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Abstract

We solve the problem of finding all indefinite improper affine spheres passing
through a given regular curve of R3 with a prescribed affine co-normal vector field
along this curve. We prove the problem is well-posed when the initial data are
non-characteristic and show that uniqueness of the solution can fail at character-
istic directions. As application we classify the indefinite improper affine spheres
admitting a geodesic planar curve.

1 Introduction

Differential geometry of surfaces and partial differential equations (PDEs) have a
strong link by means of which both theories benefit mutually. One of the problems that
is currently experiencing a great development is the geometric version of the classical
Cauchy problem for a second order PDE. It can be formulated as follows:

Let S be a class of surfaces in a Riemannian 3-manifold M and denote by β(s) a
regular curve in M. If P(s) is a distribution of oriented planes along β in the tangent
bundle of M, one can pose the following

Geometric Cauchy problem: Find the surfaces in S that pass through
β(s) and whose tangent plane distribution along β(s) is precisely P(s).

The problem is well-posed if there is a unique solution which depends continuously of
the data.

This geometric problem has been considered for many classes of surfaces whose
underlying PDEs associated are either elliptic or hyperbolic. There have been many
papers concerning to the elliptic case, see [1, 3, 4, 7, 8, 9]. In all of them the classes
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of surfaces considered admit Weierstrass’ type representations in terms of holomorphic
data and so, the surfaces are real analytic and it is necessary to prescribed analytic
initial data (one has well-posedness problems under the analytic regularity assumption
but the problem is C∞ ill-posed).

In contrast to the elliptic case, the problem when the underlying PDE associated is
hyperbolic, is in many respects, far from complete. If one considers lesser regular data
C∞ or even worst, many problems arise. Actually, these classes of surfaces can not be
analytic and gluing procedures may create unexpected situations.

One of biggest contributions from geometry to PDEs theory is Monge Ampére type
equations which model interesting geometric aspects related to the curvature. Among
the most outstanding hyperbolic Monge-Ampére equation we have the hyperbolic Hes-
sian one equation

det∇2f + 1 = 0, in Ω ⊆ R2 (1.1)

which arise in affine differential geometry as the equation of indefinite improper affine
spheres, that is, surfaces in R3 with a Lorentzian affine metric and whose affine normals
at all points are parallel. This totally non linear PDE appears also strongly linked to
flat surfaces in S3, see [2, 6] as well as to area distances in computer vision (distances
that are useful in matching two images of the same object from different points of view),
see [17].

Recently, in [15], the second author studied the geometric Cauchy problem for in-
definite improper affine spheres by considering analytic and non-characteristic initial
data. In this paper, we extend these results in two directions, first, as in [2], we consider
regular initial data without any analytic assumption and second, we also analyze the
problem with characteristic initial data and show the differences with the well-posed
non-characteristic problem.

The work is organized as follows. In section 2 we briefly review indefinite improper
affine spheres and remind the Blaschke’s representation for this class of surfaces.

In Section 3 we discuss some examples that help us to understand the results in the
two following sections. Section 4 is devoted to solve the geometric Cauchy problem for
indefinite improper affine spheres when the initial data are non-characteristic. In Section
5 we extend our study to the characteristic case and show that uniqueness of solution can
fail at characteristic directions. Finally, in Section 6 we classify the indefinite improper
affine spheres admitting a geodesic planar curve.

2 Blaschke’s representation

Consider ψ : Σ −→ R3 an indefinite improper affine sphere, that is, an immersion
with constant affine normal ξ and Lorentzian affine metric h. Then, see [10, 16], up to
an equiaffine transformation, one has ξ = (0, 0, 1) and ψ can be locally seen as the graph
of a solution f(x, y) of (1.1).

In such case, the indefinite affine metric h of ψ is given by

h = fxxdx
2 + 2fxydxdy + fyydy

2, (2.1)

the affine co-normal N is
N = (−fx,−fy, 1) (2.2)
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and (1.1) is equivalent to√
|det(h)| = [ψx, ψy, ξ] = −[Nx, Ny, N ], (2.3)

that is, the volume element of h coincides with the determinant [., ., ξ].
We also observe that h = −〈dN, dψ〉 and N is determined by

〈N, ξ〉 = 1, 〈N, dψ〉 = 0, (2.4)

with the standard inner product 〈 , 〉 in R3. Moreover, from (1.1), (2.1) and (2.2), one
can obtain

∆hN = 0,

where ∆h is the Laplace-Beltrami operator associated to h.
Actually, see [5], if we take asymptotic parameters (u, v) for h, then from (2.3) and

(2.4) we have

h = 2ρ du dv, ρ = 〈N,ψuv〉 = [ψu, ψv, ξ] = −[N,Nu, Nv] > 0 (2.5)

and

ξ =
1

ρ
Nv ×Nu, N =

1

ρ
ψu × ψv,

where by × we denote the cross product in R3. Also, we get

ψu = N ×Nu, ψv = Nv ×N, Nu = ψu × ξ, Nv = ξ × ψv (2.6)

and

ψuv = ρξ, Nuv = 0.

Hence, there exist, globally, two regular curves a(u) and b(v) in R2 defined by

N − ξ × ψ = (2 a, 1), N + ξ × ψ = (2 b, 1), (2.7)

such that

N(u, v) = (a(u) + b(v), 1), ξ × ψ(u, v) = (b(v)− a(u), 0) (2.8)

and
ρ(u, v) = −det(a′(u), b′(v)) > 0. (2.9)

Remark 1. Observe that from (2.7) and (2.9), if Σ is simply connected, a global asymp-
totic immersion (u, v) : Σ −→ R2 can be given as

u =

∫ √
< da, da >, v =

∫ √
< db, db >. (2.10)
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Moreover, from (2.6) and (2.8), if we write a = (a1, a2) and b = (b1, b2), then the
coordinates of ψ are

ψ1 = b2 − a2,
ψ2 = a1 − b1, (2.11)

ψ3 = b1a2 − b2a1 +

∫
a1da2 − a2da1 +

∫
b2db1 − b1db2.

Remark 2. From (2.8), the asymptotic curve β(u) = ψ(u, v0), determines the curve
a(u) and the affine co-normal η(u) = N(u, v0) along it, but not the curve b(v). So, in
the characteristic case,

0 = h(β′(u), β′(u)) = −〈η′(u), β′(u)〉,

there exist many improper affine spheres containing the curve β, with a prescribed affine
co-normal η along β.

3 Ruled examples

It is well-known that, up to an equiaffine transformation, a ruled improper affine
sphere ψ is the graph of a solution of (1.1) given by

f(x, y) = xy + 2g(x),

for a function g : I −→ R, see [5, 11, 12].
In this case, from (2.1), the affine metric is given by

h = 2g′′(x)dx2 + 2dxdy = 2dudv,

with u = x and v = g′(x)+y. Thus, from (2.2), the immersion ψ and its affine co-normal
N can be parameterized, respectively, as

ψ(u, v) = (u, v − g′(u), uv − ug′(u) + 2g(u))

and

N(u, v) = (−g′(u)− v,−u, 1) = (a(u) + b(v), 1).

From (2.8) and (2.11),

a(u) = −(g′(u), u), b(v) = −(v, 0),

satisfy det(a′(u), b′(v)) = −1, for all (u, v) ∈ I × R.
In particular, the regular curve β : I −→ R3 defined by

β(s) = (s, 0, 2g(s))

is contained in ψ(I×R), with affine co-normal η(s) = (−2g′(s),−s, 1) along it. Moreover,
they can be obtained as

β(s) = ψ(u(s), v(s)), η(s) = N(u(s), v(s)) = (ã(s) + b̃(s), 1),
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with

u(s) = s, v(s) = g′(s), ã(s) = a(s), b̃(s) = b(v(s)).

Note that v ∈ R is a global parameter for the regular curve b(v) = −(v, 0) but s,
with v(s) = g′(s), maybe not.

Of course, when g′(s) is a diffeomorphism onto its image, with inverse s(v), we can
recover a and b as a(u) = ã(u) and b(v) = b̃(s(v)).

However, see Remark 2, if we take g(s) = 0, then β(s) = ψ(s, 0) is an asymptotic
curve and {β, η} does not determine, uniquely, the pair {ψ,N}.

Similarly, for g(s) = s3, we have v(s) = 3s2 and v′(0) = 0, that is, β(R) is contained
on the upper side ψ(R× [0,+∞[) and is tangent to the asymptotic curve ψ(R×{0}) at
β(0) = ψ(0, 0).

Hence, around (0, 0), we have many improper affine spheres containing the curve β,
with affine co-normal η along it. For instance, ψ̂ :]−ε, ε[×]−ε, ε[−→ R3 given by (2.11),
with â(u) = −(g′(u), u) = −(3u2, u) and

b̂(v) =

{
−(v, 0), v ≥ 0,
−(v, exp(−k/v2)), v < 0,

for some real constants k > 0 and ε > 0, such that det(â′(u), b̂′(v)) 6= 0, see Figure 1.

Figure 1: Indefinite improper affine spheres containing β(s) = (s, 0, 2s3) with η(s) =
(−6s2,−s, 1).

4 The non-characteristic Case

The Blaschke’s representation let us study the geometric Cauchy problem of finding
all the indefinite improper affine spheres ψ containing a regular curve β : I −→ R3 with
a prescribed affine co-normal η : I −→ R3 along it. However, the above examples show
that the situation is different of the analytic case studied in [1, 5, 15], specially when
〈dβ, dη〉 vanishes.

Hence, see (2.4) and Remark 2, we will say that {β, η} is a non-characteristic admis-
sible pair if satisfies the conditions

〈ξ, η(s)〉 = 1, 〈β′(s), η(s)〉 = 0, (4.1)
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with ξ = (0, 0, 1) and

λ(s) = 〈β′′(s), η(s)〉 = −〈β′(s), η′(s)〉 6= 0, ∀s ∈ I. (4.2)

In this case, we can obtain a solution ψ, such that β never is tangent to its asymptotic
(also known as characteristic) curves. Moreover, the solution is unique around β(I),
that is, any two solutions agree on an open set containing β(I). Actually, we have

Theorem 4.1. Let β, η : I −→ R3 be a non-characteristic admissible pair of curves.
Then, in a neighborhood of β(I), there exists a unique indefinite improper affine sphere
ψ containing β(I) with affine co-normal η(s) at β(s) for all s ∈ I.

Proof. Assume there exists an immersion ψ with affine co-normal N , solution of the
above geometric Cauchy problem, then the curves a and b given by (2.7) satisfy

4det(da, db) = 2[dN, ξ × dψ, ξ] = 2[dη, ξ × dβ, ξ] = 2〈dβ, dη)〉 6= 0,

along β. Hence, see (2.5) and (2.9), any parameters u of a and v of b are asymptotic
parameters around β(I), where, by the inverse function theorem, we have

β(s) = ψ(u(s), v(s)), η(s) = N(u(s), v(s))

and

2ρ(u(s), v(s)) u′(s) v′(s) = −〈β′(s), η′(s)〉. (4.3)

So, from (4.2) and (4.3), u(s) and v(s) are diffeomorphisms onto their images, with
inverses s(u) and s(v), respectively.

From (2.7) and (2.11), if we take the curves ã(s) and b̃(s) defined by

(η − ξ × β)(s) = (2 ã(s), 1), (η + ξ × β)(s) = (2 b̃(s), 1), (4.4)

then,
a(u) = ã(s(u)), b(v) = b̃(s(v)), (4.5)

and ψ is uniquely determined by {β, η}, which proves the uniqueness of ψ around β(I).
For the existence, we consider the above curves ã(s) and b̃(s). Now, from (4.1), (4.2)

and (4.4), we have

4det(ã′(s), b̃′(s)) = 2[η′(s), ξ × β′(s), ξ] = 2〈β′(s), η′(s)〉 6= 0.

Thus, from (2.7), (2.9), (2.11) and (4.4), for any diffeomorphisms u(s) and v(s), with
images u(I) and v(I), the regular curves a(u) and b(v) given by (4.5) satisfy

det(a′(u), b′(v)) = det(ã′(s), b̃′(s)) s′(u) s′(v) 6= 0

and provide an indefinite improper affine sphere ψ : u(I)× v(I) −→ R3, containing β(I)
with affine co-normal η along it.

Remark 3. It is clear that Theorem 4.1 extends Theorem 3.1 in [15], since from the
above construction the solution for a non-characteristic analytic admissible pair must be
analytic around the curve.
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5 The characteristic Case

Again from Remark 2, we know that a pair {β, η} generates many indefinite improper
affine sphere ψ, when 〈dβ, dη〉 vanishes identically. Hence, we will assume that (4.1)
holds and that 〈β′(s), η′(s)〉 only vanishes at isolated points.

Even under this assumption, the examples of Section 3, see also Figure 1, show that
we should not expect uniqueness of the solution of the above geometric Cauchy problem.

The key point in the proof of Theorem 4.1 is that the following relation holds

〈β′(s), η′(s)〉 = −2ρ(u(s), v(s)) u′(s) v′(s) (5.1)

which suggests divide this section in two classes of characteristic points:

5.1 Characteristic points with sign.

Definition 5.1. Let β, η : I −→ R3 be an admissible pair of curves, we say that s0 ∈ I
is a characteristic point with sign if 〈β′(s0), η′(s0)〉 = 0 and 〈β′(s), η′(s)〉 does not change
sign around s0. Equivalently, u′(s0)v

′(s0) = 0 and both u′(s) and v′(s) do not change
sign around s0, since (u′(s0), v

′(s0)) 6= (0, 0) by the regularity of β(s) = ψ(u(s), v(s)).

In this case, u(s) and v(s) are strictly monotone because their derivates do not change
sign and only vanish at isolated points. In particular, they are diffeomorphisms onto
their images and, analogously to the proof of Theorem 4.1, we can prove the uniqueness.
Actually, we have:

Proposition 5.2. Let β, η : I −→ R3 be an admissible pair of curves such that all their
characteristic points are isolated and have sign. Then, {β, η} determines at most an
indefinite improper affine sphere ψ containing β(I) with affine co-normal η along β.

In order to prove existence, we need some additional conditions, which are trivial for
non-characteristic points.

In fact, from (2.11) and (4.5), the images of the curves ã(s) and b̃(s) given by (4.4)
must be regular, since they will be the projection of the asymptotic curves of ψ. So,
from (5.1), we can deduce:

Proposition 5.3. Let {β, η} be an admissible pair of curves such that all their charac-
teristic points are isolated and have sign. If the traces of the curves ã(I) and b̃(I) are
regular, then there exists a solution of the corresponding geometric Cauchy problem, if
and only if, for every s0 ∈ I the limit

lim
s→s0

〈β′(s), η′(s)〉
u′(s) v′(s)

(5.2)

exists and is non-zero, for some parameterizations u(s) of ã(I) and v(s) of b̃(I).

Note that the condition (5.2) cannot hold if 〈β′(s), η′(s)〉 changes sign, since u′(s)
and v′(s) are always non-negative, up to the orientation.
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5.2 Characteristic points without sign.

Definition 5.4. Let β, η : I −→ R3 be an admissible pair of curves, we say that s0 ∈ I
is a characteristic point without sign if 〈β′(s0), η′(s0)〉 = 0 and 〈β′(s), η′(s)〉 changes
sign around s0.

Equivalently, from (5.1), if β(s) = ψ(u(s), v(s)), then either u′(s0) = 0, v′(s0) 6= 0
and u′(s) changes sign around s0 or the similar case for (v, u). So, we can assume,
without loss of generality, that u(s) has a local maximum u0 at s0 and v′(s0) 6= 0.

This means that β is tangent to the asymptotic curve ψ(u0, v) and around β(s0) =
ψ(u0, v0) is contained in the left side ψ(]u0 − ε, u0]×]v0 − ε, v0 + ε[), for some ε > 0.

As consequence, from the construction in Theorem 4.1, {β, η} determines the curves
a(u) in ]u0 − ε, u0] and b(v) in ]v0 − ε, v0 + ε[. That is, around β(s0), we have many
solutions ψ̂ of the geometric Cauchy problem, which can be determined for (2.11), by
taking â and b̂ in the following way

â(u) =

{
a(u), u ∈]u0 − ε, u0]
a(u), u ∈ [u0, u0 + ε[

and b̂(v) = b(v) in ]v0 − ε, v0 + ε[, for any curve a(u), different from a(u), for u 6= u0,
such that det(a′(u), b′(v)) 6= 0 and such that â is regular.

However, we can recover the improper affine sphere ψ in terms of {β, η} for the left
side of (u0, v0) and we have uniqueness on an open set with the characteristic point in its
boundary. More specifically, as in Proposition 5.2 we can deduce the following general
uniqueness result:

Theorem 5.5. Let β, η : I −→ R3 be an admissible pair of curves such that all their
characteristic points are isolated. Then, two solutions to the corresponding geometric
Cauchy problem agree on a domain which contains β(I) except its characteristic points
without sign.

For the existence around a characteristic point without sign s0 ∈ I, note that the
local maximum u0 at s0 implies that the traces of the curve ã(s) = a(u(s)) in ]s0− δ, s0]
and [s0, s0 + δ[ agree, for some δ > 0.

Conversely, if the curve ã(s) given by (4.4) satisfies ã(s−) = ã(s+), where s− = s0−s
and s+ = s0 +s for all s ∈]0, δ[, then we can take diffeomorphisms u(s−) and u(s+) onto
]u0−ε, u0[, such that ã(s−(u)) = ã(s+(u)). Thus, the solutions of the non-characteristic
Cauchy problem in ]s0 − δ, s0[ and ]s0, s0 + δ[ are given by the same a(u) = ã(s−(u)) =
ã(s+(u)) in ]u0 − ε, u0[ and b(v) = b̃(s(v)) in ]v0 − ε, v0 + ε[.

Consequently, in a neighborhood of s0, we get a well-defined solution ψ by extending
a(u) to ]u0 − ε, u0 + ε[ and from Proposition 5.3 we can conclude the following general
existence result:

Theorem 5.6. Let {β, η} be an admissible pair of curves such that all their character-
istic points s0 are isolated. If the traces of the curves ã and b̃ given by (4.4) are regular,
then {β, η} generates an indefinite improper affine sphere ψ if, and only if the following
conditions hold

i) The limit (5.2) exists and is non-zero, when s0 has sign.
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ii) The curve ã or b̃ that is singular at s0 has the same image on ]s0 − δ, s0[ and
]s0, s0 + δ[, for some δ > 0, when 〈β′(s), η′(s)〉 changes sign around s0.

6 Improper affine spheres with a planar geodesic

Let P be a plane in R3 and β : I −→ P be a geodesic of an indefinite improper affine
sphere ψ with affine normal ξ = (0, 0, 1). It is not a restriction to assume that the origin
is in P.

We will distinguish two cases:

Case I: ξ ∈ P.
In this case, up to an equiaffine transformation, we can assume that P ≡ {y = 0} and
so,

β(s) = (x(s), 0, z(s)), η(s) = (η1(s), η2(s), 1)

satisfy
0 =< β′(s), η(s) >= x′(s)η1(s) + z′(s).

As β is regular, this expression implies that x′(s) 6= 0 and x is also a parameter of β.
That is, we can consider x(s) = s and write

β(s) = (s, 0, g(s)), η(s) = (−g′(s), η2(s), 1). (6.1)

From Corollary 4.4 in [15] and Remark 3, as β is a geodesic of ψ we have

0 = [β′, β′′, ξ] = [η, η′, η′′] (6.2)

or equivalently,
c1η1 + c2η2 = c3, (6.3)

for some constants c1, c2 and c3, such that (c1, c2) 6= (0, 0).
From (2.9) and (4.4), we obtain

2ã(s) = (η1(s), η2(s)− s), 2b̃(s) = (η1(s), η2(s) + s),

2ã′(s) = (η′1(s), η
′
2(s)− 1), 2b̃′(s) = (η′1(s), η

′
2(s) + 1),

and
4 det(ã′(s), b̃′(s)) = 2η′1(s) = −2g′′(s) = −4ρ(s)u′(s)v′(s). (6.4)

If c2 = 0 in (6.3), then η1 is a constant and u′v′ ≡ 0. Thus, β is an asymptotic
straight line and either ã or b̃ is a constant curve. In this case, it is easy to check that
(log(ρ))uv = 0 for any asymptotic parameters (u, v) around β. That is, ψ has zero affine
Gauss curvature and it must be a ruled surface in a neighborhood of β, see [11, 12].

If c2 6= 0, then η2 = −kg′ + c for some constants k and c and we have that

2ã(s) = (−g′(s),−kg′(s) + c− s), 2b̃(s) = (−g′(s),−kg′(s) + c+ s),
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are regular curves. Thus, we can take u(s) = s = v(s) and from (4.5),

2a(u) = (−g′(u),−kg′(u) + c− u),

2b(v) = (−g′(v),−kg′(v) + c+ v),

h = ρ(u, v)dudv = −(g′′(u) + g′′(v))dudv.

From the above expressions and (2.11), we conclude that β must be a convex curve and
up to an equiaffine transformation, ψ can be recover as follows, see Figure 2:

ψ(u, v) =

(
u+ v

2
,
g′(v)− g′(u)

2
,
(g′(u)− g′(v))(v − u)

4
+
g(v) + g(u)

2

)
. (6.5)

Figure 2: Indefinite improper affine spheres with geodesics β(s) = (s, 0, s2) and β(s) =
(s, 0, cosh(s)), respectively.

Case II: ξ /∈ P.
In this case, up to an equiaffine transformation, we may assume that P ≡ {z = 0}.

Moreover, as β = (x(s), y(s), 0) is a geodesic of ψ, we have from Corollary 4.4 in [15]
that,

x′y′′ − y′x′′ = [β′, β′′, ξ] = [η, η′, η′′], (6.6)

< β′, η >= 0, < β′′, η >= m, (6.7)

for some constant m. Consequently, either β is an asymptotic straight line if m = 0
and, discussing as in the above case, ψ is ruled in a neighborhood of β, or β is a convex
curve if m 6= 0.

When β is convex, we can assume that β is parameterized by its affine arc-length,
see [13, 18], that is,

[β′(s), β′′(s), ξ] = 1, ∀s ∈ I, (6.8)
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which implies that
β′′′(s) + κ(s)β′(s) = 0, (6.9)

where κ(s) = [β′′(s), β′′′(s), ξ] is the affine curvature of the planar curve β.
Moreover, from (4.1) and (6.7), η is determined by β as follows:

η = β′ ×
(
β′′ −m ξ

)
.

Thus, from (6.6), (6.8) and (6.9), we obtain 1 = m2κ(s), for all s ∈ I and the affine
curvature is a positive constant.

Then, up to an equiaffine transformation, β is contained in a circle of radius m3/2

and we may write

β(s) =
(
m3/2 cos

( s
m

)
,m3/2 sin

( s
m

)
, 0
)
, ∀s ∈ I, (6.10)

η(s) =
(
−m3/2 cos

( s
m

)
,−m3/2 sin

( s
m

)
, 1
)
. (6.11)

Now, from (2.11) and (4.4), we obtain regular curves

2ã(s) = m3/2
(
− cos

( s
m

)
+ sin

( s
m

)
,− cos

( s
m

)
− sin

( s
m

))
,

2b̃(s) = m3/2
(
− cos

( s
m

)
− sin

( s
m

)
,+ cos

( s
m

)
− sin

( s
m

))
and the indefinite improper affine sphere ψ containing the circle β as a geodesic can be
parameterized as follows,

ψ1(u, v) =
m3/2

2

(
cos
( v
m

)
+ cos

( u
m

)
+ sin

( u
m

)
− sin

( v
m

))
,

ψ2(u, v) =
m3/2

2

(
cos
( v
m

)
− cos

( u
m

)
+ sin

( u
m

)
+ sin

( v
m

))
, (6.12)

ψ3(u, v) =
m3

2
cos

(
u− v
m

)
+
m2

2
u− m2

2
v − m3

2
.

Here, from (2.5), the affine metric is

h =
m

4
cos

(
u− v
m

)
dudv

and ψ has singularities when u − v = m(2n + 1)π/2, for some n ∈ Z, see Figure 3 and
[14].
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Figure 3: Indefinite improper affine sphere with geodesic β(s) = (cos(s), sin(s), 0).

All the above discussion can be summarized in the following result:

Theorem 6.1. If β : I −→ P is geodesic of an indefinite improper affine sphere ψ
with affine normal ξ = (0, 0, 1). Then in a neighborhood of β and, up to an equiaffine
transformation, either

i) β is an straight line and ψ is a ruled surface, or

ii) β(s) = (s, 0, g(s)) is convex and ψ can be given given as in (6.5), or

iii) ψ is rotational and it can be given as in (6.12).

Note that the symmetries in the above examples are consequence of the extension
of Theorem 5.1 in [15] that follows from Theorems 4.1 and 5.5,

Theorem 6.2. Any symmetry of an admissible pair, such that all their characteristic
points are isolated and have sign, induces the corresponding symmetry of the indefinite
improper affine sphere generated by it.
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