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Abstract: The metabolic equivalent of task (MET) is currently the most used indicator for 

measuring the energy expenditure (EE) of a physical activity (PA) and has become an 

important measure for determining and supervising a person’s state of health. The use of 

new devices which are capable of measuring inertial movements by means of built-in 

accelerometers enable the PA to be measured objectively on the basis of the reckoning of 

“counts”. These devices are also known as inertial measurement units (IMUs) and each 

count is an aggregated value indicating the intensity of a movement and can be used in 

conjunction with other parameters to determine the MET rate of a particular physical 

activity and thus it’s associated EE. Various types of inertial devices currently exist that 

enable count calculus and physical activity to be monitored. The advent of mobile devices, 

such as smartphones, with empowered computation capabilities and integrated inertial 

sensors, has enabled EE to be measure in a distributed, ubiquitous and natural way, thereby 

overcoming the reluctance of users and practitioners associated with in-lab studies. From 

the point of view of the process analysis and infrastructure needed to manage data from 

inertial devices, there are also various differences in count computing: extra devices are 

required, out-of-device processing, etc. This paper presents a study to discover whether the 

estimation of energy expenditure is dependent on the accelerometer of the device used in 

measurements and to discover the suitability of each device for performing certain physical 

activities. In order to achieve this objective, we have conducted several experiments with 
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different subjects on the basis of the performance of various daily activities with different 

smartphones and IMUs. 

Keywords: energy expenditure; accelerometers; physical activity; metabolic equivalent of 

task; smartphones; mobile; MET 

 

1. Introduction 

In today’s world, an ever-increasing emphasis is being placed on health and wellness. People are 

becoming more aware of the importance of physical activity (PA) both in terms of its ensuing positive 

health benefits and also its contribution to successful aging by improving and maintaining health [1–3]. 

For these reasons, the World Health Organization (WHO) recommends PA for children, adults and the 

elderly for improving cardiorespiratory and muscular fitness, bone health, and cardiovascular and 

metabolic health biomarkers. 

One concept which is closely related to PA and its intensity is energy expenditure (EE) and EE is 

commonly determined by measuring the metabolic equivalent of task (MET) [4]. The MET was 

conceived to provide a homogeneous estimation of the EE that an activity would involve for anyone 

performing it, regardless of their physiological characteristics (e.g., weight, height, etc.). One MET is 

equivalent to 3.5 mL·kg−1 min−1 and represents a person’s energy expenditure while seated and idle. 

This unit of measurement offers an alternative EE estimation to traditional activity tables and 

(approximate) calories, which may differ from one individual to another. For example, while two 

seated people consume the same number of METs (one MET per time unit in this case), each expends 

a different number of calories according to their physiology and activity duration. Much work has been 

published to analyze the equivalence between the execution of a certain PA and the number of 

expended calories associated to that activity [5,6]. 

It is important for EE to be measured accurately in order to understand the prevalence of meeting 

physical activity recommendations, identify populations and understand the relationship between 

physical activity and health [7]. Traditionally, physical activity has generally been assessed with  

self-report methods such as questionnaires where participants record information about the activities 

they performed [8,9]. However, the data obtained from these approaches is subjective and could be 

influenced by poor compliance, poor memory and cognition health status [8]. In recent years, such 

limitations have promoted the use of accelerometers as a substitute for self-reporting methods for an 

objective PA assessment [2,10].  

Accelerometers satisfy many of the requirements for PA assessment, such as the possibility of 

measuring it in free-living conditions with minimal discomfort for the subject and in a representative 

time frame for the average activity level [11]. Such devices also offer a number of desirable features in 

monitoring human movement in general, such as adaptability to frequency and intensity of human 

movements, enhancements in the technology of micro-electromechanical systems (MEMS) that 

provide low cost, miniaturized accelerometers and also demonstrate a high degree of reliability [12].  

The use of accelerometers also represents a versatile alternative to questionnaire-based methods for 

estimating EE, enabling measurement both indoors and outdoors [13]. In this study, we use the concept 
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of count [14] to assess physical activity. Unlike the MET, for which there is an equivalent number of 

calories [6], there is no consensus or standard calculation (in calories or METs) about how counts are 

to be computed and the time baseline to be used (e.g., counts per minute). The number of PA counts is 

therefore dependent on the device features and calculation process used. 

In this study, different accelerometers were tested to analyze their capabilities for estimating the EE 

of a series of everyday activities. The goal was to provide further insights into the data they supply, 

measurement accuracy, the collection process, the activities for which they could be used and the need 

for additional hardware to interact with them in order to obtain a larger picture about their suitability 

for conducting EE studies. Our aim was also to gain experience of the use of these devices from the 

standpoint of the comfort of the monitoring process and the feasibility of undertaking EE studies using 

mobile devices. For this aim, five subjects performed various everyday activities. Each activity was 

carried out and supported using five different accelerometers: three smartphones and two external IMU 

devices. With the results obtained, we shall discuss how device features (e.g., sampling frequency and 

acceleration sensitivity) affect EE estimation. 

The paper is organized as follows: Section 2 discusses related work, Section 3 provides a brief 

background to energy expenditure; Section 4 introduces the study: experiments conducted and 

discusses the results obtained are presented in Section 5; and finally Section 6 outlines the conclusions 

of the study. 

2. Related Work 

The calculation of energy expenditure (EE) is by no means an easy task and various works have 

been published in recent decades that aim to provide a good method of estimating it. Traditionally, EE 

was calculated on the basis of medical features such as the basal metabolic rate (BMR) that allowed a 

close EE approximation to be obtained by generalizing the results (regardless physiological 

information) [15]. More recently, the use of methods such as indirect calorimetry or bioelectrical 

impedance have also been used to provide an approximation of the empirical EE [16]. 

Recent proposals propose measuring physical activity (PA) using accelerometers, showing the 

effectiveness and power of these devices for inertial force measurement [17]. Since a large number of 

research projects focus on different groups of users, e.g. the elderly, it is important to be able to 

measure EE accurately [18]. The research presented in [19,20], for example, shows how EE evolves 

over a period of time, determining the importance of measuring EE to enhance, or at least maintain, the 

user’s health and wellbeing. However, since these proposals focus on the EE of a particular PA or are 

based on the use of a single accelerometer [8,21,22], the results obtained are fully conditional on the 

technology used or by the PA performed which means that in some cases EE has a higher margin of 

error. In this paper, we address this issue. Various activities have been performed with different 

accelerometers to study how accelerometer features (e.g., sampling frequency and acceleration 

sensitivity) affect EE estimation. 

3. Energy Expenditure Assessment  

Energy expenditure (EE) is a key indicator that can be used to determine the intensity of a physical 

activity (PA). The calculation process, however, is by no means a single or closed process. Different 
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methodologies have been proposed for this purpose [16]. As explained above, one of the most common 

current approaches followed to measure the PA is based on the use of accelerometers. The use of these 

devices enables the amount of the PA to be measured through the use of counts [23]. In conjunction with 

other physiological information, these counts enable an EE estimation for an activity to be calculated.  

Various methods for calculating the counts from the raw accelerometer information (i.e., roll, yaw 

and pitch angles x, z, y) have been proposed and the three most used approaches [14] are as follows: 

 The use of digital counters to accrue the number of times the signal crosses a preset threshold. 

 The use of an algorithm to determine the maximum value for a selected period of time. 

 The use of the area under the curve (integration) algorithm. 

According to previous literature [14], it is the third of these which is the most scientifically popular 

and the one chosen for this research work. 

4. Experiment Description  

In this section, we shall first briefly describe the results of the original experimentation that gave 

rise to our current research [24]. We shall then explain the experiment conducted for this work in order 

to address some of the limitations of the first study.  

4.1. Previous/Original Experimentation 

In our previous research [24], we conducted a single case study which used three different 

accelerometers: two stand-alone sensor devices with open APIs and one smartphone accelerometer. 

We conducted 27 measurement experiments with the accelerometers in different places (on the chest 

or leg, or in a pocket) and three different activities were performed (watching TV, sweeping the floor 

and walking at 4 km/h). These activities were selected because they involve different levels of PA 

intensity and represent daily activities. The results demonstrated that the smartphone accelerometer, 

regardless of the activity being performed and its location on the body, provided the best results in 

terms of accuracy for energy expenditure calculation (in comparison with reference data sources  

and studies [5]). 

4.2. Current Experiment 

Our intention was to reinforce the conclusions drawn from our original research by broadening the 

study with a larger number of subjects and smartphones. We therefore decided to conduct all the 

experiments with the accelerometers in the same place (e.g., on the hip) for ergonomic and usability 

reasons. According to [25] the hip or waist is the most common place to wear an accelerometer (people 

in their daily lives do not usually wear devices on other parts of the body, such as on their leg or chest). 

We chose the hip because it is nearest the body’s center of mass in order to approximate whole body 

movement and energy expenditure [22]. 

In this research we analyzed five different types of accelerometers (two open stand-alone sensors 

and three smartphone accelerometers) placed on the hip for three physical activities, studying the data 

collection process and infrastructure required in terms of additional devices and software. 

The main objectives of this study were: 
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 To design an experiment taking into account reasonable precautions, such as the simultaneous 

synchronization and measurement from each device in order to avoid any kind of bias or noise 

that could lead to erroneous conclusions; 

 To perform several types of activities using five different accelerometers to measure the EE of 

these physical activities; 

 To discuss the results, in order to find out whether there are any situations/contexts where it is 

appropriate to use one accelerometer or another depending on the PA; 

 To determine which features of the accelerometers account for differences in the estimation of 

the EE of a series of daily life activities. 

4.3. Energy Expenditure Estimation Procedure 

As previously mentioned, EE estimation stems from the calculation of metabolic equivalent tasks 

(METs). The number of METs can be calculated according to the number of counts obtained from the 

accelerometers and other user characteristics, such as weight, height, age and gender. 

Figure 1 shows the complete procedure followed in our experiment to obtain an EE estimation in 

MET units. The count calculation process is independent of the type of user, accelerometer features or 

physical activity, unlike the final MET calculation which is dependent on the user’s physiology. The 

following calculation procedure, numbered from 1 to 5 in Figure 1, is used to obtain the number  

of counts: 

1. Obtain the x, y, z axis values from the accelerometer (raw data) for a period of time, i.e., the 

duration of the physical activity. 

2. There are many accelerometers on the market with values ranging from ±2 g, to ±16 g,  

through ±4 g, ±8 g, etc. in idle status, where g is the gravitational acceleration of an object on 

Earth. It is therefore necessary to filter the data obtained from each accelerometer so that the 

measures given can be normalized and this is a usual way of proceeding in research literature [22]. 

In particular, we applied a low-pass filter to isolate gravitational acceleration and a high-pass filter 

to remove gravity and obtain linear acceleration 

alpha = 0.8; 

//low-pass filter 

gravity_x = alpha * gravity_x + (1 – alpha) * x_value; 

gravity_y = alpha * gravity_y + (1 – alpha) * y_value; 

gravity_z = alpha * gravity_z + (1 – alpha) * z_value; 

//high-pass filter 

linear_x = x_value – gravity_x; 

linear_y = y_value – gravity_y; 

linear_z = z_value – gravity_z; 
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3. The linear acceleration values obtained in the previous step are normalized to obtain a 

representative positive value for each data recorded by the accelerometer as the values may range 

from negative to positive: 

√(𝑙𝑖𝑛𝑒𝑎𝑟_𝑥)2 + (𝑙𝑖𝑛𝑒𝑎𝑟_𝑦)2 + (𝑙𝑖𝑛𝑒𝑎𝑟_𝑧)2 (1) 

4. We apply an integration process to calculate the area under the curve (AUC). We choose to use the 

trapezoidal rule [26]: 

∫ 𝑓(𝑥) 𝑑𝑥 = (𝑏 − 𝑎) ×  
𝑓(𝑎) + 𝑓(𝑏)

2

𝑏

𝑎

 (2) 

The sums of these areas (raw counts) equal the total number of counts obtained by the 

accelerometer in the PA performed [23]. 

5. Although the number of counts represents the amount of physical activity, in order to estimate the 

EE, other physiological user values such as height, weight, gender and age are considered. We used 

previously validated formulas [27] to obtain a good EE estimation (in METs units) from the number 

of counts and physiological information. 

 

Figure 1. Energy expenditure estimation procedure. 

4.4. Study Activities, Subjects and Devices 

In this study, the sensors devices were placed inside the pocket of a waist carrier belt, with the belt 

pocket hanging over the front of each user’s dominant hip. The belt was tightened around the waist so 

as to allow free body movement. Table 1 summarizes the study parameters. 

In order to evaluate the subject and process the information obtained in each experiment correctly and 

objectively, we developed an Android application (see Figure 3) that implemented the count algorithm 

process (Figure 1). The study was further organized into four stages that are represented in Figure 2. 
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Table 1. Summary of the study features. 

Subjects 

Five Subjects: 

1 Female: 20–40 Years Old 

4 Males: 20–40 Years Old 

Location(s) Hip 

Activities 

Sweeping the floor 

Watching TV or Using the computer 

Walking at 4 km/h (treadmill) 

Duration of the activities 60 s 

Experiment schedule 

All subjects performed the same physical activities in the same order: 

Watching TV 

Sweeping the floor  

Walking at 4 km/h 

Sensors 

Five sensors: 

Smartphone 1 (Google Nexus): 15 Hz (−16 to 16 g) 

Smartphone 2 (Samsung Galaxy S3): 5 Hz (−16 to 16 g) 

Smartphone 3 (LG L9): 20 Hz (−16 to 16 g) 

Bluetooth Sensor 1 (SensorTag): 1 Hz (−2 to 2 g) 

Bluetooth Sensor 2 (Zephyr Bioharness 3): 50 Hz (−16 to 16 g) 

 

Figure 2. Study stages. 
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Stage 1: “In-the-Wild” Study 

We first arranged various sessions for the subjects to perform the physical activities. During these 

sessions, using the Android application specifically developed for this experiment, each subject 

performed each of the three physical activities with each of the three smartphones and the two external 

sensors, all of which were placed on the hip. 

     

Figure 3. Android application developed to capture data from accelerometers. 

The Android application ran simultaneously on the three smartphones in order to obtain the data 

from each smartphone accelerometer (see Figure 3). The application was carefully designed and 

customized so as to synchronize and enable concurrent recording of data that each 

sensor/accelerometer provided simultaneously. In this way, the execution of the same activity by the 

same person was stored every time by each sensor in order to avoid any data bias, such as that of one 

person performing the same activity in a different way in subsequent stages. For example, someone 

might not sweep the floor in the same way the first time as they did the fifth (since we were testing five 

accelerometers). This also indirectly certainly made the experiment less of a chore as sweeping the 

floor the first time is not the same as sweeping it the fourth, for example. In addition, the two external 

accelerometers were connected to a single smartphone. The computational power of the smartphone 

allows data from several accelerometers to be recorded without affecting the performance of other 

tasks. The third picture in Figure 3 shows a snapshot of the Android application recording data from 

two sensors. 

Once each subject had completed the three activities, the collected data was sent by email via the 

Android application to centralize the information for subsequent processing (third picture in Figure 3), 

specifying the group (young person, adult, elderly person), the activity performed, the session number, 

and the device on which the files had been collected (smartphone) and that the application was 

running. Each subject performed the three activities with the five different devices, and a total of 

seventy-five files were generated for processing. 
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Stage 2: Data Processing 

Once all the subjects had completed the sessions and the information had been sent, we processed 

the raw data recorded by each subject participating in the experiment. The raw data was processed 

using another custom software (desktop software implemented for this purpose), which read the files 

(csv format), parsed the information and returned: 

 the total number of values in each file (a file represents the values from one sensor in one 

physical activity for 60 s). 

 the number of counts applying the algorithm procedure presented in Figure 1, using a fixed 

interval with two values. This variable should be adjusted according to the features of the 

devices and type of activities. 

 the number of METs using the research formulas [27]. 

This stage is explained in Section 5 (Results). 

Stage 3: Results Review 

Using the number of METs provided by each accelerometer in each activity and by each user, we 

generated different charts in order to clarify the results. The proper dissemination of the information 

enables us to understand how the various features of the different devices provide different results and 

the correlation between these. These results will be presented in Section 5 (Results). 

Stage 4: Conclusions/Verdict 

In the final stage we decide which device features affect EE estimation and the relation between 

these features according to device and EE obtained. This stage corresponds to Section 4 (Discussion) 

of this paper. It is important to highlight that in order to conduct the study correctly, several issues 

were addressed. 

 A custom Android application was developed to ensure proper data management and proper 

connection with the sensors and information obtained from the wireless sensors (Figure 3). The 

application used some software components (to handle Bluetooth and the management of the 

data) of an open mobile platform [28].  

 The application had a 3-second countdown to ensure that no data was lost and a warning sound 

to signal the end of monitoring (second picture of Figure 3). 

 In order to be useful for future studies, the application specifies the physical activity to be 

performed (watching TV, walking, sweeping the floor, etc.), the location of the smartphone 

(chest, leg, arm, etc.) and the user’s age group (young person, adult, elderly person, etc.) (first 

picture in Figure 3). For the experiments conducted in this study, the second and third options 

were always the hip and young person, respectively. These options do not affect data collection 

and are only used so that the csv files can easily be classified with the raw data. 

 Each raw data unit (x,y,z) from the different accelerometers has a timestamp to avoid duplicating 

data for transmission problems. 
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 Custom desktop-software was developed in order to process all the raw data obtained by the 

Android application. This software implements the EE estimation procedure described in  

Section 4.3. 

 All the experiments were conducted with the devices worn on the same part of the hip. 

5. Results and Discussion 

This section displays the results of the experiments conducted (Tables 2–4). 

Table 2. Summary of the EE for the physical activity “Walking at 4 km/h”. 

Walking 

4 km/h 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Count MET Count MET Count MET Count MET Count MET 

Nexus 2624 3.27 2443 3.15 2199 2.99 2126 2.94 1913 2.8 

Samsung 455 1.84 508 1.88 392 1.80 398 1.80 365 1.78 

LG L9 1350 2.43 2722 3.33 2728 3.34 2687 3.31 2243 3.02 

Zephyr 6190 5.61 8632 7.22 6524 5.83 5936 5.45 5643 5.25 

SensorTag 343 1.77 225 1.69 189 1.67 170 1.65 186 1.66 

Table 3. Summary of the EE for the physical activity “Sweeping the floor”. 

Sweeping 

the Floor 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Count MET Count MET Count MET Count MET Count MET 

Nexus 1323 2.41 1034 2.22 1230 2.35 838 2.09 882 2.12 

Samsung 376 1.79 325 1.76 413 1.81 282 1.73 360 1.78 

LG L9 1516 2.54 1154 2.30 1149 2.30 833 2.09 1069 2.25 

Zephyr 3719 3.99 1711 2.67 2718 3.33 2129 2.94 2315 3.06 

SensorTag 121 1.62 95 1.60 118 1.62 93 1.60 122 1.62 

Table 4. Summary of the EE for the physical activity “Watching TV”. 

Watching 

TV 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Count MET Count MET Count MET Count MET Count MET 

Nexus 5 126 1.62 112 1.62 102 1.61 143 1.64 105 1.61 

Samsung 58 1.58 48 1.57 48 1.57 60 1.58 56 1.58 

LG 155 1.64 151 1.64 152 1.64 178 1.66 142 1.64 

Zephyr 1381 2.45 720 2.02 208 1.68 883 2.12 1641 2.62 

SensorTag 43 1.57 40 1.57 42 1.57 44 1.57 41 1.57 

Since the goal of the study was to determine how the device features affected EE estimation and to 

attempt to clarify the correlation between the features and results, the study of the results focuses on 

the devices and activities rather than user characteristics. Accordingly, the following charts show 

different disseminations obtained from the raw data management. 

The different results and charts show different accelerometers providing a different number of 

counts and METs in the same activities performed by the same subjects. Since all the devices were 

used in the same place and each device recorded exactly the same exercise being carried out by the 

same subject over the same period of time, the source of such variations must lie in the specific 
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features of each device. This is the case of acceleration sensitivity, which for the devices used for the 

experiment ranged considerably from ±2 g of SensorTag to ±16 g for the other devices. This meant 

that for accelerations above or below these thresholds, the sensors would not be able to measure 

accurate data. More particularly, ±16 g seems to be appropriate precision for most physical activities, 

such as the ones used in this study. The opposite happens with SensorTag, which can only detect 

accelerations of up to ±2 g, and is therefore incapable of measuring out-of-range accelerations, which 

seems to be inadequate. SensorTag is currently the device that on average provides the least accuracy 

for theoretical EE estimations.  

According to the summary Table 1 of the study and Figures 4–6, the sampling frequency of the device 

is determinant to compute the number of counts with the formulae used, and hence, the level of physical 

activity. According to Figures 4–6, devices with a higher frequency obtain a higher number of counts, 

and consequently a higher number of METs, causing that even devices with a high frequency rate may 

overestimate the amount of the physical activity, such as the Zephyr in “Watching TV” activity.  

 

Figure 4. EE of the different accelerometers and subjects for the PA “Walking at 4 km/h”. 

 

Figure 5. EE of the different accelerometers and subjects for the PA “Sweeping the floor”. 
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Figure 6. EE of the different accelerometers and subjects for the PA “Watching TV”. 

In order to interpret the accuracy of calculi and measurements, we compared the results obtained in 

our study with one of the most referenced work in the area [5] in order to determine which 

accelerometers provided the nearest estimation to the theoretical reference measure. The referenced 

paper provided the measurement in METs for different activities, so we used this information to 

compare the results and determine which devices provided the nearest approximation with respect to 

the theoretical EE. 

According to [5], the theoretical EE of “walking at 4 km/h” for 60 s is 3 METs. Figure 4 shows how 

the best estimations were provided by Smartphones 1 and 3 (Nexus and LG). With frequencies  

of 15 Hz and 20 Hz, these devices provided the nearest estimations to the theoretical METs. In the 

same way, for the activity “sweeping the floor”, the nearest estimation to the theoretical one was 

provided by the Zephyr device (3.3 METs was the real EE). In the final activity “watching TV”, none 

of the devices were close to 1 MET (the theoretical measurement), but the lowest margins of error 

were obtained by the non-smartphone accelerometer SensorTag (1 Hz). 

Furthermore, our findings align and are coherent with previous experiments analyzing the 

performance of two popular accelerometers in an artificial, pure laboratory environment, i.e., without 

testing with real subjects and carrying out daily live activities [29]. 

The METs assessed with the different sensors reported lower values compared with the theoretical 

formula in PA (watching TV and walking) and higher baseline values (watching TV) [5]. These results 

showed that the [26] equation for calculating the AUC and the [27] equations for converting the counts 

to METs were not particularly accurate when calculating the EE of daily activities. The technique for 

calculating counts and METs is critical for predicting EE. 

According to these results, the first conclusion is that the accelerometer features (frequency and  

G-force), as well as the technique for calculating the counts and METs, are crucial for obtaining a good 

EE estimation. Depending on the device features and the formulas used, in some activities the results 

obtained from certain devices were close to the theoretical results of the research presented in [5]. 

Changing the devices (or their features) or comparing the results with other reference pieces of work 
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will also result in comparisons being different, different results being obtained and a different 

interpretation of whether the EE estimation is successful or not. Since this will always be present and 

the results will always be conditional, the possibility of adjusting this process to different requirements 

or parameters (e.g., the physical activity, device features or the user’s physiological information) might 

very well be the best approach for finding a solution to provide the most accurate EE estimation. 

To show how the accelerometer features influence the results, Figure 7 shows the relation between 

frequency (Hz) and the accuracy (relation between the experimental results and the theoretical  

results [5]). Each sample/slot shows the accuracy of the three activities for the calculated average of the 

five subjects, that is: 

𝜔𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

(
∑ 𝜔𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑖)

5
𝑖=1

5
) ×  100

Τ𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

(3) 

where 𝜔𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑖)  is EE (in METS) of each subject and Τ𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦  is the theoretical result for the  

activity processed [5]. 

 

Figure 7. Relation between frequency (X axis) and accuracy of the results (Y axis). 

The OS used for application development (Android) enabled the frequency of the accelerometer to 

be changed. For this study we used the default frequency for each smartphone (Table 1), but the 

correct adjustment of the frequency by varying formula parameters according to physiological 

characteristics (e.g., age, gender, weight, height) or even the use of more sophisticated solutions (e.g., 

expert systems which infer the appropriate frequency according to a learning system) could provide a 

promising solution in terms of usability, costs and results for estimating the EE. 

In the first study [24] we focused on where the accelerometer was placed and we determined that 

the pocket was the best option. In this study we focused our experiments on the different device types 

and we were reasonably able to conclude that the device features, e.g., sampling rate and acceleration 
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sensitivity, are crucial for obtaining a good EE estimation. Based on these results, future studies will be 

able to analyze different groups of people according to gender, age, height, weight and other 

physiological characteristics that could be decisive for finally determining how to estimate real EE 

according to the physical activity, user and device features 

6. Conclusions 

The estimation of energy expenditure (EE) in terms of metabolic equivalent tasks (METs) is crucial 

in certain contexts for enhancing the quality of life. Nowadays, one of most used techniques for 

estimating EE is the use of inertial devices, such as accelerometers, which are capable not only of 

measuring the “amount of movement” (quantified in count units) but also of objectively estimating EE 

(number of METs) using additional information. 

In previous research we conducted various experiments to determine how differences between 

devices, physical activities and device location affected EE estimation. On the basis of that study, in 

the study presented in this paper various experiments were conducted to reinforce the previous results 

in order to determine the key elements that affect EE estimation.  

These experiments have been performed by considering various requirements to ensure result 

reliability. In order to achieve this, the subjects performed the physical activities in the same way and 

custom support software was developed (e.g., an Android application and desktop software) to ensure 

proper data collection (no data loss and data coherence).  

As our results show, the main conclusion of our study was that EE estimation based on count 

calculus using mobile devices highly depends on each device and still requires individualized 

correction techniques for each device. In other words, the technical device features (such as sampling 

frequency and acceleration sensitivity), the procedures used to estimate the amount of PA (counts) and 

the number of METs, as well as the referenced values for comparing the results, were crucial for 

determining the best EE estimation. Different smartphones with different accelerometers but with the 

same G-force sensitivity and a similar range of sampling frequencies provided similar results for the 

same activities. Our results showed that a higher frequency did not mean better EE estimation. 

This conclusion has an important consequence since it will not be possible to estimate EE simply by 

using mobile devices in standalone fashion until the correction factor for each device and for each 

activity is determined. It is therefore difficult to extrapolate previously published results when different 

devices from those employed in the reference experiments are used. This hinders the applicability of 

EE estimation using mobile devices based on count calculus as the experiments must be conducted 

with identical devices each time or the results will be different and inconclusive. It also prevents the 

popularization of mobile, unsupervised EE analysis from becoming a reality in approaches such as 

those based on bring-your-own-device (BYOD) settings, since each person would bring a different 

device and the approach would not therefore be applicable. 

By way of future work we will broaden the study to use a variety of smartphones placed on the hip 

to perform various activities with a larger sample of subjects grouped according to their physiological 

characteristics (e.g., age, gender, weight, height, health, etc.) in order to determine the correlation 

between accelerometer features, physical activity and the subject’s physiology. The definition of this 

correlation might well be crucial for developing future software adaptable solutions to enable the best 
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EE approximation to be determined automatically irrespective of device features or other  

dependent parameters.  

Likewise, we plan to repeat tests using accelerometers from the most widely referenced brand, i.e., 

ActiGraph, so as to find out if it is possible to define correction factors across different devices and 

provide a method to estimate energy expenditure with acceptable margins of errors 
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