extension to fibrations of categories by Grothendieck [45] (but also by works of
Sinh [69], Breen [8], et al.), we develop a 3-dimensional Schreier-Grothendieck factor
set theory for monoidal groupoids. More precisely, we classify monoidal groupoids by,
what we call, Schreier systems for monoidal groupoids, or non-abelian 3-cocycles on
monoids. That is, systems of data consisting of a monoid M , a family of (not necessar-
ily commutative) groups A(a), parameterized by the elements a ∈ M of the monoid,
a family of group homomorphisms a∗ : A(b)→ A(ab) and a∗ : A(b)→ A(ba) between
these groups, and a list of elements λa,b,c ∈ A(abc), satisfying various requirements.

When we focus in the special case of monoidal abelian groupoids then our clas-
sification results are stated in a more enjoyable and precise way by means of Leech
cohomology theory of monoids [53]. In fact, any monoidal abelian groupoid is clas-
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2 Abstract

sified by a Schreier system in which now every group A(a) is abelian, so that the
data for a Schreier system turn just to be a three cocycle for a Leech cohomology
group of the monoid M . Although these results are mainly of algebraic interest,
we would like to stress their potential interest in homotopy theory since there are
natural isomorphisms between Leech cohomology groups of a monoid M and certain
Gabriel-Zisman’s cohomology groups [37] of the classifying space WM of the monoid.

In Chapter 2 we deal with the computability of Leech (co)homology groups of
finite cyclic monoids, whose structure and classification was first stated by Frobenius
[34]. Although (co)homology groups of any finite cyclic group have been well-known
since they were computed in 1949 by Eilenberg [27], this is not the case for finite cyclic
monoids. Indeed, to our knowledge, the Leech cohomology groups of a cyclic monoid
have been computed only for the infinite case (i.e., for the monoid of the additive
monoid N of natural numbers) and up to dimension 2 for the finite case by Leech in
[53]. Then, because higher cohomology groups arise with interest for us (mainly due
to our interpretation of the 3rd cohomology groups in Chapter 1), we dedicate this
chapter to compute all the (co)homology groups of any finite cyclic monoid.

In Chapter 3 we change to work with commutative monoids. The category of
commutative monoids is tripleable (monadic) over the category of sets [58], and so
it is natural to specialize Barr-Beck cotriple cohomology [2] to define a cohomology
theory for commutative monoids. This was done in the 1990s by Grillet [40, 41, 42,
43]. In this chapter, our goal is to interpret these 3rd cohomology group in terms of
strictly symmetric (or strictly commutative) monoidal abelian groupoids [25, 56, 66],
that is, monoidal abelian groupoids, but now endowed with coherent and natural
isomorphisms cx,y : x⊗ y ∼= y ⊗ x, satisfying the symmetry and strictness conditions
cy,x cx,y = idx⊗y and cx,x = idx⊗x. The monoid M of connected components of
such a monoidal groupoid becomes commutative and our main result here is that the
complete invariant for the classification of any strictly symmetric monoidal abelian
groupoid is provided by a Grillet 3-cohomology class of M . This classification result
generalizes the well-known one for strictly commutative Picard categories by Deligne
[25], Fröhlich and Wall [36], and Sinh [69].

So far, we have dealt with Leech cohomology theory for arbitrary monoids and
Grillet cohomology theory for commutative monoids. For a commutative monoid,
these two cohomology theories differ beyond dimension 2. Indeed, one easily argues
that Leech cohomology groups do not take properly account of the commutativity of
the monoid, in contrast to what happens with Grillet ones. To some extent, however,
Grillet’s symmetric cohomology theory at degrees greater than 2 seem to be a little
too ‘strict’ (for example, symmetric 3-cohomology groups of a group are always zero).
Therefore, in Chapters 4 and 5, we present new approaches for cohomology theories of
commutative monoids, mainly motivated for the problem of classifying both braided
and symmetric monoidal abelian groupoids.

In Chapter 4 we define and study a new cohomology theory, consisting of what
we call commutative cohomology groups of a commutative monoid. We came to them
inspired in the (second level) cohomology groups of abelian groups by Eilenberg and
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Mac Lane [31, 55], and their definition is based on the cohomology theory of simplicial
sets by Gabriel and Zisman [37]. To compute these cohomology groups up to dimension
3, we conclude here with a manageable truncated at dimension 4 cochain complex,
which we call the complex of commutative cochains. By means of these commutative
cocycles we establish interpretation results for the commutative cohomology groups
at dimensions up to 3. In particular, we prove that equivalence classes of braided
monoidal abelian groupoids, that is, monoidal abelian groupoids with coherent and
natural isomorphisms cx,y : x⊗ y ∼= y ⊗ x but without the symmetry (cy,x cx,y = id)
and strictness (cx,x = id) requirements [50], are classified by means of commutative
3-cohomology classes of commutative monoids.

Finally, in Chapter 5, we introduce and study, for any integer r ≥ 1, a rth level co-
homology theory for commutative monoids. The rth level cohomology groups provide
a generalization to commutative monoids of Eilenberg-Mac Lane’s rth level cohomol-
ogy groups for abelian groups [31, 55], which, recall, compute the cohomology of the
spaces K(G, r). Furthermore, this theory recover, at its first level, Leech cohomol-
ogy on commutative monoids, and, at its second level, the commutative cohomol-
ogy theory treated in the previous Chapter 4. Regarding the third level cohomol-
ogy groups, we find, among them, the invariants for classifying symmetric monoidal
abelian groupoids, that is, monoidal abelian groupoids with coherent and natural iso-
morphisms cx,y : x ⊗ y ∼= y ⊗ x satisfying the symmetry condition (cy,x cx,y = id)
but not the strictness one (cx,x = id), and so we complete the lists of invariants for
equivalence classes of monoidal abelian groupoids. A relevant part of the chapter is
dedicated to give explicit computations of these higher level cohomology groups for
cyclic monoids.





Chapter 1

Structure and classification of
monoidal groupoids

This chapter deals with monoidal groupoids M = (M,⊗, I,a, l, r), that is, categories
M in which all arrows are invertible, enriched with a monoidal structure by a tensor
product ⊗ :M×M→M, an unit object I, and corresponding coherent associativity
and unit constraints aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), lX : I ⊗ X → X,
and rX : X ⊗ I → X. Our main objective is to state and prove precise classification
theorems for monoidal groupoids and their homomorphisms. In this classification, two
monoidal groupoids, sayM andM′, are equivalent whenever they are connected by a
monoidal equivalence (F,ϕ) :M //∼ M′ , and two monoidal functors (F,ϕ), (F ′, ϕ′) :

M→M′ which are related by a monoidal natural isomorphism, δ : (F,ϕ) ∼⇒ (F ′, ϕ′),
are considered the same.

The particular case of categorical groups is well known since it was dealt with by
Sinh in 1975. Recall that a categorical group [50] (also called a Gr-category [8, 69] and
a weak 2-group [1]) is a monoidal groupoid M in which every object X is invertible,
in the sense that there is another object X∗ and an isomorphism X ⊗ X∗ → I. In
[69], she proved that, for any group G, any G-module A, and any Eilenberg-Mac Lane
cohomology class c ∈ H3(G,A), there exists a categorical group M, unique up to
monoidal equivalence, such that G is the group of isomorphism classes of objects of
M, A = AutM(I) is the (abelian) group of automorphisms inM of the unit object, and
the G-action and the cohomology class c are canonically deduced from the functoriality
of the tensor and the naturality and coherence of the constraints ofM. This fact was
historically relevant since it pointed out the utility of categorical groups in homotopy
theory: asH3(G,A) = H3(BG,A) is the 3th cohomology group of the classifying space
BG of the group G with local coefficients in A, for any triplet of data (G,A, c) as above,
there exists a path-connected CW-complex X, unique up to homotopy equivalence,
such that πiX = 0 if i 6= 1, 2, π1X = G, π2X = A as G-module, and c ∈ H3(G,A) is
the unique non-trivial Postnikov invariant of X. Therefore, categorical groups arise
as algebraic homotopy 2-types of path-connected spaces. Indeed, strict categorical
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6 Chapter 1. Structure and classification of monoidal groupoids

groups -i.e. categorical groups in which all the structure constraints are identities- are
the same as crossed modules, whose use in homotopy theory goes back to Whitehead
(1949) (see [9] for the history).

However, many illustrative examples such as the category AzR of central separable
algebras over a commutative ring R, or the fundamental groupoid πX of a Stasheff
A4-space X (of any topological monoid, for instance), show the ubiquity of monoidal
groupoids in several branches of mathematics, and therefore the interest to study these
categorical structures in their own right. But the situation with monoidal groupoids
is more difficult than with categorical groups. Let us stress the main two differences
between both situations. On the one hand, the induced structure by the tensor product
on the set of connected components of a monoidal groupoid is that of a monoid, rather
than a group, as it happens in the categorical group case. On the other hand, if M
is a categorical group, then the isotropy groups AutM(X), X ∈ ObM, are all abelian
and all isomorphic to AutM(I), while a monoidal groupoid may have some isotropy
groups that are not isomorphic to AutM(I), as well as some noncommutative isotropy
groups. Think of the simple example Fin of finite sets and bijective functions between
them, whose monoidal structure is given by disjoint union construction: Its monoid
of isomorphism classes of objects is N, the additive monoid of natural numbers, and
its isotropy groups are the symmetric groups Gn.

Strongly inspired by Schreier’s analysis of group extensions [67] and its exten-
sion to fibrations of categories by Grothendieck [45] (but also by works of Sinh [69],
Breen [8], et al.), the structure of the monoidal groupoids is analyzed in this chapter,
where we develop a 3-dimensional Schreier-Grothendieck factor set theory for monoidal
groupoids, which indeed involves a 2-dimensional one for the monoidal functors be-
tween monoidal groupoids, and even a 1-dimensional one for the monoidal transforma-
tions between them. More precisely, our general conclusions on this issue concerning
to monoidal groupoids can be summed up by saying that we give explicit quasi-inverses
biequivalences

MonGpd ≈
∆ //

Z3
n-abMnd,

Σ
oo

between the 2-category of monoidal groupoids and the 2-category of what we call
Schreier systems for monoidal groupoids, or non-abelian 3-cocycles on monoids. That
is, systems of data

(M,A,Θ, λ)

consisting of a monoid M , a family of (non-necessarily commutative) groups A =
(A(a))a∈M parameterized by the elements of the monoid, a family of group homomor-
phisms

Θ = (A(b)
a∗−→ A(ab)

b∗←− A(a))a,b∈M ,

and a normalized map

λ : M ×M ×M −→
⋃
a∈M
A(a) | λa,b,c ∈ A(abc),
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satisfying various requirements. In the 2-category Z3
n-abMnd every equivalence is

actually an isomorphism, so that our classification results are effective.
When we focus in the special case of monoidal abelian groupoids, that is, monoidal

groupoids M = (M,⊗, I,a, l, r) whose isotropy groups AutM(X), X ∈ ObM, are
all abelian, then our classification results are stated in a more enjoyable and precise
way by means of Leech cohomology theory of monoids [53]. The biequivalences above
restrict to quasi-inverses biequivalences

MonAbGpd ≈
∆ //

Z3Mnd,
Σ

oo

between MonAbGpd, the full 2-subcategory of monoidal abelian groupoids, and
Z3Mnd, the full 2-subcategory given by those Schreier systems (M,A,Θ, λ) in which
every group A(a) of A is abelian. But, the data A and Θ that occur in any such
a Schreier system constitute just a coefficient system, denoted now only by A, for
Leech cohomology groups Hn

L(M,A) of the monoid M , and λ ∈ Z3
L(M,A) is a nor-

malized 3-cocycle. From this observation, we achieve the classification both of the
monoidal abelian groupoids and of the monoidal functors between them, by means of
the cohomology groups H3

L(M,A) and H2
L(M,A). Although these results are mainly

of algebraic interest, we would like to stress their potential interest in homotopy
theory since, as we will observe in the Chapter 4, there are natural isomorphisms
Hn

L(M,A) ∼= Hn(WM,A), between Leech cohomology groups of a monoid M and
Gabriel-Zisman’s cohomology groups of the classifying space WM of the monoid with
twisted coefficients in A [37, Appendix II].

The plan of the chapter, briefly, is as follows. After this introduction, there are four
sections. Section 1.1 comprises some notations and basic results concerning monoidal
groupoids and the 2-category that they form, as well as a list of some striking exam-
ples of them. The main Section 1.2 includes our ‘Schreier-Grothendieck theory’ for
monoidal groupoids. This is a quite long and technical section, but crucial to our
conclusions, where we describe the 2-category Z3

n-abMnd of non-abelian 3-cocycles on
monoids, and we show in detail how this 2-category is biequivalent to the 2-category
MonGpd of monoidal groupoids. Section 1.3 focuses in the special case of monoidal
abelian groupoids. In a first subsection we briefly review some aspects concerning
Leech cohomology of monoids Hn

L(M,A). In the second subsection we include our
main classification results concerning monoidal abelian groupoids in terms of Leech
cohomology groups. And, finally, a third subsection is devoted to revisit the 2-category
of categorical groups, in order to show how the results here obtained imply the already
known for them.
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1.1 Preliminaires: The 2-category of monoidal
groupoids

In this section we fix notations and terminology, as well as we review some necessary
aspects and results from the background of monoidal categories that will be used in
what follows.

A monoidal category M = (M,⊗, I,a, l, r) consists of a category M, a functor

⊗ :M×M→M, (X,Y ) 7→ X ⊗ Y,

(the tensor product) a distinguished object I ∈ M (the unit object), and natural
isomorphisms

aX,Y,Z : (X ⊗ Y )⊗ Z //∼− X ⊗ (Y ⊗ Z), lX : I⊗X //∼− X, rX : X ⊗ I //∼− X,

(called the associativity, left unit, and right unit constraints, respectively), such that,
for all objects X,Y, Z, T of M, the diagrams below (called the associativity pentagon
and the triangle for the unit) commute.

((X ⊗ Y )⊗ Z)⊗ T a //

a⊗1 ��

(X ⊗ Y )⊗ (Z ⊗ T )
a // X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ (Y ⊗ Z))⊗ T a // X ⊗ ((Y ⊗ Z)⊗ T )

1⊗a
OO

(1.1)

(X ⊗ I)⊗ Y a //

r⊗1 $$IIIIIII
X ⊗ (I⊗ Y )

1⊗lzzuuuuuuu

X ⊗ Y

(1.2)

Observe that usually we write the structure constraints without label of objects,
since their source and target make it clear what constraint isomorphism it is. A
monoidal category is called strictly unitary when the unit constraints lX , rX are
identity arrows, while it is called strit if aX,Y,Z is also the identity.

In any monoidal category rI = lI and for any objects X,Y the triangles below
commute [50, Proposition 1.1].

(X ⊗ Y )⊗ I
a //

r %%LLLLLL
X ⊗ (Y ⊗ I)

1⊗ryyrrrrrr

X ⊗ Y

(I⊗X)⊗ Y a //

l⊗1 %%LLLLLL
I⊗ (X ⊗ Y )

lyyrrrrrr

X ⊗ Y
(1.3)

If M,M′ are monoidal categories, then a monoidal functor

F = (F,ϕ) :M→M′ (1.4)

consists of a functor F :M→M′, a family of natural isomorphisms

ϕX,Y : FX ⊗′ FY //∼− F (X ⊗ Y ),
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and an isomorphism ϕ0 : I′ //∼− F I, such that the following diagrams commute:

(FX ⊗′ FY )⊗′ FZ ϕ⊗1 //

a′
��

F (X ⊗ Y )⊗′ FZ ϕ // F ((X ⊗ Y )⊗ Z)

Fa
��

FX ⊗′ (FY ⊗′ FZ)
1⊗′ϕ // FX ⊗′ F (Y ⊗ Z)

ϕ // F (X ⊗ (Y ⊗ Z))

(1.5)

FX ⊗′ I′

r′
��

1⊗′ϕ0// FX ⊗′ F I

ϕ
��

FX F (X ⊗ I),
Froo

I′ ⊗′ FX
l′

��

ϕ0⊗1 // F I⊗′ FX
ϕ

��
FX F (I⊗X),

F loo

(1.6)

When F I = I′ and ϕ0 = 1I′ , the identity, then the monoidal functor F is qualified as
strictly unitary. When each of the isomorphisms ϕX,Y , ϕ0 is an identity, the monoidal
functor is called strict.

The composition of monoidal functorsM F→M′ F
′
→M′′ will be denoted by juxta-

position, that is, F ′F :M→M′′. Recall that its structure constraints are obtained
from those of F and F ′ respectively, by the compositions

F ′FX ⊗′′ F ′FY
ϕ′ // F ′(FX ⊗′ FY )

F ′ϕ // F ′F (X ⊗ Y ) ,

I′′
ϕ′0 // F ′I′

F ′ϕ0 // F ′F I.

The composition of monoidal functors is associative and unitary, so that the category
MonCat of monoidal categories is defined. Actually, this is the underlying category
of a 2-category, also denoted by MonCat, whose 2-arrows are the morphisms of
monoidal functors or monoidal natural transformations. If F, F ′ : M → M′ are
monoidal functors, then a morphism between them

δ : F ⇒ F ′ (1.7)

is a natural transformation on the underlying functors such that, for all objects X,Y
of M, the following coherence diagrams commute:

FX ⊗′ FY
ϕ //

δX⊗′δY
��

F (X ⊗ Y )

δX⊗Y
��

F ′X ⊗′ F ′Y
ϕ′ // F ′(X ⊗ Y )

I′
ϕ′0

��888888
ϕ0

��������

F I
δI // F ′I

(1.8)

In this 2-category, the “vertical composition” of 2-cells, denoted by

⇓δ
M

F

��

F ′′

??F ′ //
⇓δ′
M′

� ◦ //
⇓δ′◦δM

F
''

F ′′
77M
′,
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is given by the ordinary vertical composition of natural transformations, that is, the
component of δ′ ◦ δ at any object X of M is given by the composition in M′

(δ′ ◦ δ)X = δ′X ◦ δX : FX
δX−→ F ′X

δ′X−→ F ′′X. (1.9)

Similarly, the “horizontal composition”

M
F ((

G

66⇓δ M′
F ′ ((

G′
66⇓δ′ M′′ 7→ M

F ′F
&&

G′G

88⇓δ′δ M′′ ,

is given by the usual horizontal composition of natural transformations:

δ′δ = G′δ ◦ δ′F = δ′G ◦ F ′δ : F ′F ⇒ G′G. (1.10)

The following known lemma will be useful in the sequel (cf. [20, Lemma 1.1], for
example). Let

MonCatu ⊆MonCat

denote the 2-subcategory of the 2-category of monoidal categories which is full on
0-cells and 2-cells, but whose 1-cells are the strictly unitary monoidal functors.

Lemma 1.1 The inclusion MonCatu
� � //≈ MonCat is a biequivalence.

Proof: For any monoidal categoriesM andM′, a quasi-inverse to the inclusion functor
i : MonCatu(M,M′) ↪→MonCat(M,M′),

( )u : MonCat(M,M′)→MonCatu(M,M′), (1.11)

which should be called the normalization functor, works as follows: For any given
monoidal functor F = (F,ϕ) : M → M′, let ΨF = (ψX)X∈ObM be the family of
isomorphisms in M′

ψX =

{
1FX : FX → FX if X 6= I

ϕ−1
0 : F I→ I′ if X = I.

Then, F can be deformed to a new monoidal functor, F u = (F u, ϕu) :M→M′, in a
unique way such that ΨF : F ∼⇒ F u becomes an isomorphism. Namely,

F uX =

{
FX if X 6= I

I′ if X = I,
F u(X

f→ Y ) = (F uX
ψY ◦Ff◦ψ−1

X // F uY ),

ϕu
X,Y = ψX⊗Y ◦ ϕX,Y ◦ (ψX ⊗ ψY )−1, ϕu

0 = ψI ◦ ϕ0 = 1I′ .

Furthermore, any morphism δ : F ⇒ G gives rise to the morphism

δu = Ψ−1
G ◦ δ ◦ΨF : F u ⇒ Gu,
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which is explicitly given by

δu
X =

{
δX : FX → GX if X 6= I

ϕ0 ◦ δI ◦ ϕ−1
0 = 1I′ : I′ → I′ if X = I.

These mappings F 7→ F u, δ 7→ δu, describe the normalization functor (1.11).
Since, by construction, ( )u i = id, the identity functor, and we have the natural

isomorphism Ψ : id ∼⇒ i ( )u, F 7→ ΨF , both functors i and ( )u are mutually quasi-
inverse. �

A monoidal functor F : M → M′ is called a monoidal equivalence when there
exists a monoidal functor F ′ :M′ →M and isomorphisms of monoidal functors 1M

∼⇒
F ′F , FF ′ ∼⇒ 1M′ . Two monoidal categories are equivalent if they are connected by
a monoidal equivalence. By Saavedra [66, I, Proposition 4.4.2], we have the following
useful result:

Proposition 1.1 A monoidal functor (F,ϕ) :M→M′ is a monoidal equivalence if
and only if the underlying functor F :M→M′ is an equivalence of categories; that
is, if and only if the functor F is full, faithful and each object of M′ is isomorphic to
an object of the form FX for some X ∈M.

In this chapter, we are going to work with the full 2-subcategory of MonCat given
by the monoidal groupoids, that is, of monoidal categories whose morphisms are all
invertible, hereafter denoted by

MonGpd.

This 2-category of monoidal groupoids contains as a full 2-subcategory the well known
2-category of categorical groups, denoted by

CatGp,

whose objects, recall, are those monoidal groupoids in every object is invertible. The
inclusion CatGp ↪→MonGpd has a right biadjoint 2-functor

Pic : MonGpd→ CatGp

that assigns to each monoidal groupoid M its Picard categorical group [66, 2.5.1],

Pic(M) ⊆M,

which is defined as the monoidal full subgroupoid ofM given by the invertible objects.

1.1.1 Examples

To help motivate the reader we shall show some classic and striking instances of
monoidal groupoids. The most basic example of a monoidal groupoid is perhaps the
defined by the category Fin of finite sets and bijective functions between them, whose
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monoidal structure is given by means of the disjoint union construction, which arises
in the study of categories of representations of the symmetric groups Sn (see Joyal
[48]). Indeed, Fin is equivalent to the strict monoidal groupoid G defined as the
disjoint union of the symmetric groups Sn, n ∈ N. More precisely, G has objects the
natural numbers n ∈ N and the hom-sets are given by

G(m,n) =

{
Gn if m = n
∅ if m 6= n .

Composition is multiplication in the symmetric groups, and the tensor product is
given by the obvious map Gm ×Gn → Gm+n.

Ring theory is a good source of many interesting monoidal groupoids. For example,
following Fröhlich and Wall [35], let R be any given commutative ring. Then, the
monoidal category of R-modules, ModR, whose monoidal structure is given by the
usual tensor product of R-modules, (M,N) 7→ M ⊗R N , contains as an interesting
monoidal subcategory the so-called monoidal groupoid of R-progenerators, usually
denoted by

GenR,

whose objects are the faithful, finitely generated projective R-modules, and whose
morphisms are the module isomorphisms between them. The invertible objects in
GenR are the invertible R-modules, i.e. rank 1 projectives. Hence,

Pic(GenR) = PicR,

is the monoidal groupoid known as the Picard categorical group of R. Similarly,
the monoidal category of associative R-algebras with identity, AlgR, whose monoidal
structure is given by the ordinary tensor product of R-algebras, (A,B) 7→ A ⊗R B,
contains a striking instance of a monoidal groupoid: the so-called monoidal groupoid
of Azumaya R-algebras, denoted by

AzR,

whose objects are the central separable R-algebras and whose morphisms are the R-
algebra isomorphisms. Forgetting algebra structure and taking the endomorphism
ring define, respectively, two remarkable monoidal functors: LinR : AzR → GenR and
EndR : GenR → AzR. The Morita monoidal groupoid of R-algebras,

MAlgR,

is defined to have objects R-algebras, and a morphism A→ B is an isomorphism class
of a Morita equivalenceModA

∼→ModB (or, equivalently, an isomorphism class of an
invertible (left) A⊗RBop-module). An object A of this monoidal groupoid is invertible
if and only if there is another object B such that A⊗R B is Morita equivalent to R.
It follows that A must be an Azumaya R-algebra. Conversely, if A is Azumaya, the
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isomorphism A⊗RAop ∼= EndR(LinR(A)) shows that, since EndR(LinR(A)) is Morita
equivalent to R, Aop provides a quasi-inverse of A. Hence,

Pic(MAlgR) = BrR

is the Brauer categorical group of R, whose objects are the same as those of AzR,
i.e. the Azumaya R-algebras, but whose morphisms are here iso-classes of Morita
equivalences between them.

Every monoidal groupoid arises from an elemental categorical construction: If B is
any bicategory [71], then the monoidal groupoid of endomorphisms of an object b ∈ B,
denoted by

End(b),

has objects the 1-cells f : b→ b in B and morphisms the invertible 2-cells f ∼⇒ f ′ be-
tween them. The monoidal structure on End(b) is given by the horizontal composition
of cells in the bicategory. The categorical group of autoequivalences of b is

Aut(b) = Pic(End(b)),

that is, the monoidal full subgroupoid of equivalences b ∼→ b in the bicategory. If, for
example, we take B = Cat, the 2-category of categories, and C is any category, then
the monoidal groupoid

End(C)

has objects the functors F : C → C and the morphisms are the natural equiva-
lences F ∼⇒ G. The composition in End(C) is given by the usual vertical composition
of natural transformations, while the composition of the functors and the horizon-
tal composition of the natural transformations define its (strict) monoidal structure.
These monoidal groupoids of endofunctors are relevant in several frameworks, since
a pseudo-action of a monoidal category M on a category C is the same thing as a
monoidal functor M → End(C). For instance, a Deligne action [24] of a monoid M
on a category C, is just a monoidal functor M → End(C), from the discrete monoidal
category that M defines to the monoidal groupoid of endofunctors of C.

The Picard categorical group of a category C is

Pic(C) = Aut(C),

that is, the monoidal full subgroupoid of End(C) given by the autoequivalences C ∼→ C.
If, for example, A is any ring and we take C = AModA, the category of A-bimodules,
then, by Morita’s theory, there is a monoidal equivalence

Aut(AModA) ' PicA,

where PicA is the Picard categorical group of the ring, that is, the categorical group of
invertible A-bimodules with isomorphisms, whose monoidal structure is given by the
usual monoidal product of A-bimodules (M,N) 7→M ⊗A N . The case where C = G,
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a group regarded as a category with only one object, is also well-known: the monoidal
groupoid

End(G)

can be described as having objects the group of endomorphisms f : G → G and
morphisms u : f ⇒ g those elements u ∈ G such that f = Cuf

′, where Cu : G → G
is the inner automorphism Cu(v) = uvu−1 given by conjugation with u. Composition
of morphisms is multiplication in G, and the (strict) monoidal structure is defined by

(f
u→ f ′)⊗ (g

v→ g′) = (fg
uf ′(v) // f ′g′).

The corresponding Picard categorical group of invertible objects

Aut(G),

is the categorical group of automorphisms of G. It is the internal groupoid in the
category of groups whose group of objects is Aut(G), the group of automorphisms
of G, and whose group of arrows is the holomorph group Hol(G) = G o Aut(G).
Thus, Aut(G) is precisely the categorical group corresponding to the universal crossed

module G
C→ Aut(G) by the well-known Verdier equivalence between the category of

Whitehead crossed modules and the category of strict categorical groups, see [9] for
the history.

Algebraic Topology is also a natural setting where monoidal groupoids appear with
recognized interest: Recall that the fundamental groupoid πX, of a space X, is the
category having X as set of objects, and whose morphisms [ω] : x → y (x, y ∈ X)
are relative end points homotopy classes of paths ω : [0, 1] → X with ω(0) = x and
ω(1) = y. Composition in πX is induced by the usual concatenation of paths and
constant paths provide the identities. Any continuous map f : X → Y induces a
functor f∗ : πX → πY given by

f∗
(
x

[ω]−→ y
)

=
(
f(x)

[fω]−→ f(y)
)
,

so that the fundamental groupoid construction, X 7→ πX, is a functor from the
category of topological spaces to the category of groupoids. If f, g : X → Y are two
maps, then a homotopy α : f ⇒ g, α : [0, 1] → Y X , induces a natural isomorphism
α∗ : f∗ ⇒ g∗ defined, for any point x ∈ X, by

α∗(x) = [α(−)(x)] : f(x)→ g(x).

Moreover, it is easy to see that if two homotopies α, β : f ⇒ g are related by a relative
end maps homotopy, αV β, then both induce the same natural isomorphism, that is,
if [α] = [β] in the track groupoid πY X , then α∗ = β∗ : f∗ ⇒ g∗.

Suppose now that X = (X,m, e, α, λ, ρ) is any given homotopy coherent associa-
tive H-space, i.e. a Stasheff A4-space [70] (any topological monoid, for instance).
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This means that we have a topological space X, which is endowed with a continuous
multiplication map m : X ×X → X, a point e ∈ X, and homotopies

X ×X ×X
α⇒

1×m //

m×1

��

X ×X
m

��
X ×X m

// X,

X
λ⇐

1
KKKKK

%%KKKKK

e×1 //

1×e
��

X ×X
m

��
X ×X

ρ⇒

m
// X,

which are homotopy coherent, in the sense that there are homotopies as below.

X4

1×1×m

���������
1×m×1

<<<

��<<<

m×1×1 // X3

⇓α×1

⇓α

m×1

��<<<<<<< X4

=
1×1×m

���������

m×1×1 // X3

1×m�
��

�����
m×1

��<<<<<<<

X3

1×m ��<<<<<<< X3⇐1×α

1×m���������

m×1 // X2

m
���������

V X3

1×m ��<<<<<<<
m×1 // X2

m
��<<<<<<< X2

m
���������

⇐
α

X2
m

// X X2

⇓α

m
// X

X2

⇑1×λ
1×e×1

��

1 //

⇑α

X2

m

��

X2

⇑ρ×1
1×e×1

��

1 //

=

X2

m

��
V

X3

1×moooooo

77oooooooo

m×1
// X2

m
// X X3

m×1oooooo

77oooooooo

m×1
// X2

m
// X

Since the functor X 7→ πX preserves products, the multiplication map m : X×X → X
induces a tensor product

m∗ : πX × πX ∼= π(X ×X) −→ πX,

and the homotopies α, λ, and ρ, induce corresponding associativity, left unit, and right
unit constraints (which satisfy the pentagon and triangle axioms (1.1), (1.2) thanks
to the existence of the homotopies V above), we have thus defined the fundamental
monoidal groupoid of the H-space

πX = (πX,m∗, e, α∗, λ∗, ρ∗).

Let us stress that πX is a categorical group whenever X is group-like (for instance
X ' Ω(Y, y0), any loop space).

1.2 Schreier-Grothendieck theory for monoidal
groupoids

The Schreier extension theorem [67] gives a cohomological classification of extensions
of (non-abelian) groups, 1→ A→ E → G→ 1, in terms of equivalence classes of the



16 Chapter 1. Structure and classification of monoidal groupoids

so-called Schreier systems for group extensions or non-abelian 2-cocycles on groups.
That is, by means of systems of data

(G,A,Θ, λ), (1.12)

consisting of groups G and A, a family of automorphisms Θ = (A
a∗−→ A)a∈G, and a

family of elements λ = (λa,b ∈ A)a,b∈G, satisfying:

λa,b ◦ (ab)∗(f) ◦ λ−1
a,b = a∗(b∗(f)), 1∗(f) = f,

a∗(λb,c) ◦ λa,bc = λa,b ◦ λab,c, λa,1 = 1 = λ1,a,

where f is any element of the group A. Any such Schreier system gives rise to a group
extension

1→ A→ Σ(G,A,Θ, λ)→ G→ 1, (1.13)

where Σ(G,A,Θ, λ) is the group defined by considering on the set A×G the product
(f, a) ◦ (g, b) = (f ◦ a∗(g) ◦ λa,b, ab), and any group extension can be obtained in this
way up to isomorphism. Actually, the construction of the group extension (1.13),
from each Schreier system (1.12), defines the function on objects of an equivalence
of categories between the category of Schreier systems for group extensions, whose
morphisms

(p, q, ϕ) : (G,A,Θ, λ)→ (G′, A′,Θ′, λ′)

are triplets consisting of homomorphisms p : G → G′, q : A → A′, and a family of
elements ϕ = (ϕa ∈ A′)a∈G, satisfying:

ϕa ◦ p(a)∗(q(f)) ◦ ϕ−1
a = q(a∗(f)),

q(λa,b) ◦ ϕab = ϕa ◦ p(a)∗(ϕb) ◦ λ′p(a),p(b),

and the category of extensions of groups, whose morphisms are commutative diagrams

1 // G
q

��

// E
φ ��

// H
p

��

// 1

1 // G′ // E′ // H ′ // 1.

Several generalizations to monoid extensions of Schreier theory are known in the
literature: Rédey [64], Leech [53, 54], Inassaridze [47], etc. To classify fibrations be-
tween categories, Grothendieck [45] raised to a categorical level Schreier’s theorem by
means of the theory of pseudo-functors, and higher analogues problems were studied,
among others, by Sinh in [69], where she performed the categorical group classification;
Breen [8], who treated with non-abelian 3-cocycles of groups for the classification of
extensions of groups by categorical groups; Carrasco and Cegarra in [17], where they
carried out the classification of central extensions of categorical groups; Ulbrich [72],
who classified extensions of Picard categories; Cegarra and Garzón in [21], where a
classification of torsors over a category under a categorical group is done; or Ce-
garra and Khmaladze [22, 23], where it is performed the classification both of braided



1.2. Schreier-Grothendieck theory for monoidal groupoids 17

and symmetric graded categorical groups, later on extended to the fibred cases by
Calvo, Cegarra and Quang in [11]. We are inspired in all these works to make below
a corresponding analysis of monoidal groupoids, whence we achieve a 3-dimensional
Schreier-Grothendieck factor set theory for the classification of monoidal groupoids,
which indeed involves a 2-dimensional one for monoidal functors between monoidal
groupoids, and even a 1-dimensional one for the monoidal transformations between
them.

1.2.1 Schreier systems for monoidal groupoids

Keeping the Schreier-Grothendieck theory in mind, we introduce below 3-dimensional
Schreier systems for monoidal groupoids, or non-abelian 3-cocycles on monoids, which
will be showed as appropriate minimal systems of “descent datum” to build a survey
of all monoidal groupoids up to monoidal equivalences.

Definition 1.1 A Schreier system (for a monoidal groupoid) S = (M,A,Θ, λ) con-
sists of the following data:

• a monoid M ,

• a family of groups A = (A(a))a∈M ,

• a family of homomorphisms Θ = (A(b)
a∗−→ A(ab)

b∗←− A(a))a,b∈M ,

• a family of elements λ = (λa,b,c ∈ A(abc))a,b,c∈M .

These data must satisfy the following seven conditions:
• For any a, b, c ∈M , h ∈ A(a), g ∈ A(b), and f ∈ A(c),

λa,b,c ◦ (ab)∗(f) ◦ λ−1
a,b,c = a∗(b∗(f)), (1.14)

λa,b,c ◦ c∗(a∗(g)) ◦ λ−1
a,b,c = a∗(c

∗(g)), (1.15)

λa,b,c ◦ c∗(b∗(h)) ◦ λ−1
a,b,c = (bc)∗(h). (1.16)

• For any a, b, c, d ∈M ,

a∗(λb,c,d) ◦ λa,bc,d ◦ d∗(λa,b,c) = λa,b,cd ◦ λab,c,d. (1.17)

• For any a, b ∈M , g ∈ A(a), and f ∈ A(b),

a∗(f) ◦ b∗(g) = b∗(g) ◦ a∗(f). (1.18)

• For any a ∈M and f ∈ A(a),

e∗(f) = f = e∗(f), (1.19)

where e ∈M is the unit.
• For any a, b ∈M ,

λe,a,b = λa,e,b = λa,b,e = 1. (1.20)
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Example 1.1 A Schreier system as above with λ = 1 (i.e., such that λa,b,c = 1
for all a, b, c ∈ M) is the same thing as a pair of data (M, (A,Θ)) consisting of a
monoid M together with an internal group object (A,Θ) ∈ Gp(Mnd ↓M ), in the
comma category of monoids over M . We refer to Wells [74, Theorem 6] for details,
but briefly let us say that, for that identification, one regards A as the monoid ob-
tained as the disjoint union of the groups A(a), a ∈ M , with multiplication given by
(f, a)(g, b) = (a∗(f) ◦ b∗(g), ab). This multiplication is associative thanks to (1.14),
(1.15), and (1.16), and it is unitary, with (1, e) its unit, owing to (1.19). The monoid
homomorphism

⋃
a∈M A(a) →M is the obvious projection (f, a) 7→ a, and the inter-

nal group operation is defined by the map
⋃
a∈M A(a)×M

⋃
a∈M A(a)→

⋃
a∈M A(a),

((f, a), (g, a)) 7→ (f ◦ g, a), which is plainly recognized to be a monoid homomorphism
thanks to the centralizing condition (1.18).

Surjective monoid homomorphisms E →M endowed with a principal homogenous
internal (A,Θ)-action in Mon↓M (i.e., internal (A,Θ)-torsors) are classified by means
of Leech non-abelian 2-cocycles of M with coefficients in A. That is, by families
λ = (λa,b) of elements λa,b ∈ A(ab), one for each a, b ∈M , such that

a∗(λb,c) ◦ λa,bc = c∗(λa,b) ◦ λab,c, λe,a = 1 = λa,e,

for all a, b, c ∈M ; see Leech [53, Section 3] and Wells [74, Theorems 1 and 7].

Remark 1.1 Regarding any group as a groupoid with exactly one object, it was
observed by Grothendieck [45] that a non-abelian 2-cocycle (G,A,Θ, λ) for a group
extension of a group G by a group A, as in (1.12), can be identified as a normal
pseudo-functor on G that associates the group A to the unique object of A. Similarly,
as one identifies any monoid with the monoidal discrete category it defines, then a
Schreier system (M,A,Θ, λ) for a monoidal groupoid, as in Definition 1.1, can be
viewed as a group valuated normal monoidal pseudo-functor on M , in the sense of
Carrasco-Cegarra [17, Definition 1.6], that associates the group A(a) to each object
a ∈M .

Next we explain how Schreier systems, as in Definition 1.1, come characteristically
associated to monoidal groupoids.

1.2.2 Schreier systems associated to monoidal groupoids

From now on, in this chapter we denote the tensor product by juxtaposition, that is,
XY = X ⊗ Y .

For any monoidal groupoid M = (M,⊗, I,a, l, r) let

M(M)= ObM/∼= (1.21)

be the monoid of isomorphism classes a = [X] of objects X ∈M where multiplication
is induced by the tensor product, that is, [X][Y ] = [XY ] and whose unit is e = [I].
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The construction M 7→ M(M) turns the category of monoidal groupoids into a
fibred category over the category of monoids. To determine its fiber over a monoid,
we shall proceed as Schreier did for extensions of a group:

We start by choosing a cleavage for M over M(M), that is, for each a ∈M(M),
let us choose an object Xa ∈ a, and for any other X ∈ a, we fix a morphism Γ = ΓX :
X → Xa. In particular, we take

Xe = I, ΓIXa = lXa : IXa → Xa, ΓXaI = rXa : XaI→ Xa. (1.22)

Then, we have the following family of isotropy groups of the groupoid M param-
eterized by the elements of M(M):

A(M) =
(
AutM(Xa)

)
a∈M(M)

. (1.23)

We also have the family of group homomorphisms

Θ(M) =
(
AutM(Xb)

a∗−→ AutM(Xab)
b∗←− AutM(Xa)

)
a,b∈M(M)

, (1.24)

which, for any a, b ∈ M(M), carry automorphisms of M, say f : Xb → Xb and
g : Xa → Xa, to the automorphisms a∗(f) : Xab → Xab and b∗(g) : Xab → Xab,
respectively determined by the commutativity of the squares below.

XaXb

Γ
��

1f // XaXb

Γ
��

Xab
a∗(f) // Xab

XaXb

Γ
��

g1 // XaXb

Γ
��

Xab
b∗(g) // Xab

(1.25)

Furthermore, for any three elements a, b, c ∈M(M), there is a unique

λa,b,c ∈ AutM(Xabc)

making commutative the diagram

(XaXb)Xc

a

��

Γ1 // XabXc
Γ // Xabc

λa,b,c
��

Xa(XbXc)
1Γ // XaXbc

Γ // Xabc.

(1.26)

Then, letting
λ(M) =

(
λa,b,c ∈ AutM(Xabc)

)
a,b,c∈M(M)

, (1.27)

we have:

Proposition 1.2 For any monoidal groupoid M = (M,⊗, I,a, l, r), the associated
quadruplet

∆(M) =
(
M(M),A(M),Θ(M), λ(M)

)
, (1.28)

given by (1.21), (1.23), (1.24), and (1.27), is a Schreier system.
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Proof: In all the diagrams below, those inner regions labelled with (A) commute by
the naturality of the associativity constraint, those labelled with (B) are commutative
because ⊗ : M×M → M is a functor, and the other commute by the references
therein.

For any a, b, c ∈ M(M), h ∈ AutM(Xa), g ∈ AutM(Xb), and f ∈ AutM(Xc), the
conditions in (1.14), (1.15), and (1.16), follow, respectively, from the commutativity
of the outside regions in the following three diagrams in M:

Xabc

λa,b,c

))

(ab)∗(f)

��
(1.25)

XabXc
Γoo

1 f

��

(XaXb)Xc

(1.26)

(A)(B) (11)f
��

Γ1oo a // Xa(XbXc)

(1.25)1(1f)
��

1Γ // XaXbc

1b∗(f)

��

Γ // Xabc

a∗b∗(f)

��
(1.25)

Xabc

λa,b,c

55XabXc
Γoo (XaXb)Xc

(1.26)

Γ1oo a // Xa(XbXc)
1Γ // XaXbc

Γ // Xabc

Xabc

λa,b,c

))

c∗a∗(g)

��
(1.25)

XabXc
Γoo

a∗(g)1

��

(XaXb)Xc

(1.26)

(A)(1.25) (1g)1

��

Γ1oo a // Xa(XbXc)

(1.25)1(g1)

��

1Γ // XaXbc

1c∗(g)

��

Γ // Xabc

a∗c∗(g)

��
(1.25)

Xabc

λa,b,c

55XabXc
Γoo (XaXb)Xc

(1.26)

Γ1oo a // Xa(XbXc)
1Γ // XaXbc

Γ // Xabc

Xabc

λa,b,c

))

c∗b∗(h)

��
(1.25)

XabXc
Γoo

b∗(h)1

��

(XaXb)Xc

(1.26)

(A)(1.25) (h1)1

��

Γ1oo a // Xa(XbXc)

(B)h(11)

��

1Γ // XaXbc

h1

��

Γ // Xabc

(bc)∗(h)

��
(1.25)

Xabc

λa,b,c

55XabXc
Γoo (XaXb)Xc

(1.26)

Γ1oo a // Xa(XbXc)
1Γ // XaXbc

Γ // Xabc

Since, for any a, b ∈ M(M), g ∈ AutM(Xa), and f ∈ AutM(Xb), we have the
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commutative diagram

Xab

(1.25)

a∗(f)

&&

b∗(g)
��

(1.25)

XaXb

(B)g1

��

1f //Γoo XaXb
Γ //

g1

��

Xab

b∗(g)
��

(1.25)

Xab

a∗(f)

88
(1.25)

XaXb 1f
//Γoo XaXb

Γ // Xab,

it follows that the homomorphisms a∗ and b∗ in (1.24) are centralizing, that is, con-
dition in (1.18) holds. Moreover, when a = e or b = e, the naturality of the unit
constraints gives the commutativity of the squares

IXb

Γ=l ��

1f // IXb

Γ=l��
Xb

f // Xb,

XaI

Γ=r ��

g1 // XaI

Γ=r��
Xa

g // Xa,

whence e∗(f) = f and e∗(g) = g. That is, the normalization conditions in (1.19) hold.
Furthermore, the 3-cocycle condition (1.17), for any a, b, c, d ∈ M(M), follows

from the commutativity of the following diagram

Xabcd

d∗(λa,b,c)

��

λab,c,d // Xabcd

λa,b,cd // XabcdUU

a∗(λb,c,d)

XabcXd (1.26)

λa,b,c1

��

(1.25)

Γ

OO

XabXcd

Γ

OO

(1.26) XaXbcd

Γ

OO

RR

1λb,c,d

(1.25)

(XabXc)Xd

(1.26)

Γ1
YY44444

a // Xab(XcXd)

1Γ
==zzzzzz

(XaXb)Xcd

Γ1
aaDDDDDD

a // Xa(XbXcd)

1Γ
EE






(1.26)

(XaXb)(XcXd)

aaCCCCCCΓ(11)

=={{{{{{ (11)Γ

a

((QQQQQQQQQQ

((XaXb)Xc)Xd

(A)

a1
��

a
66mmmmmmmmm

XX1111111111111

(Γ1)1

Xa(Xb(XcXd))

(A)

EE�������������

1(1Γ)

OO
1a

(Xa(XbXc))Xd
a //

(1Γ)1

}}{{{{{{
Xa((XbXc)Xd))

1(Γ1)

""DDDDDD

(XaXbc)Xd
a //

Γ1��





Xa(XbcXd)

1Γ ��44444

XabcXd

Γ
��

XaXbcd

Γ
��

Xabcd

λa,bc,d //

(1.26)

(A)

(1.1)

(B)

Xabcd.
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Finally, recalling the selections (1.22), it is plain to see that the normalization
conditions in (1.20) are direct consequence of the coherence triangles in (1.1) and
(1.3). This completes the proof. �

The Schreier system in (1.28), associated to a monoidal groupoid, depends on
the selection of the cleavage made for its construction. However, as we shall prove,
different choices produce equivalent Schreier systems.

We next explain how each Schreier system gives rise, by the so-called Grothendieck
construction (cf. [17, 1.3]), to a monoidal groupoid.

1.2.3 The monoidal groupoid defined by a Schreier system

Let S = (M,A,Θ, λ) any given Schreier system. Then, a monoidal groupoid

Σ(S) = (Σ(S),⊗, I,a, l, r) (1.29)

is defined as follows: an object of Σ(S) is an element a ∈ M . If a 6= b are different
elements of the monoid M , then there is no morphisms in Σ(S) between them, whereas
if a = b, then a morphism f : a→ a is an element f of the group A(a), that is

Σ(S)(a, b) =

{
∅ if a 6= b,

A(a) if a = b.

The composition of morphisms is given by the group operation of A(a), that is,

(a
f→ a) ◦ (a

f ′→ a) = (a
f◦f ′−→ a).

The tensor product ⊗ : Σ(S)× Σ(S)→ Σ(S) is defined by

(a
g→ a)⊗ (b

f→ b) = (ab
a∗(f)◦b∗(g) // ab) ,

which is a functor thanks to the centralizing condition (1.18). In effect, we have

(a
1→ a)⊗ (b

1→ b) = (ab
a∗(1)◦b∗(1) // ab) = ab

1→ ab.

and, for any g, g′ : a→ a and f, f ′ : b→ b, we have

(g ◦ g′)⊗ (f ◦ f ′) = a∗(f ◦ f ′) ◦ b∗(g ◦ g′) = a∗(f) ◦ a∗(f ′) ◦ b∗(g) ◦ b∗(g′)
(1.18)

= a∗(f) ◦ b∗(g) ◦ a∗(f ′) ◦ b∗(g′) = (g ⊗ f) ◦ (g′ ⊗ f ′).

The associativity isomorphisms are

λa,b,c : (ab)c→ a(bc).
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These are natural thanks to conditions (1.14), (1.15), and (1.16). In effect, for any
h : a→ a, g : b→ b, and f : c→ c,

λa,b,c ◦ ((h⊗ g)⊗ f) = λa,b,c ◦ ((a∗(g) ◦ b∗(h))⊗ f)

= λa,b,c ◦ (ab)∗(f) ◦ c∗(a∗(g) ◦ b∗(h))

= λa,b,c ◦ (ab)∗(f) ◦ c∗(a∗(g)) ◦ c∗(b∗(h))
(1.14)

= a∗(b∗(f)) ◦ λa,b,c ◦ c∗(a∗(g)) ◦ c∗(b∗(h))

(1.15)
= a∗(b∗(f)) ◦ a∗(c∗(g)) ◦ λa,b,c ◦ c∗(b∗(h))

(1.16)
= a∗(b∗(f)) ◦ a∗(c∗(g)) ◦ (bc)∗(h) ◦ λa,b,c
= a∗(b∗(f) ◦ c∗(g)) ◦ (bc)∗(h) ◦ λa,b,c
= (h⊗ (b∗(f) ◦ c∗(g))) ◦ λa,b,c
= (h⊗ (g ⊗ f)) ◦ λa,b,c.

The pentagon coherence condition in (1.1) just says that, for any a, b, c, d ∈ M , the
diagram

((ab)c)d
λab,c,d //

d∗(λa,b,c)

��

(ab)(cd)
λa,b,cd // a(b(cd))

(a(bc))d
λa,bc,d // a((bc)d)

a∗(λb,c,d)

OO

must be commutative, what holds because of the 3-cocycle condition (1.17).
The unit object is I = e, the unit element of the monoidM , and the unit constraints

are both identities, that is, for any a ∈M ,

la = 1 = ra : a→ a.

These are natural due to the equalities in (1.19). In effect, for any f : a→ a, we have

la ◦ (1⊗ f) = 1⊗ f = e∗(f) ◦ a∗(1)
(1.19)

= f ◦ 1 = f = f ◦ la,

ra ◦ (f ⊗ 1) = f ⊗ 1 = a∗(1) ◦ e∗(f)
(1.19)

= 1 ◦ f = f = f ◦ ra.

The coherence triangle for the unit in (1.2) commutes owing to the normalization
condition λa,e,b = 1 in (1.20). �

As we will show, both constructions S 7→ Σ(S), as above, and M 7→ ∆(M), as in
(1.28), are convenient to express the strong relationship between Schreier systems and
monoidal groupoids. Previously, we need the notions of morphisms between Schreier
systems and their deformations, that we establish below.
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1.2.4 The 2-category of Schreier systems

The Schreier systems introduced in 1.1, or non-abelian 3-cocycles of monoids, are the
objects of a 2-category in which all 2-cells are invertible, denoted by

Z3
n-abMnd,

whose cells and their compositions are defined as follows:

Morphisms of Schreier systems

If S = (M,A,Θ, λ), S ′ = (M ′,A′,Θ′, λ′) are two Schreier systems, then a morphism
℘ = (p, q , ϕ) : S → S ′ consists of the following data:

• a monoid homomorphism p : M →M ′,

• a family of group homomorphisms q =
(
A(a)

qa // A′(p(a))
)
a∈M ,

• a family of elements ϕ =
(
ϕa,b ∈ A′(p(ab))

)
a,b∈M ,

satisfying the following three conditions:
• For any a, b ∈M , g ∈ A(a), and f ∈ A(b),

ϕa,b ◦ p(a)∗(qb(f)) ◦ ϕ−1
a,b = qab(a∗(f)),

ϕa,b ◦ p(b)∗(qa(g)) ◦ ϕ−1
a,b = qab(b

∗(g)).
(1.30)

• For any a, b, c ∈M ,

qabc(λa,b,c) ◦ ϕab,c ◦ p(c)∗(ϕa,b) = ϕa,bc ◦ p(a)∗(ϕb,c) ◦ λ′p(a),p(b),p(c). (1.31)

•
ϕe,e = 1. (1.32)

Observe that, taking b = c = e in the above equality (1.31), we deduce that, for
any a ∈ M , ϕa,e ◦ ϕa,e = ϕa,e ◦ p(a)∗(ϕe,e) = ϕa,e in the group A′(p(a)), whence
ϕa,e = 1. Similarly, ϕe,a = 1.

Deformations

Let ℘ = (p, q , ϕ) : S → S ′ and ℘̄ = (p̄, q̄, ϕ̄) : S → S ′ be morphisms between Schreier
systems S = (M,A,Θ, λ) and S ′ = (M ′,A′,Θ′, λ′).

If p 6= p̄ are different homomorphisms, then there is no deformation in Z3
n-abMnd

between ℘ and ℘̄.
If p = p̄, then a deformation

S
℘=(p,q ,ϕ)

))

℘̄=(p,q̄,ϕ̄)

55⇓ δ S ′
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is a family of elements δ =
(
δa ∈ A′(p(a))

)
a∈M satisfying the following two conditions:

• For any a ∈M and f ∈ A(a),

δ−1
a ◦ q̄a(f) ◦ δa = qa(f). (1.33)

• For any a, b ∈M ,

δab ◦ ϕa,b = ϕ̄a,b ◦ p(a)∗(δb) ◦ p(b)∗(δa). (1.34)

Observe that, taking a = b = e in the above equality (1.34), we deduce that
δe = δe ◦ δe in the group A′(e′) (where e′ is the unit in M ′), whence δe = 1.

Vertical composition of deformations

For any Schreier systems S = (M,A,Θ, λ) and S ′ = (M ′,A′,Θ′, λ′), the vertical
composition in the 2-category Z3

n-abMnd of deformations

S

℘=(p,q ,ϕ)

!!
(p,q̄,ϕ̄) //

¯̄℘=(p,¯̄q, ¯̄ϕ)

==

⇓ δ

⇓ δ̄
S ′ (1.35)

is the deformation δ̄ ◦ δ : ℘⇒ ¯̄℘ obtained by pointwise multiplication, that is,

δ̄ ◦ δ =
(
δ̄a ◦ δa ∈ A′(p(a))

)
a∈M . (1.36)

The identity deformation on each morphism ℘ : S → S ′ is

1℘ =
(
1 ∈ A′(p(a))

)
a∈M : ℘⇒ ℘.

Thus, every deformation δ : ℘ ⇒ ℘′ becomes invertible (with δ−1 = (δ−1
a ∈

A′(p(a)))a∈M ) and therefore, in this 2-category of Schreier systems, the hom-categories
Z3

n-abMnd(S,S ′) are groupoids.

Horizontal composition of morphisms

For any S = (M,A,Θ, λ), S ′ = (M ′,A′,Θ′, λ′), and S ′′ = (M ′′,A′′,Θ′′, λ′′) Schreier
systems, the horizontal composition of two morphisms

S
℘=(p,q ,ϕ) // S ′

℘′=(p′,q′,ϕ′) // S ′′

is the morphism

℘′℘ = (p′p, q′q, ϕϕ′) : S → S ′′, (1.37)
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where p′p : M →M ′′ is the composite of p and p′, and

q′q =
(
q′p(a)qa : A(a)→ A′′(p′p (a))

)
a∈M ,

ϕϕ′ =
(
q′p(ab)(ϕa,b) ◦ ϕ

′
p(a),p(b) ∈ A

′′(p′p(ab))
)
a,b∈M .

The identity morphism on a Schreier system S = (M,A,Θ, λ) is

1S = (1M , 1A, 1) : S → S, (1.38)

where 1M is the identity map on M , 1A =
(
1A(a)

)
a∈M , and 1 =

(
1 ∈ A(ab)

)
a,b∈M .

Horizontal composition of deformations

The horizontal composition of deformations

S
℘=(p,q ,ϕ)

((

℘̄=(p,q̄,ϕ̄)

66⇓ δ S ′
℘′=(p′,q′,ϕ′)

((

℘̄′=(p′,q̄′,ϕ̄′)

66⇓ δ′ S ′ (1.39)

is the deformation δ′δ : ℘′℘⇒ ℘̄′℘̄ defined by

δ′δ =
(
δ′p(a) ◦ q

′
p(a)(δa) ∈ A

′′(p′p(a))
)
a∈M . (1.40)

For later use, we prove here the lemma below.

Lemma 1.2 Let (p, q , ϕ) : (M,A,Θ, λ) → (M ′,A′,Θ′, λ′) be any Schreier system
morphisms. Then, the following statements are equivalent:

(i) (p, q , ϕ) is an isomorphism.
(ii) (p, q , ϕ) is an equivalence.
(iii) The homomorphisms p : M → M ′ and qa : A(a) → A′(p(a)), a ∈ M , are all

isomorphisms.

Proof: (i)⇒ (ii) is obvious.
(ii) ⇒ (iii). First observe that, for any Schreier system S = (M,A,Θ, λ), a

morphism ℘ : S → S with a deformation δ : ℘ ⇒ 1S is necessarily of the form
℘ = (1M , q(δ), ϕ(δ)), for some family δ = (δa ∈ A(a))a∈M , with δe = 1, where
q(δ) = (q(δ)a : A(a) → A(a))a∈M consists of the inner automorphisms given by
q(δ)a(f) = δ−1

a ◦ f ◦ δa, and ϕ(δ) = (ϕ(δ)a,b ∈ A(ab))a,b∈M consists of the elements
obtained by the formula ϕ(δ)a,b = δ−1

ab ◦ a∗(δb) ◦ b
∗(δa).

Then, the existence of a morphism (p′, q′, ϕ′) : S ′ → S, where S is as above
and S ′ = (M ′,A′,Θ′, λ′), with deformations δ : (p′, q′, ϕ′)(p, q, ϕ) ⇒ 1S and δ′ :
(p, q, ϕ)(p′, q′, ϕ′) ⇒ 1S′ , implies that p′p = 1M , pp

′ = 1M ′ , so p is an isomorphism,
and also that

q′p(a)qa = q(δ)a, qaq
′
p(a) = q(δ′)p(a),
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for all a ∈M . Hence qa and q′p(a) are both isomorphisms since q(δ)a and q(δ′)p(a) are
automorphisms.

(iii)⇒ (i). The inverse (p, q , ϕ)−1 = (p′, q′, ϕ′) is given by taking

p′ = p−1, q′ =
(
q−1
p′(a′)

)
a′∈M ′ , ϕ′ =

(
q′a′b′(ϕ

−1
p′(a′),p′(b′))

)
a′,b′∈M ′ .

�

1.2.5 The classifying biequivalence

The following theorem, where it is stated that the 2-categories of monoidal groupoids
and Schreier systems are biequivalent is the main result of this section.

Theorem 1.1 (Classification of monoidal groupoids) The assignment given by
the monoidal groupoid construction (1.29), S 7→ Σ(S), is the function on objects of a
2-functor

Σ : Z3
n-abMnd //≈ MonGpd, (1.41)

which establishes a biequivalence between the 2-category of Schreier systems and the
2-category of monoidal groupoids. More precisely (cf. [71, p. 570]), for any two
Schreier systems S and S ′, the functor

Σ : Z3
n-abMnd(S,S ′) //∼ MonGpd(Σ(S),Σ(S ′)) (1.42)

is an equivalence of groupoids, and for any monoidal groupoid M, there is a monoidal
equivalence

JM : Σ(∆(M)) //∼ M, (1.43)

where ∆(M) is the Schreier system (1.28) associated to M.

Proof: We have already described Σ on objects of the 2-category Z3
n-abMnd, its effect

on morphisms and deformations is as follows:

Σ on morphisms

Let S = (M,A,Θ, λ), S ′ = (M ′,A′,Θ′, λ′) be Schreier systems. Then, the 2-functor Σ
carries any morphism ℘ = (p, q , ϕ) : S → S ′ to the strictly unitary monoidal functor
Σ(℘) : Σ(S)→ Σ(S ′) given by(

a
f→ a
)
7→
(
p(a)

qa(f)−→ p(a)
)
, (1.44)

and whose structure isomorphisms are

ϕa,b : p(a)p(b)→ p(ab), (1.45)

which are well defined since p(a)p(b) = p(ab) and ϕa,b ∈ A′(p(ab)), for any a, b ∈M .
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Since the maps qa : A(a)→ A′(p(a)) are homomorphisms, it follows that Σ(℘) is a
functor. Furthermore, the isomorphisms (1.45) are natural since, for any morphisms
f : b→ b and g : a→ a in Σ(S), the squares in Σ(S ′)

p(a)p(b)
ϕa,b //

p(a)∗(qb(f))
��

p(ab)

qab(a∗(f))
��

p(a)p(b)
ϕa,b // p(ab)

p(a)p(b)
ϕa,b //

p(b)∗(qa(g))
��

p(ab)

qab(b
∗(f))

��
p(a)p(b)

ϕa,b // p(ab)

(1.46)

commute owing to condition (1.30). The coherence condition (1.5) for Σ(℘) just says
that the diagrams

(p(a)p(b))p(c)

λ′
p(a),p(b),p(c)

��

p(c)∗(ϕa,b) // p(ab)p(c)
ϕab,c // p((ab)c)

qabc(λa,b,c)

��
p(a)(p(b)p(c))

p(a)∗(ϕb,c) // p(a)p(bc)
ϕa,bc // p(a(bc))

(1.47)

must commute, what follows from (1.31). Finally, conditions (1.6) are both conse-
quence of the normality condition (1.32) of ϕ, that is, of the equalities ϕa,e = 1 = ϕe,a.

For ℘′ = (p′, q′, ϕ′) : S ′ → S ′′ another Schreier system morphism, the composite
monoidal functor Σ(℘′)Σ(℘) : S → S ′′ is given by

Σ(℘′)Σ(℘)
(
a

f→ a
)

= Σ(℘′)
(
p(a)

qa(f)−→ p(a)
)

=
(
p′p(a)

q′
p(a)

(qa(f))
// p′p(a) ),

together with the structure isomorphisms obtained by composing in Σ(S ′′)

p′p(a)p′p(b)
ϕ′
p(a),p(b) // p′(p(a)p(b))

q′
p(ab)

(ϕa,b)
// p′p(ab) .

Hence, taking into account the definition of the composition ℘′℘ in (1.37) and the
definition of Σ, simple comparison gives that Σ(℘′)Σ(℘) = Σ(℘′℘). Moreover, it is
straightforward to see that Σ carries identity morphisms on Schreier systems 1S =
(1M , 1A, 1), see (1.38), to identity monoidal functors, that is, Σ(1S) = 1Σ(S) for any
Schreier system S. Therefore, Σ : Z3

n-abMnd→MonGpd is indeed a functor.

Σ on deformations

Given Schreier systems S and S ′ as above, any deformation

S
℘=(p,q ,ϕ)

))

℘̄=(p,q̄,ϕ̄)

55⇓ δ S ′
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is mapped by the 2-functor Σ to the isomorphism of monoidal functors

Σ(S)

Σ(℘)
**

Σ(℘̄)

44⇓Σ(δ) Σ(S ′)

just defined by the family of isomorphisms in Σ(S ′)

Σ(δ)a = δa : p(a)→ p(a), a ∈M, (1.48)

which are natural thanks to condition (1.33). Moreover, so defined, Σ(δ) : Σ(℘) ⇒
Σ(℘̄) is monoidal, that is, conditions (1.8) hold, owing to (1.34) and the equality
δe = 1 ∈ A′(e′).

For any two vertically composable deformations δ : ℘ ⇒ ℘̄ and δ̄ : ℘̄ ⇒ ¯̄℘, as in
(1.35), the equality Σ(δ̄ ◦ δ) = Σ(δ̄) ◦ Σ(δ) is easily verified from (1.36) and (1.9), as
well as the equality Σ(1℘) = 1Σ(℘), for any morphism ℘ : S → S ′. Hence (1.42) is a
functor.

Furthermore, for

S
℘=(p,q ,ϕ)

((

℘̄=(p,q̄,ϕ̄)

66⇓ δ S ′
℘′=(p′,q′,ϕ′)

((

℘̄′=(p′,q̄′,ϕ̄′)

66⇓ δ′ S ′′

any two horizontally composable deformations as in (1.39), we have the equality
Σ(δ′δ) = Σ(δ′) Σ(δ), since, for any a ∈M ,

(Σ(δ′) Σ(δ))a
(1.10)

= Σ(δ′)Σ(℘̄)(a) ◦ Σ(℘′)(Σ(δ)a)

(1.44),(1.48)
= δ′p(a) ◦ q

′
p(a)(δa)

(1.40)
= (δ′δ)a

(1.48)
= Σ(δ′δ)a.

The above confirms that (1.41), Σ : Z3
n-abMnd → MonGpd, is actually a 2-

functor.

(1.42) is full and faithful

For any two Schreier systems S = (M,A,Θ, λ) and S ′ = (M ′,A′,Θ′, λ′), the functor
Σ : Z3

n-abMnd(S,S ′) → MonGpd(Σ(S),Σ(S ′)) is plainly recognized to be faithful,
by (1.48). To prove that it is full, let δ : Σ(℘) ⇒ Σ(℘̄) be any isomorphism of
monoidal functors, where ℘ = (p, q , ϕ), ℘̄ = (p̄, q̄, ϕ̄) : S → S ′ are morphisms of
Schreier systems. Then, for any a ∈M , it must be p(a) = p̄(a), since δa : p(a)→ p̄(a)
is an isomorphism in the skeletal category Σ(S ′), and moreover δa ∈ A′(p(a)). Any
element f ∈ A(a) defines a morphism f : a → a in Σ(S), and the naturality of δ
implies the commutativity of the square in Σ(S ′)

p(a)
qa(f) //

δa ��

p(a)

δa��
p(a)

q̄a(f) // p(a),
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whence δ−1
a ◦ q̄a(f) ◦ δa = qa(f). That is, condition (1.33) for the family δ =

(
δa ∈

A′(p(a))
)
a∈M being a deformation of Schreier system morphisms from ℘ to ℘̄, holds.

Furthermore, for any a, b ∈ M , the coherence condition (1.8) for δ : Σ(℘) ⇒ Σ(℘̄)
gives the commutativity of

p(a) p(b)
ϕa,b //

p(a)∗(δb)◦p(b)∗(δa)
��

p(ab)

δab��
p(a) p(b)

ϕ̄a,b // p(ab),

whence condition (1.34) follows. Therefore, δ =
(
δa)a∈M : ℘ ⇒ ℘̄ is actually a

deformation in Z3
n-abMnd, and clearly Σ(δ) = δ.

(1.42) is essentially surjective

Suppose F = (F,ϕ) : Σ(S) → Σ(S ′) is any given monoidal functor, where S =
(M,A,Θ, λ) and S ′ = (M ′,A′,Θ′, λ′) are Schreier systems. By Lemma 1.1, there is
no loss of generality in assuming that F is strictly unitary, that is, ϕ0 : e′ → F (e) is
the identity isomorphism.

If we denote by p : M →M ′ the map given by the action of the monoidal functor
F on objects, that is, p(a) = F (a) for any a ∈M , then the action of the functor F on
morphisms can be written, for any a ∈M and f ∈ A(a), in the form

F
(
a

f→ a
)

=
(
p(a)

qa(f)−→ p(a)
)

for a map qa : A(a) → A′(p(a)), which is indeed a group homomorphism since F
is a functor. Let q =

(
qa : A(a) → A′(p(a))

)
a∈M denote the family of these group

homomorphisms. Since we have the structure isomorphism ϕa,b : p(a) p(b) → p(ab)
and ϕ0 : e′ → p(e), it must be p(a)p(b) = p(ab) and p(e) = e′. Therefore, p is an
homomorphism of monoids.

The so obtained triplet ℘ = (p, q, ϕ), where ϕ =
(
ϕa,b ∈ A′(p(ab))

)
a,b∈M , is ac-

tually a morphism of Schreier systems ℘ : S → S ′ and, by construction, Σ(℘) = F .
In effect, the naturality of the isomorphisms ϕa,b : p(a) p(b) → p(ab) gives the com-
mutativity of the squares (1.46), whence condition (1.30) holds. Moreover, condition
(1.31) follows from the coherence condition (1.5) which, in this case, just says that
the diagrams (1.47) are commutative. The normalization condition (1.32), ϕe,e = 1, is
consequence of the coherence squares (1.6), since F is assumed to be strictly unitary,
that is, since ϕ0 = 1.

The monoidal equivalence (1.43)

We keep the notations used in Subsection 1.2.2 to define the Schreier system ∆(M).
The mapping

(a
f→ a) 7→ (Xa

f→ Xa)
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is easily recognized as an equivalence of categories JM : Σ(∆(M)) //∼ M , which, by
Proposition 1.1, defines a strictly unitary monoidal equivalence when it is endowed
with the family of isomorphisms ϕa,b = ΓXaXb : XaXb → Xab, a, b ∈ M(M). Note
that their required naturality holds, since for any a, b ∈ M(M), g ∈ AutM(Xa), and
f ∈ AutM(Xb), we have the the commutative diagram

XaXb

(1.25)

(B)

gf

''

Γ
��

g1 // XaXb

(1.25)Γ
��

1f // XaXb

Γ
��

Xab
=b∗(g)

//

a∗(f)◦b∗(g)

77Xab
a∗(f)

// Xab

where the commutativity of the region labelled (B) is consequence of the fact that
⊗ : M×M → M is a functor. The needed coherence conditions (1.5) and (1.6)
follow from the commutativity of diagrams (1.26) and the choices of the morphisms
Γ’s made in (1.22), respectively. �

1.2.6 The Schreier system construction biequivalence

The above stated biequivalence between the 2-category of monoidal groupoids and

the 2-category of Schreier systems (1.41), Σ : Z3
n-abMnd //≈ MonGpd , is injective

on objects, morphisms, and deformations. Moreover, for any Schreier system S, the
equality ∆Σ(S) = S holds. Hence, the assignmentM 7→ ∆(M), given by the Schreier
system construction (1.28), is the function on objects of a biequivalence, quasi-inverse
of Σ,

∆ : MonGpd //≈ Z3
n-abMnd, (1.49)

uniquely determined up to pseudo-natural equivalence by ∆Σ = 1Z3
n-abMnd and the

existence of a pseudo-natural equivalence J : Σ∆ +3∼ 1MonGpd, whose component at

any monoidal groupoid M is the monoidal equivalence (1.43), JM : Σ∆(M) //∼ M.
For completeness, we shall next show how the pseudo-functor ∆ and the pseudo-
equivalence J work.

∆ on monoidal functors

Suppose F :M→M′ is any given monoidal functor between monoidal groupoidsM
and M′. Let F u :M→M′ be the strictly unitary monoidal funtor associated to F
by the normalization functor (1.11), and let (ΓX : X → Xa)a∈M(M) and (Γ′X′ : X ′ →
X ′a′)a′∈M(M′) be the cleavages used for constructing the Schreier systems ∆(M) and
∆(M′), respectively. Then,

∆(F ) = (p(F ), q(F ) , ϕ(F )) : ∆(M)→ ∆(M′)
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is the morphism of Schreier systems where:

• p = p(F ) : M(M)→M(M′) is the homomorphism of monoids defined by

p(a) = [FXa] = [F uXa], a ∈M(M).

• q = q(F ) =
(
AutM(Xa)

qa−→ AutM′(X
′
p(a))

)
a∈M(M)

, is the family of group

homomorphisms which carry an automorphism f : Xa → Xa, for any a ∈
M(M), to the unique automorphism qa(f) : X ′p(a) → X ′p(a) in M′ making the
square below commutative.

F uXa
Fuf //

Γ′
��

F uXa

Γ′
��

X ′p(a)

qa(f) // X ′p(a)

• ϕ = ϕ(F ) =
(
ϕa,b ∈ AutM′(X

′
p(ab)

)
a,b∈M(M)

, is the family of automorphisms in

M′ determined by the commutativity of the diagrams

F uXa F
uXb

ϕu
//

Γ′Γ′

��

F u(XaXb)
FuΓ // F uXab

Γ′

��
X ′p(a)X

′
p(b)

Γ′ // X ′p(a)p(b)

ϕa,b // X ′p(ab).

J on monoidal functors

The component of the pseudo-natural equivalence J : Σ∆ ∼⇒ 1 at any monoidal functor
F :M→M′, is the isomorphism

Σ∆(M)
Σ∆(F ) //

JM
��

∼⇒

Σ∆(M′)
JM′

��
M

F
//M′

defined by the isomorphisms of the cleavage in M′, Γ′ : FXa
∼→ X ′p(a), a ∈M(M).

∆ on morphisms of monoidal functors

Let F, F̄ : M → M′ be monoidal functors as above, and suppose δ : F ⇒ F̄ is any
morphism between them. Then,

∆(M)

∆(F )
++

∆(F̄ )

33⇓∆(δ) ∆(M′)
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is the deformation ∆(δ) =
(
∆(δ)a ∈ AutM′(X

′
p(a)

)
a∈M(M)

, consisting of the automor-

phisms in M′ determined by the commutativity of the diagrams below.

F uXa
Γ′ //

δu

��

X ′p(a)

∆(δ)a
��

F̄ uXa
Γ′ // X ′p(a)

Since ∆ : MonGpd //≈ Z3
n-abMnd is a biequivalence and, by Lemma 1.2 every

equivalence in Z3
n-abMnd is actually an isomorphism, we have the following theorem

as a corollary:

Theorem 1.2 (i) For any Schreier system (M,A,Θ, λ), there is a monoidal groupoid
M with an isomorphism ∆(M) ∼= (M,A,Θ, λ).

(ii) Two monoidal groupoids M and M′ are equivalent if and only if their associ-
ated Schreier systems ∆(M) and ∆(M′) are isomorphic.

1.3 Classification of monoidal abelian groupoids

This section focuses in the special case of monoidal abelian groupoids, that is, monoidal
groupoidsM = (M,⊗, I,a, l, r) whose isotropy groups AutM(X), X ∈ ObM, are all
abelian (cf. [6, Definition 2.11.3 and Example 2.11.4], where the notion of abelian
groupoid is discussed under a categorical point of view). To start, we shall observe
that some of the isotropy groups of any monoidal groupoid are always abelian:

Proposition 1.3 (i) If S = (M,A,Θ, λ) is any Schreier system, then, for any in-
vertible element a ∈M , the group A(a) is abelian.

(ii) If M = (M,⊗, I,a, l, r) is any monoidal groupoid, then, for any invertible
object X ∈M, the group AutM(X) is abelian.

Proof: (i) The group A(e) is abelian due to conditions (1.18) and (1.19): for any
f, g ∈ A(e),

f ◦ g = e∗(f) ◦ e∗(g) = e∗(g) ◦ e∗(f) = g ◦ f.

For any invertible element a ∈M , the homomorphism a∗ : A(e)→ A(a) is actually an
isomorphism, with inverse (a−1)∗ : A(a) → A(e), since, by (1.14), (1.20), and (1.19),
we have

a∗(a
−1)∗ = (aa−1)∗ = e∗ = 1A(e), (a−1)∗a∗ = (a−1a)∗ = e∗ = 1A(a).

Hence, A(a) is abelian as A(e) is.
(ii) Let ∆(M) be the associated Schreier system to the monoidal groupoidM, as

in (1.28). If X ∈ M is any invertible object, then a = [X] ∈ M(M) is an invertible
element of the associated monoid (1.21), whence, by part (i), the group AutM(Xa) is
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abelian. Since the isomorphism Γ : X → Xa induces a group isomorphism AutM(X) ∼=
AutM(Xa), the result follows. �

Thus, for example, every categorical group is a monoidal abelian groupoid. The
classification of categorical groups was given by Sinh in [69], by means of Eilenberg-
Mac Lane group cohomology groups H3(G,A), and our aim here is to give a similar
solution to the more general problem of classifying monoidal abelian groupoids, now
by means of monoid cohomology groups H3(M,A). To this end, we shall briefly review
below some basic aspects concerning the cohomology theory of monoids that we are
going to use, which is a generalization of Eilenberg-Mac Lane’s cohomology of groups
due to Leech [53].

In what follows, we will use additive notation for abelian groupoids. Thus, the
identity morphism of an object X of an abelian groupoidM will be denoted by 0X ; if
f : X → Y , g : Y → Z are morphisms, their composite is written by g + f : X → Z,
while the inverse of f is −f : Y → X.

1.3.1 Leech cohomology of monoids

Let Ab denote the category of abelian groups, which will be written additively.
If C is a small category, then the category of (left) C-modules has objects the

functors A : C→ Ab from C into abelian groups, with morphisms the natural trans-
formations. This is an abelian category with enough injectives and projectives, and
the abelian groups

Hn(C,A) = ExtnC(Z,A), (1.50)

where Z : C→ Ab is the constant functor with value Z, are the cohomology groups of
the category C with coefficients in the C-module A, studied by Roos [65] and Watts
[73], among other authors. Cohomology theory of small categories is itself a basis
for other cohomology theories, in particular for Leech cohomology theory of monoids,
which is defined as follows:

A monoid M gives rise to a category DM with object set M and arrow set M ×
M ×M , with (a, b, c) : b→ abc. Composition is given by

(a′, abc, c′)(a, b, c) = (a′a, b, cc′),

and the identity morphism of any object a is 1a = (e, a, e), where e is the unit element
of M . This construction M 7→ DM defines a functor D : Mnd → Cat, which maps
a monoid homomorphism p : M → M ′ to the functor Dp : DM → DM ′ given by
(Dp)(a, b, c) = (p(a), p(b), p(c)).

If we say that a A : DM -module, DM → Ab, carries the element a ∈ M to the
abelian group A(a) and carries the morphism (a, b, c) to the group homomorphism
a∗c
∗ : A(b) → A(abc), then we see that such a DM -module, is a system of data

consisting of two families of abelian groups and homomorphisms, respectively,

(A(a))a∈M , (A(b)
a∗−→ A(ab)

b∗←− A(a))a,b∈M
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such that, for any a, b, c ∈M ,

(ab)∗ = a∗b∗ : A(c)→ A(abc),

c∗a∗ = a∗c
∗ : A(b)→ A(abc),

c∗b∗ = (bc)∗ : A(a)→ A(abc),

and, for any a ∈ M , e∗ = 1A(a) = e∗ : A(a) → A(a). Since A(a), a ∈ M , are abelian
groups, we will now use additive notation.

Leech cohomology groups Hn
L(M,A) [53], of a monoid M with coefficients in a

DM -module A, are defined to be those of its associated category DM , that is,

Hn
L(M,A) = Hn(DM,A).

For computing these cohomology groups there is a cochain complex, called the
standard normalized cochain complex of M with coefficients in A,

C•L(M,A), (1.51)

which is defined in degree n > 0 by

CnL(M,A) =

f ∈ ∏
(a1,...,an)∈Mn

A(a1 · · · an) | f(a1, . . . , an) = 0 whenever some ai = e


and C0

L(M,A) = A(e). The coboundary operator

∂n : CnL(M,A)→ Cn+1
L (M,A)

is given, for n = 0, by (∂0f)(a) = a∗(f)− a∗(f), while, for n > 0,

(∂nf)(a1, . . . , an+1) =(a1)∗f(a2, . . . , an) +
n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)+

(−1)n+1(an+1)∗f(a1, . . . , an).

By [53, Chapter II, 2.12], we have

Hn
L(M,A) = Hn

(
C•L(M,A)

)
.

It will be useful for our purposes to describe the natural properties of the Leech
cohomology on the category obtained by the Grothendieck construction on the functor
that associates to any monoid M the category of DM -modules and, to any homomor-
phism p : M → M ′, the functor p∗ that carries any DM ′-module, say A′, to the
DM -module p∗A′ determined by

(A′(p(a)))a∈M , (A′(p(b))
p(a)∗ // A′(p(ab)) A′(p(a)))a,b∈M

p(b)∗oo .
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The resulting category by the Grothendieck construction, which may be heuristically
viewed as the category obtained by tying the categories of DM -modules together in
some natural fashion, is denoted by

ModD.

It has objects pairs (M,A), where M is a monoid and A is a DM -module. Morphisms
are pairs

(p, q) : (M,A)→ (M ′,A′)

consisting of a monoid homomorphism p : M → M ′ together with a morphism of
DM -modules q : A → p∗A′, that is, a family of group homomorphisms

q =
(
A(a)

qa // A(p(a))′
)
a∈M ,

satisfying, for any a, b ∈M ,

qab a∗ = p(a)∗ qb : A(b)→ A′(p(ab)), (1.52)

qab b
∗ = p(b)∗ qa : A(a)→ A′(p(ab)). (1.53)

Composition is defined by (p′, q′)(p, q) = (p′p, q′q), where q′q = (q′p(a)qa)a∈M .

Any morphism (p, q) : (M,A)→ (M ′,A′) as above yields homomorphisms

Hn
L(M,A)

q∗−→ Hn
L(M,p∗A′) p∗←− Hn

L(M ′,A′)

induced by the morphisms of cochain complexes

C•L(M,A)
q∗−→ C•L(M,p∗A′) p∗←− C•L(M ′,A′),

which are given on cochains by

(q∗f)(a1, . . . , an) = qa1···an(f(a1, . . . , an)), (p∗f ′)(a1, . . . , an) = f ′(p(a1), . . . , p(an)).

1.3.2 The classification theorems

The biequivalence in Theorem 1.1 restricts to a biequivalence between the full 2-
subcategory of the 2-category of monoidal groupoids given by the monoidal abelian
groupoids, denoted by

MonAbGpd,

and the full 2-subcategory of the 2-category of Schreier systems given by those Schreier
systems (M,A,Θ, λ) in which every group A(a), a ∈ M , is abelian. Hereafter, this
latter 2-category will be called the 2-category of Leech 3-cocycles of monoids, and
denoted by

Z3Mnd,
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since its cells have the following cohomological interpretation:
0-cells. According to Definition 1.1, a Schreier system S in Z3Mnd is just a

triplet S = (M,A, h) consisting of a monoid M , a DM -module A, and a 3-cocycle
h ∈ Z3

L(M,A).
1-cells. If S = (M,A, h) and S ′ = (M ′,A′, h′) are in Z3Mnd, then a morphism

of Schreier systems (see Subsection 1.2.4), ℘ = (p, q , g) : S → S ′, is the same thing
as a morphism (p, q) : (M,A) → (M ′,A′) in ModD, together with a 2-cochain g ∈
C2

L(M,p∗A′) such that q∗h = p∗h′ + ∂2g.
2-cells. If ℘ = (p, q, g) : S → S ′ and ℘̄ = (p̄, q̄, ḡ) : S → S ′ are morphisms in

Z3Mnd, then (see Subsection 1.2.4) there is no deformation between them unless
p = p̄ and q = q̄. In such a case, a deformation f : ℘ ⇒ ℘̄ consists of a 1-cochain
f ∈ C1

L(M,p∗A′), such that g = ḡ + ∂1f .

Hence, our first result here comes as a direct consequence of Theorem 1.1:

Theorem 1.3 The quasi-inverse biequivalences (1.41) and (1.49) restrict to corre-
sponding quasi-inverse biequivalences

MonAbGpd ≈
∆ //

Z3Mnd.
Σ

oo (1.54)

Closely related to the category Z3Mnd is the category of Leech 3-cohomology
classes of monoids, denoted by

H3Mnd, (1.55)

which plays a fundamental role to state our classification theorem below. Its objects
are triplets (M,A, c), where M is a monoid, A is a DM -module, and c ∈ H3

L(M,A)
is 3-cohomology class of M with coefficients in A. An arrow

(p, q) : (M,A, c)→ (M ′,A′, c′)

is a morphism (p, q) : (M,A)→ (M ′,A′) in ModD, such that

p∗(c′) = q∗(c) ∈ H3
L(M,p∗A′).

Observe that a morphism (p, q) is an isomorphism in H3Mnd if and only if p :
M → M ′ is an isomorphism of monoids and q : A → p∗A′ is an isomorphism of
DM -modules.

We have the cohomology class functor

cl : Z3Mnd→ H3Mnd, (1.56)

(M,A, h) 7→ (M,A, [h])

(p, q , g) 7→ (p, q)

where [h] ∈ H3
L(M,A) denotes the cohomology class of h ∈ Z3

L(M,A). This func-
tor clearly carries two isomorphic morphisms of Z3Mnd to the same morphism in
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H3Mnd, whence composition with the pseudo-functor ∆ above gives a functor

Cl = cl ∆ : MonAbGpd→ H3Mnd, (1.57)

that we call the classifying functor, because of the theorem below.

Theorem 1.4 (Classification of monoidal abelian groupoids) (i) For M any
monoid , A any DM -module, and c ∈ H3

L(M,A) any cohomology class, there is a
monoidal abelian groupoid M with an isomorphism Cl(M) ∼= (M,A, c).

(ii) A monoidal functor between monoidal abelian groupoids F : M → M′ is an
equivalence if and only if Cl(F ) : Cl(M)→ Cl(M′) is an isomorphism.

(iii) For any isomorphism (p, q) : Cl(M) //∼− Cl(M′) , there exists a monoidal

equivalence F :M //∼ M′ such that Cl(F ) = (p, q).
(iv) If Cl(M) = (M,A, c) and Cl(M′) = (M ′,A′, c′), then, for any morphism

(p, q) : Cl(M)→ Cl(M′) in H3Mnd, there is a (non-natural) bijection{
[F ] :M→M′ | Cl(F ) = (p, q)

} ∼= H2
L(M,p∗A′)

between the set of isomorphism classes of those monoidal functors F :M→M′ which
are carried by the classifying funtor to (p, q) and the elements of the second cohomology
group of M with coefficients in the DM -module p∗A′.

Proof: (i) Given any object (M,A, c) ∈ H3Mnd, let us choose any 3-cocycle h ∈
Z3(M,A) such that [h] = c. Then, letting M = Σ(M,A, h), we have

Cl(M) = cl(∆Σ(M,A, h)) = cl(M,A, h) = (M,A, c).

(ii) Since the pseudo-functor ∆ : MonAbGpd → Z3Mnd is a biequivalence, it
suffices to prove that a morphism in Z3Mnd, say (p, q, g) : (M,A, h) → (M ′,A′, h′),
is an equivalence if and only if the induced (p, q) : (M,A, [h]) → (M ′,A′, [h′]) is an
isomorphism in H3Mnd, that is, if and only if p : M → M ′ is an isomorphism of
monoids and q : A → p∗A′ is an isomorphism of DM -modules. Hence, the result
follows from Lemma 1.2.

(iv) Let M, M′ be monoidal abelian groupoids. Suppose ∆(M) = (M,A, h) and
∆(M′) = (M ′,A′, h′), so that Cl(M) = (M,A, [h]) and Cl(M′) = (M ′,A′, [h′]), and
let (p, q) : Cl(M) → Cl(M′) be any given morphism in H3Mnd. The equivalence
between the hom-groupoids

MonAbGpd(M,M′) ∆' Z3Mnd(∆(M),∆(M′)),

induces a bijection, [F ] 7→ [∆(F )],{
[F ] :M→M′ | Cl(F ) = (p, q)

} ∼= {[p, q, g] : (M,A, h)→ (M ′,A′, h′)
}

between the set of iso-classes [F ] of those monoidal functors F : M → M′ with
Cl(F ) = (p, q), and the set of iso-classes [(p, q), g] of morphisms of the form

(p, q, g) : (M,A, h)→ (M ′,A′, h′)
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in the 2-category of Leech 3-cocycles. Since p∗cl(h′) = q∗cl(h), both 3-cocycles p∗h′

and q∗h represent the same class in the cohomology group H3
L(M,p∗A′). Therefore,

it must exist a 2-cochain g0 ∈ C2
L(M,p∗A′) such that q∗h = p∗h′ + ∂2g0. Hence,

(p, q, g0) : (M,A, h) → (M ′,A′, h′) is a morphism in Z3Mnd. Furthermore, observe
that any other morphism in Z3Mnd realizing the same morphism (p, q) of H3Mnd is
necessarily written in the form (p, q, g0 ◦ g) for some g ∈ Z2

L(M,p∗A′) and, moreover,
both morphisms (p, q, g0) and (p, q, g0 ◦ g) are isomorphic if and only if g = ∂1f for
some f ∈ C1

L(M,p∗A′). That is, there is a bijection

H2
L(M,p∗A′) ∼=

{
[p, q, g] : (M,A, h)→ (M ′,A′, h′)

}
given by [g] 7→ [p, q, g0 ◦ g].

(iii) Let (p, q) : Cl(M) //∼− Cl(M′) any given isomorphism in H3Mnd. By the

already proven part (iv), there exists a monoidal functor F : M → M′ such that
Cl(F ) = (p, q), which, by part (ii) is an equivalence. �

The functor MonAbGpd → ModD, M 7→ (M(M),A(M)), obtained by com-
posing the classifying functor (1.57) with the forgetful functor H3Mnd → ModD,
(M,A, c) 7→ (M,A), turns the 2-category of monoidal abelian groupoids into a fi-
bred 2-category over the category ModD. It follows from the above results that,
for any fixed monoid M and DM -module A, the mappings [h] 7→ [Σ(M,A, h)] and
M 7→ [h(M)] describe mutually inverse bijections between the set H3

L(M,A) and the
set of equivalence classes of monoidal groupoids in the fibre 2-category over (M,A).
However, this latter set is conceptually a little too rigid, since the strict requirements
M(M) = M and A(M) = A, for a monoidal abelian groupoid M, are not very
natural. We shall show below how to relax them.

Definition 1.2 For any given monoid M and any DM -module A, we say that a
monoidal abelian groupoid M is of type (M,A) if there are given

• a monoid isomorphism i : M ∼= M(M),

• a family of group isomorphisms j =
(
jX : A(a) ∼= AutM(X)

)
a∈M,X∈i(a)

,

such that,
• If X,Y ∈ i(a) then, for any morphism h : X → Y in M and any g ∈ A(a),

jY (g) = h+ jX(g)− h.

• If X ∈ i(a) and Y ∈ i(b), then, for any f ∈ A(b) and g ∈ A(a),

jXY (a∗(f)) = 1X jY (f), jXY (b∗(g)) = jX(g) 1Y .

If (p, q) : (M,A)→ (M ′,A′) is any morphism in the category ModD, and M and
M′ are monoidal abelian groupoids of respective types (M,A) and (M ′,A′), then a
monoidal functor F :M→M′ is said to be of type (p, q) whenever
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• If X ∈ i(a), then FX ∈ i′(p(a)), and, for any g ∈ A(a), j′FXqa(g) = F (jX(g)).

Two monoidal abelian groupoids of the same type (M,A), (M, i, j) and (M′, i′, j′),
are defined to be equivalent if there exists a monoidal equivalence F : M → M′ of
type (1, 1), that is, whenever

• If X ∈ i(a), then FX ∈ i′(a), and, for any g ∈ A(a), j′FX(g) = F (jX(g)).

If we denote by
MonAbGpd(M,A)

the set of equivalence classes [M, i, j] of those monoidal abelian groupoids (M, i, j)
of type (M,A), then we are ready to summarize our results on the classification of
monoidal abelian groupoids and their homomorphisms in a bit more classical terms:

Theorem 1.5 (i) For any monoidal abelian groupoid M, there exists a monoid M
and a DM -module A such that M is of type (M,A).

(ii) For any monoid M and any DM -module A, there is a natural bijection

MonAbGpd(M,A) ∼= H3
L(M,A) (1.58)

given by
[M, i, j] 7→ c(M) = j−1

∗ i∗([h(M)]),

where h(M) is the 3-cocycle obtained as in (1.27), and

H3
L(M(M),A(M))

i∗−→ H3
L(M, i∗A(M)))

j−1
∗−→ H3

L(M,A)

the induced isomorphisms on cohomology groups by the isomorphism

(i, j) : (M,A) ∼= (M(M),A(M))

in the category ModD. In the other direction, the bijection is induced by the mapping
that carries a 3-cocycle h ∈ Z3

L(M,A) to the monoidal abelian groupoid Σ(M,A, h),
given by the construction (1.29).

(iii) If M is of type (M,A) and M′ is of type (M ′,A′), then for every monoidal
functor F : M → M′ there exists a morphism (p, q) : (M,A) → (M ′,A′) in the
category ModD, such that F is of type (p, q).

(iv) IfM is of type (M,A), M′ is of type (M ′,A′), and (p, q) : (M,A)→ (M ′,A′)
is any morphism in the category ModD, then there exists F : M → M′ a monoidal
functor of type (p, q) if and only if

p∗(c(M′)) = q∗(c(M)) ∈ H3
L(M,p∗A′).

In such a case, isomorphism classes of monoidal functors F : M → M′ of type
(p, q) are in bijection with the elements of the group

H2
L(M,p∗A′).
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Proof: All the statements here are direct consequence of those in Theorem 1.4, after
two quite obvious observations, namely: (1) A monoidal abelian groupoidM is of type
(M,A) if and only if there is given an isomorphism (i, j) : (M,A) ∼= (M(M),A(M))
in the category ModD. (2) if (p, q) : (M,A) → (M ′,A′) is a morphism in the cate-
gory ModD, and M and M′ any monoidal groupoids of respective types (M,A) and
(M ′,A′), then a monoidal functor F : M → M′ is of type (p, q) if and only if the
square below in the category ModD commutes.

(M,A)
(i, j) //

(p,q)
��

(M(M),A(M))

(p(F ),q(F ))
��

(M ′,A′)
(i′, j′)// (M(M′), (A(M′)).

�

Remark 1.2 The category of monoids is tripleable over the category of sets. In [74,
Theorem 8], Wells identified the category Ab(Mnd ↓M ) of abelian group objects in
the comma category of monoids over a monoid M with the category of DM -modules
(see Example 1.1), and he proved that with a dimension shift both Barr-Beck cotriple
cohomology theory [2, 5] and Leech cohomology theory of monoids are the same.
Hence, for any monoid M and any DM -module A, Duskin [26] and Gleen [38] general
interpretation theorem for cotriple cohomology classes shows that equivalence classes
of 2-torsors over M under A are in bijection with elements of the cohomology group
H3

L(M,A).
A very similar result follows from the general result by Pirashvili [60, 61] and

Baues-Dreckmann [3] about the classification of track categories. From this result,
the elements of H3

L(M,A) are in bijection with equivalence classes of linear track
extensions of (the category) M by the DM -module (natural system on M in their
terminology) A.

Indeed, the three terms ‘2-torsor over M under A’, ‘linear track extension of M
by A’, and ‘strict monoidal abelian groupoid of type (M,A)’, are plainly recognized
to be synonymous: simply take into account that an internal groupoid in the category
of monoids is the same thing as a strict monoidal groupoid, together with Lemmas
2.2 and 2.3 in [18] (or [19, Theorem 3.3]).

However, we must stress that while it is relatively harmless to consider monoidal
abelian groupoids as ‘strict’, since by Mac Lane Coherence Theorem for Monoidal
Categories [56, 50] every monoidal abelian groupoid is equivalent to a strict one,
we understand it is not so when dealing with their homomorphisms, since not every
monoidal functor is isomorphic to a strict one. Indeed, it is possible to find two
strict monoidal abelian groupoids, say M and M′, which are related by a monoidal
equivalence between them but, however, there is no strict equivalence either from M
to M′ nor from M′ to M. For this reason, if for establishing the bijection (1.58) we
want to use only strict monoidal abelian groupoids and strict equivalences between
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them, as we need to do for applying Duskin or Pirashvili classification results, then
we must define two strict monoidal abelian groupoids M and M′ to be equivalent
if there is a zig-zag chain of strict equivalences as M ← M1 → · · · ← Mn → M′.
Although two strict monoidal abelian groupoids in the same equivalence class can
always be linked by one intervening pair of strict equivalences, this phenomenon, we
think, obscures unnecessarily the conclusions. Moreover, the facts stated in Theorem
1.5(iv) clearly fail for strict monoidal functors.

1.3.3 Classification of categorical groups revisited

As we recalled before, a categorical group is a monoidal groupoid M in which every
object is invertible or, equivalently, such that its associated monoid of connected
components M(M) is a group. By Proposition 1.3, every categorical group is abelian,
so that

CatGp ⊆MonAbGpd

is the full 2-subcategory of the 2-category of monoidal abelian groupoids given by the
categorical groups. We shall denote by

Z3Mnd|Gp ⊆ Z3Mnd

the full 2-subcategory of the 2-category of Leech 3-cocycles of monoids whose objects
are those S = (G,A, h) in Z3Mnd where G is a group. Then, the biequivalences
(1.54) in Theorem 1.3 restrict to corresponding quasi-inverse biequivalences

CatGp ≈
∆ //

Z3Mnd|Gp.
Σ

oo (1.59)

But now we shall note that this latter 2-category Z3Mnd|Gp is essentially the
same as its full 2-subcategory, called the 2-category of Eilenberg-Mac Lane 3-cocycles
of groups [20] and denoted by

Z3Gp ⊆ Z3Mnd|Gp,

which is defined by those S = (G,A, h) as above, but in which the family of groups
A is constant, that is, where A(a) = A(e) for all a ∈ G, and all automorphisms
a∗ : A(e) → A(e), a ∈ G, are identities. Observe that such a S is then described
simply as a triple S = (G,A, h), where G is a group, A (= A(e)) is a G-module with
left action (a, f) 7→ af = a∗(f), and h ∈ Z3(G,A) is an ordinary normalized 3-cocycle
of the group G with coefficients in the G-module A.

A morphism (p, q, g) : (G,A, h) → (G′, A′, h′) in Z3Gp then consists of a group
homomorphism p : G→ G′, a homomorphism of G-modules

q : A→ p∗A′,
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and a normalized 2-cochain g ∈ C2(G, p∗A′) such that q∗(h) = p∗(h′) + ∂2g. If

(p, q, g), (p̄, q̄, ḡ) : (G,A, h)→ (G′, A′, h′)

are two morphisms in Z3Gp, then there is no deformation between them unless p = p̄
and q = q̄, and, in such a case, a deformation δ : (p, q, g) ⇒ (p, q, ḡ) consists of a
1-cochain f ∈ C1(G, p∗A′), such that g = ḡ + ∂1f .

We have a 2-functor

( )e : Z3Mnd|Gp → Z3Gp

that is given on objects by

(G,A, h) 7→ (G,A(e), ĥ), (1.60)

where the action in A(e) is defined on each f ∈ A(e), by means of the isomorphisms

A(e)
a∗→ A(a)

a∗← A(e), a ∈ G, of A, by the equations

a∗(af) = a∗,

while the component at any (a, b, c) ∈ G×G×G of the 3-cocycle ĥ ∈ Z3(G,A(e)) is

defined, by means of the isomorphism A(e)
(abc)∗// A(abc) , by

(abc)∗(ĥ(a, b, c)) = h(a, b, c).

A morphism (p, q, g) : (G,A, h) → (G′,A′, h′) in Z3Mnd|Gp is mapped by the
2-functor ( )e to the morphism

(p, qe, ĝ) : (G,A(e), ĥ)→ (G′,A′(e), ĥ′), (1.61)

where ĝ ∈ C2(G, p∗A′(e)) is the 2-cochain whose component at any pair (a, b) ∈ G×G
is determined by the isomorphism p(ab)∗ : A′(e)→ A′(p(ab)) such that

p(ab)∗(ĝ(a, b)) = g(a, b),

whereas a deformation f : (p, q, g) ⇒ (p, q, g′) in Z3Mnd|Gp is carried to the the
deformation in Z3Gp

f̂ : (p, qe, ĝ)⇒ (p, qe, ĝ′),

where f̂ ∈ C1(G, p∗A′(e)) is the 1-cochain defined by the isomorphisms p(a)∗ : A′(e)→
A′(p(a)), a ∈ G, such that

p(a)∗(f̂(a)) = f(a).

All the needed verifications to prove that so defined ( )e is actually a 2-functor are
quite straightforward. For example, we see that ĥ in (1.60) is a 3-cocycle and that the
homomorphism qe : A(e)→ p∗A′(e) in (1.61) is of G-modules, as follows:
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(abcd)∗(âh(b, c, d) + ĥ(a, bc, d) + ĥ(a, b, c))

= (bcd)∗a∗(âh(b, c, d) + (abcd)∗(ĥ(a, bc, d) + d∗(abc)∗(ĥ(a, b, c))

= (bcd)∗a∗(ĥ(b, c, d)) + h(a, bc, d) + d∗(h(a, b, c))

= a∗(h(b, c, d)) + h(a, bc, d)d∗(h(a, b, c))=h(a, b, cd) + h(ab, c, d)

= (abcd)∗(ĥ(a, b, cd) + ĥ(ab, c, d)),

whence aĥ(b, c, d) + ĥ(a, bc, d) + ĥ(a, b, c) = ĥ(a, b, cd) + ĥ(ab, c, d).

p(a)∗(p(a)qe(f)) = p(a)∗(qe(f))
(1.52)

= qaa∗(f) = qa(a
∗(af))

(1.53)
= p(a)∗(qe(

af)),

whence qe(
af) = p(a)qe(f).

Proposition 1.4 The 2-functors inclusion in and ( )e are mutually quasi-inverse
biequivalences

Z3Gp ≈
in

// Z3Mnd|Gp.
( )eoo

Proof: We have ( )e in = 1, while the pseudo-equivalence in ( )e ' 1 is given, at
any object (G,A, h), by the isomorphism

(1G, q, 1) : (G,A(e), ĥ)
∼⇒ (G,A, h),

where q = (A(e)
a∗−→ A(a))a∈G. �

Hence, by composing the biequivalences above with those in (1.59), we get the
following (already known, see [20, Theorem 3.3]) cohomological description of the
2-category of categorical groups:

Theorem 1.6 The 2-functors ∆e = ( )e∆ and Σe = Σ in,

CatGp ≈
∆e //

Z3Gp
Σe

oo (1.62)

are quasi-inverse biequivalences.

Let us now denote by H3Gp ⊆ H3Mnd the full subcategory of the category of
Leech 3-cohomology classes of monoids (1.55), given by the Eilenberg-Mac Lane 3-
cohomology classes of groups. An object in H3Gp is then a triple (G,A, c), where G is
a group, A is a G-module, and c ∈ H3(G,A). An arrow (p, q) : (G,A, c)→ (G′, A′, c′)
in H3Gp consists of a group homomorphism p : G → G′ and an homomorphism of
G-modules q : A→ p∗A′ such that p∗(c′) = q∗(c) ∈ H3(G, p∗A′).
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We have the cohomology class functor

cl : Z3Gp→ H3Gp.

(G,A, h) 7→ (G,A, [h])

(p, q, g) 7→ (p, q)

This functor carries isomorphic morphisms of Z3Gp to the same morphism in H3Gp;
it is surjective on objects; it reflects isomorphisms: if (p, q, g) : (G,A, h)→ (G′, A′, h′)
is any morphism in Z3Gp such that the maps p and q are invertible, then the morphism
of Z3Gp

(p−1, q−1, p∗−1q−1
∗ (−g)) : (G′, A′, h′)→ (G,A, h)

is an inverse of (p, q, g); and it is full: if (p, q) : cl(G,A, h)→ cl(G′, A′, h′) is any mor-
phism in H3Gp, then p∗[h′] and q∗[h] both represent the same class in H3(G, p∗A′), so
there is g ∈ C2(G, p∗A′) such that q∗(h) = p∗(h′) + ∂2g. Then, (p, q, g) : (G,A, h) →
(G′, A′, h′) is a morphism in Z3Gp with cl(p, q, g) = (p, q). Observe that any other
realization of (p, q) is of the form (p, q, g ◦ g′) with g′ ∈ Z2(G, p∗A′) and, moreover,
that there is a deformation (p, q, g) ⇒ (p, q, g ◦ g′) if and only if g′ = ∂1f for some
f ∈ C1(G, p∗A′).

Hence, the classifying functor

Cl = cl ∆e : CatGp→ H3Gp

has the following properties:

Theorem 1.7 ([69] Classification of categorical groups) (i) For any group G,
any G-module A, and any cohomology class c ∈ H3(G,A), there is a categorical group
M with an isomorphism Cl(M) ∼= (G,A, c).

(ii) A monoidal functor between categorical groups F :M→M′ is an equivalence
if and only if the induced Cl(F ) : Cl(M)→ Cl(M′) is an isomorphism.

(iii) If M and M′ are categorical groups, then, for (p, q) : Cl(M) //∼− Cl(M′) any

isomorphism, there is a monoidal equivalence F :M //∼ M′ such that Cl(F ) = (p, q).
(iv) If Cl(M) = (G,A, c) and Cl(M′) = (G′, A′, c′), then, for any morphism

(p, q) : Cl(M)→ Cl(M′) in H3Gp, there is a (non-natural) bijection{
[F ] :M→M′ | Cl(F ) = (p, q)

} ∼= H2(G, p∗A′),

between the set of isomorphism classes of those monoidal functors F :M→M′ which
are carried by the classifying funtor to (p, q) and the second cohomology group of G
with coefficients in the G-module p∗A′.





Chapter 2

Computability of the
(co)homology of cyclic monoids

Recall from 1.3.1 that Leech cohomology groups of a monoid M are defined to be
those of its category DM , that is, if A : DM → Ab is any DM -module (called in what
follows left DM -module), then

Hn
L(M,A) = ExtnDM (Z,A) = RnHomDM (Z,−)(A) = RnHomDM (−,A)(Z), (2.1)

where, for any two left DM -modules A and A′, HomDM (A,A′) denotes the abelian
group of morphisms of DM -modules between them, and Z : DM → Ab is the constant
functor defined by the abelian group of integers Z. Similarly, for B : DMop → Ab any
right DM -module, the homology groups of M with coefficients in B [51, Definition
2.1] are defined by

HL
n (M,B) = TorDMn (B,Z) = Ln(−⊗DM Z)(B) = Ln(B ⊗DM −)(Z), (2.2)

where, for any left DM -module A, the tensor product B ⊗DM A is the abelian group
defined as the coend of the bifunctor DMop × DM → Ab which carries each pair
(x, y) ∈M ×M to the tensor product abelian group B(x)⊗A(y).

It is remarkable that, when coefficients are taken in ordinary M -modules (regarded
as constant on objects DM -modules), Leech (co)homology groups agree with those by
Eilenberg and Mac Lane [57, Chapter X, 5], see 2.1.6 below for some details. In
particular, Eilenberg-Mac Lane (co)homology groups of groups are instances of Leech
(co)homology groups of monoids.

This chapter deals with the (co)homology of finite cyclic monoids Cm,q, whose
structure and classification by means of the index m and the period q was first stated
by Frobenius [34]. As we noted in the abstract, the (co)homology groups of any finite
cyclic group Cq = C0,q were computed by Eilenberg [27, Section 11], while for finite
cyclic monoids of index m ≥ 1, the cohomology groups Hn

L(Cm,q,A) of a cyclic monoid
of index m ≥ 1 have been computed only for n ≤ 2 by Leech in [53, Chapter II, 7.20,
7.21]. However, because higher cohomology groups are interesting (as we have shown
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in the previous chapter, for instance), the aim of this chapter is to compute all the
(co)homology groups of any finite cyclic monoid Cm,q.

Briefly, the contents of the chapter are as follows. In Section 2.1, while fixing nota-
tion and terminology, we review some basic constructions concerning the (co)homology
of monoids. Section 2.2 is mainly dedicated to studying the trace maps associated to
any DCm,q-module, which are a key tool in our deliberations. Section 2.3 is de-
voted to the construction of a specific free resolution of the trivial DCm,q-module Z,
which allows us to determine, in the final Section 2.4, the groups Hn

L(Cm,q,A) and
HL
n (Cm,q,B). The (co)homology of Cm,q is proven to be periodic with a period of

2q/ gcd(m, q).

2.1 Notations and preliminaries

2.1.1 Left DM-modules

A left DM -module (called simply DM -module in 1.3.1) is an abelian group valued
functor on the category DM .

For instance, let Z : DM → Ab be the DM -module that associates to each element
x ∈ M the free abelian group on the generator (x), Z(x), and to each x, y ∈ M the
isomorphisms of abelian groups

Z(y)
x∗−→ Z(xy)

y∗←− Z(x)

given on generators by x∗(y) = (xy) = y∗(x). This is isomorphic to the DM -module
defined by the constant functor on DM which associates the abelian group Z to any
x ∈M .

For two left DM -modules A and A′, a morphism between them (i.e., a natural
transformation) f : A → A′ consists of homomorphisms fx : A(x) → A′(x), such
that, for any x, y ∈M , the squares below commute.

A(y)
x∗ //

fy
��

A(xy)

fxy
��

A(x)
y∗oo

fx
��

A′(x)
x∗ // A′(xy) A′(x)

y∗oo

The category of left DM -modules, denoted by DM -Mod, is an abelian category
with enough projective and injective objects. We refer to [53, Chapter I, 1] for details,
but recall that the set of morphisms between two DM -modules A and A′, denoted by
HomDM (A,A′), is an abelian group by pointwise addition, that is, if f, g : A → A′
are morphisms, then f + g : A → A′ is defined by setting (f + g)x = fx + gx, for each
x ∈ M . The zero DM -module is the constant functor 0 : DM → Ab defined by the
trivial abelian group 0, and a sequence of DM -modules A → A′ → A′′ is exact if and
only if the induced sequences of abelian groups A(x)→ A′(x)→ A′′(x) are exact, for
all x ∈M .
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2.1.2 Free left DM-modules

Let Set↓M be the comma category of sets over the underlying set of M , that is, the
category whose objects S = (S, π) are sets S endowed with a map π : S → M and
whose morphisms are maps ϕ : S → T such that πϕ = π. There is a forgetful functor
U : DM -Mod→ Set↓M , which carries any DM -module A to the disjoint union set

UA =
∐
x∈M
A(x) = {(x, a) | x ∈M, a ∈ A(x)},

endowed with the projection map π : UA →M , π(x, a) = x. A morphism f : A → A′
is sent to the map Uf : UA → UA′ given by Uf(x, a) = (x, fx(a)). There is also a
free left DM -module functor F : Set↓M → DM -Mod, which is defined as follows: If
S = (S, π) is any set over M , then FS is the DM -module such that, for each x ∈M ,

FS(x) = Z{(u, s, v) ∈M × S ×M | uπ(s)v = x}

is the free abelian group with generators all triplets (u, s, v), where u, v ∈ M and
s ∈ S, such that uπ(s)v = x. We usually write (e, s, e) simply by s (where e ∈ M is
the unit), so that each element of s ∈ S is regarded as an element s ∈ FS(πs). For
any x, y ∈M , the homomorphisms

FS(y)
x∗−→ FS(xy)

y∗←− FS(x)

are defined on generators by x∗(u, s, v) = (xu, s, v) and y∗(u, s, v) = (x, s, vy).
If ϕ : S → T is any map of sets over M , the induced morphism Fϕ : FS → FS′ is

given, at each x ∈M , by the homomorphism such that (Fϕ)x(u, s, v) = (u, ϕ(s), v).

Proposition 2.1 The functor F is left adjoint to the functor U . Thus, for S = (S, π)
any set over M and any left DM -module A, there is a natural isomorphism of abelian
groups

HomDM (FS,A) ∼=
∏
s∈S
A(πs).

Proof: At any set S over M , the unit of the adjunction is the map

ε : S → UFS = {(x, a) | x ∈M, a ∈ FS(x)}, s 7→ (πs, s).

If A is a DM -module and ϕ : S → UA is any map over M , then the unique morphism
of DM -modules f : FS → A such that (Uf) ε = ϕ is determined by the equations

fx(u, s, v) = u∗v
∗ϕ(s),

for any x ∈ M and (u, s, v) ∈ M × S ×M with uπ(s)v = x. Since giving a map
over M , ϕ : S → UA, is the same thing as giving a list (ϕ(s))s∈S ∈

∏
s∈S A(πs), the

isomorphism HomDM (FS,A) ∼=
∏
s∈S A(πs) follows. �
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2.1.3 Right DM-modules

The category of right DM -modules is defined to be the category of functors B :
DMop → Ab. A right DM -module B provides us with abelian groups B(x), x ∈ M ,
and homomorphisms

B(y)
x∗←− B(xy)

y∗−→ B(x),

for each x, y ∈M , such that the equations below hold.

y∗x∗ = (xy)∗ : B(xyz)→ B(z), x∗y∗ = (xy)∗ : B(zxy)→ B(z),
e∗ = e∗ = idB(x) : B(x)→ B(x), x∗y∗ = y∗x

∗ : B(xzy)→ B(z).

2.1.4 Tensor product of DM-modules

If B is a right DM -module and A is any left DM -module, their tensor product

B ⊗DM A =
DM∫
B ⊗A is the abelian group coend [58, Chapter IX, 6] of the func-

tor B ⊗ A : DMop × DM → Ab defined by (B ⊗ A)(x, y) = B(x) ⊗ A(y). That is,
B⊗DM A is the abelian group generated by elements of the form b⊗a, where b ∈ B(x)
and a ∈ A(x), x ∈M , subject to the relations

(b+ b′)⊗ a = b⊗ a+ b′ ⊗ a, for b, b′ ∈ B(x), a ∈ A(x), x ∈M,
b⊗ (a+ a′) = b⊗ a+ b⊗ a′, for b ∈ B(x), a, a′ ∈ A(x), x ∈M,

y∗b⊗ a = b⊗ y∗a, for b ∈ B(xy), a ∈ A(x), x, y ∈M,
y∗b⊗ a = b⊗ y∗a, for b ∈ B(yx), a ∈ A(x), x, y ∈M.

Proposition 2.2 For S = (S, π) any set over M and B any right DM -module, there
is a natural isomorphism of abelian groups

B ⊗DM FS ∼=
⊕
s∈S
B(πs).

Proof: As an abelian group, B ⊗DM FS is generated by the elements

b⊗ (u, s, v) = b⊗ u∗v∗(e, s, e) = b⊗ u∗v∗s = u∗v∗b⊗ s,

with u, v ∈ M , s ∈ S, and b ∈ B(uπ(s)v). The claimed isomorphism carries such
a generator b ⊗ (u, s, v) to the element u∗v∗b ∈ B(πs). Its inverse map carries any
element b ∈ B(πs) to the generator b⊗ s of B ⊗DM FS. �

2.1.5 Computing the (co)homology of a monoid.

From Proposition 2.1, it easily follows that every free left DM -module is projective.
Then, if

F•
ε→ Z : · · · → F2

∂→ F1
∂→ F0

ε→ Z→ 0
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is any free resolution of Z in the category of left DM -modules, then the cohomology
groups ofM with coefficients in a left DM -moduleA, defined in (2.1), can be computed
by means of the induced cochain complex of abelian groups

HomDM (F•,A) : 0→ HomDM (F0,A)
∂∗→ HomDM (F1,A)

∂∗→ HomDM (F2,A)→ · · ·

by Hn
L(M,A) = Hn

L

(
HomDM (F•,A)

)
, and the homology groups of M with coefficients

in a right DM -module B, defined in (2.2), by means of the induced chain complex

B ⊗DM F• : · · · → B ⊗DM F2
id⊗∂−→ B ⊗DM F1

id⊗∂−→ B ⊗DM F0 → 0

as Hn
L(M,B) = HL

n

(
B ⊗DM F•

)
.

2.1.6 Eilenberg-Mac Lane (co)homology

There is a full exact embedding from the category of ordinary left M -modules into
the category of left DM -modules. This carries any left M -module A, with M -action
(x, a) 7→ xa, to the left DM -module, also denoted by A, defined by A(x) = A, for all
x ∈ M , together with the homomorphisms x∗, x

∗ : A → A given by x∗a = xa and
x∗a = a [53, Chapter III, Lemma 1.9]. Similarly, there is a full exact embedding from
the category of ordinary right M -modules into the category of right DM -modules,
which carries any right M -module B to the right DM -module, also denoted by B,
defined by B(x) = B, for all x ∈ M , together the homomorphisms x∗, x

∗ : B → B
given by x∗b = bx and x∗b = b.

When, for A any left M -module and B any right M -module, one applies the
functors HomDM (−, A) and B ⊗DM − to the standard free resolution of the left DM -
module Z in [53, Chaper II, 2.2], then one obtains a cochain complex isomorphic
to HomZM (B(M), A) and a chain complex isomorphic to B ⊗ZM B(M), respectively.
Here, ZM is the monoid ring and B(M) the bar resolution of Z as a left M -module.
It follows that

Hn
L(M,A) = ExtnZM (Z, A), HL

n (M,B) = TorZMn (B,Z).

That is, the Leech (co)homology groups Hn
L(M,A) and HL

n (M,B) agree with those
by Eilenberg and Mac Lane [57, Chapter X, 5] (see the proof of [53, Chapter III,
Corollary 1.15] for more details). In particular, Eilenberg-Mac Lane (co)homology
groups of groups are instances of Leech (co)homology groups of monoids 1.

1If G is a group, regarded as a category with only one object, then G and DG become equivalent
categories due to the functor F : G → DG given by F (x) = (x, e, x−1) : e → e. Consequently, the
categories of G-modules and of DG-modules are equivalent. This gives an alternative and easier proof
that, for groups, both the Leech and the Eilenberg-Mac Lane (co)homology theories are equivalent.
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2.2 Cyclic monoids and trace maps

The structure of finite cyclic monoids was first stated by Frobenius [34]. Briefly, let
us recall that, if ∼ is any non-equality congruence on the additive monoid of natural
numbers, N = {0, 1, . . . }, then the least m ≥ 0 such that m ∼ x for some x 6= m is
called the index of the congruence, and the least q ≥ 1 such that m ∼ m+ q is called
its period. Hence,

x ∼ y if and only if either x = y < m, or x, y ≥ m and x ≡ y mod q.

The quotient N/∼ is called the cyclic monoid of index m and period q, and is denoted
here by Cm,q. As N is a free monoid on the generator 1, every finite cyclic monoid is
isomorphic to a proper quotient of N and, therefore, to a monoid Cm,q for some m ≥ 0
and q ≥ 1.

Since every element of Cm,q can be written uniquely in the form [x] with 0 ≤ x <
m+ q, the underlying set of this monoid can be described as the set

Cm,q = {0, 1, . . . ,m,m+ 1, . . . ,m+ q − 1}.

Hereafter, we use this description. In these terms, the projection map ℘ : N → Cm,q
is given by

℘(x) =

{
x if x < m+ q

x− kq if m+ kq ≤ x < m+ (k + 1)q,

and the addition in Cm,q, which is denoted by the symbol ⊕ to avoid confusion with
the addition + of N, is given by

x⊕ y = ℘(x+ y).

Furthermore, we use the notation r · x, for any r ∈ N and x ∈ Cm,q, to denote the
element of Cm,q defined recursively by

0 · x = 0, (r + 1) · x = (r · x)⊕ x. (2.3)

In other words, r · x =
(r-times)

x⊕ · · · ⊕ x = ℘(
(r-times)

x+ · · ·+ x) = ℘(rx). For instance, 2 · 8 = 7
in C2,9.

From now on, C = Cm,q denotes the finite cyclic monoid of index m and period q.
We assume that m+ q ≥ 2, so that Cm,q is not the zero monoid.

The following two families of homomorphisms are crucial for our deliberations.

Definition 2.1 Let A be a left DC-module. For each x ∈ C, x ≥ 1, the ‘trace map’

T : A(x) −→ A(m⊕ (x− 1)) (2.4)
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is the homomorphism defined by

T(a) =

m+q−1∑
t=0

t∗(m+ q − t− 1)∗a−
m−1∑
s=0

s∗(m− s− 1)∗a.

Also, for each x ∈ C, let

S : A(x)→ A(x⊕ 1) (2.5)

be the homomorphism defined by S(a) = 1∗a− 1∗a.

The following subgroups will be used later.

AT(x) = {a ∈ A(x) | T(a) = 0}, AT(x) = {T(a) | a ∈ A(x)},
AS(x) = {a ∈ A(x) | S(a) = 0}, AS(x) = {S(a) | a ∈ A(x)}.

(2.6)

Lemma 2.1 For any left DC-module A, the squares below commute.

A(x)

1∗

��

1∗ // A(x⊕ 1)

T
��

A(x⊕ 1)
T // A(m⊕ x)

A(x)

1∗

��

T // A(m⊕ (x− 1))

1∗

��
A(x⊕ 1)

T // A(m⊕ x)

A(x)

1∗
��

T // A(m⊕ (x− 1))

1∗
��

A(x⊕ 1)
T // A(m⊕ x)

Proof: To prove that T 1∗ = T 1∗, let a ∈ A(x). On the one hand,

T(1∗a) =

m+q−1∑
t=0

t∗(m+ q − t− 1)∗1∗a−
m−1∑
s=0

s∗(m− s− 1)∗1∗a

=

m+q−1∑
t=0

t∗
(
(m+ q − t− 1)⊕ 1

)
∗a−

m−1∑
s=0

s∗((m− s− 1)⊕ 1)∗a

= m∗a+

m+q−1∑
t=1

t∗(m+ q − t)∗a−m∗a−
m−1∑
s=1

s∗(m− s)∗a

=

m+q−1∑
t=1

t∗(m+ q − t)∗a−
m−1∑
s=1

s∗(m− s)∗a,
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and, on the other hand,

T(1∗a) =

m+q−1∑
t=0

1∗t∗(m+ q − t− 1)∗a−
m−1∑
s=0

1∗s∗(m− s− 1)∗a

=

m+q−1∑
t=0

(1⊕ t)∗(m+ q − t− 1)∗a−
m−1∑
s=0

(1⊕ s)∗(m− s− 1)∗a

=

m+q−2∑
t=0

(1 + t)∗(m+ q − t− 1)∗a+m∗a−
m−2∑
s=0

(1 + s)∗(m− s− 1)∗a−m∗a

=

m+q−2∑
t=0

(1 + t)∗(m+ q − t− 1)∗a−
m−2∑
s=0

(1 + s)∗(m− s− 1)∗a,

whence, by comparison, the result follows.
The other two equalities, 1∗T = T 1∗ and 1∗T = T 1∗, follow easily from the

commutativity of the monoid C. �

Lemma 2.2 For any left DC-module A, the sequences

A(x)
S−→ A(x⊕ 1)

T−→ A(m⊕ x), A(x)
T−→ A(m⊕ (x− 1))

S−→ A(m⊕ x),

are semiexact, that is, T S = 0 and S T = 0.

Proof: It is a direct consequence of Lemma 2.1 since

TS = T 1∗ − T 1∗ = 0, ST = 1∗T− 1∗T = T 1∗ − T 1∗ = 0.

�

2.3 A resolution of Z by free DC-modules

It is possible to calculate the (co)homology of cyclic monoids efficiently by a clever
choice of resolution. We construct here a specific free resolution of the trivial DC-
module Z,

F•
ε→ Z : · · · → F2

∂→ F1
∂→ F0

ε→ Z→ 0, (2.7)

as follows.
For each integer r ≥ 0, choose symbols vr and wr. Then, recalling the notation

(2.3),

- F2r is the free DC-module on the unitary set over C, {vr}
π→ C, where πvr =

r ·m.
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- F2r+1 is the free DC-module on the unitary set over C, {wr}
π→ C, where

πwr = r ·m⊕ 1.

- The augmentation ε : F0 → Z is the morphism of DC-modules determined by

ε0(v0) = (0) ∈ Z(0).

- For each r ≥ 0, the differential ∂ : F2r+2 → F2r+1 is the morphism of DC-
modules determined by

∂πvr+1(vr+1) = T(wr),

where T : F2r+1(r ·m⊕ 1)→ F2r+1((r + 1) ·m) is the trace map (2.4).

- For each r ≥ 0, the differential ∂ : F2r+1 → F2r is the morphism of DC-modules
determined by

∂πwr(wr) = S(vr),

where S : F2r(r ·m)→ F2r(r ·m⊕ 1) is the homomorphism (2.5).

Proposition 2.3 F•
ε→ Z, defined as above, is an augmented complex of DC-modules.

Proof: The sequence F1
∂→ F0

ε→ Z is semiexact, that is, ε∂ = 0, since

ε1∂1(w0) = ε1(1∗v0 − 1∗v0) = 1∗ε0(v0)− 1∗ε0(v0) = 1∗(0)− 1∗(0) = (1)− (1) = 0.

For any r ≥ 1, the sequence F2r+1
∂→ F2r

∂→ F2r−1 is semiexact, since

∂πwr∂πwr(wr) = ∂πwr(1∗vr − 1∗vr) = 1∗∂πvr(vr)− 1∗∂πvr(vr)

= 1∗T(vr)− 1∗T(vr) = ST(vr) = 0.

Finally, for any r ≥ 0, the sequence F2r+2
∂→ F2r+1

∂→ F2r is also semiexact, since

∂πvr+1∂πvr+1(vr+1) = ∂πvr+1T(wr) =

= ∂πvr+1

(m+q−1∑
t=0

t∗(m+ q − t− 1)∗wr

)
− ∂πvr+1

(m−1∑
s=0

s∗(m− s− 1)∗wr

)
=

m+q−1∑
t=0

t∗(m+ q − t− 1)∗∂πwr(wr)−
m−1∑
s=0

s∗(m− s− 1)∗∂πwr(wr)

=

m+q−1∑
t=0

t∗(m+ q − t− 1)∗S(wr)−
m−1∑
s=0

s∗(m− s− 1)∗S(wr) = TS(wr) = 0.

�
We are now ready to establish the main result of this section.
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Theorem 2.1 F•
ε→ Z, defined as above, is a free resolution of the DC-module Z.

Proof: We only have to prove its exactness or, equivalently, that, for any fixed x ∈ C,
the augmented complex of abelian groups

F•(x)
εx→ Z(x) : · · · → F2(x)

∂x→ F1(x)
∂x→ F0(x)

εx→ Z(x)→ 0, (2.8)

is exact. To do so, we are going to show that it has a contracting homotopy. That
is, there are homomorphisms φ : Z(x) → F0(x) and Φ : Fn(x) → Fn+1(x) for n ≥ 0,
such that εxφ = idZ(x), φ εx + ∂xΦ = idF0(x), and for n ≥ 1, Φ∂x + ∂xΦ = idFn(x).

These homomorphisms φ and Φ are defined on the generators and extended lin-
early. Recall that Z(x) is the free abelian group on the generator (x) and, for each
r ≥ 0, F2r(x) is the free abelian group on the set

{(u,vr, v) | u, v ∈ C with u⊕ r ·m⊕ v = x},

and F2r+1(x) is the free abelian group on the set

{(u,wr, v) | u, v ∈ C with u⊕ r ·m⊕ v ⊕ 1 = x}.

Then, we define

- φ : Z(x)→ F0(x) to be the homomorphism determined by

φ(x) = (0,v0, x).

and, for r ≥ 0,

- Φ : F2r+1(x)→ F2r+2(x) to be the homomorphism determined by

Φ(u,wr, v) =

{
0 if u < m+ q − 1

(0,vr+1, v) if u = m+ q − 1

- Φ : F2r(x)→ F2r+1(x) to be the homomorphism determined by

Φ(u,vr, v) =

u−1∑
t=0

(t,wr, v ⊕ (u− t− 1)).

So defined, we prove that these homomorphisms establish a contracting homotopy on
the augmented chain complex (2.8) as follows.

εxφ = idZ(x), since

εxφ(x) = εx(0,v0, x) = εx(x∗v0) = x∗ε0(v0) = x∗(0) = (x).
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∂xΦ + φ εx = idF0(x), since, for any u, v ∈ C with u⊕ v = x,

∂xΦ(u,v0, v) = ∂x

( u−1∑
t=0

(t,w0, v ⊕ (u− t− 1))
)

= ∂x

( u−1∑
t=0

t∗(v ⊕ (u− t− 1))∗w0

)
=

u−1∑
t=0

t∗(v⊕(u− t− 1))∗∂1(w0) =

u−1∑
t=0

t∗(v⊕(u− t− 1))∗(1∗v0 − 1∗v0)

=

u−1∑
t=0

(t+ 1)∗℘(u+ v − t− 1)∗v0 −
u−1∑
t=0

t∗℘(u+ v − t)∗v0

= u∗v
∗v0 − ℘(u+ v)∗v0 = u∗v

∗v0 − x∗v0 = (u,v0, v)− (0,v0, x),

φ εx(u,v0, v) = φ εx(u∗v
∗v0) = φ(u∗v

∗ε0(v0)) = φ(u∗v
∗(0)) = φ(u⊕ v) = φ(x)

= (0,v0, x),

and therefore (∂xΦ + φ εx)(u,v0, v) = (u,v0, v), for any generator (u,v0, v) of F0(x).

∂xΦ + Φ∂x = idF2r+1(x), since for any generator (u,wr, v) of F2r+1(x) with u <
m+ q − 1,

(∂xΦ + Φ∂x)(u,wr, v) = Φ∂x(u,wr, v) = Φ∂x(u∗v
∗wr) = Φ

(
u∗v
∗∂πwr(wr)

)
= Φ

(
u∗v
∗(1∗vr − 1∗vr)

)
= Φ

(
(u+ 1)∗v

∗vr − u∗(v ⊕ 1)∗vr)
)

= Φ(u+ 1,vr, v)− Φ(u,vr, ℘(v + 1))

=
u∑
t=0

(t,wr, ℘(u+ v − t))−
u−1∑
t=0

(t,wr, ℘(u+ v − t))

= (u,wr, ℘(v)) = (u,wr, v),

while for generators (m+ q − 1,wr, v) of F2r+1(x), we have

∂xΦ(m+ q − 1,wr, v) = ∂x(0,vr+1, v) = ∂x(v∗vr+1) = v∗∂πvr+1(vr+1)

=

m+q−1∑
t=0

v∗t∗(m+ q − t− 1)∗wr −
m−1∑
t=0

v∗t∗(m− t− 1)∗wr

=

m+q−1∑
t=0

(t,wr, ℘(v +m+ q − t− 1))−
m−1∑
t=0

(t,wr, ℘(v +m− t− 1))

=

m+q−1∑
t=0

(t,wr, ℘(v +m+ q − t− 1))− Φ(m,vr, v),
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Φ∂x(m+ q − 1,wr, v) = Φ
(
(m+ q − 1)∗v

∗∂πwr(wr)
)

= Φ
(
(m+ q − 1)∗v

∗(1∗vr − 1∗vr)
)

= Φ(m∗v
∗vr)− Φ

(
(m+ q − 1)∗(1⊕ v)∗vr)

)
= Φ(m,vr, v)− Φ(m+ q − 1,vr, ℘(1 + v))

= Φ(m,vr, v)−
m+q−2∑
t=0

(t,wr, ℘(v +m+ q − t− 1)),

whence (∂xΦ + Φ∂x)(m+ q − 1,wr, v) = (m+ q − 1,wr, ℘(v)) = (m+ q − 1,wr, v).

And, finally, we prove that ∂xΦ + Φ∂x = idF2r(x). To do so, let (u,vr, v) be any
fixed generator of F2r(x). Then, on the one hand,

∂xΦ(u,vr, v) = ∂x

( u−1∑
t=0

(
t,wr, (v ⊕ (u− t− 1))

))
= ∂x

( u−1∑
t=0

t∗(v ⊕ (u− t− 1))∗wr

)
=

u−1∑
t=0

t∗(v ⊕ (u− t− 1))∗∂πwr(wr) =
u−1∑
t=0

t∗(v ⊕ (u− t− 1))∗(1∗vr − 1∗vr)

=
u−1∑
t=0

(t+ 1)∗℘(u+ v − t− 1)∗vr −
u−1∑
t=0

t∗℘(u+ v − t)∗vr

= u∗v
∗vr − ℘(u+ v)∗vr = u∗v

∗vr − (u⊕ v)∗vr = (u,vr, v)− (0,vr, u⊕ v),

while, on the other hand, we have

Φ∂x(u,vr, v) = Φ
(
u∗v
∗∂πvr(vr)

)
= Φ

(
u∗v
∗
m+q−1∑
t=0

t∗(m+ q − t− 1)∗wr−1 − u∗v∗
m−1∑
t=0

t∗(m− t− 1)∗wr−1

)
=

m+q−1∑
t=0

Φ
(
u⊕ t,wr−1, v ⊕ (m+ q − t− 1)

)
−
m−1∑
t=0

Φ
(
u⊕ t,wr−1, v ⊕ (m− t− 1)

)
.

Now, if l ≥ 0 is integer such that lq < u ≤ (l + 1)q, then it is easy to see that the
various t, with 0 ≤ t ≤ m+ q − 1 (resp. 0 ≤ t ≤ m− 1), such that u⊕ t = m+ q − 1,
that is, ℘(u+ t) = u+ q − 1, are just those of the form t = m+ (k + 1)q − 1− u for
0 ≤ k ≤ l (resp. 0 ≤ k ≤ l − 1). Hence,

Φ∂x(u,vr, v) =

l∑
k=0

(0,vr, v ⊕ (u− kq))−
l−1∑
k=0

(0,vr, v ⊕ (u− (k + 1)q))

= (0,vr, v ⊕ u),

and thus we get (∂xΦ + Φ∂x)(u,vr, v) = (u,vr, v). This makes complete the proof. �
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2.4 The (co)homology groups of C

By Theorem 2.1, the (co)homology groups of the cyclic monoid C of index m and
period q can be computed by means of the complex F• in (2.7) as

Hn
L(C,A) = Hn

LHomDC(F•,A),

HL
n (C,B) = HL

n (B ⊗DC F•),

for A any left DC-module and B any right DC-module.
Now, for each r ≥ 0, the DC-module F2r is free on the unitary set {vr} with

πvr = r ·m, while F2r+1 is free on the unitary set {wr} with πwr = r ·m⊕ 1. Then,
by Proposition 2.1, there are natural isomorphisms

HomDC(F2r,A) ∼= A(r ·m), HomDC(F2r+1,A) ∼= A(r ·m⊕ 1),

respectively given by f 7→ fπvr(vr) and g 7→ gπwr(wr), which make the diagram

HomDC(F2r,A)
∂∗ //

∼=
��

HomDC(F2r+1,A)
∂∗ //

∼=
��

HomDC(F2r+2,A)

∼=
��

A(r ·m)
S // A(r ·m⊕ 1)

T // A((r + 1) ·m),

commutative, where S and T are the homomorphisms (2.5) and (2.4) in Definition
2.1. Therefore, recalling the notations in (2.6), we obtain:

Theorem 2.2 Let A be any left DC-module. Then,

H0
L(C,A) ∼= AS(0),

and, for any r ≥ 0,

H2r+1
L (C,A) ∼= A

T(r ·m⊕ 1)
AS(r ·m)

, H2r+2
L (C,A) ∼= A

S((r + 1) ·m)
AT(r ·m⊕ 1)

. (2.9)

For instance, let us consider the DC-module Z for coefficients. In this case, for
any x ∈ C, x ≥ 1, the trace map T : Z(x)→ Z(m⊕ (x− 1)) is the homomorphism of
multiplication by q, since

T(x) =

m+q−1∑
i=0

t∗(m+ q − t− 1)∗(x)−
m−1∑
i=0

t∗(m− t− 1)∗(x)

=

m+q−1∑
i=0

(m⊕ (x− 1))−
m−1∑
i=0

(m⊕ (x− 1)) = q(m⊕ (x− 1)),

while, for all x, S : Z(x)→ Z(x⊕ 1) is the zero homomorphism, since

S(x) = 1∗(x)− 1∗(x) = (1⊕ x)− (x⊕ 1) = 0.
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Therefore, H0
L(C,Z) ∼= Z and, for any r ≥ 0,

H2r+1
L (C,Z) ∼= 0, H2r+2

L (C,Z) ∼= Z/qZ.

We should note that the isomorphisms (2.9) in the particular case when r = 0,
that is,

H1
L(C,A) ∼= A

T(1)
AS(0)

, H2
L(C,A) ∼= A

S(m)
AT(1)

,

were proven by Leech in [53, Chapter II, 7.20, 7.21].

As for homology, if B is any right DC-module, by Proposition 2.2, there are natural
isomorphisms

B ⊗DC F2r
∼= B(r ·m), B ⊗DC F2r+1

∼= B(r ·m⊕ 1),

respectively given on generators by a′⊗(u,vr, v) 7→ u∗v∗a
′ and a′⊗(u,wr, v) 7→ u∗v∗a

′,
which make the diagram

B ⊗DC F2r+2
id⊗∂ //

∼=
��

B ⊗DC F2r+1
id⊗∂ //

∼=
��

B ⊗DC F2r

∼=
��

B((r + 1) ·m)
T // B(r ·m⊕ 1)

S // B(r ·m),

commutative, where, for each x ∈ C, x ≥ 1, the homomorphism T : B(m⊕(x−1)) −→
B(x) is the ‘trace map’, defined by

T(b) =

m+q−1∑
t=0

t∗(m+ q − t− 1)∗b−
m−1∑
t=0

t∗(m− t− 1)∗b,

and, for any x ∈ C, S : B(x ⊕ 1) → B(x) is the homomorphism defined by S(b) =
1∗b− 1∗b.

Then, introducing the subgroups (parallel to those in (2.6))

BT(x) = {b ∈ B(m⊕ (x− 1)) | T(b) = 0}, BT(x) = {T(b) | b ∈ B(m⊕ (x− 1)},
BS(x) = {b ∈ B(x⊕ 1) | S(b) = 0}, BS(x) = {S(b) | b ∈ B(x⊕ 1)},

we have the following.

Theorem 2.3 Let B be any right DC-module. Then,

HL
0 (C,B) ∼=

B(0)

BS(0)
,

and, for any r ≥ 0,

HL
2r+1(C,B) ∼= BS(r ·m)

BT(r ·m⊕ 1)
, HL

2r+2(C,B) ∼= BT(r ·m⊕ 1)
BS((r + 1) ·m)

. (2.10)



2.4. The (co)homology groups of C 61

Thus, for example,

HL
1 (C,B) ∼= B

S(0)
BT(1)

, HL
2 (C,B) ∼= B

T(1)
BS(m)

.

It is well-known that the (co)homology of a finite cyclic group Cq = C0,q is periodic
with a period of 2. Indeed, when m = 0, isomorphisms (2.9) and (2.10) state that,
for any left DCq-module A and right DCq-module B, and any integer r ≥ 0, there are
isomorphisms

H2r+1
L (Cq,A) ∼= AT(1)/AS(0), H2r+2

L (Cq,A) ∼= AS(0)/AT(1),

HL
2r+1(Cq,B) ∼= BS(0)/BT(1), HL

2r+2(Cq,B) ∼= BT(1)/BS(0),

whence the periodicity of the (co)homology of Cq follows trivially. The following
proposition states that, from dimension 3 onwards, the (co)homology of any finite
cyclic monoid C is periodic with a period of 2q/(m, q), where (m, q) denotes the
greatest common divisor of the index and the period. More precisely,

Proposition 2.4 Let p, n ≥ 3 be integers such that p ≡ n mod 2q/(m, q). Then, for
any left DC-module A and right DC-module B, there are isomorphisms

Hp
L(C,A) ∼= Hn

L(C,A), HL
p (C,B) ∼= HL

n (C,B). (2.11)

If m = 1, then there are also isomorphisms

Hn
L(C1,q,A) ∼= H2

L(C1,q,A), HL
n (C1,q,B) ∼= HL

2 (C1,q,B),

for any n ≥ 2 such that n ≡ 2 mod 2q.

Proof: Let p, n ≥ 3 be integers such that p ≡ n mod 2q/(m, q). Then, p ≡ n mod 2
and we can write p = 2r + 1 and n = 2s + 1 or p = 2r + 2 and n = 2s + 2 for
some integers r, s ≥ 1 satisfying r ≡ s mod q/(m, q) or, equivalently, satisfying that
rm ≡ sm mod q. Hence, r ·m = s ·m, r ·m⊕1 = s ·m⊕1, and (r ·m)⊕m = (s ·m)⊕m,
whence the isomorphisms in (2.11) follow from those in (2.9) and (2.10).

Suppose now that the cyclic monoid is of index one2, and let r ≥ 0 be such that
r ≡ 0 mod q. Then r ⊕ 1 = 1, and therefore

H2r+2
L (C1,q,A) ∼=

AS(r ⊕ 1)

AT(r ⊕ 1)
=
AS(1)

AT(1)
∼= H2

L(C1,q,A),

HL
2r+2(C1,q,B) ∼=

BT(r ⊕ 1)

BS(r ⊕ 1)
=
BT(1)

BS(1)
∼= HL

2 (C1,q,B).

�
Our results in Theorems 2.2 and 2.3 specify in a simpler form for (co)homology

with coefficients in C-modules (see 2.1.6).

2A cyclic monoid of index m = 1 and period q is the same thing that a cyclic group of order q
with a identity adjoined.
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Corollary 2.1 (i) Let A be any left C-module. Then,

H0
L(C,A) ∼= AS,

and, for any r ≥ 0,

H2r+1
L (C,A) ∼= AT/AS, H2r+2

L (C,A) ∼= AS/AT,

where S,T : A→ A are the homomorphisms given by

S(a) = 1∗a− a, T(a) = m∗

q−1∑
t=0

t∗a,

AT = KerT, AT = ImT, AS = KerS, and AS = ImS.

(ii) Let B be any right C-module. Then,

HL
0 (C,B) ∼= B/BS,

and, for any r ≥ 0,

HL
2r+1(C,B) ∼= BS/BT, HL

2r+2(C,B) ∼= BT/BS,

where S,T : B → B are the homomorphisms given by

S(b) = b− 1∗b, T(b) = m∗
q−1∑
t=0

t∗b,

BT = KerT, BT = ImT, BS = KerS, and BS = ImS.

The isomorphism H2
L(C,A) ∼= AS/AT is already known, see [44, Proposition 4.1]

for a recent proof. As an immediate consequence of the above corollary, we see that
the Eilenberg-Mac Lane (co)homology of any C is periodic with a period of 2, that is,

Corollary 2.2 Let A be a left C-module and let B be a right C-module. For any
r ≥ 0, there are natural isomorphisms

H2r+1
L (C,A) ∼= H1

L(C,A), H2r+2
L (C,A) ∼= H2

L(C,A),

HL
2r+1(C,B) ∼= HL

1 (C,B), HL
2r+2(C,B) ∼= HL

2 (C,B).

If A is any abelian group, regarded as a left or right C-module on which the monoid
acts trivially, then, for any a ∈ A, S(a) = a− a = 0, that is, S = 0 : A→ A is the zero
homomorphism, while T(a) =

∑q−1
i=0 a = q a, that is, the trace map T = q : A→ A is

multiplication by q. Therefore,

H0
L(C,A) ∼= A ∼= HL

0 (C,A),
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and, for all r ≥ 0,

H2r+1
L (C,A) ∼= Ker(q : A→ A) ∼= HL

2r+2(C,A),

H2r+2
L (C,A) ∼= Coker(q : A→ A) ∼= HL

2r+1(C,A).

Observe that the (co)homology groups of the finite cyclic monoid C with coefficients
in the abelian group do not depend on the index m. Indeed, they agree with those of
the cyclic group Cq. Actually, this fact is not surprising because it is well-known that
the (co)homology groups of any commutative monoid with trivial coefficients coincide
with those of its group reflection (i.e., its image under the left adjoint of the forgetful
functor from groups to monoids) [33, Proposition 4.4], and the group reflection of C
is just Cq.

To conclude, we particularize to the case when the coefficients are symmetric DC-
modules. Recall that, if M is any commutative monoid, a left DM -module A is called
symmetric if, for any x, y ∈M , y∗ = y∗ : A(x)→ A(xy). Symmetric DM -modules are
equivalent to abelian group objects in the comma category of commutative monoids
over M [43, Chap. XXII, 2], and therefore they are the coefficients for the cotriple
cohomology theory [2] of commutative monoids (see Chapter 3). See also the recent
approach to the (co)homology of commutative monoids by Kurdiani and Pirashvili in
[52]. Symmetric right DM -modules are defined similarly, and Theorems 2.2 and 2.3
give the following.

Corollary 2.3 (i) Let A be any symmetric left DC-module. Then,

H0
L(C,A) ∼= A(0),

and, for any r ≥ 0,

H2r+1
L (C,A) ∼= AT(r ·m⊕ 1), H2r+2

L (C,A) ∼= A((r + 1) ·m)
AT(r ·m⊕ 1)

,

where, for any x ∈ C, x ≥ 1, T : A(x)→ A(m⊕ (x− 1)) is the trace map given by

T(a) = (m+ q)
(
(m+ q − 1)∗a

)
−m

(
(m− 1)∗a

)
,

AT(x) = KerT, and AT(x) = ImT.

(ii) Let B be any symmetric right DC-module. Then,

HL
0 (C,B) ∼= B(0),

and, for any r ≥ 0,

HL
2r+1(C,B) ∼= B(r ·m)

BT(r ·m⊕ 1)
, H2r+2

L (C,B) ∼= BT(r ·m⊕ 1),

where, for any x ∈ C, x ≥ 1, T : B(m⊕ (x− 1))→ B(x) is the trace map given by

T(b) = (m+ q)
(
(m+ q − 1)∗b

)
−m

(
(m− 1)∗b

)
,

BT(x) = KerT, and BT(x) = ImT.





Chapter 3

On the third cohomology group
of commutative monoids

The category of commutative monoids is tripleable (monadic) over the category of
sets [58], and so it is natural to specialize Barr-Beck cotriple cohomology [2] to de-
fine a cohomology theory for commutative monoids. This was done in the 1990s by
Grillet, to whose papers [40, 41, 42] and book [43] we refer the readers interested in
cohomology theory for commutative monoids. Although in 3.1.1 we review the basic
facts about the resulting Grillet’s cohomology, let us briefly recall here that, for each
commutative monoid M , its cohomology groups in this theory, Hn

G(M,A), take co-
efficients in HM -modules, that is, abelian group valued functors A on the category
HM . This category HM has as objects the elements of M and as morphisms pairs
(a, b) : a→ ab, a, b ∈M . Since these cohomology groups Hn

G(M,A) can be computed,
at less in low dimensions, by means of symmetric cochains, they are usually referred
as the symmetric cohomology groups of the commutative monoid M .

Recall that for an arbitrary monoid M , that is, non necessarily commutative,
and A any DM -module there are defined Leech cohomology groups Hn

L(M,A) (see
1.3.1). When the monoid M is commutative, and A : HM → Ab is any HM -
module, then both cohomology groups Hn

G(M,A) and Hn
L(M,A) are defined, where

the coefficients for the Leech cohomology are here obtained by composing A with
canonical functor DM → HM , (a, b, c) 7→ (b, ac). The DM -modules so obtained are
precisely the symmetric DM -modules introduced at the end of the previous chapter.
Although in dimension one we have that H1

G(M,A) = H1
L(M,A), in higher dimensions

the cohomology groups Hn
G(M,A) and Hn

L(M,A) are, however, different. Indeed,
one easily argues that Leech cohomology groups do not take properly account of the
commutativity of the monoid, in contrast to what happens with Grillet ones. Thus,
for example, while H2

L(M,A) classifies all group coextensions of M by A [53, 2.4.9],
[74, Theorem 2], the symmetric 2-cohomology group H2

G(M,A) classifies commutative
group coextensions of M by A [43, Chapter V.4].

In Section 1.3, we gave a natural interpretation for Leech 3-cohomology classes in

65
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terms of monoidal abelian groupoids. More concretely, in Theorem 1.4, it was stated
that monoidal equivalence classes of monoidal abelian groupoids are in one-to-one
correspondence with isomorphism classes of triples (M,A, k), consisting of a (non
necessarily commutative) monoid M , a DM -module A, and a Leech 3-cohomology
class k ∈ H3

L(M,A).
In this chapter, our goal is to state and prove a similar interpretation for Grillet

symmetric 3-cohomology classes, now in terms of strictly symmetric (or strictly com-
mutative) monoidal abelian groupoids [25, 56, 66], that is, monoidal abelian groupoids,
but now endowed with coherent and natural isomorphisms cx,y : x⊗ y ∼= y ⊗ x, satis-
fying the symmetry and strictness conditions cy,x cx,y = idx⊗y and cx,x = idx⊗x. Our
result here can be summarized as follows (see Theorem 3.1):

• Each symmetric 3-cocycle h ∈ Z3
G(M,A), of a commutative monoid M with

coefficients in an HM -module A, gives rise to a strictly symmetric monoidal
abelian groupoid

Σ(M,A, h).

• For any strictly symmetric monoidal abelian groupoid M, there exist a commu-
tative monoid M , an HM -module, a symmetric 3-cocycle h ∈ Z3

G(M,A), and a
symmetric monoidal equivalence

Σ(M,A, h) 'M.

• For any two symmetric 3-cocycles h ∈ Z3
G(M,A) and h′ ∈ Z3

G(M ′,A′), there is
a symmetric monoidal equivalence

Σ(M,A, h) ' Σ(M ′,A′, h′)

if and and only if there exist an isomorphism of monoids i : M ∼= M ′ and a
natural isomorphism ψ : A ∼= i∗A′, such that the equality of cohomology classes
below holds.

[h] = ψ−1
∗ i∗[h′] ∈ H3

G(M,A)

Thus, triples (M,A, k), with M a commutative monoid, A an HM -module, and
k ∈ H3

G(M,A) a symmetric 3-cohomology class, provide complete invariants for the
classification of strictly symmetric monoidal abelian groupoids, where two of them
connected by a symmetric monoidal equivalence are considered the same.

Our result particularizes to strictly commutative Picard categories by giving, as a
corollary, Deligne’s well-known classification for them [25], also proved independently
by Fröhlich and Wall in [36] and by Sinh in [68, 69]. Indeed, in the very special
case where M = G is an abelian group, any abelian group valued functor on HG is
naturally equivalent to the constant functor given by an abelian group A, and the
symmetric 3-cohomology group H3

G(G,A) vanishes, whence Deligne’s result follows:
Strictly commutative Picard categories are classified by pairs (G,A) of abelian groups.
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The organization of the chapter is simple. After this introduction, it contains
two sections. The first is dedicated to stating a minimum of necessary concepts
and terminology, by reviewing some facts concerning Grillet cohomology of com-
mutative monoids (Subsection 3.1.1) and symmetric monoidal groupoids (Subsection
3.1.2). The second section comprises our classification theorem for strictly symmetric
monoidal abelian groupoids by means of symmetric 3-cohomology classes.

3.1 Preliminaries

The aim of this section is to review some necessary aspects and results about co-
homology of commutative monoids and symmetric monoidal categories that will be
used throughout the chapter. For the cohomology theory of commutative monoids
we mainly refer the reader to Grillet [43, Chapters V, XII, XIII, and XIV], and for
symmetric monoidal (= tensor) categories to Mac Lane [56, 58] and Saavedra [66].

3.1.1 Grillet cohomology of commutative monoids: Symmetric
cocycles

Like most of cohomology theories in Algebra, the cohomology of commutative monoids
is a particular instance of the cotriple cohomology by Barr and Beck [2]. Briefly, let
us recall that the category of commutative monoids is tripleable over the category of
sets and, for any given commutative monoid M , the resulting cotriple (G, ε, δ) in the
comma category CMnd↓M , of commutative monoids over M , is as follows. For each
commutative monoid X

p→M over M ,

G(X
p→M) = N[X]

p→M,

where N[X] is the free commutative monoid on the underlying set X, and p is the
homomorphism such that p[x] = p(x) for any x ∈ X. The counit δ : G → id
sends X → M to the homomorphism in the comma category δ : N[X] → X such
that δ[x] = x, and the comultiplication ε : G → G2 carries each X → M to the
homomorphism N[X] → N[N[X]] such that ε[x] = [[x]], for x ∈ X. This cotriple
produces a simplicial object G• in the category of endofunctors on CMnd↓M , which
is defined by Gn = Gn+1, with face and degeneracy operators di = Gn−iδGi : Gn →
Gn−1 and si = Gn−iεGi :Gn → Gn+1, 0 ≤ i ≤ n. Then, for any abelian group
object A in CMnd ↓M , one obtains a cosimplicial abelian group Hom(G•(1M ),A),
whose associated cochain complex obtained by taking alternating sums of the coface

operators
(
∂n =

n+1∑
i=0

(−1)id∗i
)

0→ Hom(G(1M ),A)
∂0→ Hom(G2(1M ),A)

∂1→ Hom(G3(1M ),A)
∂2→ · · ·
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provides the cotriple cohomology groups of the commutative monoid M with coeffi-
cients in A by

Hn
G(M,A) = Hn(Hom(G•(1M ),A)).

In [40], Grillet observes that, for any given commutative monoid M , the category
of abelian group objects in CMnd ↓M , is equivalent to the category of HM -modules,
that is, abelian group valued functors

A : HM → Ab,

where HM is the category with object set M and arrow set M ×M , where (a, b) :
a → ab. Composition is given by (ab, c)(a, b) = (a, bc), and the identity of an object
a is (a, e), with e the unit in M . An HM -module, thus consists of abelian groups
A(a), a ∈ M , and homomorphisms b∗ : A(a) → A(ab), a, b ∈ M , such that, for any
a, b, c ∈ M , b∗c∗ = (bc)∗ : A(a)→ A(abc) and, for any a ∈ M , e∗ = idA(a). We refers
to [43, Chap. XXII, 2] for details but, briefly, let us say that the abelian group object
defined by an HM -module A can be written as

E(M,A)→M,

where the crossed product commutative monoid E(M,A) is the set
⋃
a∈M A(a)× {a}

of all ordered pairs (ua, a) with a ∈M and ua ∈ A(a), with multiplication given by

(ua, a)(ub, b) = (a∗ub + b∗ua, ab).

The monoid homomorphism E(M,A)→M is the obvious projection (ua, a) 7→ a, and
the internal group operation

E(M,A)×M E(M,A)
+−→ E(M,A)

is defined by (ua, a) + (va, a) = (ua + va, a).
Furthermore, in [40, 41, 42], Grillet shows an algebraically more lucid description

of the low dimensional cohomology groups

Hn
G(M,A) := Hn−1

G (M,E(M,A)→M)

by means of a specific manageable complex (see also the recent work [52])

CG(M,A) : 0→ C1
G(M,A)

∂−→ C2
G(M,A)

∂−→ C3
G(M,A)

∂−→ C4
G(M,A), (3.1)

called the complex of (normalized on e ∈ M) symmetric cochains on M with values
in A, which is defined as follows (below,

⋃
a∈M A(a) is the disjoint union set of the

groups A(a)):

• A symmetric 1-cochain is a function f : M →
⋃
a∈M A(a), satisfying f(a) ∈ A(a)

and f(e) = 0.
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• A symmetric 2-cochain is a function g : M2 →
⋃
a∈M A(a), verifying that

g(a, b) ∈ A(ab),

g(a, b) = g(b, a),

and g(a, e) = 0.

• A symmetric 3-cochain is a function h : M3 →
⋃
a∈M A(a), verifying that

h(a, b, c) ∈ A(abc),

h(c, b, a) + h(a, b, c) = 0, h(a, b, c) + h(b, c, a) + h(c, a, b) = 0 (3.2)

and h(a, b, e) = 0.

• A symmetric 4-cochain is a function t : M4 →
⋃
a∈M A(a), verifying that

t(a, b, c, d) ∈ A(abcd),

t(a, b, b, a) = 0, t(d, c, b, a) + t(a, b, c, d) = 0,
t(a, b, c, d)− t(b, c, d, a) + t(c, d, a, b)− t(d, a, b, c) = 0,
t(a, b, c, d)− t(b, a, c, d) + t(b, c, a, d)− t(b, c, d, a) = 0,

and t(a, b, c, e) = 0.
These symmetric n-cochains constitute, under pointwise addition, the abelian

groups CnG(M,A) in (3.1), 1 ≤ n ≤ 4. The coboundary homomorphisms are defined
by

• (∂1f)(a, b) = −a∗f(b) + f(ab)− b∗f(a),

• (∂2g)(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b),

• (∂3h)(a, b, c, d) =

− a∗h(b, c, d)+h(ab, c, d)−h(a, bc, d)+h(a, b, cd)−d∗h(a, b, c). (3.3)

The following lemma will be useful here and in the following chapters.

Lemma 3.1 Let A be an HM -module, where M is any commutative monoid, and let
h : M3 →

⋃
a∈M A(a) be a function with h(a, b, c) ∈ A(abc). Then h satisfies the

symmetry conditions

h(a, b, c) + h(c, b, a) = 0, h(a, b, c) + h(b, c, a) + h(c, a, b) = 0, (3.4)

if and only if it satisfies either (3.5) or (3.6) below.

h(a, b, c)− h(b, a, c) + h(b, c, a) = 0 (3.5)

h(a, b, c)− h(a, c, b) + h(c, a, b) = 0 (3.6)
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Proof: The implications (3.4) ⇒ (3.5) and (3.4) ⇒ (3.6) are easily seen. To see that
(3.5)⇒ (3.4), observe that, making the permutation (a, b, c) 7→ (c, b, a), equation (3.5)
is written as h(b, c, a) = h(c, b, a) + h(b, a, c). If we carry this to (3.5), we obtain

h(a, b, c)− h(b, a, c) + h(c, b, a) + h(b, a, c) = h(a, b, c) + h(c, b, a) = 0,

that is, the first condition in (3.4) holds. But then, we get also the second one simply
by replacing the term h(b, a, c) with −h(c, a, b) in (3.5). The proof that (3.6)⇒ (3.4)
is parallel. �

The groups

ZnG(M,A) = Ker
(
∂n : CnG(M,A)→ Cn+1

G (M,A)
)
,

Bn
G(M,A) = Im

(
∂n−1 : Cn−1

G (M,A)→ CnG(M,A)
)
,

are respectively called the groups of symmetric n-cocycles and symmetric n-coboun-
daries on M with values in A. By [42, Theorems 1.3 and 2.12], there are natural
isomorphisms

Hn
G(M,A) ∼= ZnG(M,A)/Bn

G(M,A) (3.7)

for n = 1, 2, 3.

The elements of H1
G(M,A) = Z1

G(M,A) are derivations of M in A, that is, func-
tions f : M →

⋃
a∈M A(a) with f(a) ∈ A(a), such that f(ab) = a∗f(b) + b∗f(a).

The elements of H2
G(M,A) have a natural interpretation in terms of commutative

group coextension of the commutative monoid M by the HM -module A. This is the
classification result by Grillet in [43, Chapter V.4], whose proof is a good illustration of
the one we give of our result in this chapter. We shall not present Grillet’s proof here
but, briefly, let us recall that in the correspondence between symmetric 2-cohomology
classes and isomorphism classes of commutative group coextensions, each symmetric
2-cocycle g ∈ Z2

G(M,A) is carried to the coextension

E(M,A, g)→M,

where the twisted crossed product commutative monoid is the set
⋃
a∈M A(a)×{a} of

all pairs (ua, a) with a ∈M and ua ∈ A(a), with multiplication defined by

(ua, a)(ub, b) = (a∗ub + b∗ua + g(a, b), ab).

This multiplication is unitary ((0, e) is the unit) since g is normalized, that is, g(a, e) =
0 = g(e, a); and it is associative and commutative due to g being a symmetric 2-
cocycle, that is, because of the equalities a∗g(b, c) + g(a, bc) = g(ab, c) + c∗g(a, b) and
g(a, b) = g(b, a). The homomorphism E(M,A, g)→ M is the projection (ua, a) 7→ a,
and, for each a ∈M , the simply transitive group action of the group A(a) on the fiber
set over a is given by

ua · (va, a) = (ua + va, a).
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3.1.2 Strictly symmetric monoidal abelian groupoids

Recall from Section 1.3 that a groupoidM is termed abelian if its isotropy (or vertex)
groups AutM(x), x ∈ ObM, are all abelian. As there, we use additive notation for
the composition in these abelian groupoids.

Example 3.1 Any abelian group A can be regarded as an abelian groupoidM with
only one object, say a, and AutM(a) = A. For many purposes it is convenient to
distinguish A from the one-object groupoid M; the notation (K(A, 1), a) for M is
not bad (its nerve or classifying space [39, I, Example 1.4] is precisely the pointed
Eilenberg-Mac Lane minimal complex K(A, 1) with base-vertex a), and we shall use
it below.

A groupoid in which there is no morphisms between different objects is called
totally disconnected. It is easily seen that any totally disconnected abelian groupoid
is a disjoint union of abelian groups, or, more precisely, of the form⋃

a∈M
(K(A(a), 1), a),

for some family of abelian groups (A(a))a∈M .

A strictly symmetric (or strictly commutative) monoidal abelian groupoid

M = (M,⊗, I,a, l, r, c)

is a monoidal abelian groupoid (M,⊗, I,a, l, r) (see 1.1 for details) endowed with
natural isomorphisms cx,y : x⊗ y → y⊗ x (called the symmetry constraint) such that
the following three conditions are satisfied.

• (0y⊗cx,z) + ay,x,z + (cx,y⊗0z) = ay,z,x + cx,y⊗z + ax,y,z, (3.8)

(y ⊗ x)⊗ z a // y ⊗ (x⊗ z)
0⊗c

))SSSSSS

(x⊗ y)⊗ z

c⊗0 55kkkkkk

a
))SSSSSS

y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) c // (y ⊗ z)⊗ x

a 55kkkkkk

• cy,x + cx,y = 0x⊗y, (3.9)

x⊗ y c //

BBBBBB

BBBBBB
y ⊗ x

c}}||||||

x⊗ y

• cx,x = 0x⊗x : x⊗ x→ x⊗ x. (3.10)

These axioms guarantee the coherence of the constraints in the following sense (see
Mac Lane [56, Theorem 5.1] and Fröhlich and Wall [36, Theorem 5.2]).
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Fact 3.1 (Coherence Theorem) Let M be a strictly symmetric monoidal abelian
groupoid. Then, commutativity holds in every diagram in M with vertices iterated
instances of the functors x 7→ x, the identity, ∗ 7→ I, which selects the unit object,
(x, y) 7→ x⊗ y, (x, y) 7→ y ⊗ x, and x 7→ x⊗ x, the diagonal functor, and whose edges
are expanded instances of a, −a, c, l, −l, r, and −r.

Below there is a convenient way to express this coherence in practice (see Deligne
[25, 1.4.1] and Fröhlich and Wall [36, Theorem (5.3)]). Recall that, for any set M ,
the free commutative monoid N[M ] consists of commutative words in M , which are
unordered sequences [a1, . . . , an] of elements of M ; unordered means that for any
permutation σ, [aσ1, . . . , aσn] = [a1, . . . , an]. Multiplication in N[M ] is given by con-
catenation:

[a1, . . . , an][b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm],

and the unit is e = [ ], the empty word.

Lemma 3.2 Let (xa)a∈M be any family of objects of a strictly symmetric monoidal
abelian groupoid M. If N[M ] is the free commutative monoid generated by the index
set M , then, there exists a map F : N[M ] → ObM with F [a] = xa, a ∈ M , and
isomorphisms ϕf,g : Ff ⊗ Fg ∼= F (fg), f, g ∈ N[M ], and ϕ0 : I → Fe, satisfying the
equations below.
• ϕfg,h + (ϕf,g⊗0Fh) = ϕf,gh + (0Ff⊗ϕg,h) + aFf,Fg,Fh,

(Ff ⊗ Fg)⊗ Fh ϕ⊗0 //

a
��

F (fg)⊗ Fh ϕ // F (fgh)

Ff ⊗ (Fg ⊗ Fh)
0⊗ϕ // Ff ⊗ F (gh)

ϕ // F (fgh)

• ϕg,f + cFf,Fg = ϕf,g.

Ff ⊗ Fg c //

ϕ
��

Fg ⊗ Ff
ϕ

��
F (fg) F (gf)

• ϕf,e + (0Ff ⊗ ϕ0) = rFf , ϕe,f + (ϕ0 ⊗ 0Ff ) = lFf

Ff ⊗ I
0⊗ϕ0 //

r
��

Ff ⊗ Fe
ϕ

��
Ff Ff

I⊗ Ff ϕ0⊗0 //

l
��

Fe⊗ Ff
ϕ

��
Ff Ff

Proof: Let us choose a total order for the index set M , so that any f ∈ N[M ] can be
uniquely expressed as a sequence in increasing order

f = [a1, . . . , an], a1 ≤ · · · ≤ an.
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Then, we define F : N[M ]→ ObM by putting Fe = I, F [a] = xa, and, recursively,

F [a1, . . . , an] = F [a1, . . . , an−1]⊗ xan

for n > 1. We have the identity isomorphism ϕ0 = 0I : I → Fe and, for any f, g ∈
N[M ], it is clear that there is an isomorphism

ϕf,g : Ff ⊗ Fg ∼= F (fg)

coming from instances of a, −a, c, l and r. It follows from the Coherence Theorem
above that these isomorphisms ϕf,g so obtained satisfy all the requirements in the
lemma. �

If M, M′ are strictly symmetric monoidal abelian groupoids, then a symmetric
monoidal functor F = (F,ϕ, ϕ0) :M→M′ is a monoidal functor (1.4) verifying

• ϕy,x + c′Fx,Fy = Fcx,y + ϕx,y. (3.11)

Fx⊗ Fy c′ //

ϕ
��

Fy ⊗ Fx
ϕ

��
F (x⊗ y)

Fc // F (y ⊗ x)

Suppose F ′ :M→M′ is another symmetric monoidal functor. Then, a symmetric
isomorphism θ : F ⇒ F ′ is a monoidal isomorphism (1.7).

With compositions given in a natural way, strictly symmetric monoidal abelian
groupoids, symmetric monoidal functors, and symmetric isomorphisms form a 2-
category. A symmetric monoidal functor F :M→M′ is called a symmetric monoidal
equivalence if it is an equivalence in this 2-category, that is, when there exist a sym-
metric monoidal functor F ′ :M′ →M and symmetric isomorphisms θ : F ′F ∼= idM
and θ′ : FF ′ ∼= idM′ .

Our goal is to show a classification for strictly symmetric monoidal abelian grou-
poids, where two of them that are connected by a symmetric monoidal equivalence
are considered the same. To do that, we will use the fact below by Saavedra [66,
I, 4.4.5], where it is shown how to transport the symmetric monoidal structure on
an abelian groupoid along an equivalence on its underlying groupoid. Recall that a
functor between (not necessarily abelian) groupoids F : M → M′ is an equivalence
(of categories) if and only if the induced map on the sets of iso-classes of objects

ObM/∼= → ObM′/∼=, [x] 7→ [Fx], (3.12)

is a bijection, and the induced homomorphisms on the automorphism groups

AutM(x)→ AutM′(Fx), u 7→ Fu (3.13)

are all isomorphisms [46, Chapter 6, Corollary 2].
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Fact 3.2 (Transport of Structure) Let F : M → M′ be an equivalence between
abelian groupoids, so that there is a functor F ′ : M′ →M with natural equivalences
θ : idM ∼= F ′F and θ′ : FF ′ ∼= idM′ satisfying

θ′F + Fθ = idF , F
′θ′ + θF ′ = idF ′ .

(i) Any strictly symmetric monoidal structure on M can be transported to one on
M′ such that the functors F and F ′ underlie symmetric monoidal functors, and the
natural equivalences θ and θ′ turn to be symmetric isomorphisms.

(ii) If both M and M′ have a strictly symmetric monoidal structure, then any
symmetric monoidal structure on F can be transported to one on F ′ such that θ and
θ′ become symmetric isomorphisms. Hence, a symmetric monoidal functor is a sym-
metric monoidal equivalence if and only if the underlying functor is an equivalence.

Concerning Fact 3.2(i), let us point out that for any strictly symmetric monoidal
structure (M,⊗, I,a, l, r, c) on the abelian groupoid M, the structure transported
onto the abelian groupoidM′, that is (M′,⊗, I′,a′, l′, r′, c′), by means of (F, F ′, θ, θ′)
is such that the monoidal product ⊗ is the dotted functor in the commutative square

M′ ×M′
⊗ //

F ′×F ′
��

M′

M×M ⊗ //M,

F

OO

and the unit object is F I. The functors F and F ′ are endowed with the isomorphisms

ϕx,y = −F (θx ⊗ θy) : Fx⊗ Fy → F (x⊗ y), ϕ0 = 0FI : F I→ F I, (3.14)

ϕ′x′,y′ = θF ′x′⊗F ′y′ : F ′x′ ⊗ F ′y′ → F ′(x′ ⊗ y′), ϕ′0 = θI : I→ F ′I′,

and then the constraints a′, l′, r′ and the symmetry c′ are given by those isomorphisms
uniquely determined by the equations (1.5), (1.6), and (3.11), respectively.

Concerning Fact 3.2(ii), let us recall that if bothM andM′ are strictly symmetric
monoidal abelian groupoids, then for any symmetric monoidal structure (F,ϕ, ϕ0) on
F , the structure (F ′, ϕ′, ϕ′0) transported on the functor F ′ is such that the isomor-
phisms

ϕ′x′,y′ : F ′x′ ⊗ F ′y′ → F ′(x′ ⊗ y′), ϕ′0 : I→ F ′I′,

are the uniquely determined by the dotted arrows making commutative the diagrams
below.

FF ′x′ ⊗ FF ′y′

ϕ
��

θ′
x′⊗θ

′
y′ // x′ ⊗ y′

−θ′
x′⊗y′��

F (F ′x′ ⊗ F ′y′) Fϕ′ // FF ′(x′ ⊗ y′)

F I

Fϕ′0
��

I′
ϕ0 55lllllll

−θ′
I′

))RRRRR

FF ′I′
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3.2 The classification theorem

The framework of our discussion below comes suggested by the known classification
theorems for strictly commutative Picard categories given in [25], [36] and [68], for
categorical groups and Picard categories in [69], for braided categorical groups in
[50], for graded categorical groups, braided graded categorical groups, graded Picard
categories and strictly commutative graded Picard categories in [20, 22, 23], for braided
fibred categorical groups, fibred Picard categories and strictly commutative fibred
Picard categories in [11], and for monoidal groupoids in chapter 1.

Let M be a commutative monoid and let A be an HM -module. Each symmetric
3-cocycle h ∈ Z3

G(M,A) gives rise to a strictly symmetric monoidal abelian groupoid

Σ(M,A, h) (3.15)

which should be thought of a sort of 2-dimensional twisted crossed product of M by A,
and it is built as follows: Its underlying groupoid is the totally disconnected groupoid⋃

a∈M (K(A(a), 1), a), (3.16)

where, recall from Example 3.1, each (K(A(a), 1), a) denotes the groupoid having a
as its unique object and A(a) as the automorphism group of a. Thus, an object of
Σ(M,A, h) is an element a ∈ M ; if a 6= b are different elements of the monoid M ,
then there is no morphisms in Σ(M,A, h) between them, whereas its isotropy group
at any a ∈M is A(a).

The tensor functor

⊗ : Σ(M,A, h)× Σ(M,A, h)→ Σ(M,A, h)

is given on objects by multiplication in M , so a ⊗ b = ab, and on morphisms by the
group homomorphisms

⊗ : A(a)×A(b)→ A(ab), ua ⊗ ub = b∗ua + a∗ub. (3.17)

The unit object is I = e, the unit element of the monoid M , and the structure
constraints and the symmetry isomorphisms are

aa,b,c = h(a, b, c) : (ab)c→ a(bc),

ca,b = 0ab : ab→ ba,

ra = 0a : ae→ a,

la = 0a : ea→ a,

which are easily seen to be natural since A is an abelian group valued functor. The
coherence condition (1.1) holds thanks to the cocycle condition ∂3h = 0 in (3.3), while
(3.8) easily follows from the cochain equations in (3.2). The normalization condition
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h(a, e, b) = 0, easily deduced from being h(a, b, e) = 0, implies the coherence condition
(1.2), and those in (3.9) and (3.10) are obviously verified.

In next Theorem 3.1, we observe how any strictly symmetric monoidal abelian
groupoid is symmetric monoidal equivalent to such a 2-dimensional crossed product.
Previously, we combine the transport process in Fact 3.2 with the generalization of
Brandt’s Theorem [7], which asserts that every groupoid is equivalent as a category to
a totally disconnected groupoid [46, Chapter 6, Theorem 2], to obtain the following.

Lemma 3.3 Any strictly symmetric monoidal abelian groupoid is symmetric monoi-
dal equivalent to one which is totally disconnected and whose symmetry and unit con-
straints are all identities.

Proof: Let M = (M,⊗, I,a, l, r, c) be any given strictly symmetric monoidal abelian
groupoid.

Let M = ObM/∼= be the set of isomorphism classes [x] of objects of M, and let
us choose, for each a ∈M , a representative object xa ∈ a, with x[I] = I.

In a first step, let us assume that all the symmetry constraints are identities, that
is, x⊗y = y⊗x and cx,y = 0x⊗y, for any objects x, y ofM, and also that I⊗I = I, and
lI = rI = 0I, the identity of the unit object. Then, let us form the totally disconnected
abelian groupoid

M′ =
⋃
a∈M (K(A(a), 1), a),

whose set of objects is M , and whose isotropy group at any object a ∈ M is A(a) =
AutM(xa).

This groupoidM′ is equivalent to the underlying groupoidM. To give a particular
equivalence F : M → M′, let us choose, for each a ∈ M and each x ∈ a, an
isomorphism θx : x ∼= xa in M. In particular, for every a ∈ M , we take θI⊗xa = lxa
and θxa⊗I = rxa . Note that this selection implies that θI = θI⊗I = rI = lI = 0I. Then,
let F :M→M′ be the functor which acts on objects by Fx = [x], and on morphisms
u : x→ y by Fu = θy +u− θx. We have also the more obvious functor F ′ :M′ →M,
which is defined on objects by F ′a = xa, and on morphisms u : a→ a by F ′u = u. We
have the natural isomorphisms θ : idM ∼= F ′F , and θ′ : FF ′ ∼= idM′ , where θ′a = −θxa ,
which clearly satisfy the equalities θ′F + Fθ = idF and F ′θ′ + θF ′ = idF ′ .

Therefore, according to Fact 3.2, we can transport the given symmetric monoidal
structure of M to a corresponding one on M′ by means of (F, F ′, θ, θ′), so that
we get a totally disconnected strictly symmetric monoidal abelian groupoid M′ =
(M′,⊗, I′,a′, r′, c′), and a symmetric monoidal equivalence F = (F,ϕ, ϕ0) :M→M′.
Now, a quick analysis of the structure onM′ points out that its unit object is F I = [I]
and that, for any object a ∈ ObM′ = M ,

r′a
(1.6)
= F (rxa) + ϕxa,I + (0a ⊗ ϕ0)

(3.14)
= F (rxa) + ϕxa,I + (0a ⊗ 0[I]) = F (rxa) + ϕxa,I

(3.14)
= θxa + rxa − θxa⊗I + θxa⊗I − (θxa ⊗ 0I)− θxa⊗I

= θxa + rxa − (θxa ⊗ 0I)− θxa⊗I
(naturality of r)

= rxa − θxa⊗I = 0xa = 0a,
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similarly, l′a = 0a, while, for any a, b ∈M ,

c′a,b
(3.11)

= −ϕxb,xa + F (cxa,xb) + ϕxa,xb
(c=0)

= −ϕxb,xa + ϕxa,xb
(3.14)

= θxb⊗xa − θxb ⊗ θxa − θxb⊗xa + θxa⊗xb + θxa ⊗ θxb − θxa⊗xb
(since xa ⊗ xb = xb ⊗ xa)
= θxb⊗xa − θxb ⊗ θxa + θxa ⊗ θxb − θxa⊗xb

(since θxa ⊗ θxb = θxb ⊗ θxa , by the naturality of cxa,xb = 0xa⊗xb)

= θxb⊗xa − θxa⊗xb = 0xa⊗xb = 0ab.

Thus,M is symmetric monoidal equivalent toM′, which is a totally disconnected
strictly symmetric abelian groupoid whose unit and symmetry constraints are all iden-
tities.

Hence, it suffices to prove now that the given strictly symmetric monoidal abelian
groupoid M is symmetric monoidal equivalent to another one whose symmetry con-
straints are all identities and whose unit constraint at the unit object is also the
identity. Even more, following Deligne [25], we can prove that there is a symmetric
monoidal abelian groupoid N = (N , ⊗̄) whose constraints are all trivial (i.e., a = 0,
c = 0, l = 0, and r = 0) with a symmetric monoidal equivalence N 'M:

Let N[M ] be the free commutative monoid generated by M , which we shall re-
gard as a strictly symmetric monoidal discrete groupoid (i.e., with only identities as
morphisms). It follows from Lemma 3.2 that there is a symmetric monoidal functor

F = (F,ϕ, ϕ0) : N[M ]→M

such that F [a] = xa, for any a ∈ M . Then, we define N to be the abelian groupoid
whose set of objects is N[M ], and whose hom-sets are defined by

HomN (f, g) = HomM(Ff, Fg).

Composition inN is given by that inM, so that we have a full, faithful, and essentially
surjective functor (i.e., an equivalence)

F : N →M, (f
u→ g) 7→ (Ff

u→ Fg).

The monoidal functor ⊗̄ : N×N → N is defined by multiplication in N[M ] on objects,
and on morphisms by

(f
u→ g)⊗ (f ′

u′→ g′) = (ff ′
u⊗̄u′−→ gg′),

where u⊗̄u′ is the dotted morphism in the commutative square in M

Ff ⊗ Ff ′ u⊗u
′

//

ϕf,f ′

��

Fg ⊗ Fg′

ϕg,g′

��
F (ff ′)

u⊗̄u′ // F (gg′).

(3.18)
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So defined N = (N , ⊗̄) is a strictly symmetric monoidal abelian groupoid with
all the constraints being identities. To prove this claim, the following equalities on
morphisms in N should be verified

u⊗̄u′ = u′⊗̄u, 0e⊗̄u = u, u⊗̄0e = u, (u⊗̄u′)⊗̄u′′ = u⊗̄(u′⊗̄u′′). (3.19)

But these follow from the naturality of the structure constraints ofM, c, l, r, and a,
respectively. For example, given any u ∈ HomN (f, g), we have the diagram

Ff ⊗ I

(A)

rFf

&&
(C)

0Ff⊗ϕ0 //

u⊗0I
��

Ff ⊗ Fe
(B)

ϕf,e //

u⊗0Fe
��

Ff

u

��
Fg ⊗ I

0Fg⊗ϕ0 //

(C)

rFg

88Fg ⊗ Fe
ϕg,e // Fg

where the outside region commutes by naturality of r, those labelled with (C) com-
mute because (F,ϕ, ϕ0) : N[M ]→M is a symmetric monoidal functor, and the square
(A) commutes due to ⊗ : M×M →M being a functor. It follows that the square
(B) is also commutative and then that u⊗̄0e = u. The other three equations in (3.19)
are proved similarly, and we leave them to the reader.

Owing to the commutativity of the squares (3.18), the isomorphisms ϕf,f ′ are
natural on morphisms of N and, therefore, F = (F,ϕ, ϕ0) : N → M is actually a
symmetric monoidal functor, whence, by Fact 3.2 (ii), a symmetric monoidal equiva-
lence. �

We are now ready to prove the main result in this chapter, namely, the classification
of strictly symmetric monoidal abelian groupoids.

Theorem 3.1 (i) For any strictly symmetric monoidal abelian groupoid M, there is
a commutative monoid M , an HM -module A, a symmetric 3-cocycle h ∈ Z3

G(M,A),
and a symmetric monoidal equivalence

Σ(M,A, h) 'M.

(ii) For any two commutative 3-cocycles h ∈ Z3
G(M,A) and h′ ∈ Z3

G(M ′,A′), there
is a symmetric monoidal equivalence

Σ(M,A, h) ' Σ(M ′,A′, h′)

if and only if there exist an isomorphism of monoids i : M ∼= M ′ and a natural
isomorphism ψ : A ∼= i∗A′, such that the equality of cohomology classes below holds.

[h] = ψ−1
∗ i∗[h′] ∈ H3

G(M,A)
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Proof: (i) By Lemma 3.3, we can suppose that M is totally disconnected and that
all its symmetry and unit constraints are identities. In assuming that hypothesis, let
us write the underlying groupoid as M =

⋃
a∈M (K(A(a), 1), a), where M = ObM

and, for each a ∈ M , A(a) = AutM(a). Then, a system of data (M,A, h), such that
Σ(M,A, h) =M as symmetric monoidal abelian groupoids, is defined as follows:

• The monoid M . The function on objects of the tensor functor ⊗ :M×M→M
determines a multiplication on M , simply by putting ab = a⊗ b, for any a, b ∈M . If
we write e ∈M for the the unit object ofM, then this multiplication on M is unitary,
since the unit is strict. Furthermore, it is associative and commutative since, being
M totally disconnected, the existence of the associativity and symmetry constraints
(ab)c → a(bc) and ab → ba forces the equalities (ab)c = a(bc) and ab = ba. Thus, M
becomes a commutative monoid.

• The HM -module A. The group homomorphisms ⊗ : A(a)×A(b)→ A(ab) have
an associative, commutative, and unitary behaviour, in the sense that the equalities

(ua ⊗ ub)⊗ uc = ua ⊗ (ub ⊗ uc), ua ⊗ ub = ub ⊗ ua, 0e ⊗ ua = ua, (3.20)

hold. These follow from the abelianess of the groups of automorphisms in M, since
the diagrams below commute due to the naturality of the structure constraints.

(ab)c

(ua⊗ub)⊗uc
��

aa,b,c // a(bc)

ua⊗(ub⊗uc)
��

(ab)c
aa,b,c // a(bc)

ab

ua⊗ub
��

0ab // ba

ub⊗ua
��

ab
0ab // ba

ae = a

ua⊗0e
��

0a // a

ua

��
ae = a

0a // a

Then, if write b∗ : A(a)→ A(ab) for the homomorphism such that

b∗ua := 0b ⊗ ua = ua ⊗ 0b,

the equalities

(bc)∗(ua) = 0bc ⊗ ua = (0b ⊗ 0c)⊗ ua
(3.20)

= 0b ⊗ (0c ⊗ ua) = b∗(c∗ua),

e∗ua = 0e ⊗ ua
(3.20)

= ua,
(3.21)

show that the assignments a 7→ A(a), (a, b) 7→ b∗ : A(a) → A(ab), define an HM -
module. Observe that this HM -module determines the monoidal product ⊗ of M,
since

ua ⊗ ub = (ua + 0a)⊗ (0b + ub) = (ua ⊗ 0b) + (0a ⊗ ub)
(3.20)

= (0b ⊗ ua) + (0a ⊗ ub)
= b∗ua + a∗ub.

• The symmetric 3-cocycle h ∈ Z3
G(M,A). The associativity constraints ofM can

be written in the form aa,b,c = h(a, b, c), for some list
(
h(a, b, c) ∈ A(abc)

)
a,b,c∈M . Since

the symmetry constraints are all identities, for any (a, b, c) ∈M3, equation (3.8) gives

h(a, b, c)− h(b, a, c) + h(b, c, a) = 0, (3.22)
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which is (3.4), and thus, by Lemma 3.1 we get symmetric cochain conditions in (3.2).
Now, from (1.3) it follows that h(a, b, e) = 0. Hence h ∈ C3

G(M,A) is a symmetric
3-cochain. Finally, the coherence condition in (1.1) gives the equations

a∗h(b, c, d) + h(a, bc, d) + d∗h(a, b, c) = h(a, b, cd) + h(ab, c, d),

which means that ∂3h = 0 in (3.3), so that h ∈ Z3
G(M,A) is a symmetric 3-cocycle.

Since an easy comparison shows that M = Σ(M,A, h), the proof of this part is
complete.

(ii) We first assume that there exist an isomorphism of monoids i : M ∼= M ′ and
a natural isomorphism ψ : A ∼= i∗A′, such that ψ∗[h] = i∗[h′] ∈ H3

G(M, i∗A′). This
means that there is a symmetric 2-cochain g ∈ C2

G(M, i∗A′) such that the equalities
below hold.

ψabch(a, b, c) =h′(ia, ib, ic) + (ia)∗g(b, c)− g(ab, c) + g(a, bc)− (ic)∗g(a, b) (3.23)

Then, we have a symmetric monoidal isomorphism

Σ(i, ψ, g) = (F,ϕ, ϕ0) : Σ(M,A, h)→ Σ(M ′,A′, h′), (3.24)

whose underlying functor acts by

F (a
u→ a) = (ia

ψaua−→ ia),

and whose structure isomorphisms are given by

ϕa,b = g(a, b) : (ia) (ib)→ i(ab),

ϕ0 = 0e′ : e′ → ie = e′.

In effect, so defined, it is easy to see that F is an isomorphism between the underlying
groupoids. Verifying the naturality of the isomorphisms ϕa,b, that is, the commuta-
tivity of the squares

(ia)(ib)
ϕa,b //

(ia)∗ψb(ub)+(ib)∗ψa(ua)

��

i(ab)

ψab(a∗ub+b∗ua)

��
(ia)(ib)

ϕa,b // i(ab),

(3.25)

for ua ∈ A(a), ub ∈ A(b), is equivalent (since the groups A′(i(ab)) are abelian) to
verify the equalities

ψab(a∗ub + b∗ua) = (ia)∗ψb(ub) + (ib)∗ψa(ua), (3.26)

which hold since the naturality of ψ : A ∼= i∗A′ just says that

ψab(a∗ub) = (ia)∗ψb(ub). (3.27)
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The coherence condition (1.5) is verified as follows

ϕa,b⊗c + (0Fa⊗ϕb,c) + a′Fa,Fb,Fc = ϕa,bc + (ia)∗ϕb,c + h′(ia, ib, ic) (3.28)

= g(a, bc) + (ia)∗g(b, c) + h′(ia, ib, ic)
(3.23)

= ψabch(a, b, c) + g(ab, c) + (ic)∗g(a, b)

= ψabch(a, b, c) + ϕab,c + i(c)∗ϕa,b = F (aa,b,c) + ϕa⊗b,c + (ϕa,b⊗0Fc),

whilst the conditions in (1.6) and (3.11) trivially follow from the symmetric cochain
conditions g(a, e) = 0ia and g(a, b) = g(b, a), respectively.

Conversely, suppose that

F = (F,ϕ, ϕ0) : Σ(M,A, h)→ Σ(M ′,A′, h′)

is any symmetric monoidal equivalence. By a similar result than Lemma 1.1 (see [23,
Lemma 3.1]), there is no loss of generality in assuming that F is strictly unitary in
the sense that ϕ0 = 0e′ : e′ → e′ = Fe.

As the underlying functor establishes an equivalence between the underlying grou-
poids,

F :
⋃
a∈M (K(A(a), 1), a) '

⋃
a′∈M ′(K(A′(a′), 1), a′),

and these are totally disconnected, it is necessarily an isomorphism. Let us write
i : M ∼= M ′ for the bijection describing the action of F on objects; that is, such
that ia = Fa, for each a ∈ M . Then, i is actually an isomorphism of monoids, since
the existence of the structure isomorphisms ϕa,b : (ia)(ib)→ i(ab) forces the equality
(ia)(ib) = i(ab).

Let us write ψa : A(a) ∼= A′(ia) for the isomorphism giving the action of F on
automorphisms ua : a → a, that is, such that ψaua = Fua, for each ua ∈ A(a), and
a ∈M . The naturality of the automorphisms ϕa,b tell us that the equalities (3.26) hold
(see diagram (3.25)). These, for the case when ua = 0a, give the equalities in (3.27),
which amounts to saying that ψ : A ∼= i∗A′ is a homomorphism of HM -modules.

Writing now g(a, b) = ϕa,b, for each a, b ∈ M , the equations g(a, e) = 0ia and
g(a, b) = g(b, a) hold just due to the coherence equations (1.6) and (3.11), and thus
we have a symmetric 2-cochain g =

(
g(a, b) ∈ A′(i(ab))

)
a,b∈M , which satisfies the

equations (3.23) owing to the coherence equations (1.5), as we can see just by retracting
our steps in (3.28). This means that ψ∗(h) = i∗(h′)+∂2g and, therefore, we have that
ψ∗[h] = i∗[h′] ∈ H3

G(M, i∗A′), whence [h] = ψ−1
∗ i∗[h′] ∈ H3

G(M,A), as required. �

Remark 3.1 Let
Symmetric 3-cocycles

denote the category of symmetric 3-cocycles of commutative monoids. That is, the
category whose objects are triplets (M,A, h) with M a commutative monoid, A an
HM -module, and h ∈ Z3

G(M,A) a symmetric 3-cocycle, and whose arrows

(i, ψ, [g]) : (M,A, h)→ (M ′,A′, h′)
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are triples consisting of a monoid homomorphism i : M → M ′, a natural trans-
formation ψ : A → i∗A′, and the equivalence class [g] of a symmetric 2-cochain
g ∈ C2

G(M, i∗A′) such that ψ∗(h) = i∗(h′) + ∂2g (i.e., equation (3.23) holds). Two
such cochains g, g′ ∈ C2

G(M, i∗A′) are equivalent if there is a symmetric 1-cochain
f ∈ C1

G(M, i∗A′) such that g = g′+∂1f . Composition in this category of 3-cocycles is
defined in a natural way: The composite of (i, ψ, [g]) with (i′, ψ′, [g′]) : (M ′,A′, h′)→
(M ′′,A′′, h′′) is the arrow

(i′i, ψ′i ψ, [(ψ′i)∗(g) + i∗(g′)]) : (M,A, h)→ (M ′′,A′′, h′′),

where i′i : M → M ′′ is the composite homomorphism of i′ and i, ψ′i ψ : A →
(i′i)∗A′′ is the natural transformation such that (ψ′i ψ)a = ψ′iaψa, the composite
homomorphism of ψ′ia : A′(ia) → A′′(i′ia) with ψa : A(a) → A′(ia), for each a ∈ M ,
and (ψ′i)∗(g) + i∗(g′) ∈ C2

G(M, (i′i)∗A′′) is the symmetric 2-cochain given by

((ψ′i)∗(g) + i∗(g′))(a, b) = ψ′i(ab)g(a, b) + g′(ia, ib).

The identity arrow of any object (M,A, h) is the triple (1M , 1A, [0]).
With a slight adaptation of the arguments in the proof of part (ii), Theorem 3.1

can be formulated as an equivalence of categories

Symmetric 3-cocycles ' Strictly symmetric monoidal abelian groupoids

between the category of symmetric 3-cocycles and the category of strictly symmet-
ric monoidal abelian groupoids, M, with iso-classes, [F ] : M → M′, of symmetric
monoidal functors, F :M→M′, as arrows. The equivalence of categories is given by
the constructions (3.15) on objects and (3.24) on morphisms, that is,(

(M,A, h)
(i,ψ,[g]) // (M ′,A′, h′)

)
7→
(
Σ(M,A, h)

[Σ(i,ψ,g)]// Σ(M ′,A′, h′)
)
.

A strictly commutative Picard category [25, Definition 1.4.2] is a strictly symmetric
monoidal abelian groupoid P = (P,⊗, I,a, l, r, c) in which, for any object x, there is
an object x∗ with an arrow x ⊗ x∗ → I. Actually, the hypothesis of being abelian is
superfluous here since a monoidal groupoid in which every object has a quasi-inverse
is always abelian Proposition 1.3 (ii). Next, we obtain Deligne’s classification result
for these Picard categories as a corollary of Theorem 3.1 and the lemma below, which
is a consequence of Lemma 3.1 and a result by Mac Lane [55, Theorem 4].

Lemma 3.4 Let G be any abelian group. For any abelian group A, regarded as a
constant HG-module, the symmetric 3-cohomology group of G with coefficients in A
is zero, that is, H3

G(G,A) = 0.

For any abelian groups G and A, let Σ(G,A, 0) be the strictly symmetric monoidal
abelian groupoid built as in (3.15), for the constant functor A : HG → Ab and the
zero 3-cocycle 0 : G3 → A. Since G is a group, Σ(G,A, 0) is actually a strictly
commutative Picard category. Then, we have
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Corollary 3.1 (Deligne [25], Fröhlich-Wall [36], Sinh [68]) (i) For any strictly
commutative Picard category P, there exist abelian groups G and A and a symmetric
monoidal equivalence

Σ(G,A, 0) ' P.

(ii) For any abelian groups G,G′, A and A′, there is a symmetric monoidal equiv-
alence

Σ(G,A, 0) ' Σ(G′, A′, 0)

if and and only if there are isomorphisms G ∼= G′ and A ∼= A′.

Proof: (i) Let P be a strictly commutative Picard category. By Theorem 3.1, there
are a commutative monoid M , an HM -module A, a 3-cocycle h ∈ Z3

G(M,A), and a
symmetric monoidal equivalence Σ(M,A, h) ' P.

Then, Σ(M,A, h) is a strictly commutative Picard category as P is and, therefore,
for any a ∈M , it must exist another a∗ ∈M with a morphism a⊗a∗ = aa∗ → I = e in
Σ(M,A, h). Since the groupoid Σ(M,A, h) is totally disconnected, it must be aa∗ = e
in M , which means that a∗ = a−1 is an inverse of a in M . Therefore, M = G is
actually an abelian group.

Let A = A(e) be the abelian group attached by A at the unit of G. Then, a natural
isomorphism φ : A ∼= A is defined such that, for any a ∈ G, φa = a∗ : A = A(e) →
A(a). Therefore, Theorem 3.1(ii) and Lemma 3.4 give the existence of a symmetric
monoidal equivalence

Σ(G,A, h) ' Σ(G,A, 0),

whence a symmetric monoidal equivalence Σ(G,A, 0) ' P follows.
(ii) This follows directly form Theorem 3.1(ii). �

Remark 3.2 As in Remark 3.1, the classification result above can be formulated
in terms of an equivalence between the category of strictly commutative Picard cate-
gories, with iso-classes of symmetric monoidal functors as morphisms, and the category
of pairs (G,A) of abelian groups, with morphisms

(i, ψ, k) : (G,A)→ (G′, A′)

triplets consisting of two group homomorphisms i : G → G′, ψ : A → A′, and a
cohomology class k ∈ H2

G(G,A′) = ExtZ(G,A′), where composition is given by

(i′, ψ′, k′)(i, ψ, k) = (i′i, ψ′ψ,ψ′∗(k) + i∗(k′)).





Chapter 4

A cohomology theory for
commutative monoids

Leech cohomology groups of monoids are useful for the classification of interesting
monoidal structures (see 1.3, for instance). Nevertheless, when dealing with commu-
tative monoids, Grillet symmetric cohomology groups (see 3.1.1) keep track of their
commutativity, unlike Leech cohomology groups. To some extent, however, Grillet
symmetric cohomology theory at degrees greater than 2 seem to be a little too ‘strict’
(for example, when M = G is any abelian group, its symmetric 3-cohomology groups
H3

G(G,A) are all zero, see Lemma 3.4). Therefore, in this chapter, we present a dif-
ferent approach for a cohomology theory of commutative monoids, which is inspired
in the (second level) cohomology of abelian groups by Eilenberg and Mac Lane [31, 55]
and based on the cohomology theory of simplicial sets by Gabriel and Zisman [37,
Appendix II].

In the same manner that every monoid M , regarded as a constant simplicial
monoid, has associated a classifying simplicial set WM [31] satisfying that, for any
DM -module A, Hn

L(M,A) = Hn(WM,A) (see Section 4.1), when the monoid M
is commutative it also has associated an iterated classifying simplicial set W (WM).
The Gabriel-Zisman’s cohomology groups of this simplicial set are used to define the
commutative cohomology groups of M , denoted Hn

c (M,A), by

Hn
c (M,A) = Hn+1(W

2
M,A),

where A is an HM -module (see 3.1.1). For instance, when M = G is an abelian group,

as the simplicial set W
2
G is an Eilenberg-Mac Lane’s minimal complex K(G, 2), for

any abelian group A (regarded as a constant coefficient system on G), the commuta-
tive cohomology groups Hn

c (G,A) are precisely the Eilenberg-Mac Lane cohomology
groups of the abelian group G with coefficients in A [31, 55] (also denoted by Hn

ab(G,A)
in [22, 50]).

In this chapter, we are mainly interested in the cohomology groups Hn
c (M,A) for

n ≤ 3 for any commutative monoid with coefficients in an HM -module. Hence, in

85
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Section 4.2 most of our work is dedicated to showing how these commutative cohomol-
ogy groups can be defined ‘concretely’ by manageable and computable commutative
cocycles, such as Grillet did for the cohomology groups Hn

G(M,A) by using symmetric
cocycles. Thus, for any HM -module A on a commutative monoid M , we exhibit a
4-truncated complex of commutative cochains C•c (M,A), such that

Hn
c (M,A) ∼= HnC•c (M,A), n ≤ 3,

whose construction is based on the construction of the reduced complexes A(G, 2)
by Eilenberg and Mac Lane [31] to compute the (co)homology groups of the spaces
K(G, 2). Furthermore, the existence of a monomorphism C•G(M,A) ↪→ C•c (M,A),
where the first is Grillet’s 4-truncated complex of symmetric cochains in (3.1), easily
allows one to state the relationships among the symmetric, commutative, and Leech
low dimensional cohomology groups of commutative monoids (see Theorem 4.2):

H1
G(M,A) ∼= H1

c (M,A) ∼= H1
L(M,A),

H2
G(M,A) ∼= H2

c (M,A) ↪→ H2
L(M,A),

H3
G(M,A) ↪→ H3

c (M,A)→ H3
L(M,A),

where, in general, the inclusions H2
c (M,A) ↪→ H2

L(M,A) and H3
G(M,A) ↪→ H3

c (M,A)
are strict, whereas the homomorphism H3

c (M,A)→ H3
L(M,A) is neither injective nor

surjective.
For n = 1, 2, because of the the isomorphisms Hn

G(M,A) ∼= Hn
c (M,A), there is

nothing new to say about how to interpret these latter: Elements of H1
c (M,A) are

derivations, and elements of H2
c (M,A) are iso-classes of (abelian-group) commutative

monoid coextensions.
Then, in Section 4.3 of the chapter, we focus our attention on the commutative

cohomology groups H3
c (M,A), to whose elements we give a natural interpretation in

terms of equivalence classes of braided monoidal abelian groupoids (M,⊗, c), that is,
monoidal abelian groupoids (M,⊗) endowed with coherent and natural isomorphisms
(the braidings) cx,y : x ⊗ y ∼= y ⊗ x [50], defined as for strictly symmetric abelian
monoids (subsection 3.1.2) but now not necessarily satisfying the symmetry condition
cx,y ◦ cy,x = idx⊗y nor the strictness condition cx,x = idx⊗x. The result, which
was in fact our main motivation to seek the cohomology theory we present, can be
summarized as follows (see Theorem 4.3 for details): Stating that any two triplets
(M,A, k) and (M ′,A′, k′), where k ∈ H3

c (M,A) and k′ ∈ H3
c (M ′,A′), are isomorphic

whenever there are isomorphisms i : M ∼= M ′ and ψ : A ∼= i∗A′, such that ψ−1
∗ i∗k′ = k,

then

“There is a one-to-one correspondence between equivalence classes of brai-
ded monoidal abelian groupoids (M,⊗, c) and classes of triplets (M,A, k),
with k ∈ H3

c (M,A).”

This classification theorem, which extends that given by Joyal and Street in [50,
Section 3] for braided categorical groups, leads to bijections
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H3
c (M,A) ∼= Ext2

c(M,A)

expressing a natural interpretation of commutative 3-cohomology classes as equiva-
lence classes of certain commutative 2-dimensional coextensions of M by A.

4.1 Preliminaries on cohomology of simplicial sets

Cohomology theory of small categories (defined in (1.50)) is in itself a basis for other
cohomology theories, in particular for the cohomology theory of simplicial sets with
twisted coefficients defined by Gabriel and Zisman in [37, Appendix II]. Briefly, recall
that the simplicial category, ∆, consists of the finite ordered sets [n] = {0, 1, . . . , n},
n ≥ 0, with weakly order-preserving maps between them, and that the category of
simplicial sets is the category of functors X : ∆op → Set, where Set is the category of
sets, with morphisms the natural transformations. The category ∆ is generated by the
injections di : [n− 1]→ [n] (cofaces), which omit the ith element, and the surjections
si : [n+ 1]→ [n] (codegeneracies), which repeat the ith element, 0 ≤ i ≤ n, subjet to
the well-known cosimplicial identities: djdi = didj−1 if i < j, etc. (see [58]). Hence, in
order to define a simplicial set it suffices to give the sets of its n-simplices Xn = X([n])
together with maps

di = (di)∗ : Xn → Xn−1, 0 ≤ i ≤ n (the face maps),

si = (si)∗ : Xn → Xn+1, 0 ≤ i ≤ n (the degeneracy maps),
(4.1)

satisfying the well-known basic simplicial identities: didj = dj−1di if i < j, etc. The
category of simplices of a simplicial set X, ∆/X, has as objects pairs (x, n) with
x ∈ Xn, and a morphism (α, x) : (α∗x,m)→ (x, n) consists of a map α : [m]→ [n] in
∆ together with a simplex x ∈ Xn. A coefficient system on X is a functor A : ∆/X →
Ab, and the cohomology groups of the simplicial set X with coefficients in A are, by
definition,

Hn(X,A) = Hn(∆/X,A).

We point out below two useful facts. The first of them is an easy consequence of
being the maps di, sj and the cosimplicial identities a set of generators and relations
for ∆, and the second one is dual of Theorem 4.2 in [37, Appendix II] and takes into
account the Normalization Theorem.

Fact 4.1 Let X be a simplicial set. In order to define a functor π : ∆/X → C it
suffices to give objects πx ∈ C, x ∈ Xn, n ≥ 0, together with morphisms

πdix
π(di,x) // πx πsix,

π(si,x)oo x ∈ Xn, 0 ≤ i ≤ n,
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satisfying the equations:

π(dj , x)π(di, djx) = π(di, x)π(dj−1, dix) : πdidjx→ πx, i < j,

π(sj , x)π(di, sjx) = π(di, x)π(sj−1, dix) : πdisjx→ πx, i < j,

π(si, x)π(di, six) = idπx = π(si, x)π(di+1, six) : πdisix→ πx,

π(sj , x)π(di, sjx) = π(di−1, x)π(sj , di−1x) : πdisjx→ πx, i > j + 1,

π(sj , x)π(si, sjx) = π(si, x)π(sj+1, six) : πsisjx→ πx, i ≤ j.

If A : ∆/X → Ab is any coefficient system on a simplicial set X, then, for any
simplex x ∈ Xn, we denote by A(x) the abelian group A(x), and by (α, x)∗ : A(α∗x)→
A(x) the homomorphism A(α, x) associated to any morphism (α, x) in ∆/X.

Fact 4.2 Let A : ∆/X → Ab be a coefficient system on a simplicial set X. A n-
cochain of X with coefficients in A is a map λ : Xn →

⋃
x∈XnA(x) such that λ(x) ∈

A(x) for each x ∈ Xn. Thus,
∏
x∈XnA(x) is the abelian group of such n-cochains. As

n ≥ 0 varies, these define a cosimplicial abelian group ∆ → Ab, [n] 7→
∏
x∈XnA(x),

whose cosimplicial operators∏
x∈Xn−1

A(x) di∗ //
∏

x∈Xn
A(x)

∏
x∈Xn+1

A(x),si∗oo

0 ≤ i ≤ n, are respectively given by the formulas

di∗(λ)(x) = (di, x)∗(λ(dix)), si∗(λ)(x) = (si, x)∗(λ(six)).

Then, if

C•(X,A) : 0→ C0(X,A)→ · · · → Cn(X,A)
∂→ Cn+1(X,A)→ · · ·

denotes its associated normalized cochain complex, where

Cn(X,A) =
n−1⋂
i=0

ker(si∗ :
∏
x∈XnA(x)→

∏
x∈Xn−1

A(x)),

is the abelian group of normalized n-cochains, with coboundary ∂ =
∑

(−1)idi∗, there
is a natural isomorphism

Hn(X,A) ∼= Hn(C•(X,A)).

Many cohomology theories for algebraic systems find fundament in the cohomology
of simplicial sets. In particular, Leech cohomology theory for monoids (see subsection
1.3.1), as we explain below. Previously, recall that a simplicial monoid is a contravari-
ant functor from the simplicial category to the category of monoids, X : ∆op →Mnd.
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Thus, each Xn is a monoid and the face and degeneracy operators (4.1) are homo-
morphisms. Every simplicial monoid X has associated a classifying simplicial set

WX : ∆op → Set, (4.2)

which is defined as follows (this is WX in [31]): (WX)0 = {e}, the unitary set, and

(WX)n+1 = Xn ×Xn−1 × · · · ×X0.

Write the elements of (WX)n+1 in the form (xn, . . . , x0). The face and degeneracy
maps are defined by s0(e) = (e), by di(x0) = e, i = 0, 1, and for n > 0 by

d0(xn, . . . , x0) = (xn−1, . . . , x0),

di+1(xn, . . . , x0) = (dixn, . . . , d1xn−i+1, d0xn−i · xn−i−1, xn−i−2, . . . , x0), i < n,

dn+1(xn, . . . , x0) = (dnxn, . . . , d1x1),

s0(xn, . . . , x0) = (e, xn, . . . , x0),

si+1(xn, . . . , x0) = (sixn, . . . , s0xn−i, e, xn−i−1, . . . , x0), i < n,

sn+1(xn, . . . , x0) = (snxn, . . . , s0x0, e),

where e is the unit in the corresponding monoid.
For example, given any monoid M , let M : ∆op → Mnd denote the constant M

simplicial monoid, that is, the simplicial monoid given by Mn = M , n ≥ 0, and by
letting each di and si on Mn be the identity map on M . Then the W -construction on
it produces the so-called classifying simplicial set of the monoid

WM : ∆op → Set, [n] 7→Mn, (4.3)

whose face and degeneracy maps are given by the familiar formulas

di(a1, . . . , an) =


(a2, . . . , an) i = 0,

(a1, . . . , ai−1, aiai+1, ai+2, . . . , an) 0 < i < n,

(a1, . . . , an−1) i = n,
si(a1, . . . , an) = (a1, . . . , ai−1, e, ai, . . . , an) 0 ≤ i ≤ n.

where e ∈M the unit.
Recall now the category DM from 1.3.1. Then, there is a functor π : ∆/WM →

DM such that π(a1, . . . , an) = a1 · · · an, and

π(di, (a1, . . . , an)) =


(a1, a2 · · · an, e) : a2 · · · an → a1 · · · an, i = 0,

id : a1 · · · an → a1 · · · an, 0 < i < n,

(e, a1 · · · an−1, an) : a1 · · · an−1 → a1 · · · an, i = n,

π(si, (a1, . . . , an)) = id : a1 · · · an → a1 · · · an, 0 ≤ i ≤ n.

Then, by composition with π, any DM -module A defines a coefficient system on
WM , also denoted by A : ∆/WM → Ab, and therefore the cohomology groups
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Hn(WM,A) are defined. By Fact 4.2, these cohomology groups can be computed
from the cochain complex C•(WM,A), which is given in degree n > 0 by

Cn(WM,A) =
{
λ ∈

∏
(a1,...,an)∈Mn

A(a1 · · · an) | λ(a1, . . . , an) = 0 if some ai = e
}

and C0(WM,A) = A(e). The coboundary ∂n : Cn(WM,A) → Cn+1(WM,A) is
given, for n = 0, by (∂0λ)(a) = a∗λ− a∗λ, while, for n > 0,

(∂nλ)(a1, . . . , an+1) = (a1)∗λ(a2, . . . , an) +

n∑
i=1

(−1)iλ(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1(an+1)∗λ(a1, . . . , an).

Observe now that this cochain complex C•(WM,A) is precisely the one defined
in (1.51), and thus it follows that there are natural isomorphisms

Hn
L(M,A) ∼= Hn(WM,A).

4.2 A cohomology theory for commutative monoids

Let us return now to the case where M is a commutative monoid, whose unit is e. Un-
der this hypothesis, the simplicial set WM in (4.3) is again a simplicial monoid, with
the product monoid structure on each Mn. We can then perform the W -construction
(4.2) on it, which gives the simplicial set (actually, a commutative simplicial monoid)

W
2
M : ∆op → Set,

whose set of n-simplices is

(W
2
M)n =

{
{e} i = 0, 1,

Mn−1×Mn−2 × · · · ×M i ≥ 2.

Writing an n+ 1-simplex x of W
2
M in the form

x =
(
xkj
)
1≤j≤k≤n = ((xn1 , . . . , x

n
n), . . . , (x2

1, x
2
2), x1

1), (4.4)

where each (xk1, . . . , x
k
k) ∈ Mk is a k-simplex of WM , its faces and degeneracies are

respectively defined by di(x) =
(
yml
)

and si(x) =
(
zvu
)
, where

yml =



xml m<n−i,

xm+1
l+1 xml m=n−i,

xm+1
l m>n−i, l<m−n+i,

xm+1
l xm+1

l+1 m>n−i, l=m−n+i,

xm+1
l+1 m>n−i, l>m−n+i,

zvu =



xvu v≤n−i,

e v=n−i+1,

xv−1
u v>n−i+1, u<v−n+i−1,

e v>n−i+1, u=v−n+i−1,

xv−1
u−1 v>n−i+1, u>v−n+i−1.
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Recall now, from 3.1.1, that abelian group valued functors on the category HM
provide the coefficients for Grillet cohomology groups of a commutative monoid M .

There is a functor π : ∆/W
2
M → HM which, taking into account Fact 4.1, is de-

termined by πx =
∏
xkj , for each n+ 1-simplex x =

(
xkj
)
1≤j≤k≤n of W

2
M as in (4.4),

where the product
∏
xkj is in the monoid M over all 0 ≤ j ≤ k ≤ n, together with the

homomorphisms

π(di, x) =


(πd0x, x

n
1x

n
2 · · ·xnn) : πd0x→ πx, i = 0,

(πdix, x
n+1−i
1 ) : πdix→ πx, 0 < i ≤ n,

(πdn+1x, x
n
nx

n−1
n−1 · · ·x1

1) : πdn+1x→ πx, i = n+ 1,

π(si, x) = id : πsix = πx→ πx, 0 ≤ i ≤ n.

Therefore, by composition with π, anyHM -module gives rise to a coefficient system

on the simplicial set W
2
M , equally denoted by

A : ∆/W
2
M → Ab,

whence the cohomology groups of W
2
M with coefficients in A are defined. Note

that these cohomology groups are trivial at dimensions 0 and 1. Then, making a
dimensional shift, we state the following definition.

Definition 4.1 Let M be a commutative monoid. For any HM -module A, the com-
mutative cohomology groups of M with coefficients in A, denoted Hn

c (M,A), are
defined by

Hn
c (M,A) = Hn+1(W

2
M,A), n ≥ 1.

Example 4.1 Let M = G be an abelian group. Then, the simplicial set W
2
G is

an Eilenberg-Mac Lane’s minimal complex K(G, 2) [31, Theorem 17.4], [59, Theorem
23.2]. For any abelian group A, regarded as a constant functor A : HG → Ab,
the commutative cohomology groups Hn

c (G,A) = Hn+1(K(G, 2), A) define the second
level or abelian Eilenberg-Mac Lane cohomology theory of the abelian group G [28,
29, 30, 31, 55] (these are denoted also by Hn

ab(G,A) in [50, 22] and by Hn
1 (G,A) in

[11]). Although these cohomology groups arise from algebraic topology, they come
with algebraic interest. Briefly, recall that there are natural isomorphisms [32, (26.1),
(26.3), (26.4)]

H1
c (G,A) ∼= Hom(G,A), H2

c (G,A) ∼= Ext(G,A), H3
c (G,A) ∼= Quad(G,A),

where Hom(G,A) is the group of homomorphisms from G to A, Ext(G,A) is the
group of abelian group extensions of G by A, and Quad(G,A) is the abelian group of
quadratic maps from G to A, that is, functions q : G→ A such that f(x, y) = q(x+y)−
q(x)−q(y) is a bilinear function of x, y ∈ G. A precise classification theorem for braided
categorical groups [50, Definition 3.1] in terms of cohomology classes k ∈ H3

c (G,A)
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was proved by Joyal and Street in [50, Theorem 3.3] (see Corollary 4.1 for an approach
here to that issue).

Let us stress that, among the Extn groups in the category of abelian groups, only
Ext0(G,A) ∼= H1

c (G,A) and Ext1(G,A) ∼= H2
c (G,A) are relevant since all groups

Extn(G,A) vanish for n ≥ 2. However, for example, it holds that H3
c (Z/2Z,Z/2Z) ∼=

Z/2Z 6= 0.

In this chapter we are only interested in the cohomology groups Hn
c (M,A) for n ≤

3. Both for theoretical and computational interests, it is appropriate to have a more

manageable cochain complex than C•(W
2
M,A) to compute the lower commutative

cohomology groups Hn
c (M,A), such as Grillet did for computing the cohomology

groups Hn
G(M,A) by means of symmetric cochains (see Subsection 3.1.1). We shall

exhibit below such a (truncated) complex, denoted by

C•c (M,A) : 0→ C1
c (M,A)

∂1−→ C2
c (M,A)

∂2−→ C3
c (M,A)

∂3−→ C4
c (M,A), (4.5)

and referred to as the complex of (normalized) commutative cochains on M with values
in A. The construction of this complex is heavily inspired on that given by Eilenberg
and Mac Lane of the complexes A(G, 2) [31] for computing the (co)homology groups
of the spaces K(G, 2), and it is as follows:

• A commutative 1-cochain f ∈ C1
c (M,A) is a function f : M →

⋃
a∈M A(a) with

f(a) ∈ A(a), such that f(e) = 0.

• A commutative 2-cochain g ∈ C2
c (M,A) is a function g : M2 →

⋃
a∈M A(a) with

g(a, b) ∈ A(ab), such that g(a, b) = 0 if a or b are equal to e.

• A commutative 3-cochain (h, µ) ∈ C2
c (M,A) is a pair of functions

h : M3 →
⋃
a∈M A(a), µ : M2 →

⋃
a∈M A(a)

with h(a, b, c) ∈ A(abc) and µ(a, b) ∈ A(ab), such that h(a, b, c) = 0 whenever some
of a, b, or c are equal to e, and µ(a, b) = 0 if a or b are equal to e.

• A commutative 4-cochain (t, γ, δ) ∈ C2
c (M,A) is a triplet of functions

t : M4 →
⋃
a∈M A(a), γ, δ : M3 →

⋃
a∈M A(a)

with t(a, b, c, d) ∈ A(abcd) and γ(a, b, c), δ(a, b, c) ∈ A(abc), such that t(a, b, c, d) = 0
whenever some of a, b, c, or d are equal to e, and γ(a, b, c) = 0 = δ(a, b, c) if some of
a, b, or c are equal to e.

Under pointwise addition, these commutative n-cochains form the abelian groups
Cnc (M,A) in (4.5), 1 ≤ n ≤ 4. The coboundary homomorphisms are defined by

∂1f = g, where

g(a, b) = −a∗f(b) + f(ab)− b∗f(a),
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∂2g = (h, µ), where

h(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b),

µ(a, b) = g(a, b)− g(b, a),

∂3(h, µ) = (t, γ, δ), where

t(a, b, c, d) = −a∗h(b, c, d) + h(ab, c, d)− h(a, bc, d) + h(a, b, cd)− d∗h(a, b, c),

γ(a, b, c) = −b∗µ(a, c) + µ(a, bc)− c∗µ(a, b) + h(a, b, c)− h(b, a, c) + h(b, c, a),

δ(a, b, c) = −a∗µ(b, c) + µ(ab, c)− b∗µ(a, c)− h(a, b, c) + h(a, c, b)− h(c, a, b).

A quite straightforward verification shows that (4.5) is actually a truncated cochain
complex, that is, the equalities ∂2∂1 = 0 and ∂3∂2 = 0 hold.

A basic result here is the following, whose proof is quite long and technical and
we give it in Subsection 4.2.1 so as not to obstruct the natural flow of the chapter.

Theorem 4.1 Let M be any commutative monoid and let A be an HM -module. For
each n ≤ 3, there is a natural isomorphism

Hn
c (M,A) ∼= Hn

(
C•c (M,A)

)
. (4.6)

From this theorem, for n ≤ 3, we have isomorphisms

Hn
c (M,A) ∼= Znc (M,A)/Bn

c (M,A) (4.7)

where

Znc (M,A) = Ker
(
∂n : Cnc (M,A)→ Cn+1

c (M,A)
)
,

Bn
c (M,A) = Im

(
∂n−1 : Cn−1

c (M,A)→ Cnc (M,A)
)
,

are referred as the groups of commutative n-cocycles and commutative n-coboundaries
on M with values in A, respectively.

After Theorem 4.1 and the isomorphisms in (3.7), Grillet symmetric cohomology
groups Hn

G(M,A) and the commutative ones Hn
c (M,A) are closely related, for n ≤ 3

through the natural injective cochain map

0 // C1
G(M,A)

∂1 //

i1=id

C2
G(M,A)

∂2 //
_�

i2
��

C3
G(M,A)

∂3 //
_�

i3
��

C4
G(M,A)

_�

i4
��

0 // C1
c (M,A)

∂1 // C2
c (M,A)

∂2 // C3
c (M,A)

∂3 // C4
c (M,A),

which is the identity map, i1(f) = f , on 1-cochains, the inclusion map, i2(g) = g, on
2-cochains, and on 3- and 4-cochains is defined by the simple formulas i3(h) = (h, 0)
and i4(t) = (t, 0, 0), respectively. The only non-trivial verification here concerns the
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equality ∂3i3 = i4∂
3, that is, ∂3(h, 0) = (∂3h, 0, 0), for any h ∈ C3

G(M,A), but it
easily follows from Lemma 3.1.

From now on, we shall regard the complex of symmetric cochains as a subcomplex
of the complex of commutative cochains, via the above injective cochain map. Thus,

C•G(M,A) ⊆ C•c (M,A). (4.8)

Theorem 4.2 For any commutative monoid M , and any HM -module A, there are
natural isomorphisms

H1
G(M,A) ∼= H1

c (M,A), (4.9)

H2
G(M,A) ∼= H2

c (M,A), (4.10)

and a natural monomorphism

H3
G(M,A) ↪→ H3

c (M,A). (4.11)

Proof: The equalities Z1
G(M,A) = Z1

c (M,A) and B2
G(M,A) = B2

c (M,A) are
clear. Further Z2

G(M,A) = Z2
c (M,A), since the cocycle condition on a commutative

2-cochain g implies the symmetry condition g(a, b) = g(b, a). Hence, the isomorphisms
(4.9) and (4.10) follow from those in (3.7) and (4.7), for n = 1 and n = 2 respectively.

The homomorphism in (4.11) is the composite of

H3
G(M,A)

(3.7)∼= H3C•G(M,A)
(4.8)−→ H3C•c (M,A)

(4.7)∼= H3
c (M,A),

so it suffices to prove that the induced by (4.8) on the third cohomology groups
is injective. To do so, suppose h ∈ C3

G(M,A) is a symmetric 3-cochain such that
i3(h) = (h, 0) ∈ B2

c (M,A) is a commutative 3-coboundary, that is, (h, 0) = ∂2g for
some g ∈ C2

c (M,A). This means that the equalities

h(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b), 0 = g(a, b)− g(b, a),

hold, whence g ∈ C2
G(M,A) is a symmetric 2-cochain, and h = ∂2g ∈ B2

G(M,A), is
actually a symmetric 2-coboundary. It follows that the inclusion map i3 : Z3

G(M,A) ↪→
Z3

c (M,A) induces a injective map in cohomology H3C•G(M,A)
)
↪→ H3C•c (M,A), as

required. �

Remark 4.1 The inclusion H3
G(M,A) ⊆ H3

c (M,A) is, in general, strict. Let G be
any abelian group, and let A : HG → Ab be the constant HG-module defined by
any other abelian group A, as in Example 4.1. Then, by Lemma 3.4 we have that
H3

G(G,A) = 0. However, for instance, it holds that H3
c (Z/2Z,Z/2Z) ∼= Z/2Z 6= 0.

From Theorem 4.2 and the interpretations given in Subsection 3.1.1 of Grillet
cohomology groups we know that H1

c (M,A) classifies derivations of M in A while
H2

c (M,A) classifies commutative group coextensions of M by A.
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4.2.1 Proof of Theorem 4.1.

We start by specifying the relevant truncation of the cochain complex C•(W
2
M,A)

that, by Fact 4.2, yields cocycles and coboundaries on the commutative monoid M at
dimensions ≤ 3. To do so, we need to pay attention to the 6-dimensional truncated

part of W
2
M :

W
2
M : · · · M10 // //// M6 // ////

�� xx��
M3 //////

�� yy��
M //////

�� yy��
e ////

ww��
e

yy

whose face and degeneracy operators given by

di(b1, b2, a1) =


a1 i = 0,

b2a1 i = 1,

b1b2 i = 2,

b1 i = 3;

di(c1, c2, c3, b1, b2, a1) =



(b1, b2, a1) i = 0,

(c2b1, c3b2, a1) i = 1,

(c1c2, c3, b2a1) i = 2,

(c1, c2c3, b1b2) i = 3,

(c1, c2, b1) i = 4;

di(d1, d2, d3, d4, c1, c2, c3, b1, b2, a1) =



(c1, c2, c3, b1, b2, a1) i = 0,

(d2c1, d3c2, d4c3, b1, b2, a1) i = 1,

(d1d2, d3, d4, c2b1, c3b2, a1) i = 2,

(d1, d2d3, d4, c1c2, c3, b2a1) i = 3,

(d1, d2, d3d4, c1, c2c3, b1b2) i = 4,

(d1, d2, d3, c1, c2, b1) i = 5;

si(a1) =


(e, e, a1) i = 0,

(e, a1, e) i = 1,

(a1, e, e) i = 2;

si(b1, b2, a1) =


(e, e, e, b1, b2, a1) i = 0,

(e, b1, b2, e, e, a1) i = 1,

(b1, e, b2, e, a1, e) i = 2,

(b1, b2, e, a1, e, e) i = 3;

si(c1, c2, c3, b1, b2, a1) =



(e, e, e, e, c1, c2, c3, b1, b2, a1) i = 0,

(e, c1, c2, c3, e, e, e, b1, b2, a1) i = 1,

(c1, e, c2, c3, e, b1, b2, e, e, a1) i = 2,

(c1, c2, e, c3, b1, e, b2, e, a1, e) i = 3,

(c1, c2, c3, e, b1, b2, 1, a1, e, e) i = 4.

Hence, (with a dimensional shift) the cochain complex C•(W
2
M,A) for low degrees

is

0→ C1(W
2
M,A)

∂−→ C2(W
2
M,A)

∂−→ C3(W
2
M,A)

∂−→ C4(W
2
M,A), (4.12)



96 Chapter 4. A cohomology theory for commutative monoids

where:

A 1-cochain λ ∈ C1(W
2
M,A) is a function λ : M →

⋃
a∈M A(a) with λ(a) ∈ A(a),

such that λ(e) = 0.

A 2-cochain λ ∈ C2(W
2
M,A) is a function

λ : M2 ×M →
⋃
a∈M A(a),

with λ(b1, b2, a1) ∈ A(b1b2a1), such that λ(e, e, a1) = 0 = λ(e, a1, e) = λ(a1, e, e).

A 3-cochain λ ∈ C3(W
2
M,A) is a function

λ : M3 ×M2 ×M →
⋃
a∈M A(a),

with λ(c1, c2, c3, b1, b2, a1) ∈ A(c1c2c3b1b2a1), such that

0 = λ(e, e, e, b1, b2, a1) = λ(e, b1, b2, e, e, a1)
= λ(b1, e, b2, e, a1, e) = λ(b1, b2, e, a1, e, e).

A 4-cochain λ ∈ C4(W
2
M,A) is a function

λ : M4 ×M3 ×M2 ×M →
⋃
a∈M A(a),

such that λ(d1, d2, d3, d4, c1, c2, c3, b1, b2, a1) ∈ A(d1d2d3d4c1c2c3b1b2a1), and

0 = λ(e, e, e, e, c1, c2, c3, b1, b2, a1) = λ(e, c1, c2, c3, e, e, e, b1, b2, a1)
= λ(c1, e, c2, c3, e, b1, b2, e, e, a1) = λ(c1, c2, e, c3, b1, e, b2, e, a1, e)
= λ(c1, c2, c3, e, b1, b2, e, a1, e, e).

The coboundary homomorphisms are given by

(∂1λ)(b1, b2, a1) = (b1b2)∗λ(a1)− (b1)∗λ(b2a1) + (a1)∗λ(b1b2)− (b2a1)∗λ(b1),

(∂2λ)(c1, c2, c3, b1, b2, a1) = (c1c2c3)∗λ(b1, b2, a1)− (c1)∗λ(c2b1, c3b2, a1)

+ (b1)∗λ(c1c2, c3, b2a1)− (a1)∗λ(c1, c2c3, b1b2)

+ (c3b2a1)∗λ(c1, c2, b1),

(∂3λ)(d1, d2,d3, d4, c1, c2, c3, b1, b2, a1) =

(d1d2d3d4)∗λ(c1, c2, c3, b1, b2, a1)− (d1)∗λ(d2c1, d3c2, d4c3, b1, b2, a1)

+ (c1)∗λ(d1d2, d3, d4, c2b1, c3b2, a1)− (b1)∗λ(d1, d2d3, d4, c1c2, c3, b2a1)

+ (a1)∗λ(d1, d2, d3d4, c1, c2c3, b1b2)− (d4c3b2a1)∗λ(d1, d2, d3, c1, c2, b1).
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Then, the claimed isomorphisms (4.6) follows from the existence of the following
diagram of abelian group homomorphisms

0 // C1(W
2
M,A)

∂1 //

φ1
��

C2(W
2
M,A)

∂2 //

φ2
��

C3(W
2
M,A)

∂3 //

φ3
��

Γ2

~~}}}}}}}}}}}}}}}}}}}}
C4(W

2
M,A)

φ4
��

Γ3

~~}}}}}}}}}}}}}}}}}}}}

0 // C1
c (M,A)

∂1 //

ψ1

��

C2
c (M,A)

∂2 //

ψ2

��

C3
c (M,A)

∂3 //

ψ3

��

C4
c (M,A)

ψ4

��

0 // C1(W
2
M,A)

∂1 // C2(W
2
M,A)

∂2 // C3(W
2
M,A)

∂3 // C4(W
2
M,A)

which satisfy the equalities: ∂nφn = φn+1∂
n and ∂nψn = ψn+1∂

n, for 1 ≤ n ≤ 3;
φnψn = id, for 0 ≤ n ≤ 4; ψ1φ1 = id; ψ2φ2 = Γ2∂

2 + id; and ψ3φ3 = Γ3∂
3 +∂2Γ2 + id.

These homomorphisms are defined as follows:

• φ1 = ψ1 = id;

• φ2(λ) = g, where g(a, b) = λ(a, b, e);

• ψ2(g) = λ, where λ(b1, b2, a1) = (a1)∗g(b1, b2)− (b1)∗g(b2, a1);

• Γ2(λ) = λ′, where λ′(b1, b2, a1) = λ(b1, b2, e, e, a1, e)− λ(b1b2, e, e, e, e, a1);

• φ3(λ) = (h, µ), where

h(a, b, c) = λ(a, b, c, e, e, e),
µ(a, b) = λ(a, e, e, e, e, b)− λ(e, a, e, e, b, e) + λ(e, e, a, b, e, e);

• ψ3(h, µ) = λ, where

λ(c1, c2, c3, b1, b2, a1) = (b1b2a1)∗h(c1, c2, c3) + (c1c2b1)∗h(c3, b2, a1)

− (c1c2a1)∗h(c3, b1, b2) + (c1c2a1)∗h(b1, c3, b2)

− (c1a1)∗h(c2, b1, c3b2) + (c1a1)∗h(c2, c3, b1b2)

+ (c1c2b2a1)∗µ(c3, b1);

• Γ3(λ) = λ′, where

λ′(c1, c2,c3, b1, b2, a1)=−λ(c1c2, e, e, c3, e, e, e, b1, b2, a1)+λ(c1, c2, e, c3, e, b1, b2, e, e, a1)

− (a1)∗λ(c1, c2, c3, e, e, e, b1b2, e, e, e) + (a1)∗λ(c1c2, e, c3, e, e, e, e, e, b1b2, e)

− (a1)∗λ(c1c2, c3, e, e, e, e, e, e, e, b1b2) + (b1)∗λ(c1c2, c3, e, e, e, e, e, e, e, b2a1)

− (b1)∗λ(c1c2, e, c3, e, e, e, e, e, b2a1, e) + (c1)∗λ(c2, b1, c3b2, e, e, e, e, e, a1, e)

− (c1)∗λ(c2, c3b1b2, e, e, e, e, e, e, e, a1) + (c1c2)∗λ(e, c3, e, e, b1b2, e, e, e, e, a1)

− (c1c2)∗λ(e, e, c3, e, b1, b2, e, e, a1, e) + (c1c2b1)∗λ(c3, e, e, e, e, e, e, b2, a1, e)

− (c1c2b1)∗λ(e, c3, e, e, e, b2, a1, e, e, e) + (c1c2a1)∗λ(e, c3, e, e, e, b1, b2, e, e, e)

− (c1c2a1)∗λ(c3, e, e, e, e, e, e, b1, b2, e)− (c1c2a1)∗λ(e, e, c3, e, b1, e, b2, e, e, e);
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• φ4(λ) = (t, γ, δ), where

t(a, b, c, d)=λ(a, b, c, d, e, e, e, e, e, e),

γ(a, b, c)=λ(a, e, e, e, e, e, e, b, c, e)−λ(e, a, e, e, e, b, c, e, e, e)

+λ(e, e, a, e, b, e, c, e, e, e)− λ(e, e, e, a, b, c, e, e, e, e),

δ(a, b, c)=λ(a, b, e, e, e, e, e, e, e, c)−λ(a, e, b, e, e, e, e, e, c, e)

+λ(a, e, e, b, e, e, e, c, e, e) +λ(e, a, b, e, e, e, c, e, e, e)

−λ(e, a, e, b, e, c, e, e, e, e)+λ(e, e, a, b, c, e, e, e, e, e);

• ψ4(t, γ, δ) = λ, where

λ(d1, d2, d3, d4, c1, c2,c3, b1, b2, a1) = (c1c2c3b1b2a1)∗t(d1, d2, d3, d4)

− (d1d2d3c1a1)∗t(c2, d4c3, b1, b2)− (d1d2d3c1b2a1)∗t(d4, c3, c2, b1)

+ (d1d2d3c1a1)∗t(d4, c2c3, b1, b2) + (d1d2d3c1a1)∗t(c2, b1, d4c3, b2)

− (d1d2d3c1a1)∗t(d4, c2b1, c3, b2) + (d1d2d3c1a1)∗t(c2b1, d4, c3, b2)

+ (d1d2c1a1)∗t(d3, c2, b1, d4c3b2)− (d1d2c1a1)∗t(d3, c2, d4c3, b1b2)

− (d1b1b2a1)∗t(d2, c1, d3c2, d4c3) + (d1d2c1a1)∗t(d3, d4, c2c3, b1b2)

− (d1d2b1b2a1)∗t(d3, d4, c1, c2c3)− (d1b1b2a1)∗t(d2, d3, d4, c1c2c3)

+ (d1b1b2a1)∗t(d2, d3, c1c2, d4c3)− (d1d2b1b2a1)∗t(c1, d3, d4, c2c3)

− (d1d2b1b2a1)∗t(d3, c1, c2, d4c3) + (d1d2b1b2a1)∗t(c1, d3, c2, d4c3)

+ (d1d2b1b2a1)∗t(d3, c1, d4, c2c3)− (d1d2d3b1b2a1)∗t(d4, c1, c2, c3)

+ (d1d2d3b1b2a1)∗t(c1, d4, c2, c3)− (d1d2d3b1b2a1)∗t(c1, c2, d4, c3)

+ (d1d2d3d4c1a1)∗t(c2, c3, b1, b2)− (d1d2d3d4c1a1)∗t(c2, b1, c3, b2)

− (d1d2d3c1c2b1)∗t(d4, c3, b2, a1) + (d1d2c2c3b1b2a1)∗δ(d3, d4, c1)

− (d1d2d3c1b2a1)∗δ(d4, c3, c2b1) + (d1d2d3c1b1b2a1)∗δ(d4, c3, c2)

− (d1d2d3c3b1b2a1)∗γ(d4, c1, c2)− (d1d2d3d4c1b2a1)∗γ(c3, c2, b1)

+ (d1d2d3c1b2a1)∗γ(d4c3, c2, b1).

A quite tedious, but totally straightforward, verification shows that these homo-
morphisms φn, ψn, and Γn satisfy the claimed properties implying that the truncated

cochain complexes C•c (M,A) in (4.5) and C•(W
2
M,A) in (4.12) are homologoical

isomorphic.

4.3 Classifying braided monoidal abelian groupoids by
3-cohomology classes

This section is dedicated to showing a precise cohomological classification of braided
monoidal abelian groupoids. The case of monoidal abelian groupoids was studied in
Section 1.3, where their classification was solved by means of Leech 3-cohomology
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classes of monoids. Strictly symmetric monoidal abelian groupoids have been clas-
sified in Section 3.2, in this case by Grillet 3-cohomology classes of commutative
monoids. Here, we show how every braided monoidal abelian groupoid invariably has
a commutative monoid M , an HM -module A : HM → Ab, and a commutative 3-
cohomology class k ∈ H3

c (M,A) associated with it. Furthermore, the triplet (M,A, k)
thus obtained is an appropriate system of ‘descent data’ to rebuild the braided abelian
groupoid up to braided equivalence.

Recall from section 1.3 that a groupoid M is termed abelian if its isotropy (or
vertex) groups AutM(x), x ∈ ObM, are all abelian and that we use additive notation
for the composition. Moreover, in Example 3.1, we introduce the notation K(A, 1) for
one-object groupoids with group of automorphisms A. It was also pointed out that
any abelian totally disconnected groupoid is of the form

⋃
a∈M K(A(a), 1), for some

family of abelian groups (A(a))a∈M .
Braided monoidal categories have been studied extensively in the literature and

we refer to Saavedra [66], and Joyal and Street [50] for the background. We intend to
work with braided monoidal abelian groupoids (or braided monoidal abelian groupoids)

M = (M,⊗, I,a, l, r, c), (4.13)

which consist of a monoidal abelian groupoid (M,⊗, I,a, l, r) and natural isomor-
phisms cx,y : x ⊗ y → y ⊗ x (the braidings), such that the two coherence conditions
below hold.

(0y⊗cx,z) + ay,x,z + (cx,y⊗0z) = ay,z,x + cx,y⊗z + ax,y,z, (4.14)

(y ⊗ x)⊗ z a // y ⊗ (x⊗ z)
0⊗c

))SSSSSS

(x⊗ y)⊗ z

c⊗0 55kkkkkk

a
))SSSSSS

y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) c // (y ⊗ z)⊗ x

a 55kkkkkk

(cx,z⊗0y)− ax,z,y + (0x⊗cy,z) = −az,x,y + cx⊗y,z − ax,y,z. (4.15)

x⊗ (z ⊗ y)
−a // (x⊗ z)⊗ y

c⊗ 0
))SSSSSS

x⊗ (y ⊗ z)

0⊗ c 55kkkkkk

−a
))SSSSSS

(z ⊗ x)⊗ y

(x⊗ y)⊗ z c // z ⊗ (x⊗ y)

−a 55kkkkkk

For further use, we recall that in any braided monoidal abelian groupoid M the
equalities below are satisfied (see [50, Propositions 2.1]).

lx + cx,I = rx, rx + cI,x = lx. (4.16)
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Example 4.2 Every commutative 3-cocycle (h, µ) ∈ Z3
c (M,A), gives rise to a

braided monoidal abelian groupoid

Σ(M,A, (h, µ)) = (Σ(M,A, (h, µ)),⊗, I,a, l, r, c), (4.17)

that should be thought of as a 2-dimensional twisted crossed product of M by A, and
it is built as follows: Its underlying groupoid is the totally disconnected groupoid⋃
a∈M K(A(a), 1) in (3.16).

The tensor product

⊗ : Σ(M,A, (h, µ))× Σ(M,A, (h, µ))→ Σ(M,A, (h, µ))

is given as in (3.17). The unit object is I = e, the unit of the monoid M , and the
structure constraints and the braiding isomorphisms are

aa,b,c = h(a, b, c) : (ab)c→ a(bc),

ca,b = µ(a, b) : ab→ ba,

la = 0a : ea = a→ a, ra = 0a : ae = a→ a,

which are easily seen to be natural since the groups A(a), a ∈ M are abelian. The
coherence conditions (1.1), (4.14), and (4.15) follow from the 3-cocycle condition
∂3(h, µ) = (0, 0, 0), while the coherence condition (1.2) holds due to the normalization
condition h(a, e, b) = 0.

Example 4.3 A braided monoidal abelian groupoid is called strict if all its structure
constraints ax,y,z, lx, and rx are identities. Seeing a monoid as a category with only
one object, it is easy to identify a braided strict monoidal abelian groupoid with an
abelian track monoid, in the sense of Baues-Jibladze [4] and Pirashvili [62], endowed
with a braided structure. Porter [63] and Joyal-Street [49, Section 3, Example 4 (a
preliminary manuscript of [50])] show a natural way to produce braided strict monoidal
abelian groupoids from crossed modules in the category of monoids Mnd. We recall
that construction in this example.

A crossed module in the category Mnd is a triplet (G,M, ∂) consisting of a monoid
M , a group G endowed with a M -action by a monoid homomorphism M → End(G),
written (a, g) 7→ ag, and an homomorphism ∂ : G→M satisfying

∂(ag) a = a ∂g, ∂gg′ g = g g′.

Roughly speaking, these two conditions say that the action of M on G behaves
like an abstract conjugation. Note that when the monoid M is a group, we have the
ordinary notion of crossed module by Whitehead [75]. Observe that, if ∂g = e, then
g g′ = g′ g for all g′ ∈ G; that is, the subgroup {g | ∂g = e} is contained in the center
of G and, therefore, it is abelian. The crossed module is termed abelian whenever, for
any a ∈M , the subgroup {g | ∂g a = a} ⊆ G is abelian. If, for example, the group G
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is abelian, or the monoid M is cancellative (a group, for instance), then the crossed
module is abelian.

A bracket operation for a crossed module (G,M, ∂) is a function { , } : M×M → G
satisfying

∂{a, b} b a = ab, {e, b} = 1 = {a, e}, {∂g, a} ag = g, {a, ∂g} g = ag,

{ab, c} = a{b, c} {a, c}, {a, bc} = {a, b} b{a, c}.
where 1 ∈ G is the unit. This operation should be thought as an abstract commutator.

Each abelian crossed module with a bracket operator yields a braided strict monoi-
dal abelian groupoid M =M(G,M, ∂, { , }) as follows. Its objects are the elements
of the monoid M , and a morphism g : a→ b inM is an element g ∈ G with a = ∂g b.

The composition of two morphisms a
g→ b

h→ c is given by multiplication in G, a
gh→ c.

The tensor product is

(a
g→ b)⊗ (c

h→ d) = (ac
g bh−→ bd),

and the braiding is provided by the bracket operator via the formula

ca,b = {a, b} : ab→ ba.

In the very special case where M and G are commutative, the action of M on G
is trivial, and ∂ is the trivial homomorphism (i.e., ag = g and ∂g = e, for all a ∈ M ,
g ∈ G), then a bracket operator { , } : M ×M → G amounts to a bilinear map, that
is, a function satisfying

{e, b} = 1 = {a, e}, {ab, c} = {a, c} {b, c}, {a, bc} = {a, b} {a, c}.
Thus, for example, when M = N is the additive monoid of non-negative integers

and G = Z is the abelian group of integers, a bracket N×N→ Z is given by {p, q} = pq.
Also, if G is any multiplicative abelian group, then any g ∈ G defines a bracket
N× N→ G by {p, q} = gpq.

Suppose M, M′ are braided monoidal abelian groupoids. A braided monoidal
functor

F = (F,ϕ, ϕ0) :M→M′ (4.18)

consists of a monoidal functor (1.4) satisfying :

ϕy,x + cFx,Fy = Fcx,y + ϕx,y. (4.19)

Fx⊗ Fy c //

ϕ
��

Fy ⊗ Fx
ϕ

��
F (x⊗ y)

Fc // F (y ⊗ x)
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If F ′ : M → M′ is another braided monoidal functor, then, a monoidal isomor-
phism δ : F ⇒ F ′ is a monoidal natural transformation (1.7).

Example 4.4 Let (h, µ), (h′, µ′) ∈ Z3
c (M,A) be commutative 3-cocycles of a com-

mutative monoid. Then, any commutative cochain g ∈ C2
c (M,A) such that (h, µ) =

(h′, µ′) + ∂2g induces a braided monoidal isomorphism

F (g) = (id, g, 0e) : Σ(M,A, (h, µ)) ∼= Σ(M,A, (h′, µ′)) (4.20)

which is the identity functor on the underlying groupoids, and whose structure iso-
morphisms are given by ϕa,b = g(a, b) : ab → ab and ϕ0 = 0e : e → e, respectively.
Since the groups A(ab) are abelian, these isomorphisms ϕa,b are natural. The co-
herence conditions (1.5) and (4.19) follows from the equality (h, µ) = (h′, µ′) + ∂2g,
whilst the conditions in (1.6) trivially hold because of the normalization conditions
g(a, e) = 0a = g(e, a).

If f ∈ C1
c (M,A) is any commutative 1-cochain, and g′ = g + ∂1f ∈ C2

c (M,A),
then an isomorphism of braided monoidal functors δ(f) : F (g)⇒ F (g′) is defined by
putting δ(f)a = f(a) : a → a, for each a ∈ M . So defined, δ is natural because of
the abelian structure of the groups A(a); the first condition in (1.8) holds owing to
the equality g′ = g + ∂1f , and the second one thanks to the normalization condition
f(e) = 0e of f .

With compositions defined in a natural way, braided monoidal abelian groupoids,
braided monoidal functors, and monoidal isomorphisms form a 2-category [37, Chap-
ter V, Section 1]. A braided monoidal functor F : M → M′ is called a braided
monoidal equivalence if it is an equivalence in this 2-category of braided monoidal
abelian groupoids. From [66, I, Proposition 4.4.2] it follows that a braided monoidal
functor F : M → M′ is a braided monoidal equivalence if and only if the under-
lying functor is an equivalence of groupoids, that is, if and only if and only if the
induced map on the sets of iso-classes of objects (3.12) is a bijection, and the induced
homomorphisms on the automorphism groups (3.13) are all isomorphisms.

Remark 4.2 From the Coherence Theorem for monoidal categories [50, Corollary
1.4, Example 2.4], it follows that every braided monoidal abelian groupoid is braided
monoidal equivalent to a braided strict one, that is, to one in which all the structure
constraints ax,y,z, lx, and rx are identities (see Example 4.3). This suggests that it is
relatively harmless to consider braided monoidal abelian groupoids as strict. However,
it is not so harmless when dealing with their homomorphisms since not every braided
monoidal functor is isomorphic to a strict one (i.e., one as in (4.18) in which the
structure isomorphisms ϕx,y and ϕ0 are all identities). Indeed, it is possible to find
two braided strict monoidal abelian groupoids, say M and M′, that are related by a
braided monoidal equivalence between them but there is no strict monoidal equivalence
either from M to M′ nor from M′ to M.
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Our goal is to state a classification for braided monoidal abelian groupoids, where
two of them connected by a braided monoidal equivalence are considered the same.
The main result in this section is the following:

Theorem 4.3 (Classification of Braided Monoidal Abelian Groupoids)
(i) For any braided monoidal abelian groupoid M, there exist a commutative

monoid M , an HM -module A, a commutative 3-cocycle (h, µ) ∈ Z3
c (M,A), and a

braided monoidal equivalence

Σ(M,A, (h, µ)) 'M.

(ii) For any two commutative 3-cocycles (h, µ) ∈ Z3
c (M,A), (h′, µ′) ∈ Z3

c (M ′,A′),
there is a braided monoidal equivalence

Σ(M,A, (h, µ)) ' Σ(M ′,A′, (h′, µ′))

if and and only if there exist an isomorphism of monoids i : M ∼= M ′ and a natural
isomorphism ψ : A ∼= i∗A′, such that the equality of cohomology classes below holds.

[h, µ] = ψ−1
∗ i∗[h′, µ′] ∈ H3

c (M,A)

Proof: (i) Let M = (M,⊗, I,a, l, r, c) be any given braided monoidal abelian grou-
poid.

In a first step, we assume that M is totally disconnected and strictly unitary, in
the sense that its unit constraints lx and rx are all identities. Then, a system of data
(M,A, (h, µ)), such that Σ(M,A, (h, µ)) =M as braided abelian groupoids, is defined
as follows:

• The monoid M . Let M = ObM be the set of objects of M. As in the proof
of Theorem 3.1 (i), the tensor functor determines a multiplication on M which is
associative, commutative and unitary.

• The HM -module A. For each a ∈M = ObM, let A(a) = AutM(a) be the vertex
group of the underlying groupoid at a. The group homomorphisms ⊗ : A(a)×A(b)→
A(ab) verifies the equalities (3.20), since the diagrams below commute due to the
naturality of the structure constraints and the braiding.

(ab)c

(ua⊗ub)⊗uc
��

aa,b,c // a(bc)

ua⊗(ub⊗uc)
��

(ab)c
aa,b,c // a(bc)

ab

ua⊗ub
��

ca,b // ba

ub⊗ua
��

ab
ca,b // ba

ea = a

0e⊗ua
��

0a // a

ua

��
ea = a

0a // a

Then, writing as in the proof of Theorem 3.1 (i), b∗ : A(a) → A(ab) for the
homomorphism such that b∗ua := 0b ⊗ ua = ua ⊗ 0b, the equalities (3.21) hold and
so the assignments a 7→ A(a), (a, b) 7→ b∗ : A(a) → A(ab), define an abelian group
valued functor on HM , as required.
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• The 3-cocycle (h, µ) ∈ Z3
c (M,A). The associativity constraint and the braiding

ofM are necessarily written in the form aa,b,c = h(a, b, c) and ca,b = µ(a, b), for some
given lists

(
h(a, b, c) ∈ A(abc)

)
a,b,c∈M and

(
µ(a, b) ∈ A(ab)

)
a,b∈M . Since M is strictly

unitary, equations in (1.2) and (1.3) give the normalization conditions h(a, e, b) =
0 = h(e, a, b) = h(a, b, e) for h, while equations in (4.16) imply the normalization
conditions µ(a, e) = 0 = µ(e, a) for µ. Thus, (h, µ) ∈ C3

c (M,A) is a commutative
3-cochain, which is actually a 3-cocycle since the coherence conditions (1.1), (4.14),
and (4.15) are now written as

h(a, b, cd) + h(ab, c, d) = a∗h(b, c, d) + h(a, bc, d) + d∗h(a, b, c)

b∗µ(a, c) + h(b, a, c) + c∗µ(a, b) = h(b, c, a) + µ(a, bc) + h(a, b, c),

b∗µ(a, c)− h(a, c, b) + a∗µ(b, c) = −h(c, a, b) + µ(ab, c)− h(a, b, c),

which amount to the cocycle condition ∂3(h, µ) = (0, 0, 0).
Since an easy comparison (see Example 4.2) shows thatM = Σ(M,A, (h, µ)), the

proof of this part is complete, under the hypothesis of being M totally disconnected
and strictly unitary.

It remains to prove that the braided monoidal abelian groupoid M is braided
monoidal equivalent to another one M′ that is totally disconnected and strictly uni-
tary. To do that, we proceed as in the proof of Lemma 3.3. We begin by assuming
that M is strictly unitary (see Remark 4.2). Then we combine the transport process
by Saavedra [66, I, 4.4.5] and Joyal-Street [50, Example 2.4], which shows how to
transport the braided monoidal structure on a monoidal abelian groupoid along an
equivalence on its underlying groupoid, with the generalized Brandt’s theorem, which
asserts that every groupoid is equivalent (as a category) to a totally disconnected
groupoid [46, Chapter 6, Theorem 2]. We leave the details to the reader since they
are very similar to those in Lemma 3.3.

(ii) We follow the same lines than the ones used in the proof of Theorem 3.1 (ii).
Suppose there is an isomorphism of monoids i : M ∼= M ′ and a natural isomor-

phism ψ : A ∼= i∗A′, such that ψ∗[h, µ] = i∗[h′, µ′] ∈ H3
c (M, i∗A′). Then there is a

commutative 2-cochain g ∈ C2
c (M, i∗A′) verifying

ψabch(a, b, c) =h′(ia, ib, ic) + (ia)∗g(b, c)− g(ab, c) + g(a, bc)− (ic)∗g(a, b), (4.21)

ψabµ(a, b) =µ′(ia, ib)− g(a, b) + g(b, a). (4.22)

and so we have a braided isomorphism

Σ(i, ψ, g) = (F,ϕ, ϕ0) : Σ(M,A, (h, µ))→ Σ(M ′,A′, (h′, µ′)) (4.23)

which is defined as follows. The underlying functor acts by F (ua : a→ a) = (ψa(ua) :
ia → ia). The structure isomorphisms of F are given by ϕa,b = g(a, b) : (ia) (ib) →
i(ab), and ϕ0 = 0e′ : e′ → ie = e′. So defined, it is plain to see that F is an
isomorphism between the underlying groupoids. The isomorphisms ϕa,b are natural if
the equalities as in (3.26) hold, but these are a consequence of the naturality of ψ.
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The coherence condition (1.5) can be verified using (4.21) as in (3.28), while con-
dition (4.19) as follows

ϕb,a + cFa,Fb = g(b, a) + µ′(ia, ib)
(4.22)

= ψab(µ(a, b)) + g(a, b) = F (ca,b) + ϕa,b. (4.24)

Finally, the conditions in (1.6) trivially follow from the equalities g(a, e) = 0ia =
g(e, a).

Now, take

F = (F,ϕ, ϕ0) : Σ(M,A, (h, µ))→ Σ(M ′,A′, (h′, µ′))

any braided equivalence, which, by [22, Lemma 18], we assume is strictly unitary in
the sense that ϕ0 = 0e′ : e′ → e′ = Fe. Since the underlying functor is an equivalence
between totally disconnected groupoids, it has to be an isomorphism.

As in Theorem 3.1 (ii), we write i : M ∼= M ′ for the bijection describing the action
of F on objects, and ψa : A(a) ∼= A′(ia) for the isomorphism giving the action of F
on automorphisms. Then i is an isomorphism of monoids and ψ : A ∼= i∗A′ a natural
isomorphism between the HM -modules.

Finally, if we denote g(a, b) = ϕa,b, for each a, b ∈M , the equations g(a, e) = 0ia =
g(e, a) hold due to the coherence equations (1.6), and thus we have a commutative
2-cochain

g(F ) =
(
g(a, b) ∈ A′(i(ab))

)
a,b∈M , (4.25)

which satisfies the equations (4.21) and (4.22) due to the coherence equations (1.5)
and (4.19), respectively. Hence, ψ∗(h, µ) = i∗(h′, µ′) − ∂2g and, therefore, we have
that [h, µ] = ψ−1

∗ i∗[h′, µ′] ∈ H3
c (M,A). �

A braided categorical group [50, Section 3] is a braided monoidal abelian groupoid
M = (M,⊗, I,a, l, r, c) in which, for any object x, there is an object x∗ with an
arrow x ⊗ x∗ → I. By Proposition 1.3 (ii) we know that the hypothesis of being
abelian is not needed here, since every monoidal groupoid in which every object has
a quasi-inverse is always abelian. The cohomological classification of these braided
categorical groups was stated and proved by Joyal and Street [50, Theorem 3.3] by
means of Eilenberg-Mac Lane’s commutative cohomology groups H3

c (G,A), of abelian
groups G with coefficients in abelian groups A (see Example 4.1). Next, we obtain
Joyal-Street’s classification result as a corollary of Theorem 4.3.

Corollary 4.1 (i) For any abelian groups G and A, and any 3-cocycle (h, µ) ∈
Z3

c (G,A), the braided abelian groupoid Σ(G,A, (h, µ)) is a braided categorical group.
(ii) For any braided categorical group M, there exist abelian groups G and A, a

3-cocycle (h, µ) ∈ Z3
c (G,A), and a braided monoidal equivalence

Σ(G,A, (h, µ)) 'M.

(iii) For two commutative 3-cocycles (h, µ) ∈ Z3
c (G,A) and (h′, µ′) ∈ Z3

c (G′, A′),
where G,G′, A and A′ are abelian groups, there is a braided monoidal equivalence
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Σ(G,A, (h, µ)) ' Σ(G′, A′, (h′, µ′))

if and only if there exist isomorphism of groups i : G ∼= G′ and ψ : A ∼= A′, such that
the equality of cohomology classes below holds.

[h, µ] = ψ−1
∗ i∗[h′, µ′] ∈ H3

c (G,A)

Proof: (i) Recall from Example 4.1 that we are here regarding A as the constant
HG-module it defines. Since G is a group, for any object a of Σ(G,A, (h, µ)) (i.e., any
element a ∈ G) we have a ⊗ a−1 = aa−1 = e = I. Thus, Σ(G,A, (h, µ)) is actually a
braided categorical group.

(ii) Let M a braided categorical group. By Theorem 4.3(i), there are a commu-
tative monoid M , an HM -module A, a commutative 3-cocycle (h, µ) ∈ Z3

c (M,A),
and a braided monoidal equivalence Σ(M,A, (h, µ)) 'M. Then, Σ(M,A, (h, µ)) is a
braided categorical group as M is and, for any a ∈M , it must exist another a∗ ∈M
with a morphism a ⊗ a∗ = aa∗ → I = e in Σ(M,A, (h, µ)); this implies that aa∗ = e
in M , since the groupoid is totally disconnected, whence a∗ = a−1 is an inverse of a
in M . Therefore, M = G is actually an abelian group.

Let A(e) be the abelian group attached by A at the unit of G. Then, a natural
isomorphism φ : A ∼= A(e) is defined such that, for any a ∈ G, φa = a−1

∗ : A(a) →
A(e). Therefore, if we take (h′, µ′) = φ∗(h, µ) ∈ Z3

c (G,A(e)), Theorem 4.3(ii) gives
the existence of a braided equivalence Σ(G,A, (h, µ)) ' Σ(G,A(e), (h′, µ′)), whence
Σ(G,A(e), (h′, µ′)) and the given M are braided monoidal equivalent.

(iii) This follows directly form Theorem 4.3(ii). �

The classification result in Theorem 4.3 involves an interpretation of the elements
of H3

c (M,A) in terms of certain 2-dimensional coextensions of M by A, such as the
elements of H2

c (M,A) are interpreted as commutative monoid coextensions. To state
this fact, in next definition we regard any commutative monoid M as a braided abelian
discrete monoidal groupoid (i.e., whose only morphisms are the identities), on which
the tensor product is multiplication in M . Thus, if M = (M,⊗, I,a, l, r, c) is any
braided monoidal abelian groupoid, a braided monoidal functor p : M → M is the
same thing as a map p : ObM→M satisfying p(x) = p(y) whenever HomM(x, y) 6= ∅,
p(x⊗ y) = p(x) p(y), and p(I) = e.

Definition 4.2 Let M be a commutative monoid, and let A be an HM -module. A
braided 2-coextension of M by A is a surjective braided monoidal functor p :M�M ,
where M is a braided monoidal abelian groupoid, such that, for any a ∈M , it is given
an (associative and unitary) action of the groupoid K(A(a), 1) on the fibre groupoid
p−1(a) by means of a functor

K(A(a), 1)×p−1(a)→ p−1(a), (u, x
f→ y) 7→ (x

u·f−→ y)

which is simply-transitive, in the sense that the induced functor
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K(A(a), 1)×p−1(a)→ p−1(a)×p−1(a), (u, f) 7→ (u·f, f),

is an equivalence, and satisfies

(u · f)⊗ (v · g) = (a∗v + b∗u) · (f ⊗ g), (4.26)

for every a, b ∈M , u ∈ A(a), v ∈ A(b), f : x→ y ∈ p−1(a), and g : z → t ∈ p−1(b).

Let us point out that if p(x) = p(y), for some x, y ∈ ObM, then HomM(x, y) 6= ∅
since the functor K(A(a), 1)×p−1(a)→ p−1(a)×p−1(a), for a = p(x), is essentially sur-
jective. Furthermore, the functoriality of the action means that if f, f ′ are composible
arrows in p−1(a) then, for any u, u′ ∈ A(a), we have

(u+ u′) · (f + f ′) = u · f + u′ · f ′.

In particular,

f + u · f ′ = u · (f + f ′) = u · f + f ′. (4.27)

Remark 4.3 These braided 2-coextensions can be seen as a sort of (braided, non-
strict) linear track extensions in the sense of Baues, Dreckmann, and Jibladze [3, 4].
Briefly, note that to give a commutative 2-coextension p : M � M , as above, is
equivalent to giving a surjective braided monoidal functor p :M�M satisfying

p(x) = p(y) if and only if HomM(x, y) 6= ∅,

together with a family of isomorphisms of groups
(
ψx : A(p(x)) ∼= AutM(x)

)
x∈ObM

satisfying

ψyu = f + ψxu− f, f ∈ HomM(x, y),

ψxu⊗ ψyv = ψx⊗y((px)∗v + (py)∗u), x, y ∈ ObM.

The family of isomorphisms (ψx)x∈ObM and the action of A on M are related
each other by the equations u · f = f + ψx(u), for any x ∈ ObM, u ∈ A(p(x)), and
f ∈ HomM(x, y).

Let Ext2
c(M,A) denote the set of equivalence classes of such braided 2-coextensions

of M by A, where two of them, say p : M � M and p′ : M′ � M , are equivalent
whenever there is a braided monoidal equivalence F : M → M′ such that p′F = p
and F (u · f) = u · F (f), for any morphism f : x → y in M and u ∈ A(p(x)). Then,
we have

Theorem 4.4 (Classification of braided 2-coextensions) For any commutative
monoid M , and any HM -module A, there is a natural bijection

H3
c (M,A) ∼= Ext2

c(M,A).
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Proof: This is a consequence of Theorem 4.3 with only a slight adaptation of the argu-
ments used for its proof. For any 3-cocycle (h, µ) ∈ Z3

c (M,A), the braided monoidal
abelian groupoid Σ(M,A, (h, µ)) in (4.17) comes with a natural structure of braided
2-coextension of M by A, in which the surjective braided functor

π : Σ(M,A, (h, µ))�M

is given by the identity map on objects, π(a) = a. The fibre groupoid over any a ∈M
is just π−1(a) = K(A(a), 1), and the action functor

K(A(a), 1)× π−1(a)→ π−1(a)

is given by addition in A(a), that is, u · v = u+ v. If (h′, µ′) ∈ Z3
c (M,A) in any other

3-cocycle such that (h, µ) = (h′, µ′)− ∂2g, for some 2-cochain g ∈ C2
c (M,A), then the

associated braided monoidal isomorphism in (4.20),

F (g) : Σ(M,A, (h, µ))→ Σ(M,A, (h′, µ′)),

is easily recognized as an equivalence between the braided coextensions

Σ(M,A, (h, µ))�M

and
Σ(M,A, (h′, µ′))�M.

Thus, we have a well-defined map

H3
c (M,A)→ Ext2

c(M,A), [h, µ] 7→ [Σ(M,A, (h, µ))
π
�M ].

To see that it is injective, suppose (h, µ), (h′, µ′) ∈ Z3
c (M,A), such that the as-

sociated braided 2-coextension are made equivalent by a braided monoidal functor,
say

F : Σ(M,A, (h, µ))→ Σ(M,A, (h′, µ′)),
which can be assumed to be strictly unitary [22, Lemma 18]. Then, the 2-cochain
g(F ) ∈ C2

c (M,A) built in (4.25) satisfies that (h, µ) = (h′, µ′)− ∂2g, whence [h, µ] =
[h′, µ′] ∈ H3

c (M,A).
Finally, to prove that the map is surjective, let p :M�M be any given braided

2-coextension of M by A. By Theorem 4.3(i) and Lemma 4.1 below, we can assume
that M = Σ(M ′,A′, (h′, µ′)), for some commutative monoid M ′, an HM ′-module
A′, and a 3-cocycle (h′, µ′) ∈ Z3

c (M ′,A′). Then, a monoid isomorphism i : M ∼=
M ′ and a natural isomorphism ψ : A ∼= i∗A′ come determined by the equations
p(ia) = a and ψa(u) = u · 0ia, for any a ∈ M and u ∈ A(a). Furthermore, taking
(h, µ) = ψ−1

∗ i∗(h′, µ′) ∈ Z3
c (M,A), the braided monoidal isomorphism in (4.23) for

the 2-cochain g = 0,

F (0) : Σ(M,A, (h, µ)) ∼= Σ(M ′,A′, (h′, µ′)),

is then easily seen as an equivalence between π : Σ(M,A, (h, µ)) � M and p :M �
M . �
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Lemma 4.1 Let p′ : M′ � M be a braided 2-coextension of M by A, and suppose
thatM is any braided monoidal abelian groupoid which is braided monoidal equivalent
to M′. Then M can be endowed with a braided 2-coextension structure of M by A,
say p : M � M , such that p : M � M and p′ : M′ � M are equivalent braided
2-coextensions.

Proof: Let F = (F,ϕ) :M→M′ be a braided monoidal equivalence. Then, a braided
2-coextension structure of M is given as follows: Let

p = p′F :M→M

be the braided monoidal functor composite of p′ and F . This is clearly surjective, since
p′ is and F is essentially surjective. For every a ∈M , let K(A(a), 1)×p−1(a)→ p−1(a)

be the action defined by (u, x
f→ y) 7→ (x

u·f−→ y), where u · f is unique arrow in M
such that

F (u · f) = u · Ff. (4.28)

This is a simply-transitive well-defined action since F is a full, faithful, and essen-
tially surjective functor. In order to check equation (4.26), we have

F ((u · f)⊗ (v · g)) + ϕx⊗z = ϕy⊗t + F (u · f)⊗ F (v · g) (nat. of ϕ)
= ϕy⊗t + (u · Ff)⊗ (v · Fg) (4.28)
= ϕy⊗t + (a∗u+ b∗v) · (Ff ⊗ Fg) ((4.26) for M′)
= (a∗v + b∗v) · F (f ⊗ g) + ϕx⊗z (nat. of ϕ, (4.27))
= F ((a∗v + b∗u) · (f ⊗ g)) + ϕx⊗z (4.28)

and the result follows since F is faithful and ϕx⊗z is an isomorphism. Thus we have
defined the braided 2-coextensionM�M , which is clearly equivalent to the original
one by means of F . �





Chapter 5

Higher cohomologies of
commutative monoids

In [57, Chapter X, Section 12], Mac Lane explains how to define, for each integer r ≥ 0,
the rth level cohomology groups of a (skew) commutative DGA-algebra (differential
graded augmented algebra) over a commutative ring K, say D: Take the commutative
DGA-algebra Br(D), obtained by iterating r times the reduced bar construction on
D, and then, for any K-module A, define

Hn(D, r;A) = Hn
(
HomK(Br(D), A

)
, n = 0, 1, . . . ,

where HomK(Br(D), A) is the cochain complex obtained by applying the functor
HomK(−, A) to the underlying chain complex of K-modules Br(D).

This process may be applied, for example, when D = ZG is the group ring of an
abelian group G, regarded as a trivially graded DGA-ring, augmented by α : ZG→ Z
with α(x) = 1 for all x ∈ G. Thus, the Eilenberg-Mac Lane rth level cohomology
groups of the abelian group G with coefficients in an abelian group A are defined by

Hn(G, r;A) = Hn(ZG, r;A). (5.1)

In particular, the first level cohomology groups Hn(G, 1;A) = Hn(G,A) are the ordi-
nary cohomology groups of G with coefficients in the trivial G-module A [57, Chapter
IV, Corollary 5.2]. These rth level cohomology groups of abelian groups were studied
primarily with interest in Algebraic Topology. For instance, they have a topological
interpretation in terms of the Eilenberg-Mac Lane spaces K(G, r), owing to the iso-
morphisms Hn(G, r;A) ∼= Hn

(
K(G, r), A

)
[31, Theorem 20.3]. However, they early

found application in solving purely algebraic problems. For example, we could re-
call that central group extensions of G by A are classified by cohomology classes in
H2(G, 1;A), while abelian group extensions of G by A are classified by cohomology
classes in H3(G, 2;A) [32, Section 26, (26.2), (26.3)]; or that second level cohomology
classes in H4(G, 2;A) classify braided categorical groups [50, Theorem 3.3], while third
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level cohomology classes in H5(G, 3;A) classify Picard categories [69, II, Proposition
5].

Here, we introduce a generalization of Eilenberg-Mac Lane’s theory for abelian
groups to commutative monoids. The obtained rth level cohomology groups of a
commutative monoid M , denoted by

Hn(M, r;A),

enjoy many desirable properties, whose study this chapter and a companion paper
[14] are mainly dedicated to. In our development, the role of coefficients is now played
by HM -modules, which, recall, are abelian group objects in the comma category of
commutative monoids over M (see 3.1.1).

For any given commutative monoid M , the category of chain complexes of HM -
modules is an abelian category. In Section 5.1, we show that it is also a symmetric
monoidal category, with a distributive tensor product A⊗HM B, and whose unit object
is Z, the concentrated in degree zero complex defined by the constant HM -module
given by the abelian group Z of integers. Hence, commutative DGA-algebras over
HM arise as internal commutative monoids A in the symmetric monoidal category of
complexes of HM -modules, endowed with a morphism of internal monoids A → Z.

Quite similarly as for ordinary commutative DGA-algebras over a commutative
ring, a reduced bar construction A 7→ B(A) works on these DGA-algebras over HM .
Thus, B(A) is obtained from A by first totalizing the double complex of HM -modules

⊕
p≥0A/Z⊗HM

(p factors )
· · · ⊗HM A/Z ,

and then enriching the (suitably graded) totalized complex of HM -modules with a
multiplicative structure by a shuffle product. We do this in Section 5.2, where we also
define, for any HM -module B, the rth level cohomology groups of A with coefficients
in B by

Hn(A, r;B) = Hn
(
HomHM (Br(A),B)

)
, n = 0, 1, . . . .

Next, in Section 5.3 we briefly study free HM -modules. These arise as a left
adjoint construction to a forgetful functor from the category of HM -modules to the
comma category of sets over the underlying set of M . In particular, in Section 5.4 we
introduce the free HM -module on the identity map idM : M →M , denoted by ZM .
This becomes a (trivially graded) commutative DGA-algebra over HM and then, for
each integer positive r, we define the rth level cohomology groups of a commutative
monoid M with coefficients in an HM -module A by

Hn(M, r;A) = Hn(ZM, r;A). (5.2)

When M = G is an abelian group, for any integer r ≥ 0, Br(ZG) is isomorphic
to the constant DGA-algebra over HG defined by the Eilenberg-Mac Lane DGA-ring
Br(ZG) (= AN (G, r) in [31, Section 14]). Hence, for any abelian group A, viewed as a
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constant HG-module, the cohomology groups Hn(G, r;A) defined as in (5.2) are nat-
urally isomorphic to those by Eilenberg and Mac Lane in (5.1), which, recall, compute
the cohomology groups of the spaces K(G, r) as Hn(G, r;A) ∼= Hn

(
K(G, r), A

)
. In

the companion paper [14] we show that, for any commutative monoid M , there are
isomorphisms

Hn(M, r;A) ∼= Hn(W
r
M,A),

where Hn(W
r
M,A), n ≥ 0, are Gabriel-Zisman cohomology groups [37, Appendix II]

of the underlying simplicial set of the simplicial monoid W
r
M , obtained by iterating

the W construction on the constant simplicial monoid defined by M .
An analysis of the complex B(ZM), for M any commutative monoid, leads us

in Proposition 5.4 to identify the cohomology groups Hn(M, 1;A) with the standard
cohomology groups Hn

L(M,A) by Leech [53] (see Subsection 1.3.1). Recall that Leech
cohomology groups of a (not necessarily commutative) monoid M take coefficients
in DM -modules. When the monoid M is commutative, there is a natural functor
DM → HM which is the identity on objects and carries a morphism (x, y, z) of DM
to the morphism (y, xz) of HM . Via this functor, every HM -module A is regarded as
a (symmetric) DM -module and we prove that, for any commutative monoid M and
HM -module A, there are natural isomorphisms

Hn(M, 1;A) ∼= Hn
L(M,A), n = 0, 1, . . . .

For any r ≥ 2, we show explicit descriptions of the complexes Br(ZM) truncated at
dimensions ≤ r+ 3, which are useful both for theoretical and computational interests
concerning the cohomology groups Hn(M, r;A) for n ≤ r+ 2. Some conclusions here
summarize as follows:

• H0(M, r;A) ∼= H0(M, 1;A) ∼= H0
L(M,A) ∼= A(e),

where A(e) is the abelian group attached by A at the identity e of the monoid.

• Hn(M, r;A) = 0, for 0 < n < r,

• Hr(M, r;A) ∼= H1(M, 1;A) ∼= H1
L(M,A) ∼= H1

G (M,A),

• Hr+1(M, r;A) ∼= H3(M, 2;A) ∼= H2
G (M,A).

where Hn
G(M,A) denotes the n-cohomology group by Grillet (see 3.1.1).

• H4(M, 2;A) ∼= H3
c (M,A),

where H3
c (M,A) is the commutative 3-cohomology group defined in Chapter 4.

• Hr+2(M, r;A) ∼= H5(M, 3;A), for r ≥ 3.

• There are natural inclusions H3
G(M,A) ⊆ H5(M, 3;A) ⊆ H3

c (M,A).
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Most of these cohomology groups above have known algebraic interpretations.
For example, elements of H1(M, 1;A) = H1

L(M,A) are derivations [53, Chapter
II, 2.7]. Cohomology classes in H2(M, 1;A) = H2

L(M,A) are isomorphism classes
of group coextensions [53, Chapter V, Section 2] (or [74, Theorem 2]), while ele-
ments of H3(M, 2;A) = H2

G(M,A) classify abelian group coextensions [43, Chap-
ter V, Section 4]. Cohomology classes in H3(M, 1;A) = H3

L(M,A) are equivalence
classes of monoidal abelian groupoids (Theorem 1.4), elements of H4(M, 2;A) =
H3

c (M,A) are equivalence classes of braided monoidal abelian groupoids (Theorem 4.3),
and elements of H3

G(M,A) are equivalence classes of strictly commutative monoidal
abelian groupoids (Theorem 3.1). Thus, among them, only the cohomology groups
H5(M, 3;A) are pending of interpretation, and we solve this in Section 5.5. Here
we give a natural interpretation of the cohomology classes in H5(M, 3;A) in terms of
equivalence classes of symmetric monoidal abelian groupoids, that is, braided monoidal
abelian groupoids M, whose braiding constraint cx,y : x⊗ y ∼= y ⊗ x satisfy the sym-
metry condition cy,xcx,y = idx⊗y. The classification of symmetric monoidal abelian
groupoids we give extends that, above refereed, by Sinh in [69, II, Proposition 5] for
Picard categories.

In last Section 5.6, we compute the cohomology groups Hn(M, r;A), for n ≤ r+2,
when M is any cyclic monoid.

5.1 Commutative differential graded algebras over HM

Throughout this chapter M denotes, as in the preceding Chapters 3 and 4, a commu-
tative monoid whose unit is e.

In [43, Chapter XII, Section 2] Grillet observes that the category of abelian group
objects in the slice category of commutative monoids over M , CMon↓M , is equivalent
to the category of abelian group valued functors on the small category HM (see Sub-
section 3.1.1 for more details). This category of functors from HM into the category
of abelian groups will be denoted by

HM -Mod

and called the category of HM -modules. For instance, let

Z : HM → Ab, x 7→ Z(x), (5.3)

be the HM -module which associates to each element x ∈ M the free abelian group
on the generator (x), and to each pair (x, y) the isomorphism of abelian groups y∗ :
Z(x)→ Z(xy) given on the generator by y∗(x) = (xy). This is isomorphic to the HM -
module defined by the constant functor on HM which associates the abelian group of
integers Z to any x ∈M .

For two HM -modules A and B, a morphism between them (i.e., a natural trans-
formation) f : A → B consists of homomorphisms fx : A(x) → B(x), such that, for
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any x, y ∈M , the square below commutes.

A(x)
fx //

y∗
��

B(x)

y∗
��

A(xy)
fxy // B(xy)

The category of HM -modules is abelian and we refer to [57, Chapter IX, Section
3] for details. Recall that the set of morphisms between two HM -modules A and
B, denoted by HomHM (A,B), is an abelian group by objectwise addition, that is, if
f, g : A → B are morphisms, then f+g : A → B is defined by setting (f+g)x = fx+gx,
for each x ∈M . The zero HM -module is the constant functor 0 : HM → Ab defined
by the trivial abelian group 0, and the direct sum of two HM -modules A and B is
given by taking direct sum at each object, that is, (A⊕B)(x) = A(x)⊕B(x). Similarly,
all limits and colimits (in particular, kernels, images, cokernels, etc. ) in the category
HM -Mod are pointwise constructed.

Remark 5.1 Every abelian group A defines a constant HM -module, equally denoted
by A, such that A(x) = A and y∗ = idA : A(x) → A(xy), for any x, y ∈ M . In
this way, the category of abelian groups becomes a full subcategory of the category of
HM -modules.

When M = G is an abelian group, then this inclusion Ab ↪→ HG-Mod is actually
an equivalence of categories. In the other direction, we have the functor associating
to each HG-module A the abelian group A(e), and there is natural isomorphism of
HG-modules A ∼= A(e) whose component at each x ∈ G is the isomorphism of abelian
groups x−1

∗ : A(x)→ A(e).

5.1.1 Tensor product of HM-modules

For any two HM -modules A, B, their tensor product, denoted by A ⊗HM B, is the
HM -module defined as follows: It attaches to any x ∈ M the abelian group defined
by the coequalizer sequence of homomorphisms

⊕
uvw=x

Z(u)⊗A(v)⊗ B(w) φ //
ψ

//
⊕
zt=x
A(z)⊗ B(t) // // (A⊗HM B)(x),

where, for any two abelian groups A and B, A ⊗ B denotes their tensor product as
Z-modules, the direct sum on the left is taken over all triples (u, v, w) ∈M3 such that
uvw = x, the direct sum on the middle is over all pairs (z, t) ∈ M2 with zt = x, and
the homomorphisms φ and ψ are defined by

φ
(
(u)⊗ av ⊗ bw

)
= u∗av ⊗ bw ∈ A(uv)⊗ B(w),

ψ
(
(u)⊗ av ⊗ bw

)
= av ⊗ u∗bw ∈ A(v)⊗ B(uw),
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for all u, v, w ∈M with uvw = x, av ∈ A(v), and bw ∈ B(w). For any pair (x, y) ∈M2,
the homomorphism

y∗ : (A⊗HM B)(x)→ (A⊗HM B)(xy)

is given on generators by

y∗
(
az ⊗ bt

)
= y∗az ⊗ bt = az ⊗ y∗bt,

(
az ∈ A(z), bt ∈ B(t), zt = x

)
.

If f : A → A′ and g : B → B′ are morphisms of HM -modules, then there is
an induced one f ⊗ g : A ⊗HM B → A′ ⊗HM B′ such that, for each x ∈ M , the
homomorphism

(f ⊗ g)x : (A⊗HM B)(x)→ (A′ ⊗HM B′)(x)

is given on generators by

(f ⊗ g)x
(
az ⊗ bt

)
= fzaz ⊗ gtbt,

(
az ∈ A(z), bt ∈ B(t), zt = x

)
.

Thus, we have a distributive tensor functor

−⊗HM − : HM -Mod×HM -Mod→ HM -Mod.

Further, there are canonical isomorphisms of HM -modules

lA : Z⊗HM A ∼= A, cA,B : A⊗HM B ∼= B ⊗HM A,
aA,B,C : A⊗HM (B ⊗HM C) ∼= (A⊗HM B)⊗HM C,

respectively defined by the formulas

lzt((z)⊗ at) = z∗at, czt(az ⊗ bt) = bt ⊗ az,
ayzt(ay ⊗ (bz ⊗ ct)) = (ay ⊗ bz)⊗ ct,

which are easily proven to be natural and coherent in the sense of [56, Theorem
5.1]. Therefore, HM -Mod is a symmetric monoidal category. We will usually treat
the constraints above as identities, so we think of HM -Mod as a symmetric strict
monoidal category.

5.1.2 Tensor product of complexes of HM-modules

The (positive) complexes of HM -modules

A = · · · → A2
∂→ A1

∂→ A0

and the morphisms between them also form an abelian symmetric monoidal category,
where the tensor product A⊗HM B of two complexes of HM -modules A and B is the
graded HM -module whose component of degree n is

(A⊗HM B)n =
⊕

p+q=n
Ap ⊗HM Bq,
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and whose differential ∂⊗, at any x ∈M ,

∂
⊗
x : (A⊗HM B)n(x)→ (A⊗HM B)n−1(x),

is defined on generators by the Leibniz formula

∂
⊗
x (az ⊗ bt) = ∂zaz ⊗ bt + (−1)p az ⊗ ∂tbt.

for all z, t ∈ M such that zt = x, az ∈ Ap(z), bt ∈ Bq(t), and p, q ≥ 0 such that
p+ q = n.

In this monoidal category, the unit object is Z, defined in (5.3), regarded as a
complex concentrated in degree zero. The structure constraints

lA : Z⊗HM A ∼= A, cA,B : A⊗HM B ∼= B ⊗HM A,
aA,B,C : A⊗HM (B ⊗HM C) ∼= (A⊗HM B)⊗HM C,

(5.4)

are respectively defined by the formulas

lxy((x)⊗ ay) = x∗ay,
cxy
(
ax ⊗ by

)
= (−1)pq by ⊗ ax,

axyz
(
ax ⊗ (by ⊗ cz)

)
= (ax ⊗ by)⊗ cz,

for any x, y, z ∈ M , ax ∈ Ap(x), by ∈ Bq(y), and cz ∈ Cr(z). As for HM -modules, we
will treat these constraints as identities.

5.1.3 Commutative differential graded algebras over HM

A commutative differential graded algebra (DG-algebra) A over HM is defined to be
a commutative monoid in the symmetric monoidal category of complexes of HM -
modules, see [58, Chapter VII, Section 3]. Hence, A is a complex of HM -modules
equipped with a multiplication morphism of complexes ◦ : A ⊗HM A → A satisfying
the associativity ◦(◦ ⊗ id) = ◦(id ⊗ ◦) and the commutativity ◦ c = ◦, and a unit
morphism of complexes ι : Z→ A satisfying ◦(ι⊗ idA) = lA. We write

1 = ιe(e) ∈ A0(e)

and, for any x, y ∈M , ax ∈ Ap(x), and ay ∈ Aq(y),

ax ◦ ay = ◦xy(ax ⊗ ay) ∈ Ap+q(xy),

so that the algebra structure on the complexA gives us multiplication homomorphisms
of abelian groups

Ap(x)⊗Aq(y)→ Ap+q(xy), ax ⊗ ay 7→ ax ◦ ay,
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and a unit 1 ∈ A0(e), satisfying

x∗ay ◦ az = x∗(ay ◦ az) = ay ◦ x∗az, (5.5)

ax ◦ ay = (−1)pq ay ◦ ax, (5.6)

1 ◦ ax = ax = ax ◦ 1, (5.7)

ax ◦ (ay ◦ az) = (ax ◦ ay) ◦ az, (5.8)

∂xy(ax ◦ ay) = ∂xax ◦ ay + (−1)p ax ◦ ∂yay, (5.9)

for all x, y, z ∈M , ax ∈ Ap(x), ay ∈ Aq(y), and az ∈ Ar(z).
In these terms, a morphism f : A → B of commutative DG-algebras over HM is

a morphism of complexes of HM -modules such that fxy(ax ◦ ay) = fxax ◦ fyay, and
fe(1) = 1.

The category of commutative DG-algebras over HM is symmetric monoidal. The
tensor product of two of them A⊗HM B is given by their tensor product as complexes
of HM -modules endowed with multiplication such that, for u, v, x, y ∈M , au ∈ Ap(u),
etc.,

(au ⊗ bx) ◦ (ay ⊗ bz) = (au ◦ ay)⊗ (bx ◦ bz)

and with unit 1⊗1 ∈ (A⊗HMB)0(e). Observe that the canonical isomorphisms in (5.4)
are actually of DG-algebras whenever the data A, B and C therein are DG-algebras
over HM .

Commutative DG-algebras over HM which are concentrated in degree zero are the
same as commutative monoids in the symmetric monoidal category of HM -modules,
and they are simply called algebras over HM or HM -algebras. For example, Z is an
HM -algebra with multiplication the unit constraint l : Z ⊗HM Z ∼= Z and unit the
identity id : Z→ Z. In other words, Z is an HM -algebra whose unit is (e) ∈ Z(e) and
whose multiplication homomorphisms Z(x)⊗Z(y)→ Z(xy) are given by (mx)◦(ny) =
mn(xy), where mn is multiplication of m and n in the ring Z.

The augmented case is relevant. A commutative differential graded augmented
algebra (DGA-algebra) A over HM is a commutative DG-algebra over HM as above
equipped with a homomorphism of commutative DG-algebras ε : A → Z (the aug-
mentation). Such an augmentation is entirely determined by its component of degree
0, which is a morphism of HM -algebras ε : A0 → Z such that ε ∂ = 0. Morphisms of
commutative DGA-algebras over HM are those of commutative DG-algebras which
are compatible with the augmentations (i.e., εf = ε).

Remark 5.2 When M = G is a group, the equivalence between the category of
abelian groups and the category of HG-modules, described in Remark 5.1, is symme-
tric monoidal and, therefore, produces an equivalence between the category of co-
mmutative DGA-rings and the category of commutative DGA-algebras over HG. Thus
every commutative DGA-ring A defines a constant commutative DGA-algebra over
HG, equally denoted by A, and each commutative DGA-algebra over HG, A, gives
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rise to the DGA-ring A(e), which comes with a natural isomorphism of DGA-algebras
A ∼= A(e) whose component at each x ∈ G is the isomorphism of augmented chain
complexes x−1

∗ : A(x)→ A(e).

5.2 The Bar construction on commutative
DGA-algebras over HM

Let A be any given commutative DGA-algebra over HM . As we explain below, A
determines a new commutative DGA-algebra over HM , denoted by B(A) and called
the bar construction on A.

Previously to describe B(A), let us introduce complexes of HM -modules Ā, SĀ,
and TpSĀ for each integer p ≥ 0, and a double complex of HM -modules T•SA, as
follows:

The reduced complex Ā = · · · → Ā2
∂→ Ā1

∂→ Ā0 is defined to be the cokernel of

the unit morphism ι : Z → A. That is, Ā = · · · → A2
∂→ A1

∂→ A0/ιZ. Note that ι
embeds Z as a direct summand of the underlying complex A, since, being ε : A → Z
the augmentation, ει = idZ. We will use below the following notation: For any x ∈M
and each chain ax of the chain complex A(x), ε̃(ax) is the integer which express εx(ax)
as a multiple of the generator (x) of the abelian group Z(x), that is, such that

εx(ax) = ε̃(ax)(x). (5.10)

The complex SĀ is the suspension of Ā, that is, the complex of HM -modules
defined by (SĀ)p+2 = Ap+1, (SĀ)1 = A0/ιZ, (SĀ)0 = 0, and differential −∂. The
suspension map is then the morphism of complexes S : Ā → SĀ, of degree 1, defined
by

Sp = idĀp : Āp → (SĀ)p+1 = Āp.

Note that the sign in the differential of SĀ is taken so that the equality ∂S = −S∂
holds.

For each p ≥ 1, let TpSĀ be the complex of HM -modules defined by the iterated
tensor product

TpSĀ = SĀ ⊗HM · · · ⊗HMSĀ (p factors).

Thus, for any integer n ≥ 0 and x ∈ M , the abelian group (TpSĀ)n(x) is generated
by elements Sāx1 ⊗ · · · ⊗ Sāxp , that we write as

[ax1 | · · · |axp ], (5.11)

where the xi ∈ M are elements of the monoid such that x1 · · ·xp = x, and the
axi ∈ Ari(xi) are chains of the complexes of abelian groups A(xi) whose degrees
satisfy that p + r1 + · · · + rp = n. On such a generator (5.11), the differential ∂

⊗
of

TpSĀ at x,
∂
⊗
x : (TpSĀ)n(x)→ (TpSĀ)n−1(x),
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acts by

∂
⊗
x [ax1 | · · · |axp ] = −

p∑
i=1

(−1)ei−1 [ax1 | · · · |axi−1 |∂xiaxi |axi+1 | · · · |axp ],

where the exponents ei of the signs are e0 = 0 and, for i ≥ 1,

ei = i+ r1 + · · ·+ ri,

and ∂xi : Ari(xi)→ Ari−1(xi) is the differential of A at xi. Remark that the elements
(5.11) are normalized, in the sense that [ax1 | · · · |axp ] = 0 whenever some axi = xi∗1 ∈
A0(xi).

For p = 0, we take T0SĀ to be Z, but where we write [ ] for the unit (e) ∈ Z(e).
Thus, T0SĀ is the concentrated in degree 0 complex of HM -modules such that, for
any x ∈ M , T0SĀ(x) is the free abelian group on the element x∗[ ] (= [ ] if x = e),
and, for each x, y ∈M , y∗ : T0SĀ(x)→ T0SĀ(xy) is determined by y∗x∗[ ] = (yx)∗[ ].

The double complex of HM -modules

T•SA = · · · → T2SĀ ∂◦−→ T1SĀ ∂◦−→ T0SĀ

is then constructed, thanks to the multiplication ◦ in A, by the morphisms of com-
plexes of HM -modules ∂◦ : TpSĀ → Tp−1SĀ, which are of degree −1 (so that
∂◦∂

⊗
= −∂⊗∂◦) and defined, at any x ∈M , by the homomorphisms

∂◦x : (TpSĀ)n(x)→ (Tp−1SĀ)n−1(x)

given on generators as in (5.11) by

∂◦x[ax1 | · · · |axp ] = ε̃x1(ax1) x1∗[ax2 | · · · |axp ]

+

p−1∑
i=1

(−1)ei [ax1 | · · · |axi−1 |axi ◦ axi+1 |axi−1 | · · · |axp ]

+ (−1)ep ε̃xp(axp)xp ∗[ax1 | · · · |axp−1 ]

(recall the notation ε̃ from (5.10), and note that the first (resp. last) summand in the
above formula is zero whenever the degree r1 of ax1 in the chain complex A(x1) (resp.
rp of axp) is higher than zero).

All in all, we are now ready to present the bar construction B(A). As a graded
HM -module

B(A) = · · · → B(A)2
∂−→ B(A)1

∂−→ B(A)0

is defined by the HM -modules

B(A)n =
⊕

p≥0(TpSĀ)n .

Notice that ∂
⊗
B(A)n ⊆ B(A)n−1, ∂◦B(A)n ⊆ B(A)n−1, and that (∂

⊗
+ ∂◦)2 = 0.

Thus, B(A) becomes a complex of HM -modules with differential

∂ = ∂
⊗

+ ∂◦ : B(A)n → B(A)n−1.
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Proposition 5.1 B(A) is a commutative DGA-algebra over HM , with multiplication

◦ : B(A)⊗HM B(A)→ B(A)

defined, for integers m,n ≥ 0 and x, y ∈M , by the homomorphisms of abelian groups

◦ : B(A)m(x)⊗B(A)n(y)→ B(A)m+n(xy)

given by the shuffle products

[ax1 | · · · |axp ] ◦ [axp+1 | · · · |axp+q ] =
∑
σ

(−1)e(σ)
[
axσ−1(1)

| · · · |axσ−1(p+q)

]
for any xi ∈ M and axi ∈ Ari(xi), i = 1, . . . , p + q, such that x1 · · ·xp = x,
xp+1 · · ·xp+q = y, p +

∑p
i=1 ri = m, and q +

∑q
j=1 rp+j = n, where the sum is

taken over all (p, q)-shuffles σ and, for each σ, the exponent of the sign is e(σ) =∑
(1 + ri)(1 + rp+j) summed over all pairs (i, p+ j) such that σ(i) > σ(p+ j).
The unit is [ ] ∈ B(A)0(e), that is, the unit morphism ι : Z → B(A) is the

isomorphism of HM -modules ι : Z ∼= B(A)0 given by ιx(x) = x∗[ ], for any x ∈ M ,
and the augmentation ε : B(A) → Z is defined by the isomorphism of HM -modules
ε = ι−1 : B(A)0

∼= Z such that εx(x∗[ ]) = (x), for any x ∈M .

Proof: We give an indirect proof, by using that the category of HM -modules is closely
related to the category ZM -Mod, of ordinary modules over the monoid ring ZM .

There is an exact faithful functor Γ : HM -Mod → ZM -Mod, which carries any

HM -module A to the ZM -module defined by the abelian group ΓA =
⊕

x∈M A(x),

with M -action of an element y ∈M on an element ax ∈ A(x) given by y ax = y∗ax ∈
A(xy). This functor Γ is left adjoint to the functor which associates to any ZM -module
A the constant on objects HM -module defined by the underlying abelian group A,
with y∗ : A→ A, for any y ∈M , the homomorphism of multiplication by y [52].

It is plain to see that Γ is a symmetric strict monoidal functor, that is, ΓZ =
ZM , for any HM -modules A and B, Γ(A ⊗HM B) = ΓA ⊗ZM ΓB, and it carries the
associativity, unit, and commutativity constraints of the monoidal category of HM -
modules to the corresponding ones of the category of ZM -modules. Then, the same
properties hold for the induced functor Γ from the symmetric monoidal category of
complexes of HM -modules to the the symmetric monoidal category of complexes of
ZM -modules. It follows that Γ transforms commutative monoids in the category of
complexes of HM -modules (i.e. commutative DG-algebras over HM) to commutative
monoids in the category of ZM -modules (i.e., commutative DG-algebras over ZM),
and therefore Γ also transform commutative DGA-algebras over HM to commutative
DGA-algebras over the monoid ring ZM .

Now, given A, a commutative DGA-algebra over HM , let B(ΓA) be the commu-
tative DGA-algebra over ZM obtained by applying the ordinary Eilenberg-Mac Lane
bar construction on ΓA [57, Chapter X, Theorem 12.1]. A direct comparison shows
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that B(ΓA) = ΓB(A) as complexes of ZM -modules, and also that its multiplication,
unit, and augmentation are, respectively, just the morphisms

B(ΓA)⊗ZM B(ΓA) = Γ
(
B(A)⊗HM B(A)

) Γ◦ // ΓB(A) = B(ΓA) ,

ZM = ΓZ Γι // ΓB(A) = B(ΓA), B(ΓA) = ΓB(A)
Γε // ΓZ = ZM.

Then, as B(ΓA) is actually a commutative DGA-algebra over ZM , it follows that the
equalities

Γ
(
◦ (◦ ⊗ idB(A))

)
= Γ

(
◦ (idB(A) ⊗ ◦)

)
, Γ(◦ cB(A),B(A)) = Γ◦,

Γ(◦(ι⊗ idB(A))) = ΓlB(A), Γ(◦(ε⊗ ε)) = Γ(ε◦), Γ(ει) = ΓidZ.

hold. Therefore, the result, that is, that B(A) is a commutative DGA-algebra over
HM , follows since the functor Γ is faithful. �

Remark 5.3 Observe, as in [31, Section 7], that the shuffle product ◦ on B(A) can
also be expressed by the recursive formula below, where α = [ax1 | · · · |axp ] ∈ B(A)r(x),
β = [by1 | · · · |byq ] ∈ B(A)s(y), az ∈ Am(z) and bt ∈ An(t).

[α | az] ◦ [β | bt] = [[α | az] ◦ β | bt] + (−1)r(n+s+1)[α ◦ [β | bt] | az] (5.12)

Let us stress the suspension morphism of complexes of HM -modules, of degree 1
(hence satisfying ∂ S = −S ∂),

S : A → B(A), (5.13)

which is defined, at any x ∈M , by Sxax = [ax] ∈ B(A)(x), for any chain ax of A(x).

Such as Mac Lane does in [57, Chapter X, Section 12] for ordinary commutative
DGA-algebras over a commutative ring, the cohomology of a commutative DGA-
algebra over HM can be defined in “stages” or “levels”. If A is any commutative
DGA-algebra over HM , then B(A) is again a commutative DGA-algebra over HM ,
so an iteration is possible to form Br(A) for each integer r ≥ 1. Hence, we define the
rth level cohomology groups of A with coefficients in an HM -module B, denoted by
Hn(A, r;B), as

Hn(A, r;B) = Hn
(
HomHM (Br(A),B)

)
, n = 0, 1, . . . ,

where HomHM (Br(A),B) is the cochain complex obtained by applying the functor
HomHM (−,B) to the underlying chain complex of HM -modules Br(A).

Remark 5.4 When the bar construction above is applied on the constant DGA-
algebra over HM defined by a commutative DGA-ring A, the result is just the constant
DGA-algebra over HM defined by the commutative DGA-ring obtained by applying
on A the Eilenberg-Mac Lane reduced bar construction. Hence, the notation B(A) is
not confusing.
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If A and B are commutative DGA-algebras over HM , then we say that two mor-
phisms of DGA-algebras f : A → B and g : B → A form a contraction whenever
fg = idB, and there exists an homotopy of morphisms of complexes Φ : gf ⇒ idA
satisfying the conditions

Φg = 0, fΦ = 0, ΦΦ = 0. (5.14)

Paralleling the proof by Eilenberg and Mac Lane of [31, Theorem 12.1], one proves
the following:

Lemma 5.1 If f : A → B and g : B → A form a contraction of commutative DGA-
algebras over HM , then the induced B(f) : B(A) → B(B) and B(g) : B(B) → B(A)
also form a contraction.

5.3 Free HM-modules

Let Set↓M be the comma category of sets over the underlying set of M ; that is, the
category whose objects S = (S, π) are sets S endowed with a map π : S → M , and
whose morphisms are maps ϕ : S → T such that πϕ = π. There is a forgetful functor

U : HM -Mod→ Set↓M ,

which carries any HM -module A to the disjoint union set

UA =
⋃
x∈M
A(x) = {(x, ax) | x ∈M, ax ∈ A(x)},

endowed with the projection map π : UA →M , π(x, ax) = x. A morphism f : A → B
is sent to the map Uf : UA → UB given by Uf(x, ax) = (x, fxax). There is also a free
HM -module functor

Z : Set↓M→ HM -Mod, (5.15)

which is defined as follows: If S is any set over M , then ZS is the HM -module such
that, for each x ∈M ,

ZS(x) = Z{(u, s) ∈M × S | uπ(s) = x}

is the free abelian group with generators all pairs (u, s), where u ∈M and s ∈ S, such
that uπ(s) = x. We usually write (e, s) simply by s; so that each element of s ∈ S is
regarded as an element s ∈ ZS(πs). For any x, y ∈M , the homomorphism

y∗ : ZS(x)→ ZS(xy)

is defined on generators by y∗(u, s) = (uy, s). If ϕ : S → T is any map of sets over M ,
the induced morphism Zϕ : ZS → ZT is given, at each x ∈M , by the homomorphism
(Zϕ)x : ZS(x)→ ZT (x) defined on generators by (Zϕ)x(u, s) = (u, ϕs).
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Proposition 5.2 The functor Z is left adjoint to the functor U . Thus, for S any set
over M , to each HM -module A and each list of elements as ∈ A(πs), one for each
s ∈ S, there is an unique morphism of HM -modules f : ZS → A with fπs(s) = as for
every s ∈ S.

Proof: At any set S over M , the unit of the adjunction is the map

ν : S → UZS = {(x, ax) | x ∈M, ax ∈ ZS(x)}, s 7→ (πs, s).

IfA is an HM -module and ϕ : S → UA is any map over M , then, the unique morphism
of HM -modules f : ZS → A such that (Uf) ν = ϕ is determined by the equations
fx(u, s) = u∗ϕ(s), for any x ∈M and (u, s) ∈M × S with uπ(s) = x. �

The category Set ↓ M has a symmetric monoidal structure, where the tensor
product of two sets over M , say S and T , is the cartesian product set of S × T
with π(s, t) = π(s)π(t). The unit object is provided by the unitary set {e} with
π(e) = e ∈ M , and the associativity, unit, and commutativity constraints are the
obvious ones. Hereafter, the category Set ↓M will be considered with this monoidal
structure1.

Proposition 5.3 The free HM -module functor (5.15) is symmetric monoidal, that
is, there are natural and coherent isomorphisms of HM -modules

Z(S × T ) ∼= ZS ⊗HM ZT, Z{e} ∼= Z,

for S and T any sets over M .

Proof: For S, T any given sets over M , the isomorphism f : Z(S×T ) ∼= ZS⊗HM ZT
is the morphism of HM -modules such that, for any (s, t) ∈ S × T , fπ(s,t)(s, t) = s⊗ t.
Observe that, for any x ∈M , the abelian group Z(S×T )(x) is free with generators the
elements (u, s, t) = u∗(s, t), with u ∈ M , s ∈ S, and t ∈ T , such that uπ(s)π(t) = x,
while (ZS⊗HM ZT )(x) is the abelian group generated by the elements (u, s)⊗(v, t) =
u∗s ⊗ v∗t, with u, v ∈ M , s ∈ S, and t ∈ T , such that uπ(s) v π(t) = x, with the
relations u∗s ⊗ v∗t = (uv)∗(s ⊗ t). Then, the homomorphism fx : Z(S × T )(x) →
(ZS ⊗HM ZT )(x), which acts on elements of the basis by fx(u∗(s, t)) = u∗(s ⊗ t), is
clearly an isomorphism of abelian groups.

The isomorphism f : Z{e} ∼= Z is the morphism of HM -modules such that fe(e) =
e. Observe that, for any x ∈M , the isomorphism fx is the composite

Z{e}(x) = Z{(u, e) | ue = x} = Z{(x, e)} ∼= Z(x).

It is straightforward to see that the isomorphisms f above are natural and coherent,
so that Z is actually a symmetric monoidal functor. �

1The category Set ↓M has a different monoidal structure where the tensor product is given by
the fibre-product S ×M T with π(s, t) = π(s) = π(t).
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Corollary 5.1 For S and T any two sets over M , the tensor product HM -module
ZS⊗HM ZT is free on the set of elements s⊗t, s ∈ S, t ∈ T , with π(s⊗t) = π(s)π(t).

Since the functor Z is symmetric monoidal, it transports commutative monoids
in Set ↓ M to commutative monoids in HM -Mod, that is, to algebras over HM .
As a commutative monoid in the symmetric monoidal category Set ↓ M is merely
a commutative monoid over M , that is, a commutative monoid S endowed with a
homomorphism π : S →M , the corollary below follows.

Corollary 5.2 If S is a commutative monoid over M , then the free HM -module ZS
is an algebra over HM . The multiplication morphism ◦ : ZS ⊗HM ZS → ZS is the
composite

ZS ⊗HM ZS ∼= Z(S × S)
Zm // ZS,

where m : S × S → S is the homomorphism of multiplication in S, m(s, s′) = ss′,

and the unit morphism ι : Z → ZS is the composite Z ∼= Z{e} Zi // ZS , where

i : {e} → S is the trivial homomorphism mapping the unit of M to the unit of S.

5.4 The cohomology groups Hn(M, r;A)

Let us consider the commutative monoid M over itself with π = idM : M → M .
Then, by Corollary 5.2, the free HM -module ZM is an algebra over HM . Explicitly,
this is described as follows: For each x ∈M ,

ZM(x) = Z{(u, v) | uv = x}

is the free abelian group with generators all pairs (u, v) ∈ M ×M such that uv = x.
For any x, y ∈M , the homomorphism y∗ : ZM(x)→ ZM(xy) is given on generators
by y∗(u, v) = (yu, v), and the homomorphism of multiplication

◦ : ZM(x)⊗ZM(y)→ ZM(xy)

is defined on generators by (u, v)⊗ (w, t) 7→ (u, v) ◦ (w, t) = (uw, vt), for any u, v, w, t

in M such that uv = x and wt = y. The unit is (e, e) ∈ ZM(e). We see each element
x ∈M as an element of ZM(x) by means of the identification x = (e, x), so that that
any generator (u, v) of ZM(x) can be write as u∗v.

By Proposition 5.2, if A is any HM -module, for any list of elements ax ∈ A(x),
one for each x ∈M , there is an unique morphism of HM -modules f : ZM → A such
that each homomorphism fx : ZM(x) → A(x) verifies that fx(x) = ax (explicitly,
fx acts on generators by fx(u, v) = u∗av). Furthermore, it is plain to see that, if A
is an algebra over HM , then f is a morphism of algebras if and only if ae = 1 and
ax ◦ ay = axy for all x, y ∈M .
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Hereafter, we regard ZM as a commutative DGA-algebra over HM with the trivial
grading, that is, with (ZM)n = 0 for n > 0 and (ZM)0 = ZM , and with augmenta-
tion the morphism of HM -algebras

ε : ZM → Z,

such that, for any x ∈M , εx(x) = (x) ∈ Z(x). Then, we define, for each integer r ≥ 1,
the rth level cohomology groups of the commutative monoid M with coefficients in an
HM -module A by

Hn(M, r;A) = Hn(ZM, r;A), n = 0, 1, . . . , (5.16)

or, in other words,

Hn(M, r;A) = Hn
(
HomHM (Br(ZM),A)

)
,

where HomHM (Br(ZM),A) is the cochain complex obtained by applying the abelian
group valued functor HomHM (−,A) to the neglected chain complex of HM -modules
Br(ZM).

Remark 5.5 When M = G is an abelian group, ZG is isomorphic to the constant
DGA-algebra overHG defined by the commutative DGA-ring ZG(e) (see Remark 5.2),
which is itself isomorphic to the trivially graded DGA-ring defined by the group ring
ZG with augmentation the ring homomorphism α : ZG → Z such that α(x) = 1 for
any x ∈ G. To see this, observe that ZG(e) is the commutative ring whose underlying
abelian group is freely generated by the elements of the form (x−1, x), x ∈ G, with
multiplication such that (x−1, x) ◦ (y−1, y) = ((xy)−1, xy), and unit (e, e) = e. The
map (x−1, x) 7→ x clearly determines a ring isomorphism between ZG(e) and the
group ring ZG, which is compatible with the corresponding augmentations.

Hence, for any integer r ≥ 1, Br(ZG) ∼= Br(ZG) (see Remark 5.4)2, and there-
fore for any abelian group A, regarded as a constant HG-module, there are natural
isomorphisms

HomHG(Br(ZG), A) ∼= HomHG(Br(ZG), A) ∼= Hom(Br(ZG), A)

showing that the rth level cohomology groups Hn(G, r;A) in (5.16) agree with those
by Eilenberg and Mac Lane in [31], which compute the cohomology of the spaces
K(G, r) by means of natural isomorphisms Hn(K(G, r), A) ∼= Hn(G, r;A).

From now on, this section is dedicated to show explicit cochain descriptions for
some of these cohomology groups, starting with those of first level

Hn(M, 1;A) = Hn
(
HomHM (B(ZM),A)

)
.

2The commutative DGA-rings Br(ZG) are denoted by AN (G, r) in [31]
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Let us analyze the underlying complex B(ZM). For any integer n ≥ 1,

B(ZM)n = ZM ⊗HM
(n factors)
· · · ⊗HM ZM,

where ZM = ZM/ιZ = ZM/Z{e} ∼= ZM∗ is a free HM -module on M∗ = M \ {e}
with π : M∗ →M the inclusion map. Then, by construction and Proposition 5.3, we
have that

• The HM -module B(ZM)0 is free on the unitary set {[ ]} with π[ ] = e
and, for any n ≥ 1, B(ZM)n is a free HM -module generated by the set
over M consisting of n-tuples of elements of M

αn = [x1| · · · |xn], with παn = x1 · · ·xn,

which we call generic n-cells of B(ZM), with the relations αn = 0 whenever
some xi = e.

• The differential ∂ : B(ZM)n → B(ZM)n−1 is the morphism of HM -
modules such that, for each x ∈M and any generic n-cell [x1| · · · |xn] with
x1 · · ·xn = x,

∂x[x1| · · · |xn] = x1∗[x2| · · · |xn] +
n−1∑
i=1

(−1)i[x1| · · · |xixi+1| · · · |xn]

+ (−1)nxn∗[x1| · · · |xn−1].

Hence, Proposition 5.2 gives the following.

Theorem 5.1 For any HM -module A, the cohomology groups Hn(M, 1;A) can be
computed as the cohomology groups of the cochain complex of normalized 1st level
cochains of M with values in A,

C(M, 1;A) : 0→ C0(M, 1;A)
∂0−→ C1(M, 1;A)

∂1−→ C2(M, 1;A)
∂2−→ · · · , (5.17)

where
• C0(M, 1;A) = A(e), and for n ≥ 1, Cn(M, 1;A) is the abelian group, under

pointwise addition, of functions

f : Mn →
⋃
x∈M A(x)

such that f(x1, . . . , xn) ∈ A(x1 · · ·xn) and f(x1, . . . , xn) = 0 whenever some xi = e,
• ∂0 = 0, and for n ≥ 1, the coboundary ∂n : Cn(M, 1;A) → Cn+1(M, 1;A) is

given by

(∂nf)(x1, · · · , xn+1) = x1∗f(x2, · · · , xn+1) +

n∑
i=1

(−1)if(x1, · · · , xixi+1, · · · , xn+1)

+ (−1)n+1xn+1∗f(x1, · · · , xn).
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Let us now recall that Leech cohomology groups [53] (see 1.3.1) of a (not necessarily
commutative) monoid M , Hn

L(M,A), take coefficients in DM -modules. When the
monoid M is commutative, as it is in our case, there is a full functor DM → HM ,
which is the identity on objects and carries a morphism (x, y, z) : y → xyz of DM
to the morphism (y, xz) : y → xyz of HM . Composition with this functor induces
a full embedding of HM -Mod into DM -mod, whose image consists of the symmetric
DM -modules (see the end of Section 2.4).

As a direct inspection shows that, for any HM -module A, the cochain complex
C(M, 1;A) in (5.17) coincides with the cochain complex in (1.51) next theorem follows.

Proposition 5.4 For any HM -module A, there are natural isomorphisms

Hn(M, 1;A) ∼= Hn
L(M,A), n = 0, 1, . . . .

We now analyze the complex of HM -modules Br(ZM) for r ≥ 2 any integer. By
construction,

• Br(ZM)0 is the free HM -module on the unitary set consisting of the
0-tuple

[ ], with π[ ] = e,

which we call the generic 0-cell of Br(ZM),

and, for n ≥ 1,

Br(ZM)n =
⊕

p+
∑
ni=n

Br−1(ZM)n1
⊗HM · · · ⊗HM Br−1(ZM)np .

Since Br−1(ZM)0 = 0 while, for ni ≥ 1, Br−1(ZM)ni = Br−1(ZM)ni , it follows by
induction on r that

• Br(ZM)n = 0 for 0 < n < r,

and that, for any r ≤ n,

Br(ZM)n =
⊕

n1, . . . , np ≥ r − 1
p+

∑
ni = n

Br−1(ZM)n1 ⊗HM · · · ⊗HM Br−1(ZM)np .

Then, if we denote by |r the symbol | used for the tensor product in the construction
of Br(ZM) from Br−1(ZM), by Proposition 5.3 and induction, we see that

• Br(ZM)n, for r ≤ n, is a free HM -module generated by the set over M
consisting of all p-tuples, which we call generic n-cells of Br(ZM),

αn = [αn1 |rαn2 |r · · · |rαnp ], with παn = παn1 · · ·παnp ,

of generic ni-cells of Br−1(ZM), such that ni ≥ r − 1 and p +
∑
ni = n,

with the relations αn = 0 whenever some αni = 0.
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Let us stress that a generic n-cell αn of any Br(ZM) is actually a generator of
the abelian group Br(ZM)n(παn). Indeed, for each x ∈ M , Br(ZM)n(x) is the free
abelian group generated by the elements u∗αn with u an element of M and the αn
any non-zero generic n-cell of Br(ZM) such that uπαn = x. Arbitrary elements of
the groups Br(ZM)n(x), are referred as n-chains of Br(ZM).

For any r ≥ 1, the multiplication ◦r of Br(ZM) is given by the morphism of
HM -modules

◦r : Br(ZM)n ⊗HM Br(ZM)m → Br(ZM)n+m

which, according to Proposition 5.2, are determined on generic cells by the shuffle
product

[αn1 |r · · · |rαnp ] ◦r [αnp+1 |r · · · |rαnp+q ] =
∑
σ

(−1)e(σ)[αnσ−1(1)
|r · · · |rαnσ−1(p+q)

],

where the sum is taken over all (p, q)-shuffles σ and e(σ) =
∑

(1 + ni)(1 + np+j)
summed over all pairs (i, p+ j) such that σ(i) > σ(p+ j). In particular, for r = 1,

[x1| · · · |xn] ◦1 [xn+1| · · · |xn+m] =
∑
σ

(−1)e(σ)[xσ−1(1)| · · · |xσ−1(n+m)], (5.18)

where the sum is taken over all (n,m)-shuffles σ and e(σ) is the sign of the shuffle.
Then, for r ≥ 2,

• the boundary ∂ : Br(ZM)n → Br(ZM)n−1 is the morphism of HM -
modules recursively defined, on any generic n-cell αn = [αn1 |r · · · |rαnp ] of
Br(ZM) with παn = x and παni = xi, by

∂xαn = −
p∑
i=1

(−1)ei−1 [αn1 |r · · · |rαni−1 |r∂xiαni |rαni+1 |r · · · |rαnp ]

+

p−1∑
i=1

(−1)ei [αn1 |r · · · |rαni−1 |rαni◦r-1αni+1 |rαni+2 |r · · · |rαnp ],

where the exponents ei of the signs are ei = i+
∑
ni.

In the above formula, the term ∂xiαni , which refers to the differential of αni in
Br−1(ZM), or αni◦r-1αni+1 , is not in general a generic cell of Br−1(ZM) but a chain;
the term is to be expanded by linearity.

Recall now that we have the embedding suspensions (5.13), S : Br−1(ZM) ↪→
Br(ZM), through which we identify any generic (n− 1)-cell αn−1 of Br−1(ZM) with
the generic n-cell Sαn−1 = [αn−1] of Br(ZM). Hence, by induction, one proves that
any generic n-cell of any Br(ZM) can be uniquely written in the form

αn = [x1|k1x2|k2 · · · |km−1
xm]
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with xi ∈ M , 1 ≤ m, 1 ≤ ki ≤ r, and r +
∑m−1

i=1 ki = n. So written, we have παn =
x1 · · ·xm, and αn = 0 if xi = e for some i. Observe that if some ki = r, then n ≥ 2r.
Indeed, the generic n-cells of lowest n appearing in Br(ZM) but not in Br−1(ZM)
are those generic 2r-cells of the form [x1|rx2]. Thus, via the suspension morphism,
Br−1(ZM)n−1 is identified with Br(ZM)n for r ≤ n < 2r, while Br−1(ZM)n−1  
Br(ZM)n for n ≥ 2r. In particular, we have the commutative diagram of suspensions

B(ZM)4
//

� _

S
��

B(ZM)3
//

� _

S
��

B(ZM)2
//

S

B(ZM)1

S

// B(ZM)0

��
B2(ZM)5

//
� _

S
��

B2(ZM)4
//

S

B2(ZM)3
//

S

B2(ZM)2
//

S

0

B3(ZM)6
//

Sr−3

B3(ZM)5
//

Sr−3

B3(ZM)4
//

Sr−3

B3(ZM)3

Sr−3

// 0

Br(ZM)r+3
// Br(ZM)r+2

// Br(ZM)r+1
// Br(ZM)r // 0

where in the bottom row is r ≥ 3, and

•B2(ZM)4 is the free HM -module on the set of suspensions of the non-zero
generic 3-cells [x1|x2|x3] of B(ZM) together the non-zero generic 4-cells

[x1||x2],

with π[x1||x2] = x1x2, and whose differential is (x = x1x2)

∂x[x1||x2] = [x1|x2]− [x2|x1].

• B2(ZM)5 is the free HM -module on the set of suspensions of the non-
zero generic 4-cells [x1|x2|x3|x4] of B(ZM) together the non-zero generic
5-cells

[x1||x2|x3], [x1|x2||x3],

with π[x1||x2|x3] = x1x2x3 = π[x1|x2||x3], and whose differential is (x =
x1x2x3)

∂x[x1||x2|x3] =− x2∗[x1||x3] + [x1||x2x3]− x3∗[x1||x2]

+ [x1|x2|x3]− [x2|x1|x3] + [x2|x3|x1],

∂x[x1|x2||x3] =− x1∗[x2||x3] + [x1x2||x3]− x2∗[x1||x3]

− [x1|x2|x3] + [x1|x3|x2]− [x3|x1|x2].



5.4. The cohomology groups Hn(M, r;A) 131

• B3(ZM)6 is the free HM -module on the set of double suspensions of the
non-zero generic 4-cells [x1|x2|x3|x4] of B(ZM), together with the suspen-
sions of the non-zero generic 5-cells [x1||x2|x3] and [x1|x2||x3] of B2(ZM),
and the non-zero generic 6-cells

[x1|||x2],

with π[x1|||x2] = x1x2, whose differential is (x = x1x2)

∂x[x1|||x2] = −[x1||x2]− [x2||x1].

Therefore, from Proposition 5.2, we get the following.

Theorem 5.2 For any HM -module A, the cohomology groups Hn(M, r;A), for n ≤
r+ 2, are isomorphic to the cohomology groups of the truncated cochain complexes of
normalized rth level cochains of M with values in A, C(M, r;A),

C(M, r;A) : 0 // C0(M, r;A) // 0 −→ · · · −→ 0 // Cr(M, r;A)

rreeeeeeeeeeeeeeeeeeeeeee

Cr+1(M, r;A) // Cr+2(M, r;A) // Cr+3(M, r;A)

(5.19)

where C0(M, r;A) = A(e), and the remaining non-trivial parts occur in the commu-
tative diagram

0 // C1(M, 1;A) // C2(M, 1;A) // C3(M, 1;A) // C4(M, 1;A)

0 // C2(M, 2;A) // C3(M, 2;A) // C4(M, 2;A)

S∗
OOOO

// C5(M, 2;A)

S∗
OOOO

0 // C3(M, 3;A) // C4(M, 3;A) // C5(M, 3;A) // C6(M, 3;A)

S∗
OOOO

0 // Cr(M, r;A) // Cr+1(M, r;A) // Cr+2(M, r;A) // Cr+3(M, r;A)

(5.20)
where in the bottom row is r ≥ 3, and

• C4(M, 2;A) is the abelian group, under pointwise addition, of pairs of functions
(g, µ), where

g : M3 →
⋃
x∈M A(x) µ : M2 →

⋃
x∈M A(x),

with g(x, y, z) ∈ A(xyz) and µ(x, y) ∈ A(xy), which are normalized in the sense that
they take the value 0 whenever some of their arguments are equal to the unit e of the
monoid.
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• The coboundary ∂ : C3(M, 2;A) = C2(M, 1;A) → C4(M, 2;A) acts on a nor-
malized 2-cochain f of M in A by ∂f = (g, µ), where

g(x, y, z) = −x∗f(y, z) + f(xy, z)− f(x, yz) + z∗f(xy),

µ(x, y) = f(x, y)− f(y, x).

• C5(M, 2;A) is the abelian group of triplets (h, γ, δ) consisting of normalized
functions

h : M4 →
⋃
x∈M A(x) γ, δ : M3 →

⋃
x∈M A(x),

with h(x, y, z, t) ∈ A(xyzt) and γ(x, y, z), δ(x, y, z) ∈ A(xyz).

• The coboundary ∂ : C4(M, 2;A) → C5(M, 2;A) acts on a 2nd level 4-cochain
(g, µ) by ∂(g, µ) = (h, γ, δ), where

h(x, y, z, t) = −x∗g(y, z, t) + g(xy, z, t)− g(x, yz, t) + g(x, y, zt)− t∗g(x, y, z),

γ(x, y, z) = −y∗µ(x, z) + µ(x, yz)− z∗µ(x, y) + g(x, y, z)− g(y, x, z) + g(y, z, x),

δ(x, y, z) = −x∗µ(y, z) + µ(xy, z)− y∗µ(x, z)− g(x, y, z) + g(x, z, y)− g(z, x, y).

• C6(M, 3;A) is the abelian group of quadruples (h, γ, δ, ξ) consisting of normalized
functions

h : M4 →
⋃
x∈M A(x), γ, δ : M3 →

⋃
x∈M A(x), ξ : M2 →

⋃
x∈M A(x),

with h(x, y, z, t) ∈ A(xyzt), γ(x, y, z), δ(x, y, z) ∈ A(xyz), and ξ(x, y) ∈ A(xy).

• The coboundary ∂ : C5(M, 3;A) = C4(M, 2;A) → C6(M, 3;A) acts on a 3rd-
level 5-cochain by ∂(g, µ) = (h, γ, δ, ξ), where

h(x, y, z, t) = x∗g(y, z, t)− g(xy, z, t) + g(x, yz, t)− g(x, y, zt) + t∗g(x, y, z),

γ(x, y, z) = y∗µ(x, z)− µ(x, yz) + z∗µ(x, y)− g(x, y, z) + g(y, x, z)− g(y, z, x),

δ(x, y, z) = x∗µ(y, z)− µ(xy, z) + y∗µ(x, z) + g(x, y, z)− g(x, z, y) + g(z, x, y)

ξ(x, y) = −µ(x, y)− µ(y, x).

The following corollaries follow directly from the form of the cochain complex (5.19)
and the commutativity of the diagram (5.20).

Corollary 5.3 For any r ≥ 1, H0(M, r;A) ∼= A(e).

Corollary 5.4 For any 0 < n < r, Hn(M, r;A) = 0.

Corollary 5.5 For any r ≥ 2, Hr(M, r;A) ∼= H1(M, 1;A).

Corollary 5.6 For any r ≥ 2, Hr+1(M, r;A) ∼= H3(M, 2;A), and there is a natural
monomorphism H3(M, 2;A) ↪→ H2(M, 1;A).
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Corollary 5.7 For any r ≥ 3, Hr+2(M, r;A) ∼= H5(M, 3;A), and there is a natural
monomorphism H5(M, 3;A) ↪→ H4(M, 2;A).

Let us now recall that Grillet cohomology groups Hn
G(M,A), for 1 ≤ n ≤ 3, can

be computed as the cohomology groups of the truncated cochain complex CG(M,A)
in (3.1). There is natural injective cochain map

0 // C1
G(M,A)

∂1G //

i1=id

C2
G(M,A)

∂2G //
_�

i2
��

C3
G(M,A)

∂3G //
_�

i3
��

C4
G(M,A)

_�

i4
��

0 // C3(M, 3;A)
∂3 // C4(M, 3;A)

∂4 // C5(M, 3;A)
∂5 // C6(M, 3;A),

(5.21)
which is the identity map, i1(f) = f , on symmetric 1-cochains, the map i2(g) = −g on
symmetric 2-cochains, and on symmetric 3- and 4-cochains is defined by the simple
formulas i3(h) = (h, 0) and i4(t) = (−t, 0, 0, 0), respectively. The only non-trivial
verification here concerns the equality ∂5i3 = i4∂

3, that is, ∂5(h, 0) = (−∂3h, 0, 0, 0),
for any h ∈ C3

G(M,A), but it easily follows from Lemma 3.1.

Proposition 5.5 For any HM -module A, the injective cochain map (5.21) induces
natural isomorphisms

H1
G(M,A) ∼= H1(M, 1;A), H2

G(M,A) ∼= H3(M, 2;A),

and a natural monomorphism

H3
G(M,A) ↪→ H5(M, 3;A).

Proof: From diagram (5.21), it follows directly that ker ∂1
G = ker ∂3 and i2Im ∂1

G =
Im ∂3. Further, i2 ker ∂2

G = ker ∂4, since the condition ∂4f = 0 on a cochain f ∈
C4(M, 3;A) = C2(M, 1;A) implies the symmetry condition f(x, y) = f(y, x). Then,

H1
G(M,A) = ker ∂1

G = ker ∂3 ∼= H3(M, 3;A) ∼= H1(M, 1;A),

and

H2
G(M,A) =

ker ∂2
G

Im ∂1
G

∼=
i2 ker ∂2

G

i2Im ∂1
G

=
ker ∂4

Im ∂3
∼= H4(M, 3;A) ∼= H3(M, 2;A).

To prove that the induced homomorphism H3
G(M,A)→ H5(M, 3;A) is injective,

suppose h ∈ C3
G(M,A) is a symmetric 3-cochain such that i3h = ∂4g for some g ∈

C4(M, 3;A) = C2(M, 1;A). This means that the equalities

h(x, y, z) = x∗g(y, z)− g(xy, z) + g(x, yz)− z∗g(x, y), 0 = g(x, y)− g(y, x),
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hold. Then, g ∈ C2
G(M,A) is a symmetric 2-cochain, and h = −∂2g is actually

a symmetric 2-coboundary. It follows that the injective map i3 : ker ∂3
G ↪→ ker ∂5

induces a injective map in cohomology

H3CG(M,A)
)
↪→ H5C(M, 3;A),

as required. �
To complete the list of relationships between the cohomology groups Hn(M, r;A)

with those already known in the literature, let us note that a direct comparison of the
cochain complex (5.19) with the cochain complex in (4.5), which computes the lower
commutative cohomology groups Hn

c (M,A), gives the following.

Proposition 5.6 For any HM -module A, there are natural isomorphisms

H1(M, 1;A) ∼= H1
c (M,A), H3(M, 2;A) ∼= H2

c (M,A), H4(M, 2;A) ∼= H3
c (M,A).

5.5 Cohomological classification of symmetric monoidal
abelian groupoids

This section is dedicated to showing a precise classification for symmetric monoidal
abelian groupoids, by means of the 3rd level cohomology groups of commutative
monoids H5(M, 3;A).

Symmetric monoidal categories have been studied extensively in the literature and
we refer to Mac Lane [56] and Saavedra [66] for the background. Recall from section 1.3
that an abelian groupoidM is a groupoid whose isotropy groups AutM(x), x ∈ ObM,
are all abelian and that composition is written additively.

A symmetric monoidal abelian groupoid

M = (M,⊗, I,a, l, r, c)

consists of a braided monoidal abelian groupoid whose braiding, called now symmetry,
verifies

cy,x + cx,y = 0x⊗y. (5.22)

Remark that in a symmetric monoidal abelian groupoid if coherence condition
(4.14) hold then (4.15) is also verified.

Example 5.1 For any 3rd level 5-cocycle (g, µ) in Z5(M, 3;A), it can be defined a
symmetric monoidal abelian groupoid

Σ(M,A, (g, µ)) = (Σ(M,A, (g, µ)),⊗, I,a, l, r, c),

that should be thought of as a 2-dimensional twisted crossed product of M by A, and
it is defined as follows: Its underlying groupoid is the totally disconnected groupoid
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in (3.16), that is, its set of objects is M and its isotropy group at any object x ∈ M
is A(x).

The tensor product

⊗ : Σ(M,A, (g, µ))× Σ(M,A, (g, µ))→ Σ(M,A, (g, µ))

is defined as in (3.17). The unit object is I = e, the unit of the monoid M , and the
structure constraints are

ax,y,z = g(x, y, z) : (xy)z → x(yz),

cx,y = µ(x, y) : xy → yx,

lx = 0x : ex = x→ x

rx = 0x : xe = x→ x,

which are easily seen to be natural since A is an abelian group valued functor. The
coherence conditions (1.1), (4.14), and (5.22) follow from the 5-cocycle condition
∂5(h, µ) = (0, 0, 0, 0), while the coherence condition (1.2) comes from the normal-
ization condition h(x, e, y) = 0.

IfM, M′ are symmetric monoidal abelian groupoids, then a symmetric monoidal
functor F = (F,ϕ, ϕ0) : M → M′ is a braided functor (4.18), while a symmet-
ric monoidal isomorphism δ : F ⇒ F ′, where F ′ : M → M′ is another symmet-
ric monoidal functor, is just a monoidal isomorphism (1.7). Therefore, symmetric
monoidal abelian groupoids, symmetric monoidal functors, and symmetric monoidal
isomorphisms form a 2-category [37, Chaper V, Section 1]. A symmetric monoidal
functor F : M → M′ is called a symmetric monoidal equivalence if it is an equiva-
lence in this 2-category.

Our goal is to show a classification for symmetric monoidal abelian groupoids,
where two symmetric monoidal abelian groupoids connected by a symmetric monoidal
equivalence are considered the same, as stated in the theorem below.

Theorem 5.3 (Classification of Symmetric Monoidal Abelian Groupoids)
(i) For any symmetric monoidal abelian groupoid M, there exist a commutative

monoid M , an HM -module A, a 3rd level 5-cocycle (g, µ) ∈ Z5(M, 3;A), and a sym-
metric monoidal equivalence

Σ(M,A, (g, µ)) 'M.

(ii) For two 3rd level 5-cocycles (g, µ) ∈ Z5(M, 3;A) and (g′, µ′) ∈ Z5(M ′, 3;A′),
there is a symmetric monoidal equivalence

Σ(M,A, (g, µ)) ' Σ(M ′,A′, (g′, µ′))

if and and only if there exist an isomorphism of monoids i : M ∼= M ′ and a natural
isomorphism ψ : A ∼= i∗A′, such that the equality of cohomology classes below holds.

[g, µ] = ψ−1
∗ i∗[g′, µ′] ∈ H5(M, 3;A)
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Proof: We proceed as in the proof of Theorems 3.1 and 4.3.
(i) Let M = (M,⊗, I,a, l, r, c) be any given symmetric monoidal abelian grou-

poid. By the coherence theorem [56], we can assume that M is strictly unitary, that
is, that both unit constraints l and r are identities. Then, we observe that M is
symmetric monoidal equivalent to another one that is totally disconnected. Indeed,
by the generalized Brandt’s theorem [46, Chapter 6, Theorem 2], there is a totally
disconnected groupoid, say M′, with an equivalence of groupoids M→M′. Hence,
by Saavedra [66, I, 4.4], we can transport the symmetric monoidal structure along
this equivalence so that M′ becomes a strictly unitary symmetric monoidal abelian
groupoid and the equivalence a symmetric monoidal one.

Hence, we assume that M is totally disconnected and strictly unitary. Then, a
triplet (M,A, (g, µ)), such that Σ(M,A, (g, µ)) =M as symmetric monoidal abelian
groupoids, can be defined as follows:

• The monoid M and the HM -module A. We define them in the same way than
in the proof of Theorem 4.3 (i).
• The 3rd level 5-cocycle (g, µ) ∈ Z5(M, 3;A). We write the associativity con-

straint and the symmetry of M as ax,y,z = g(x, y, z) and cx,y = µ(x, y), for some
given lists

(
g(x, y, z) ∈ A(xyz)

)
x,y,z∈M and

(
µ(x, y) ∈ A(xy)

)
x,y∈M . Since M is

strictly unitary, equations in (1.2) and (1.3) implies the normalization conditions
g(x, e, y) = 0 = g(e, x, y) = g(x, y, e) for g, while the normalization conditions
µ(x, e) = 0 = µ(e, x) for µ follows from (4.16). Thus, (g, µ) ∈ C5(M, 3;A) is a
3rd level 5-cochain. By the coherence conditions (1.1), (4.14), (4.15) and (5.22) we
have that

g(x, y, zt) + g(xy, z, y) = x∗g(y, z, y) + g(x, yz, y) + t∗g(x, y, z)

y∗µ(x, z) + g(y, x, z) + z∗µ(x, y) = g(y, z, x) + µ(x, yz) + g(x, y, z),

y∗µ(x, z)− g(x, z, y) + x∗µ(y, z) = −g(z, x, y) + µ(xy, z)− g(x, y, z),

µ(x, y) + µ(y, x) = 0,

Hence, we obtain the required cocycle condition ∂3(g, µ) = (0, 0, 0). From a direct
comparison we have M = Σ(M,A, (g, µ)) as symmetric monoidal abelian groupoids,
and so the proof of this part is complete.

(ii) Let i : M ∼= M ′ be an isomorphism and ψ : A ∼= i∗A′ a natural isomorphism
such that ψ∗[g, µ] = i∗[g′, µ′] ∈ H5(M, 3; i∗A′). This implies that there is a 3rd level
4-cochain f ∈ C4(M, 3; i∗A′) = C2(M, 1; i∗A′) such that

ψxyzg(x, y, z)=g′(ix, iy, iz)+(ix)∗f(y, z)−f(xy, z)+f(x, yz)−(iz)∗f(x, y), (5.23)

ψxyµ(x, y) = µ′(ix, iy)− f(x, y) + f(y, x). (5.24)

Then, there is a symmetric monoidal isomorphism

Σ(i, ψ, f) = (F,ϕ, ϕ0) : Σ(M,A, (g, µ))→ Σ(M ′,A′, (g′, µ′)).
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whose action on objects and arrows is F (ax : x → x) = (ψxax : ix → ix), and so it
is an isomorphism between the underlying groupoids. The constraints of F are given
by ϕx,y = f(x, y) : (ix) (iy) → i(xy), which are natural by the naturality of ψ, and
ϕ0 = 0e′ : e′ → ie = e′.

The coherence conditions (1.5) and (4.19) are obtained as a consequence of equa-
tions (5.23) and (5.24), respectively, whereas the conditions in (1.6) trivially follow
from the normalization conditions f(x, e) = 0ix = f(e, x).

Conversely, suppose we have

F = (F,ϕ, ϕ0) : Σ(M,A, (g, µ))→ Σ(M ′,A′, (g′, µ′))

a symmetric monoidal equivalence. By [22, Lemma 18], there is no loss of generality
in assuming that F is strictly unitary in the sense that ϕ0 = 0e′ : e′ → e′ = Fe. Since
the underlying groupoids are totally discnnected, F is an isomorphism.

We now have an isomorphism of monoids i : M ∼= M ′ (the bijection established by
F between the object sets) and a natural isomorphism ψ : A ∼= i∗A′ (the isomorphism
on the automorphism groups). Finally, if we write f(x, y) = ϕx,y, for each x, y ∈ M ,
we have a 3rd level 4-cochain f(F ) =

(
f(x, y) ∈ A′(i(xy))

)
x,y∈M , since the equations

f(x, e) = 0ix = f(e, x) hold due to (1.6). Equations (5.23) and (5.24) follow from to
the coherence equations (1.5) and (4.19). This means that ψ∗(g, µ) = i∗(g′, µ′) + ∂4f
and, therefore, we have that ψ∗[g, µ] = i∗[g′, µ′] ∈ H5(M, 3; i∗A′), whence [g, µ] =
ψ−1
∗ i∗[g′, µ′] ∈ H5(M, 3;A). �

5.6 Cohomology of cyclic monoids

In this section we compute the cohomology groups Hn(C, r;A), for n ≤ r+2, when C
is any cyclic monoid. The method we employ follows similar lines to the one used by
Eilenberg and Mac Lane in [32, Section 14 and Section 15], for computing higher level
cohomology of cyclic groups, though the generalization to monoids is highly nontrivial.

5.6.1 Cohomology of finite cyclic monoids

The structure of finite cyclic monoids was recalled in Section 2.2. From now on,
C = Cm,q denotes the finite cyclic monoid of index m and period q. We assume that
m+ q ≥ 2, so that C is not the zero monoid.

We remember now the notation k ·m = ℘(km) from (2.3), and introduce, to any
pair x, y ∈ C, the useful integer

s(x, y) =
(x+ y)− (x⊕ y)

q
,

which satisfies s(x, y) ≥ 1 if x + y ≥ m + q, whereas s(x, y) = 0 if x + y < m + q. It
follows directly from the associativity in C that the cocycle property below holds.

s(y, z) + s(x, y ⊕ z) = s(x⊕ y, z) + s(x, y). (5.25)
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We begin by constructing a specific commutative DGA-algebra over HC, denoted
by

R = R(C),

which is homologically equivalent to B(ZC) but algebraically simpler and more lucid.
For each integer k = 0, 1, . . . , let us choose unitary sets over C, {vk} and {wk}, with

πvk = k ·m, πwk = k ·m⊕ 1, (5.26)

and define {
R2k = the free HC-module on {vk},
R2k+1 = the free HC-module on {wk}.

(5.27)

The augmentation α : R0 → Z, the differential ∂ : Rn → Rn−1, and the multiplication
◦ : R⊗HC R → R are determined by the equations

αv0 = 1, ∂vk+1 = (m+ q)
(
(m+ q − 1)∗wk

)
−m

(
(m− 1)∗wk

)
, ∂wk = 0, (5.28)

vk ◦ vl =
(
k+l
k

)
vk+l, wk ◦wl = 0, vk ◦wl =

(
k+l
k

)
wk+l = wl ◦ vk, (5.29)

and the unit is v0.

Proposition 5.7 R, defined as above, is a commutative DGA-algebra over HC.

Proof: By Proposition 5.2, the mapping in (5.28), vk+1 7→ ∂vk+1, determines a mor-
phism of HC-modules ∂ : R2k+2 → R2k+1 since

(m+ q − 1)⊕ πwk
(5.26)

= (m+ q − 1)⊕ k ·m⊕ 1 = m⊕ k ·m = πvk+1,

(m− 1)⊕ πwk
(5.26)

= (m− 1)⊕ k ·m⊕ 1 = ℘(m+ km) = πvk+1,

and therefore ∂vk+1 ∈ R2k+1(πvk+1). Similarly, by Proposition 5.2, we see that
the formulas in (5.29) determine a multiplication morphism of HC-modules since
k ·m⊕ l ·m = (k+ l) ·m and k ·m⊕ l ·m⊕1) = (k+ l) ·m⊕1. Associativity condition
(5.8) follows from the equality on combinatorial numbers(

k + l + t

k

)
+

(
l + t

t

)
=

(k + l + t)!

k! l! t!
=

(
k + l + t

k + l

)
+

(
k + l

l

)
,

while condition (5.9) holds thanks to the equality(
k + l − 1

k − 1

)
+

(
k + l − 1

k

)
=

(
k + l

k

)
,

and the remaining conditions in (5.5)-(5.7) are quite obviously verified. �
In next proposition we shall define a morphism f : B(ZC) → R. Previously,

observe that the graded HC-module {Rn} admits another structure of commutative
graded algebra over HC (although it does not respect the differential structure), whose
multiplication is determined by the simpler formulas

vk • vl = vk+l, wk •wl = 0, vk •wl = wk+l = wl • vk.
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Proposition 5.8 A morphism f : B(ZC) → R, of DGA-algebras over HC, may be
defined by the recursive formulas

f [ ] = v0,
f [x] = x((x− 1)∗w0),

f [x | y] =


0 if x+ y < m+ q,

((x⊕ y)-m)∗

( s(x,y)-1∑
i=0

(iq)∗v1

)
if x+ y ≥ m+ q,

f [x | y | σ] = f [x | y] • f [σ],

(5.30)

where σ = [z| · · · ] is any cell of dimension 1 or greater.

Proof: This is divided into four parts. Note first that, from the inequalities

m+ s(x, y)q ≤ (x⊕ y) + s(x, y)q = x+ y < 2m+ 2q − 1,

it follows that s(x, y)q < m + 2q − 1. Therefore, for any 0 ≤ i < s(x, y), we have
iq = ℘(iq) ∈ C and the formula above for f [x | y] is well defined.

Part 1. We prove in this step that the assignment in (5.30) extends to a morphism
of complexes of HC-modules. This follows from Proposition 5.2, since one verifies
recursively that

f [x1 | · · · | xn] ∈ Rn(x1 ⊕ · · · ⊕ xn)

as follows: The case when n = 0 is obvious. When n = 1, it holds since w0 ∈ R1 and
(x1 − 1)⊕ πw0 = (x1 − 1)⊕ 1 = x1, and for n = 2 since v1 ∈ R2 and

((x1 ⊕ x2)-m)⊕ πv1 = ((x1 ⊕ x2)-m)⊕m = x1 ⊕ x2.

Then, for n ≥ 3, induction gives f [x1| · · · |xn] = f [x1|x2]•f [x3| · · · |xn] ∈R2(x1⊕x2)•
Rn−2(x3 ⊕ · · · ⊕ xn) ⊆Rn(x1 ⊕ · · · ⊕ xn).
Part 2. We prove now that ∂f = f∂.

For a 1-cell [x] of B(ZC), we have ∂f [x] = x((x− 1)∗∂w0)
(5.28)

= 0 = f∂[x].
For a 2-cell [x | y], we have

f∂[x | y] = x∗f [y]− f [x⊕ y] + y∗f [x].

To compare with ∂f [x | y], we shall distinguish three cases:
- Case x+ y < m+ q. In this case ∂f [x | y] = 0, and also

f∂[x | y] = y((x+ y − 1)∗w0)− (x+ y)((x+ y − 1)∗w0) + x((x+ y − 1)∗w0) = 0.



140 Chapter 5. Higher cohomologies of commutative monoids

-Case x+ y ≥ m+ q and x⊕ y = m. Here, (x− 1)⊕ y = m+ q− 1 = x⊕ (y− 1).
Then,

∂f [x | y] =

s(x,y)-1∑
i=0

(m+ q)((iq ⊕ (m+ q − 1))∗w0)-m((iq ⊕ (m− 1))∗w0)

= (m+ q)((m+ q − 1)∗w0)-m((m− 1)∗w0)

+

s(x,y)-1∑
i=1

(m+ q)((m+ q − 1)∗w0)-m((m+ q − 1))∗w0)

= (m+ q)((m+ q − 1)∗w0)-m((m− 1)∗w0)

+ (s(x, y)− 1)q((m+ q − 1)∗w0)

= (m+ s(x, y)q)((m+ q − 1)∗w0)-m((m− 1)∗w0)

= (x+ y)((m+ q − 1)∗w0)-m((m− 1)∗w0) = f∂[x | y].

-Case x+y ≥ m+q and x⊕y > m. In this case, (x−1)⊕y = (x⊕y)−1 = x⊕(y−1),
whence

∂f [x | y] =

s(x,y)-1∑
i=0

((x⊕ y)-m)⊕ iq)∗∂v1

=

s(x,y)-1∑
i=0

(m+ q)
(
((x⊕ y)-m)⊕ ((iq ⊕ (m+ q − 1))∗w0

)
(5.31)

−
s(x,y)-1∑
i=0

m
(
((x⊕ y)-m)⊕ (iq ⊕ (m− 1))∗w0) =

s(x,y)-1∑
i=0

(m+ q)((x⊕ y)− 1)∗w0)

−
s(x,y)-1∑
i=0

m((x⊕ y)− 1))∗w0) = qs(x, y)((x⊕ y)− 1)∗w0)

= (y − (x⊕ y) + x)((x⊕ y)− 1)∗w0) = f∂[x | y].

For a 3-cell [x | y | z], we have to prove that f∂[x | y | z] = 0 or, equivalently, that

x∗f [y | z] + f [x | y ⊕ z] = z∗f [x | y] + f [x⊕ y | z]. (5.32)

Since x+ (y ⊕ z) = x⊕ y ⊕ z + s(x, y ⊕ z)q, it follows that

x⊕ ((y ⊕ z)-m) = ((x⊕ y ⊕ z)-m)⊕ ℘(s(x, y ⊕ z)q),
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whenever y ⊕ z ≥ m. Then, we can write

x∗f [y | z] =


0, if s(y, z) = 0,

(x⊕ ((y ⊕ z)-m))∗

( s(y,z)-1∑
i=0

(i · q)∗v1

)
, if s(y, z) ≥ 1,

=


0, if s(y, z) = 0,

((x⊕ y ⊕ z)-m)∗

( s(y,z)-1∑
i=0

℘
(
s(x, y ⊕ z)q + iq

)
∗v1

)
, if s(y, z) ≥ 1.

As

f [x | y ⊕ z] =


0, if s(x, y ⊕ z) = 0,

((x⊕ y ⊕ z)-m)∗

( s(x,y⊕z)-1∑
i=0

(i · q)∗v1

)
, if s(x, y ⊕ z) ≥ 1,

one concludes the formula

x∗f [y | z]+f [x | y⊕z] =


0, if s(y, z) = 0 = s(x, y ⊕ z),

((x⊕ y ⊕ z)-m)∗

( s(y,z)+s(x,y⊕z)-1∑
i=0

(i · q)∗v1

)
, otherwise.

Similarly, one sees that

z∗f [x | y]+f [x⊕y | z] =


0, if s(x, y) = 0 = s(x⊕ y, z),

((x⊕ y ⊕ z)-m)∗

( s(x,y)+s(x⊕y,z)-1∑
i=0

(i · q)∗v1

)
, otherwise,

and the equality in (5.32) follows by comparison using (5.25).
Finally, for a cell [x | y | z | t | · · · ] = [x | y | z | τ ] of dimension higher than 3 we

use the formulas
∂[a | x | b] = [∂[a | x] | b] + [a | ∂[x | b]], (5.33)

which holds for any even chain a and any other chain b of B(ZC), and

∂(c • d) = c • ∂d, (5.34)

which holds for any chains c, d ∈ R. Thus, as we know that f∂[x | y | z] = 0, induction
gives

f∂[x | y | z | τ ]
(5.33)

= f [∂[x | y | z] | τ ] + f [x | y | ∂[z | τ ]]

= f∂[x | y | z] • f [τ ] + f [x | y] • f∂[z | τ ] = f [x | y] • ∂f [z | τ ]

(5.34)
= ∂(f [x | y] • f [z | τ ]) = ∂f [x | y | z | τ ]

Part 3. Here we show that f preserves products. It is enough to prove that
f(σ ◦ τ) = f(σ) ◦ f(τ) for cells σ = [x1 | · · · | xn] and τ = [y1 | · · · | yn′ ] of B(ZC).
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As in [32, page 99], a term T = ±[t1 | · · · | tn+n′ ] in the shuffle product (5.18) of σ
and τ is called mixed whenever there exists an index i such that t2i−1 is an x of σ and
t2i an y of τ , or vice versa. Choose the first index i for each mixed T , and let T ′ be
the term obtained from T by interchanging t2i−1 with t2i. Since f [x, y] is symmetric,

f(T ) = f [t1 | t2] • · · · • f [t2i−1 | t2i] • f [t2i+1 | · · · ]
= f [t1 | t2] • · · · • f [t2i | t2i−1] • f [t2i+1 | · · · ] = f(T ′).

Since T and T ′ have opposite signs, the results cancel and f(σ ◦ τ) =
∑
f(T ), with

summation taken only over the unmixed terms, and where the sign of each term due
the shuffle is always plus. If n = 2r + 1 and n′ = 2r′ + 1 are both odd, there are
no unmixed terms, so f(σ ◦ τ) = 0 in agreement with the fact that f(σ) ◦ f(τ) = 0
(since wk ◦wl = 0). If n = 2r and n′ = 2r′ are both even, the unmixed terms T are
obtained by taking all shuffles of the r pairs (x1, x2), ..., (x2r−1, x2r) through the pairs
(y1, y2), ..., (y2r′−1, y2r′). For any such a shuffle

f(T ) = f [x1 | x2] • · · · • f [x2r−1 | x2r] • f [y1 | y2] • · · · • f [y2r′−1, y2r′ ] = f(σ) • f(τ)

and the number of such shuffles is
(
r+r′

r

)
, hence

f(σ ◦ τ) =

(
r + r′

r

)
f(σ) • f(τ) = f(σ) ◦ f(τ),

as desired. For n = 2r and n′ = 2r′ + 1, the unmixed terms T are as above but with
the last argument y2r′+1 always at the end. Hence, for each of them

f(T )=f [x1 | x2]•· · ·•f [x2r−1 | x2r]•f [y1 | y2]•· · ·•f [y2r′−1, y2r′ ]•f [y2r′+1]=f(σ)•f(τ),

and therefore f(σ◦τ) =
(
r+r′

r

)
f(σ)•f(τ) = f(σ)◦f(τ). The remaining case n = 2r+1

and n′ = 2r′ is treated similarly. �

Proposition 5.9 A morphism g : R → B(ZC), of DGA-algebras over HC, may be
defined by the recursive formulas

gv0 = [ ],

gwk = [gvk | 1],

gvk+1 =
∑

t<m+q
(m+ q − t− 1)∗[gwk | t]−

∑
s<m

(m− s− 1)∗[gwk | s].
(5.35)

Proof: Part 1. We show here that the assignment in (5.35) extends to a morphism
of complexes of HC-modules. By Proposition 5.2, we have to verify that gvk ∈
B(ZC)2k(k ·m) and gwk ∈ B(ZC)2k+1(k ·m ⊕ 1). Clearly gv0 = [ ] ∈ B(ZC)0(0).
Assume that gvk ∈ B(ZC)2k(k ·m). Then, we have

gwk = [gvk | 1] ∈ B(ZC)2k+1(k ·m⊕ 1),
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as required. Moreover, for any t < m+ q and s < m,

(m+ q − t− 1)∗[gwk | t], (m− s− 1)∗[gwk | s] ∈ B(ZC)2k+2((k + 1) ·m),

since

(m+ q − t− 1)⊕ k ·m⊕ 1⊕ t = (k + 1) ·m = (m− s− 1)⊕ k ·m⊕ 1⊕ s.

Whence gvk+1 ∈ B(ZC)2k+2((k + 1) ·m).

Part 2. Here we shall prove, as an auxiliary result, that

gvk ◦ [1] = gwk, gwk ◦ [1] = 0, (5.36)

where ◦ = ◦1 is the shuffle product (5.18) of B(ZC). Clearly gv0 ◦ [1] = [ ] ◦ [1] =
[1] = [gv0 | 1] = gw0. Assuming the result for gvk, we have

gwk ◦ [1] = gvk ◦ [1] ◦ [1] = gvk ◦ ([1 | 1]− [1 | 1]) = 0,

from where, in addition, it follows that, for any t ∈ C,

[gwk | t] ◦ [1] = [gwk | t | 1]− [gwk ◦ [1] | t] = [gwk | t | 1],

whence

gvk+1 ◦ [1] =
∑

t<m+q

(m+ q − t− 1)∗[gwk | t | 1]−
∑
s<m

(m− s− 1)∗[gwk | s | 1]

= [gvk+1 | 1] = gwk+1.

Part 3. We now prove recursively that ∂g = g∂.
For argument w0 is immediate: ∂gw0 = ∂[1] = 0. For argument vk+1, first observe

that ∂gwk = 0 gives, for ant t ∈ C,

∂[gwk | t] = ∂[gvk | 1 | t]
(5.33)

= [∂[gvk | 1] | t] + [gvk | ∂[1 | t]]
= [∂gwk | t] + [gvk | ∂[1 | t]] = [gvk | ∂[1 | t]]
= 1∗[gvk | t]− [gvk | 1⊕ t] + t∗[gvk | 1]

= 1∗[gvk | t]− [gvk | 1⊕ t] + t∗gwk.

Then,

∂gvk+1 =
∑

t<m+q

(m+ q − t− 1)∗∂[gwk | t]−
∑
t<m

(m− t− 1)∗∂[gwk | t]

=
∑

t<m+q−1

(m+ q − t)∗[gvk | t]− (m+ q − t− 1)∗[gvk | 1 + t]

+ (m+ q − 1)∗gwk + 1∗[gvk | m+ q − 1]− [gvk | m] + (m+ q − 1)∗gwk

−
∑
t<m

(m− t)∗[gvk | t]− (m− t− 1)∗[gvk | 1 + t] + (m− 1)∗gwk

= −1∗[gvk | m+ q − 1] + (m+ q − 1)
(
(m+ q − 1)∗gwk

)
+ 1∗[gvk | m+ q − 1]− [gvk | m] + (m+ q − 1)∗gwk + [gvk | m]

−m(m− 1)∗gwk = (m+ q)
(
(m+ q − 1)∗gwk

)
−m

(
(m− 1)∗gwk

)
= g∂vk+1.
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And for argument wk+1,

∂gwk+1
(5.36),(5.7)

= ∂gvk+1 ◦ [1]

=
(

(m+ q)
(
(m+ q − 1)∗gwk

)
−m

(
(m− 1)∗(gwk)

))
◦ [1]

(5.36)
= 0.

Part 4. Here we show that g preserves products by proving that g(a ◦ b) = ga ◦ gb for
a, b ∈ {vk,wl}. For the case when a = wk and b = wl, we have

gwk ◦ gwl
(5.36)

= gvk ◦ [1] ◦ gwl
(5.36)

= 0 = g(wk ◦wl).

To prove the remaining cases, first observe that if gvk ◦ gvl = g(vk ◦ vl) for some k
and l, then

gwk ◦ gvl = gvk ◦ [1] ◦ gvl = gvk ◦ gvl ◦ [1] = g(vk ◦ vl) ◦ [1] =

=

(
k + l

k

)
gvk+l ◦ [1] =

(
k + l

k

)
gwk+l = g(wk ◦ vl).

Next, we show that gvk ◦ gvl = g(vk ◦vl) by induction. The case when k = 0 or l = 0
is immediate, since gv0 = [ ]. Now, using that, for any t, s ∈ C,

[gwk | t] ◦ [gwl | s]
(5.12)

= [[gwk | t] ◦ gwl | s] + [gwk ◦ [gwl | s], t],

we have

gvk+1 ◦ gvl+1 =
∑

s<m+q

(m+ q − s− 1)∗

[ ∑
t<m+q

(m+ q − t− 1)∗[gwk | t] ◦ gwl | s
]

−
∑

s<m+q

(m+ q − s− 1)∗

[∑
t<m

(m− t− 1)∗[gwk | t] ◦ gwl | s
]

+
∑

t<m+q

(m+ q − t− 1)∗

[
gwk ◦

∑
s<m+q

(m+ q − s− 1)∗[gwl | s] | t
]

−
∑

t<m+q

(m+ q − t− 1)∗

[
gwk ◦

∑
s<m

(m− s− 1)∗[gwl | s] | t
]

−
∑
t<m

(m− t− 1)∗

[
gwk ◦

∑
s<m+q

(m+ q − s− 1)∗[gwl | s] | t
]

+
∑
t<m

(m− t− 1)∗

[
gwk ◦

∑
s<m

(m− s− 1)∗[gwl | s] | t
]

−
∑
s<m

(m− s− 1)∗

[ ∑
t<m+q

(m+ q − t− 1)∗[gwk | t] ◦ gwl | s
]

+
∑
s<m

(m− s− 1)∗

[∑
t<m

(m− t− 1)∗[gwk | t] ◦ gwl | s
]
,
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and then, by induction,

gvk+1 ◦ gvl+1 =
∑

s<m+q

(m+ q − s− 1)∗[gvk+1 ◦ gwl | s]

+
∑

t<m+q

(m+ q − t− 1)∗[gwk ◦ gwl+1 | t]

−
∑
s<m

(m− s− 1)∗[gvk+1 ◦ gwl | s]−
∑
t<m

(m− t− 1)∗[gwk ◦ gwl+1 | t]

=

(
k + l + 1

k + 1

)( ∑
s<m+q

(m+ q − s− 1)∗[gwk+l+1 | s]

−
∑
s<m

(m− s− 1)∗[gwk+l+1 | s]
)

(5.37)

+

(
k + l + 1

k

)( ∑
t<m+q

(m+ q − t− 1)∗[gwk+l+1 | t]

−
∑
t<m

(m− t− 1)∗[gwk+l+1 | t]
)

(5.38)

=

(
k + l + 1

k + 1

)
gvk+l+2 +

(
k + l + 1

k

)
gvk+l+2 =

(
k + l + 2

k + 1

)
gvk+l+2

= g(vk+1 ◦ vl+1).

�
Now, we are ready to establish the following key result.

Theorem 5.4 The morphisms f : B(ZC) → R and g : R → B(ZC), as defined
above, form a contraction.

Proof: Part 1. We start by showing that the composite fg is the identity. Clearly
fgv0 = f [ ] = v0. Then, induction gives

fgwk
(5.36)

= f(gvk ◦ [1]) = fgvk ◦ f [1] = vk ◦w0 = wk,

fgvk+1 =
∑

t<m+q

(m+ q − t− 1)∗f [gvk|1 | t]−
∑
s<m

(m− s− 1)∗f [gvk|1|s]

=
∑

t<m+q

(m+ q − t− 1)∗(f [gvk] • f [1 | t])−
∑
s<m

(m− s− 1)∗(f [gvk] • f [1|s])

= vk • f [1|m+ q − 1] = vk • v1 = vk+1.

Part 2. Here, we describe the composite gf . Clearly gf [ ] = [ ] and gf [x] = x((x −
1)∗[1]). For those 2-cells [x | y] such that x+ y < m+ q we have gf [x | y] = 0, and, as
we prove below, the effect of gf on the 2-cells [x | y] with x+ y ≥ m+ q is described
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by the formula

gf [x | y] =

m+q−1∑
t=x+y−m−q

(x+ y − t− 1)∗[1 | t] +

r−1∑
t=0

(m+ r − t− 1)∗[1 | t] (5.39)

−
m−1∑
t=0

(m+ r − t− 1))∗[1 | t] +

s(x,y)−1∑
i=1

iq+r−1∑
t=(i−1)q+r

(m+ iq + r − t− 1)∗[1 | t]

+

s(x,y)−1∑
i=1

m+q−1∑
t=m

(m+ iq + r − t− 1)∗[1 | t],

where we write x + y = m + s(x, y)q + r with 0 ≤ r < q (so that x ⊕ y = m + r).
Concerning the two last terms, note that (s(x, y)−1)q+r < m+q whenever s(x, y) ≥ 2,
since m+ s(x, y)q + r = x+ y < 2m+ 2q.

In effect, by definition of f and g, we have

gf [x | y] =

s(x,y)−1∑
i=0

(m+q−1∑
t=0

℘(m+(i+1)q+r−t−1)∗[1 | t]−
m−1∑
t=0

℘(m+iq+r−t−1)∗[1 | t]
)
.

Then, since for any i ≥ 1 and t < r is ℘
(
m+(i+1)q+r−t−1

)
= ℘(m+ iq+r−t−1),

we see that

gf [x | y] =

m+q−1∑
t=r

(m+ q + r − t− 1)∗[1 | t] +
r−1∑
t=0

(m+ r − t− 1)∗[1 | t]

−
m−1∑
t=0

(m+ r − t− 1)∗[1 | t]

+

s(x,y)−1∑
i=1

(m+q−1∑
t=r

℘(m+ (i+ 1)q + r − t− 1)∗[1 | t]

−
m−1∑
t=r

℘(m+ iq + r − t− 1)∗[1 | t]
)

=

r−1∑
t=0

(m+ r − t− 1)∗[1 | t]−
m−1∑
t=0

(m+ r − t− 1)∗[1 | t]

+

s(x,y)−1∑
i=0

m+q−1∑
t=r

℘(m+ (i+ 1)q + r − t− 1)∗[1 | t]

−
s(x,y)−1∑
i=1

m−1∑
t=r

℘(m+ iq + r − t− 1)∗[1 | t],
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from where (5.39) follows thanks to the equalities

m+q−1∑
t=r

℘(m+ (i+ 1)q + r − t− 1)∗[1 | t] =

i−1∑
l=0

(l+1)q+r−1∑
t=lq+r

(m+ (l + 1)q + r − t− 1)∗[1 | t]+
m+q−1∑
t=iq+r

(m+ (i+ 1)q + r − t− 1)∗[1 | t],

m−1∑
t=r

℘(m+ iq + r − t− 1)∗[1 | t] =
i−1∑
l=1

lq+r−1∑
t=(l−1)q+r

(m+ lq + r − t− 1)∗[1 | t]

+
m−1∑

t=(i−1)q+r

(m+ iq + r − t− 1)∗[1 | t].

Finally, to complete the description of the composite gf , for generic cells [x | y | σ]
of dimensions greater than 2 we have the formula

gf [x | y | σ] = [gf [x, y] | gf [σ]]. (5.40)

In effect, as gf [x | y | σ] = g(f [x, y] • f [σ]), by linearity, it suffices to observe that, for
any k ≥ 1,

g(v1 •wk) = [gv1 | gwk], g(v1 • vk) = [gv1 | gvk],

or, equivalently, that gwk+1 = [gv1 | gwk] and gvk+1 = [gv1 | gvk]. But these last
equations are immediate for k = 1, and for higher k by a straightforward induction.
Part 3. We establish here a homotopy Φ from gf to the identity, which is determined
by the recursive formulas

Φ[ ] = 0,

Φ[x] =
∑
t<x

(x− t− 1)∗[1 | t],

Φ[x | y | σ] = [Φ[x] | y | σ] + [gf [x | y] | Φ[σ]].

(5.41)

Since, for any t < x in C, (x− t− 1)⊕ 1⊕ t = x, we see that πΦ[x] = x and then, by
recursion, that πΦ[x | y | σ] = x ⊕ y ⊕ π[σ]. Hence, by Proposition 5.2, the formulas
above determine an endomorphism of the complex of HC-modules B(ZC), which is
of differential degree +1.

Next, we prove that Φ : gf ⇒ id is actually a homotopy:

For a 1-cell [x] is Φ∂[x] = 0, and

∂Φ[x] =
∑
t<x

(x− t)∗[t]− (x− t− 1)∗[1 + t] + (x− 1)∗[1] = −[x] + x((x− 1)∗[1])

= −[x] + gf [x],

as required.
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For a 2−cell [x | y] we have

(∂Φ + Φ∂)[x | y] =
∑
t<x

(x− t− 1)∗(1∗[t | y]− [1 + t, y] + [1 | t⊕ y]− y∗[1 | t])

+
∑
t<y

(x⊕ (y − t− 1))∗[1 | t]−
∑
t<x⊕y

((x⊕ y)− t− 1)∗[1 | t]

+
∑
t<x

((x− t− 1)⊕ y)∗[1 | t] =
∑
t<x

(x− t)∗[t | y]− (x− t− 1)∗[1 + t | y]

+
∑
t<x

(x− t− 1)∗[1 | t⊕ y]−
∑
t<x

((x− t− 1)⊕ y)∗[1 | t]

+
∑
t<y

(x⊕ (y − t− 1))∗[1 | t]−
∑
t<x⊕y

((x⊕ y)− t− 1)∗[1 | t]

+
∑
t<x

((x− t− 1)⊕ y)∗[1 | t] = −[x, y] +
∑
t<x

(x− t− 1)∗[1 | t⊕ y]

+
∑
t<y

(x⊕ (y − t− 1))∗[1 | t]−
∑
t<x⊕y

((x⊕ y)− t− 1)∗[1 | t].

(5.42)

If s(x, y) = 0 then, for any t < x, t⊕y = t+ y and x⊕ (y− t−1) = x+y− t−1 =
(x⊕ y)− t− 1. Therefore∑
t<x

(x− t− 1)∗[1 | t+ y] +
∑
t<y

(x+ y − t− 1)∗[1 | t]−
∑
t<x+y

(x+ y − t− 1)∗[1 | t] = 0,

and, since gf [x | y] = 0, it follows that (∂Φ + Φ∂)[x | y] = −[x | y] + gf [x | y], as
required.

If s(x, y) > 0, the composite gf [x | y] has been computed in (5.39) and, writing as
there x+ y = m+ s(x, y)q + r with 0 ≤ r < q, we have

∑
t<x

(x− t− 1)∗[1 | t⊕ y] =

s(x,y)−1∑
l=1

∑
t<x

m+lq≤t+y<m+(l+1)q

(x− t− 1)∗[1 | t+ y − lq]

+
∑
t<x

t+y<m+q

(x− t− 1)∗[1 | t+ y] +
∑
t<x

m+s(x,y)q≤t+y

(x− t− 1)∗[1 | t+ y − s(x, y)q].

Now, making the changes u = t + y − lq, u = t + y, and u = t + y − s(x, y)q in the
respective terms, and then renaming the u again by t, we obtain

∑
t<x

(x− t− 1)∗[1 | t⊕ y] =

s(x,y)−1∑
i=1

m+q−1∑
t=m

(m+ iq + r − t− 1)∗[1 | t]

+

m+q−1∑
t=y

(x+ y − t− 1)∗[1 | t] +
m+r−1∑
t=m

(m+ r − t− 1)∗[1 | t].
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Similarly, we have

∑
t<y

(x⊕ (y − t− 1))∗[1 | t] =

s(x,y)−1∑
i=1

iq+r−1∑
t=(i−1)q+r

(m+ iq + r − t− 1)∗[1 | t]

+

y−1∑
t=x+y−m−q

(x+ y − t− 1)∗[1 | t] +

r−1∑
t=0

(m+ r − t− 1)∗[1 | t],

and ∑
t<x⊕y

((x⊕ y)− t− 1)∗[1 | t] =

m+r−1∑
t=0

(m+ r − t− 1)∗[1 | t].

Hence, a direct comparison with (5.39) gives that (∂Φ+Φ∂)[x | y] = −[x | y]+gf [x | y],
as required.

Finally, we prove that (∂Φ+Φ∂)(τ) = −τ+gf(τ) if τ is of dimension 3 or greater.
To do so, previously observe that, for any generic cell γ of B(ZC), we have

∂[gf [x | y] | Φ(γ)] = [gf [x | y] | ∂Φ(γ)]. (5.43)

To prove it, by linearity, it suffices to check that ∂[gv1 | 1 | β] = [gv1 | ∂[1 | β]], for
any generic cell β:

∂[gv1 | 1 | β]
(5.33)

= [∂[gv1 | 1] | β] + [gv1 | ∂[1 | β]]

(5.35)
= [∂gw1 | β] + [gv1 | ∂[1 | β]] = [g∂w1 | β] + [gv1 | ∂[1 | β]] = [gv1 | ∂[1 | β]].

Now, according to the definition in (5.41), on chains c of B(ZC) of dimensions 2
or greater, we can write Φ(c) = Φ1(c) + Φ2(c), where Φ1 and Φ2 are the morphisms of
HC-modules given on generic cells by Φ1[x | y | σ] = [Φ[x] | y | σ] and Φ2[x | y | σ] =
[gf [x | y] | Φ(σ)]. Then, for the generic cell τ = [x | y | z | ρ], as

∂τ = [∂[x | y] | z | ρ]− [x | ∂[y | z | ρ]] = [∂[x | y | z] | ρ] + [x | y | ∂[z | ρ]],

we have

Φ∂(τ) = Φ1[∂[x | y] | z | ρ]− Φ1[x | ∂[y | z | ρ]] + Φ2[∂[x | y | z] | ρ]

+ Φ2[x | y | ∂[z | ρ]]

= [Φ∂[x | y] | z | ρ]− [Φ[x] | ∂[y | z | ρ]]

+ [gf∂[x | y | z] | Φ[ρ]] + [gf [x | y] | Φ∂[z | ρ]]

= [Φ∂[x | y] | z | ρ]− [Φ[x] | ∂[y | z | ρ]] + [gf [x | y] | Φ∂[z | ρ]],

since f∂[x | y | z] = 0 by (5.32). Furthermore, by using (5.33) and (5.43), we have

∂Φ(τ) = ∂[Φ[x] | y | z | ρ] + ∂[gf [x | y] | Φ[z | ρ]]

= [∂Φ[x | y] | z | ρ] + [Φ[x] | ∂[y | z | ρ]] + [gf [x | y] | ∂Φ[z | ρ]],
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whence, by the already proven above and induction on the dimension of ρ, we get

(∂Φ + Φ∂)(τ) = [∂Φ[x | y] | z | ρ] + [gf [x | y] | ∂Φ[z | ρ]] + [Φ∂[x | y] | z | ρ]

+ [gf [x | y] | Φ∂[z | ρ]]

= [(∂Φ + Φ∂)[x | y] | z | ρ] + [gf [x | y] | (∂Φ + Φ∂)[z | ρ]]

= [−[x | y] + gf [x | y] | z | ρ] + [gf [x | y] | −[z | ρ] + gf [z | ρ]]

= −[x | y | z | ρ] + [gf [x | y] | gf [z | ρ]]
(5.40)

= −τ + gf(τ),

as required.
This completes the proof of Theorem 5.4, since the conditions in (5.14) are easily

verified. �
If A is any HC-module, by Proposition 5.4, the first level cohomology groups

Hn(C, 1;A) are precisely Leech cohomology groups Hn
L(C,A). Hence, by Theorem

5.4, these can be computed as Hn
L(C,A) = Hn(HomHC(R,A)). Since, by Proposition

5.2, there are natural isomorphisms

HomHC(R2k,A) ∼= A(k ·m), HomHC(R2k+1,A) ∼= A(k ·m⊕ 1).

we obtain the following already known result.

Proposition 5.10 (Corollary 2.3 in Chapter 2) Let C = Cm,q be the cyclic mo-
noid of index m and period q. Then, for any HC-module A and any integer k ≥ 0,
there is a natural exact sequence of abelian groups

0→ H2k+1
L (C,A) −→ A(k ·m⊕ 1)

∂−→ A(km⊕m) −→ H2k+2
L (C,A)→ 0,

where ∂ is given by ∂(a) = (m+ q)
(
(m+ q − 1)∗a

)
−m

(
(m− 1)∗a

)
.

We consider now the rth level cohomology groups of C = Cm,q with r ≥ 2. By
Theorem 5.4 and an iterated use of Lemma 5.1 we conclude that the complexes of
HC-modules Br(ZC) and Br−1(R) are homotopy equivalent. Therefore, for any HC-
module A, there are natural isomorphisms

Hn(C, r,A) ∼= Hn
(
HomHC(Br−1(R),A)

)
.

An analysis of the complexes Br−1(R) tell us that Br−1(R)n = 0 for 0 < n < r, and
that we have the diagram of suspensions

R4
//

� _

S
��

R3
//

� _

S
��

R2
//

S

R1

S

// 0

B(R)5
//

� _

S
��

B(R)4
//

S

B(R)3
//

S

B(R)2
//

S

0

B2(R)6
// B2(R)5

// B2(R)4
// B2(R)3

// 0

where
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• B(R)4 is the free HC-module on the binary set consisting of the suspen-
sion of the 3-cell w1 of R and the 4-cell

[w0|w0]

with π[w0 | w0] = ℘(2), whose differential is ∂([w0 | w0]) = w0 ◦w0 = 0,

• B(R)5 is the free HC-module on the set consisting of the suspension of
the 4-cell v2 of R together the 5-cells

[w0 | v1], [v1 | w0]

with π[w0 | v1] = m⊕ 1 = π[v1|w0], and whose differential is

∂[w0 | v1] = w1 − (m+ q)
(
(m+ q − 1)∗[w0 | w0]

)
+m

(
(m− 1)∗[w0 | w0]

)
,

∂[v1 | w0] = −w1 − (m+ q)
(
(m+ q − 1)∗[w0 | w0]

)
+m

(
(m− 1)∗[w0 | w0]

)
.

• B2(R)6 is the free HC-module on the set consisting of the double sus-
pension of the 4-cell v2 of R, the suspension of the 5-cells [w0 | v1] and
the [v1 | w0] of B(R)5, and the 6-cell

[w0 || w0]

with π[w0 || w0] = ℘(2), whose differential is

∂[w0 || w0] = 0.

Then, by Proposition 5.2, there are natural isomorphisms

HomHC(B(R)2,A) ∼= A(1),

HomHC(B(R)3,A) ∼= A(m),

HomHC(B(R)4,A) ∼= A(m⊕ 1)×A(℘(2)),

HomHC(B(R)5,A) ∼= A(2 ·m)×A(m⊕ 1)×A(m⊕ 1),

HomHC(B2(R)6,A) ∼= A(2 ·m)×A(m⊕ 1)×A(m⊕ 1)×A(℘(2)).

In these terms the truncated complex HomHC(B(R),A) is written as

0→ A(1)
∂1→ A(m)

∂2→ A(m⊕1)×A(℘(2))
∂3→ A(2 ·m)×A(m⊕1)×A(m⊕1), (5.44)

where the coboundaries are given by

∂1(a) = −(m+ q)
(
(m+ q − 1)∗a

)
+m

(
(m− 1)∗a

)
,
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∂2 = 0 is the morphism zero, and

∂3(a, b) =
(
−(m+ q)

(
(m+ q − 1)∗a) +m

(
(m− 1)∗a),

a− (m+ q)
(
(m+ q − 1)∗b

)
+m

(
(m− 1)∗b),

−a− (m+ q)
(
(m+ q − 1)∗b) +m

(
(m− 1)∗b

))
,

while the truncated complex HomHC(B2(R),A) is written as

0→A(1)
∂1→ A(m)

∂2→A(m⊕ 1)×A(℘(2))

∂3→ A(2 ·m)×A(m⊕ 1)×A(m⊕ 1)×A(℘(2)),
(5.45)

where ∂1 and ∂2 are the same as above whereas ∂3 acts by

∂3(a, b) =
(

(m+ q)
(
(m+ q − 1)∗a)−m

(
(m− 1)∗a),

− a+ (m+ q)
(
(m+ q − 1)∗b

)
−m

(
(m− 1)∗b),

a+ (m+ q)
(
(m+ q − 1)∗b)−m

(
(m− 1)∗b

)
, 0
)
.

Then, as an immediate consequence of (5.44) and (5.45), we have

Theorem 5.5 Let C = Cm,q be the cyclic monoid of index m and period q. Then,
for any HC-module A, there is a natural exact sequence of abelian groups

0→ H2(C, 2;A) −→ A(1)
∂−→ A(m) −→ H3(C, 2;A)→ 0

where ∂(a) = (m+ q)
(
(m+ q − 1)∗a

)
−m

(
(m− 1)∗a

)
, and natural isomorphisms

H4(C, 2,A) ∼= H5(C, 3;A)

∼=

{
b ∈ A(℘(2))

∣∣∣∣∣ (m+ q)2℘(2m+ q − 2)∗b = m2℘(2m− 2)∗b,

2(m+ q)(m+ q − 1)∗b = 2m(m− 1)∗b,

}
.

Note that in the case when the cyclic monoid is of index m = 1, the above de-
scription of H4(C, 2;A) adopts the simpler form

H4(C, 2;A) ∼=

{
b ∈ A(℘(2))

∣∣∣∣∣ (q + 1)2q∗b = b,

2(q + 1)q∗b = 2b,

}
,

while when m ≥ 2,

H4(C, 2;A) ∼=

{
b ∈ A(℘(2))

∣∣∣∣∣ (2mq + q2)℘(2m− 2)∗b = b,

2(m+ q)(m+ q − 1)∗b = 2m(m− 1)∗b,

}
.
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Corollary 5.8 For any finite cyclic monoid C, any integer r ≥ 1, and any HC-
module A, there are natural isomorphisms

Hr+1(C, r;A) ∼= H2
L(C,A) ∼= H2

G(C,A).

Proof: A direct comparison of the exact sequence in Theorem 5.5 with the sequence in
Proposition 5.10, for the case when k = 0, gives H3(C, 2;A) ∼= H2

L(C,A). Then, the
result follows since H3(C, 2;A) ∼= H2

G(C,A) by Proposition 5.5, and Hr+1(C, r;A) ∼=
H3(C, 2;A) by Corollary 5.6. �

Corollary 5.9 For any finite cyclic monoid C, any integer r ≥ 2, and any HC-
module A, there are natural isomorphisms

Hr+2(C, r;A) ∼= H3
c (C,A).

Proof: By Corollary 5.7, Hr+2(C, r;A) ∼= H5(C, 3;A), for any r ≥ 3. Since, by
Theorem 5.5, H5(C, 3;A) ∼= H4(C, 2,A), the result follows by Proposition 5.6. �

For instance, if A is any abelian group viewed as a constant HC-module, then
H4(C, 2;A) is isomorphic to the subgroup of A consisting of those elements b such
that ∣∣∣∣ (m+ q)2b = m2b,

2qb = 0,
⇔
∣∣∣∣ (2mq + q2)b = 0,

2qb = 0,
⇔
∣∣∣∣ q2b = 0,

2qb = 0,
⇔ (2q, q2) b = 0,

where (2q, q2) = q(2, q) is the greatest common divisor of 2 and q. This leads to the
following isomorphism, which is analogous to the proven by Eilenberg- Mac Lane for
the third abelian cohomology group of the cyclic group Cq with coefficients in A [32,
Section 21].

Corollary 5.10 For any finite cyclic monoid C, any integer r ≥ 2, and any abelian
group A, there is a natural isomorphism

Hr+2(C, r;A) ∼= HomAb

(
Z/(2q, q2)Z, A

)
.

5.6.2 Cohomology of the infinite cyclic monoid

In this subsection we focus on the additive monoid of natural numbers C∞ = N. As
before, we start by introducing a commutative DGA-algebra over HC∞, R, simpler
than B(ZC∞).

For each integer k = 0, 1, . . . , let us choose unitary sets over C∞, {w0} and {vk},
with πw0 = 1 and πvk = k. Then,

R0 = the free HC∞-module on {v0},
R1 = the free HC∞-module on {w0},
Rn = 0, n ≥ 2
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The differential ∂ = 0 is zero. The augmentation is the canonical isomorphismR0
∼= Z,

and the multiplication on R is by determined by the rules v0 ◦v0 = v0, v0 ◦w0 = w0

and w0 ◦w0 = 0.

Theorem 5.6 There are DGA-algebra morphisms f : B(ZC∞) → R and g : R →
B(ZC∞), determined by the formulas{

f [ ] = v0,
f [x] = x((x− 1)∗w0){

gv0 = [ ],

gw0 = [1],

which form a contraction.

Proof: It is plain to see that the above assignments extends to well defined morphisms
of DGA algebras over HC∞. Indeed, for f , we have f [ ] = v0 ∈ R0(0), and

(x− 1)⊕ πw0 = (x− 1)⊕ 1 = x,

which implies f [x] ∈ R1(x). Moreover ∂f = 0 = f∂, and so f is a morphism of
complexes of HC∞-modules. We now check that f preserves products, indeed,

f([ ] ◦ [ ]) = f [ ] = v0 = v0 ◦ v0 = f [ ] ◦ f [ ],

f([ ] ◦ [x]) = f [x] = x(x− 1)∗w0 = v0 ◦ x(x− 1)∗w0 = f [ ] ◦ f [x],

f([x] ◦ [y]) = f [x | y]− f [y | x] = 0 = f [x] ◦ f [y].

On the other hand, gv0 ∈ R0(0), gw0 ∈ R1(1) and ∂g = 0 = g∂, so g is a
morphism of complexes of HC-modules. To show that g preserves products it is also
straightforward, as we see below.

g(v0 ◦ v0) = gv0 = [ ] = [ ] ◦ [ ] = gv0 ◦ gv0,

g(v0 ◦w0) = gw0 = [1] = [ ] ◦ [1] = gv0 ◦ gw0,

g(w0 ◦w0) = 0 = [1] ◦ [1] = gw0 ◦ gw0.

To prove that they form a contraction, we begin by showing that the composite
fg is the identity:

fgv0 = f [ ] = v0, fgw0 = f [1] = 0∗w0 = w0.

We describe now the homotopy Φ : gf ⇒ id by the formula
Φ[ ] = 0,

Φ[x] =
∑

0≤t<x
(x− t− 1)∗[1 | t],

Φ[x | σ] = [Φ[x] | σ],
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with σ any cell of dimension greater than 1. It is plain to see that, so defined, Φ is a
morphism of HC∞-module since, for any t < x,

(x− t− 1)⊕ 1⊕ t = x,

and thus πΦ[x] = x and πΦ[x | σ] = π[Φ[x] | σ] = x ⊕ π[σ] = π[x | σ]. We show now
that ∂Φ + Φ∂ = gf − id.

For a 1-cell [x] is Φ∂[x] = 0, and

∂Φ[x] =
∑
t<x

(x− t)∗[t]− (x− t− 1)∗[1 + t] + (x− 1)∗[1] = −[x] + x((x− 1)∗[1])

= −[x] + gf [x],

as required.

For a 2−cell [x | y] we have

(∂Φ + Φ∂)[x | y] =
∑
t<x

(x− t− 1)∗(1∗[t | y]− [1 + t, y] + [1 | t+ y]− y∗[1 | t])

+
∑
t<y

(x+ y − t− 1))∗[1 | t]−
∑
t<x⊕y

(x+ y − t− 1)∗[1 | t]

+
∑
t<x

((x+ y − t− 1)∗[1 | t] =
∑
t<x

(x− t)∗[t | y]− (x− t− 1)∗[1 + t | y]

+
∑
t<x

(x− t− 1)∗[1 | t+ y]−
∑
t<x

(x+ y − t− 1)∗[1 | t]

+
∑
t<y

(x+ y − t− 1)∗[1 | t]−
∑
t<x+y

(x+ y − t− 1)∗[1 | t]

+
∑
t<x

(x+ y − t− 1)∗[1 | t] = −[x, y] +
∑
t<x

(x− t− 1)∗[1 | t+ y]

+
∑
t<y

(x+ y − t− 1)∗[1 | t]−
∑
t<x+y

(x+ y − t− 1)∗[1 | t] = −[x | y].

Since gf [x | y] = 0, it follows that (∂Φ + Φ∂)[x | y] = −[x | y] + gf [x | y], as
required.

Finally, for τ a cell of dimension 3 or greater, we prove that (∂Φ+Φ∂)(τ) = −τ +
gf(τ). Recall that for a cell τ = [x | y | σ] we have the formula

∂[x | y | σ] = [∂[x | y] | σ]− [x | ∂[y | σ]],

and thus,
Φ∂[x | y | σ] = [Φ∂[x | y] | σ]− [Φ[x] | ∂[y | σ]].

On the other hand, from (5.33), we obtain

∂Φ[x | y | σ] = ∂[Φ[x] | y | σ] = [∂[Φ[x] | y] | σ] + [Φ[x] | ∂[y | σ]].
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Hence, by the already proven above we have

Φ∂[x | y | σ] + ∂Φ[x | y | σ] = [Φ∂[x | y] | σ] + [∂Φ[x | y] | σ] = −[x | y | σ],

and, since gf [x | y | σ] = 0, we conclude that Φ is indeed an homotopy between the
identity and the composite gf . The remaining conditions (5.14), in order to form f, g
a contraction, are straightforward to check. �

By Proposition 5.4, there are isomorphisms Hn(C∞, 1;A) ∼= Hn
L(C∞,A), for any

HC∞-module A. Then, as a consequence of Theorem 5.6, we recover the computation
by Leech of the cohomology groups of the monoid C∞ [53, Theorem 6.8].

Proposition 5.11 For any HC∞-module A, there are natural isomorphisms

H0
L(C∞,A) ∼= A(0), H1

L(C∞,A) ∼= A(1),

and for every n ≥ 2, Hn
L(C∞,A) = 0.

We now pay attention to the second level cohomology groups of C∞. By Theorem
5.6 and Lemma 5.1, Hn(C∞, 2;A) ∼= Hn

(
HomHC∞(B(R),A)

)
. An analysis of B(R)

tell us that {
B(R)2k = the free HC∞-module on {vk},
B(R)2k+1 = 0,

where, recall, πvk = k; the augmentation is the canonical isomorphism B(R)0
∼= Z

and the product is given by

vk ◦ vl =

(
k + l

k

)
vk+l.

Hence,

Proposition 5.12 For any HC∞-module A, and any integer k ≥ 0,

H2k(C∞, 2;A) ∼= A(k), H2k+1(C∞, 2;A) = 0.

From Corollary 5.6, it follows that

Corollary 5.11 For any HC∞-module A, and any integer r ≥ 2,

Hr+1(C∞, r;A) = 0.

We finish by specifying the 3rd level 5-cohomology group of C∞.

Proposition 5.13 For any HC∞-module A, and any integer r ≥ 3, there is a natural
isomorphism

Hr+2(C∞, r;A) ∼= {a ∈ A(2) | 2a = 0}.
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Proof: By Corollary 5.7, Hr+2(C∞, r;A) ∼= H5(C∞, 3;A). An analysis of B2(R) tell
us that B2(R)4 = B(R)3 = 0, B2(R)5 = B(R)4 is the free HC∞-module on {v2},
where πv2 = 2, B2(R)6 is the free HC∞-module on {[v1 || v1]}, with π[v1 || v1] = 2,
and the differential is

∂[v1 || v1] = −2v2.

Whence, for any HC∞-module A, H5(C∞, 3;A) ∼= {a ∈ A(2) | 2a = 0}. �





Resumen

Las categoŕıas monoidales surgen en distintas ramas de las matemáticas y han sido, por
tanto, ampliamente estudiadas en la literatura. Los grupoides monoidales pequeños,
que aparecen por ejemplo en álgebra y en topoloǵıa algebraica, son objetos mate-
máticos importantes en śı mismos. La mayor parte del trabajo presentado en esta
tesis está motivado por el análisis de distintos tipos de grupoides monoidales, y su
objetivo último es probar teoremas de clasificación cohomológica para ellos. Algunos
de estos resultados han sido establecidos usando teoŕıas de cohomoloǵıa ya conocidas
y estudiadas, mientras que otros han necesitado el desarrollo de nueva teoŕıas. Por
lo tanto, esta memoria contribuye también al estudio de monoides bajo un punto de
vista homológico.

La tesis se encuentra divida en cinco caṕıtulos. Estos caṕıtulos pueden leerse de
forma bastante independiente, aunque comparten gran parte de terminoloǵıa y argu-
mentos técnicos. Exceptuando algunos cambios de notación realizados para unificar la
presentación, y que la bibliograf́ıa se encuentra recopilada al final, el Caṕıtulo 1 ha sido
publicado como [10] en la revista Semigroup Forum (2013), el Caṕıtulo 3 como [16] en
Semigroup Forum (2015), el Caṕıtulo 4 como [15] en Mathematics (2015), mientras
que los Caṕıtulos 2 y 5 corresponden a los art́ıculos [12] y [13], que se encuentran
actualmente pendientes de publicación.

En el Caṕıtulo 1 analizamos la estructura de grupoides monoidales arbitrarios
(M,⊗, I,a, l, r), es decir, categoŕıas pequeñas M cuyos morfismos son todos inver-
tibles y enriquecidas con un producto tensor

⊗ :M×M→M, (X,Y ) 7→ X ⊗ Y,

un objeto unidad I ∈M y los isomorfismos naturales

aX,Y,Z : (X ⊗ Y )⊗ Z //∼− X ⊗ (Y ⊗ Z), lX : I⊗X //∼− X, rX : X ⊗ I //∼− X,

de asociatividad y unidad izquierda y derecha, respectivamente. Estos isomorfismos
han de verificar, para cualesquiera objetos X,Y, Z, T de M, los siguientes diagramas
(llamados usualmente el pentágono de asociatividad y el triángulo de la unidad):

((X ⊗ Y )⊗ Z)⊗ T a //

a⊗1 ��

(X ⊗ Y )⊗ (Z ⊗ T )
a // X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ (Y ⊗ Z))T
a // X ⊗ ((Y ⊗ Z)⊗ T )

1⊗a
OO

159



160 Resumen

(X ⊗ I)⊗ Y a //

r⊗1 $$IIIIIII
X ⊗ (I⊗ Y )

1⊗lzzuuuuuuu

X ⊗ Y

Inspirados por trabajos de Schreier [67], Grothendieck [45], Sinh [69] y Breen [8],
entre otros, desarrollamos una teoŕıa de Schreier-Grothendieck 3-dimensional para
grupoides monoidales. Concretamente, nuestras conclusiones al respecto se resumen
en la existencia de biequivalencias

MonGpd ≈
∆ //

Z3
n-abMnd,

Σ
oo

entre la 2-categoŕıa de grupoides monoidales y la 2-categoŕıa de lo que hemos deno-
minado sistemas de Schreier para grupoides monoidales o 3-cociclos no abelianos para
monoides. Se trata de sistemas de datos

(M,A,Θ, λ)

consistentes en un monoide M , una familia de grupos A = (A(a))a∈M (no necesaria-
mente abelianos) indizados por elementos del monoide, una familia de homomorfismos
de grupos

Θ = (A(b)
a∗−→ A(ab)

b∗←− A(a))a,b∈M ,

y una aplicación normalizada

λ : M ×M ×M −→
⋃
a∈M
A(a) | λa,b,c ∈ A(abc),

satisfaciendo una serie de axiomas. En esta categoŕıa Z3
n-abMnd toda equivalencia es

un isomorfismo y por tanto nuestros resultados de clasificación son efectivos.
Una vez alcanzada esta clasificación nos centramos en el caso de grupoides monoi-

dales abelianos, es decir, grupoides monoidalesM = (M,⊗, I,a, l, r) cuyos grupos de
isotroṕıa AutM(X), X ∈ ObM, son todos abelianos. Aqúı los resultados pueden ser
expresados de una forma más precisa por medio de la teoŕıa de cohomoloǵıa de Leech
[53]. La cohomoloǵıa de Leech para un monoide M toma coeficientes en funtores
desde la categoŕıa DM a grupos abelianos, llamados usualmente DM -módulos. Esta
categoŕıa DM tiene por objetos el conjunto de elementos de M y por morfismos el
conjunto M ×M ×M , con (a, b, c) : b → abc. Aśı, los grupos de cohomoloǵıa de M
con coeficientes en A : DM → Ab, denotados por Hn

L(M,A), están definidos como
los grupos de cohomoloǵıa de la categoŕıa DM .

Las biequivalencias arriba especificadas se restringen en el caso de grupoides monoi-
dales abelianos a biequivalencias

MonAbGpd ≈
∆ //

Z3Mnd,
Σ

oo
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entre MonAbGpd, la 2-subcategoŕıa plena de grupoides monoidales abelianos, y
Z3Mnd, la 2-subcategoŕıa plena dada por aquellos sistemas de Schreier (M,A,Θ, λ)
cuyos grupos A(a) de A son todos abelianos. Además, en este caso, el par de datos A
y Θ constituyen un sistema de coeficientes para la cohomoloǵıa de Leech del monoide
M , es decir, un DM -móduloA, y λ ∈ Z3

L(M,A) es un 3-cociclo normalizado. Gracias a
esta observación obtenemos la clasificación de los grupoides monoidales abelianos y de
los funtores monoidales entre ellos a través de los grupos de cohomoloǵıa H3

L(M,A)
y H2

L(M,A). Estos resultados generalizan los ya obtenidos por Sinh [69] para la
clasificación de grupos categóricos.

Aunque estos resultados son de interés principalmente algebraico, nos gustaŕıa in-
dicar su potencial uso en teoŕıa de homotoṕıa ya que, como probamos en el Caṕıtulo
4, existen isomorfismos naturales Hn

L(M,A) ∼= Hn(WM,A), entre los grupos de co-
homoloǵıa de Leech de un monoide M y los grupos de cohomoloǵıa de Gabriel-Zisman
[37, Appendix II] del espacio clasificante WM de un monoide con coeficientes en A.

En el Caṕıtulo 2 trabajamos con los grupos de homoloǵıa y de cohomoloǵıa de
Leech. Recordemos que los grupos de cohomoloǵıa de Leech para un monoide M son
los de su categoŕıa DM , es decir, si A : DM → Ab es un DM -módulo (llamados en
este caṕıtulo DM -módulos izquierda), entonces

Hn
L(M,A) = ExtnDM (Z,A) = RnHomDM (Z,−)(A) = RnHomDM (−,A)(Z),

donde, para cualesquiera dos DM -módulos A y A′, HomDM (A,A′) denota el grupo
abeliano de morfismos de DM -módulos entre ellos, y Z : DM → Ab es el funtor
constantemente el grupo de enteros Z. Análogamente, para B : DMop → Ab un DM -
módulo derecha, los grupos de homoloǵıa de M con coeficientes en B [51, Definición
2.1] están definidos como

HL
n (M,B) = TorDMn (B,Z) = Ln(−⊗DM Z)(B) = Ln(B ⊗DM −)(Z),

donde, para cualquier DM -módulo izquierda A, el producto tensor B ⊗DM A es el
grupo abeliano definido como el coend del bifuntor DMop × DM → Ab que lleva
cualquier par (x, y) ∈M ×M al producto tensor de grupos abelianos B(x)⊗A(y).

En este caṕıtulo calculamos los grupos de (co)homoloǵıa de Leech de monoides
ćıclicos finitos Cm,q, cuya estructura y clasificación por medio del ı́ndice m y el
peŕıodo q fue establecido por primera vez por Frobenius [34]. Aunque los grupos
de (co)homoloǵıa de cualquier grupo ćıclico finito son bien conocidos desde que fueron
calculados en 1949 por Eilenberg [27], no es aśı para los monoides ćıclicos finitos. De
hecho, hasta donde sabemos, los grupos de cohomoloǵıa de Leech de monoides ćıclicos
han sido únicamente calculados para el caso infinito (es decir, para el monoide aditivo
N de números naturales), y hasta dimensión 2 para el caso finito por Leech en [53]. Por
tanto, puesto que los grupos de cohomoloǵıa superiores son interesantes para nosotros
(principalmente debido a nuestra interpretación del tercer grupo de cohomoloǵıa en
el Caṕıtulo 1), dedicamos este caṕıtulo a calcular todos los grupos de cohomoloǵıa de
cualquier monoide ćıclico finito.
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En el Caṕıtulo 3 pasamos a trabajar con monoides conmutativos. La categoŕıa de
monoides conmutativos es tripleable sobre la categoŕıa de conjuntos [58], y por tanto
es natural usar la cohomoloǵıa del cotriple de Barr-Beck [2] para definir una teoŕıa
de cohomoloǵıa para monoides conmutativos. Esto fue realizado en los años 90 por
Grillet [40, 41, 42, 43]. Recordemos que, para cualquier monoide conmutativo M ,
sus grupos de cohomoloǵıa en esta teoŕıa, Hn

G(M,A), toman coeficientes en grupos
abelianos objetos en la categoŕıa coma de monoides conmutativos sobre M . Dichos
grupos abelianos objetos resultan ser HM -módulos, es decir, funtores con valores en la
categoŕıa de grupos abelianos desde la categoŕıa HM , categoŕıa que tiene por objetos
los elementos del monoide M y por morfismos pares (a, b) : a→ ab. Como los grupos
de cohomoloǵıa Hn

G(M,A) pueden ser calculados, al menos en dimensiones bajas, por
medio de cocadenas simétricas, estos grupos son normalmente denominados grupos de
cohomoloǵıa simétricos del monoide conmutativo M .

Gracias a estas cocadenas simétricas, en este caṕıtulo interpretamos el tercer grupo
de cohomoloǵıa de Grillet en términos de grupoides monoidales estrictamente conmu-
tativos, es decir, grupoides monoidales abelianos dotados de isomorfismos naturales
y coherentes cx,y : x ⊗ y ∼= y ⊗ x, satisfaciendo las condiciones cy,x cx,y = idx⊗y
y cx,x = idx⊗x. Concretamente, nuestro resultado de clasificación establece que
las ternas (M,A, k), donde M es un monoide conmutativo, A es un HM -módulo,
y k ∈ H3

G(M,A) es un clase de 3-cohomoloǵıa simétrica, son los invariantes para
la clasificación de grupoides monoidales abelianos estrictamente conmutativos. Esta
clasificación generaliza la ya conocida para categoŕıas de Picard estrictamente conmu-
tativas obtenida por Deligne [25], Fröhlich y Wall [36], y Sinh [69].

Hasta ahora hemos trabajado con la teoŕıa de cohomoloǵıa de Leech para monoides
arbitrarios y con la de Grillet para monoides conmutativos. Para un monoide con-
mutativo M ambos grupos de cohomoloǵıa Hn

G(M,A) y Hn
L(M,A) están definidos,

donde los coeficientes para la cohomoloǵıa de Leech aqúı son obtenidos componiendo
A : HM → Ab con el funtor canónico DM → HM , (a, b, c) 7→ (b, ac). Aunque en
dimensión uno ambos grupos de cohomoloǵıa coinciden, en dimensiones superiores
difieren. De hecho, se puede argumentar fácilmente que los grupos de cohomoloǵıa
de Leech no tienen en cuenta la conmutatividad del monoide, al contrario de lo que
ocurre con la de Grillet. Por ejemplo, mientras que H2

L(M,A) clasifica todas las co-
extensiones de grupos de M por A [53, 2.4.9], [74, Theorem 2], el segundo grupo de
cohomoloǵıa simétrico H2

G(M,A) clasifica las coextensiones de grupos conmutativas
[43, Chapter V.4].

Sin embargo, los grupos de cohomoloǵıa de Grillet parecen ser un poco “estrictos”
en dimensiones mayores que dos (por ejemplo, el tercer grupo de cohomoloǵıa es cero
para el caso de un grupo). De ah́ı que, en los Caṕıtulos restantes 4 y 5, presentemos
nuevas aproximaciones a la cohomoloǵıa de monoides conmutativos, principalmente
motivados por el problema de clasificar tanto grupoides monoidales abelianos trenza-
dos como simétricos.

En el Caṕıtulo 4 definimos y estudiamos una nueva teoŕıa de cohomoloǵıa, con-
sistente en lo que hemos denominado grupos de cohomoloǵıa conmutativos para un
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monoide conmutativo. Para definirla nos hemos inspirado en los grupos de coho-
moloǵıa (segundo nivel) para grupos abelianos de Eilenberg-Mac Lane [31, 55] y está
basada en la teoŕıa de cohomoloǵıa de Gabiel-Zisman [37, Appendix II] para conjuntos
simpliciales. Un ejemplo de la cohomoloǵıa de Gabriel-Zisman es precisamente la co-
homoloǵıa de Leech. En efecto, si vemos un monoide M como un monoide simplicial
podemos asociarle un conjunto simplicial clasificante WM [31] y para cada DM -
módulo A obtener los grupos de cohomoloǵıa de Gabriel-Zisman Hn(WM,A), que
resultan ser los grupos de cohomoloǵıa de Leech, es decir, Hn(WM,A) ∼= Hn

L(M,A).
Cuando el monoide es conmutativo entonces WM es de nuevo un monoide simplicial y
podemos iterar esta construcción obteniendo un nuevo conjunto clasificante W (WM).
Los grupos de cohomoloǵıa de este conjunto simplicial son usados para definir los gru-
pos de cohomoloǵıa conmutativos de M , denotados por Hn

c (M,A), como

Hn
c (M,A) = Hn+1(W

2
M,A),

donde A es un HM -módulo. Por ejemplo, si M = G es un grupo abeliano, como

el conjunto simplicial W
2
G es un complejo minimal de Eilenberg-Mac Lane K(G, 2),

para cualquier grupo abeliano A (visto como un HG-módulo constante) los grupos de
cohomoloǵıa conmutativos Hn

c (G,A) son precisamente los grupos de cohomoloǵıa de
Eilenberg-Mac Lane para el grupo abeliano G con coeficientes en A [31, 55].

Para calcular estos grupos de cohomoloǵıa hasta dimensión 3 definimos un com-
plejo de cocadenas, truncado en dimensión 4, más manejable que el original y que de-
nominamos complejos de cocadenas conmutativas. Gracias a estas cocadenas podemos
interpretar estos grupos hasta dimensión 3. En particular, probamos que los grupoides
monoidales abelianos trenzados [50], es decir, grupoides monoidales abelianos dotados
de isomorfismos naturales y coherentes cx,y : x⊗y ∼= y⊗x (sin necesidad de satisfacer
las condiciones cy,x cx,y = id ni cx,x = id), son clasificados mediante ternas (M,A, k)
donde M es un monoide conmutativo, A un HM -módulo y k ∈ H3

c (M,A). Este
resultado generaliza el dado por Joyal-Street [50] para grupos categóricos trenzados.

Finalmente, en el Caṕıtulo 5, introducimos y estudiamos, para cualquier entero
r ≥ 1, una teoŕıa de cohomoloǵıa de r nivel para monoides. Esta teoŕıa de cohomoloǵıa
de r nivel es una generalización de la teoŕıa de Eilenberg-Mac Lane para grupos
abelianos a monoides conmutativos. Los grupos de cohomoloǵıa de r nivel de un
monoide conmutativo M , denotados por

Hn(M, r;A),

tienen muchas buenas propiedades, a cuyo estudio este caṕıtulo y un art́ıculo compa-
ñero [14] están principalmente dedicados. En nuestro desarrollo, el papel de los coefi-
cientes es jugado ahora por los HM -módulos, que, recordemos, son grupos abelianos
objetos en la categoŕıa coma de monoides conmutativos sobre M .

Para cualquier monoide conmutativo M , la categoŕıa de complejos de cadenas
de HM -módulos es una categoŕıa abeliana. Ésta categoŕıa abeliana es de hecho una
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categoŕıa monoidal simétrica con un producto tensor A⊗HM B, donde A y B son HM -
módulos. Por tanto, podemos definir DGA-álgebras conmutativas sobre HM como
monoides conmutativos internos en la categoŕıa monoidal simétrica de complejos de
HM -módulos, enriquecidos con un morfismo de monoides internos A → Z (Z es el
HM -módulo constantemente Z).

De forma similar al caso de DGA-álgebras conmutativas ordinarias sobre un anillo
conmutativo, una construcción bar reducida A 7→ B(A) puede ser definida para estas
DGA-álgebras sobre HM . En efecto, B(A) se obtiene a partir de A totalizando en
primer lugar el complejo doble de HM -módulos

⊕
p≥0A/Z⊗HM

(p factores )
· · · ⊗HM A/Z ,

y después enriqueciendo el (adecuadamente graduado) complejo totalizado de HM -
módulos con una estructura multiplicativa por un producto shuffle. Una vez definida
esta construcción introducimos los grupos de cohomoloǵıa de r nivel de A con coefi-
cientes en un HM -módulo B como

Hn(A, r;B) = Hn
(
HomHM (Br(A),B)

)
, n = 0, 1, . . . .

Llegados a este punto definimos lo que son HM -módulos libres, que surgen como
una construcción adjunta izquierda al funtor olvido desde la categoŕıa de HM -módulos
a la categoŕıa coma de conjuntos sobre el conjunto M . En particular, introducimos
el HM -módulo libre sobre la aplicación identidad idM : M →M , denotado por ZM .
Dicho HM -módulo resulta ser además una DGA-álgebra conmutativa sobre HM (con
graduación trivial) y, por tanto, para cada entero positivo r podemos definir los grupos
de cohomoloǵıa de r nivel de un monoide conmutativo M con coeficientes en un HM -
módulo A como

Hn(M, r;A) = Hn(ZM, r;A). (5.46)

Esta teoŕıa de cohomoloǵıa recupera, en su primer nivel, la cohomoloǵıa de Leech
para monoides conmutativos, y en su segundo nivel la teoŕıa de cohomoloǵıa conmuta-
tiva introducida en el caṕıtulo anterior. En cuanto a los grupos de cohomoloǵıa de ter-
cer nivel, encontramos entre ellos los invariantes para clasificar grupoides monoidales
abelianos simétricos, es decir, grupoides monoidales abelianos dotados de isomorfismos
naturales y coherentes cx,y : x⊗y ∼= y⊗x satisfaciendo la condición cy,x cx,y = id pero
no cx,x = id. Es decir, los grupoides monoidales abelianos simétricos son clasificados
mediante ternas (M,A, k), donde M es un monoide conmutativo, A un HM -módulo y
k ∈ H5(M, 3;A). De esta forma completamos la lista de invariantes para las clases de
equivalencia de grupoides monoidales abelianos. Este resultado generaliza el obtenido
por Sinh [69, II, Proposición 5] para categoŕıas de Picard.

Para terminar, dedicamos la última parte del caṕıtulo a calcular grupos de coho-
moloǵıa de primer, segundo y tercer nivel para monoides ćıclicos.
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[36] A. Fröhlich and C. T. C. Wall. Graded monoidal categories. Compositio Mathe-
matica, 28(3):229–285, 1974.

[37] P. Gabriel and M. Zisman. Calculus of Fractions and Homotopy Theory. Springer,
Berlin, 1967.

[38] P. G. Glenn. Realization of cohomology classes in arbitrary exact categories.
Journal of Pure and Applied Algebra, 25(1):33–105, 1982.

[39] P. G. Goerss and J. F. Jardine. Simplicial homotopiy theory, volume 174 of
Progress in Math. Bikhauser, 1999.

[40] P. A. Grillet. Commutative semigroup cohomlogy. Semigroup Forum, 43:247–252,
1991.

[41] P. A. Grillet. Commutative semigroup cohomology. Comm. Alg., 23:3573–3587,
1995.

[42] P. A. Grillet. Cocycles in commutative semigroup cohomology. Comm. Alg.,
25:3427–3462, 1997.



168 Bibliography

[43] P. A. Grillet. Commutative Semigroups (Advances in Mathematics). Kluwer
Academic Publishers, 2001.

[44] P. A. Grillet. Partial resolutions in monoid cohomology. Algebra and Discrete
Mathematics, 4:12–31, 2004.

[45] A. Grothendieck. Categories Fibrees et Descente, Expos VI. In Revêtements
Etales et Groupe Fondamental, volume 224 of Lecture Notes in Mathematics,
pages 145–194. Springer Berlin Heidelberg, 1971.

[46] P. Higgins. Categories and Groupoids. Van Nostrand Reinhold, 1971. Reprints
in Theory and Applications of Categories, No. 7 (2005).

[47] H. Inassaridze. Non-abelian homological algebra and its applications, volume 421.
Kluwer Academic Publishers,, Amsterdam, 1997.
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