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We present an extended version of the Generalized CollageTheorem to deal with inverse problems for vector-valued Lax-Milgram
systems. Numerical examples show how the method works in practical cases.

1. Inverse Problems via the Collage Theorem

In recent years a great deal of attention has been paid to
the inverse problems in distributed systems, that is, the
determination of unknownparameters in the functional form
of the governing model of the phenomenon under study [1–
4].The literature is rich in papers studying ad hocmethods to
address ill-posed inverse problems by minimizing a suitable
approximation error along with utilizing some regularization
techniques [5–7].

Many inverse problems may be recast as the approxi-
mation of a target element 𝑥 in a complete metric space
(𝑋, 𝑑) by the fixed point 𝑥 of a contraction mapping 𝑇 :

𝑋 → 𝑋. Thanks to a simple consequence of Banach’s
fixed point theorem known as the Collage Theorem, most
practical methods of solving the inverse problem for fixed
point equations seek an operator 𝑇 for which the collage
distance 𝑑(𝑥, 𝑇𝑥) is as small as possible.

Theorem 1 (“CollageTheorem” [8]). Let (𝑋, 𝑑) be a complete
metric space and 𝑇 : 𝑋 → 𝑋 a contraction mapping with
contraction factor 𝑐 ∈ [0, 1). Then, for any 𝑥 ∈ 𝑋,

𝑑 (𝑥, 𝑥) ≤

1
1 − 𝑐

𝑑 (𝑥, 𝑇𝑥) , (1)

where 𝑥 is the fixed point of 𝑇.

This vastly simplifies this type of inverse problem as it is
much easier to estimate 𝑑(𝑥, 𝑇𝑥) than to find the fixed point 𝑥

and then compute 𝑑(𝑥, 𝑥). One now seeks a contractionmap-
ping 𝑇 that minimizes the so-called collage error 𝑑(𝑥, 𝑇𝑥), in
other words, a mapping that sends the target 𝑥 as close as
possible to itself. This is the essence of the method of collage
coding which has been the basis of most, if not all, fractal
image coding and compression methods. Barnsley [8, 9] was
the first to see the potential of using the Collage Theorem
above for the purpose of fractal image approximation and
fractal image coding. In practical applications, from a family
of contraction mappings 𝑇𝜆, 𝜆 ∈ Λ ⊂ R𝑛, one wishes
to find the parameter 𝜆 for which the approximation error
𝑑(𝑥, 𝑥𝜆) is as small as possible. In practice the feasible set
is often taken to be Λ 𝑐 = {𝜆 ∈ R𝑛 : 0 ≤ 𝑐𝜆 ≤ 𝑐 < 1}

which guarantees the contractivity of 𝑇𝜆 for any 𝜆 ∈ Λ 𝑐. A
difference between the “collage” approach and the one based
on Tikhonov regularization is the following: in the collage
approach, the constraint 𝜆 ∈ Λ 𝑐 guarantees that 𝑇𝜆 is a con-
traction and, therefore, replaces the effect of the regulariza-
tion term in the Tikhonov approach (see [4, 7]). The collage
approach works well for low-dimensional parametrization
in particular, while Tikhonov regularization is a fundamen-
tally nonparametric methodology. The collage-based inverse
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problem can be formulated as an optimization problem as
follows:

min
𝜆∈Λ
𝑐

𝑑 (𝑥, 𝑇𝜆𝑥) . (2)

This is a nonlinear and nonsmooth optimization model that
can often be reduced to a quadratic optimization program.
Several algorithms can be used to solve it including penaliza-
tion methods and particle swarm ant colony techniques.

This method of collage coding may be applied in other sit-
uations where contractive mappings are encountered. These
ideas have been extended to inverse problems for Initial
Value Problems (IVP) in [10]. In this setting, the contractive
Picard operator plays the role of 𝑇 and the space 𝑋 contains
continuous and appropriately bounded functions on a closed
interval of observation. Given a target function, perhaps
the interpolation of observational data points, the Collage
Theorem can be applied to find the Picard operator within a
prescribed class that minimizes the collage distance. We have
applied this technique to inverse problems involving several
families of differential equations and application to different
areas (see [10–15]).

Example 2. We present the results to an IVP inverse problem
solved using collage coding, Tikhonov regularization, and the
Landweber-Fridmanmethod. Consider the following steady-
state heat equation on Ω = [0, 1]:

𝑑

𝑑𝑥

(𝜅 (𝑥)

𝑑𝑢

𝑑𝑥

(𝑥)) = − 𝑓 (𝑥) , in Ω = (0, 1) ,

𝑢 (0) = 0,

𝑢 (1) = 0,

(3)

where 𝜅(𝑥) is the variable thermal diffusivity of the medium
at 𝑥 ∈ Ω, 𝑓(𝑥) represents a heat source or sink at each
𝑥 ∈ Ω, and 𝑢(𝑥) denotes the temperature at 𝑥 ∈ Ω.
The inverse problem we look at is to estimate the variable
thermal diffusivity 𝜅(𝑥) given 𝑟 uniformly distributed values
of 𝑢(𝑥), with low-amplitude Gaussian noise added, and the
forcing function 𝑓(𝑥). For this example, we assume that
𝑢(𝑥) = 4𝑥(1 − 𝑥) and that 𝑓(𝑥) = 96𝑥

3
+ 12𝑥

2
+ 48𝑥 − 8,

corresponding to 𝜅(𝑥) = 𝜅True(𝑥) = 3𝑥
3

+ 2𝑥
2

+ 4𝑥 + 1.
Morozov’s discrepancy principle was used to find the value of
the Tikhonov regularization parameter, with our discrepancy
below a tolerance level of 10−8. Table 1 presents the results;
the subscripts indicate the method used to solve the inverse
problem.

In a manner analogous to the Collage Theorem we have
also formulated a Generalized Collage Theorem for solving
Boundary Value Problems (BVP), replacing the minimiza-
tion of the true error by the minimization of something
akin to the collage distance. In place of Banach’s fixed
point theorem for contraction maps on a complete metric
space, we have appealed to the Lax-Milgram representation
theorem.

These results have been extended to a wider class of
elliptic equations problems in [16, 17], by considering not only
Hilbert but also reflexive Banach spaces and even replacing
the primal variational formulation of such a problem with
a more general constrained variational one. Let us mention
that this kind of formulation arises, for instance, when the
boundary constraints are weakly imposed.

The paper is organized as follows. Section 2 is concerned
with an extension of the Collage Theorem stated in [16,
Corollary 4.2] to a finite-dimensional vector-valued context,
as well as a discretization scheme based on the use of suitable
Schauder bases. Section 3 presents three different numerical
examples which show how to solve inverse problems for
systems of elliptic differential equations.

2. Vector-Valued Lax-Milgram and
the Inverse Problem

In this section we deal with a Lax-Milgram theorem stated in
terms of a system of suitable variational equations and with a
collage type result that follows from it. We refer to [18–21] for
some recent vectorial versions of the Lax-Milgram theorem
and some applications to the study of mixed variational
equations.

The first result is the following vector-valued version of
the Lax-Milgram theorem, which is a direct consequence
of the characterization of the solvability of systems with
infinitely many variational equations given in [22, Theorem
3.2]—specifically of its finite-dimensional case [22, Corollary
4.6]—andof the fact that if𝑁 ≥ 1,𝐸,𝐹1, . . . , 𝐹𝑁 are real vector
spaces, 𝑎1 : 𝐸 × 𝐹1 → R, . . . , 𝑎𝑁 : 𝐸 × 𝐹𝑁 → R are bilinear
forms, and 𝑦

∗

1 : 𝐹1 → R, . . . , 𝑦
∗

𝑁
: 𝐹𝑁 → R are linear forms

such that the system

𝑥 ∈ 𝐸 with
{
{
{
{

{
{
{
{

{

𝑦
∗

1 = 𝑎1 (𝑥, ⋅)

.

.

.

𝑦
∗

𝑁
= 𝑎𝑁 (𝑥, ⋅)

(4)

admits a solution, then such a solution is unique if, and only if,
the corresponding homogeneous problem has one and only
one solution.

Given a real normed space 𝐺, we write 𝐺
∗ for its

topological dual space.

Theorem 3. Suppose that 𝐸 is a real reflexive Banach space,
𝑁 ≥ 1, 𝐹1, . . . , 𝐹𝑁 are real Banach spaces, and 𝑎1 : 𝐸 × 𝐹1 →

R, . . . , 𝑎𝑁 : 𝐸 × 𝐹𝑁 → R are continuous bilinear forms. Then
for all 𝑦

∗

1 ∈ 𝐹
∗

1 , . . . , 𝑦
∗

𝑁
∈ 𝐹
∗

𝑁
there exists a unique 𝑥0 ∈ 𝐸 such

that

𝑦
∗

1 = 𝑎1 (𝑥0, ⋅)

.

.

.

𝑦
∗

𝑁
= 𝑎𝑁 (𝑥0, ⋅)

(5)



Mathematical Problems in Engineering 3

Table 1: Recovered diffusivity using collage coding, Tikhonov regularization, and Landweber-Fridman iteration, with 𝑟 being the number of
uniformly distributed sample points in [0, 1], 𝜖 being the amplitude of the relative noise added, and the true value of 𝜅(𝑥) = 1 + 4𝑥 + 2𝑥

2
+ 3𝑥
3.

𝑟 𝜖 𝜅collage(𝑥) ‖𝜅collage − 𝜅True‖𝐿2(Ω)

10
0 1.0145 + 3.7757𝑥 + 2.7627𝑥

2
+ 2.4460𝑥

3 0.00222
0.01 1.0129 + 3.7815𝑥 + 2.7685𝑥

2
+ 2.4525𝑥

3 0.00295
0.1 0.9971 + 3.8350𝑥 + 2.8023𝑥

2
+ 2.5362𝑥

3 0.00175

15
0 1.0145 + 3.7757𝑥 + 2.7627𝑥

2
+ 2.4460𝑥

3 0.00152
0.01 1.0186 + 3.7915𝑥 + 2.7777𝑥

2
+ 2.4619𝑥

3 0.00276
0.1 1.0578 + 3.9525𝑥 + 2.8989𝑥

2
+ 2.6151𝑥

3 0.00878
𝑟 𝜖 𝜅Tikhonov(𝑥) ‖𝜅Tikhonov − 𝜅True‖𝐿2(Ω)

10
0 1.2496 + 4.3996𝑥 − 4.2951𝑥

2
+ 10.924𝑥

3 0.65853
0.01 1.2489 + 4.3982𝑥 − 4.3003𝑥

2
+ 10.930𝑥

3 0.65772
0.1 1.2428 + 4.3863𝑥 − 4.3472𝑥

2
+ 10.986𝑥

3 0.65165

15
0 1.0434 + 6.6156𝑥 − 9.5908𝑥

2
+ 14.118𝑥

3 0.59133
0.01 1.0397 + 6.6132𝑥 − 9.5858𝑥

2
+ 14.054𝑥

3 0.58914
0.1 1.0351 + 6.6057𝑥 − 9.5614𝑥

2
+ 14.022𝑥

3 0.57156
𝑟 𝜖 𝜅Landweber(𝑥) ‖𝜅Landweber − 𝜅True‖𝐿2(Ω)

10
0 1.2496 + 4.3996𝑥 − 4.2951𝑥

2
+ 10.924𝑥

3 0.65853
0.01 1.2490 + 4.3932𝑥 − 4.2856𝑥

2
+ 10.921𝑥

3 0.65812
0.1 1.2441 + 4.3362𝑥 − 4.2004𝑥

2
+ 10.899𝑥

3 0.65663

15
0 1.0469 + 6.6156𝑥 − 9.5908𝑥

2
+ 14.118𝑥

3 0.59133
0.01 1.0460 + 6.6133𝑥 − 9.5758𝑥

2
+ 14.105𝑥

3 0.59103
0.1 1.0377 + 6.5920𝑥 − 9.4409𝑥

2
+ 13.993𝑥

3 0.58968

if, and only if,

𝑥 ∈ 𝐸,

𝑦
∗

1 = 𝑎1 (𝑥0, ⋅)

.

.

.

𝑦
∗

𝑁
= 𝑎𝑁 (𝑥0, ⋅)

}
}
}
}

}
}
}
}

}

󳨐⇒ 𝑥 = 0
(6)

and there exists 𝜌 > 0 satisfying

(𝑦1, . . . , 𝑦𝑁) ∈ 𝐹1 × ⋅ ⋅ ⋅ × 𝐹𝑁

󳨐⇒ 𝜌

𝑁

∑

𝑘=1

󵄩
󵄩
󵄩
󵄩
𝑦𝑘

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑁

∑

𝑘=1
𝑎𝑘 (⋅, 𝑦𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(7)

Moreover, if these equivalent conditions hold and 𝑥0 ∈ 𝐸 is the
unique solution, then

󵄩
󵄩
󵄩
󵄩
𝑥0

󵄩
󵄩
󵄩
󵄩

≤

1
𝜌

max
𝑘=1,...,𝑁

󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑘

󵄩
󵄩
󵄩
󵄩

. (8)

The aforementioned generalization of the collage type
result [16, Corollary 4.2] for a finite number of variational
equations is stated in these terms.

Corollary 4. Let 𝐸 be a real reflexive Banach space, let 𝑁 ≥ 1,
let 𝐹1, . . . , 𝐹𝑁 be real Banach spaces, let 𝑦

∗

1 ∈ 𝐹
∗

1 , . . . , 𝑦
∗

𝑁
∈ 𝐹
∗

𝑁
,

and let Λ be a nonempty set such that for all 𝜆 ∈ Λ there exist

𝑁 continuous bilinear forms 𝑎1𝜆 : 𝐸 × 𝐹1 → R, . . . , 𝑎𝑁𝜆 :

𝐸 × 𝐹𝑁 → R and 𝜌𝜆 > 0 with

𝑥 ∈ 𝐸,

𝑦
∗

1 = 𝑎1𝜆 (𝑥0, ⋅)

.

.

.

𝑦
∗

𝑁
= 𝑎𝑁𝜆 (𝑥0, ⋅)

}
}
}
}

}
}
}
}

}

󳨐⇒ 𝑥 = 0,

(𝑦1, . . . , 𝑦𝑁) ∈ 𝐹1 × ⋅ ⋅ ⋅ × 𝐹𝑁

󳨐⇒ 𝜌𝜆

𝑁

∑

𝑘=1

󵄩
󵄩
󵄩
󵄩
𝑦𝑘

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑁

∑

𝑘=1
𝑎𝑘𝜆 (⋅, 𝑦𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(9)

Let us also suppose that, for all 𝜆 ∈ Λ, 𝑥𝜆 ∈ 𝐸 is the unique
solution of the variational system

𝑥 ∈ 𝐸,

𝑦
∗

1 = 𝑎1𝜆 (𝑥, ⋅)

.

.

.

𝑦
∗

𝑁
= 𝑎𝑁𝜆 (𝑥, ⋅) .

(10)

Then for each 𝑥0 ∈ 𝐸 and for all 𝜆 ∈ Λ the inequality

󵄩
󵄩
󵄩
󵄩
𝑥𝜆 − 𝑥0

󵄩
󵄩
󵄩
󵄩

≤

1
𝜌𝜆

max
𝑘=1,...,𝑁

󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑘
− 𝑎𝑘𝜆 (𝑥0, ⋅)

󵄩
󵄩
󵄩
󵄩 (11)

is valid.
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Proof. The unisolvency and continuous dependence on the
initial data of the solution inTheorem 3 imply the announced
result. Indeed, let 𝜆 ∈ Λ and notice that 𝑥𝜆 − 𝑥0 is a solution
of the system of variational equations

𝑥 ∈ 𝐸,

𝑦
∗

1 − 𝑎1𝜆 (𝑥0, ⋅) = 𝑎1𝜆 (𝑥, ⋅)

.

.

.

𝑦
∗

𝑁
− 𝑎𝑁𝜆 (𝑥0, ⋅) = 𝑎𝑁𝜆 (𝑥, ⋅) .

(12)

Then, in view of Theorem 3, we conclude that
󵄩
󵄩
󵄩
󵄩
𝑥𝜆 − 𝑥0

󵄩
󵄩
󵄩
󵄩

≤

1
𝜌𝜆

max
𝑘=1,...,𝑁

󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑘
− 𝑎𝑘𝜆 (𝑥0, ⋅)

󵄩
󵄩
󵄩
󵄩

. (13)

Let us observe that if one wants to approximate the
solution 𝑥0 in the sense of the collage distance, that is,
minimize {‖𝑥𝜆 − 𝑥0‖ : 𝜆 ∈ Λ}, according to Corollary 4, it
suffices to minimize

{

1
𝜌𝜆

max
𝑘=1,...,𝑁

󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑘
− 𝑎𝑘𝜆 (𝑥0, ⋅)

󵄩
󵄩
󵄩
󵄩

: 𝜆 ∈ Λ} , (14)

although if

𝜌 := inf
𝜆∈Λ

𝜌𝜆 > 0, (15)

then we only need to minimize

{ max
𝑘=1,...,𝑁

󵄩
󵄩
󵄩
󵄩
𝑦
∗

𝑘
− 𝑎𝑘𝜆 (𝑥0, ⋅)

󵄩
󵄩
󵄩
󵄩

: 𝜆 ∈ Λ} . (16)

Under such an assumption, 𝜌 > 0, and suppose that each
space 𝐹𝑘 (𝑘 = 1, . . . , 𝑁) has a Schauder basis {Υ𝑘𝑖}𝑖≥1, in such
a way that if {Υ

∗

𝑘𝑖
}𝑖≥1 denotes its sequence of biorthogonal

functionals, then the nonrestrictive condition
𝑀 := max

𝑘=1,...,𝑁
sup
𝑖≥1

󵄩
󵄩
󵄩
󵄩
Υ
∗

𝑘𝑖

󵄩
󵄩
󵄩
󵄩

< ∞ (17)

holds. In order to discretize our optimization problem, let us
also assume that 𝐸 admits a Schauder basis {Θ𝑖}𝑖≥1 and define
for each 𝑛 ≥ 1 and 𝑘 = 1, . . . , 𝑁

𝐸𝑛 := span {Θ1, . . . , Θ𝑛} ,

𝐹𝑘𝑛 := span {Υ𝑘1, . . . , Υ𝑘𝑛}

(18)

and let 𝑃𝑛 be the 𝑛th-projection of 𝐸 onto 𝐸𝑛; that is, for all
𝑥 ∈ 𝐸,

𝑃𝑛𝑥 :=

𝑛

∑

𝑖=1
Θ
∗

𝑖
(𝑥) Θ𝑖. (19)

We also suppose that for all 𝜆 ∈ Λ, 𝑘 = 1, . . . , 𝑁, and 𝑛 ≥ 1

𝑥 ∈ 𝐸𝑛,

{
{
{
{

{
{
{
{

{

0 = 𝑎1𝜆 (𝑥, ⋅)

.

.

.

0 = 𝑎𝑁𝜆 (𝑥, ⋅)

󳨐⇒ 𝑥 = 0,

(20)

and there exists 𝜌
𝑛

𝜆
> 0 such that

(𝑦1, . . . , 𝑦𝑁) ∈ 𝐹1𝑛 × ⋅ ⋅ ⋅ × 𝐹𝑁𝑛

󳨐⇒ 𝜌
𝑛

𝜆

𝑁

∑

𝑘=1

󵄩
󵄩
󵄩
󵄩
𝑦𝑘

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑁

∑

𝑘=1
𝑎𝑘𝜆 (⋅, 𝑦𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(21)

Then, Theorem 3 guarantees the existence of unique 𝑥
𝑛

𝑗
∈ 𝐸𝑛

such that
(𝑦1, . . . .𝑦𝑁) ∈ 𝐹1𝑛 × 𝐹𝑛𝑁

󳨐⇒

{
{
{
{

{
{
{
{

{

𝑦
∗

1 (𝑦1) = 𝑎1 (𝑥
𝑛

𝑗
, 𝑦1)

.

.

.

𝑦
∗

𝑁
(𝑦𝑁) = 𝑎𝑁 (𝑥

𝑛

𝑗
, 𝑦𝑁) .

(22)

Corollary 4, when applied to this vector-valued variational
problem, implies

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

𝜆
− 𝑃𝑛𝑥0

󵄩
󵄩
󵄩
󵄩

≤

𝑀

𝜌
𝑛

𝜆

max
𝑘=1,...,𝑁

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑦
∗

0 (Υ𝑘𝑖) − 𝑎𝑘𝜆 (𝑃𝑛𝑥0, Υ𝑘𝑖)
󵄨
󵄨
󵄨
󵄨
,

(23)

and if
𝛾 := sup
𝜆∈Λ,𝑛≥1

𝜌
𝑛

𝜆
> 0, (24)

then it suffices to minimize

𝜑𝑛 (𝑗) := max
𝑘=1,...,𝑁

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑦
∗

0 (Υ𝑘𝑖) − 𝑎𝑘𝜆 (𝑃𝑛𝑥0, Υ𝑘𝑖)
󵄨
󵄨
󵄨
󵄨

(25)

or equivalently the discrete objective function

Φ𝑛 (𝑗) :=

𝑁

∑

𝑘=1

𝑛

∑

𝑖=1
(𝑦
∗

0 (Υ𝑘𝑖) − 𝑎𝑘𝜆 (𝑃𝑛𝑥0, Υ𝑘𝑖))
2

, (26)

which is easier to minimize.

3. Numerical Examples

In this section we present three different numerical examples.

Example 1. We consider the linear system

−

𝑑

𝑑𝑥

(𝜅 (𝑥)

𝑑𝑢

𝑑𝑥

) + 𝐴𝑢 = 𝑓 (𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 0,

𝑢 (1) = 0,

(27)

with
𝜅 (𝑥) = 5 + 2𝑥,

𝑢 = [

𝑢1

𝑢2
] ,

𝐴 = 3,

𝑓 (𝑥) = [

𝑓1 (𝑥)

𝑓2 (𝑥)

] = [

8𝑥

1

] .

(28)
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Figure 1: For Example 1: (a) the numerical solution 𝑢, (b) the noised target �̃�1, and (c) the noised target �̃�2, with 5% relative noise added.

We solve the linear system, sample each solution component
at 𝑀 uniformly distributed data points in [0, 1], add relative
noise of 𝜀, and fit 6th-degree polynomials to the resulting
data to produce a target solution �̃�. Figure 1 shows the
numerical solution 𝑢 and the target functions �̃�𝑖 with 𝑀 = 20
and 𝜖 = 0.05. We consider the inverse problem: Given �̃�

and 𝑓(𝑥), approximate 𝜅(𝑥) and the coefficient 𝐴 such that
the resulting system admits �̃� as an approximate solution.
We set

𝜅 (𝑥) =

𝑁

∑

𝑖=1
𝜆𝑖𝑥
𝑖
. (29)

With {𝜉𝑖}
𝑛

𝑖=1 equal to the 𝑛-dimensional “hat basis” of [0, 1],
for various values of 𝑀, noise 𝜀, 𝜅 degree 𝑁, and basis
dimension 𝑛, we construct the objective function in (26)
and minimize it to find 𝜆 = (𝐴, 𝜆0, . . . , 𝜆𝑁). The results are
presented in Table 2.

Example 2. We consider the coupled system

−

𝑑

𝑑𝑥

(𝜅 (𝑥)

𝑑𝑢

𝑑𝑥

) + 𝐿𝑢 = 𝑓 (𝑥) 0 < 𝑥 < 1,

𝑢 (0) = 0,

𝑢 (1) = 0,

(30)

with
𝜅 (𝑥) = 5 + 2𝑥,

𝐿 = [

0 2

−3 0

] ,

𝑓 (𝑥) = [

𝑓1 (𝑥)

𝑓2 (𝑥)

] = [

𝑥
−3/5

(1 − 𝑥)
−3/5

] .

(31)

Note that the forcing functions 𝑓1(𝑥) and 𝑓2(𝑥) are not
Hilbertian, living instead in 𝑊

1,3/2
0 (0, 1), for example. We



6 Mathematical Problems in Engineering

Table 2: Recovered parameter values for Example 1. True values are 𝜆 = (3, 5, 2, 0).

𝑀 𝑛 𝜀

Recovered 𝜆

𝑁 = 1 𝑁 = 2
10 20 0 (3.0000, 4.9999, 2.0002) (3.0000, 4.9999, 2.0001, 0.0001)
10 20 0.01 (2.9628, 4.9411, 2.1213) (3.0259, 4.9717, 1.7660, 0.3278)
10 20 0.03 (2.9108, 4.8174, 2.3647) (3.0879, 4.9132, 1.2916, 0.9902)
10 20 0.05 (2.8898, 4.6858, 2.6078) (3.1637, 4.8520, 0.8091, 1.6614)
30 40 0 (3.0001, 4.9998, 2.0003) (3.0001, 4.9998, 2.0002, 0.0001)
30 40 0.01 (2.9250, 4.9758, 2.0816) (3.0265, 5.0203, 1.5585, 0.4778)
30 40 0.03 (2.8888, 4.8936, 2.2519) (3.1537, 5.0431, 0.6498, 1.4600)
30 40 0.05 (3.0083, 4.7664, 2.4290) (3.3781, 5.0415, −0.2832, 2.4671)

u1

u2

0.03

0.02

0.01

0

0 0.2 0.4 0.6 0.8 1

Figure 2: The numerical solution at 511 points for Example 2.

work in the reflexive framework of Section 2. (In [16], we
observed that the Hilbert space solution framework failed
to work for a single equation with forcing function 𝑓1(𝑥).)
Following [23, Proposition 4.8], we can construct a Schauder
basis {𝑒𝑛}𝑛∈N in the Sobolev space 𝑊

1,𝑝
0 (0, 1) by integrating

the Haar system of 𝐿𝑝(0, 1).
The BVP has singularities at 𝑥 = 0 and 𝑥 = 1, since at

each endpoint one of𝑓1(𝑥) or𝑓2(𝑥) is undefined.The forward
problem can be solved numerically by using collocation
techniques. We use COMSOL to solve it. Figure 2 presents
the numerical solution. Next, we represent the solution in the
subspace𝐸511 generated by the first 511 terms of the Schauder
basis; call these representations �̃�1(𝑥) and �̃�2(𝑥). We consider
the inverse problem: find 𝐾(𝑥) such that �̃� is admitted as an
approximate solution to (30) with 𝜅(𝑥) replaced by 𝐾(𝑥).

We solve the inverse problem by constructing the objec-
tive function in (26) with 𝑛 = 511, 𝜉𝑖 equal to the 𝑖th element
of the Schauder basis, and 𝐾(𝑥) = ∑

𝑁

𝑖=0 𝜆𝑖𝑥
𝑖. With these

choices, we have that

(𝑎1)
𝜆

(�̃�, 𝜉𝑖) = ∫

1

0
(𝐾 (𝑥) 𝜉

󸀠

𝑖
(𝑥) �̃�
󸀠

1 (𝑥)) 𝑑𝑥

+ 2∫

1

0
�̃�2 (𝑥) 𝜉𝑖 (𝑥) 𝑑𝑥,

(𝑎2)
𝜆

(�̃�, 𝜉𝑖) = ∫

1

0
(𝐾 (𝑥) 𝜉

󸀠

𝑖
(𝑥) �̃�
󸀠

2 (𝑥)) 𝑑𝑥

− 3∫

1

0
�̃�1 (𝑥) 𝜉𝑖 (𝑥) 𝑑𝑥,

((𝑇0)1)
𝜆

(𝜉𝑖) = ∫

1

0
𝑓𝑖 (𝑥) 𝜉𝑖 (𝑥) 𝑑𝑥.

(32)

When 𝑁 = 1 upon minimizing the objective function we
obtain, to four decimal places, 𝜆0 = 5.0893 and 𝜆1 = 1.7920.
When 𝑁 = 2, we find 𝜆0 = 5.0698, 𝜆1 = 1.9840, and
𝜆2 = −0.1929.

Example 3. We consider the 2D linear system

− ∇ ⋅ (𝜅 (𝑥, 𝑦) ∇𝑢) + 𝐴𝑢 = 𝑓 (𝑥, 𝑦) ,

0 < 𝑥 < 1, 0 < 𝑦 < 1,

𝑢 (0, 𝑦) = 0,

𝑢 (1, 𝑦) = 0,

𝑢 (𝑥, 0) = 0,

𝑢 (𝑥, 1) = 0,

(33)

with

𝜅 (𝑥) = [

10 + 2𝑥 + 3𝑦 0

0 10 + 2𝑥 + 3𝑦

] ,

𝑢 = [

𝑢1

𝑢2
] ,

𝐴 = [

−1 3

−2 4

] ,

𝑓 (𝑥) = [

𝑓1 (𝑥)

𝑓2 (𝑥)

] ,

(34)

where 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦) have been chosen so that the
actual solution to the system is

𝑢 =

[

[

[

[

[

[

1
4

𝑥𝑦 (1 − 𝑥) (1 − 𝑦)

1
8

𝑥𝑦 (1 − 𝑥) (1 − 𝑦)

]

]

]

]

]

]

. (35)

Analogous to the process followed in Example 1, we sample
each solution component at 𝑀 × 𝑀 uniformly distributed
data points in [0, 1] × [0, 1] and add relative noise of 𝜀 to
each of these data points. A target solution �̃� is constructed
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Table 3: Recovered parameter values for Example 3. True values are 𝜆 = 𝛾 = (10, 2, 3, 0).

𝑀 𝜀 Recovered 𝜆 Recovered 𝛾

10 0 (9.9282, 1.9728, 2.9134, 0.0068) (9.9242, 1.9264, 2.9625, −0.0068)
10 0.01 (9.9268, 1.9641, 2.9096, −0.0097) (9.9233, 1.9257, 2.9594, −0.0087)
10 0.03 (9.9246, 1.9653, 2.9065, −0.0157) (9.9219, 1.9218, 2.9573, −0.0127)
10 0.05 (9.9232, 1.9685, 2.7664, −0.0221) (9.9213, 1.7821, 2.9567, −0.0170)
20 0 (9.9581, 1.9899, 2.9921, −0.0018) (9.9574, 1.9919, 2.9878, 0.0001)
20 0.01 (9.9575, 1.9886, 2.9780, 0.0002) (9.9565, 1.9827, 2.9867, −0.0018)
20 0.03 (9.9481, 1.9814, 2.9786, 0.0065) (9.9456, 1.9241, 2.9801, 0.0063)
20 0.05 (9.9378, 1.9682, 2.9141, 0.0156) (9.9228, 1.9152, 2.9680, 0.0153)
30 0 (10.004, 1.9954, 2.9904, 0.0000) (9.9954, 1.9984, 2.9957, 0.0000)
30 0.01 (9.9796, 1.9965, 2.9809, −0.0008) (9.9761, 1.9830, 3.0148, −0.0008)
30 0.03 (9.9663, 2.0146, 3.0216, −0.0059) (9.9656, 1.9816, 2.9944, −0.0059)
30 0.05 (9.9643, 2.0533, 2.9785, −0.0220) (9.9640, 2.0321, 3.0554, −0.0219)

using these data points together with our basis functions, 𝜉𝑖𝑗

(hexagonal-based pyramids in this 2D case):

𝑢1 (𝑥, 𝑦) =

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1
(𝑢1)
𝑖𝑗

𝜉𝑖𝑗,

𝑢2 (𝑥, 𝑦) =

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1
(𝑢2)
𝑖𝑗

𝜉𝑖𝑗,

for 𝑖, 𝑗 = 1, . . . , 𝑀.

(36)

We consider the inverse problem:Given �̃�,𝐴, and𝑓(𝑥, 𝑦),
approximate 𝜅(𝑥, 𝑦) such that the resulting system admits �̃�

as an approximate solution. We set

𝜅 (𝑥, 𝑦) =

[

[

[

[

[

[

𝑝

∑

𝑖=0

𝑞

∑

𝑗=0

𝜆𝑖𝑗𝑥
𝑖
𝑦
𝑗

𝑝

∑

𝑖=0

𝑞

∑

𝑗=0
𝛾𝑖𝑗𝑥
𝑖
𝑦
𝑗

]

]

]

]

]

]

. (37)

For various values of 𝑀, noise 𝜀, 𝜅 degree 1, and basis
dimension 𝑛 = 𝑀, we construct the objective function in
(26) and minimize it to find 𝜆𝑖𝑗, 𝛾𝑖𝑗, for 𝑖 = 1, . . . , 𝑝 and
𝑗 = 1, . . . , 𝑞. The results are presented in Table 3.
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Deuflhard, and W. Jäger, Eds., Springer Series in Chemical
Physics, pp. 92–101, Springer, Berlin, Germany, 1981.

[6] A. N. Tychonoff and V. Y. Arsenin, Solution of Ill-Posed Prob-
lems, Winston & Sons, Washington, DC, USA, 1977.

[7] A. N. Tychonoff, “Solution of incorrectly formulated problems
and the regularization method,” Doklady Akademii Nauk SSSR,
vol. 15, pp. 501–504, 1963.

[8] M. F. Barnsley, Fractals Everywhere, Academic Press, New York,
NY, USA, 1989.

[9] M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, “Solution
of an inverse problem for fractals and other sets,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 83, no. 7, pp. 1975–1977, 1986.

[10] H. E. Kunze and E. R. Vrscay, “Solving inverse problems for
ordinary differential equations using the Picard contraction
mapping,” Inverse Problems, vol. 15, no. 3, pp. 745–770, 1999.

[11] H. Kunze, D. la Torre, F. Mendivil, and E. R. Vrscay, Fractal-
Based Methods in Analysis, Springer, 2012.

[12] H. Kunze, D. La Torre, and E. R. Vrscay, “Solving inverse
problems for DEs using the collage theorem and entropy
maximization,” Applied Mathematics Letters, vol. 25, no. 12, pp.
2306–2311, 2012.

[13] H. E. Kunze, D. La Torre, and E. R. Vrscay, “Random fixed
point equations and inverse problems using ‘collagemethod’ for
contraction mappings,” Journal of Mathematical Analysis and
Applications, vol. 334, no. 2, pp. 1116–1129, 2007.

[14] H. Kunze, D. La Torre, and E. R. Vrscay, “A generalized collage
method based upon the Lax-Milgram functional for solving
boundary value inverse problems,” Nonlinear Analysis. Theory,
Methods & Applications, vol. 71, no. 12, pp. e1337–e1343, 2009.

[15] V. Capasso, H. E. Kunze, D. La Torre, and E. R. Vrscay, “Solving
inverse problems for differential equations by a ‘generalized
collage’ method and application to a mean field stochastic
model,”Nonlinear Analysis: Real World Applications, vol. 15, pp.
276–289, 2014.

[16] M. I. Berenguer, H. Kunze, D. La Torre, and M. Ruiz Galán,
“Galerkin schemes and inverse boundary value problems in
reflexive Banach spaces,” Journal of Computational and Applied
Mathematics, vol. 275, pp. 100–112, 2015.

[17] M. I. Berenguer, H. E. Kunze, D. La Torre, and M. Ruiz Galán,
“A collage-based approach to inverse problems for constrained



8 Mathematical Problems in Engineering

variational equations,” Journal of Computational and Applied
Mathematics. Accepted.

[18] V. V. Semenov, “Projection theorem for Banach and locally
convex spaces,” Cybernetics and Systems Analysis, vol. 44, no. 5,
pp. 722–728, 2008.

[19] D. Boffi, F. Brezzi, andM. Fortin,Mixed Finite Element Methods
and Applications, vol. 44 of Springer Series in Computational
Mathematics, Springer, Heidelberg, Germany, 2013.

[20] G. N. Gatica, A Simple Introduction to the Mixed Finite Element
Method.Theory and Applications, Springer Briefs in Mathemat-
ics, Springer, 2014.

[21] A. I. Garralda-Guillem and M. Ruiz Galán, “Mixed variational
formulations in locally convex spaces,” Journal of Mathematical
Analysis and Applications, vol. 414, no. 2, pp. 825–849, 2014.

[22] M. R. Galán, “An intrinsic notion of convexity for minimax,”
Journal of Convex Analysis, vol. 21, no. 4, pp. 1105–1139, 2014.
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