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Resumen

En esta tesis se ha estudiado, puesto a prueba y desarrollado
el esquema de regularización dimensional en cuatro dimensiones
FDR [58], un nuevo método para calcular correcciones radiativas
en teoría cuántica de campos perturbativa (TCCP).

En el primer capítulo, se dan las motivaciones para esta inves-
tigación, mostrando mediante algunos ejemplos fenomenológicos
la importancia de hacer cálculos precisos para el programa de
física del gran colisionador de hadrones (LHC), especialmente co-
mo herramienta para la búsqueda de nueva física. Entre las varias
técnicas desarrolladas recientemente para llevar a cabo esta tarea,
FDR propone un enfoque novedoso con el objetivo de reemplazar
el amplio uso de la regularización dimensional (RD). Antes de
describir el método, se introduce el problema de los infinitos en
TCCP, mostrando como estos emergen a nivel de integración de
bucle o del espacio de las fases: la estrategia tradicional para tra-
tar estos objetos consiste en parametrizar los infinitos con el fin
de controlarlos hasta que se cancelen entre sí. Sin embargo, este
enfoque requiere un gran esfuerzo analítico para calcular cantida-
des que no son nisiquiera físicas, dificultando la implementación
en un metódo numérico. FDR elimina este obstáculo a través
de la sustracción de los infinitos a nivel de integrando, de forma
congruente y algorítmica, proporcionando así un atajo hacia el
resultado físico.

En el segundo capítulo, se describe en detalle el conjunto de las
nuevas tecnologías utilizadas y desarrolladas en esta tesis, expli-
cando los mecanismos y las ventajas de FDR y proporcionando de
tal manera un manual para utilizar el método de forma práctica
en cálculos realistas. A diferencia de los enfoques tradicionalmen-



te utilizados para ocuparse de las integrales divergentes, en FDR
la sustracción de infinitos ultravioleta (UV) está en la definición
misma de una nueva integral de bucle, finita a nivel de integran-
do. La integral FDR es invariante bajo la traslación del momen-
to de bucle, y respeta las simplificaciones usuales entre numera-
dor y denominador, así que es posible manipular algebráicamente
el integrando y reducirlo tensorialmente antes de integrarlo. Las
diagramas de Feynman a dos o más bucles, expresados en térmi-
nos de integrales FDR, son congruentes bajo sub-integración. Las
amplitudes calculadas en FDR respetan automáticamente la in-
variancia gauge y las demás simetrías del lagrangiano. Todas las
expresiones son UV-finitas, así que la renormalización estándar,
mediante la absorción de los infinitos dentro de los parámetros del
Lagrangiano, se evita por completo: solamente una renormaliza-
ción finita tiene que llevarse a cabo para relacionar los parámetros
con cantidades físicas. Este procedimiento, a más de un bucle, re-
sulta simplificado en FDR, porque los infinitos son sustraídos al
principio, así que se puede evitar la renormalización orden a or-
den que es necesaria por ejemplo en RD. El mismo mecanismo
que regula los infinitos UV se ocupa también de los infinitos infra-
rrojos (IR), permitiendo la cancelación que garantiza el teorema
de Kinoshita, Lee y Naunberg entre los infinitos de la radiación
virtual y real. Gracias a sus cuatro dimensiones y al hecho de que
los infinitos IR son expresados en términos de logaritmos (en vez
de polos) de una escala pequeña, FDR puede constituir el pun-
to de partida para desarollar métodos de integración numérica
y de sustracción a nivel de integrando para fomentar el calcúlo
numérico rápido de procesos con muchas patas externas.

Después de haber descrito las características de FDR, el capí-
tulo 3 ilustra el método con unos ejemplos prácticos:

• el cálculo de la amplitud de H → γγ a un bucle en un gauge
arbitrario ha supuesto una comprobación de la invariancia
gauge en FDR, y la primera ocasión para trabajar con líneas
fermiónicas internas;

• las correcciones gluónicas a la amplitud de H → γγ en la
aproximación de gran masa del quark top ha impulsado la
tecnología para calcular integrales de vacío a dos bucles y



ha mostrado las ventajas de FDR con respecto a RD: de
hecho, todos los términos espurios del tipo ε/ε se evitan en
FDR, lo cual simplifica el cálculo a varios niveles. Se han
utilizado las propiedades del contenido de vacio extraído en
la definición de integral FDR para construir un test para
validar el cálculo;

• la identidad de Ward en QED para el proceso H → γγ es ve-
rificada a uno y dos bucles a nivel de integrando para ilustrar
el mecanismo que permite que FDR respete la invariancia
de gauge;

• la sección eficaz para H → gg en la teoría efectiva con quark
top infinítamente pesado al primer orden perturbativo repre-
senta un ejemplo de cálculo en presencia de estado final sin
masas, una ocasión para estudiar la combinación de radia-
ción virtual y real con métodos numéricos basados en FDR.

En el último capítulo, se resumen las características de FDR y se
proponen algunas nuevas líneas de investigación. La descripción
detallada y los ejemplos de trabajo en FDR proporcionados en
esta tesis generan confianza en el método, y confiamos en que
inspiren su uso en estudios futuros como alternativa a RD. En
concreto, preveemos un gran potencial de FDR para la realización
de cuentas puramente numéricas al segundo orden perturbativo.





Abstract

In this thesis we have studied, tested, and developed the four di-
mensional regularization/renormalization (FDR) scheme, a novel
approach to the calculation of radiative corrections in perturbati-
ve quantum field theory (pQFT), a task that is primarily hindered
by the presence of unphysical infinities emerging from loop and
phase space integration. Unlike the methods traditionally used to
cope with this problem, in FDR the subtraction of the ultraviolet
(UV) divergences is built in the definition of a new loop integral,
made finite at the integrand level, and without ever modifying
the Lagrangian. The method is fully four-dimensional, and it au-
tomatically preserves gauge invariance, as we have verified by
calculating the one-loop amplitude for H → γγ in arbitrary gau-
ge. By studying the gluonic corrections to the top-loop induced
H → γγ process, we have also shown that FDR is particularly
convenient when applied to two-loop calculations, as it avoids a
great deal of the work that in dimensional regularization (DR) is
induced by ε/ε terms. Infrared (IR) singularities in virtual and
final state real radiation can also be cured in the same frame-
work; the matching and cancellation of this type of divergence
in inclusive observables was also studied, by reviewing the analy-
tic calculation of the next-to-leading-order (NLO) decay rate for
H → gg, and by applying to this same process some FDR-based
numerical Monte Carlo (MC) methods.
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Chapter 1

Introduction

1.1 Why precision physics

This thesis is about a method for calculating radiative corections in
pQFT. The topic belongs to the broader field of developing the technology
necessary to make precision calculations for the LHC. In order to explain
why this is relevant, we will first show with some examples that precise pre-
dictions are necessary, and then that the technology presently at hand may
experience difficulty in reaching the demanded accuracy. Let’s take a glance
at the context in which this thesis was born and brought about: the Higgs
boson was discovered a few years ago [1, 2], no clear signal of new physics
has been obtained, and the chances of discovering light new physics have
significantly decreased. At the dawn of the high luminosity run of the LHC,
our best hopes of finding physics beyond the Standard Model (BSM) may lie
in measuring tiny deviations from the Standard Model (SM) background.

Indeed, the huge amount of data collected at the LHC, together with
recent progress in the theoretical description of the phenomenology of proton
colliders, make a precision programme at the LHC feasible and even desirable.
Without waiting for the next generation of lepton colliders, a compromise
might be prolific between the natural purpose of the LHC -searching- and
that of measuring with precision.

An example of this “discovery precision physics” is the measurement of the
Higgs boson’s couplings. New physics associated with the Higgs boson could
emerge as a small deviation from the SM: it has been pointed out that some
BSM scenarios would affect the Higgs couplings at the few-percent level [3],
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Figure 1.1: ILC projections for some Higgs boson’s couplings normalized to the
SM ones, in different models.

making the accurate calculation of these parameters a primary goal. The
appearence of different patterns in the values of the Higgs coupling might
discriminate among different EWSB models [4], as depicted in fig. 1.1.

Undoubtedly, progress in the experimental and analysis technique is also
in order for an effective precision programme at the LHC, in the realm of
reducing the systematics; nontheless, for the moment, for many observables
the accuracy of the measurement is comparable or exceeds that of the predic-
tion. It is hence a priority to consistently reduce the theoretical uncertainty
to levels that are comparable with the experimental errors.

Some recent examples of the effectiveness of precision calculation as a
discovery tool are provided by the next-to-next-to leading order (NNLO)
QCD corrections to the inclusive and differential top pair production [5, 6].
Because stops have the same mass as top quarks and they decay to tops with
negligible missing energy, their experimental trace cannot be distinguished
from that of top quarks; yet their existence would increase the measured
top total cross section. The recent calculation on the top pair production,
with NNLO QCD corrections, reduced the uncertainty on the predicted cross
section to a 4%, allowing us to exclude the existence of light stops in a light
neutralino model: no significant excess was found with respect to the SM
cross section [5].
In addition, the fully differential cross section of the top pair production,
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with NNLO QCD corrections, allowed to relax the top forward-backward
asymmetry puzzle: indeed, enhanced with NNLO corrections, the top pair
forward-backward asymmetry results shifted by around 27% with respect to
the NLO prediction, thereby coming to perfect agreement with the latest
measurments at Tevatron [6].

Because the playground is a proton collider, perturbative QCD (pQCD)
is the framework within which observables are computed. There are different
sources of theoretical uncertainty, alongside the different ingredients of a
calculation:

• parton distribution functions (pdf),

• input parameters, such as the coupling constants and the quark masses,

• the partonic cross sections.

Here, we direct our focus on the last item of this list, the computation of
partonic cross sections. In pQFT, these objects are obtained as perturba-
tive series in the coupling constants, the error coming essentially from the
truncation of such series. In particular, pushing the calculation to further
degrees of accuracy involves calculating radiative corrections with more loops
and more external particles. Ultimately the problem can be tracked down to
dealing with difficult integrals, may they be in the virtual momenta of parti-
cles emitted and absorbed in the virtual spectrum, or in the phase space, i.e.
over the kinematics of the final state particles. Advancing in the calculation
of partonic cross sections hence requires

• progress in the computation of loop integrals and amplitudes;

• being able to integrate higher multiplicity processes, allowing the Kinoshita-
Lee-Nauenberg (KLN) cancellation of the IR infinities in a process-
independent way.

Thanks to the great advances of the last couple of decades, we stand at
a point where NLO calculations for processes with an arbitrary number of
particles in the final state are automated or nearly automated [7–20]. The
question is now whether this degree of precision is sufficient for the needs of
the LHC. We’ll now give some motivations and some examples that explain
why this is not the case.

The slow convergence of the QCD perturbative series in αS is perhaps the
number one reason for the need of higher order corrections. The majority of
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Figure 1.2: Scale variation of the Higgs boson production total cross section, at
LO, NLO, NNLO and N3LO [21].

processes at LHC are calculated with NLO accuracy: the uncertainty due to
the missing higher orders can be estimated by varying the factorization and
renormalization scales, and it is typically of the order of 10% of the predicted
cross sections, when going to NNLO; this usually exceeds the experimental
error, as well as the theoretical error due to pdfs [22]. Consider the following
examples:

• the Higgs boson production total cross section, recently computed up
to N3LO [21], exhibits an ingent variation with respect to the scale, as
shown in fig. 1.2, which stabilizes only beyond the NNLO level; knowing
with precision this observable provides an important consistency check
for the SM;

• the cross section of pp → WZ presents a tension between data and
predicitions, as shown in fig. 1.3, where all measured cross sections
are bigger that the expected ones [23]; the QCD NNLO corrections
could make light on the problem, as suggested by the fact that recent
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Figure 1.3: Ratio of the measured cross sections to the theoretical prediction for
WZ production at

√
s = 7 TeV [23].

calculations for pp → WW and pp → ZZ [24, 25] have shown an
incremement of the 10% order as going from the NLO to the NNLO
QCD cross sections: a shift of this magnitude would be enough to
understand the mismatch observed;

Another important topic is that of parton showers, an essential ingredient
in event generators to describe hadronization. The problem resides in the
use of parton showers as a shortcut to pQCD calculations that are too hard:
with such approach, this technology is used out of its scope and domain
of validity of low-Q2, inducing systematic errors on the extraction of data
itself. To overcome the issue, it is crucial to take steps in the matter of
matching/merging parton showers with fixed order results, and to upgrade
the event generators in such a way that they will be more and more grounded
on exact matrix elements. An example of this is a classic problem of precision
physics, i.e. the determination of the W boson mass MW : in this case, the
lack of the mixed QCD and EW corrections to the Drell Yan cross section
generates an ambiguity in the determination of MW at the level of 2-5% [26],
unacceptable if we aim at the 1% reached by experimental measurements.
Finally, analogously to the way in which the theoretical cross sections affect
the measurements, they also have an impact on pdf determination: accu-
rate computation of hard scattering corrections for DIS and hadronic vector
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Table 1.1: Current experimental and theoretical uncertainity for some impor-
tant processes. In these cases, the two errors are comparable, so that re-
moving experimental and theoretical sources of systematics is more important
than further improving the perturbative series. This table was taken from in-
dico.cern.ch/event/360104/session/7/contribution/26/material/slides/.

gauge-boson producion, at the inclusive and differential level, are an essential
ingredient for improving our knowledge on the pdfs [27].

The LHC is calling for a new revolution in calculation techniques, able
to break the NNLO frontier. Several new methods have recently established
themselves toward the simplification of the multi-loop problem: spinor he-
licity methods, generalized unitarity , OPP, Openloops, extended use of
integration-by-parts (IBP) identities and differential equations, better un-
derstanding of the mathematical nature of the amplitude (symbols, general-
ized polylogarithms, ...) [28–33]. In the context of multi-particle final state,
NNLO subtraction schemes have lately made their appearence, such as the
antenna method and sector decomposition [20, 34–38].
Several results have been obtained for amplitudes at one, two and even three
loops; and the new NNLO subtraction methods have been shown to work
in practice on several processes (see table 1.1). Nontheless, we are still far
from mastering a general method, that can be applied to the wide variety of
processes typical of the physics at the LHC.
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Overall, the arisal of extremely large analytic expressions and the issue of
numerical stability are among the main difficulties that are being faced; they
are expected to become more critical as we consider more involved processes.

Acknowledged the importance of pursuing technological progress for pre-
cision physics at the LHC, and that the interest on the topic is well alive, it is
now the time to introduce FDR, not as a competitor of the latest techniques,
but as a fresh look at pQFT. Perturbative QFT calculations are plagued
by integrals that diverge in the intermediate steps: the traditional way of
dealing with such objects consist in parametrizing the infinities, so as to put
them under control until the moment they cancel, when the expression we
are calculating is physical enough. However, this approach forces a huge
analytic effort, because the presence of poles makes it mandatory to have
clean analytic expressions of objects that in the end have nothing to do with
the physics, hindering a potential numerical path to the point of making it
impossible. The aim of FDR is that of sidestepping this obstacle, by sub-
tracting the infinities at the integrand level. Suppose this can be achieved in
a consistent and algorithmic way: a whole new space for exploiting numeric
integration would open up, supplying a shortcut to the physical answer.

The aim of this thesis is that of providing evidence on the standing hy-
pothesis of the last sentece: we will describe FDR and explain its mechanisms
through practical examples, showing that it leads to calculations that are neat
and easy to implement.
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1.2 Infinities in perturbative QFT

FDR is regularization and a renormalization scheme. Before going into
the details of the method, we would like to briefly review where do the
infinities arise in pQFT, and how have they usually been dealt with.

The calculation of radiative corrections involves loop integrals, over the
momenta of virtual particles, and phase space integrals, over the kinemat-
ics of the final state. In the intermediate steps of a calculation, some of
these integrals might be divergent, because the connection is temporarily
lost between the physics and the mathematical expressions at hand. The
need emerges of inventing clever ways of parametrizing the infinities while
patiently working through the calculation, trusting that the final result will
be finite. After regulating the divergences, the UV ones are then renormal-
ized away, that is they are reabsorbed into the definition of the parameters of
the theory. Soft and collinear infinities generated in the phase space integral
of final states containing massless particles cancel out when combined with
the corresponding virtual contribution; soft infinities arising in the initial
state radiation behave similarly, whilst the collinear ones are reabsorbed in
the parton densities.

Consider, for example, the following simple one-loop integral,
∫

d4q
1

(q2 − M2 + iε)2
∝
∫

d4q

q4
, (1.1)

which diverges logarithmically as the integration momentum becomes arbi-
trarily large. In order to regularize it, let us introduce a parameter on which
the integral depends analytically, such that it diverges in the physical limit,
but it is well-defined elsewhere.

An obvious option is to put a cut-off on the integration range. After
performing a Wick rotation and moving to euclidian space, the integral can
be expressed as

lim
Λ→∞

iπ2

∫ Λ

0

k3dk
1

(k2 + M2)2
, (1.2)

where k =
√

Eq
2 + |q|2, with q = (Eq,q). The integral can now be evaluated,

and the dependence on the infinite scale Λ will drop in physical amplitudes.
The problem with this method is that it breaks Lorentz and shift invariance.

A more sophisticated approach is the regularization proposed by Pauli
and Villars [39]. It is based on the idea of arbitrarily introducing another
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particle with mass M ′ %= M , in such a way that divergent integrals always
appear in the combination

lim
M ′→∞

∫
d4q

(
1

(q2 − M2 + iε)2
−

1

(q2 − M ′2 + iε)2

)
. (1.3)

The two integrands have the same UV behavior, so that the infinities cancel.
Integrals like that of eq. (1.3) are shift- and Lorentz-invariant. However,
the naive introduction of a fictitious particle is not able to respect gauge
invariance in the case of non-abelian theories. Enforcing gauge invariance a
posteriori is always possible, by imposing the Ward-Slanov-Taylor identities
of the theory considered, but it can be cumbersone and error-prone.

Indeed, avoinding this downside is one of the assets of DR [40], where the
loop integral is regarded as a function of the space-time dimension n = 4+ ε,
divergent only in the limit n → 4. In practice, the integral becomes

lim
n→4

∫
dnq

µ ε

1

(q2 − M2 + iε)2
, (1.4)

where an arbitrary scale µ has been introduced in order to keep the same
mass-dimension as that of the original integral. The singularity is parametrized
as a pole 1/ ε: in a finite amplitude the global coefficient of such pole van-
ishes; as for the arbitrary scale µ, it either drops or is traded for a physical
scale, via renormalization. DR, even though physically less transparent, is
more “natural” with respect to the regularization methods previously intro-
duced: changing the space-time dimension doesn’t break any property of the
original integral, which mantains shift and gauge invariance automatically.

One last approach that is worth mentioning in this introduction is the
BPHZ scheme of renormalization [41–43]. Take for example

I(p) =

∫
d4qJ(q, p), with J(q, p) =

1

(q2 − M2)[(q + p)2 − M2]
(1.5)

where we have dropped the iε prescription for simplicity. By Taylor-expanding
the integrand with respect to the external momentum around p = 0,

J(q, p) = J(q, 0) + pµ ∂J

∂pµ
(q, 0) + . . . (1.6)

it is possible to extract a subtraction term able to make the original integral
finite. Indeed, each term of the series is more convergent than the one before.
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In our case, by subtracting J(p, 0) we already obtain a finite integral, that
is

I(p)|BPHZ =

∫
d4q

(
1

(q2 − M2)[(q + p)2 − M2]
−

1

(q2 − M2)2

)
, (1.7)

without introducing any extra parameter. The idea of the BPHZ scheme is
that this subtraction term can be systematically encoded into the Lagrangian
as a counterterm; with this procedure it is also possible to treat integrals with
no external momenta, like that in eq. (1.1). This approach historically led to
the mathematical proof of renormalization, and it is sometimes useful when
addressing formal issues on QFT. However, it becomes inefficient in practical
calculations, especially in the case of gauge theories, because it can break
gauge invariance, and in presence of massless particles.

As a matter of fact, things get more intricate for massless theories. Let’s
consider once again the integral of eq. (1.1): if M = 0, then it diverges
logarithmically also when q is arbitrarily small. If an external momentum,
such that p2 = 0, appears in the integral,

∫
d4q

1

q2 [q2 + 2(q · p)]
, (1.8)

then it diverges in the region where q is soft and collinear to p. Roughly
speaking, if θ is the angle between q and p, the product

2(q · p) = 2 |q| |p| (1− cos θ) (1.9)

is quadratically zero when |q| → 0 and θ → 0. Some ways of curing this type
of singularity consist in keeping the external momenta off-shell, or to assign
a fictitious mass to the integration momenta, or to add an IR cut-off.

In DR this problem is automatically fixed, without the need of introducing
extra scales, which stands as another well-appreciated property of DR. A UV-
finite amplitude can exhibit poles 1/ ε of IR origin. These have to be matched
with the appropriate treatment of the real radiation in order to cancel, at
the level of the cross section.

Indeed, it is impossible to distinguish a massless particle that has been
emitted and absorbed in the virtual spectrum, from one that has reached
the final state but it is not detectable, either because too soft or because it
is collinear to another particle. This translates into a classic quantum me-
chanics problem solved thanks to the KLN [44] and the Bloch-Nordsieck [45]
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theorems: two indistinguishable states make up a single well-defined observ-
able. This means that a cross section with complete radiative corrections up
to a given order is IR-finite. For example, consider a process with m observed
particles in its final state. Its inclusive cross section at NLO is made up of
the Born cross section, the virtual correction at one loop, and the tree-level
cross section of the same process plus a massless particle emitted softly or
collinearly. Schematically,

σ(pp → m particles + X) = σ(0)
m + αS σ

(1#)
m + αS σ

(0)
m+1 + O(α2

S), (1.10)

and it is the combination
σ(1#)

m + σ(0)
m+1 (1.11)

to be finite.
This type of approach works for soft particles in the initial and final state,
and for collinear particles in the final state only. If the collinear particle is
emitted in the initial state, virtual and real processes can be distinguished,
because they differ in their centre of mass energy. This case falls out of the
hypothesis of the KLN theorem, but thanks to the universality of collinear
emission, it can be solved with a procedure similar to renormalization, by
absorbing the infinities into the pdfs.

DR has become the standard for QFT calculations, due to its nice prop-
erties: indeed,

• it is Lorentz and shift-invariant,

• it preserves gauge invariance and unitarity,

• it is applicable to both the UV and IR regimes.

The main drawback of any DR-based method is that it is not four-dimensional.
Although a tautology, this statement has indeed serious consequences: it
forces a huge analytic effort in order to keep the poles in ε under control,
especially beyond the one-loop level where finite terms coming from the ra-
tio ε/ε pop out in several occasions. This makes it impossible to pursue a
numerical strategy, at least for a good part of the calculation.

This is why the literature is rich in attempts to four-dimensional regular-
ization schemes, such as differential renormalization [46], constrained differ-
ential renormalization [47,48], which both work in coordinate space, implicit
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renormalization [49,50], symmetry preserving regularization [51] and LR [52],
directly applicable in momentum space.

One of the novelties of FDR with respect to these techniques is that it not
only abandons DR to be four-dimensional, but it also steps back from the
traditional renormalization approach: UV infinities, which are unphysical,
are subtracted from the integrals, at the integrand level, and they are not
absorbed into the parameters of the theory; the subtraction is encoded in the
definition of loop integral, and the Lagrangian is left untouched. Moreover,
the same mechanism which cures the UV infinities handles also the IR ones,
allowing for the KLN theorem to be satisfied. Although it is a completely
different approach with respect to DR, it shares with this method the prop-
erties that makes it practical. In the next chapter we describe the method
in detail, demostrating how these claims are realized in practice; and in the
ensuing chapter we show FDR at work on some realistic calculations.
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Chapter 2

FDR

In this chapter we present the FDR method as a novel way to tackle
calculations in QFT. The bulk of new technology that was used and partly
invented during this thesis work is described in detail, explaining the mech-
anisms and the assets of the technique.

In the last chapter we have seen the difficulties that one has to face when
attacking a precision calculation. From the different strategies that have
been adopted so far, we have learnt what are the ingredients that the ideal
method should possess. As far as virtual radiation is concerned, one would
like to define a loop integral which is

• finite in the UV region, and identical to normal integration for conver-
gent integrands;

• shift-invariant;

• gauge-invariant (and respectful of all other symmetries of the theory
taken in exam);

• independent of the cut-off, but dependent on an arbitrary scale (the
renormalization scale µR).

The cut-off method fails on shift invariance, while Pauli-Villars and BPHZ
are not gauge-invariant in the SM. DR is able to overcome all these prob-
lems, establishing itself as the standard technique for multi-loop calculations.
However, working in an arbitrary number of dimensions forces a huge ana-
lytic effort, and prevents the full use of numerical tools to go around difficult
integrals and other cumbersome steps of a calculation. In addition, none of
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these methods is independent of the UV cut-off, thus requiring renormaliza-
tion. Moreover, depending solely on an arbitrary scale is an important feature
especially if one wants to use EFTs in the direct quest of new physics.

FDR comes as a solution to this hurdle: by defining a loop integral with
all the properties listed above, but in four dimensions and completely finite
– i.e. avoiding the parametrization of the infinities –, it provides a method
with all the appealing features of DR, yet suitable for numerical hybridation.

Moreover, a good method requires also that

• at least all external particles are described by four-dimensional objects,
so that also predictions for supersymmetric (SUSY) models can be
computed;

• at two loops and beyond, the integration is consistent with sub-integration
(i.e. it should be equivalent to calculate the full diagram or to compute
the integral of a sub-diagram and insert it back in the full one).

Mantaining the central idea of DR, some of its variants like dimensional
reduction (DRed) and four dimensional helicities (FDH) allow for SUSY cal-
culations, because they are defined in such a way that only the loop integral
is in n dimensions, while all external tensors are four-dimensional. However,
they break the last property, so that extra attention must be paid when one
wants to calculate for example QCD processes that involve external fermions.

FDR, obviously in harmony with the first of these requirements, is also
constructed with sub-integration consistency.

Finally, a covenient method should be compatible also when massless
theories are considered and IR divergences arise, calling for the matching of
virtual and real radiation in order to have well-defined observables. FDR
is naturally extended so as to cure also this type of divergent behaviour,
and thanks to its four-dimensionality and finiteness it can be taken as the
starting point to design more clever subtraction methods, allowing for the
fast numerical calculation of multi-leg processes.

All this is described in the present chapter, organized as to follow the
steps of a realistic calculation, starting from the diagrams, mounting them
into the amplitude, and finally integrating the matrix elements in the phase
space to obtain the prediction for a physical observable. In the first section
we define the FDR integral, and we learn how to compute it. In the second
section, we concentrate on gauge invariance and renormalization as funda-
mental properties of a physical amplitude. Finally, in the last section, we
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explain how FDR treats the IR-divergent real radiation, and we propose the
sketch of the FDR local subtraction method.

The chapter stands as a manual for practical calculations in FDR, and
it prepares the path for the next chapter in which the method is put into
practice.
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2.1 The FDR Integral

In this section we present the basic building block of FDR, i.e. the FDR
integral. Indeed, it is via a redefinition of loop integrals that FDR proposes
a novel approach to calculations in QFT, four-dimensional and entirely fi-
nite. While the definition of the FDR integral is based on a simple idea,
its consequences –also at the technical level– are profound, and are worthy
of extended discussion. From Section 2.1.1 to Section 2.1.6 the FDR recipe
to regulate loop integrals is described in detail, with examples and technical
remarks at the one- and two-loop level. In Section 2.1.7, the analytic results
of some simple FDR integrals are reported. In Section 2.1.8, it is shown
how the usual techniques for tensorial reduction apply to FDR. Finally, in
Section 2.1.9 the FDR integral is proven to be well-defined also in the case
of massless theories in the presence of IR singularities.

2.1.1 Definition of the FDR integral

As a simple example, let us consider a scalar one-loop integral containing
two propagators. Its integrand,

1

D0 D1

≡
1

(q2 − M2
0 + i0) [(q + p1)2 − M2

1 + i0]
, (2.1)

can be rewritten as follows:

1

D0 D1

=

[
1

q4

]

+
d1

q4 D1

+
d0

q2 D0 D1

, (2.2)

where

Di = (q + pi)
2 − M2

i + i0 = q2 − di , p0 = 0 ,

q2 = q2 + i0 ≡ q2 − µ2 , di = M2
i − p2

i − 2(q · pi) . (2.3)

As usual, q denotes a generic integration momentum; the bar means that the
+i0 propagator prescription is made explicit and formally identified with a
vanishing mass −µ2: in this way, the factors 1/ q2 appearing in the r.h.s. of
eq. (2.2) are made IR-safe.

Since d1 is at most linear in q and d0 = M2
0 , the only UV-divergent term

of the r.h.s. of eq. (2.2) is that in squared brackets (a convention that we
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will use throughout the rest of the text body),

[
1

q4

]

, (2.4)

which is also independent of any physical scale. The idea at the base of FDR
is that of disregarding this type of terms, and integrating in four dimensions
the remaining UV-finite part alone:

∫
[d4q]

1

D0 D1

≡ lim
µ→0

∫
d4q

(
d1

q4 D1

+
d0

q2 D0 D1

)

. (2.5)

From now on, the symbol [d4q] will always denote an FDR integral. Differ-
ently with respect to a dimensionally regularized Feynman integral, the limit
µ → 0 is taken outside integration, so that the induced IR divergences are
kept under control. Moreover, due to this limit, only a logarithmic depen-
dence on µ remains that is interpreted as the renormalization scale, as we
explain in some detail in the next section.

This definition is naturally extended to any integrand, scalar or tensorial,
and to any loop level. The separation of the UV infinities and of the physical
finite part, which we dub FDR defining expansion of the integrand, can be
systematically brought about thanks to the partial fraction identities. For
example,

1

Di

=
1

q2 +
di

q2Di

(2.6)

is the only identity that one needs to FDR expand one-loop integrands. In
section 2.1.2 some examples are listed and the complementary information
needed to carry out this procedure beyond one-loop.

The UV-divergent and scale-free terms that are extracted with the FDR
defining expansion are referred to as vacuum configurations. They can be
scalar or tensorial. For example, at one loop,

[
1

q2

]
,

[
1

q4

]
,

[
qαqβ

q4

]
,

[
qαqβ

q6

]
,

[
qαqβqγqδ

q8

]
, . . . (2.7)

It is important to realize that divergent tensor structures are fully subtracted
from the original integrand as well. It can be shown that FDR tensors are
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Figure 2.1: Here is represented a generic Feynman diagram (a) in order to illustrate
pictorially the meaning of the FDR integral: as loop momenta become very large,
all internal scales become negligible in comparison, and the diagram resembles a
vacuum bubble. This is true when all loop momenta are infinite (b), but also when
only some of them probe the UV region (c), which means that in FDR both global
and sub-vacua are subtracted.

equivalent to DR tensors at one loop, but differences start at two loops and
beyond [53].

Calling J the original integrand of an )-loop function, one can always sep-
arate the vacuum configurations and the physical finite part; schematically,

J(q1, . . . , q#) = JINF(q1, . . . , q#) + JF,#(q1, . . . , q#) , (2.8)

The FDR integral over J is then defined as the integral in four dimensions of
the finite part only, that is

∫
[d4q1] . . . [d

4q#] J(q1, . . . , q#) ≡ lim
µ→0

∫
d4q1 . . . d4q# JF,#(q1, . . . q#) . (2.9)

The interpretation is the following: when the loop momenta become very
large, all the physical scales involved in a Green function (masses, external
momenta) are negligible in comparison, so that the diagram effectively be-
haves as a vacuum bubble, which is unphysical, and should not be accounted
for in the calculation (see fig. 2.1).
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Notice that FDR and normal integration coincide in a convergent integral,
since no divergent part JINF can be extracted from its integrand.

It is handy at times to express the FDR integral as a difference of two
otherwise-regulated integrals, one over the original integrand and the other
one over the vacuum configurations. By choosing DR as a regularization
scheme, with space-time dimension n = 4 + ε, we can write that
∫

[d4q1] . . . [d
4q#] J(q1, . . . , q#) = (2.10)

= lim
µ→0

(∫
dnq1 . . . dnq#

µ# ε
R

J(q1, . . . , q#) −
∫

dnq1 . . . dnq#

µ# ε
R

JINF(q1, . . . , q#)

)

.

By introducing another scale µ′, FDR itself could also be used to regularize
the integrals in the r.h.s. of last equation.

Eq. (2.10) also demonstrates that whenever IR-finite loop integrals are
known in DR, their FDR counterparts can also be computed.

2.1.2 FDR defining expansion

The definition of the FDR integral relies on the possibility of consistently
separating the UV infinities from the physical part of an integrand. This
procedure, dubbed FDR defining expansion, is carried out by using the partial
fraction identities, such as eq. (2.6), which must be iteratively applied to the
integrand at hand until all divergences are collected into terms independent
of the kinematics. An example of FDR expansion at one loop is provided by
eq. (2.2). The same mechanism works unchanged when powers of the loop
momentum appear in the numerator. For example,

qαqβ

D0D1

=

[
qαqβ

q4

]
+ (d0 + M2

1 − p2
1)

[
qαqβ

q6

]

−2p1γ

[
qαqβqγ

q6

]
+ 4pγ

1p
δ
1

[
qαqβqγqδ

q8

]

+qαqβ

(
4(q · p1)2d1

q8Dp1

+ (M2
1 − p2

1)
d0 + d1 − 2(q · p1)

q6Dp1

−2d0
(q · p1)

q6Dp1

+
d2

0

q4Dp0
Dp1

)
. (2.11)
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Power-counting is the only piece of technology that one needs, apart from
partial fractioning, in order to be able to FDR expand any one-loop inte-
grand. In the following we collect some useful additional information that
comes handy when dealing with two-loop integrals.

2.1.2.1 Two-loop case

In these thesis the only two-loop integrals that we consider are vacuum
integrals, i.e. free of any momentum scale, in the form

[αm1 | βm2 | γm12 ] =

∫
[d4q1][d

4q2]
1

D
α

1D
β

2D
γ

12

, (2.12)

where we have introduced the compact notation [αm1 | βm2 | γm12 ], and
the conventions

D1 = q̄2
1 − m2

1 , D2 = q̄2
2 − m2

2 , D12 = q̄2
12 − m2

12 , q12 = q1 + q2 . (2.13)

The only physical scales on which integrals of this type depend are masses.
This simple case is all we need in order to work out the cross section for the
H → γγ decay at two loop in the limit of large top mass, as performed in
Section 3.2.

Two-loop power counting and partial fractioning

The UV power counting at two loops is made by computing the parame-
ter

p = min
{

2(α+ β), 2(α+ γ), 2(β + γ), (α + β + γ)
}

. (2.14)

The integral is UV-divergent whenever p ≤ 4. What is more, if (α + β +
γ) ≤ 4 too, the integral exhibits a real two-loop divergence; otherwise, it
as a sub-divergence that can be expressed as a one-loop divergent integral
multiplied by a convergent object. Correspondigly, the two-loop vacuum
configurations are classified into global vacua and sub-vacua. The first are
two-loop integrands at most logarithmically divergent, such as

[
1

q̄2
1 q̄

2
2 q̄

2
12

]
,

[
1

q̄4
1 q̄

2
2 q̄

2
12

]
,

[
qα
1 qβ

1

q̄6
1 q̄

2
2 q̄

2
12

]

,

[
qα
1 qβ

1

q̄4
1 q̄

4
2 q̄

2
12

]

, . . . (2.15)
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whilst sub-vacua are one-loop vacuum configurations, like those of eq. (2.7),
which multiply some finite one-loop structure. In FDR terms of this type
are fully subtracted, with profound consequences (see Section 2.1.7 and Sec-
tion 2.2.2.1).

On top of the partial fraction identity of eq. (2.6), some additional iden-
tities, such as

1

q2
12

=
1

q2
2

−
q2
1 + 2(q1 · q2)

q2
2 q2

12

,
1

q2
2

=
1

q2
1

−
q2
12 − 2(q1 · q12)

q2
1 q2

2

. (2.16)

are required in order to extract the sub-divergences.

Examples

1. Expansion for

∫
[d4q1][d

4q2]
1

D̄1D̄2D̄12
:

1

D̄1D̄2D̄12
=

[
1

q̄2
1 q̄

2
2 q̄

2
12

]
+ m2

1

[
1

q̄4
1 q̄

2
2 q̄

2
12

]
+ m2

2

[
1

q̄2
1 q̄

4
2 q̄

2
12

]
+ m2

12

[
1

q̄2
1 q̄

2
2 q̄

4
12

]

+
m4

1

(D̄1q̄4
1)

[
1

q̄4
2

]
+

m4
2

(D̄2q̄4
2)

[
1

q̄4
1

]
+

m4
12

(D̄12q̄4
12)

[
1

q̄4
1

]

− m4
1
q2
1 + 2(q1 · q2)

(D̄1q̄4
1)q̄

4
2 q̄

2
12

− m4
2
q2
2 + 2(q1 · q2)

q̄4
1(D̄2q̄4

2)q̄
2
12

− m4
12

q2
12 − 2(q1 · q12)

q̄4
1 q̄

2
2(D̄12q̄4

12)
+

m2
1m

2
2

(D̄1q̄2
1)(D̄2q̄2

2)q̄
2
12

+
m2

1m
2
12

(D̄1q̄2
1)q̄

2
2(D̄12q̄2

12)
+

m2
2m

2
12

q̄2
1(D̄2q̄2

2)(D̄12q̄2
12)

+
m2

1m
2
2m

2
12

(D̄1q̄2
1)(D̄2q̄2

2)(D̄12q̄2
12)

. (2.17)

2. Expansion for

∫
[d4q1][d

4q2]
1

D̄2
1D̄2D̄12

:
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1

D
2
1 D2 D12

=

[
1

q4
1 q2

2 q2
12

]
+

(
2m2

1

q4
1 D1

+
m4

1

q4
1 D

2
1

)[
1

q4
2

]
+

− 2m2
1

q2
1 + 2(q1 · q2)

( q4
1 D1) q4

2 q2
12

− m4
1

q2
1 + 2(q1 · q2)

( q4
1 D

2
1) q4

2 q2
12

+

+
m2

2

( q2
1 D1)( q2

2 D2) q2
12

+
m2

1m
2
2

( q2
1 D

2
1)( q2

2 D2) q2
12

+

+
m2

12

( q2
1 D1) q2

2( q2
12 D12)

+
m2

1m
2
12

( q2
1 D

2
1) q2

2( q2
12 D12)

+

+
m2

2m
2
12

( q2
1 D1)( q2

2 D2)( q2
12 D12)

+
m2

1m
2
2m

2
12

( q2
1 D

2
1)( q2

2 D2)( q2
12 D12)

(2.18)

3. Expansion for

∫
[d4q1][d

4q2]
qα
1 qβ

1

D
3
1D2D12

:

qα
1 qβ

1

D
3
1D2D12

=

[
qα
1 qβ

1

q6
1 q2

2 q2
12

]

+

(
qα
1 qβ

1

D̄3
1

−

[
qα
1 qβ

1

q̄6
1

])([
1

q4
2

]
−

q2
1 + 2(q1 · q2)

q̄4
2 q̄

2
12

)

+
qα
1 qβ

1

D̄3
1 q̄

2
2D̄12

(
m2

2

D̄2
+

m2
12

q̄2
12

)
. (2.19)

4. Expansion for

∫
[d4q1][d

4q2]
1

D
2
1D2 q2

12

:

1

D
2
1D2 q2

12

=

[
1

q4
1 q2

2 q2
12

]
+

(
m2

1

D1 q4
1

+
m2

1

D
2
1 q2

1

)([
1

q4
2

]
−

q2
1 + 2(q1 · q2)

q4
2 q2

12

)

+
m2

2

D
2
1(D2 q2

2) q2
12

. (2.20)

5. Expansion for

∫
[d4q1][d

4q2]
qα
1 qβ

1

D
2
1D

2
2 q2

12

:
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qα
1 qβ

1

D
2
1D

2
2 q2

12

=

(
m2

2

D2 q4
2

+
m2

2

D
2
2 q2

2

)([
qα
1 qβ

1

q6
1

]

−
(
q2
2 + 2(q1 · q2)

)
qα
1 qβ

1

q̄6
1 q̄

2
12

)

+

[
qα
1 qβ

1

q4
1 q4

2 q2
12

]

+

(
1

D̄2
1

−
1

q̄4
1

)
qα
1 qβ

1

D̄2
2 q2

12

(2.21)

6. Expansion for

∫
[d4q1][d

4q2]
qα
12q

β
12

D
2
1D

2
2 q2

12

:

qα
12q

β
12

D
2
1D

2
2 q2

12

=

[
qα
12q

β
12

q6
12

]((
m2

1

D1 q4
1

+
m2

1

D
2
1 q2

1

)

+

(
m2

2

D2 q4
2

+
m2

2

D
2
2 q2

2

))

+

[
qα
12q

β
12

q4
1 q4

2 q2
12

]

+
qα
12q

β
12

q2
12

((
1

D̄2
1

−
1

q̄4
1

)(
1

D̄2
2

−
1

q̄4
2

)
+

(
1

q4
1

−
1

q4
12

)(
1

D̄2
2

−
1

q̄4
2

)
+

(
1

q4
2

−
1

q4
12

)(
1

D̄2
1

−
1

q̄4
1

))

(2.22)

2.1.3 Shift invariance and uniqueness

FDR integrals are invariant under the shift of any integration variable.
This can be easily proven by using the fact that they can be thought as finite
differences of shift invariant DR-regulated divergent integrals as in eq. (2.10).
A direct proof of shift invariance at one and two loops is presented in the
next section.

Before going into these details, it is worth mentioning that a direct con-
sequence of shift invariance is the uniqueness of the FDR integral as defined
in eq. (2.9). In fact, the subtracted integrands in JINF (q1, . . . , q#) are unam-
biguously determined by the UV content of the original integrand, the only
possible ambiguity being shifts of the loop momenta in J(q1, . . . , q#), which,
thanks to shift invariance, produce the same FDR integral.
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Proof of shift invariance

We demonstrate that, for positive integers α, β, γ and δ,
∫

[d4q]
1

D
α
(0)

=

∫
[d4q]

1

D
α
(p)

(2.23)

where D(0) is the usual denominator of the propagator, and D(p) is the
shifted one, that is

D(0) = q2 − m2 − µ2, D(p) = (q + p)2 − m2 − µ2 ; (2.24)

and, at two loops,
∫

[d4q1][d4q2]

D
β

1 (0) D
γ

2(0) D
δ

12(0)
=

∫
[d4q1][d4q2]

D
β

1 (p1) D
γ

2(p2) D
δ

12(p12)
(2.25)

where

Di(0) = q2
i − m2

i − µ2, Di(pi) = (qi + pi)
2 − m2

i − µ2 . (2.26)

Since polynomially divergent integrals vanish, the divergent parts of any one-
or two-loop FDR integral can be written – after expanding in the external
momenta – in terms of the four cases

α = 1 , α = 2 , β = γ = δ = 1 , and β = γ = 1 with δ > 1 . (2.27)

In all the other cases eqs. (2.23) and (2.25) coincide with finite integrals, for
which shift invariance trivially holds.

We start proving eq. (2.23) with α = 1. One writes the FDR expansions
of the two sides of the equation as

1

D(0)
=

[
1

q2

]
+

[
m2

q4

]
+ JF,1(q) ,

1

s(p)
=

[
1

q2

]
+

[
d(p)

q4

]
+ 4

[
(q · p)2

q6

]
+ J ′

F,1(q) . (2.28)

where d(p) = m2 − p2 − 2(q · p) and JF,1, J ′
F,1 are the finite parts. Then

∫
[d4q]

1

D(0)
= lim

µ→0

(∫
dnq

1

D(0)
−
∫

dnq
m2

q4 −
∫

dnq
1

q2

)

= lim
µ→0

(∫
dnq

1

D(p)
−
∫

dnq
m2

q4 −
∫

dnq
1

(q + p)2 − µ2

)
,

(2.29)
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where the shift invariance of the dimensionally regulated integrals over 1/D
and 1/ q2 has been used. By now expanding the last integrand one obtains

1

(q + p)2 − µ2
−

1

q2 = −
p2 + 2(q · p)

q4 + 4
(q · p)2

q6 + O(p3) . (2.30)

Since the l.h.s. of eq. (2.30) vanishes upon integration at any order in p, the
same happens for the combination

−
p2 + 2(q · p)

q4 + 4
(q · p)2

q6 . (2.31)

The last integral in eq. (2.29) can then be rewritten as

∫
dnq

1

(q + p)2 − µ2
=

∫
dnq

(
1

q2 −
p2 + 2(q · p)

q4 + 4
(q · p)2

q6

)
, (2.32)

so that
∫

[d4q]
1

D(0)
= lim

µ→0

∫
d4qJ ′

F,1(q) =

∫
[d4q]

1

D(p)
, (2.33)

which proves eq. (2.23) with α = 1. The case α = 2 is proven by taking the
derivative of eq. (2.33) with respect to m2.

We now deal with the case β = γ = δ = 1 of eq. (2.25). The FDR
expansion of the l.h.s. of eq. (2.25) is given by eq. (2.17). As for the r.h.s.,
having introduced the notation

si = (qi + pi)
2 − m2

i − µ2 and di = m2
i − p2

i − 2(qi · pi) , (2.34)
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the expansion reads

1

s1 s2 s12
=

[
1

q2
1 q2

2 q2
12

]
+

[
d1

q4
1 q2

2 q2
12

]
+

[
d2

q2
1 q4

2 q2
12

]
+

[
d12

q2
1 q2

2 q4
12

]

+ 4

[
(q1 · p1)2

q6
1 q2

2 q2
12

]
+ 4

[
(q2 · p2)2

q2
1 q6

2 q2
12

]
+ 4

[
(q12 · p12)2

q2
1 q2

2 q6
12

]

+ 4

[
(q1 · p1)(q2 · p2)

q4
1 q4

2 q2
12

]
+ 4

[
(q1 · p1)(q12 · p12)

q4
1 q2

2 q4
12

]

+ 4

[
(q2 · p2)(q12 · p12)

q2
1 q4

2 q4
12

]
+

(
d2

1

q4
1 s1

− 4
(q1 · p1)2

q6
1

)[
1

q4
2

]

+

(
d2

2

q4
2 s2

− 4
(q2 · p2)2

q6
2

)[
1

q4
1

]
+

(
d2

12

q4
12 s12

− 4
(q12 · p12)2

q6
12

)[
1

q4
1

]

+ J ′
F,2(q1, q2) .

(2.35)

Then, by rewriting

m4
i

Di(0)q̄4
i

=
1

Di(0)
−

1

q2
i

−
m2

i

q4
i

(2.36)

and shifting all the Di(0) and the quadratically divergent integrals, eq. (2.17)
produces
∫

[d4q1][d4q2]

D1(0)D2(0)D12(0)
= lim

µ→0

∫
dnq1d

nq2

(
1

s1 s2 s12

−
1

(s1 − m2
1)(s2 − m2

2)(s12 − m2
12)

−m2
1

[
1

q̄4
1 q̄

2
2 q̄

2
12

]
− m2

2

[
1

q̄2
1 q̄

4
2 q̄

2
12

]
− m2

12

[
1

q̄2
1 q̄

2
2 q̄

4
12

]

−
(

1

s1
−

1

(q1 + p1)2 − µ2
−

m2
1

q4
1

)[
1

q̄4
2

]

−
(

1

s2
−

1

(q2 + p2)2 − µ2
−

m2
2

q4
2

)[
1

q̄4
1

]

−
(

1

s12
−

1

(q12 + p12)2 − µ2
−

m2
12

q4
12

) [
1

q̄4
1

])
.

(2.37)
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An expansion up to O(p2
1), O(p2

2) and O(p1p2) of the second line and of the
terms

1

((qi + pi)2 − µ2)

in the last three lines produces extra integrands which – by the same argu-
ment used at one-loop – vanish upon integration. The addition of such terms
reconstructs J ′

F,2(q1, q2) as given in eq. (2.35), so that
∫

[d4q1][d4q2]

D1(0)D2(0)D12(0)
= lim

µ→0

∫
d4q1d

4q2J
′
F,2(q1, q2)

=

∫
[d4q1][d4q2]

D1(p1)D2(p2)D12(p12)
. (2.38)

Finally, deriving with respect to m2
12 demonstrates the last case, i.e. eq. (2.25)

with β = γ = 1 and δ ≥ 1.
With more loops the proof follows the same reasoning: the mismatch

between the FDR expansion of shifted and unshifted integrands is cured
by vanishing integrals obtained by expanding the polynomially divergent
integrals in JINF(q1, . . . , q#) at the relevant order in p, as in eq. (2.30).

2.1.4 Independence of the UV cutoff

Let’s start from eq. (2.8). As a result of the subtraction of the vacuum
configurations, non-integrable powers of 1/ q2 are developed in JF,l(q1, ..., q#).
Such IR poles get regulated by the µ2 propagator prescription. Thus, the
original UV cutoff is traded for an IR one: µ. We now show that the de-
pendence on µ is at most logarithmic, and that this IR cut-off can always
be exchanged for an arbitrary scale µR, which can be interpreted as the
renormalization scale.

Suppose for the moment that the original integrand is not IR-divergent,
and consider again eq. (2.10), which we report here for legibility:
∫

[d4q1] . . . [d
4q#] J(q1, . . . , q#) = (2.39)

= lim
µ→0

(∫
dnq1 . . . dnq#

µ# ε
R

J(q1, . . . , q#) −
∫

dnq1 . . . dnq#

µ# ε
R

JINF(q1, . . . , q#)

)

.

Since the first term in its r.h.s. is the original dimensionally regulated in-
tegral, it does not depend on µ in the limit µ → 0. On the other hand,
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polynomially divergent integrands in JINF cannot contribute either, because
they generate polynomials in µ which instantly vanish in the limit µ → 0.
Therefore, the µ dependence in the l.h.s. is entirely due to powers of ln(µ/µR)
created by the subtraction of the logarithmically divergent integrals of JINF .
If one redefines the FDR integral without the subtraction of such logarithms,
no dependence on µ is produced. This is equivalent to the operation of adding
back all ln(µ/µR)s to the l.h.s. of eq. (2.10). Then, the limit µ → 0 can be
taken, µ becomes µR and no cutoff is left. In other words, when subtracting
the vacuum configurations from J we have unwillingly dropped – together
with the UV divergent part – an IR-divergent term, responsible for the ap-
pearence of a spurious ln(µ/µR) in JF,#: by returning this object to the
physical part, we effectively exchange µ for µR.

This reasoning is still valid when IR singularities are also around. Indeed,
IR and UV divergences can be systematically separated, upon the introduc-
tion of an extra scale MIR, by means of the relation

1

(q + p)2
=

1

q2 − M2
IR

−
(

1

q2 − M2
IR

−
1

(q + p)2

)

=
1

q2 − M2
IR

−
M2

IR + 2(q · p)

(q2 − M2
IR)(q + p)2

. (2.40)

Moreover, at one-loop, UV and IR infinities simultaneously occur only in
scaleless integrals, which, like in DR, vanish in FDR, as explained in 2.1.9.

The identification ln µ = ln µR after the limit µ → 0 is understood in all
FDR integrals appearing in this chapter and the following. By adding this
tailpiece to its definition, the FDR integral is made independent of any cut-
off. As one would expect, it depends logarithmically on an arbitrary scale,
at the same perturbative order of the calculation one is performing. This
dependence is dropped - or rather pulled back to a higher order - once the
parameters of the Lagrangian are fixed in terms of some observables, i.e.
after undertaking a finite renormalization (see Section 2.2.2).

Example

Let us explicitly work out a simple example in order to make this point
more clear. Given that D = q2 − M2, consider the integrand

1

D
2 =

[
1

q4

]

+
M2

q4 D
+

M4

q2 D
2 . (2.41)
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Knowing that

∫
dnq

µ ε
R

1

(q2 − m2)2
= −iπ2

(

ln
m2

µ2
R

+
2

ε
+ ∆

)

, (2.42)

where ∆ = γE + ln π, the r.h.s. of eq. (2.10), before the limit, reads:

∫
dnq

µ ε
R

1

D
2 −

∫
dnq

µ ε
R

[
1

q4

]

= −iπ2

(

ln
M2 + µ2

µ2
R

+ ln
µ2

µ2
R

)

. (2.43)

The poles and universal constants exactly cancel; the second logarithm, how-
ever, is the remnant of the spurious IR separation that we have induced.

We obtain the same result if we directly integrate in four dimensions the
finite part of eq. (2.41):

∫
d4q

(
M2

q4 D
+

M4

q2 D
2

)

= −iπ2 ln
M2 + µ2

µ2
. (2.44)

By subtracting to this the ln(µ/µR) of eq. (2.43), or equivalently by replacing
ln µ → ln µR, we can take the limit µ → 0:

∫
[ d4q]

1

D
2 = lim

µ→0

{∫
d4q

(
M2

q4 D
+

M4

q2 D
2

)

+ iπ2 ln
µ2

µ2
R

}

= −iπ2 ln
M2

µ2
R

. (2.45)

This is what we call FDR integral.

2.1.5 Global prescription

A crucial point in the definition of the FDR integral is the i0 prescription
of the propagator, which is made explicit and identified with a small mass
−µ2. Usually, the i0 of the Feynman propagator is dropped within the inte-
grand and effectively overlooked, because - since a propagator represents an
off-shell virtual particle - the limit

1

D
=

1

q2 − M2 + i0
→

1

q2 − M2
(2.46)
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is well-defined. Instead, in FDR i0 = −µ2 is maintained because it cures
the IR divergences produced by the FDR expansion: the limit µ → 0 is
moved outside the integration with all the profound consequences explained
in Section 2.1.4.

The prescription is interpreted as a deformation of the squared loop mo-
menta, which implies that a µ2 must be consistently subtracted from any q2

appearing in the amplitude, not only those in a propagator: in FDR, any q2

generated by the Feynman rules must be promoted to q2 = q2 − µ2. This
operation is not always trivial; special attention must be payed when dealing
with fermionic lines, as explained in Section 2.1.5.3.

This rule, replacing q2 → q2 everywhere, is dubbed global prescription; it
ensures that the usual simplifications between numerator and denominator
take place, which in turn plays a key role in preserving the symmetries of the
amplitude (see Section ??). Take for example,

∫
[ d4q]

q2

D0 D1 D2

=

∫
[ d4q]

(
1

D1 D2

+
d0

D0 D1 D2

)
. (2.47)

Given an UV-divergent FDR integral, simplifying a reducible numerator be-
fore integrating (the r.h.s. of the last equation) produces the same result that
one would obtain by directly working out the original integral (the l.h.s.).
This is true if the integrands in eq. (2.47) give the same result upon FDR
integration, that is if they generate the same remainder after removing the
divergent vacuum configurations. The three denominators in the l.h.s. of
eq. (2.47) can be rewritten as

1

D0 D1 D2

=

[
1

q6

]

+
d2

q6 D2

+
d1

q4 D1 D2

+
d0

q2 D0 D1 D2

, (2.48)

while only the first term in the r.h.s. needs an expansion (since the second
one is finite):

1

D1 D2

=

[
1

q4

]

+
d2

q4 D2

+
d1

q2 D1 D2

. (2.49)
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Inserting these back into eq. (2.47), one obtains
∫

[ d4q]
q2

D0 D1 D2

=

∫
[ d4q]

(
1

D1 D2

+
d0

D0 D1 D2

)

= lim
µ→0

∫
d4q

{
d2

q4 D2

+
d1

q2 D1 D2

+
d0

D0 D1 D2

}

(2.50)

which means that we can identify

q2

D0 D1 D2

=

(
1

D1 D2

+
d0

D0 D1 D2

)

, (2.51)

at the integrand level. It is important to realize that eq. (2.48) reproduces
the last integral in eq. (2.50) only if the original q2 appearing above the three
denominators in the l.h.s. of eq. (2.47) is also promoted to q2. Otherwise it
would give

lim
µ→0

∫
d4q

{
q2d2

q6 D2

+
q2d1

q4 D1 D2

+
q2d0

q2 D0 D1 D2

}

(2.52)

which differs by ∫
[ d4q]

µ2

D0 D1 D2

%= 0 . (2.53)

Integrals of this type, referred to as extra-integrals, give a finite contribution.
In Section 2.1.5.1 it is also explained how to calculate them, and several
examples are presented.

What is more, having defined the extra-integrals, it is possible to express
an FDR tensorial integral in terms of scalars and a constant. For example,
considering vacuum integrals with D = q2 − M2 for simplicity,
∫

[ d4q]
qαqβ

D
3 =

gαβ

4

(∫
[ d4q]

1

D
2 + M3

∫
[ d4q]

1

D
3 +

∫
[ d4q]

µ2

D
3

)
. (2.54)

If the integrand is simplified to a sum of irreducible terms first, extra-integrals
can only come up when performing the tensorial reduction (see some exam-
ples of how to implement this procedure in FDR in Section 2.1.8).

In practice, the global prescription means that all the usual algebraic
manipulations at the level of the integrand can be performed within an FDR
integral. As a consequence, one needs to worry about the FDR definition
only when calculating the master integrals.
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2.1.5.1 Extra-integrals

Extra-integrals, like that of eq. (2.53), are FDR integrals with powers of
µ2 in the numerator, but that do not vanish in the limit µ → 0.

Let us consider a simplified version of eq. (2.47), in which external mo-
menta are zero and the masses are all the same, i.e.

∫
[ d4q]

q2

D
3 =

∫
[ d4q]

1

D
2 +

∫
[ d4q]

M2

D
3 . (2.55)

By contraddiction, suppose extra-integrals were null. Then,
∫

[ d4q]
q2

D
3 + c =

∫
[ d4q]

1

D
2 +

∫
[ d4q]

M2

D
3 , (2.56)

with c = 0. The FDR integrals appearing in the last equation can be easily
calculated (see eq. (2.107)), either directly or as a difference of DR integrals,
thereby obtaining
∫

[ d4q]
q2

D
3 =

∫
[ d4q]

1

D
2 = −iπ2 ln

M2

µ2
,

∫
[ d4q]

1

D
3 = −

iπ2

2M2
. (2.57)

This clearly proves that c %= 0 and that
∫

[ d4q]
µ2

D
3 =

iπ2

2
. (2.58)

This also gives us a hint on how to proceed in order to compute the extra-
integrals.

Calculating extra-integrals

In general, whenever addressing the problem of calculating an FDR in-
tegral, the first step is to determine the FDR defining expansion of its inte-
grand, which in turn depends on the power-counting. In this context, a µr

in the numerator plays the role of a tensorial structure of rank r, so that the
FDR defining expansion of an extra-integral is that of the integrand obtained
by replacing µ → q. Take for example

µ2

D
3 ↔

qαqβ

D
3 . (2.59)
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The FDR defining expansion then reads

µ2

D
3 =

[
µ2

q6

]
+ µ2

(
M2

q6D
+

M2

q4D
2 +

M2

q2D
3

)

. (2.60)

At this point we can either directly calculate the four-dimensional integral
of the finite part, or we can use eq. (2.10), which proves to be exceptionally
convenient in the case of extra-integrals:

∫
[ d4q]

µ2

D
3 = lim

µ→0

(∫
dnq

µ2

D
3 −

∫
dnq

[
µ2

q6

])
. (2.61)

Because is finite the first integral in the r.h.s. vanishes in the limit µ → 0;
on the other hand, the second integral is proportional to 1/µ2, and gives a
constant when multiplied by µ2; namely,

∫
[ d4q]

µ2

D
3 = − lim

µ→0
µ2

∫
dnq

1

q6 =
iπ2

2
. (2.62)

Following this logic, it is understood that we only need to know the vac-
uum configurations of an extra-integral in order to calculate it: indeed, the
extra-integral of eq. (2.53) gives exactly the same result as that of eq. (2.107).
This makes it a relatively easy task also at a higher loop level. In the next
paragraph we make some explicit examples at two loops, in order to clarify
a few technical caveats.

Finally, notice that at one loop FDR extra-integrals have an exact counter-
part in DR. Playing around with the example considered before, consider the
tensorial reduction of eq. (2.54) in DR:

∫
dnq

µ ε
R

qαqβ

D3
=

gαβ

n

(∫
dnq

µ ε
R

1

D2
+ M3

∫
dnq

µ ε
R

1

D3

)

=
gαβ

4

(∫
dnq

µ ε
R

1

D2
+ M3

∫
dnq

µ ε
R

1

D3
+
ε

4

∫
dnq

µ ε
R

1

D2
+ O( ε2)

)
.

(2.63)

Indeed,
ε

4

∫
dnq

µ ε
R

1

D2
=

iπ2

2
+ O( ε2) ↔

∫
[ d4q]

µ2

D
3 . (2.64)
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In general, one can prove that

∫
dnq

µ ε
R

(−q̃2)k

D(n)
0 D(n)

1 . . .
=

∫
[d4q]

(µ2)k

D0 D1 . . .
, (2.65)

where q̃2 = (q(n))2 − q2 is the ε-dimensional part of an n-vector, and the
superscript (n) denotes an object living in n dimensions.

2.1.5.2 Extra-integrals at two loops

Consider, as an example of extra-integral at two loops,
∫

[d4q1][d
4q2]

µ2|1
D̄2

1D̄
2
2D̄12

(2.66)

where we have used again the conventions of eq. (2.13), i.e.

D1 = q̄2
1 − m2

1 , D2 = q̄2
2 − m2

2 , D12 = q̄2
12 − m2

12 , q12 = q1 + q2 , (2.67)

plus
q2

i = q2
i − µ2|i. (2.68)

In this context, as a matter of fact, the index i in µ2|i denotes the expansion
to be used: although only one kind of µ2 exists
∫

[d4q1][d
4q2]

µ2|1
D̄2

1D̄
2
2D̄12

,

∫
[d4q1][d

4q2]
µ2|2

D̄2
1D̄

2
2D̄12

and

∫
[d4q1][d

4q2]
µ2|12

D̄2
1D̄

2
2D̄12

(2.69)

are in general different, because they are defined by expanding

q2
1

D̄2
1D̄

2
2D̄12

,
q2
2

D̄2
1D̄

2
2D̄12

and
q2
12

D̄2
1D̄

2
2D̄12

, (2.70)

respectively. In the limiting case m12 = 0, the FDR defining expansions for
the first and for the last integrand are reported in Section 2.1.2, in eq. (2.21)
and eq. (2.22), and they are indeed different.

Having different µ|i in the numerator implies that they are sensitive to
changes of variables. For example, if q1 → q1 − q2 and q2 → −q2,

∫
[d4q1][d

4q2]
µ2|12

D̄2
1D̄

2
2D̄12

→
∫

[d4q1][d
4q2]

µ2|1
D̄1D̄2

2D̄
2
12

. (2.71)
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Factorizable two-loop integrals provide easy cases studies. For example,
it is easily understood that

∫
[d4q1]

µ2
1

D
α

1

×
∫

[d4q1]
1

D
β

2

%=
∫

[d4q1]
1

D
α

1

×
∫

[d4q1]
µ2

2

D
β

2

, (2.72)

unless α = β or both α,β ≥ 3. Moreover, even though in general µ|212 %=
µ|21 + µ|22,

∫
[d4q1][d

4q2]
µ|212

D
α

1 D
β

2

=

∫
[d4q1]

µ|21
D

α

1

×
∫

[d4q2]
1

D
β

2

+

∫
[d4q1]

1

D
α

1

×
∫

[d4q2]
µ|22
D

β

2

. (2.73)

where we have used the fact that a rank-1 vacuum integral vanishes. Analo-
gously,

∫
[d4q1][d

4q2]
µ|412

D
α

1 D
β

2

=

∫
[d4q1][d

4q2]
µ|41 + µ|42 + 2µ|21µ|22)

D
α

1 D
β

2

+

∫
[d4q1][d

4q2]
( q2

1 + µ|21) ( q2
2 + µ|22)

D
α

1 D
β

2

. (2.74)

Calculating extra-integrals at two loops

Just like the one-loop case, we can calculate the extra-integrals by con-
sidering the finite part of the relevant denominator expansion or indirectly,
by taking the difference between the original integrand and its vacuum con-
figurations. This second way is usually more convenient, because the original
integral does not contribute in the limit µ → 0, and we only need to be able
to calculate the vacuum content.

There are two global vacua that behave as 1/µ2, such that when multiplied
by µ2 they return a finite contribution (like 1/ q6 at one loop); namely,

∫
dnq1d

nq2

[
q2
1 + 2(q1 · q2)

q6
1 q4

2 q2
12

]
∝

1

µ2
,

∫
dnq1d

nq2

[
1

q4
1 q4

2 q2
12

]
∝

1

µ2
, (2.75)

They can be calculated by using the results collected in Section 2.1.7. They
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yield

µ2

∫
[d4q1][d

4q2]
q2
1 + 2(q1 · q2)

q6
1 q4

2 q2
12

= −
2 π4

3
f −

π4

2
,

µ2

∫
[d4q1][d

4q2]
1

q4
1 q4

2 q2
12

= −
2 π4

3
f . (2.76)

with f reported in eq. (A.5) of Appendix A.
For example,

∫
[d4q1][d

4q2]
µ2|1

D̄2
1D̄

2
2 q2

12

= − lim
µ→0

µ2

{∫
d4q1d

4q2
1

q4
1 q4

2 q2
12

− iπ2 ln
m2

2

µ2

∫
d4q

1

q6

}

, (2.77)

which is different with respect to

∫
[d4q1][d

4q2]
µ2|12

D̄2
1D̄

2
2 q2

12

= − lim
µ→0

µ2

{∫
d4q1d

4q2
1

q4
1 q4

2 q2
12

− iπ2

(
ln

m2
1

µ2
+ ln

m2
2

µ2

)∫
d4q

1

q6

}

. (2.78)

As expected, in the r.h.s. µ|2i = µ2. Notice that a local vacuum as well
as a global one contribute: we understand that n-loop extra-integrals are
expressed in terms of scalar integrals with less than n loops and constants.

As a last example, consider
∫

[d4q1][d
4q2]

µ2|1
D̄3

1D̄2D̄12
= lim

µ→0
µ2

∫
d4q1d

4q2
q2
1 + 2(q1 · q2)

q6
1q̄

4
2 q̄

2
12

, (2.79)

where the first of eq. (2.76) was used. All two-loop extra-integrals relevant
for the calculations of Chapter 3 can be derived from the last three equations.

FDR and DR

Finally, it is worth saying that at two loops a simple correspondence such
that of eq. (2.65), between extra-integrals and ε-dimensional objects in DR,
does not exist.
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To show this, let us compare FDR with FDH, a variant of DR. This
method [54], equivalent to DRed at one loop, keeps all integration loops in
n dimensions, while observed external particles are four-dimensional, so as
to preserve supersymmetry. Unobserved internal lines are defined in such a
way that the contraction

qαqβ gαβ = (q(n))2 = (q(4))2 + q̃2 (2.80)

gives rise to an n dimensional object when q is an integration momentum,
that can be split into a four-dimensional ((q(4))2) and an ε-dimensional (q̃2)
component. If q̃2 is identified with −µ2, there is a formal equivalence – at the
integrand level – between the procedures used by FDR and FDH to determine
the extra-integrals [55,56]. At one loop, this correspondence is complete, as in
eq. (2.65). However, at two loops, differences start when integrating, because
in FDH, like in any other conventional subtraction scheme, sub-divergences
must be compensated by counterterms added at a previous renormalization
stage. As a consequence, extra-integrals at two loops give different results,
when computed in FDR and FDH. For example, if m1 = m2 = m12 = m

∫
[d4q1][d

4q2]
µ|21

D1 D2 D12

= π4

(
2

3
f +

1

2
ln

m2

µ2

)
, (2.81)

with f defined in eq. A.5, while

∫
dnq1 dnq2

−q̃1
2

D1D2D12
= π4

(
1

2 ε
−

3

8
+

1

2

(
ln

m2

µ2
+ ∆

)
+ O( ε)

)
, (2.82)

with ∆ = γE + ln π and µ = µR in both equations.

2.1.5.3 Internal fermions

When a diagram contains fermion lines, loop momenta appear contracted
with Dirac matrices. After performing all summations over free internal
indices, the global prescription dictates that also a /q should be barred

/q → /̄q = /q ± µ , (2.83)

where the sign is chosen accordingly to the position of the /q within the
fermionic string. In the one-loop case, one chooses arbitrarily the sign of µ
within the first /̄q; the sign of the subsequent one is opposite if an even number
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of γ-matrices occur between the two /̄q’s, and it is the same otherwise; that
is

(. . . /q γα1 . . . γαn /q . . .) = (. . . (/q ± µ) γα1 . . . γαn(/q ∓ (−)nµ) . . .) . (2.84)

This rule is sufficient in the presence of one fermion line only, which is the
case in all explicit calculations presented in Chapter 3. With two or more
lines, and no summation indices among them, each fermion string can be
separately treated as described. If sums occur, after applying the above
algorithm, extra µ2 terms need to be extracted according to the following
procedure:

Tr
[
. . . /qΓ

(n)γα

]
Tr
[
. . . /qΓ

(m)γα
]
→Tr

[
. . . /qΓ

(n)γα

]
Tr
[
. . . /qΓ

(m)γα
]

− (−1)(n+m)µ2 Tr
[
. . . Γ(n)

]
Tr
[
. . . Γ(m)

]

(2.85)

where Γ(k) represents a string of k gamma matrices. Eq. (2.85) is proven by
noticing that n (m) anticommutations are needed to bring /q near γα (γα)
and can easilty checked by taking the traces and substituting q2 → q2.

For example,

Tr
[
(/q + m)γα(/q + /p1 + m)(/q + /p2 + m)γβ

]
, (2.86)

and its FDR regulated version reads

Tr
[
(/q + m)γα(/q + /p1 + m)(/q + /p2 + m)γβ

]
+ mµ2 Tr

[
γαγβ

] )
. (2.87)

By following these rules, the same results are obtained as if we were
computing the trace first and replacing q2 → q̄2 afterwards. In both cases,
the reducible numerators are reconstructed properly and can be simplified
with the denominator.

Sometimes, when calculating certain amplitudes, it is convenient to re-
place /q → /̄q in the first place, because it allows a trivial proof of the Ward
identity at the integrand level (Section 3.3). In practical calculations, how-
ever, it is often convenient to fully simplify reducible numerators before com-
puting the loop integrals. In that way, only irreducible tensors appear and
extra integrals are just produced by tensor decomposition, as in eq. (2.54).
This is the strategy that we adopt in the calculations presented in Chapter 3.
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Internal fermions at two loops

The corresponding procedure at two loops is better explained with an
example. Consider the trace

Jαβ = Tr
[
/q1γ

α/q2γ
β/q1/q2

]
, (2.88)

where q1 and q2 are the integration momenta. Its FDR counterpart reads

J̄αβ = Jαβ + µ2|1 Tr
[
γα/q2γ

β/q2

]
− µ2|2 Tr

[
/q1γ

αγβ/q1

]
− 2µ̃2

12 Tr
[
γα/q2γ

β/q1

]

+Tr
[
γαγβ

] (
µ2|1µ2|2 − 2µ̃4

12 + 2(q1 · q2)µ̃
2
12

)
, (2.89)

with

µ̃2
12 =

1

2

(
µ2|12 − µ2|1 − µ2|2

)
. (2.90)

Eq. (2.89) is obtained from eq. (2.88) by using – one after the other – the
one-loop replacements /q1 → /̄q1 and /q2 → /̄q2, which generate the terms
proportional to µ2|1 and µ2|2. The µ̃2

12 parts originate, instead, from the
replacement

(q1 · q2) =
1

2

(
q2
12 − q2

1 − q2
2

)
→

1

2

(
q̄2
12 − q̄2

1 − q̄2
2

)
, (2.91)

and are obtained by simultaneously barring /q1 and /q2 in eq. (2.88) (with the
same one-loop rule for the sign of µ|i inside each /qi) and subtracting the µ2|i
terms already determined. What is left is, by construction, proportional to
powers of µ|1µ|2 ≡ µ̃2

12 and gives the remaining terms in eq. (2.89). Once
again, taking the trace of J̄αβ is equivalent to the replacements

q2
1 → q̄2

1 , q2
2 → q̄2

2 , (q1 · q2) →
1

2

(
q̄2
12 − q̄2

1 − q̄2
2

)
, (2.92)

after computing the original trace Jαβ. Thus, the generated µ|i’s ensure the
right simplifications between numerator and denominator.

The chirality matrix γ5

If chirality matrices are also involved, a gauge invariant treatment [57]
requires their anticommutation at the beginning (or the end) of open strings
before replacing /q → /q . In the case of closed loops, γ5 should be put next to
the vertex corresponding to a potential non-conserved current. This repro-
duces the correct coefficient of the triangular anomaly, as observed in [58].
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p
=

/p

p2

pα β α
=

gαβ

p2
= γα

Figure 2.2: Simplified Feynman rules used in the examples of this section.

2.1.6 Sub-integration consistency

A crucial property of multi-loop calculus is the sub-integration consis-
tency, i.e. that calculating the full diagram or inserting the integral of a
sub-diagram into the original one must give the same result. In order to ful-
fill this requirement, the rules of global prescription must be complemented
with another set of rules that goes under the name of sub-prescription. This
topic is not relevant for the calculations performed in this thesis, however it
is an essential ingredient of FDR, developed in [59].

With the help of a simple example, we explain why global prescription
is not enough to guarantee sub-integration consistency, and we construct a
solution to this issue. Consider

=

∫
[d4q1][d

4q2]
N(q1, q2)

q2
1 q2

2 D1 D2 D12

(2.93)

with Di = (qi + p)2 − µ2 −M2, where we have used the simplified Feynman
rules of fig. 2.2, in order to only concentrate on the interesting pieces of the
calculation, and

N(q1, q2) = γβ(/q2
+ /p)γα(/q12

+ /p)γβ(/q1
+ /p)γ

α. (2.94)

No promotion q2
i → q2

i has been performed yet in the numerator. We now
want to show that, if we perform the global prescription on N(q1, q2) and
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integrate the resulting two-loop FDR integral, we do not obtain the same
result that we would get if we were to consider the two one-loop sub-diagrams
separately first.

Let us concentrate on the sub-integration in q2. The diagram in eq. (2.93)
can be “cut” so as to emphasize the sub-diagram with loop momentum q2,

p

q2

α̂ α

β β

where we have indicated with α̂ the Lorentz index that does not belong to the
sub-diagram. Let’s extract from N(q1, q2) the terms in which two /q2

appear,
i.e. the part which is modified by the promotion q2

2 → q2
2, that is

N2(q2) = γβ /q2
γα /q2

γβ(/q1
+ /p)γα̂, (2.95)

where γα̂ refers to the vertex external to the sub-diagram, but the usual
identities hold, e.g. γαγα̂ = 4. By performing some algebra we can rewrite
N2 in such a way that all /q2

sit next to each other in the string of Dirac
matrices:

N2(q2) = −8q2 · (q1 + p)/̂q2
+ 4(/q1

+ /p)
(
/̂q2/q2

− /q2/q2

)
(2.96)

where, following the usual notation, /̂q2
= qα

2 γα. A standard global prescrip-

tion, since it makes no distinction between /q2
and /̂q2

, doesn’t generate any
new term, i.e.

N2(q2) → N 2(q2) = N2(q2). (2.97)

Now, let’s consider N2(q2) as the numerator of an independent one-loop in-
tegral, i.e. ∫

[d4q2]
N2(q2)

q2
2 D2 D12

, (2.98)

where q1 is now interpreted as an external momentum. The one-loop global
prescription (i.e. the sub-prescription in this context) dictates that

N2(q2) → N̂2(q2) =
[
γβ (/q2

+ µ̂|2)γα (/q2
+ µ̂|2)γβ

]
(/q1

+ /p)γα̂

= N2(q2) + µ̂|22 4(/q1
+ /p). (2.99)
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where we have effectively ignored the presence of γα̂, as it does not belong to
the sub-diagram. The mismatch between the results obtained via standard
global prescription and by imposing sub-integration consistency is a new type
of FDR integral called extra-extra-integral,

I = 4

∫
[d4q1]

/q1
+ /p

q2
1 D1

∫
[d4q2]

µ̂|22
q2
2 D2 D12

. (2.100)

The hat over µ̂|22 reminds that it was extracted by considering the sub-
diagram with loop momentum q2 on its own; correspondingly, the FDR
expansion should be performed as if it belonged to a one-loop integral, as
explained in Section 2.1.6.1. The same extra-extra integral I we would have
obtained from eq. (2.96) if we had distinguished /q2

and /̂q2
, by promoting

q2
2 →= q2 − µ̂|22 only in /q2/q2

and not in /̂q2/q2
.

To summarize, the correct result is obtained by subtracting the extra-
extra integrals coming from the global prescription on N2, zero in this case,
i.e.

−(N 2 − N2),

and adding back the extra-extra-integrals coming from the sub-prescription,

+(N̂2 − N2).

Because the diagram is symmetric under the exchange q1 ↔ q2, exactly
the same contribution is obtained from the sub-diagram with loop momentum
q1. Therefore, eq. (2.93) must be replaced by

∫
[d4q1][d

4q2]
N(q1, q2)

q2
1 q2

2 D1 D2 D12

+ 2 I. (2.101)

Finally notice that if N2(q2) didn’t generate a divergent one-loop integral,
that of eq. (2.1.6), we would have that both N 2 = N̂2 = N2. This case, some-
how trivial, is that of the gluonic corrections to H → γγ which we calculate
in Section 3.2.

Let’s generalize what learnt with this example. After carrying out the
global prescription, which might generate extra integrals, one must also per-
form the sub-prescription on each sub-diagram, which in turn might generate
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extra-extra integrals. Schematically, at two loops, the numerator is modified
according to

N(q1, q2) → N(q1, q2; µ|21, µ|22)︸ ︷︷ ︸
global prescription

+
2∑

i=1

(
N̂i(qi; µ̂|2i ) − N i(qi; µ̂|2i )

)

︸ ︷︷ ︸
sub-prescription

(2.102)

where N i is obtained by promoting all q2
i in Ni, while in N̂i we only promote

the q2
i obtained by contracting indices that are internal to that specific sub-

diagram; it is thus mandatory to know the topology of the diagram in order
to calculate its FDR integrals. For both N i and N̂i the promotion is

q2
i → q2

i − µ̂|2i %= q2
i , (2.103)

so that the mismatch N̂i − N i is always an extra-extra integral; as men-
tioned above, this means that the FDR defining expansion to be brought
about in order to calculate it is that of a one-loop integral, as explained in
Section 2.1.6.1.

The formula of eq. (2.102) applies to all two-loop calculations, and we
expect that a generalization to higher loop diagrams will lead to an itera-
tive version of the same formula. Indeed, sub-integration consistency is a
fundamental property that must be always encoded in the definition of a
multi-loop integral. Contingently, no sub-prescription was necessary in the
calculations of Chapter 3.

2.1.6.1 Extra-extra integrals

Extra-extra integrals, appearing only in multi-loop calculations, are one-
loop extra-integrals multiplied by a loop integral, like that of eq. (2.100).
Pursuing this example, the sub-integral in q2 must be computed as if it was
a one-loop integral by itself, i.e.

∫
[d4q2]

µ̂|22
q2
2 D2 D12

= −
∫

[d4q2]
µ̂|22
q6
2

=
iπ2

2
(2.104)

where we have used the technique for calculating extra-integrals explained in
Section 2.1.5.1, i.e. by taking minus the vacuum part. Inserting it back into
eq. (2.100), we obtain that

I = 4

∫
[d4q1]

/q1
+ /p

q2
1 D1

∫
[d4q2]

µ̂|22
q2
2 D2 D12

= 2iπ2

∫
[d4q1]

/q1
+ /p

q2
1 D1

, (2.105)
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which is a normal FDR integral.
Extra-extra integrals are not extra integrals: if we were to replace µ̂|22

with µ|22 in I, we would obtain a different result, because we would use a
different FDR expansion.

2.1.6.2 FDR vs FDH

FDH [60,61] is a variant of DR in which all objects external to a loop in-
tegral are four-dimensional, in particular γµγµ = 4. Recently [62] it has been
shown that this method, effective in purely gluonic QCD, breaks unitarity in
presence of external quarks. Without the sub-prescription, FDR would fall
in the same mistake, hence suggesting that the illness affecting FDH could
be cured by the same remedy, as an alternative to the mechanisms proposed
so far [63, 64].

2.1.7 Master integrals in FDR

There is nothing peculiar in the calculation of FDR integrals after the
defining expansion is performed and vacuum configurations are dropped.
All available techniques for integral manipulations are applicable, e.g. the
Passarino-Veltman reduction (Section 2.1.8.2) or integration-by-parts identi-
ties (Section 2.1.8.3). Moreover master integrals known in a different scheme
can be translated into FDR with the small additional effort amounting to
the calculation of the vacuum configurations. Finally since everything is four
dimensional it is worth noticing that FDR opens up the option of numerical
integration over loop momenta.

In this section, we collect some observations about the analytic calculation
of FDR integrals, and we report the explicit result of some simple FDR
integrals, at one and two loops, in order to have some ready-at-hand examples
to use in the rest of the chapter, and to collect the building blocks that are
needed in the calculations of Chapter 3.

2.1.7.1 One-loop integrals

At one loop there exists a one-to-one relationship between integrals cal-
culated in FDR and DR, realized by the replacement

ln µ → lnµ −
1

ε
−

∆

2
, ∆ ≡ γE + ln π. (2.106)
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As we will see in more detail in Section 2.2.2, this means that an amplitude
calculated in FDR is equivalent to the same amplitude calculated in DRed
within the MS scheme of renormalization.

The last equation is easily understood by looking at eq. (2.10). In the
one-loop version, it is trivially show that J(q) and JINF (q) have the same
pole structure and the same universal constants. In addition, DRed considers
all external objects to be four-dimensional, so that in both schemes gαβgαβ =
γαγα = 4.

For example,

∫
dnq

µ ε

1

(q2 − M2)2
= −iπ2

(
ln

M2

µ2
+

2

ε
+ ∆

)
↔

∫
[ d4q]

1

D
2 = −iπ2 ln

M2

µ2
.

Notice that, in order to translate a DR one-loop integral to FDR, we don’t
need to know the full exact result in DR, only its Laurent expansion up to
O( ε0).

Every one-loop integral free of momentum scales, i.e. a vacuum integral,
can be derived from the basic integral of 1/ D with D = q2 −M2, by means
of integration by parts; that is

∫
[ d4q]

1

D
n+1 =

1

Γ(n + 1)

dn

d(M2)n

(∫
[ d4q]

1

D

)

, (2.107)

where ∫
[ d4q]

1

D
= −iπ2 M2

(
ln

M2

µ2
− 1

)
. (2.108)

Integrals of this type will be frequently used as examples in the following.

2.1.7.2 Two-loop integrals

We refer to the notation introduced in Section 2.1.2.1. Recall that only
vacuum integrals are considered at two loops, as they are the relevant ones for
the purposes of this thesis. Apart from integrals of the type of eq. (2.12), also
factorizable two-loop integrals may contribute, i.e. products of two one-loop
integrals, for which we use the notation

[
αm1 | βm2

]
=

∫
[d4q1]

( q2
1 − m1)α

×
∫

[d4q2]

( q2
2 − m2)β

. (2.109)
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Thanks to the fact that local vacua are fully subtracted in FDR, a factor-
izable integral is just the product of the FDR integrals of its factors. This is
a general statement, valid to all orders: (n − 1)-loop integrals can be directly
used in calculations at n loops.
On the contrary, in DR, if any of the two integrals of eq. (2.109) were UV-
divergent, we would have to Laurent-expand the other one up to O( ε) in
order to comprise terms arising from the product ε/ε . This is not always
trivial: often an involved integral is more easily calculated by exploiting the
limit ε → 0 before integration; by doing so however the O( ε) information
would be lost and the result could not be used in a DR calculation at higher
orders.

As an explict example, consider
∫

[ d4q]
1

D
2 ×

∫
[ d4q]

1

D
3 =

(
−iπ2 ln

M2

µ2

)
×
(

iπ2

2M2

)
= −

π4

2M2
ln

M2

µ2
.

(2.110)
with D = q2 − M2. The same calculation in DR yields
∫

dnq1dnq2

µ2 ε

1

(q2
1 − M2)2(q2

2 − M2)3
= −

π4

M2

(
ln

M2

µ2
+

1

ε
+ ∆

)
. (2.111)

where we have used
∫

dnq

µ ε

1

(q2 − M2)3
=

iπ2

2M2

[
1 +

ε

2

(
ln

M2

µ2
+ ∆

)]
. (2.112)

Notice that the coefficients of ln(M2/µ2) in eq. (2.110) and eq. (2.111)
is not the same. Indeed, beyond one loop, the one-to-one correspondence
between DR and FDR is broken. This is because in DR one is forced to
retain unphysical finite parts, originated by ε/ε terms, that eventually cancel
out in full result, just like the poles do. In this sense, we can say that FDR
provides a shortcut to the physical answer, by automatically avoiding the
spurious terms ε/ε .

Vacuum integrals at two loops

All vacuum integrals at two loops can be obtained by deriving with respect
to the mass parameters one basic integral, i.e.

[αm1 | βm2 |m12 ] =
1

Γ(α)Γ(β)

dα−2dβ−1

d(m2
1)α−2d(m2

2)β−1
[ 2m1 |m2 |m12 ] .

(2.113)
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One can prove that

[ 2 m1 | m2 |m12 ] = π4

{

ln
m2

1

µ2
−

1

2
ln2 m2

1

µ2
− f(a, b) + f

}

, (2.114)

where,

a =
m2

2

m2
1

, b =
m2

12

m2
1

, (2.115)

f(a, b) is independent of µ and symmetric under the exchange of its argu-
ments, and f = f(1, 1) is a constant. Eq. (2.114) is derived in Appendix A,
where also the function f(a, b) is defined. In short, after determining the
FDR defining expansion of the integrand, for example by deriving eq. (2.17)
with respect to m1, one can either directly integrate the finite part, or use
the known DR results in eq. (2.10). For completeness, we report here the
expression for [ 2m1 |m2 |m12 ] calculated in DR [65]:

[ 2m1 |m2 |m12 ]
∣∣∣
DR

= π4

{

−
1

ε2
−
(

1

ε
+ log

m2
1

µ2
+ ∆

)2

+
1

ε
+ log

m2
1

µ2
+ ∆

−
1

2
−
π2

12
− f(a, b)

}

. (2.116)

Notice once again that at two loops the one-to-one correspondence between
DR and FDR is lost and it is no longer true that FDR integrals are obtained
from DR ones after subtracting poles and universal constants.

2.1.8 Tensorial reduction

As we have seen with the simple example of eq. (2.54), tensorial reduction
might cause the appearance of extra-integrals. This happens, for example,
whenever a pair qαqβ in the numerator is contracted into q2, and then replaced
by q2 + µ2. Notice that if this contraction happens within the integrand, for
example because of a Feynman rule, q2 is promoted to q2 with no subsequent
appearence of extra µ2, by means of the global prescription. Tensorial re-
duction, on the contrary, always exploits the properties of the integral rather
than those of the integrands: it takes place after all the operations that define
the FDR integral.
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All reduction methods that were developed for DR can be used in FDR.
The presence of the extra-integrals insures that also the constants arising
from a tensorial reduction are fully reconstructed.

At one-loop, a commonly used technique is the Passarino-Veltman (PV)
reduction [7], which we present in some detail in the next section. Other
methods can be used as well, such as the OPP approach [16]. The basic
observation is that any algebraic manipulation of the integrand is legal in
FDR, the only subtlety being the replacement q2 = q2+µ2 in the numerator,
which may generate a rational part (R2 in the OPP language). However,
thanks to the correspondence in eq. (2.65), this contribution can be reinserted
back -in an OPP like reduction of the FDR integrals- by using the same set
of effective Feynman rules computed in DR [66, 67], or with the technique
described in [68].

At two-loops there is no one established method to perform a full tensorial
reduction. In the practical calculation presented in Section 3.2, only vacuum
integrals at two loops appear; we discuss how to treat this limiting case in the
next section. Moreover, many techniques for determining master-integrals at
two loops are based on IBP identities in n dimensions: in [69] it was shown
that it is possible, within FDR, to construct a four-dimensional version of
these identities, thereby opening the possibility of extending and probably
simplifying some of the existing algorithms.

2.1.8.1 Tensorial reduction of vacuum integrals

In absence of external momenta, odd ranked tensors vanish, so that the
structures generating extra-integrals are, up to rank 4,

qµ
i qν

j →
(qi · qj)

4
gµν ,

qµqνqρqσ →
q4

24
gµνρσ at one loop ,

qµ
mqν

nq
ρ
rq

σ
s →

1

72

(
Aµνρσ

mnrs + Aµρνσ
mrns + Aµσνρ

msnr

)
at two loops , (2.117)

where gµνρσ is the totally symmetric rank-4 tensor, and

Aµνρσ
mnrs =

(
5(qm · qn)(qr · qs) − (qm · qr)(qn · qs)

− (qm · qs)(qn · qr)
)

gµνgρσ . (2.118)
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Denominators can then be reconstructed by rewriting

q2
1 = q2

1 + µ2|1 , q2
2 = q2

2 + µ2|2 ,

2(q1 · q2) = q2
12 − q2

1 − q2
2 + µ2|12 − µ2|1 − µ2|2 . (2.119)

During this tensor decomposition, the µ2|1, µ2|2, µ2|12 terms are kept only
when they generate a non zero contribution. This means that they should be
power-counted as the corresponding squared loop momenta, and contribute
only if the integral is divergent, as explained in Section 2.1.5.1.

2.1.8.2 Passarino-Veltman reduction in FDR

The main asset of the PV reduction method [7] is that it provides a
gauge-invariant decomposition of the amplitude: after the reduction, the full
amplitude is expressed in terms of scalar integrals depending on physical
thresholds only -multiplied by gauge independent coefficients- plus a rational
part.

In this section we review the PV reduction method within FDR. For sim-
plicity, we explicitly work out the decomposition of a rank-2 bubble. In the
very same way higher-rank tensors with more denominators can be decom-
posed, although, for brevity, we do not report any other result.

The integral

Bµν =

∫
[ d4q]

qµqν

D0 D1

, (2.120)

can be decomposed in terms of rank-2 symmetric tensors depending on p ≡
p1:

Bµν = B00 gµν + B11 pµpν , (2.121)

where each scalar coefficient Bii depends on M2
0 , M2

1 and p2. By contracting
both sides with gµν and pµpν , we obtain a system of equations from which
B00 and B11 can be extracted:

{
gµν Bµν = 4B00 + p2B11

pµpν Bµν = p2
(
B00 + p2B11

)
.

(2.122)

With the usual algebraic manipulations we can express the left hand sides of
eq. (2.122) in terms of scalar integrals with 1 or 2 internal legs. Special care
should be paid when contracting Bµν with the metric tensor; indeed,

gµν Bµν =

∫
[ d4q]

q2

D0 D1

=

∫
[ d4q]

q2 + µ2

D0 D1

. (2.123)
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q2 takes part in the usual simplifications between numerator and denomina-
tor,

gµν Bµν = A0(M
2
1 ) + M2

0 B0(p
2; M2

0 , M2
1 ) +

∫
[ d4q]

µ2

D0 D1

, (2.124)

while a µ2 is left out. A0 and B0 are respectively the scalar tadpole and
scalar bubble,

A0(M
2
1 ) =

∫
[ d4q]

1

D1

, B0(p
2; M2

0 , M2
1 ) =

∫
[ d4q]

1

D0 D1

. (2.125)

Following the logic of Section 2.1.5.1, the last integral in eq. (2.124) is calcu-
lated by determining its vacuum configurations,

[
µ2

D0 D1

]

V

= µ2

(
1

q4 +
d0 + d1

q6 + 4
(q · p)2

q8

)
, (2.126)

yielding

∫
[ d4q]

µ2

D0 D1

= − lim
µ→0

∫
d4q µ2

{
d0 + d1

q6 + 4
(q · p)2

q8

}

=
iπ2

2

(
M2

0 + M2
1 −

p2

3

)
. (2.127)

By solving the system in eq. (2.122), we finally obtain

B00 = −
iπ2

6

(
p2

3
− ∆+

)

+
A0(M2

0 )
[
p2 − ∆−

]
+ A0(M2

1 )
[
p2 + ∆−

]

12 p2

−
B0(p2; M2

0 , M2
1 )
[
p4 − 2 p2 ∆+ + ∆2

−
]

12 p2
,

B11 =
iπ2

6 p2

(
p2

3
− ∆+

)

+
−A0(M2

0 )
[
p2 − ∆−

]
+ A0(M2

1 )
[
2p2 − ∆−

]

3 p4

+
B0(p2; M2

0 , M2
1 )
[
(p2 − ∆−)2 − p2 M2

0

]

3 p4
, (2.128)

where
∆± = M2

1 ± M2
0 . (2.129)
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This result is consistent with that obtained with the standard PV reduction
in DR.

There is a one-to-one relationship between any PV equation in FDR and
DR, which means that an algorithm that was made up in one method is
easily extended to the other.

Up to rank three, the transition rules are here summarized:

εB00 ↔ −
∫

[ d4q]
µ2

D0D1

,

ε p2B00i ↔ −
∫

[ d4q]
µ2(q · p1)

D0D1

,

εC00 ↔ −
∫

[ d4q]
µ2

D0D1D2

,

ε
2∑

i=1

(ki · ka)C00i ↔ −
∫

[ d4q]
µ2(q · ka)

D0D1D2

, (2.130)

where

Bαβγ = g{αβpγ}
1 B001 + pα

1pβ
1p

γ
l B111

Cαβ = gαβC00 +
2∑

i,j=1

kα
i kβ

j Cij

Cαβγ =
2∑

i=1

g{αβkγ}
i C00i +

2∑

i,j,l=1

kα
i kβ

j kγ
l Cijl,

with ka = Σa
i=1pi , and g{αβkγ}

i = gαβkγ
i + gαγkβ

i + gβγkα
i . (2.131)

As far as boxes up to rank-3 are concerned, no transition rule is necessary as
they are UV-convergent integrals, and their expressions are not dependent
on any regularization scheme.

2.1.8.3 Integration by parts identities

Many techniques for determining the master-integrals at two loops are
based on IBP identities in n dimensions. In [69] it was shown that it is possi-
ble, within FDR, to construct a four-dimensional version of these identities,
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thereby opening the possibility of extending and probably simplifying the
existing algorithms.

In DR, IBP identities are based on the fact that shift-invariant integration
is the reverse of differentiation, and that surface terms never contribute when
an integral is evaluated in n dimensions. Given a function Jα(q1, . . . , q#),
where α is a Lorentz index, one has that

0 =

∫
dnq1...d

nq#
∂

∂qα
i

Jα(q1, ..., q#) =
s∑

r=1

∫
dnq1...d

nq#J
α
r (n; q1, ..., q#),

(2.132)
where the second identity simply accounts for the fact that the derivative of
Jα returns a sum of terms. i.e.

∂

∂qα
i

Jα(q1, . . . , q#) =
s∑

r=1

Jα
r (n; q1, . . . , q#), (2.133)

with ∂qα
i /∂qα

i = n. Eq. (2.132) establishes a relationship between the inte-
grals of the different Jα

r (n; q1, . . . , q#), which can be exploited in their evalu-
ation.

In FDR, integration is not the inverse of differentiation, and ∂qα
i /∂qα

i = 4.
For these reasons, none of the equalities of eq. (2.132) can be translated
straightforwardly. Still, it can be shown that

0 =

∫
[d4q1]...[d

4q#]
∂

∂qα
i

Jα(q1, ..., q#) =
s∑

r=1

∫
[d4q1]...[d

4q#]J
α
r (4; q1, ..., q#).

(2.134)
The first equality can be inherited by the four-dimensional integral of the
finite part of Jα. Indeed, Jα(q1, . . . , q#) = Jα

INF (q1, . . . , q#)+Jα
F (q1, . . . , q#) so

that
∫

[d4q1]...[d
4q#]

∂

∂qα
i

Jα(q1, ..., q#) ≡ lim
µ→0

∫
d4q1...d

4q#
∂

∂qα
i

Jα
F (q1, ..., q#) = 0

(2.135)
because it is the integral of a total derivative in four dimensions. The proof of
the second equality of eq. (2.134) is less trivial; in the following we illustrate
how it works on a simple one-loop example.

Consider

Jα(q) =
qα

D0D1
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whose derivative, in n dimensions, reads

∂

∂qα

qα

D0D1
=

n

D0D1
− 2

q2

D2
0D1

− 2
q2 + (q · p)

D0D2
1

. (2.136)

Then, the IBP identity in DR is given by

0 = n

∫
dnq

1

D0D1
− 2

∫
dnq

q2

D2
0D1

− 2

∫
dnq

q2 + (q · p)

D0D2
1

. (2.137)

In FDR, one always starts from the defining expansion; in this case

qα

D0 D1

=

[
qα

q4

]
+ qα

(
d1

q4 D1

+
M2

q2 D0 D1

)
, (2.138)

where d1 = M2 − p2 − 2(q · p). According to the reasoning of eq. (2.135),
the FDR integral of the total derivative of qα/( D0 D1) vanishes. We now
concentrate on the second equality of eq. (2.134), i.e. we want to prove that
∫

[ d4q]
∂

∂qα

qα

D0 D1

=

∫
[ d4q]

4

D0 D1

−
∫

[ d4q]
2q2

D
2
0 D1

−2

∫
[ d4q]

q2 + (q · p)

D0 D
2
1

,

(2.139)
where we have used eq. (2.136) with n = 4. Ultimately, this is true because
of the distributive property of the FDR integral, which in turn is a direct
consequence of shift invariance and the global prescription: it is legal, in
FDR, to manipulate the integrand before evaluating the integral. Let’s take
the time to unveil this mechanism explicitly for this case.

Instead of taking the four-dimensional integral of the finite part, let’s
write the FDR integral as a difference of DR integrals, as in eq. (2.10), that
is

0 =

∫
[ d4q]

∂

∂qα

qα

D0 D1

≡ lim
µ→0

(∫
dnq

∂

∂qα

qα

D0 D1

−
∫

dnq
∂

∂qα

[
qα

D0 D1

])

(2.140)
By doing so, if we insert the n-dimensional derivatives, i.e. eq. (2.136) and

∂

∂qα

[
qα

D0 D1

]
=

[
n

q4

]
−
[
4q2

q6

]
, (2.141)

we can rewrite the r.h.s. of eq. (2.140) as

lim
µ→0

∫
dnq

(
n

D0D1
− 2

q2

D2
0D1

− 2
q2 + (q · p)

D0D2
1

−
[

n

q4

]
+

[
4q2

q6

])
. (2.142)
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From this expression it is possible to reconstruct the r.h.s of eq. (2.139),
because the last two terms in squared brakets can be interpreted as the
vacuum configurations of the first three terms. Indeed,

lim
µ→0

∫
dnq

{(
n

D0D1
−
[

n

q4

])
−
(

2q2

D2
0D1

−
[
2q2

q6

])
−
(

2q2

D0D2
1

−
[
2q2

q6

])

− 2
(q · p)

D0D2
1

}

=

∫
[ d4q]

4

D0 D1

−
∫

[ d4q]
2q2

D
2
0 D1

− 2

∫
[ d4q]

q2 + (q · p)

D0 D
2
1

(2.143)

where we have put n = 4 because the difference of n/( D0 D1) and its vacuum
is finite. Together with eq. (2.140), this verifies the IBP identity in FDR, i.e.
that

0 =

∫
[ d4q]

4

D0 D1

−
∫

[ d4q]
2q2

D
2
0 D1

− 2

∫
[ d4q]

q2 + (q · p)

D0 D
2
1

. (2.144)

Following the same logic, in [69], it is shown that this is always possible,
thereby proving explicitly eq. (2.134).

2.1.9 Infrared infinities

q

p1

p2

q2 q1

p1

p2

Figure 2.3: Examples of massless one-loop and two-loop scalar integrals. Thin
lines represent massless scalar propagators and p2

1 = p2
2 = 0.

The definition in eq. (2.9) can be maintained also in the presence of IR
singularities. For instance, the FDR versions of the massless scalar one- and
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two-loop integrals in figure 2.3 read
∫

[d4q] J (1)(q, µ2) = lim
µ→0

∫
d4q J (1)(q, µ2) and

∫
[d4q1][d

4q2] J
(2)(q1, q2, µ

2) = lim
µ→0

∫
d4q1d

4q2 J (2)(q1, q2, µ
2) , (2.145)

respectively, with

J (1)(q, µ2) =
1

D0(q)Dp1
(q)Dp2

(q)
,

J (2)(q1, q2, µ
2) = J (1)(q1, µ

2)
1

D0(q2)Dp1
(q12)Dp2

(q12)
,

Dpi
(qj) = q2

j + 2(qj · pi) . (2.146)

There was no need of FDR expanding because J (1) and J (2) produce UV
convergent integrals. Note that the on-shell conditions p2

1 = p2
2 = 0 are used

at the integrand level. Thus, infrared virtual divergences get regulated by the
µ2-deformed propagators which generates powers of logarithms of µ2, upon
integration.

For example, the first integral in eq. (2.145) gives

C(s) =

∫
[d4q] J (1)(q, µ2)

= lim
µ→0

iπ2

2s
ln2

(√
1 − 4µ0 + 1√
1 − 4µ0 − 1

)

=
iπ2

s

[
ln2(µ0) − π2

2
+ i π ln(µ0)

]
,

(2.147)

where s = −2(p1 · p2), and we have defined

µ0 =
µ2

s
. (2.148)

Of course, the µ in lnµ0 is not traded for the renormalization scale, but it
remains as an actual IR cut-off. In an inclusive observable, the dependence
on µ of the virtual radiation is eventually fully matched by that of the real ra-
diation so that the final result is independent of any cut-off( see Section 2.3),
or absorbed into the definition of the pdfs in the case of initial state collinear
singularities.
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In principle, a different µ2 can be used to regulate UV divergences (µ2
UV)

and IR ones (µ2
IR). However, a common µ2 simplifies the calculation. Since

IR infinities are more easily understood in terms of µ2
IR > 0, it is convenient

to take µ2
UV = µ2

IR = µ2 > 0.

2.1.9.1 Scaleless integrals

A particularly interesting situation is when the integral is also UV diver-
gent. In this case it is easy to see that UV divergent scale-less )-loop FDR
integrals vanish, as in DR. In fact, the only allowed external variable is a
momentum p such that p2 = 0, whose fate is to appear in the numerator
of JF,#(q1, . . . , q#) in eq. (2.8) to improve the UV convergence of the original
integrand. Therefore, JF,#(q1, . . . , q#) is entirely made of integrands propor-
tional to positive powers of (qi · p), that vanish, by Lorentz invariance, after
integration. The simplest case is the fully massless one-loop 2-point scalar
function

BFDR(p2 = 0; 0, 0) =

∫
[d4q]

1

q2((q + p)2 − µ2)
. (2.149)

The FDR expansion of its integrand reads

1

q2Dp

=

[
1

q4

]
− 2

(q · p)

q4Dp

, (2.150)

so that

BFDR(p2 = 0; 0, 0) = −2 lim
µ→0

∫
d4q

(q · p)

q4Dp

= 0 . (2.151)

The same result is obtained by a direct computation

BFDR(p2; 0, 0) = −iπ2 lim
µ→0

∫ 1

0

dx
(
ln(µ2 − p2x(1 − x)) − ln(µ2)

)
, (2.152)

from which it is manifest that, in the limit p2 → 0, a cancellation occurs
between two logarithms of UV and IR origin, respectively.

It is instructive to study the same case in DR, where

BDR(p2; 0, 0) =

∫
dnq

µ ε

1

q2(q + p)2
. (2.153)
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Now BDR(0, 0, 0) vanishes because IR and UV poles in ε compensate. In fact,
by introducing an arbitrary separation scale M , the two divergences can be
split

1

(q + p)2
=

1

q2 − M2
−
(

1

q2 − M2
−

1

(q + p)2

)

=
1

q2 − M2
−

M2 + 2(q · p)

(q2 − M2)(q + p)2
. (2.154)

Then the integrals

IUV =

∫
dnq

µ ε

1

q2(q2 − M2)
= iπ2

(
1 − ln

M2

µ2
−

2

ε
− ∆

)
,

IIR =

∫
dnq

µ ε

M2 + 2(q · p)

q2(q2 − M2)(q + p)2
= IUV , (2.155)

where ∆ = γE + lnπ, cancel each other. However, this argument has a
potential problem, because it requires the cancellation of two analytic con-
tinuations, IUV and IIR, originally defined in domains that do not overlap [70]
(ε|IR < 0 and ε|UV > 0): since no value of ε exists where they are defined si-
multaneously, it is not obvious whether their difference represents the original
function BDR(0; 0, 0). A possible mathematically consistent solution can be
formulated in terms of modified Gaussian integrals in the n-dimensional Eu-
clidean space [70]. In contrast, the FDR derivation in eq. (2.151) is straight-
forward.

In summary, IR divergent loop integrals are defined by taking the limit
µ → 0 outside integration, after subtracting – when necessary – UV divergent
integrands. In order to preserve the cancellation of the IR logarithms in
physical quantities, this definition should be accompanied by a consistent
treatment of the infinities appearing in the real emission, which we discuss
in Section 2.3.
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2.2 Calculating Loop Amplitudes in FDR

Having defined the FDR loop integral, we now move the focus of our
discussion from the diagram level to the amplitude. In this section, we do
not introduce new technology – rather we take the time to think about the
consequences of the procedures deligned in the previous section when put
into practice.
First of all, we explain how an amplitude calculated in FDR preserves all the
symmetries of the original Lagrangian, including local ones. The mechanism
insuring this property is encoded in the very definition of the FDR integral
together with global prescription, and there is no need to inforce it a poste-
riori like in other four-dimensional methods.
We dedicate the subsequent section to renormalization: indeed, FDR ampli-
tudes are finite by construction. A finite renormalization remains to be done
in order to relate the parameters of the Lagrangian to physical observables;
as a side remark, this also means that if a parameter does not appear in
the final result, nothing has to be done. This procedure, alternative to the
counterterm approach to renormalization, leaves the Lagrangian untouched.
At two loops, where the equivalence between FDR and DRed integrals is
broken, order-by-order renormalization is alltogether avoided. Once more,
FDR provides a shortcut to the physical answer.
Finally, in the last section, we remark that, although deeply different with
respect to any standard approach, FDR still represents a renormalization
scheme, which means that translation rules between FDR and other meth-
ods can be established. This turns out to be useful when realistic calculations
have to made, particularly in QCD, where quantities at the parton level need
to be matched with pdfs and running parameters, typically computed in DR.

2.2.1 Gauge invariance

The FDR integral respects by construction all the symmetries of the QFT
taken into consideration, including local ones if existing. We limit our dis-
cussion to the latters, since gauge invariance provides a stricter constraint
with respect to global symmetries.

The fact that FDR preserves gauge invariance is crucial to make it a com-
petitive calculation framework. Indeed, most four-dimensional methods do
not respect gauge invariance, this being enforced at the end of the calcula-
tion as an extra constraint. However, DR and FDR alike do not break gauge
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invariance, which means, for example, that it can be used as a test for the
results obtained.

The argument insuring that FDR respects gauge invariance is to be found
in the existence of graphical proofs of the Ward-Slavnov-Taylor identities [71],
in which the correct relations among Green’s functions are demonstrated – at
any loop order – directly at the level of Feynman diagrams. Such proofs are
valid under two circumstances:

• divergent loop integrals should be defined in a way that shifting the
integration momenta is possible as if they were convergent ones [72];

• simplifications between numerators and denominators should be pre-
served.

Indeed, quoting Martinus Veltman [73], “Gauge invariance implies a tight in-
terplay between the numerator of an integrand and its denominator. Chang-
ing either of the two will generally destroy gauge invariance . . .”.

In the previous section, we have seen in detail how the FDR integral re-
spects these two characteristics: in Section 2.1.3 shift invariance was proven;
in Section 2.1.5, the global prescription of FDR was explained as the mech-
anism that guarantees the usual simplifications between numerator and de-
nominator, at the integrand level.

As a last remark, we should emphasize that an FDR amplitude is entirely
gauge-invariant, the cut-constructible parts (i.e. those containing the kine-
matical dependence) as well as the rational part. On the latter a potential
ambiguity may remain if we think of FDR in comparison to DR, because in
the one case vacuum configurations are subtracted before integrating, while
in the other poles in ε are taken away after the integration. However, global
prescription together with extra-integrals defined as in Section 2.1.5.1 provide
a powerful mechanism able to warrant gauge invariance.

This was explicitly verified with the calculation of the diphoton pro-
duction from Higgs boson’s decay at one-loop performed in arbitrary Rξ

gauge [74], which we report in Section ??. Moreover, in Section 3.3, the
Ward identities at one and two loops for the same process H → γγ are
verified at the integrand level, thus elucidating some of the features of FDR.

2.2.2 Renormalization

In the acronym FDR, the last letter stands for “regularization” and also
for “renormalization”. Indeed, the FDR integral is defined in such a way
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that all UV infinities are decoupled from the physics and subtracted at the
integrand level. All quantities calculated in FDR are finite, without the
need of any additional procedure. The only cost of this subtraction was the
introduction of an arbitrary scale, µ = µR as explained in Section 2.1.4, on
which the integrals depend logarithmically.

All physical amplitudes are independent of µR, that is after a global finite
renormalization is undertaken. This is the procedure with which the pa-
rameters of the QFT are fixed in terms of physical observables, at the same
perturbative order the calculation is performed.

Symbolycally, consider a QFT described by the Lagrangian

L(α1, . . . ,αp), (2.156)

which depends on p parameters. In order to calculate the observable O(#)
p+1,

we first need p measurements

Oexp
1 , . . . ,Oexp

p

in terms of which the parameters α1, . . . ,αp are to be expressed, that is

O(#)
i (α1, . . . ,αp) = Oexp

i ⇒ αi = α(#)
i

(
Oexp

i , . . . ,Oexp
p

)
≡ ᾱi i = 1, . . . , p.

(2.157)
In this way, a new prediction is made,

Ō(#)
p+1 = O(#)

p+1(ᾱ1, . . . , ᾱp), with
∂Ō(#)

p+1

∂µR

= 0, (2.158)

and the renormalization scale is dropped, or rather traded for the physi-
cal scale at which the observables were measured. Notice that the original
Lagrangian is completely untouched.

At one loop, the FDR scheme is equivalent to DRed, i.e. DRed with
MS: exactly the same pieces are subtracted, respectively at the integrand
level and after integration. From another viewpoint, this is analogous to
observing that the vacuum configurations are equivalent to the counterterms
that one would add to the Lagrangian in order to renormalize it at one loop.
The FDR integral provides a short-cut to the bunch of operations that are
needed in a traditional computation.

As we have seen in Section 2.1.7, the one-to-one correspondence between
one-loop integrals in FDR and DR is broken at higher loop levels. The
profound consequences that this has on renormalization are explained in the
next section.
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2.2.2.1 Avoiding order-by-order renormalization.

The proof that DR preserves gauge invariance relies on the possibility
of introducing local counterterms in the Lagrangian L. On the contrary,
FDR makes no reference to L. In this section we use the simple two-loop
QED example of the photon self energy [75] to comment on the conceptual
differences between the two approaches.

Consider a DR calculation of the one-loop photon self-energy

α

p

β
= i Tαβ Π(p2) , Tαβ = gαβp2 − pαpβ ,

with

Tαβ = gαβp2 − pαpβ ,

Π(p2) =
1

ε
Π−1 + Π0 + εΠ1 ,

Π0 =
e2

2π2

∫ 1

0

dx x(1 − x) ln
m2 − p2x(1 − x)

µ2
. (2.159)

Then, at two-loops and up to terms O(ε0),

= i Tαβ Π2(p2) = i Tαβ

(Π2
−1

ε2
+

2Π−1Π0

ε
+ Π2

0 + 2 Π−1Π1

)
.

At the one-loop level, the renormalized result in MS is simply obtained
by removing the pole and truncating the expansion at O( ε0), which yields
Π0(p2). If one were to do the same thing at two loops, i.e. merely dropping
the poles, the last expression would give

Π2
0 + 2 Π−1Π1,

which is not the correct result.
This is because at two loops the structure of infinities is richer. Like the
pole in the one-loop case, the double pole exhibits a coefficient that is at
most proportional to a polynomial in the relevant scale, e.g. p2; on the
other hand, the coefficient to the single pole can contain logarithms of the
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relevant scale: indeed, in the present case, it contains the Π0 of eq. (2.159).
According to this difference, divergences are labelled local (polynomial) or
non-local (logarithmic) respectively.

In the one-loop case, only local infinities appear, which in MS are ab-
sorbed into simple counterterms. This is equivalent to dropping them all-
together, as prescribed by FDR. With more loops, however, the differences
between the two approaches begin. Indeed, the logarithms of the non-local
singularities cannot be absorbed into a simple counterterm. As is well known,
the correct procedure to undertake in DR is to renormalize order by order,
i.e. to add one-loop counterterms in L such that

+ • = i Tαβ Π0 + O(ε) .

The one-loop counterterms exactly compensate the dependence of the non-
local divergences. Thus

+ • + • + • • = i Tαβ Π2
0 + O(ε) .

This procedure also makes sure that the finite part preserves gauge invariance
and unitarity.

In FDR, all divergences are subtracted at the level of the definition of the
loop integration, so that the product of two one-loop diagrams is simply the
product of the two finite parts, with no need of introducing extra interactions
in L. Thus, one directly obtains

= i Tαβ Π2
FDR(p2) ,

with ΠFDR(p2) = Π0. This difference can be also understood from the
DR ↔ FDR naive correspondence

ε ↔ µ
1

ε
↔ ln µ ,

(2.160)
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which gives limε−>0 ε/ε = 1, while limµ−>0 µ lnµ = 0.
To conclude, it is manifest that spurious ε/ε terms such as Π−1Π1 –which

need to be kept under control in DR by the order-by-order renormalization –
never appear in FDR. The result of an FDR calculation typically depends on
the parameters contained in L, and a (finite) global renormalization is needed
only to link them to experimental measurements at the desired perturbative
accuracy. In particular – and in contrast with DR – no renormalization is
necessary when no parameter appears in the final result, which is the situation
of the calculation presented in Section 3.2.

2.2.3 The FDR scheme

FDR provides a completely new approach to calculations in QFT. Nonthe-
less, it is effectively a renormalization scheme, which means that results ob-
tained in FDR can be mapped in expressions calculated in different schemes,
via some transition rules. In particular, one wants to be able to translate
FDR results in DR, which is the standard framework used to compute run-
ning parameters and parton densities. This is especially important in QCD,
where the parton cross sections need to be matched with the running of αS

and the pdfs in order to obtain realistic predictions.
At one loop, we have seen that there exist a simple transition rule, from

FDR to DR expressions,

ln µ → lnµ −
1

ε
−

∆

2
, ∆ ≡ γE + ln π, (2.161)

that works unchanged for UV and CL divergences. Soft divergences, and in
particular the squared log’s coming from overlapping soft and CL divergences,
cancel out in fully inclusive observables.

A significant difference between FDR and DR arise from the contraction
of two metric tensors coming from the Feynman rules: indeed, gαβgαβ respec-
tively gives 4 and n in FDR and DR. For this reason, FDR one-loop results
explicitly correspond to expressions calculated in DRed [76], rather than stan-
dard DR with MS; the transition rules from DRed to DR are known [68,77],
and they can be directly applied to FDR. Recall that DRed was introduced
in order to extend the use of DR to supersymmetric theories, which require
that observed external states are treated in four dimensions. For the same
reason, FDR was naturally born as a suitable scheme to be used with SUSY
models.

63



At two loops, a correspondence between FDR and DR expressions is
less transparent, essentially because FDR drops all subdivergences at the
very beginning, while in DR one has to undertake a careful order-by-order
renormalization to obtain the correct answer. However, as shown in [59] for
various theories – QCD included –, the vacuum content extracted from an
amplitude via FDR defining expansion corresponds to the contribution that
the addition of standard counter terms to the Langriangian would add to the
amplitude itself. This establishes a relationship between the two frameworks
that makes it possible to transfer the results from one into the other.
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2.3 Calculating IR-Safe Observables in FDR

In this section, we explain how FDR deals with real radiation in the final
state, i.e. with the phase space integration of the matrix elements of a process
with massless external particles. Indeed, when a massless particle is soft or
collinear to another one, and it cannot be observed, its contribution cannot
be considered without that of the same particle if it was emitted virtually.
In particular, the spurious IR infinities that open up as one calculates the
virtual or real radiation alone cancel exactly in the combination of the two
contributions, as guaranteed by the BN and KLN theorems [44, 45]. In the
virtual radiation, the infinities arise as we perform the loop integral, which
we have learnt abundantly how to treat in DR. In the real case, the infinities
come up at the level of the phase space integration: in this section we give an
FDR interpretation to the phase space integral, so that the matching between
virtual and real can be realized. Moreover, because the real radiation quickly
reach a complexity that makes it futile to try and cope with it analytically, we
have designed a numerical strategy, in which the real part is integrated with
the Monte Carlo method and then combined with the analytical expression
of the virtual. This is possible in FDR thanks to the fact that all singularities
are at most logarithmic, making the problems due to numerical instability
much less severe than in a DR-based Monte Carlo. We then develop the
idea of constructing a novel local subtraction method at NLO, in which the
cancellation of the IR divergences happen at the integrand level; in particular,
we want to extract a counterterm for the real directly from the virtual, on
which we usually have an analytic handle. Finally, in the last section we
discuss the generalization of the FDR approach to IR radiation beyond NLO.
The last two topics presented in this section concern some very preliminary
work, and are meant more as an invitation than as a complete account.
Studies on initial state radiation are currently being performed too, but they
go beyond the scope of this thesis.

2.3.1 Real radiation

In Section 2.1.9, we discussed IR divergences in loop integrals, explaining
how the deformation of loop momentum prescribed by FDR automatically
cures also the IR singularities. We now show how the virtual radiation is
matched by a particular treatment of the real radiation, allowing a neat
realization of the KLN theorem.
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(a) (b)

Figure 2.4: Splitting regulated by massive (thick) unobserved particles. The
one-particle cut in (a) contributes to the virtual part, the two-particle cut of
(b) to the real radiation.

As a starting point, consider how the divergent 1 → 2 splitting is regu-
lated in the loop integrals. The situation is depicted in figure 2.4(a), where
thick lines represent unobserved loop particles –whose propagator is made
massive by the addition of µ2 – and the cut line is an external observed mass-
less particle. The real counterpart of this splitting is provided by the pattern
of fig. 2.4(b), where thick lines are unobserved external particles merging into
an internal observed massless one. In both situations unobserved particles
get a mass µ and unitarity relates the two cases as follows

1

q2 − µ2
→ δ(q2 − µ2) θ(q(0)) . (2.162)

Indeed, with this relation, it is possible to interpret a phase-space integral as
a loop one, which provides a guideline to give an FDR meaning to phase-space
integration.

Just like the loop momenta are regulated by the replacement q2 → q2,
would-be-massless external particles with momenta pi are given a mass µ,
that is p2

i → p2
i = µ2 . This is achieved

• by trading the original massless m-body phase space dΦm for a massive
one, denoted by dΦ̄m;

• by replacing

1

2(pi · pj)
→

1

(pi + pj)2
≡

1

sij

(2.163)
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Figure 2.5: Typical cut-diagrams contributing to H → gg(g) in HEFT. In the
first column, (a) and (c) are virtual cuts, i.e. they contribute to the product of
the tree-level and the one-loop amplitude for H → gg. These are matched by the
real cuts in the second column, respectively (b) and (d), which contribute to the
squared amplitude at the tree-level of the process H → ggg.

in any possible singular denominator of the real matrix element.

In this way, singular configurations produce logarithms which cancel the IR
dependence on µ2 of the virtual contribution, for example that of eq. (2.147)
in Section 2.1.9. Once the matching is done, all ln µ cancel, as prescribed by
the KLN theorem, and one can safely take the limit µ → 0.

This strategy has been successfully adopted in [78] to derive the inclusive
decay rate for H → gg(g) at NLO, in Higgs effective field theory (HEFT),
as explained in Section 3.4. In fig. 2.5, we show some typical cut-diagrams
for this one-loop process, to give an example of the correspondence between
virtual and real contributions that was sketched in fig. 2.4.
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2.3.2 Naive numerical matching

In the calculation of the NLO decay rate of H → gg(g) [78], both the
virtual and the real contribution were computed analytically,

σV (H → gg) = v0 + v1 log µ0 + v2 log2 µ0,

σR(H → ggg) = r0 + r1 log µ0 + r2 log2 µ0, (2.164)

where µ0 = µ2/s2 and s = M2
H ; when summing up the two quantities, the

cancellation of ln µ0 is neat, because it turns out that v1 = −r1, and v2 = −r2;
therefore, the limit

σ(H → gg(g)) = lim
µ→0

(
σV (H → gg + X) + σR(H → gg + X)

)
= v0 + r0

(2.165)
is well-defined. Unfortunately, as the complexity of the process of interest
increases, it is not always possible to have the analytic expressions of both
contributions. Often it is the real part that poses the biggest issue when
computing full inclusive observables. Indeed, there is no general method
to analytically perform the phase space integral for abitrarily involved final
states; on the other hand, loop integrals are generally more manageable, and
analytical results can be usually achieved. In this section we discuss the
possibility of numerically integrating the real part, in an FDR calculation at
NLO.

Consider the inclusive cross section of a process with n observed particles
in the final state; the contributions can be schematically expressed as follows:

σV (ln µ) =

∫
dΦn

∫
[ d4q] V ( q, Φn),

σR(ln µ) =

∫
dΦn+1 R(Φn+1). (2.166)

where Φm as the argument of V and R is a synthetic notation referring to
the kinematical information about the final state, i.e. all scalar products of
external particle momenta (pi · pj). As far as the virtual part is concerned,
the dependence on lnµ comes from the loop integral, while the phase space
integration is trivial. In the real case, we have used the notation of the pre-
vious section, denoting by Φn+1 the massive phase space modified à la FDR.
Here, divergences are generated at the level of the phase space integration.
Suppose we know the analytic expression of R(Φn+1), but we are not able
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to perform the integral analytically. By choosing a small but finite value of
µ, we can integrate R(Φ) numerically with a Monte Carlo method; then, we
would like the combination

σV (ln µ) + σR(lnµ) = σµ (2.167)

to converge to a single value

σ = lim
µ→0

σµ

as we take smaller and smaller values of µ. Here is where FDR comes into
play: this limit is numerically stable thanks to the fact that we are combining
infinities that –in FDR– are at most logarithmic. In DR, such an approach
would not work as well, because it would require the numerical cancellation
of poles 1/ ε, which is highly unstable.

It is worthwhile to comment on the fact that in eq. (2.166) we have
assumed that the full analytic knowledge on R(Φn+1) is available. Indeed,
by writing R(Φn+1), i.e. having substituted Φn+1 → Φn+1, we are actually
implying that the replacement

1

2(pi · pj)
→

1

sij

, (2.168)

with sij as in eq. (2.163), has taken place in all divergent terms of R, and
this is only feasible if the analytic expression of R(Φn+1) is known.
We now want to generalize the procedure deligned above to those cases in
which R(Φn+1) is obtained via some numerical algorithm. Indeed, the re-
placement of eq. (2.168), instead of being enforced by hand, can be imple-
mented by multiplying the massless R(Φn+1) by all possible ŝij/sij, where

ŝij = 2(pi · pj) = s − 2µ2

is the massless version of sij. What we are saying is that

σR(ln µ) ≈
∫

dΦn+1 R(Φn+1)
n∏

i,j=1

ŝij

sij

. (2.169)

The rational behind this equation is the fact that at NLO the divergent pieces
of R(Φn+1) are all proportional to either

1

ŝij

or
1

ŝij ŝjk

, (2.170)
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and that adding µ2 to convergent terms has no significant effect when µ
is small. Therefore

∏
(ŝij/sij) is effectively an operator that automatically

produces the replacement of eq. (2.168) and that can be incorporated in a
fully numerical strategy to obtain σR.

This approach, both that of eq. (2.166) and the purely numerical one of
eq. (2.169), has been successfully tested for the simple process H → gg, as
we explain in Section 3.4 where we also add some technical details to the
present discussion; its application to H → ggg(g) is under construction.

As a final point, let us remark that this numerical approach in FDR is
somehow similar to the phase space slicing method [79]. The latter however
has a few drawbacks that in FDR are avoided. Indeed, being based on DR,
it still requires the analytic calculation of the poles in ε; moreover, an extra
IR cut-off δ is introduced, on which the cross sections depend logarithmically
analogously to the FDR µ. Instead in FDR no new unphysical scale needs to
be added in the calculation, and the cancellation can be completely brought
about numerically.

For these reasons, we envisage that such a method can be also extended
at NNLO. It may not return the most accurate result, but it is solid enough
to be used in preliminary studies.

2.3.3 FDR local subtraction

Since the real radiation is generally more difficult to calculate analytically,
when desigining a scheme for the matching of virtual and real radiation, we
want to aim at a method that exploits to the maximum the analytical knowl-
edge on the virtual, and that treats numerically the real. In the last section,
we proposed a naive numerical method, in which the real was integrated by
Monte Carlo and then combined with the analytic expression of the virtual:
in FDR the cancellation of the logarithmic IR infinities is stable, and such
simple procedure is feasible and effective. However, it would be much more
convenient to cancel the IR divergences at the integrand level: the subsequent
numerical integration would be extremetly fast and safe.

This is the idea of subtraction methods such as the dipole method [9]
and FKS [8]: by partially integrating the real part, i.e. integrating over the
momentum of the unobserved particle, they obtain an object that can be
put together with the virtual at the integrand level. The problem of such
an approach is that it is not always possible to partially integrate the real,
even more so when the real integrand R(Φn+1) is not known analytically. A
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way to proceed then is that of cleverly guessing the divergent structure of
R(Φn+1), subtracting this counterterm from the real and adding it back to
the virtual. Schematically, the two “cured” contributions read
∫

dΦn+1

(
R(Φn+1) + Rct(Φn+1)

)
,

∫
dΦn

(
V (Φn) − Vct(Φn)

)
, (2.171)

where the integrals can be performed numerically, and
∫

dΦn+1 Rct(Φn+1) =

∫
dΦn Vct(Φn). (2.172)

The main drawback of this type of approach is that, since Rct and Vct are un-
physical, the cancellations expected in eq. (2.171) sometimes can be plagued
by numerical instability, especially for high multiplicities.

To avoid this problem, a different strategy can be designed that exploits
the analytical knowledge of the virtual, rather then trying to integrate the
poorly known real part. The idea is that of dis integrating the virtual, i.e.
rewriting the ln µ2 arising from the virtual as local counterterm of the real
part.

Let us play around this idea, limiting the discussion to the NLO level.
We want to separate the IR-safe and the IR-divergent part in the integrand
of the virtual, schematically

∫
dΦn

∫
[ d4q] V (q, Φn) =

∫
dΦn

∫
[ d4q]

(
VF (q, Φn) + Vdiv(q, Φn)

)
.

(2.173)

By trading the loop momentum for an extra external one, we can translate
Vdiv into a counterterm for the real part, i.e.

∫
dΦn

∫
[ d4q] Vdiv(q, Φn) =

∫

µ

dΦn+1 Rct(Φn+1), (2.174)

in practice doing the opposite of eq. (2.172). We can then cancel the IR
singularities of the real at the integrand level, by taking

∫

µ

dΦn+1 lim
µ→0

(
R(Φn+1) + Rct(Φn+1)

)
, (2.175)

where the integral at this point can be safely performed numerically, over the
massive phase-space prescribed by FDR.

71



The question now is whether the dis integration of the virtual, i.e. eq. (2.174),
can be realized. Unitarity may help to this goal, if we make use of the relation
sketched in eq. (2.162). More precisely [80],

1

q2 + i0 − µ2
↔ −2πiδ ( q2 − µ2) θ(q(0)) +

1

q2 − i0 q(0)
, (2.176)

where the second term is regular, and can thus be neglected when insterted
in a realistic Feynman integrand.

At NLO, the only type of divergent integrands in the real part are those
of eq. (2.170); these are the shapes of the counterterms to the real that we
must be able to read from the virtual. As far as

1

sijsjk

is concerned, the one-loop three point function of eq. (2.147) is enough to
reconstruct all local counterterms. Indeed,

∫
dΦ2.

(∫
[ d4q]

1

q2 D1 D2

)
=

∫
dΦ3

1

s13s32
, (2.177)

which means that each ln2 µ2 of the virtual must be replaced according to
the following equation

ln2 µ2

s
− π2 =

8s

π2

∫
dΦ3

1

sijsjk

, (2.178)

or alternatively, one can put to zero the integrands of the type 1/ q2 D1 D2

in the virtual, and then correct the real with the addition of 1/(sijsik).
Regarding the terms of the type

sa
ij

sik

,

they can also be read from the virtual, from terms like 2(q · pj)a/ q2 Dk or
from the collinear behaviour of the Altarelli-Parisi splitting functions.

The method has been applied to H → gg(g) and work is ongoing towards
its application to H → ggg(g).
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2.3.4 A possible scheme beyond NLO

When going to NNLO, a few comments are required in order to generalize
the FDR approach to IR infinities in a consistent way. Let’s review the
strategy deligned in Section 2.3.1 as applied to a NNLO calculation: our
guideline will be gauge invariance, i.e. we must make sure that the procedures
that we set up respect the symmetries of the Lagrangian.

To illustrate the way to proceed we consider m-jet production at NNLO
in e+e− annihilation, as a formal example. The building blocks of the calcu-
lation depend on the set of invariants

{si1÷im} ≡ {si1i2, si1i2i3 , · · · , si1···im} , si···j = (pi + · · ·+ pj)
2, (2.179)

where p2
i = 0. They are:

• the Born contribution dσB
LO{si1÷im−1

},

• the virtual and real NLO corrections, dσV
NLO{si1÷im−1

} and
dσR

NLO{si1÷im},

• the NNLO two-loop part dσV,2
NLO{si1÷im−1

},

• the one-loop corrections to the NLO real radiation, dσV,1
NNLO{si1÷im},

• the double radiation dσR
NNLO{si1÷im+1

}.

After αS renormalization, they give a m-jet cross section accurate up to
NNLO

dσ = dσLO + dσNLO + dσNNLO , (2.180)

where

dσLO =

∫

dΦm

dσB
LO{si1÷im−1

} ,

dσNLO =

∫

dΦm

dσV
NLO{si1÷im−1

} +

∫

dΦm+1

dσR
NLO{si1÷im} ,

dσNNLO =

∫

dΦm

dσV,2
NNLO{si1÷im−1

} +

∫

dΦm+1

dσV,1
NNLO{si1÷im}

+

∫

dΦm+2

dσR
NNLO{si1÷im+1

} .

(2.181)
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The integrands behave as

dσ{· · · }∼
1

sij

, if sij → 0 and dσ{· · · }∼
1

s2
ijk

, if sijk → 0 ,(2.182)

therefore the integrations over single- and double-unresolved massless phase-
spaces (Φm+1 and Φm+2, respectively) generate logarithmic IR divergences
which have to be regulated.

In DR, the last two lines of eq. (2.181) are interpreted as a limit to ε→ 0
of integrals computed in n = 4 + ε dimensions. We instead define a mapping
from massless to massive invariants as follows

si1···im → ŝi1···im ≡
m∑

k<l

ŝikil ,

ŝij = s̄ij = (p̄i + p̄j)
2 ,

p̄2
i = µ2 , (2.183)

and rewrite

dσNLO =

∫

dΦm

dσV
NLO{si1÷im−1

} + lim
µ→0

∫

dΦ̄m+1

dσR
NLO{ŝi1÷im} ,

dσNNLO =

∫

dΦm

dσV,2
NNLO{si1÷im−1

} + lim
µ→0

∫

dΦ̄m+1

dσV,1
NNLO{ŝi1÷im}

+ lim
µ→0

∫

dΦ̄m+2

dσR
NNLO{ŝi1÷im+1

}WNNLO{ŝi1i2i3}m+2 ,(2.184)

where µ is the same regulator used in the IR divergent loop integrals, and

WNNLO{ŝi1i2i3}m+2 =
m+2∏

i<j<k

(
ŝijk

s̄ijk

)2

, s̄ijk = (p̄i + p̄j + p̄k)
2 . (2.185)

The proof that eq. (2.184) converges to the right results is simple. First
note that the mapping in eq. (2.183) preserves all formal properties of mass-
less kinematics. For instance

ŝ123 = ŝ12 + ŝ13 + ŝ23 . (2.186)

Thus, dσR
NLO, dσV,1

NNLO and dσR
NNLO are gauge invariant by construction. As

for the NLO real emission, 1
s2
ijk

poles are always screened by the requirement
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of observing m particles. Therefore, the only possible singular behavior is

dσR
NLO{ŝi1÷im} ∼

1

ŝij

=
1

s̄ij

=
1

(p̄i + p̄j)2
, (2.187)

which, being the internal propagator massless, matches the virtual IR poles,
as in figure 2.4(b). In the NNLO case, dσR

NNLO{ŝi1÷im+1
} contains additional

1
ŝ2
ijk

poles, which no longer have the form of massless propagators. In fact, a

spurious mass is generated by the gauge invariant mapping of eq. (2.183):

ŝijk = s̄ijk + 3µ2 = (p̄i + p̄j + p̄k)
2 + 3µ2 . (2.188)

To cure this, dσR
NNLO is multiplied by the weight factor in eq. (2.185), which

changes – in a gauge invariant way – any pole 1
ŝ2
ijk

to the correct value 1
s̄2
ijk

.

The additional integrals, generated when each term in WNNLO does not meet
its corresponding pole, vanish in the limit µ → 0. This last property follows
from the fact that the integral is at most logarithmically divergent.

The reason why a pole cannot be changed by hand only in the terms
where it appears, is that the logarithmic behavior is reached only after gauge
cancellations, which should not be altered. This can be easily understood
with a toy model:

dσR
NNLO

∣∣
toy

=
1

ŝ2
12

−
(ŝ12 + ŝ13 + ŝ23)2

ŝ2
12ŝ

2
123

. (2.189)

The correct procedure gives

lim
µ→0

∫

dΦ̄m+2

dσR
NNLO

∣∣
toy

WNNLO{ŝi1i2i3}m+2 = 0 , (2.190)

while

lim
µ→0

∫

dΦ̄m+2

[
1

ŝ2
12

−
(ŝ12 + ŝ13 + ŝ23)2

ŝ2
12s̄

2
123

]
%= 0 . (2.191)

We have extended the FDR treatment of the real radiation to NNLO. The
outlined strategy opens the possibility of a numerical treatment of NNLO
calculations like the one described in Section 2.3.2, similar to the phase-
space slicing method at NLO [79]: ln µ2 are extracted analytically from the
virtual contribution and are then matched with the logs obtained numerically
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from the real part. The procedure presented in this section clearly works only
when all the integrands of eq. (2.184) are known analytically; nontheless it
can be generalized to allow for a purely numerical treatment of the real in
the same way as eq. (2.169) does at NLO. Work to test this NNLO scheme
has been planned, but remains out the scope of this thesis.
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Chapter 3

FDR at work

After describing all the features of FDR, in this chapter we show them at
work on some simple case studies. The calculations presented here are the
first ever performed in FDR [74,81], and they stood as a test of the method
and as an opportunity of development.

In Section 3.1, the calculation of the amplitude for H → γγ at one-loop
in arbitrary Rξ-gauge is reported; this calculation provided a powerful test
of gauge invariance in FDR, and the first opportunity to work with strings
of internal fermions at one loop

In Section 3.2, we treat the gluonic corrections to the same process,
H → γγ, in the approximation of large top mass, which required the use
of the technology for the computation of two-loop vacuum integrals. The ad-
vantages of performing this calculation in FDR, with respect to other more
traditional methods, are here summarized:

• order by order renormalization is avoided;

• because the parameter, mt, does not appear in the final result, its
renormalization, compulsory in DR, is avoided alltogether in FDR;

• factorizable two-loop integrals are calculated as the product of two one-
loop integrals, without any further operation (e.g. the Taylor expansion
in ε demanded by DR);

Moreover, the properties of the vacuum content subtracted from the defini-
tion of the FDR integral were used to design a test for the calculation.
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In Section 3.3, the QED Ward identity for H → γγ is verified at one and
two loops, at the integrand level. This illustrates the mechanism that allows
FDR to respect gauge invariance.

Finally, in Section 3.4, we consider H → gg in HEFT at NLO, as an
example of calculation with massless final state, to study the interplay of
virtual and real radiation, within FDR-based methods. The analytic compu-
tation performed in [78] is reported for completeness, together with various
tests for the viability of the numerical approaches.
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k1, µ

k2, ν

q

Figure 3.1: Sketch of the Feynman diagrams contributing to the process; the loop
can be either fermionic or bosonic (see figures 3.3 and 3.2). The momenta are
considered to be all incoming, and the virtual loop momentum q is outgoing from
the Higgs vertex.

3.1 H → γγ at one loop in Rξ-gauge

We present the first application of FDR [74] to a complete calculation
in the EW theory. In order to keep the most general approach, we have
decided to work in an arbitrary Rξ-gauge, thereby explicitly verifying that
the method respects gauge invariance. We have chosen to compute the 1-loop
on-shell amplitude for the Higgs boson decay into two photons, which has
been known since a long time [83–86] and, given its relevance and simplicity,
it has been reconsidered a few years ago by several authors [87–97].

Because there is no Hγγ interaction at tree level in the SM, the process
is finite and indirect: it is mediated by either bosonic or fermionic loops. No
renormalization is needed, nevertheless infinities arise at intermediate steps of
the calculation, which demands to work within a divergence-safe framework,
such as FDR. Calculating the bosonic contribution stands as a strong test
of the gauge invariance property of FDR. On the other hand, the fermionic
contribution gives us the opportunity of illustrating FDR in the presence of
fermionic loops.

The two contributions are independent of each other and separately gauge-
invariant, so that the generic amplitude can be written as

M(β,η ) =
(
MW (β) +

∑

f

NcQ
2
f Mf(η)

)
, (3.1)

where β and η are dimensionless kinematic parameters defined as

β =
4 M2

W

M2
H

, η =
4 m2

f

M2
H

. (3.2)

79



By denoting with k1 and k2 the momenta of the photons, as in figure 3.1, the
amplitude reads

M = Mµν ε∗µ(k1) ε
∗
ν(k2) . (3.3)

The tensorial structure of Mµν is dictated by on-shellness and gauge invari-
ance, i.e. ki · ε(ki) = 0 and kµ

1 Mµν = kν
2 Mµν = 0, so that

Mµν(β,η ) =
(
M̃W (β) +

∑

f

NcQ
2
f M̃f (η)

)
T µν , (3.4)

where M̃W and M̃f are scalar form factors of mass dimension -1, and

T µν = kν
1k

µ
2 − (k1 · k2) gµν . (3.5)

M̃W and M̃f are obtained from the diagrams depicted in figure 3.2
and 3.3 respectively, with the Feynman rules of Appendix C.1. Because
we work in an arbitrary Rξ gauge, also ghost, scalar and mixed vectorial-
scalar loops contribute to the bosonic part. Notice that diagrams can be
distinguished according to the charge flow in the loop; however, because
loops only couple to photons, graphs with the same topology but oppositely
charged loops equally contribute to the amplitude. Schematically, naming
the contribution of each diagram after the type of particles running in the
loop,

Mf = 2MFFF , (3.6)

as far as the fermionic contribution is concerned, and

MW = +2MSSS + 2MV V V + 2MSV S + 2MSSV + 2MV SS

+2MSV V + 2MV V S + 2MV SV + 2MGGG+
+ 2MGGG−

+2MSV + 2MV S + MSS + MV V , (3.7)

for the bosonic part. Because we work in the Rξ-gauge, each bosonic diagram
depends on the gauge parameter, e.g. MSV = MSV (β,ξ ), but their sum is
gauge-invariant, i.e. MW = MW (β).

Even though the final result is finite, UV divergent loop integrals are
encountered at intermediate steps. In particular, after simplifying reducible
numerators, we deal with integrals with 2 or 3 internal legs and up to tensorial
rank 2. Furthermore, the analytic structure of each diagram is characterized
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Figure 3.2: Diagrams contributing to the bosonic part of the amplitude (obtained
with FeynArts [98]). G denotes Goldstone bosons, while u± and u± are the charged
ghost and anti-ghost fields, respectively.
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Figure 3.3: Diagrams contributing to the fermionic part of the amplitude (obtained
with FeynArts [98]).
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m

m

m

m0

Figure 3.4: Scalar triangle C0(0, 0,m0;m,m,m); dashed lines refer to massless
particles, solid lines to massive ones.

by either a single threshold, M2
W or m2

f , or two thresholds M2
W and ξM2

W . To
regularize the infinities, we have used the FDR method described in chap-
ter 2. Instead of calculating the integrals directly, we reduced the amplitude
to scalar integrals by using the FDR version of PV reduction explained in
Section 2.1.8.2. The amplitude, expressed in terms of tadpoles, self-energies
and triangles (A0, B0 and C0, respectively), is manifestly gauge-invariant,
so that there remain only scalar integrals with a single physical threshold
to be evaluated. In particular, all divergent integrals cancel out, and only
scalar triangles must be computed, of the type given in figure 3.4. Indeed, by
combining the diagrams, performing the PV reduction, and evaluating the
scalar integrals, we come by a result consistent with that in [97], which was
obtained in DR, i.e.

M̃W (β) =
i e3

(4π)2sW MW

[
2 + 3β + 3β(2 − β)f(β)

]
, (3.8)

M̃f(η) =
−i e3

(4π)2sW MW

2η
[
1 + (1 − η)f(η)

]
, (3.9)

where sW = sin θW is the sine of the Weinberg mixing angle, and

f(x) = −
1

4
ln2
(

1+
√

1−x+iε
−1+

√
1−x+iε

)
=





arctan2

(
1√
x−1

)
if x ≥ 1

−1
4

[
ln
(

1+
√

1−x
1−

√
1−x

)
− i π

]2
if x < 1 ,

where ε > 0 is a small imaginary part allowing for the analytic continuation
of the result to any value of x. Indeed, f(x) is a parametrization of the scalar
triangle

C0(0, 0, s; M, M, M) = −
2 i π2

s
f(x) , x ≡

4 M2

s
. (3.10)
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q

q + p1

q + p2

Figure 3.5: Vector-scalar-scalar loop diagram contributing to the bosonic part of
the amplitude.

Note that the bosonic form factor in eq. (3.8) contains a constant term,
independent of the kinematics. FDR automatically leads to its correct value,
while in non-gauge-invariant frameworks it is necessary to enforce gauge-
invariance [90,99] or momentum routing invariance [87] as an extra constraint
to recover it.

3.1.1 The W loop contribution

In this section, we work out in some detail the contribution to the am-
plitude coming from the diagram in figure 3.5. This stands as an example
to illustrate how to use the FDR method in practice. In particular, we are
interested in showing that, thanks to the global treatment of the µ parame-
ter, the integrand within an FDR integral can be algebraically manipulated
just in the same way as any integrand of a standard 4- or n-dimensional loop
integral. This fact, together with the FDR shift invariance property (see
Section 2.1.3), preserves all cancellations required by gauge invariance.

The analytic contribution of the diagram in figure 3.5 to the amplitude
MW is given by

Mµν
V SS =

∫
[ d4q] Jµν

V SS( q2) , (3.11)

where, according to the Feynman rules in Appendix C.1,

Jµν
V SS( q2) =

e3 MW

2 sW

(2q + p1 + p2)ν(q + 2p2)ρ

D0 D1 D2

[
gµρ −

(1 − ξ) qµqρ

( q2 − ξM2
w)

]
, (3.12)
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with M2
0 ≡ d0 = M2

w, M2
1 = M2

2 = ξM2
w and pn =

∑n
i=1 ki. After contracting

Lorentz indices, q2 should be promoted to q2, as implied by the definition of
the FDR integral. The usual algebraic manipulations can then be performed
on JV SS( q2).

After simplifying all tensorial integrands appearing in JV SS to irreducible
ones, we obtain

Mµν
V SS =

e3 MW

2 sW

{
−1

M2
W

[
2
(
Bµν

2 thr − Bµν
1 thr

)
+ (p1 + p2)

ν
(
Bµ

2 thr − Bµ
1 thr

)]

−
(
ξ −

p2
2

M2
W

) [
2
(
Cµν

2 thr − Cµν
1 thr

)
+ (p1 + p2)

ν
(
Cµ

2 thr − Cµ
1 thr

)]

+
(
2 Cµν

2 thr + (p1 + p2)
ν Cµ

2 thr

)
+ 2 pµ

2

(
2 Cν

2 thr + (p1 + p2)
ν C2 thr

)}

,

(3.13)

where the remaining integrals are scalar and tensorial bubbles and triangles
in FDR, to be further reduced via PV reduction. In eq. (3.13) the subscript
‘n thr’ indicates the number of different thresholds; explicitly

Cµ1...µr

2 thr =

∫
[ d4q]

qµ1 . . . qµr

D0(M2
W ) D1(ξM2

W ) D2(ξM2
W )

,

Cµ1...µr

1 thr =

∫
[ d4q]

qµ1 . . . qµr

D0(ξM2
W ) D1(ξM2

W ) D2(ξM2
W )

,

Bµ1...µr

2 thr =

∫
[ d4q]

qµ1 . . . qµr

D0(M2
W ) D1(ξM2

W )
,

Bµ1...µr

1 thr =

∫
[ d4q]

qµ1 . . . qµr

D0(ξM2
W ) D1(ξM2

W )
, (3.14)

where we have put between parentheses the mass appearing in each propa-
gator.

By similarly treating the other diagrams and putting the contributions
together, one obtains the bosonic form factor of eq. (3.8).
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q

q + p1

q + p2

Figure 3.6: Fermionic loop diagram contributing to the amplitude.

3.1.2 The fermionic loop contribution

The contribution to the decay amplitude mediated by a loop of a charged
fermion with mass mf is given by

Mµν
FFF =

−e3 mf

2 sW MW

∫
[d4q]

Tr
[
( /q + /p2

+ mf )γν( /q + /p1
+ mf)γµ( /q + mf )

]

D0 D1 D2

,

(3.15)
with M0 = M1 = M2 = mf , and where two types of traces containing twice
the integration momentum appear, namely

Tr
[

/q γµ /q γν
]

= Tr
[
(/q ± µ) γµ (/q ± µ) γν

]
,

Tr
[

/q γµ γν /q
]

= Tr
[
(/q ± µ) γµ γν (/q ∓ µ)

]
,

(3.16)

with /q defined in accordance with eq. (2.84). This again allows all the usual
algebraic manipulations at the level of the FDR integrand; for example
∫

[d4q]
Tr
[

/q γµ γν /q
]

D0 D1 D2

=

∫
[d4q]

4 q2 gµν

D0 D1 D2

= 4 gµν

(∫
[d4q]

1

D1 D2

+

∫
[d4q]

m2
f

D0 D1 D2

)
.

(3.17)

After simplifying all reducible numerators we obtain

Mµν
FFF = −

e3 m2
f

sW MW

{
− 2gµνB +

[
2(pµ

1p
ν
2 + pµ

2p
ν
1) − M2

Hgµν
]
C

+ 4(p1 + p2)
νCµ + 4pµ

1C
ν + 8Cµν

}
, (3.18)
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where

Cµ1...µr =

∫
[ d4q]

qµ1 . . . qµr

D0 D1 D2

and B =

∫
[ d4q]

1

D0 D2

. (3.19)

After a PV reduction of Cµ and Cµν the result of eq. (3.9) easily follows.

3.1.3 Conclusions

We made use of the loop-mediated decay H → γγ to illustrate some key
features of FDR. In particular, we pointed out the mechanisms which lead to
an automatic preservation of gauge invariance. To this aim, we performed the
calculation in a generic Rξ gauge, showing that, unlike other four-dimensional
methods, FDR naturally produces the correct rational part of the amplitude,
with no need to impose extra constraints.
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3.2 H → γγ at two loops

The point of this section is to investigate the behaviour of the FDR
method at two loops. We have taken the process H → γγ as a case study,
calculating the O(αS) QCD corrections to the on-shell amplitude. The result
has been known for a long time [100,101]. For simplicity, we have decided to
work in the large top mass limit: the photon production is mediated solely
by the top quark, and all scales other than the top mass are neglected. In
practice this means that we only deal with vacuum integrals.

In the exact calculation, the top mass renormalization should be per-
formed. In the large top mass limit, because the mass dependence is dropped,
UV infinities cancel independently in the diagrams and counter-term dia-
grams, making the renormalization unnecesary. This is true in FDR as a
consequence of the full subtraction of local vacua. In other frameworks, in
DR for example, counter-terms do contribute to the finite part of the ampli-
tude, and are therefore required, even though the mass parameter does not
appear in the final result.

3.2.1 The calculation

The diagrams contributing to the QCD corrections of the top-loop-mediated
Higgs decay into two photons are depicted in figure 3.7. The amplitude reads

M = Mµν εµ(p1) ε
∗
ν(p2) , (3.20)

where p1 and −p2 are the momenta of the outgoing photons. One has

Mµν =
1

(2π)2

α

π

T µν

v

4

3
ηF(η) , (3.21)

with v being the vacuum expectation value (vev) of the Higgs boson and

η =
4m2

s
, m = mtop, s = (p1 − p2)

2 = M2
H , T µν = pµ

2p
ν
1 +

s

2
gµν .(3.22)

M is well defined in the limit m → ∞ we are interested in. This means that,
order by order, the form factor F(η) can be written as

F(η) = F0 +
F1

η
+

F2

η2
+ . . . (3.23)
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p1

p2

Figure 3.7: Feynman diagrams contributing to the QCD corrections of the top-
loop-mediated Higgs decay into two photons. The same diagrams with the electric
charge flowing counterclockwise also contribute.

with

F0 = 0 . (3.24)

By inserting eq. (3.23) into the expansion in αS of F(η), one obtains, up to
two loops and neglecting O( 1

η2 ) terms,

F(η) = F (1)(η) − i
αS

3π3
F (2)(η)

≡

(

F (1)
0 +

F (1)
1

η

)

− i
αS

3π3

(

F (2)
0 +

F (2)
1

η

)

. (3.25)

At one loop F (1)
0 = 0 and (see, for example, [74])

F (1)
1 =

4iπ2

3
. (3.26)

We re-derive –within the FDR framework – the known result at two loops [102]

F (2)
0 = 0 ,

F (2)
1 = 4π4 , (3.27)

which implies that the QCD corrections factorize the one-loop amplitude

M = M(1)
(
1 −

αS

π

)
+ O

(
α2

S

)
+ O

(
1

η

)
. (3.28)
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We have used the Feynman rules reported in Appendix C.2.

3.2.2 The building blocks

Since we are working in the large top mass limit, denominators can be
expanded as follows

1

(qi + pj)2 − m2
=

1

q2
i − m2

(

1 −
2(qi · pj) + p2

j

(qi + pj)2 − m2

)

=
1

q2
i − m2

(

1 −
2(qi · pj)

q2
i − m2

+ . . .

)

, (3.29)

where the on-shell condition p2
j = 0 for the photons has been used. An

expansion to the second order, as the one above, is sufficient to the level of
accuracy we are interested in, i.e. O(1/η). All external momenta can then
be neglected and the top mass is the only relevant scale. As a consequence,
we only have to deal with vacuum integrals.

After cancelling between numerator and denominator the q2
1, q2

2, q2
12

terms generated by the Feynman rules, tensor integrals up to rank 4 con-
tribute to the amplitude. Because there is no dependence on external mo-
menta, odd rank integrals vanish and we use the formulas collected in Sec-
tion 2.1.8.1 to perform the tensorial reduction.

Recall that denominators can then be reconstructed by rewriting

q2
1 = q2

1 + µ2|1 , q2
2 = q2

2 + µ2|2 ,

2(q1 · q2) = q2
12 − q2

1 − q2
2 + µ2|12 − µ2|1 − µ2|2 . (3.30)

During this tensor decomposition, the µ2|1, µ2|2, µ2|12 terms are kept only
when they generate a non zero contribution. This means that they should be
power-counted as the corresponding squared loop momenta, and contribute
only if the integral is divergent (see Section 2.1.5.1). The final result can
then be completely expressed in terms of scalar two-loop integrals, products
of two one-loop integrals and extra integrals containing µ2|j (j = 1, 2, 12).
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For convenience, we use the notation

[
αm

]
=

∫
[ d4q]

( q2 − m2)α
, (3.31)

[
αm1 | βm2

]
=

∫
[d4q1]

( q2
1 − m2

1)
α
×
∫

[d4q2]

( q2
2 − m2

2)
β

, (3.32)

[
αm1 | βm2 | 0

]
=

∫
[d4q1][d4q2]

( q2
1 − m2

1)α( q2
2 − m2

2)β q2
12

, (3.33)

and

[
αm

]
(µ2) =

∫
[ d4q] µ2

( q2 − m2)α
, (3.34)

[
αm1 | βm2

]
(µ2|1) =

∫
[d4q1] µ2|1
( q2

1 − m2
1)α

×
∫

[d4q2]

( q2
2 − m2

2)β
,

[
αm1 | βm2 | 0

]
(µ2|j) =

∫
[d4q1][d4q2] µ2|j

( q2
1 − m2

1)α( q2
2 − m2

2)β q2
12

. (3.35)

As explained in Section 2.1.7, recall that eq. (3.32) is simply the product of
two integrals of the kind given in eq. (3.31); this does not happen in DR,
where terms of O(ε) must be added to the one-loop functions appearing in
a two-loop calculation. Moreover, the one-loop and factorizable integrals of
eqs. (3.31) and (3.32) can be computed as derivatives of the quadratically
divergent one-loop tadpole

[αm ] =
1

Γ(α)

dα−1[ m ]

d(m2)α−1
, [ m ] = −iπ2 m2

(
log

m2

µ2
− 1

)
, (3.36)

while those in eq. (3.33) are obtained by deriving with respect to the mass
parameters the basic integral

[
2m1 |m2 | 0

]
of eq. (2.114), that is

[
αm1 | βm2 | 0

]
=

1

Γ(α)Γ(β)

dα−2

d(m2
1)α−2

dβ−1

d(m2
2)β−1

[
2m1 |m2 | 0

]
. (3.37)

This implies that for each of the diagrams in figure 3.7 the routing of the mo-
menta is chosen in such a way that as the gluon line gets the momentum q12.
This is allowed due to the shift invariance properties of the FDR integration
(see Section 2.1.3).
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All extra integrals relevant for our calculation can be determined from
eqs. (2.77 to 2.79) and eq. (2.62), by using

[
αm1 | βm2 | 0

]
(µ2|j) =

1

Γ(α)Γ(β)

dα−2

d(m2
1)α−2

dβ−2

d(m2
2)β−2

[
2m1 | 2m2 | 0

]
(µ2|j) ,

∫
[ d4q]

µ2

( q2 − m2)α
=

1

Γ(α)

dα−1

d(m2)α−1

∫
[ d4q]

µ2

( q2 − m2)
. (3.38)

All two loop integrals necessary for this calculation are reported in Ap-
pendix 3.8.

3.2.3 The result

By summing all Feynman diagrams and performing the tensor reduction
we end up with

F (2)
0 = −2

[
2 m | 2 m

]
+ 4

[
3 m | m

]
− 4m2

[
3 m | 2 m

]
+ 12m2

[
4 m | m

]

+ 4
[
2 m | m | 0

]
+ 12m2

(
2
[
3 m | m | 0

]
+
[
2 m | 2 m | 0

])

+ 24m4
( [

4 m | m | 0
]
+
[
3 m | 2 m | 0

])
+ 4

[
3 m | 2 m

]
(µ2|1)

+ 8
[
3 m | m | 0

]
(µ2|1) + 4

[
2 m | 2 m | 0

]
(µ2|1) − 2

[
2 m | 2 m | 0

]
(µ2|12)

+ 8m2
( [

3 m | 2 m | 0
]
(µ2|2) −

[
3 m | 2 m | 0

]
(µ2|12)

)
,

(3.39)
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and

F (2)
1 = +176

9 m2
[
3 m | 2 m

]
− 56

3 m2
[
4 m | m

]

− 4m4
(

10
9

[
3 m | 3 m

]
− 10

3

[
4 m | 2 m

]
+ 16

3

[
5 m | m

])

+ 4m6
(

10
3

[
4 m | 3 m

]
+ 4

[
5 m | 2 m

]
− 20

3

[
6 m | m

])

− 320
9 m2

[
3 m | m | 0

]
− 136

9 m2
[
2 m | 2 m | 0

]

− 176
3 m4

( [
4 m | m | 0

]
+
[
3 m | 2 m | 0

])

− 224
3 m6

( [
5 m | m | 0

]
+
[
4 m | 2 m | 0

]
+ 1

2

[
3 m | 3 m | 0

])

− 160
3 m8

( [
6 m | m | 0

]
+
[
5 m | 2 m | 0

]
+

[
4 m | 3 m | 0

])

− 8m2
[
3 m | 3 m

]
(µ2|1) − 8m4

[
3 m | 4 m

]
(µ2|1)

+ 64
9 m2

[
3 m | 2 m | 0

]
(µ2|2) + 80

9 m2
[
3 m | 2 m | 0

]
(µ2|12)

− 16 m4
( [

4 m | 2 m | 0
]
(µ2|2) −

[
4 m | 2 m | 0

]
(µ2|12)

)

− 64
3 m6

( [
5 m | 2 m | 0

]
(µ2|2) −

[
5 m | 2 m | 0

]
(µ2|12)

)
. (3.40)

The final result in eq. (3.27) follows by inserting the expressions of the scalar
and extra integrals computed as explained in Section 2.1.7.2.

It is important to stress once more that at two loops the one-to-one cor-
respondence between DR and FDR is lost and it is no longer true that FDR
integrals are obtained from DR ones after subtracting poles (and univer-
sal constants). For example, if we were to interpret the integrals appearing
in eq. (3.39) as dimensionally regulated ones, we would not get zero and a
1/ε pole would even remain. This can be understood because two different
mechanisms to preserve gauge invariance are used by DR and FDR, the latter
avoiding an order-by-order renormalization, as we see in the next section.

3.2.4 Renormalization

The results reported in the last section do no require renormalization.
This directly follows from the discussion in section 2.2.2.1. FDR renormal-
ization amounts to the mere operation of fixing results in terms of physical
quantities, and since the top mass disappears due to the limit mtop → ∞, no
fixing is needed. This is not the case when using DR, where renormalization
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p

k j
= iδjk Σ(/p)

Figure 3.8: Top self-energy at O(αS).

is necessary in order to compensate spurious ε/ε constants generated in the
limit n → 4.

Here we demonstrate that if we insist with an order-by-order renormal-
ization we obtain a vanishing contribution to F (2)

0 and F (2)
1 . At O(αS) the

bare (m0) and physical on-shell (m) top masses satisfy the relation

m0 = m + δm ,δm = Σ (m) , (3.41)

where Σ(/p) is the top self-energy depicted in figure 3.8 and

Σ(m) = m
αS

3π

(
3 ln

m2

µ2
− 5

)
. (3.42)

This gives the one-loop counterterms and diagrams of figure 3.9, which
generate a contribution to F (2)

0 and F (2)
1 proportional to

F (2)
0,ct = i δm C0,ct and F (2)

1,ct = i δm C1,ct . (3.43)

One computes

C0,ct = 8m2
[
3 m

]
+ 12m4

[
4 m

]
+ 4

[
3 m

]
(µ2) = 0 ,

C1,ct = −
16m2

3

( [
3 m

]
+ 4m2

[
4 m

]
+ 5m4

[
5 m

]
+ 5m6

[
6 m

])
= 0 .

(3.44)

Therefore renormalization does not have any effect.
In DR renormalization is necessary. Indeed,

C0,ct

∣∣
DR

= 0 and C1,ct

∣∣
DR

= O(ε) , (3.45)

so that C1,ct

∣∣
DR

contributes to the amplitude when multiplied against the 1/ε
pole contained in δm

∣∣
DR

, i.e. the DR counterpart of δm, which is obtained
from eq. (3.42) through the replacement of eq. (2.106).
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= −i δm• • = −i
δm

v
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•

Figure 3.9: One-loop counterterms and diagrams generated by eq. (3.41).

Finally notice that
C2,ct %= 0 , (3.46)

and it renormalizes the O( 1
η2 ) of the amplitude, which does depend on the

top mass.

3.2.5 The Vacuum Content

In Section 2.1.4, we explained that order by order the vacuum content
of an integral has the same dependence on the regulator µ as that of the
FDR integral. As a consequence one can consistently trade the UV regulator
µ with the renormalization scale µR. For brevity, we have so far equated
µ = µR, however in the context of this section it is useful to distinguish
them.

This property can be exploited to design a test for calculations in the
FDR framework: the vacuum content of an amplitude, calculated in any reg-
ularization scheme, must have exactly the same dependence on log µ as the
amplitude itself. In particular, a physical amplitude, being f inite, is com-
pletely independent of µ, and so must be its vacuum content.

The vacuum content of a two-loop integral can be expressed in terms of
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three scalar vacua:

V1(µ) ≡
∫

R

d4q

[
1

q4

]
, V2(µ) ≡

∫

R

d4q1d
4q2

[
1

q4
1

][
1

q4
2

]
,

V3(µ) ≡
∫

R

d4q1d
4q2

[
1

q4
1 q2

2 q2
12

]
, (3.47)

which are easily calculated by using eq. (2.108) for the first two, and eq. (2.114)
for the latter, with µ playing the role of the mass. For example, depending
on the scheme used,

V3

∣∣∣
DR

= π4

{
−1

ε2
−
(

1

ε
+ log

µ2

µ2
R

+ ∆

)2

+
1

ε
+ log

µ2

µ2
R

+ ∆ −
1

2
−
π2

12
− f

}
,

V3

∣∣∣
FDR

= π4

(
log

µ2

µ2
R

−
1

2
log2 µ2

µ2
R

+ f

)
, (3.48)

where, in the second equation, we have used FDR as a regularization scheme,
upon the introduction of new arbitrary scale which we have called µR.

In general,

Vi(µ) =
∑

j=1,2

αR
ij logj µ2

µ2
R

+ ci . (3.49)

where µ is the FDR “mass” parameter, whilst µR is the arbitrary scale of
the regularization scheme elected on which also the constants αR

ij may de-
pend. Recalling eq. (??) from Section 2.2.2.1, we can write a generic two-loop
integrand as

J(q1, q2) = a0(q1, q2) + a1(q)V1(µ) + a2V2(µ) + a3V3(µ) . (3.50)

If J corresponds to a physical (finite) quantity, all log(µ) must cancel, which
gives a parametric condition on the coefficients ai’s:

a1 = −
(
α21

α11
−
α31

α11

α22

α32

)
t

a2 = t

a3 = −
α22

α32
t . (3.51)
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From this, it follows that the vacuum content of a two-loop quantitiy is in
the form
∫

R

d4q1d
4q2 JINF (q1, q2) = A

(
2iπ2 V1(µ) + V2(µ) − 2V3(µ)

)
+ BR , (3.52)

where A and BR do not depend on µ.

In the case of our calculation of interest, we have explicitly verified that
the vacuum content of F0 and F1 is independent of µ. We introduce the
following notation:

[ I ]R(µ) =

∫

R

d4q1d
4q2 JINF (q1, q2) (3.53)

if I is the integral of the integrand J whose vacuum configurations are JINF .
By taking the divergent part of eq. (3.39) and (3.40) and replacing each

integral with its vacuum configurations, we have obtained

[
F0

]
DR

= −8π4

(
1

ε
+ ln

m2

µ2
R

+ ∆ + 1 +
f11

2

)
,

[
F1

]
DR

= 0 , (3.54)

by working with DR-regulated integrals, and

[
F0

]
FDR

= 4π4f11,
[

F1

]
FDR

= 0. (3.55)

by using FDR.
Moreover,

[
F0

]
respects eq. (3.52):

[
F0

]
= −2

(
2iπ2V1(µ) + V2(µ) − 2V3(µ)

)
+ BR (3.56)

with

BFDR = 0, and BDR = −2π4

(
2

ε
+ 4 ln

m2

µ2
R

+ 3

)
. (3.57)

The constants do not cancel out because the FDR definition implies a sub-
traction of something more than just the poles.
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3.2.5.1 Calculating the vacuum content of an integral

Here we collect some technical remarks regarding the calculation of the
vacuum content of an integral.

• The vacuum of the product of integrals is not the product of the vacuum
contents of the factors. If Ii = Fi + [ Ii ],

[
I1I2

]
= [ I1 ]F2 + [ I2 ]F1 − [ I1 ][I2] (3.58)

The generalization of this formula is trivial.

• The vacuum content of an extra integral is null in FDR, however it is
finite and non-null in all other regularization methods. In particular,
if I(µ2) is a generic extra-integral, from eq. (2.10), we have that

[
I(µ2)

]
FDR

= 0,
[
I(µ2)

]
R

= −I(µ2)|FDR . (3.59)

The constants generated in this way play a role in the determination
of the vacuum contente, for example if one of I1, I2 in eq. (3.58) is an
extra-integral.

3.2.5.2 Tensorial reduction of the vacuum content

In FDR, also the tensorial vacuum configurations are subtracted. Since
tensors, beyond one loop, are not defined in the same way in DR and FDR, it
is not obvious that one could perform a tensorial reduction over the vacuum
configurations.

Consider an example:

∫
[d4q1][d

4q2]
qµ
1 qν

1

D
3
1 D2 D12

= gµν
∑

i

ci

∫
d4q1 d4q2 Si(q1, q2) (3.60)

where
qµ
1 qν

1

D
3
1 D2 D12

= Jµν
V (q1, q2) + Jµν

F (q1, q2) (3.61)

and
Jµν

F (q1, q2) = gµν
∑

i

ciSi(q1, q2) (3.62)

97



Alternatively:

∫
[d4q1][d

4q2]
qµ
1 qν

1

D
3
1 D2 D12

= gµν
∑

i

ci

∫
d4q1 d4q2 S̃i(q1, q2) (3.63)

and
S̃i(q1, q2) = Vi(q1, q2) + Si(q1, q2) . (3.64)

However, the vacuum by construction is

Jµν
V (q1, q2) . (3.65)

In the present case, also

Jµν
V (q1, q2) = gµν

∑

i

ciVi(q1, q2) . (3.66)

Moreover, we have verified that the tensorial vacuum is equal to the vacuum
of the tensorially reduced amplitude in the case of H → γγ. We may conjec-
ture that this is always the case as long as physical quantities are concerned;
further investigation is needed in this respect.

3.2.6 Conclusions

The calculation presented in this section was the first ever performed
in FDR at two loops. The O(αS) corrections to the H → γγ amplitude
–mediated by an infinitely heavy top loop – have been computed in a fully
four-dimensional fashion. This example has allowed us to demonstrate that
FDR is an approach to loop calculations in which

• order-by-order renormalization is avoided;

• a finite renormalization is only needed to fix the parameters of the
theory in terms of experimental observables;

• )-loop integrals are directly re-usable in ()+1)-loop calculations, with
no need of further expanding in ε.

Due to its four-dimensionality we envisage a great potential of FDR in
further simplifying NNLO computations. More investigation is needed in
this direction, that we plan to undertake in the near future.
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3.3 Ward identities for H → γγ at one and two

loops

In the two previous sections the one- and two-loop amplitude for the pro-
cess H → γγ have been derived by entirely working in the FDR framework.
The gauge-invariant results that were obtained stand as a strong test that
the method respects gauge invariance. In this section we explicitlty verify
the Ward identities at the integrand level for the one- and two-loop ampli-
tudes, to make more transparent the diagramatic argument that proves gauge
invariance in FDR.

3.3.1 The QED Ward identity

The Ward identity is a direct consequence of gauge invariance. Classically,
gauge fields couple to conserved currents, i.e. the Lagrangian exhibits a term

Aµjµ with ∂µjµ = 0 . (3.67)

In quantum mechanics, this is rephrased as the current being transverse with
respect to the direction of the photon momentum p, i.e.

pµjµ = 0. (3.68)

If εµ(p) is the polarization vector of the photon, the amplitude

M(p) = εµ(p)Mµ(p) (3.69)

vanishes if we replace the polarization vector with the momentum, of the
photon i.e.

pµ Mµ(p) = 0 . (3.70)

In other words, the amplitude itself must be transverse to the photon mo-
mentum. Eq. (3.70) is the QED Ward identity; it can be shown that it is
valid to all orders in perturbation theory [103].

Gauge invariance is a property of the amplitude. As such, it must be satis-
fied at the integrand level, i.e. the diagram level, before traces over fermionic
lines are calculated, or the tensorial reduction is performed. The subsequent
manipulations that one does may break gauge invariance, depending on the
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p

Figure 3.10: amplitude for a generic pro-
cess with an external photon of momentum
p: M(p) = εµMµ(p). The Ward identity
states that the amplitude vanishes if we re-
place the photon polarization vector with its
momentum, i.e. pµMµ(p) = 0.

method used. For example, concerning tensorial reduction, we have seen
PV reduction as a technique that preserves gauge invariance. In the same
way, at the level of the calculation of the integrals, where a regularization
scheme must be introduced, DR does respect gauge invariance, while other
techniques, such as a trivial cut-off method, Pauli-Villars or BPHZ, break
this property of the amplitude, and can be used only upon restauration of
gauge invariance by hand.

This is why in sec. 2.2.1 was suggested that gauge invariance implies a
tight interplay between numerator and denominator: being a property of
the integrand, the regularization scheme, in order for it to preserve gauge
invariance, must be as respectful as possible of the structure of the inte-
grand. With this perspective it is easily understood why DR preserves gauge
invariance: changing the dimension of the integral measure, although not
physically transparent, leaves the integrand untouched.

Within the FDR framework, while the actual integral one performs is a
four-dimensional standard one (linear, shift-invariant, ...), the integrand is
alltogether changed. Its mechanism for preserving gauge invariance is a bit
more sophisticated with respect to DR, and it involves the global prescription
and the definition of extra-integrals. It is therefore interesting to verify gauge
invariance at the integrand level in FDR, to convince ourselves that the
manipulations that we make are indeed safe.

3.3.2 The Feynman identity

We will take H → γγ, mediated by a fermion with mass m, as a case
study. In this case The proof of gauge invariance relies on the graphical
equivalence depicted in figure 3.11, which, in turn, is realized by the Feynman
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1

p

q q + p
= −

q + p
+

q

Figure 3.11: Graphical representation of the Feynman identity in eq. (3.71). The
dashed line represents a scalar photon.

q + p

q
p

α

Figure 3.12: Generic $-loop amplitude with an external photon with momentum
p. The blob stands for the rest of the amplitude and q is an integration momentum.

identity [71]

/q + m

D
/p

/q + /p + m

Dp

=
/q + m

D
−

/q + /p + m

Dp

, (3.71)

where

D = q2 − m2 and Dp = (q + p)2 − m2 . (3.72)

Consider now the generic )-loop amplitude in figure 3.12. Its integrand reads

εα(p)Jα = εα(p)
∑

i

1

DDp

Tr
[
(/q + m)γα(/q + /p + m)

(
Γi

o + Γi
e

)]
, (3.73)

where the sum is over all contributing Feynman diagrams, while Γi
o and Γi

e are
proportional to a product of respectively an odd or an even number of gamma
matrices. In general, Jα = Jα(q, · · · , q#), and also Γi

o,e = Γi
o,e(q, · · · , q#).

Gauge invariance requires that

pα

∫
[d4q] · · · [d4q#]J̄

α(q, · · · , q#) = 0 , (3.74)
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where J̄α is the integrand in eq. (3.73) regulated à la FDR by replacing
q2
i → q2

i − µ2 in both numerators and denominators according to the global
prescription. Eq. (3.74) can be directly proven at the integrand level. With
this aim, we first concentrate on the replacements responsible for the conser-
vation of the specific current in figure 3.12:

Jα → J ′α =
∑

i

1

D Dp

(
Tr
[
/̄qγα/̄qΓi

o

]
+ Tr

[
/qγα/pΓi

o

]
+ m2Tr

[
γαΓi

o

]

+mTr
[
γα(/q + /p)Γi

e

]
+ mTr

[
/qγαΓi

e

] )
, (3.75)

where the loop denominators in Γi
o,e are also barred. In the previous equation

/̄q = /q ± µ , (3.76)

with the sign chosen as in eq. (2.84), has the effect of changing q2 to q̄2 in
the first trace; in the remaining traces, the same replacement has no effect,
because it generates a term proportional to a vanishing trace of an odd
number of Dirac matrices. With more photons, replacements as in eq. (3.76)
have to be performed for all integration momenta appearing in the trace,
after summing over all internal indices.

Back to eq. (3.75), when contracting with p, it is possible to reconstruct
the denominators D and Dp in the numerator, and subsequently simplify
with the denominator

pαJ ′α =
∑

i

1

D

(
Tr
[
/qΓi

o

]
+ mTr

[
Γi

e

] )

−
1

Dp

(
Tr
[
(/q + /p)Γi

o

]
+ mTr

[
Γi

e

] )
, (3.77)

in agreement with the Feynman identity in eq. (3.71). This clearly show
that the Feynman identity, within a realistic amplitude, is satisfied thanks
to the possibility of reconstructing the denominators; this is why it is crucial
to correctly put into practice the global prescription. After that, the Ward
identity

pα

∫
[d4q] · · · [d4q#]J

′α(q, · · · , q#) = 0 (3.78)

directly follows from the shift invariance properties of the loop integrals, as
in DR. In the following two sections we explicitly test eq. (3.78) at one and
two loops for H → γγ in FDR.
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q

p1,α

p2, β q

p2, β

p1,α

Figure 3.13: Feynman diagrams contributing to the amplitude for H → γγ me-
diated by fermions at one loop. The loop momentum q has been assigned to the
internal line that follows the vertex with the photon p1, so that in both diagrams
the momentum routing of fig. 3.12 is respected.

3.3.3 The Ward Identity at one loop

We now apply the general treatment of the last section to our case study,
i.e. H → γγ at one loop, as in fig. 3.13. We use the notation:

Di = (q + pi)
2 − m2 − µ2 , p0 = 0 , (3.79)

p12 = p1 − p2 . (3.80)

At one loop,

M1(H → γγ) ∝ ε∗α(p1)ε
∗
β(p2)

∫
[ d4q]Jαβ

1 (q), (3.81)

where

Jαβ
1 =

Tr
[
γα (/q + /p1 + m) (/q + /p2 + m) γβ (/q + m)

]

D0 D1 D2

+
(
p1,α↔ −p2, β

)
.

(3.82)
By shifting the loop momentum of the second diagram so that it reflects the
routing of fig. 3.13, Jαβ

1 can be rewritten in the form of eq. (3.73), that is

Jαβ
1 =

1

D0 D1

Tr
[
(/q + m)γα(/q + /p1 + m)

(
Γβ

o + Γβ
e

)]
, (3.83)

with

Γβ
o = m γβ

(
1

D2

+
1

D12

)

≡ Γβ,(1)
o (q) + Γβ,(2)

o (q) , (3.84)

Γβ
e =

/q + /p2

D2

γβ + γβ /q + /p12

D12

≡ Γβ,(1)
e (q) + Γβ,(2)

e (q) . (3.85)
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The indices (1) and (2) in the above expressions refer to the first and second
diagram of fig. 3.13. By applying the Feynman identity on the product
Jαβ

1 p1 α one obtains

Tr[ /q Γβ
o ] + m Tr[ Γβ

e ]

D0

−
Tr[ (/q + /p1

) Γβ
o ] + m Tr[ Γβ

e ]

D1

, (3.86)

like in eq. (3.77). The Ward identity of eq. (3.78) is realized if the loop
momentum is conveniently shifted in the terms of the last equation. Namely,
by noticing that

/q Γβ,(1)
o (q)

D0

=
−m Γβ,(1)

e (−q − p2)

D0

(3.87)

/q Γβ,(2)
o (q)

D0

=
−m Γβ,(2)

e (−q − p12)

D0

(3.88)

and

(/q + /p1
) Γβ,(1)

o (q)

D1

=
−m Γβ,(1)

e (−q − p12)

D1

(3.89)

(/q + /p1
) Γβ,(2)

o (q)

D1

=
−m Γβ,(2)

e (−q − p2)

D1

(3.90)

one can verify that

p1 α

∫
[ d4q] Jαβ

1 = 0. (3.91)

To prove eq. (3.91) we made explicit use of the Feynman identity. In the
following we show that the same result can be obtained by reconstructing
the denominators in eq. (3.82) directly. Indeed, by performing some algebra
in the trace, Jαβ

1 of eq. (3.82) can be rearranged as

Jαβ
1 =

m

D0 D1 D2

(
2m2 Tr

[
γαγβ

]
− 2 q2 Tr

[
γαγβ

]
+ 8

{
γα, /q

}{
γβ, /q

}

+ 4
{
γα, /q

}{
γβ, /p2

}
+ 4

{
γβ, /q

}{
γα, /p1

}

+ Tr
[
γα

/p1 /p2
γβ
]

+ Tr
[
γβ

/p2 /p1
γα
] )

. (3.92)

where the curly brakets represent an anticommuting operator, i.e.
{
γα, γβ

}
=

γαγβ + γβγα. By contracting with p1 α, we reconstruct the denominator D1
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so that

Jαβ
1 p1µ =

m

D0 D1 D2

(
− 4 D0

{
γβ, /p1

}
+ 8

(
D1 − D0

) {
γβ, /q

}

+ 4
(
D1 − D0

) {
γβ , /p2

})

= 4 m

{
γβ, /q + /p2

}

D0 D2

− 4 m

{
γν , /q + /p2

}

D0 D1

+ 4 m

{
γν , /q

}

D0 D2

− 4 m

{
γν , /q + /p1

}

D1 D2

. (3.93)

With the shift q → −q−p2 the first term cancels the third one; similarly the
second term cancels the fourth by shifting q → −q − p1 − p2. This proves
again eq. (3.91).

3.3.4 The Ward Identity at two loops

We now verify eq. (3.78) for H → γγ at two loops. We refer to fig. (3.7)
and we use the following notation:

Di,j = (qi + pj)
2 − m2 − µ2

i (3.94)

q12 = q1 − q2 (3.95)

p12 = p1 − p2 , p0 = 0. (3.96)

For the purpose of this section, there is no need to take the limit of large
top mass as in Section 3.2, so that the denominators do contain external
momenta. The two-loop correction to the amplitude can be expressed in
terms of the integrand Jαβ

2 , that is

M2 ∝ ε∗α(p1)ε
∗
β(p2)

∫
[d4q1][d

4q2]J
αβ
2 (q1, q2), (3.97)

and the Ward identities we are interested in verifying reads

p1 α

∫
[d4q1][d

4q2]J
αβ
2 (q1, q2) = 0. (3.98)

Let us indicate with Ii, where i = 1, . . . , 12, each Feynman diagram con-
tracted with the photon momentum pα

1 . In fig. 3.7, diagrams are labelled
from 1 to 6 starting from the top left one; the same diagrams, with photons
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exchanged, are labelled with the indices 7 to 12. The Ward identity is then
rephrased: since

p1 αJαβ
2 ≡

12∑

i=1

Ii, then
12∑

i=1

∫
[d4q1][d

4q2] Ii(q1, q2) = 0. (3.99)

At two loops, each Ii is a made of large expression. For shortness we
introduce some extra notation. The fermionic lines are indicated by

f(qi, pj) ≡
/qi

+ /pj
+ m

Di,j

≡ /f(i, j) + m d(i, j), (3.100)

where

/f(i, j) ≡
/qi

+ /pj

Di,j

, d(i, j) ≡
1

Di,j

. (3.101)

In terms of this functions, the Feynman identity for the photon with momen-
tum p1 is rewritten as

f(q1, 0) /p1
f(q1, p1) = f(q1, 0) − f(q1, p1) ≡ f(q1, 0). (3.102)

The contributions of the diagrams can be organized in three patterns:
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Tr
[
γρ f(qi1, pj1) γν f(qi2, pj2) γρ f(qk1

, ph1
) f(qk2

, ph2
)
]

=
{
− 2m Tr

[
γν /f(i1, j1) /f(k1, h1) /f(i2, j2)

]
d(k2, h2)

− 2m3 Tr
[
γν /f(k1, h1)

]
d(i1, j1)d(i2, j2)d(k1, h1)

(
(k1, h1) ↔ (k2, h2)

) }
+

+
{

2m Tr
[
γν /f(i1, j1)

]
d(i2, j2) { /f(k1, h1), /f(k2, h2)}

+ 4m3 Tr
[
γν /f(i1, j1)

]
d(i2, j2)d(k1, h1)d(k2, h2)

(
(i1, j1) ↔ (i2, j2)

) }

≡ Tr1
(
ν, (i1, j1), (k1, h1), (k2, h2), (i2, j2)

)
, (3.103)

Tr
[
γρ f(qi, pj) γρ f(qk1

, ph1
) f(qk2

, ph2
) γν f(qk3

, ph3
)
]

=
{
− 2m Tr

[
/f(i, j) /f(k1, h1) /f(k2, h2)γ

ν
]
d(k3, h3)

− 2m Tr
[
/f(i, j) /f(k1, h1)γ

ν /f(k3, h3)
]
d(k2, h2)

− 2m Tr
[
/f(i, j) /f(k2, h2)γ

ν /f(k3, h3)
]
d(k1, h1)

− m Tr
[
/f(k1, h1) /f(k2, h2)γ

ν /f(k3, h3)
]
d(i, j)

+
(
m3 Tr

[
γν /f(k1, h1)

]
d(i, j)d(k2, h2)d(k3, h3)

+
(
1 ↔ 2

)
+
(
1 ↔ 3

) )

− 2m3 Tr
[
γν /f(i, j)

]
d(k1, h1)d(k2, h2)d(k3, h3)

≡ Tr2
(
ν, (k3, h3), (i, j), (k1 , h1), (k2, h2)

)
, (3.104)

Tr
[
γρ f(qi, pj) γρ f(qk1

, ph1
) γν f(qk2

, ph2
) f(qk3

, ph3
)
]

=
{
− 2m Tr

[
/f(i, j) /f(k1, h1)γ

ν /f(k2, h2)
]
d(k3, h3)

− 2m Tr
[
/f(i, j) /f(k1, h1)γ

ν /f(k3, h3)
]
d(k2, h2)

− 2m Tr
[
/f(i, j)γν /f(k2, h2) /f(k3, h3)

]
d(k1, h1)

− m Tr
[
/f(k1, h1)γ

ν /f(k2, h2) /f(k3, h3)
]
d(i, j)

+
(
m3 Tr

[
γν /f(k1, h1)

]
d(i, j)d(k2, h2)d(k3, h3)

+
(
1 ↔ 2

)
+
(
1 ↔ 3

) )

− 2m3 Tr
[
γν /f(i, j)

]
d(k1, h1)d(k2, h2)d(k3, h3)

≡ Tr3
(
ν, (k2, h2), (k3, h3), (i, j), (k1 , h1)

)
. (3.105)
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Tr1, Tr2 and Tr3 keep their form under shift of integration momenta. For
example,

Tri

(
ν, (1, 0), (2, 12), (2, 0), (1, 12)

)
−→

qi→qi+p2

Tri

(
ν, (1, 2), (2, 1), (2, 2), (1, 1)

)
.

By routing the internal momenta in such a way that the vertex of fig. 3.12
is recreated in each diagram, all Ii are proportional to the factor f(q1, 0) as
defined in eq. (3.102). This means that we can use the Feynman identity, so
that

Ii = Tr
[
f(q1, 0) . . .

]
= I(0)

i − I(1)
i (3.106)

with I(0)
i = Tr

[
f(q1, 0) . . .

]
, and I(1)

i = Tr
[
f(q1, p1) . . .

]
(3.107)

In table 3.1 we report the contribution of each Ii in terms of the functions
Trj . Looking at the shape of these contributions – i.e. whether they can be
expressed as Tr1, Tr2 or Tr3 functions) – one can argue that, in order to
satisfy the Ward identity of eq. (3.99), cancellations must take place within
the following subgroups:

I1 + I5 + I7 + I8 → 0

I2 + I4 + I6 + I12 → 0

I3 + I9 + I10 + I11 → 0 . (3.108)

The convenient shifts in loop momenta must be designed, by looking for
particular symmetries relating the diagrams of each subgroup.
Taking I(n)

i = I(n)
i (q1, q2) as a function of the internal momenta, the following

equations hold:

I(1)
1 (q1, q2) = −I(2)

5 (q2, q1),

I(2)
7 (q1, q2) = −I(1)

8 (q2, q1),

I(1)
5 (q2, q1) = −I(2)

8 (q2 − p12, q1 − p12),

I(1)
7 (q1, q2) = −I(2)

1 (q1 − p2, q2 − p2). (3.109)

These imply that the first of (3.108) is true, i.e.
∫

[d4q1][d
4q2]

(
I1 + I5 + I7 + I8

)
= 0. (3.110)
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I1 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) f(q2, p2) γρ f(q1, p2) γν
]

= Tr1
(
ν, (1, 2), (2, 1), (2, 2), (1, 0)

)
− Tr1

(
ν, (1, 2), (2, 1), (2, 2), (1, 1)

)

I7 = Tr
[
f(q1, 0)γ

ν f(q1, p12) γρ f(q2, p12) f(q2, p0) γρ
]

= Tr1
(
ν, (1, 0), (2, 12), (2, 0), (1, 12)

)
− Tr1

(
ν, (1, 1), (2, 12), (2, 0), (1, 12)

)

I2 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) f(q2, p2) γν f(q2, p0) γρ
]

= Tr2
(
ν, (2, 0), (1, 0), (2, 1), (2, 2)

)
− Tr2

(
ν, (2, 0), (1, 1), (2, 1), (2, 2)

)

I8 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) γν f(q2, p12) γρ f(q1, p12)
]

= Tr1
(
ν, (2, 1), (1, 12), (1, 0), (2, 12)

)
− Tr1

(
ν, (2, 1), (1, 12), (1, 0), (2, 12)

)

I3 = Tr
[
f(q1, 0) f(q1, p2) γρ f(q2, p2) γρ f(q1, p2) γν

]

= Tr3
(
ν, (1, 0), (1, 2), (2, 2), (1, 2)

)
− Tr3

(
ν, (1, 1), (1, 2), (2, 2), (1, 2)

)

I9 = Tr
[
f(q1, 0)γ

ν f(q1, p12) f(q1, p0) γρ f(q2, p0) γρ
]

= Tr3
(
ν, (1, 12), (1, 0), (2, 0), (1, 0)

)
− Tr3

(
ν, (1, 12), (1, 0), (2, 0), (1, 1)

)

I4 = Tr
[
f(q1, 0) f(q1, p2) γν f(q1, p0) γρ f(q2, p0) γρ

]

= Tr2
(
ν, (1, 0), (2, 0), (1, 0), (1, 2)

)
− Tr2

(
ν, (1, 0), (2, 0), (1, 1), (1, 2)

)

I10 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) γρ f(q1, p1) γν f(q1, p12)
]

= Tr3
(
ν, (1, 12), (1, 0), (2, 1), (1, 1)

)
− Tr3

(
ν, (1, 12), (1, 1), (2, 1), (1, 1)

)

I5 = Tr
[
f(q1, 0) f(q1, p2) γρ f(q2, p2) γν f(q2, p0) γρ

]

= Tr1
(
ν, (2, 2), (1, 0), (1, 2), (2, 0)

)
− Tr1

(
ν, (2, 2), (1, 1), (1, 2), (2, 0)

)

I11 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) γν f(q2, p12) f(q2, p0) γρ
]

= Tr3
(
ν, (2, 12), (2, 0), (1, 0), (2, 1)

)
− Tr3

(
ν, (2, 12), (2, 0), (1, 1), (2, 1)

)

I6 = Tr
[
f(q1, 0)γ

ρ f(q2, p1) γρ f(q1, p1) f(q1, p2) γν
]

= Tr2
(
ν, (1, 0), (2, 1), (1, 1), (1, 2)

)
− Tr2

(
ν, (1, 1), (2, 1), (1, 1), (1, 2)

)

I12 = Tr
[
f(q1, 0)γ

ν f(q1, p12) γρ f(q2, p12) γρ f(q1, p12)
]

= Tr2
(
ν, (1, 12), (2, 12), (1, 12), (1, 0)

)
− Tr2

(
ν, (1, 12), (2, 12), (1, 12), (1, 1)

)

Table 3.1: Contribution to p1 αJαβ
2 of each Feynman diagram appearing in

fig. 3.7.
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Analogously

I(2)
4 (q1, q2) = −I(1)

2 (q2, q1),

I(1)
6 (q1, q2) = −I(2)

2 (q2, q1),

I(1)
4 (q1, q2) = −I(2)

12 (q1 − p12, q2 − p12),

I(2)
6 (q1, q2) = −I(1)

12 (q1 + p2, q2 + p2), (3.111)

and

I(2)
9 (q1, q2) = −I(2)

11 (q2, q1) (3.112)

I(1)
10 (q1, q2) = −I(2)

11 (q2, q1) (3.113)

I(2)
10 (q1, q2) = −I(1)

5 (q1 + p12, q2 + p12) (3.114)

I(1)
9 (q1, q2) = −I(2)

5 (q1 − p2, q2 − p2) (3.115)

respectively imply the second and last of eq. (3.108). Altogether this proves
eq. (3.99), i.e the Ward identity at two loops for H → γγ.
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3.4 H → gg at NLO

We consider the NLO gluonic correction to H → gg(g) mediated by an
infinitely massive top loop as a case study for putting into practice the FDR
treatment of IR divergences, as outlined in Section 2.3. First we review
the analytic result [78]. Despite its simplicity this process provides a rich
example as it involves the renormalization of αS and the combination of real
and virtual radiation in order to cancel the IR ln µ.

We then move on to computing the inclusive and differential decay rate
numerically with a MC. We explore the three approaches described in Sec-
tion 2.3.2 and Section 2.3.3: naive numerical combination with and without
analytic knowledge on the integrand, and numerical integration after local
subtraction.

3.4.1 Preliminaries

For this calculation we use purely gluonic QCD and the HEFT model,
as described in Appendix C.3, where the Feynman rules used in this section
can also be found. The diagrams contributing to the decay rate at NLO are
depicted in fig. 3.14. The inclusive decay rate reads [78]

ΓNLO

(
H → gg(g)

)
= Γ0 + Γ1 = Γ(0)

(
αS(M2

H)
)(

1 +
95

4

αS

π

)
, (3.116)

where the Born decay rate is given by

Γ0 = Γ(0)(H → gg) = A2 M3
H

8π
=

α2
S M3

H

72 π3 v2
, (3.117)

while the NLO radiative correction is the result of the combination of the
virtual and real radiation, i.e.

Γ1 = Γ(1)
V (H → gg) + Γ(0)

R (H → ggg) =
95

4

αS

π
. (3.118)

Γ(1)
V (H → gg) is the renormalized decay rate at one-loop, and Γ(0)

R (H → ggg)

is at tree-level. The analytic expressions for Γ(1)
V and Γ(0)

R calculated in [78]
are reported in eq. (3.125) and eq. (3.135).
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V1 V2 V3 V4 V5

V6 V7

pi pk

pj

R1(pi, pj , pk)

p1 p3

p2

R2

Figure 3.14: Feynman diagrams contributing to the NLO decay rate of H → gg.
V1 to V7 represent the virtual corrections at one loop; the gray blobs stand for
gluon wave function correction. R1(pi, pj , pk), corresponding to three diagrams
with permuted gluons, and R2 contribute to the real correction.

3.4.1.1 Renormalization

At NLO, the process is affected by the renormalization of αS, which
must be taken into account in order to cancel the ln µ = ln µR of UV
origin arising in the one-loop amplitude of H → gg. Because FDR integrals
are already finite, the procedure to undertake is a finite renormalization
(see Section 2.2.2), with the aim of relating the bare coupling constant to
a physical observable. In practice, for αS, this means replacing it with the
running coupling constant, thereby trading the renormalization scale µR for
a physical one relevant for the process, in this case s = M2

H . At one loop,
the QCD running coupling constant reads

αS(M2
H) =

αS(µ2)

1 + αS

2π
ln

M2
H

µ2

, (3.119)

which is the usual expression calculated in MS. Indeed, the expressions
calculated in DRed and DR coincide, which means that eq. (3.119) can be
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straightforwardly imported in FDR.
On top of the running of αS, we must also take into account the finite

renormalization of the HEFT effective coupling constant A,

A =
αS

3 π v

(
1 +

11

4

αS

π

)
. (3.120)

By inserting these contributions into the Born decay rate of eq. (3.117), we
obtain that

Γ(0) + Γ(1)
ren = Γ(0)

(
αS(M2

H)
) [

1 +
11

2

αS

π

(
1 + ln

M2
H

µ2

)]
. (3.121)

The ln(M2
H/µ2) in the last expression will compensate the ln µ with UV origin

arising in the virtual contribution.

3.4.1.2 Analytic calculation of the virtual correction

The renormalized decay rate for H → gg at one-loop is given by the O(αS)
contribution of the renormalization of the coupling constants -eq. (3.121)-
plus the contribution of the one-loop diagrams of fig. 3.14; that is

Γ(1)
V (H → gg) = Γ(1)

ren + Γ(1)
correction (3.122)

where

Γ(1)
correction =

3

2

αS

π
Γ(0)
(
αS(M2

H)
)(

π2 − ln2 M2
H

µ2

)
. (3.123)

To obtain the last equation, one needs to know that UV and IR divergent one-
loop integrals are scaleless and vanish as explained in Section 2.1.9.1; then,
with eq. (2.147), the triangle with overlapping soft and collinear divergences
can be evaluated. All logs come from the loop integration, the phase space
integration being trivial; indeed, since all external particles are massless,

∫
dΦ2 =

π

2
. (3.124)

Plugging eq. (3.123) and eq. (3.121) into Γ(1)
V , we obtain that

Γ(1)
V (H → gg) =

3

2

αS

π
Γ(0)
(
αS(M2

H)
)(

π2 +
11

3
+

11

3
ln

M2
H

µ2
− ln2 M2

H

µ2

)
,

(3.125)
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where all UV ln µ cancelled with the renormalization, and the remaining ln µ
have IR origin; this means that µ is not an arbitrary scale, but an actual IR
cut-off, i.e. µ → 0. The logs will cancel when eq. (3.125) is combined with
the contribution coming from the real radiation.

3.4.1.3 The three-body massive phase space

Before giving the analytic result for the real contribution that was calcu-
lated in [78], it is worthwhile to spend a few words on the three-body phase
space itself. In Section 2.1.9, we explained how FDR treats the real radiation
in order to allow for a realization of the K.L.N. theorem: the external unob-
served particles, just like virtual unobserved particles in the loop case, get a
small mass µ2. The range over which the phase space integral is performed
is then accordingly modified.

The three-body phase space differential is

dΦ3 =
3∏

i=1

d4 pi δ(p
2
i − µ2) θ(Ei) δ

(4)(P − p1 − p2 − p3) , (3.126)

with P 2 = M2
H = s. It is also useful at times to express it in other ways, e.g.

dΦ3 =
π2

4s
ds12ds13ds23 δ

(
s + 3µ2 − s12 − s13 − s23

)

=
s π2

4
dxdydzδ (1 − x − y − z) (3.127)

where we have introduced the Mandelstam variables sij = (pi + pj)2 with
i %= j, as well as the Dalitz variables

x =
s12 − µ2

s
, y =

s13 − µ2

s
, z =

s23 − µ2

s
, (3.128)

obeying x + y + z = 1. In all equations above the external momenta pi with
i = 1, 2, 3 have been given a small mass µ, but notice that the momentum
conservation is unchanged. The integration range is then that of three par-
ticles with identical mass, as shown in fig. ??, and it obviously depends on
µ2:

s13 : s(−)
13 2→ s(+)

13

s12 : 4µ2 2→ (
√

s − µ)2 (3.129)
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x
0.03

0.8

0.97
1

y

Figure 3.15: Phase space for three
particles with the same mass µ = 0.01,
in the Dalitz plane xy. The triangle,
defined by y = 1−x, is the phase space
for three massless particles. The bor-
ders of the triangle correspond to con-
figurations in which at least one of the
Dalitz variables is zero, thereby lead-
ing to divergences in the phase space
integration. Deforming the integration
region as prescribed by FDR is a way
of avoiding these problematic regions.

where

s(±)
13 =

(s − µ2)2 − (sR0 ∓ sR1)2

4s12

sR0 =
√

s12(s12 − 4µ2), sR1 =
√

(s − s12 + µ2)2 − 4µ4. (3.130)

3.4.2 Analytic calculation of the real correction

The computation of the decay rate of H → ggg is easy at the level
of matrix elements, because the Born amplitude is all we need; the phase
space integration, on the other hand, is more complicated than the two-body
case, because more legs are involved, and because divergences arise when
integrating over external momenta that get small or collinear to each other.

The tree-level matrix elements for H → ggg, read from the real emission
diagrams of fig. 3.14, are given by

|M|2 = 192 π αSA2 R(s12, s13, s23) (3.131)

with R(s12, s13, s23) = f(s12, s13, s23) + f(s12, s23, s13) + f(s23, s13, s12), and

f(s12, s13, s23) =
s3
23

s12s13
+

2(s2
12 + s2

13) + 3s12s13

s23
+ 6s23 (3.132)

where the FDR replacement of eq. (2.163), 2(pi · pj) → sij , has been brought
about, with the logic explained in Section 2.3.1 and depicted in fig. 2.5. In
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order to evaluate the decay rate for H → ggg, given by

Γ(1)
R (H → ggg) =

1

12 (2π)5 MH

∫

µ

dΦ3 |M(H → ggg)|2 , (3.133)

we need the following phase space integrals:

Φ3(s) ≡
∫

dΦ3 =
π2 s

8
,

F (s) ≡
∫

dΦ3 sij =
π2 s2

24
,

Jp(s, µ
2) ≡

∫

µ

dΦ3
(sij)p

skl

= −
π2 sp

4(p + 1)

(
log

µ2

s
+

1

1 + p
+ 2

p+1∑

n=1

1

n

)
,

I(s, µ2) ≡
∫

µ

dΦ3
1

skl sij

=
π2

8 s

(
log2 µ2

s
− π2

)
. (3.134)

Notice that the last two equations are valid only for small values of µ (i.e.
any polynomial dependence of µ has been dropped). With these results at
hand, and taking s = M2

H , it is easily shown that

Γ(0)
R (H → ggg) =

3

2

αS

π
Γ(0)
(
αS(M2

H)
)(

−π2 +
73

6
−

11

3
ln

M2
H

µ2
+ ln2 M2

H

µ2

)
.

(3.135)

The combination of this equation and of eq. (3.125) returns the NLO cor-
rection to the decay rate of eq. (3.118). All logs have cancelled exactly; in
particular, the cancellation of the double log, orginated by overlapping soft
and collinear singularities, is due to the following relation:

Re

[
C(s, µ2)

iπ2

]
=

4

π2
I(s, µ2) (3.136)

where C(s, µ2) is the loop triangle of eq. (2.147) and I(s, µ2) is the last
integral of eq. (3.134).

3.4.2.1 Comparing with DR

As explained in Section 2.1.7.1, at one loop, there is a one-to-one rela-
tionship between integrals calculated in DRed and FDR,

ln µ → lnµ −
1

ε
−

∆

2
, ∆ ≡ γE + ln π. (3.137)
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This correspondence goes beyond the loop integrals, in that also the IR logs
obtained from phase space integration in FDR can be mapped into single or
double poles in DRed.

As a consistency check, let’s test this statement on the divergent integrals
of eq. (3.134). As far as purely collinear singularities are concerned, the DR
version of Jp reads

JDR
p (s) =

π2+ ε
2 sp+ ε

2

2 Γ
(
1 + ε

2

)
∫

dx dy dz
xp

y
δ(1 − x − y − z)(xyz)

ε
2

= −
π2sp

4(p + 1)

(

(ln
µ2

s
−

2

ε
− ∆) +

1

p + 1
+ 2

p+1∑

n=1

1

n

)

,(3.138)

which indeed coincides with Jp in eq. (3.134), if we remove the pole and the
universal constants.

Regarding the overlapping IR/CL singularities that generate the ln2(µ2)
term in I(s, µ2), they drop when adding virtual and fully inclusive real con-
tributions, as a consequence of eq. (3.136). Exactly the same happens also
in DR. Indeed,

Re

[
1

iπ2

∫
dnq

1

q2(q + p1)2(q + p2)2

]
=

1

s
(πs)

ε
2 Γ
(
1 −

ε

2

)[ 4

ε2
−

2

3
π2

]
,

(3.139)
where p2

1 = p2
2 = 0 and s = −2(p1 · p2), and

IDR(s) =
π2+ ε

2 s
ε
2
−1

4 Γ
(
1 + ε

2

)
∫

dx dy dz
1

xy
δ(1 − x − y − z)(xyz)

ε
2

=
π2+ ε

2 s
ε
2
−1

4
Γ
(
1 −

ε

2

)[ 4

ε2
−

2

3
π2

]
. (3.140)

In summary, eq. (3.137) is the only needed relation to relate FDR and DRed
expressions at one loop.

3.4.3 Naive numerical combination

In general, the dependence on ln µ of the virtual part comes from the
loops, which makes it straightforward to perform the phase space integral
analytically. As for the real part, the phase-space integration depends log-
arithmically on µ. In the simple case we are considering, an analytic result
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Figure 3.16: We have plotted the analytic expression of Γ(1)
V and Γ(0)

R , together
with their combination, against µ2, with s = 100. The sum of the two contributions
is a constant, obtained, when µ2 3 1, as the cancellation of big numbers; for this
reason, a numerical approach is potentially unstable in this region.

can be achieved, but as the process becomes more involved the phase space
integration quickly reaches a complexity that makes it futile to tackle the
problem analytically. In general, it is more convenient to set up a MC inte-
gration, as described in Section 2.3.2 and Section 2.3.3 in Chapter 2.

A first rough numerical approach to the problem consist in verifying the
convergence of the limit

lim
µ→0

(
Γ(1)

V (ln µ0, ln
2 µ0) + Γ(0)

R (lnµ0, ln
2 µ0)

)
= Γ1 , (3.141)

with µ0 = µ2/s; in fig. 3.16 the analytic realization of such limit is repre-
sented. In the following, we take the analytic expression of eq. (3.125) for
the virtual contribution, and the numeric integral for the real radiation, that
is

Γ(0)
R

∣∣
MC

=
4αSΓ(0)(αS(s))

π3s2

∫

MC

dΦ3 R(s12, s13, s23) (3.142)

where R(s12, s13, s23) is defined in eq. (3.132), and the MC employed is a
multi-channel approach optimized on this process (see Appendix D). In
fig. 3.17, we have plotted the combination of these two contributions, nor-
malized to one, against small values of µ2. Notice that as µ2 becomes larger,
the error decreases because the integrand is less peaked, but the central value
gets less and less compatible with the normalization, which was obtained in
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Figure 3.17: The combination of Γ(0)
R
∣∣
MC

and Γ(1)
V - normalized to one - is plotted

against µ2 in logarithmic scale. For this result we have employed s = 100, and
NMC = 107 random points to generate the phase space.

the limit µ → 0. On the other side of the plot, for very small values of µ,
deviations from one are due to numerical fluctuations, up to a level in which
they become fatal to the MC. Despite this, we can conclude that for

µ2 ≥ 10−12,

the naive numerical combination described in Section 2.3.2 produces a con-
sistent result.

On the technical side, we have used the massive kinematics prescribed by
FDR, i.e

p2
i = µ2, p2

ij = (pi + pj)
2 = sij , (p1 + p2 + p3)

2 = s. (3.143)

We chose a multi-channel MC approach, in order to accomodate the different
shapes of the terms in the integrand of eq. (3.132). In particular, three types
of channel appear:

• the single-pole channel
1

sij

, for which

∫
dΦ3(p1, p2, p3)

1

sij

=

∫
dsij

sij

dΦ2(pi, pj) d Φ2(pk, pij). (3.144)

In a MC generator, first one needs to produce the distribution of sij in
the range

2µ ≤ √
sij ≤

√
s − µ, (3.145)
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then one can generate the subsequent two-body decays, respecting the
conditions of on-shellness and momentum conservation.

• the double pole
1

sijskl

, for which

∫
dΦ3

1

si1i2 si3i4

=

∫

R

dsi1i2

si1i2

dsi3i4

si3i4

. (3.146)

Both distributions are produced as independent singly-peaked functions
within the range of (3.145); then a veto is put on the points that do
not respect

y−(x) < y < y+(x) (3.147)

where x, y and y± are defined respectively in (3.128) and (3.129) after
a change of variable.

• finally the convergent part, which is integrated using a flat channel,
namely RAMBO [104].

More details on the MC technique employed are discussed in Appendix D.

3.4.3.1 Naive purely numerical combination

Here we put into practice the approach described in the second part of
Section 2.3.2, where we don’t need to have analytic hold over the integrand
of the real. The replacement 2(pi · pj) → sij is not possible for a numerically
generated integrand, which we can then dub as

fnum = fnum( ŝ12, ŝ13, ŝ23) with ŝij = 2(pi · pj) = sij − 2µ2. (3.148)

The function to be integrated with the MC is then

fnum( ŝ12, ŝ13, ŝ23) ×
ŝ12

s12

ŝ13

s13

ŝ23

s23
(3.149)

so that the FDR prescription 2(pi · pj) → sij is automatically achieved.
At the technical level, we have generated the usual massive momenta with

our MC, so that the integration range is still the massive one demanded by
the FDR treatment. Then we have forced the momenta to be massless, i.e.

pi → p̂i = ( |pi| , pi ), (3.150)
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Figure 3.18: The combination of Γ(0)
R
∣∣
MC

and Γ(1)
V - normalized to one - is plotted

against µ2 in logarithmic scale. Γ(0)
R
∣∣
MC

was obtained with a purely numerical
method, where we have forced the momenta generated by the MC to be massless;
we have used the definition of eq. (3.150) and of eq. (3.152) respectively for the
figure on the left and on the right. For this result we have employed s = 100, and
NMC = 107 random points to generate the phase space.

and we have built the new massless Mandelstam variables with them, ŝij =
2(p̂i · p̂j). Alternatively, in order to maintain the original energy conservation
law, we have generated massless momenta scaled so that

p̂
′0
1 + p̂

′0
2 + p̂

′0
3 =

√
s, (3.151)

that is

pi → p̂′i =
Ei

|pi|
( |pi| , pi ), where E2

i − |pi|2 = µ2. (3.152)

The combination of the real obtained in these two ways and the analytic
expression of the virtual is shown in fig. 3.18, as it varies along with µ2.
We find that these approximations work well for 10−10 < µ2 < 10−4.

3.4.4 FDR local subtraction

Finally, we have tried at work the approach proposed in Section 2.3.3, in
which the real contribution is made convergent -at the integrand level- by
adding a local counterterm, read from the analytic expression of the virtual.

In practice, given Γ(1)
V (ln µ0, ln

2 µ0) of eq. (3.125), we have replaced the
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Figure 3.19: The combination of Γ(0)
R
∣∣
subtr.

and Γ(0)
V
∣∣
fin

-normalized to one- is

plotted against µ2 in logarithmic scale. Both contributions were obtained numer-
ically, with a flat MC (RAMBO). For this result we have employed s = 100, and
NMC = 106 random points to generate the phase space.

single and double logs with the appropriate 3-body phase-space integrals:

ln2 µ2

s
= π2 + C3

ln
µ2

s
= −

1

11

(
18 C0 − 27 C1 + 3 C2 +

43

2

)
, (3.153)

where the counterterm functions are

C0 =
8

3 π2

∫
dΦ3

(
1

s12
+

1

s13
+

1

s23

)
,

C1 =
4

3 π2 s

∫
dΦ3

(
s12 + s13

s23
+

s12 + s23

s13
+

s13 + s23

s12

)
,

C2 =
4

3 π2 s

∫
dΦ3

(
s2
12 + s2

13

s23
+

s2
12 + s2

23

s13
+

s2
13 + s2

23

s12

)
,

C3 =
8 s

3 π2

∫
dΦ3

(
1

s12s13
+

1

s13s23
+

1

s12s23

)
. (3.154)

The first one of eqs. (3.153) is simply a version of eq. (3.136), i.e. it comes
from the one-to-one correspondence between the triangle loop and the double-
pole phase space integral. The second equation can be obtained from the
universal behavior of the gluon splitting functions at one loop. In this par-
ticular case, because the analytic expression of the real is known, C0, C1 and
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C2 can be extracted from eq. (3.135). Clearly, this would not be useful in
a realistic calculation, but it served in the present study, interested in the
numerical performance, rather than the way of extracting the counterterms.

The virtual contribution can be rewritten as

Γ(1)
V =

3

2

αS

π
Γ(0)
(
αS(M2

H)
)(46

3
+

∫
dΦ3 Rct(s12, s13, s23)

)
, (3.155)

where Rct is the integrand counterterm to the real contribution, and it reads

Rct(s12, s13, s23) =
4

π2

[(
1

s12
+

1

s13
+

1

s23

)

+
1

3 s2

(
s2
12 + s2

13

s23
+

s2
12 + s2

23

s13
+

s2
13 + s2

23

s12

)

−
2 s

3

(
1

s12s13
+

1

s13s23
+

1

s12s23

)]}

. (3.156)

After defining the subtracted real contribution,

Γ(0)
R

∣∣
subtr.

=
3

2

αS

π
Γ(0)
(
αS(M2

H)
) ∫

MC

dΦ3

(
R(s12, s13, s23)+Rct(s12, s13, s23)

)
,

(3.157)
and the finite virtual contribution,

Γ(0)
V

∣∣
fin

= Γ(1)
V = 23

αS

π
Γ(0)
(
αS(M2

H)
)
, (3.158)

we have set up a flat MC (RAMBO) in order to perform the integral in
eq. (3.157). The combination of the two contributions thus defined is shown
in fig. 3.19, as it varies along with different values of µ2. We see that the
distribution of the central values is extremely stable, and that errors are tiny.
For bigger values of µ2 the deviation is due to the poor accordance with the
limit µ → 0 with which the analytic result was obtained, just like in fig. 3.17.

3.4.5 Conclusions and outlooks

By considering gluon production via Higgs decay in the infinitely heavy
top effective theory, we have shown that it is possible to implement an FDR-
based MC that combines the real and virtual radiation in order to obtain a
finite result. This is achieved thanks to the fact that in FDR IR infinities
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are expressed in terms of logarithms of a vanishing scale, and not in terms
of poles; this feature guarantees a good numerical stability up to very small
values of µ. To improve the efficiency of the MC, the FDR local subtraction
method proposes to regularize the real contribution at the integrand level, by
reading a counterterm from the virtual contribution. This we have done and
implemented in a MC: because all integrals are now finite, the MC performace
is stable and estremely efficient. It was out of the scope of this thesis to study
a technique to systematically extract the counterterms from the virtual, but
studies are ongoing in this direction.

These techniques are ready to be applied to the differential decay rate
of H → ggg at one-loop, in order to study their performance with a higher
number of legs.

The next steps involve extending the methods to higher loop levels, and
designing an FDR-compatible treatment for initial state radiation. As far as
the first issue is concerned, we highlight once more that the naive numerical
combination, especially in its purely numerical version, can be straightfor-
wardly generalized to NNLO and beyond, with the extra cost of potentially
loosing some stability. In any case we envisage in this simple method, unap-
plicable in a DR-based calculation, a powerful tool for preliminary studies.
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Chapter 4

Conclusions

After motivating the study of new calculation techniques for radiative
corrections in the introduction, in Chapter 2 we have given an exhaustive
description of FDR, pointing out the mechanisms that allow its correct func-
tioning, and in Chapter 3 we have moved onto applying the method on some
realistic calculations. This discussion hopefully is able to yield enough con-
fidence on the method, particularly on the fact that it is on the way of
accomplishing its original purpose, that of providing a viable alternative to
DR in the calculation of radiative corrections in pQFT.
Let’s summarize the properties of FDR. At the level of loop calculus,

• the FDR integral is finite in the UV region and it depends solely on an
arbitrary scale µR, no UV cut-off is needed; infinities, both global and
local onese, are fully subtracted at the integrand level;

• multi-loop Feynman diagrams are treated in a way that respects sub-
integration consistency;

• amplitudes are automatically gauge-invariant and respectful of the sym-
metries of the theory, thanks to the fact that the FDR integral is shift-
invariant and that simplifications between the numerator and denomi-
nator are respected;

• renormalization is built in the integral, no counterterms must be added
to the Lagrangian, only a finite renormalization must be performed
in order to relate the predictions with physical observables; with this
procedure the dependence on µR can be traded for that on a physical
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scale. This means, among the other things, that parameters that do
not appear in the final result never need to be renormalized in FDR.

This is all achieved in a fully four-dimensional framework. Together with
the fact that UV infinities are not parametrized but dropped alltogether,
four-dimensionality means that

• with respect to DR, there appear no term of the type ε/ε , which is
notably a source of difficulties especially in higher order calculations;
for example, this is why order by order renormalization is avoided, and
why factorizable two-loop integrals are just the product of one-loop
integrals;

• FDR is directly applicable to SUSY theories, like the DR variants of
DRed and FDH;

• the space time dimension is not an obstacle to a numeric approach to
the integration.

Also IR divergences can be treated in FDR. Indeed, thanks to unitarity,
it is possible to give an FDR meaning to the phase space integral, by putting
slightly off-shell the external momenta. This implies the introduction of
an IR regulator µ → 0, on which non-inclusive quantities depend at most
logarithmically. The same KLN matching that allows for the cancellation of
poles 1/ ε in DR takes place in FDR, where the dependence on ln µ drops
away in inclusive observables. Thanks to four-dimensionality and to the fact
that infinities are at most logarithmic, the combination of virtual and real
radiation can be brought about numerically, with the integration over the
phase space being performed with a MC.

At the practical level, if one were to decide to adopt the FDR method, it
is worth recalling that

• all usual algebraic manipulations can be done at the integrand level;
the FDR definition, extraction of vacua and so forth, only needs to be
applied on the master integrals;

• PV reduction and IBP identities can be used to simplify FDR expres-
sions;

• FDR is a scheme of renormalization, which can be connected, via a
finite renormalization, to any other scheme (in particular, at one-loop it
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is equivalent to DRed); this means that pdfs, αS, master integrals, and
all pieces of a calculation that are already known in another framework
can be translated to FDR;

• regarding new unknown pieces of calculation, it is conceivable that
these can be maybe attacked numerically in the framework of FDR.

Using the work reported in this thesis as a stepping stone, some natural
possible directions of further studies are here proposed:

• testing the naive numerical matching method on processes with higher
multiplicity, for example the differential decay rate of H → ggg(g);

• developing the FDR local subtraction method, studying a way of consis-
tently reading from the virtual integral a counterterm for the integrand
of the real.

The next step would be to prepare the pathway towards a purely numerical
NNLO computation, for which -we trust- FDR will provide a significant
progress opportunity.
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Appendix A

The basic two-loop vacuum
integral

In sec. 2.1.7 we have reported that

[ 2 m1 | m2 |m12 ] = π4

{
ln

m2

µ2
−

1

2
ln2 m2

µ2
− f(a, b) + f

}
, (A.1)

where

a =
m2

2

m2
1

, b =
m2

12

m2
1

, (A.2)

as the basic two-loop integral from which all other two-loop vacuum integrals
can be deduced.

We now explain how eq. (2.114) has been obtained. Two different ap-
proaches are feasible:

• an indirect approach, by taking the difference of the integral in DR
minus the vacuum configurations, also calculated in DR;

• a direct approach, by evaluating in 4 dimensions the finite terms of
eq. (A.12).

We have pursued both strategies, thereby verifying at 2-loop that the two
definitions of FDR integral are equivalent.
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Preliminary 1: The function f(a, b)

The function f(a, b) is symmetric under the exchange of a and b; in inte-
gral form,

f(a, b) =

∫ 1

0

dx

[
Li2(1 −M2

a,b(x)) −
M2

a,b(x) logM2
a,b(x)

1 −M2
a,b(x)

]
, (A.3)

with

M2
a,b(x) =

ax + b(1 − x)

x(1 − x)
. (A.4)

The constant f = f(1, 1) can be calculated numerically, using

f = −
√

2
3Cl
(

π
3

)
=

i√
3

(
Li2(e

i π
3 ) − Li2(e

−i π
3 )
)

=
1

36

[
− ψ1

(
1
6

)
− ψ1

(
1
3

)
+ ψ1

(
2
3

)
+ ψ1

(
5
6

)]

= −1.17195361 . . . (A.5)

where Cl(x) is the Clausius function as defined in [65], and ψn(x) is the
polygamma function.

If a %= b, f(a, b) can be evaluated analytically, so that

f(a, b) = −
1

2
log a log b +

1 − a − b

S

[
ζ2 + Li2

(−x2

y1

)
+ Li2

(−y2

x1

)
(A.6)

+
1

4
log2

(x2

y1

)
+

1

4
log2

( y2

x1

)
+

1

4
log2

(x1

y1

)
−

1

4
log2

(x2

y2

)]
,

where

x1,2 =
1

2

(
1 − a + b ± S

)
, (A.7)

y1,2 =
1

2

(
1 + a − b ± S

)
, (A.8)

S =
√

1 − 2(a + b) + (a − b)2 . (A.9)

For b = 0,
f(a, 0) = Li2(1 − a), and f(1, 0) = 0. (A.10)
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For completeness, we also collect here the derivatives of f(a, b) in the
limits m2 → m1 and m12 → 0, which are needed when applying the formula
of eq. (2.113):

lim
a→1, b→0

df

da
= −1 , lim

a→1, b→0

d2f

da2
=

1

2
,

lim
a→1, b→0

d3f

da3
= −

2

3
, lim

a→1, b→0

d4f

da4
=

3

2
,

lim
a→1, b→0

bq dp+q

dapdbq
f = 0 for p ≥ 0 , q > 0 . (A.11)

Preliminary 2: The FDR defining expansion

1

D
2
1 D2 D12

=

[
1

q4
1 q2

2 q2
12

]
+

(
2m2

1

q4
1 D1

+
m4

1

q4
1 D

2
1

)[
1

q4
2

]
+

− 2m2
1

q2
1 + 2(q1 · q2)

( q4
1 D1) q4

2 q2
12

− m4
1

q2
1 + 2(q1 · q2)

( q4
1 D

2
1) q4

2 q2
12

+

+
m2

2

( q2
1 D1)( q2

2 D2) q2
12

+
m2

1m
2
2

( q2
1 D

2
1)( q2

2 D2) q2
12

+

+
m2

12

( q2
1 D1) q2

2( q2
12 D12)

+
m2

1m
2
12

( q2
1 D

2
1) q2

2( q2
12 D12)

+

+
m2

2m
2
12

( q2
1 D1)( q2

2 D2)( q2
12 D12)

+
m2

1m
2
2m

2
12

( q2
1 D

2
1)( q2

2 D2)( q2
12 D12)

. (A.12)

A.1 The indirect approach

Following eq. (2.10), we write [ 2m1 |m2 |m12 ] as the difference of the
integral calculated in DR and its vacuum configurations, that is

[ 2m1 |m2 |m12 ] = [ 2m1 |m2 |m12 ]
∣∣∣
DR

− lim
µi→0

∫
dnq1d

nq2JV(q1, q2, m1) ,

(A.13)
where, according to eq. (A.12),

JV(q1, q2, m1) =

[
1

q4
1 q2

2 q2
12

]
+

(
2m2

1

q4
1 D1

+
m4

1

q4
1 D

2
1

)[
1

q4
2

]
. (A.14)
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Having introduced the notation

ln
M2

µ2
R

= ln
M2

µ2
R

+ ∆ with ∆ = γE + lnπ. (A.15)

The DR results for the required integrals, up to O( ε0), are here collected:
∫

dnq

µ ε
R

[
1

q4

]
= −iπ2

(2

ε
+ ln

µ2

µ2
R

)
,

∫
dnq1dnq2

µ2 ε
R

[
1

q4
1 q2

2 q2
12

]
= π4

{
−

2

ε2
− ln

2 µ2

µ2
R

+
1

ε
+ ln

µ2

µ2
R

+

−
2

ε
ln

µ2

µ2
R

−
1

2
−
π2

12
− f

}
,

∫
dnq

µ ε
R

(
2m2

1

q4 D1

+
m4

1

q4 D
2
1

)
= −iπ2

{
ln

m2
1

µ2

(
1 +

ε

2
∆
)

+
ε

4

(
ln2 m2

1

µ2
R

− ln2 µ2

µ2
R

)}
, (A.16)

plus eq. (2.116) with m1 = m2 = m12 = µ2 for the global vacuum, i.e.

[ 2µ |µ |µ ]
∣∣∣
DR

= π4

{

−
2

ε2
+

1

ε
−

2

ε
∆ + ∆ − ∆2 −

1

2
−
π2

12
− f

}

. (A.17)

Combining these expressions into eq. (A.13) we obtain the analytic result of
[ 2m1 |m2 |m12 ] as in eq. (A.1).

A.2 The direct approach

We perform the direct computation of the particular case m12 = 0, to
obtain

[
2m1 |m2 | 0

]
= π4

{
f − Li2

(
1 −

m2
2

m2
1

)
−

1

2
ln2 µ2

m2
1

− ln
µ2

m2
1

}
,

(A.18)

where we have used eq. (A.10), and f is given in eq. (A.5). It is obviously
equivalent to eq. (A.1) with b = 0. A direct integration of the finite part of
its FDR defining expansion – eq. (A.12) – gives

[
2m1 |m2 | 0

]
= m2

2I2(m1, m2) − m2
1I1(m1) , (A.19)
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where

I2(m1, m2) = lim
µ→0

∫
d4q1d

4q2
1

D
2
1(D2 q2

2) q2
12

and

I1(m1) = lim
µ→0

∫
d4q1d

4q2
q2
1 + 2(q1 · q2)

q4
2 q2

12

(
1

D1 q4
1

+
1

D
2
1 q2

1

)

.(A.20)

By power counting – due to the presence of 1/q4
i terms – a logarithmic de-

pendence on µ is expected in I1(m1), while µ can be immediately set to zero
in I2(m1, m2). Then I2(m1, m2) only depends on

r12 =
m2

1

m2
2

, (A.21)

and I1(m1) on

ρ1 =
µ2

m2
1

, (A.22)

so no difficult integral containing both ratios needs to be computed. A simple
Feynman parametrization produces

I2(m1, m2) =

∫ 1

0

dz

∫
d4q1d

4q2
1

D2
1(q

2
2 − m2

2z)2q2
12

=
π4

m2
2

∫ 1

0

dz

∫ 1

0

dx

∫ 1

0

dy
y

xyz + r12(1 − y)

=
π4

m2
2

{
π2

6
− Li2

(
r12 − 1

r12

)}
, (A.23)

and

I1(m1) = 2 lim
µ→0

∫ 1

0

dz

∫
d4q1d

4q2
q2
1 + 2(q1 · q2)

( q2
1 − m2

1z)3 q4
2 q2

12

=
2π4

m2
1

lim
µ→0

∫ 1

0

dz

∫ 1

0

dx

∫ 1

0

dy
(2x − 1)y2x

(z + ρ1)x(1 − x)y + ρ1(1 − y)

=
π4

m2
1

{
π2

6
− f +

1

2
ln2 ρ1 + ln ρ1

}
, (A.24)

from which eq. (A.18) follows.
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Appendix B

Two-loop vacuum integrals

In this appendix we collect the analytic results of the two-loop vacuum
integrals needed for the calculation of Section 3.2. The notation is that
introduced in Chapter 2, which we report here for legibility:

[
αm1 | βm2

]
=

∫
[d4q1]

( q2
1 − m2

1)α
×
∫

[d4q2]

( q2
2 − m2

2)β
,

[
αm1 | βm2 | γm12

]
=

∫
[d4q1][d4q2]

( q2
1 − m2

1)α( q2
2 − m2

2)β( q2
12 − m2

12)γ
,

[
αm1 | βm2 | γm12

]
(µ2|j) =

∫
[d4q1][d4q2] µ2|j

( q2
1 − m2

1)α( q2
2 − m2

2)β( q2 − m2
12)γ

. (B.1)

The computation of all the integrals contained in this appendix can be
performed according to the recipes explained in Chapter 2, Section 2.1.7.2
and Section 2.1.5.2.
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Scalar two-loop vacuum integrals

[ 2m | 2m | 0 ] = +
π4

m2
,

[ 3m | m | 0 ] = −
π4

2 m2
ln

m2

µ2
,

[ 3m | 2m | 0 ] = −
π4

4 m4
,

[ 4m | m | 0 ] = −
π4

6 m4

(
1

2
− ln

m2

µ2

)

[ 3m | 3m | 0 ] =
π4

12 m6
,

[ 4m | 3m | 0 ] = −
π4

24 m8
,

[ 4m | 2m | 0 ] =
π4

9 m6
,

[ 4m | 3m | 0 ] = −
π4

24 m8
,

[ 5m | m | 0 ] =
π4

6 m6

(
1

3
−

1

2
ln

m2

µ2

)
,

[ 5m | 2m | 0 ] = −
π4

16 m8
,

[ 6m | m | 0 ] = −
π4

20 m8

(
3

4
− ln

m2

µ2

)
. (B.2)
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Two-loop extra-integrals

[ 3m | m | 0 ](µ2
1 ) = −

2π4

3
f(1, 1) −

π4

2
,

[ 2m | 2m | 0 ](µ2
1 ) = +

2π4

3
f(1, 1) +

π4

2
ln

m2

µ2
,

[ 2m | 2m | 0 ](µ2
12 ) = +

2π4

3
f(1, 1) + π4 ln

m2

µ2
,

[ 3m | 2m | 0 ](µ2
2 ) = [ 3m | 2m | 0 ](µ2

12 ) = +
π4

4 m2
,

[ 4m | 2m | 0 ](µ2
2 ) = [ 4m | 2m | 0 ](µ2

12 ) = −
π4

12 m4
,

[ 5m | 2m | 0 ](µ2
2 ) = [ 5m | 2m | 0 ](µ2

12 ) = +
π4

24 m6
,

[αm | βm | 0 ](µ2
1 ) = 0 α ≥ 3 , β ≥ 2 ,

[αm | m | 0 ](µ2
1 ) = 0 α ≥ 4 ,

[αm | βm | 0 ](µ2
2 ) = [αm | βm | 0 ](µ2

12 ) = 0 α,β ≥ 3 . (B.3)

[ 3m | 3m | 0 ](µ4
1 ) = −

π4

12 m2

[ 3m | 3m | 0 ](µ4
12 ) = −

π4

6 m2

[ 4m | 3m | 0 ](µ4
12 ) = +

π4

36 m4

[ 4m | 3m | 0 ](µ4
2 ) = +

π4

36 m4

[ 3m | 3m | 0 ](µ2
1 µ2

12 ) = −
π4

12 m2

[ 4m | 3m | 0 ](µ2
2 µ2

12 ) = +
π4

36 m4
(B.4)
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Appendix C

Feynman rules

C.1 H → γγ at one loop in Rξ-gauge

We draw, in fig. C.1, the Feynman rules [105] used for the calculation of
Section ??. The tensors V µνρ

3 , V µνρσ
4 and the coupling constants are given by

V µρσ
3 = gσρ(p+ − p−)µ + gρµ(p+ − q)σ + gµσ(q − p−)ρ ; (C.1)

V µνρσ
4 = 2gµνgσρ − gσµgρν − gσνgµρ ; (C.2)

CSV V =

{
MW /sW if SV V = HW+W−

−MW if SV V = G±W∓γ
; (C.3)

CSSV V =

{
2 if SSV V = γγG+G−

−1/2sW if SSV V = W±γG∓H
; (C.4)

CV S1S2
=

{
−1 if V S1S2 = γG+G−

∓ 1
2sW

if V S1S2 = W±G∓H
. (C.5)

G denotes Goldstone bosons, while u± and u± are the charged ghost and
anti-ghost fields, respectively.
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= i
/p + mf

p2 − m2
f

= −i
e mf

2sW MW
= −ieQfγ

µ

=
−i
[
gµν − (1 − ξ) kµkν

k2−ξM2
W

]

k2 − M2
W

=
i

p2 − ξM2
w

= ie V µρσ
3µ

ρ

p+

p−

q
σ σ

= −ie2 V µνρσ
4

µ

ν ρ

= iegµνCSV V = ie2gµνCSSV V

S1

S2

= ie(p1 − p2)
µ CV S1S2

= −i
eM2

H

2 sW MW

=
i

k2 − ξM2
W

= −i
e ξMW

2sW

u±

u±
= ±iepµ

p u±

u±

Figure C.1: SM Feynman rules relevant for computing H → γγ. External
momenta are considered to be incoming.

C.2 H → γγ at two loops

We list here the Feynman rules used in the calculation of Section 3.2.
Qt, m0 and v are the top quark charge, the top bare mass and the vacuum
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expectation value of the Higgs field, respectively.

p
=

i

/p − m0
= −i

m0

v α = −ieQtγα

p

=
−i gαβ

p2α β
= −igSγα T a

jkα, a

k

j

Figure C.2: QCD Feynman rules relevant for the computation of H → γγ at
O(αS).
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C.3 H → gg(g) and H → ggg(g) at NLO

Here we collect the Feynman rules used in the calculations of Section 3.4,
Section ?? and [78]. The loop-induced interactions among Higgs boson and
gluons have been described within the framework of the Higgs effective field
theory (HEFT) [106]: all contributions are neglected except the top-loop,
which in the limit mtop → ∞ collapses to a vertex of a Higgs with two, three
or four gluons, according to the effective Lagrangian

LHEFT = −
1

4
AHGa

µνG
a,µν , (C.6)

where

A =
αS

3πv

(
1 +

11

4

αS

π

)
. (C.7)

At NLO, for the processes at hand only the trilinear and quadrilinear terms
are relevant, as depicted in fig. C.3. The interactions among the gluons are
described via the flavorless sector of the SM QCD (see fig. C.4), comple-
mented with the ghost sector in order to restaurate the transversality of the
gluonic propagator (see fig. C.5).

In the following we define the tensors used in the Feynman rules:

Hαβ(p1, p2) = (p1 · p2)g
αβ − pβ

1p
α
2 ,

V αβγ(p1, p2, p3) = (p1 − p2)
γgαβ + (p2 − p3)

αgβγ + (p3 − p1)
βgαγ,

Gαβγδ
abcd = fabif cdiGαβγδ + facif bdiGαγβδ + fadif bciGαδβγ ,

Gαβγδ = gαγgβδ − gαδgβγ. (C.8)
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pα,a
1

pβ,b
2

= iAδab Hαβ(p1, p2)

pα,aR
1

pβ,bR
2

pγ,cR
3

= −A g fabc V αβγ(p1, p2, p3)

Figure C.3: Feynman rules for the HEFT Lagrangian. All momenta are
considered incoming, Hαβ and V αβγ are defined in eq. (C.8), A is the coupling
constant of HEFT as in eq. (C.7), g is the QCD coupling constant, and fabc

are the structure functions of the coloro group
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pβ,b
2

pα,a
1

pγ,c
3

= −g fabc V αβγ(p1, p2, p3)

pγ,c
3 pβ,b

2

pα,a
1pδ,d

4

= −ig Gαβγδ
abcd

β, bα, 2 p = −i δab g
αβ

p2

Figure C.4: Feynman rules for quarkless QCD in Feynman gauge. All mo-
menta are incoming, g is the QCD coupling constant, fabc are the structure
functions of the color group, and V αβγ and Gαβγδ

abcd are defined in eq. (C.8).

ba
p = i

gαβ

p2

b

a,α

c

= g fabc pα

Figure C.5: Feynman rules for the ghost sector of quarkless QCD. All mo-
menta are incoming, g is the QCD coupling constant g2 = αS, and fabc are
the structure functions of the color group.
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Appendix D

Monte Carlo Integration

In the MC approach, an integral is evaluated as the average of random
numbers, i.e. [107]:

I =

∫ 1

0

f(x)dx = lim
N→∞

N∑

i=1

f(xi), (D.1)

where xi ∈ [0, 1] is a random number, with uncertainty

∆I =

√
< I2 > − < I >2

N
∝

1√
N

. (D.2)

This can be straightforwardly extended to n variables, that is

∫ 1

0

dx1 . . .dxn f(x̄) =
1

N

N∑

i=1

f(x̄i) x̄ = (x1, . . . , xn) (D.3)

Problems arise when the function to be integrated exhibits a peak, that
is an integrable singularity. For example, take

f(x ≈ x0) ∝ g(x) with

∫ 1

0

g(x)dx = 1. (D.4)

The function g(x), peaked in x0, is called local density. It is convenient to
perform a change of variables such that

∫ 1

0

g(x)dx
f(x)

g(x)
=

∫ 1

0

w(y)dy, (D.5)
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where

dy = g(x)dx and w(y) ≡
f
(
x(y)

)

g
(
x(y)

) . (D.6)

The peaked behaviour is now described by the integration variable, whilst
the new integrand, the weight function w(y), is flat and it can be efficiently
integrated with the MC method.

D.1 Single Peak Mapping

Consider an integrand with a pole in x = x0

f(x)

x − x0
, (D.7)

where f(x) is a smooth function in [a, b], and for example a = x0 − δ with
δ 3 1. In order to integrate it numerically, it is best to transfer the peaked
behaviour of the integrand to the random variable. We define the random
variable ρ ∈ [0, 1] such that

dx

x − x0
= Hdρ (D.8)

where H is a constant depending on the parameters x0, a and b. The integral
is then rewritten as

∫ b

a

dx
f(x)

x − x0
= H

∫ 1

0

dρ f
(
x(ρ)

)
(D.9)

We obtain H by integrating both sides

log(x − x0) = Hρ+ c (D.10)

and applying the boundary conditions

log(a − x0) = c,

log(b − x0) = H + c. (D.11)

We get

H = log

(
b − x0

a − x0

)
. (D.12)

The original variable as expressed in terms of the new random variable,
x = x(ρ), reads

x = x0 +
(b − x0)ρ

(a − x0)ρ−1
. (D.13)
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D.2 Multi-channel approach

If there are more then one regions in which the function peaks, a mapping
is defined for each channel, such that

f(x ≈ xi) ∝ gi(x) with

∫ 1

0

gi(x)dx = 1 i = 1, . . . , s. (D.14)

The total probability density is defined as

g(x) =
s∑

i=1

αi gi(x) with
s∑

i=1

αi = 1, αi ≥ 0, (D.15)

where the real numbers αi are called a-priori weights, and are chosen ac-
cordingly to some arbitrary probabilistic function. The MC integral and its
variance become

I =< w >=

∫
dx f(x) =

∫
dx g(x) w(x) (D.16)

Wα =< w2 >=

∫
dx

f(x)2

g(x)
=

∫
dxg(x)w(x)2 (D.17)

such that the error is given by

∆Iα =

√
Wα − I2

N
(D.18)

It can be shown that I is independent of g(x) and of αi; moreover the set of
a-priori weights can be changed even from one MC point to another [107].
With a suitable choice of the a-priori weights one can reduce the variance
and hence the error of the MC integration.

D.2.1 Optimization of the a-priori weights

We have used the method described in [107]. It is an iterative procedure,
starting from a uniform distribution,

α(1)
i = 1/s, (D.19)

where s is the number of channels. The new set of a-priori weights is given
by

α(n)
i =

α(n−1)
i σi

∑s
j=1 α

(n−1)
j σj

, (D.20)
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where

σi =

∫
dx gi(x) w(x)2, w(x) =

f(x)

g(x)
. (D.21)

The number repetitions is chosen according to some convergence criterium.
In this work we have adopted this strategy with a modification: at each

step we reserve a fixed percentage (namely 5%) to the flat channel. This is
because it tends to count less and less, being the peaked channels dominant,
even though it provides the finite (and physical) contribution to the decay
amplitude, i.e. the only contribution that matters once the peaks cancel.
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