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ABSTRACT  

In recent years different electrokinetic cell models for concentrated colloidal 

suspensions in aqueous electrolyte solutions have been developed. They share some of its 

premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, 

neglecting both the specific role of the so-called added counterions (i.e., those released by the 

particles to the solution as they get charged), and the realistic chemistry of the aqueous 

solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. 

These assumptions, while having been accepted for dilute conditions (volume fractions of 

solids well below 1 %, say), are now questioned when dealing with concentrated suspensions. 

In this work, we present a general electrokinetic cell model for such kind of systems, 

including the mentioned effects, and we also carry out a comparative study with the standard 

treatment (the standard solution only contains the ions that one purposely adds, without ionic 

contributions from particle charging or water chemistry). We also consider an intermediate 

model that neglects the realistic aqueous chemistry of the solution but accounts for the correct 

contribution of the added counterions. The results show the limits of applicability of the 

classical assumptions and allow one to better understand the relative role of the added 

counterions and ions stemming from the electrolyte in a realistic aqueous solution, on 

electrokinetic properties. For example, at low salt concentrations the realistic effects of the 

aqueous solution are the dominant ones, while as salt concentration is increased, it is this that 

progressively takes the control of the electrokinetic response for low to moderate volume 

fractions. As expected, if the solids concentration is high enough the added counterions will 

play the dominant role (more important the higher the particle surface charge), no matter the 

salt concentration if it is not too high. We hope this work can help in setting up the real limits 

of applicability of the standard cell model for concentrated suspensions by a quantitative 
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analysis of the different effects that have been classically disregarded, showing that in many 

cases they can be determinant to get rigorous predictions. 

 

KEYWORDS: concentrated suspensions; cell model; electrophoretic mobility; electrical 

conductivity; standard electrokinetic model; aqueous electrolyte solutions 
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1. Introduction 

The use of nanoparticle-based systems has experienced an outstanding increase in 

recent years, not only because of the many new physical phenomena unraveled by size 

reduction down to the nm scale, but also due to the growing number of technological and 

biomedical applications [1-3]. Although dilute suspensions of nanoparticles suspended in 

aqueous media have been extensively dealt with, it is the more practical use of the 

concentrated ones that has determined the present interest in their study.  

In addition to different microscopies, electrokinetic techniques, especially 

electrophoresis, have proved to be very powerful in characterizing nanoparticles in 

suspension, mostly (but not only) in aqueous solutions [4]. In the last decades, models of 

electrophoresis for concentrated suspensions in the presence of dc or ac electric fields have 

been developed based on the cell model concept to account for particle-particle 

electrohydrodynamic interactions under a mean-field approach. An interested reader can find 

an extensive discussion about the cell model approach in the review by Zholkovskij et al. [5]. 

Closely related to the main topic of this contribution is the field of the so-called salt 

free suspension. Ideally, it is a suspension fully devoid of ions other than the “added” 

counterions, i.e., the countercharge released by the particles to the solution as they get 

charged. Salt-free suspensions have a special importance in soft matter physics especially in 

the process of formation of colloidal crystals, as long-range electrostatic interparticle 

interactions are less screened in such systems [6-10]. In the present study the suspensions also 

include an external salt, and we will be mainly concerned in exploring the role of the added 

counterions against those of the ionic species of the salt. 

Interestingly, both aspects (volume fraction of dispersed solids) and low ion 

concentration are interrelated in situations where closely packed, typically spherical particles 
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are investigated. In such cases, volume fractions of solids associated to the onset of 

crystallization range around and above 50 %, whereas electrolyte concentrations are typically 

kept very low, in the vicinity of 1 µmol/L [11]. These would be typical situations in which the 

full model described in this paper can (and probably should) be used. 

 After the original contributions of Oosawa and collaborators [12] regarding the 

electrokinetics of dilute salt-free systems, Ohshima studied more recently several equilibrium 

and transport properties of these systems [13-17]. Later, Chiang et al. [18] extended the 

electrophoretic studies with salt-free suspensions to concentrated ones, and the present 

authors also contributed with electrokinetic [19] and rheological [20] models for these salt-

free suspensions. Likewise, finite ion size effects have been added in order to achieve a quite 

complete description of concentrated salt-free suspensions [21]. 

A further model improvement was done by considering, what can be denominated 

realistic conditions in the chemistry of ionic species in aqueous solution, assuming in all cases 

equilibrium in all chemical reactions involved [22]. A more realistic model model considers 

the role of ions coming from water dissociation and from the chemistry of possible carbon 

dioxide contamination of the solution under a non-equilibrium chemical approach for 

chemical reactions. The choice of a non-equilibrium scenario for chemical reactions obeys to 

the fact that forward and backward chemical reactions do not proceed necessarily at the same 

rate under the influence of external electric fields. 

Results from new models for the above mentioned realistic salt-free suspensions have 

shown the importance of considering non-equilibrium association-dissociation chemical 

reactions in solution for a precise description of the electrokinetics of these systems [23]. 

Suffice it to mention that such models have been able to explain the presence of a low 
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frequency relaxation process that had not been captured by previous theories based on the 

assumption of chemical equilibrium. 

Many of the findings attained with realistic concentrated salt-free suspensions will be 

of worth for the development of the new model that includes an electrolyte in the solution. 

One can now wonder how far the predictions of such complete model may be from the 

classical or standard description of the electrokinetic response of dilute or concentrated 

suspensions in aqueous electrolyte solutions. There exist classical or standard models that 

predict that response. To begin with, these models [24-35] do not take into account the 

realistic chemistry of the aqueous solutions or the role of the (added) counterions released by 

the particles. For dilute suspensions and common electrolyte concentrations in solution, the 

latter two aspects have been historically underestimated or simply neglected, because of their 

admitted minor role in comparison with that of the salt. But nowadays, very highly charged 

concentrated suspensions in aqueous solutions can be developed in laboratories and 

industries. One such case is that of ceramic slurries:  stable concentrated dispersions with 

particles bearing a high surface charge (either pH- or additive-dependent) produce the best 

green-body properties [36,37], and the same applies to pigments and paper fillers or coatings 

[38,39], or pharmaceutical suspensions [40,41], very often used with solids loads well above 

20 %. In all these instances it is mandatory to revise the influence of the latter simplifications 

as well as their limits of applicability.  

Another complicating issue when dealing with highly charged particles is the 

phenomenon of the condensation of counterions that takes place in a region very close to the 

particles surface, playing a relevant role in the overall electrokinetic response. In fact, it has 

outstanding effects in the general electrostatics of soft matter, affecting the stability of 

colloids [42-43], or the self-assembly of biomolecules [44], as well as the compaction of 

genetic material [45]. The phenomenon also occurs in pure salt-free or low-salt regimes at 
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finite volume fractions [46], and it has provided explanation to such findings as the 

independence of electrokinetic properties like electrophoretic mobility with particle charge 

[13-15,19], or the presence of a relaxation process linked to this condensate region in 

radiofrequency electric fields [23]. 

A complete model of the electrokinetics of these systems, considering the 

mathematical complexities involved, should only be used when the system truly requires it. 

Many situations might arise, depending on the nature of salt and the rest of ionic species in a 

realistic scenario, mainly that of the added counterions, in which it would appear reasonable 

that all these aspects will decrease in relevance upon increasing the external salt 

concentration. In such conditions it would then be expected that the standard electrokinetic 

predictions, which only account for the charged particles and the external salt, tend to 

approach the predictions of the more sophisticated model we are concerned here. Thus, it 

would be of worth to properly establish the realm of standard models in predicting the 

electrokinetic response of a suspension in general electrolyte solutions. To that end, a rigorous 

comparison between new and standard predictions for many typical situations has been 

carried out in this work. We hope the present study will help in establishing the limits of the 

standard models to be used with guarantee in predicting the average electrokinetic response of 

a concentrated suspension in general electrolytes, or alternatively, to set the conditions under 

which the more general model developed in this work has to be used instead. Specifically, it 

will be found that the effect of added counterions is most important for moderate volume 

fractions of solids, whereas the specific chemistry of the solutions must be considered 

carefully if the suspension does not contain additional salt in solution, or if the concentration 

of the latter is close to or below 10-5 mol/L. 

In this work, standard model results, full non-equilibrium ones and those obtained 

with a less stringent model with intermediate complexity will be presented and discussed for 
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comparison. In order to avoid the analysis of the many different couplings than can arise 

when an external salt is added to the system, we will focus our attention only on concentrated 

suspensions in which the added counterions are H+ if the particles are negatively charged, or 

OH−, if positively charged. To this suspension an external salt will be added admitting that in 

solution it will be completely dissociated. Typical examples of such suspensions might be 

negatively charged polystyrene sulphonate latexes whose original counterions have been 

dialyzed against H+. The medium will hence contain H+ ions from the particle charging, the 

water dissociation and the dissociation of the carbonic acid H2CO3 generated by dissolved 

CO2. Anions from the aqueous solution will be OH−, HCO3
− , and an externally added 

electrolyte, like KCl in the present study, will provide K+ and Cl−, ions. The electrokinetic 

response of this suspension in the presence of a static electric field (dc response) will be 

studied in terms of both, the particle electrophoretic mobility and the electrical conductivity of 

the suspension for many different conditions of particles and electrolyte solution. 

 

2. Models to be compared 

In the Supplementary Information file we have included a detailed account of the 

fundamentals of the possible descriptions of the electrokinetics of concentrated suspensions in 

electrolyte solutions, taking also into consideration the chemistry of water and dissolved CO2 

(FNEQ model, hereafter). In all cases, the finite concentration of particles will be taken into 

account following the Kuwabara cell model [47]: the suspension properties can be extracted 

from a single cell composed of a particle (spherical in our case, of radius a) located at the 

center of a sphere of solution of radius b. By applying proper boundary conditions at the cell 

boundary, it is supposed that the electro-hydrodynamic particle-particle interactions can be 

managed. This would be more plausible in homogeneous and isotropic suspensions. The size 
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of the cell is obtained by forcing the particle volume fraction of the cell to coincide with the 

particle volume fraction φ of the whole suspension, that is, φ=(a/b)3. The particle is 

characterized by a surface charge density σ and the solution, with mass density ρs, viscosity ηs 

and relative permittivity εrs, will contain added counterions that will be assumed to be H+, 

with valence z1=+1 and diffusion coefficient D1=9.3×10−9 m2s−1. The other species present are: 

OH− (z2=−1, D2=5.3×10−9 m2s−1), HCO3
−  (z3=−1, D3=1.2×10−9 m2s−1), neutral H2CO3  (the 

solution is saturated with CO2 ), with z4=0 and D4=1.3×10−9 m2s−1 (estimated from Stokes law 

and using 0.18 nm as molecular size [48]), and of course H2O  and dissolved CO2  being the 

concentration of the latter 1.08×10−5 M, calculated from its solubility and partial pressure in 

standard air at room temperature. The non-equilibrium association-dissociation processes for 

the chemical reactions in solution are: 

 

  

H2O
K1

K−1

⎯ →⎯← ⎯⎯ H+ +OH−

H2CO3

K2

K−2

⎯ →⎯← ⎯⎯ H+ + HCO3
−

H2CO3

K3

K−3

⎯ →⎯← ⎯⎯ CO2 +H2O

 (1) 

where Ki and K−i (i=1, 2, 3) are forward (s−1) and backward (m3s−1) kinetic constants. The 

further dissociation of the bicarbonate anion HCO3
−  to give H+ and CO3

=  has been disregarded 

due to its minor quantitative role in the phenomena we are concerned with [22]. A salt is also 

added to the solution, KCl in this study, introducing in the problem two new ionic species K+ 

(z5=+1, D5=1.9×10−9 m2s−1) and Cl− (z6= −1, D6 = 2.0×10−9 m2s−1). 

After the application to the suspension of an electric field E, each particle will attain a 

steady state electrophoretic velocity e µ=v E, µ being the electrophoretic mobility. The 

reference system is fixed to the particle center, and spherical coordinates (r, θ, ϕ) will be used 
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where the z axis (θ = 0) is chosen parallel to the external electric field. It has been shown that 

due to the symmetry, some radial functions h(r), Y(r) and φj(r) can be defined containing 

information about the field-induced linear perturbations (the only ones considered in the 

present study) in the fluid velocity v, the electric potential Ψ, and the electrochemical 

potential of j-th species µj, respectively [13,23]. The perturbation scheme is expressed as: 

 2 1( ) ( , , ) cos , ( ) sin , 0θ ϕ θ θ⎛ ⎞= = −⎜ ⎟⎝ ⎠r
dv v v hE rh E

r r dr
v r  (2) 

 
0( ) ( ) ( )

( ) ( ) cos
δ

δ θ
Ψ =Ψ + Ψ
Ψ = −

r
Y r E

r r
r

 (3) 

 

   

µ j (r) = µ j
0 +δµ j (r)        (j=1,...,6)

δµ j (r) = z jeδΨ + kBT
δnj

nj
0 = −z j  e φ j (r)E cosθ         (j = 1− 3,5− 6)

δµH2CO3
(r) = − e φH2CO3

(r)E cosθ         (j = 4, H2CO3) 

 (4) 

 0( , ) ( )= +P t P Pr r  (5) 

Here E =|E|, nj is the concentration in number of the j-th species, P is the pressure at 

every point r in the system, kB is the Boltzmann constant and T and e the absolute temperature 

and the elementary electric charge, respectively. The “0” superscript refers to equilibrium 

quantities, and the field-induced perturbation of a given quantity X is expressed by δX. By 

way of example, Poisson equation (S1.1,2) transforms after substitution of eqs. (3,4) as 

follows: 

 
[ ]

2 2 0 2 0

0 0

1 1

( ) ( ) ( ) cos ( ) cos [ ( )]

( ) ( ) ( ) ( ) ( ) cos ( )

θ θ

ρ δ ρ φ θ δ
= =

⎡ ⎤∇ Ψ =∇ Ψ − =∇ Ψ −⎣ ⎦

⎡ ⎤= + = + − − Ψ⎣ ⎦∑ ∑
n ions n ions

k
el k k k el k k k

k k B

r Y r E r E L Y r

z ez e n r n z e r E z e
k T

r

r r r r
  (6)  

Taking into account that 2 0 0
0( ) ( ) /ρ ε ε∇ Ψ = − el rsr r , and making use of the linear operator L 

defined in eq. (S1.19), eq. (S1.17) is obtained easily.  
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As was recently pointed out, in the non-equilibrium scenario that we also assume in 

the present model, the following conservation equations for all the ionic species linked by 

chemical reactions apply: 

 ( ) ( ) ( )σ⎡ ⎤∇⋅ =⎣ ⎦j j jn r v r r ,     (j=1,…,4)  (7) 

where the functions σj represent generation-recombination terms associated to the production 

or annihilation of ions by chemical reactions in the aqueous solution, expressed as in Eq. 

(S1.9), being vj the drift velocity of the j-th species. 

  As usual, the ions coming from the external salt verify the continuity equations: 

 ( ) ( ) 0⎡ ⎤∇⋅ =⎣ ⎦j jn r v r ,     (j=5,6) (8) 

 In this work, most of the theoretical results obtained from three models will be 

compared. All of them previously require the resolution of the Poisson-Boltzmann equation 

(PB) for the equilibrium double layer. In Section S3 of the Supplementary Information we 

provide details on the resolution of the PB equation applied in this paper.  

The first of the models, that will be called ST (see section S4), is the standard 

electrokinetic cell model for concentrated suspensions, based on the Shilov-Zharkikh-

Borkovskaya boundary conditions [32,34] and its numerical resolution for arbitrary 

conditions. Even in this approach, there remain doubts as to what is the meaning of ,
∞
+ −n  (eq. 

S4.5) in the PB equation for concentrated suspensions. For the case of dilute suspensions the 

coefficients ,
∞
+ −n  represent the ionic concentrations of the classical neutral bulk of the solution 

where supposedly the electrical potential is zero. But as discussed in S4, no clear bulk is 

found in many situations, and even more, it might not be attained in any place of the 

suspension because of the overlap of the double layers of neighbor particles. For the general 

model presented in this paper, differences can be found in the predictions of electrokinetic 

properties depending on the choice of the average salt concentration, mainly at high particle 
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volume fractions. Of course, if we are concerned with comparing theoretical predictions and 

experimental data, it is quite important that any average salt concentration value be 

unambiguously fixed: it must be established whether the experimental average salt 

concentration corresponds to moles per unit suspension volume or moles per unit liquid 

volume part of the suspension. Once this aspect is made clear, the model will properly 

manage such choice to calculate the corresponding electrokinetic properties for comparison.  

 Finally, we will also check an intermediate model (AC+S model) which does not 

include any realistic chemistry of the solution and only considers in addition to the charged 

particles, their added counterions (AC) and the externally added salt (S) in the solution. 

 

3. Results and discussion 

 3.1. Effects of the average salt concentration choice on local equilibrium ionic 

concentrations and electrokinetic properties in static electric fields. 

  

Before comparing the three models and, particularly, the effect that the realistic 

chemistry of the FNEQ approach has on electrokinetic properties, we will briefly consider the 

effect of the average concentration choice, that is, either referred to the full suspension 

volume (S), or just to its liquid part (l). In order to compare with the standard model (ST) 

predictions, the input reference molar concentrations ( c∞+,− ) will be taken as identical to the 

nominal values of 
  
c+ ,−  l  or 

  
c+ ,−  S . 
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Figure 1. Dimensionless electrophoretic mobility µ* (a) and dc conductivity Kdc (b) as a 

function of particle volume fraction φ for different average KCl concentrations. Surface 

charge density σ=−0.05 µC/cm2, particle radius a=250 nm. ST model: solid dark lines; 
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AC+S(l) model: dashed red lines; AC+S(S) model: dash-dotted blue lines. H+ as added 

counterions. Average KCl concentrations: 10−6 M, 10−4 M, 10−2 M. 

 

  In Fig. 1a we show the dimensionless electrophoretic mobility (Eq. S1.41)-volume 

fraction predictions for AC+S (l), AC+S (S) and ST models for the lowest particle surface 

charge density studied σ=−0.05 µC/cm2. Mobility data for highly charged particles are 

displayed in Fig. 2a. The same kind of calculations, regarding the dc conductivity, are plotted 

in Figs. 1b, 2b. Some interesting features can be drawn of these Figures. Let us start with the 

case of the lowest particle surface charge density in Figs. 1a, 1b:  

i) As expected, and in general terms, the discrepancies between AC+S (l) and AC+S (S) 

predictions are relatively more important at high volume fractions and high electrolyte 

concentrations (the effect is more evident for the dc conductivity in Fig. 1b). 

ii) At very low salt concentrations both AC+S predictions tend to coincide whatever the 

volume fraction because of the minor role of the salt ions against that of the added 

counterions at such conditions. 

iii) ST predictions deviate more from either AC+S (S) or AC+S (l) ones the lower the salt 

concentration because of the increasing importance of the added counterions in low-

salt conditions. The effect is again more notorious in the dc conductivity log-log 

representation in Fig. 1b. 

iv) As salt concentration increases at low volume fractions, ST predictions tend to the 

AC+S predictions. For such conditions, the much simpler ST model suffices to reach 

rigorous predictions. 

v) At high salt concentrations and whatever the volume fraction, the ST predictions tend 

to the AC+S (l) ones rather than to the AC+S (S) (see mainly Fig. 1b). The reason lies 

on the fact that the added counterions in the example studied are quite lower in 
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number than those of the salt, and secondly, that the average salt concentration value 

in the liquid volume is close to the local salt concentration at the outer surface of the 

cell as no overlapping between double layers occur at such high salt concentrations. 

Even for the small liquid volume in the cell at high volume fractions, it can be 

guaranteed that the electro-neutrality is locally attained somewhere inside the cell and 

extended till the outer surface of the cell, which behaves like the bulk of the ST model. 

 

It is thus confirmed that the ST model is a very close approximation to the AC+S (l) 

model for high average salt concentrations assuming for its c∞+,−  coefficients equal values than 

the average concentrations of the AC+S (l) model, whatever the volume fraction. On the 

contrary, the ST model seems to deviate from AC+S (S) predictions at the same high salt 

concentration and volume fractions (see upper-right part of Fig. 1b).  

 On the other hand, as particle surface charge increases, the ST predictions are not as 

close to those of the more general models AC+S (l) or AC+S (S). This can be confirmed in 

Figs. 2a, 2b for a much higher particle surface charge density, namely, σ=−25.0 µC/cm2. 

While the conductivity predictions in Fig. 2b follow similar trends with volume fraction and 

salt concentration as those shown in Fig. 1b, the mobility results in Fig. 2a show significant 

differences with respect to those obtained for low particle charge in Fig. 1a. As salt 

concentration rises, the mobility first decreases, goes to a minimum and increases again. This 

pattern is not fulfilled when the surface charge is low and indicates the important effects that 

mainly relaxation forces play as ionic strength increases, since the surface potential 

diminishes at increasing salt concentration in Figs. 2a and 2b. The magnitude of the electric 

dipole induced by the external field for a given particle charge progressively diminishes as the 

double layer reduces its width in growing ionic strength conditions. Although the more 

efficient screening of surface charge as salt concentration increases should lead the mobility 
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to correspondingly decrease, at larger ionic strengths the diminution of the relaxation effect 

that opposes the particle motion may invert the mobility behavior provoking its increase. 

 

Figure 2. Same as Fig. 1, but for a surface charge density σ=−25.0 µC/cm2. 
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Again, the deviations of the ST model from the AC+S ones are more remarkable for 

the conductivity results in Fig. 2b. As volume fraction increases for a given salt concentration 

there is a growing amount of added counterions in a decreasing liquid volume of the cell, and 

it is precisely the role of the added counterions that is not well managed by the ST model, 

partly due to the large difference between diffusion coefficients of added counterions, H+, and 

K+ cations from the salt. Hence, unlike the low surface charge case of Figs. 1a, 1b, the ST 

model is not a good approximation of more general models at high surface charges and 

moderate to high volume fractions, although the agreement improves at high salt 

concentrations and low volume fractions. This is particularly remarkable in the case of dc 

conductivity (Fig. 2b). 

 

3.2. Model predictions for the electrophoretic mobility 

In this section we will compare electrophoretic mobility predictions from three 

models: ST, AC+S (l) and FNEQ (l). A similar study might have been done with the models 

ST, AC+S (S) and FNEQ (S), but this would be an unnecessary complication for our target of 

understanding the differences between the general models and the standard one. 

First of all, let us make a previous comparison between AC+S (l) and FNEQ (l) 

models in Fig. 3. All the differences observed between them for each salt concentration are 

strictly due to the realistic chemistry of the aqueous solution included only in the FNEQ (l) 

model, as both models correctly allow for the effect of the added counterions and the external 

salt. We are interested in evaluating the relative role of the ionic content of the realistic 

aqueous solution (water dissociation and carbon dioxide contamination effects) at increasing 

salt concentration. In Fig. 3 it is represented the dimensionless electrophoretic mobility of a 

spherical particle of radius a=250 nm and surface charge density σ=−0.05 µC/cm2, in a 

concentrated suspension, as a function of its particle volume fraction at different average KCl 
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concentrations. Also, their corresponding predictions when no external salt is added to the 

suspensions are displayed for comparison. Some important conclusions can be extracted from 

Fig. 3: 

 

Figure 3. Dimensionless electrophoretic mobility µ* as a function of particle volume fraction 

φ for different average KCl concentrations. Surface charge density σ=−0.05 µC/cm2, particle 

radius a=250 nm, H+ as added counterions. AC+S (l) model: solid red lines; AC+S (l) model, 

no salt added: dashed red line; FNEQ (l) model: dash-dotted blue lines; FNEQ (l) model, no 

salt added: dotted blue line. Average KCl concentrations: 10−6 M, 10−5 M, 5x10−5 M. 

 

i) In general, the mobility curves show low-volume fraction plateaus followed by 

decreasing trends at moderate-to-high volume fractions. These behaviors are 

associated to the independency of particle surface potential with volume fraction in the 

low volume fraction region for low particle surface charge, and to the effect of 
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decreasing particle diffusion length at higher volume fractions. The latter factor in turn 

leads to larger screening effects on particle surface charge, and correspondingly, to a 

decrease of the electrophoretic mobility. 

ii) The largest discrepancy observed between models is found at the lowest salt 

concentration value. The discrepancies rapidly diminish as salt concentration 

increases. Of course, the relative effect of the realistic aqueous solution is more 

important the lower the salt concentration when the ions from the salt dissolution do 

not surpass in concentration those stemming from water dissociation and CO2 

contamination1. Note that for a KCl concentration of 5x10−5 M, both models predict 

essentially the same electrophoretic mobility. At such KCl concentration, non-

equilibrium effects regarding chemical reactions in solution relative to water and 

carbonic acid dissociation do not seem to play such an important role as that for low 

salt concentrations. 

iii) The dimensionless electrophoretic mobility curve when no external salt is added to the 

suspension shown in Fig. 3 in dashed red line corresponds to the case of a pure salt-

free suspension with just its added counterions in solution. Note the remarkable 

increasing trend of this mobility as volume fraction decreases (−6.84 at a volume 

fraction φ=10−6, not depicted in Fig. 3) separating largely from both AC+S (l) and 

FNEQ (l) predictions even for the case of 10−6 M KCl. The consideration of just the 

realistic chemistry of the aqueous solution is found to reduce the mobility a 63 % of its 

salt free value, yielding a prediction even lower than that of the AC+S (l) for the case 

of 10−6 M KCl. This fact shows the importance of the aqueous realistic solution, which 

behaves like a low concentrated salt solution, having a clear influence on the mobility. 
                                                
1 The added counterions are not considered in the discussion because both models correctly 
take them into account. 
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As it was pointed out, a salt concentration of 5x10−5 M in the present case is sufficient 

to completely mask the realistic effects. This result and many others not shown for 

brevity allow us to conclude that it is not necessary to account for realistic chemistry 

in most of the cases of moderate-to-high salt concentrations, tending AC+S (l) and 

FNEQ (l) models to convergent predictions.  

 

Figure 4. Dimensionless electrophoretic mobility µ* as a function of particle volume fraction 

φ for different average KCl concentrations. Surface charge density σ=−0.1 µC/cm2, particle 

radius a=100 nm, H+ as added counterions. ST model: solid dark lines; AC+S (l) model: 

dashed red lines; FNEQ (l) model: dash-dotted blue lines. Average KCl concentrations: 10−6 

M, 10−5 M, 10−4 M. 
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Figure 5. Same as Fig. 4 but for a particle surface charge density σ=−10.0 µC/cm2. 

 

Recall that, contrary to the AC+S (l) and FNEQ (l) models, the ST electrokinetic 

theory does not consider any other ionic species in solution different than those of the salt. A 

study of the comparison of electrophoretic mobilities according to AC+S (l), FNEQ (l) and 

ST models can be seen in Figs. 4 and 5. For this study and in order to explore other possible 

influences of the wide set of parameters affecting the mobility, two different surface charge 

densities, one moderately low and a rather high one, and a typical particle radius of 100 nm 

have been chosen. The salt concentration region explored in Figs. 4 and 5 varies from the very 

low concentration of 10−6 M KCl to a moderate one of 10−4 M KCl. Note that: 

i) For the lowest surface charge density of −0.1 µC/cm2 studied in Fig. 4, all the models 

predict practically the same mobility at the largest salt concentration of 10−4 M KCl 
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whatever the volume fraction. In this case, the ST model suffices to predict results in 

accordance with those of much more complex models. 

ii) As salt concentration decreases in Fig. 4, the FNEQ (l) model starts to deviate from 

both AC+S (l) and ST predictions for a wide range of volume fractions (with the 

exception of the very high ones where the three models tend to coincide again). This 

fact is more notorious for the lowest salt concentration, but in spite of that, AC+S (l) 

and ST models continue to give similar predictions with a small discrepancy at 

intermediate volume fractions, depending on the salt concentration. Of course, ST and 

AC+S (l) models should tend to coincide as volume fraction goes to the dilute limit 

because they only differ in the consideration of the added counterions, which are quite 

low in concentration at such extreme particle dilutions. That is the reason of the 

common plateau value of AC+S (l) and ST models in such conditions whatever the 

salt concentration shown in Figs. 4 and 5. 

iii)  AC+S (l) and FNEQ (l) models tend to converge as volume fraction increases 

whatever the salt concentration and particle surface charge density. The effect of the 

chemical reactions associated with water dissociation and CO2 contamination in the 

aqueous solution can be expected to be progressively masked by the increasing 

amount of added counterions as volume fraction grows at fixed particle charge. On the 

contrary, AC+S (l) and FNEQ (l) differ considerably at lower volume fractions, 

especially when the salt concentration is low. In this region the realistic non-

equilibrium effects linked to chemical reactions in solution are the most important 

[22]. 

iv) As volume fraction increases, AC+S (l) and ST models start to deviate, reaching a 

maximum deviation at intermediate volume fractions. The effect is more striking the 

larger the surface charge density and the lower the salt concentration (see mainly Fig. 
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5). A large part of such numerical discrepancies are associated with the different ionic 

mobility of the chosen added counterions, H+ for the AC+S (l) model, as compared to 

that of the K+ cations of the salt. They affect differently, not only the surface potential 

but also the relaxation and retardation forces acting on the particle, with strong 

influence on the final electrophoretic mobility. The electric dipole induced on the 

particle by the electric field has a braking effect on the particle motion for high surface 

conductance conditions (Dukhin number >>1Du ), known as relaxation effect [24], 

like those in Fig. 5. Furthermore, larger fluxes of counterions and coions driven by the 

field in the AC+S (l) case should be expected due to the increasing concentration of 

ions in the double layer in comparison with the ST model. This might lead to larger 

retardation forces (viscous stress on the particle by momentum transfer from the 

double layer ions to the liquid) for the AC+S (l) case. A complicating finding regards 

the fact that the electrophoretic mobility deviation between AC+S (l) and ST models 

in the intermediate region of volume fractions increases (see Fig. 5) as surface charge 

density rises. It seems that the magnitude of the stationary induced dipole moment 

should decrease in such conditions for the more realistic AC+S (l) model in 

comparison with the ST one, and therefore, the effect of braking on the electrophoretic 

mobility should decrease as well. In fact, it has been numerically shown [49] that 

realistic models predict less significant induced electric dipole moments than those in 

pure salt-free conditions for the same systems due to the particular distributions of 

ions in the double layer at the larger ionic strength environments of realistic models. If 

in our case a similar result were applicable, the relaxation force would be less 

important and the electrophoretic mobility might increase in spite of the expected 

enhancement of retardation effects.  
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In any case, it is important to point out the remarkable approximation of the ST model 

in predicting electrophoretic mobilities for most of the typical salt concentrations, even as low 

as 10−5 M KCl, at arbitrary volume fractions, provided that the particle surface charge density 

is low, and also for low volume fractions when the particle surface charge density is high. We 

believe that our numerical calculations can help in elucidating the question of the importance 

of neglecting the correct computation of the added counterions and the effects of water 

dissociation and CO2 contamination, constraining or supporting its validity from a quantitative 

point of view. In general, all the effects will be screened by the superior influence of the salt 

beyond a particular concentration limit. For such cases, the ST model constitutes an easy tool 

for making rigorous predictions of the electrophoretic mobility without invoking the degree of 

sophistication of more general models that require extra numerical efforts and larger 

computational times. 

 

3.3. Predictions of dc electrical conductivity 

Finally, we explore the dc electrical conductivity of the same suspensions studied in 

sub-section 3.2 according to AC+S (l), FNEQ (l) and ST models. Again, we will check under 

which conditions the simpler ST model may suffice to bring about rigorous predictions. In 

analogy with the previous study, we will start with a comparison of AC+S (l) and FNEQ (l) 

models in Fig. 6. Note that: 
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Figure 6. dc conductivity Kdc as a function of particle volume fraction for different average 

KCl concentrations. Surface charge density σ=−0.05 µC/cm2, particle radius a=250 nm, H+ as 

added counterions. AC+S (l) model: solid red lines; AC+S (l) model, no salt added: dashed 

red line; FNEQ (l) model: dash-dotted blue lines; FNEQ (l) model, no salt added: dotted blue 

line. Average KCl concentrations: 10−6 M, 10−5 M, 5x10−5 M. 

 

i) The conductivity curves show low-volume fraction plateaus followed by increasing 

trends at moderate-to-high volume fractions. For the AC+S (l) model the initial 

plateaus are due to the dominance of the salt ions over that of the added counterions at 

low volume fractions whatever the average salt concentration. The pure salt-free 

model in dashed red line predicts conductivities quite lower than those of the AC+S (l) 

model even at the lowest salt concentration of 10−6 M KCl in the region of low volume 

fractions.  
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ii) The conductivity plateaus remain until the volume fraction is high enough to increase 

the conductivity due to the large number of added counterions at every average salt 

concentration.  

iii) The FNEQ initial conductivity plateaus are firstly due to the ionic species linked to the 

realistic chemistry of the aqueous solution. As salt concentration increases, the low 

volume fraction conductivity plateaus augment correspondingly. The behavior as 

volume fraction increases is similar to the one for the AC+S (l) model already 

described, as the role of added counterions becomes more relevant the larger the 

volume fraction. In all cases the AC+S (l) model conductivity predictions are lower 

than the FNEQ ones for every salt concentration, due to the additional ionic sources in 

solution of the latter. 

iv) The largest relative discrepancy observed between AC+S (l) and FNEQ (l) will 

diminish the larger the salt concentration, as it is confirmed in Fig. 6. Note that for the 

maximum KCl concentration studied of 5x10−5 M, both models have not yet attained a 

full convergence for the majority of particle volume fractions, unlike the 

corresponding electrophoretic mobilities in Fig. 3. It seems that the conductivity of the 

suspension is more sensitive to the influence of the realistic aqueous solution than the 

electrophoretic mobility of a single particle. Thus, it will be unnecessary to account for 

realistic aqueous chemistry in most of the cases of moderate-to-high salt 

concentrations, and the much simpler and easier to handle AC+S (l) model would 

suffice. The question of the incorrect accounting of added counterions by the ST 

model will be addressed in the following comparison between AC+S (l), FNEQ (l) and 

ST models. 
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In Figs. 7 and 8 we show the electrical conductivity of the same suspensions studied in 

Figs. 4 and 5 according to AC+S (l), FNEQ (l) and ST models. The most remarkable features 

observed in Figs. 7 and 8 are: 

 

Figure 7. dc conductivity Kdc as a function of particle volume fraction for different average 

KCl concentrations. Surface charge density σ=−0.1 µC/cm2, particle radius a=100 nm, H+ as 

added counterions. ST model: solid dark lines; AC+S (l) model: dashed red lines; FNEQ (l) 

model: dash-dotted blue lines. Average KCl concentrations: 10−6 M, 10−5 M, 10−4 M. 
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Figure 8. Same as Fig. 7 but for a particle surface charge density σ=−10.0 µC/cm2. 

 

i) In the case of the lowest surface charge density of −0.1 µC/cm2 studied in Fig. 7, all 

the models predict similar values of the conductivity for the largest salt concentration 

of 10−4 M KCl and volume fractions lower than around 10−2. For larger volume 

fractions, the ST model starts to separate from the rest of model predictions. A similar 

feature is found in Fig. 8 for the largest surface charge density of −10.0 µC/cm2 

although the onset of volume fraction separating the point of divergence between ST 

and the rest of models decreases. As previously referred, the salt acquires the main 

role at such high concentrations, tending to screen the effects relative to the realistic 

aqueous solution. 

ii) As volume fraction increases, the added counterions increase their number as well, 

raising the overall conductivity. This feature is not correctly dealt with by the ST 
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model, considering in addition that the added counterions are H+ for AC+S (l) and 

FNEQ (l) models, hence the underestimation of the conductivity by the classical 

model. This is confirmed when particle charge increases, since a lower volume 

fraction is necessary to start the deviation of general models from the ST. 

iii) As salt concentration decreases, the FNEQ (l) model remarkably separates from AC+S 

(l) and ST predictions, showing larger conductivity values. In these conditions, the 

importance of the realistic contributions of the aqueous solution to the conductivity 

increases progressively, adding their effects to the rest of charged constituents of the 

suspension. As in Figs. 4 and 5, AC+S (l) and ST predictions tend to converge at low 

volume fractions as the role of the added counterions has a limited effect on the 

conductivity at such low particle concentrations. 

iv) In addition, AC+S (l) and FNEQ (l) models tend to converge as volume fraction 

increases at fixed salt concentration and particle surface charge density, as clearly 

shown in Figs. 7 and 8. This is due to the decreasing importance in such conditions of 

the realistic chemistry of the solution. 

v) Note finally that AC+S (l) predictions for different salt concentrations tend to 

converge as volume fraction increases at fixed particle surface charge density. The 

same is observed for FNEQ (l) predictions. Furthermore, both models share the same 

convergence limit. Instead, ST predictions for different salt concentrations tend to 

converge at high volume fractions but at a lower convergence limit in comparison with 

the one of the previous models. These facts mark the onsets of the volume fraction 

regions where the conductivity starts to be independent of both salt concentration and 

ionic contributions of the realistic aqueous solution, and begins to be controlled 

mainly by the charged particles and their added counterions, at least for not very high 

salt concentrations. The smaller ST conductivity limit can be mostly related to the 
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smaller ionic mobility coefficient of salt cations in comparison with that of the added 

counterions, and of course, the neglecting of the specific role of the latter. 

 

4. Conclusions 

In this work, we present a general electrokinetic model for concentrated suspensions in 

aqueous electrolyte solutions. In addition to the ions from a dissolved salt in solution, our 

calculation features a correct balance of the added counterions released by the particles and 

also effects associated with the realistic chemistry of the aqueous solution, related to water 

dissociation and carbon dioxide contamination. Due to the many different couplings that can 

be established between all the ionic species, some of them linked by non-equilibrium 

chemical reactions in solution, a unique general model cannot be built which encompasses all 

possible cases. For this reason, the general model in this work corresponds to the typical 

situation of a concentrated suspension whose added counterions coincide with one of the 

aqueous solution. Classically, the dominance of the ions of a dissolved salt over any others in 

the solution for typical conditions has made the standard model to consider only the ions of 

the salt and neglect the remaining species. In this work we have tried to make a theoretical 

analysis about the limits of applicability of the standard (ST) electrokinetic model in aqueous 

electrolyte solutions. To that aim, the ST model is compared to a more general model that 

correctly includes the added counterions (AC+S), and to the most general one (FNEQ) that 

accounts also for a non-equilibrium scenario for chemical reactions in a realistic aqueous 

solution. In addition, a detailed discussion has been performed regarding the different salt 

concentration averages in the concentrated suspension referred either to the whole suspension 

volume (S) or just to its liquid part (l). As a general rule, the presence of salt concentrations 

larger than around 5x10−4 M in solution at low-to-moderate particle volume fractions makes 
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the ST model a real good approximation of more advanced models if the particle surface 

charge density is low. At lower salt concentrations, ST and AC+S (l) electrokinetic 

predictions tend to converge because of the minor role the added counterions play in such 

conditions, but clearly separate from FNEQ predictions due to the realistic effects of the 

aqueous solution not taken into account in the other two models. Also, for large volume 

fractions the role of added counterions becomes dominant over those of the salt ions for 

typical salt concentrations, and general models tend to converge leading to larger deviations 

from the ST model the larger the particle surface charge density. In summary, classical 

electrokinetic assumptions have been questioned and information about their applicability has 

been given. We believe that this work can help in establishing the limits for a correct use of 

the ST model for concentrated suspensions based on the cell model concept, and assess the 

conditions under which the more general model cannot be substituted by simpler descriptions 

of the electrokinetics of concentrated colloidal suspensions. 
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 General electrokinetic model for concentrated 

suspensions in aqueous electrolyte solutions: 

electrophoretic mobility and electrical 

conductivity in static electric fields. 

Supplementary Information 
 

S1. General electrokinetic model for concentrated suspensions in aqueous 

electrolyte solutions in static electric fields. Fundamentals. 

We will review here the main theoretical aspects of the general electrokinetic 

model for concentrated suspensions in realistic aqueous electrolyte solutions used in this 

work. The fundamental equations connecting the electrical potential Ψ(r), the number 

density of each species, nj(r), their drift velocity vj(r), the fluid velocity v(r), and the 

pressure P(r) are: 

 
  
∇2Ψ(r) = −

ρel (r)
ε rsε0

 (S1.1) 

 
   
ρel (r) = zk  e nk (r)

k=1

n  ions

∑  (S1.2) 

    ηs∇
2v(r)−∇P(r)− ρel (r)∇Ψ(r) = 0  (S1.3) 
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   ∇⋅v(r) = 0  (S1.4) 

 
   
v j (r) = v(r)−

Dj

kBT
∇µ j (r)     (j=1,…,6) (S1.5) 

 
   
µ j (r) = µ j

∞ + z jeΨ(r)+ kBT ln nj (r)     (j=1,…,6) (S1.6) 

 
   
∇⋅ nj (r)v j (r)⎡⎣ ⎤⎦ =σ j (r)     (j=1,…,4) (S1.7) 

 
   
∇⋅ nj (r)v j (r)⎡⎣ ⎤⎦ = 0

   
(j=5,6) (S1.8) 

These are an extension of the non-equilibrium model for salt-free concentrated 

suspensions in realistic aqueous solutions [1] valid for the static case. Eq. (S1.1) is 

Poisson’s equation, where   ρel (r)  is the electric charge density due to all ions of valency 

zk given by Eq. (S1.2), and εrs, ε0 and e are the relative permittivity of the solution, the 

permittivity of vacuum and the elementary electric charge, respectively. Eqs. (S1.3) and 

(S1.4) are the Navier-Stokes equations for an incompressible fluid flow of viscosity ηs 

and mass density ρs at low Reynolds number, in the presence of an electrical body force. 

Eq. (S1.5) derives from the Nernst-Planck equation for the flow of each j-th species, 

including the gradient of its electrochemical potential  µ j  defined in Eq. (S1.6), being 

 
µ j

∞  its standard value, Dj its diffusion coefficient, kB the Boltzmann constant and T the 

absolute temperature. Eq. (S1.7) is the continuity equation for the conservation of each 

species that participate in chemical reactions including the possibility of generation and 

annihilation of species by such reactions. Eq. (S1.8) in turn represents the continuity 

equation for the conservation of the number of the ions stemming from the salt. The 

generation-recombination functions σj(r), (j=1,…,4) for ions and neutral molecules 

involved in chemical reactions are: 
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σ 1(r) =σ
H+ (r) = K1nH2O(r)− K−1nH+ (r)n

OH− (r)⎡
⎣

⎤
⎦ +

                                                                    + K2nH2CO3
(r)− K−2nHCO3

− (r)n
H+ (r)⎡

⎣⎢
⎤
⎦⎥

σ 2(r) =σ
OH− (r) = K1nH2O(r)− K−1nH+ (r)n

OH− (r)⎡
⎣

⎤
⎦

σ 3(r) =σ
HCO3

− (r) = K2nH2CO3
(r)− K−2nHCO3

− (r)n
H+ (r)⎡

⎣⎢
⎤
⎦⎥

σ 4(r) =σ H2CO3
(r) = − K2nH2CO3

(r)− K−2nHCO3
− (r)n

H+ (r)⎡
⎣⎢

⎤
⎦⎥ −

                                                                    − K3nH2CO3
(r)− K−3nH2O(r)nCO2

(r)⎡
⎣

⎤
⎦

   

 (S1.9) 

according to the procedure developed by Baygents and Saville for weak electrolytes [2]. 

They represent the non-equilibrium association-dissociation processes for each 

particular species in the following chemical reactions: 

 

  

H2O
K1

K−1

⎯ →⎯← ⎯⎯ H+ +OH−

H2CO3

K2

K−2

⎯ →⎯← ⎯⎯ H+ + HCO3
−

H2CO3

K3

K−3

⎯ →⎯← ⎯⎯ CO2 +H2O

 (S1.10) 

Ki and K−i (i=1, 2, 3) being, respectively, the forward (s−1) and backward (m3s−1) kinetic 

constants of the reactions.  

Substitution of the perturbation scheme described in Eqs. (2-5) of the manuscript 

into the corresponding differential equations leads, after some algebra, to the following 

differential equations that generalize the realistic salt-free case [1] with the inclusion of 

an electrolyte dissolved in the solution: 
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D
H+ z

H+ nH+
0 Lφ

H+ −
dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z
H+

e
kBT

dφ
H+

dr
− 2 h

D
H+r

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

= S  KW z
H+ φ

H+ −Y( ) + z
OH− φ

OH− −Y( )⎡
⎣

⎤
⎦ +

                                + SC  KCnH2CO3

0 z
HCO3

− φ
HCO3

− −Y( ) + z
H+ φ

H+ −Y( )−φH2CO3

⎡
⎣⎢

⎤
⎦⎥

  

  (S1.11) 

 

  

D
OH− z

OH− nOH−
0 Lφ

OH− −
dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z
OH−

e
kBT

dφ
OH−

dr
− 2 h

D
OH−r

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

= S  KW z
H+ φ

H+ −Y( ) + z
OH− φ

OH− −Y( )⎡
⎣

⎤
⎦  

(S1.12)

 

  

D
HCO3

− z
HCO3

− nHCO3
−

0 Lφ
HCO3

− −
dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z
HCO3

−

e
kBT

dφ
HCO3

−

dr
− 2 h

D
HCO3

−r

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

= SC  KCnH2CO3

0 z
HCO3

− φ
HCO3

− −Y( ) + z
H+ φ

H+ −Y( )−φH2CO3

⎡
⎣⎢

⎤
⎦⎥

 (S1.13) 

  

LφH2CO3
= −SC  KC

1
DH2CO3

z
HCO3

− φ
HCO3

− −Y( ) + z
H+ φ

H+ −Y( )−φH2CO3

⎡
⎣⎢

⎤
⎦⎥
+

                                          + 1
DH2CO3

χCH

Kh

φH2CO3

 (S1.14) 

 
  
Lφ+ =

dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z+
e

kBT
dφ+

dr
− 2 h

D+r
⎛
⎝⎜

⎞
⎠⎟

 (S1.15) 

 
  
Lφ− =

dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z−
e

kBT
dφ−

dr
− 2 h

D−r
⎛
⎝⎜

⎞
⎠⎟

 (S1.16) 

 
  
LY = −

zk
2e2nk

0

ε rsε0kBTk=1

n  ions

∑ φk −Y⎡⎣ ⎤⎦  (S1.17) 

 
  
L Lh⎡⎣ ⎤⎦ = − e2

kBTηsr
dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

zk
2nk

0φk
k=1

n  ions

∑  (S1.18) 
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where Eqs. (S1.15) and (S1.16) correspond, respectively, to the cationic and anionic 

species of the added salt, and also 

 
  
L ≡ d 2

dr 2 +
2
r

d
dr

− 2
r 2  (S1.19) 

 
2 2

3 1 6 0 1 01
1 W H O 1 W H O

1

( ),      ( )     ( )  /KS K m s K m n K s S K n
K

− − −
−

−

= = ⇒ =  (S1.20) 

 3 1 3 12
C 2 C 2 C C

2

( ),      ( )     ( )  KS K m s K m K s S K
K

− − −
−

−

= = ⇒ =  (S1.21) 

 
2 2

3 1
0 3 1 03

h H O CH 3 H O1
3

( )( ) ,      ( )  
( )

K m sK n m s K n
K s

χ
−

− −−
−−= =  (S1.22) 

The appropriate boundary conditions are: 

 p ( ) ( )δ δΨ = Ψr r   at r=a (S1.23) 

 rs rp pˆ ˆ( ) ( ) 0ε δ ε δ∇ Ψ ⋅ − ∇ Ψ ⋅ =r r r r   at r=a (S1.24) 

 0=v   at r=a (S1.25) 

    
v j ⋅ r̂ = 0      ( j = 1,...,6)   at r=a (S1.26) 

 
   

(ρm ′v ) = 1
Vcell

(ρm ′v )( ′r ) dV
Vcell
∫ = 0  (S1.27) 

 0      ∇× == vω at r=b (S1.28) 

    
δnj (r) = 0          ( j = 1,...,6)   at r=b (S1.29) 

 ˆ( )δΨ = − ⋅r E r   at r=b (S1.30) 
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At the particle surface r=a, Eq. (S1.23,24) are expressions of the continuity of 

the electric potential and normal component of the displacement vector, εrp being the 

relative permittivity of the particle. Eq. (S1.25) represents the non-slip condition for the 

fluid, and Eq. (S1.26) the impenetrability of the particle for ions and neutral molecules. 

Eq. (S1.27) expresses the condition of zero macroscopic momentum per unit volume [3] 

where ρm is the local mass density (equal to ρs or ρp depending on whether it refers to 

the solution or to the solid particle, respectively), and  is the local velocity with 

respect to a fixed laboratory reference system. At the outer surface of the cell r=b, Eq. 

(S1.28) represents the null vorticity for the fluid velocity according to Kuwabara’s cell 

model [4], and Eqs. (S1.29-S1.30) are Shilov-Zharkikh-Borkovskaya’s boundary 

conditions [5] for the perturbations of the concentrations of ions and neutral molecules, 

and of the electrical potential at the outer surface of the cell, respectively. In addition, 

the equation of motion for the unit cell in the static case imposes [6,7] 

 
  

σ rr cosθ −σ rθ sinθ⎡⎣ ⎤⎦r=b
 2πb2 sinθ  dθ

0

π

∫ = 0   (S1.31) 

due to its electro-neutrality, being rrσ  and rθσ  the normal and tangential components of 

the hydrodynamic stress tensor. 

By using the perturbation scheme of Eqs. (2-5) of the main text, the above-

mentioned boundary conditions can be expressed as: 

 ( ) 0h a =  (S1.32) 

 ( ) 0dh a
dr

=  (S1.33) 

 
2

2 2

2 2( ) ( ) ( ) 0d h dhb b h b
dr b dr b

+ − =  (S1.34) 

′v
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d 3h
dr3 (b)+ 1

b
d 2h
dr 2 (b)− 6

b2

dh
dr

(b)+ 6
b3 h(b) =

ρel
0 (b)Y (b)

bηs  
(S1.35) 

 
  

dφ j

dr
(a) = 0      ( j = 1,...,6)  (S1.36) 

   
φ j (b) = b      ( j = 1− 3,5− 6),      φ4(b) = 0   (H2CO3)  (S1.37) 

 rp

rs

( )( ) 0dY Y aa
dr a

ε
ε

− =  (S1.38) 

 ( )Y b b=  (S1.39) 

In addition, the calculation of the electrophoretic mobility µ comes from the 

boundary condition in Eq. (S1.27) for the velocity, as the velocity  ′v  in the cell 

becomes the particle velocity  µE  when it refers to the solid particle, to give [8]: 

 

  

µ = 2h(b)
b

1

1+
ρp − ρs

ρs

⎛

⎝⎜
⎞

⎠⎟
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (S1.40) 

Or in dimensionless form: 

 
  
µ* =

3ηse
2ε rsε0kBT

µ  (S1.41) 

The electric conductivity   Kdc  can be obtained from the relation between the 

average of the electrical current density J and the average of the local electric field in 

the space of a cell when the electric field is applied to the suspension [1,9]: 
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J = 1
Vcell

J dV =
Vcell

∫ 1
Vcell

zk  e nkv k
k=1

n  ions

∑ dV =
Vcell

∫ Kdc

1
Vcell

−∇Ψ⎡⎣ ⎤⎦dV
Vcell

∫  

 (S1.42) 

And it turns out to be: 

 
  
Kdc =

zk
2e2Dk

kBT
dφk

dr
 r=b

− 2
h(b)

b
zke

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
bk exp −

zkeΨ0(b)
kBT

⎛

⎝
⎜

⎞

⎠
⎟

k=1

n  ions

∑  (S1.43) 

where bk is the local Poisson-Boltzmann equilibrium concentration of the k-th ionic 

species at the point where the electrical potential is zero (see Section S3 below). Eq. 

(S1.43) generalizes that for a realistic salt free concentrated suspension to account also 

for the ionic species of the salt. 

The electrokinetic equations with the mentioned boundary conditions have been 

numerically solved by using ODE Solver routines implemented in MATLAB©. More 

details can be found in previous works from the authors [1,9-14]. 

 

S2. Ionic concentrations of the external salt added to the suspension.  

The particle volume fraction φ of the suspension is: 

 φ = VTP
VS

= NTPVP
NTPVcell

= a
b

⎛
⎝⎜

⎞
⎠⎟
3

  (S2.1) 

where VS is the total suspension volume, VTP is the total volume occupied by the 

particles, NTP is the total number of particles in the suspension, VP and Vcell are the 

particle volume and the cell volume, and a and b, the particle radius and the cell radius, 

respectively. 
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The average ionic concentrations of cations (+) and anions (−) of the salt in the 

whole suspension volume are: 

 niS =
miNA

VS
,     (i = +,−)   (S2.2) 

where mi is the number of moles of each ionic species of the added salt, and NA is 

Avogadro’s number. We can also define average ionic concentrations of cations and 

anions of the salt in the liquid part of the suspension as 

 

  

nil =
mi N A

VS −VTP

=
mi N A

VS 1−
VTP

VS

⎛
⎝⎜

⎞
⎠⎟

=
mi N A

VS (1−φ)
=

niS

(1−φ)
,    (i = +,−)  (S2.3) 

The cell model is based on the assumption that the macroscopic suspension properties 

can be obtained by appropriate averages of their local properties in a single cell. Thus, 

the average ionic concentrations of the salt in the liquid part of the cell can also be 

expressed as: 

 nil =
ni

0 (r) 4πr2  dr
a

b

∫
4π
3

b3 − a3( )
=

3φ ni
0 (r) r2  dr

a

b

∫
a3 1−φ( ) ,    (i = +,−)  (S2.4) 

Equating Eqs. (S2.3) and (S2.4) permit us to obtain 

 niS ==
3φ ni

0 (r) r2  dr
a

b

∫
a3 ,    (i = +,−)  (S2.5) 

or in molar concentrations: 

 ciS (M ) = niS
103NA

,      cil (M ) = nil
103NA

,      cil (M ) = ciS (M )
(1−φ)

,      (i = +,−)  (S2.6) 

 

S3. Poisson-Boltzmann (PB) equation. 
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  Previously to facing the resolution of the full differential equations set (Eqs. 

S1.11-S1.18) with corresponding boundary conditions (Eqs. S1.32-S1.40), it is 

necessary to have a solution of the PB equation in the particular case concerned. The PB 

equation is: 

 

  

1
r 2  

d
dr

r 2 dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟
= d 2Ψ0

dr 2 + 2
r

dΨ0

dr
= −

ρel
0

ε rsε0

ρel
0 (r) = zk  e nk

0(r) =
k=1

n

∑ zk  e 
k=1

n

∑ bk exp −
zk  e Ψ0(r)

kBT
⎛

⎝⎜
⎞

⎠⎟

 (S3.1) 

where the unknown coefficients bk are the local concentrations of the respective ionic 

species (n=5: H+ ,  OH− ,  HCO3
− ,  K+ ,  Cl− ) at the chosen position of zero equilibrium 

electrical potential. The quantities with a superscript “0” refer to equilibrium conditions 

in the absence of an applied electric field, and the boundary conditions are: 

 

  

dΨ0(r)
dr

r=b

= 0

dΨ0(r)
dr

 r=a

= − σ
ε rsε0

 (S3.2) 

referring, respectively, to the electro-neutrality of the cell and the value of the particle 

surface charge density σ.  

It is also convenient from the point of view of the numerical resolution to use all 

variables and quantities in non-dimensional form: 

 
 
x = r

a
;      !Ψ0 = eΨ

0

kBT
;      !bk =

e2a2

ε rsε0kBT
bk      (k = 1,...,5)  (S3.3) 
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In order to solve the PB equation, it is convenient to make use of a 

generalization of the third order differential equation procedure that was originally 

derived for the solution of the equilibrium electric double layer potential of a spherical 

particle in a realistic salt-free suspension [10], including now additional ionic species 

from an external salt. The PB equation reads now, after using the third-order differential 

equation procedure: 

 

 

!Ψ0⎡⎣ ⎤⎦
′′′ (x)+ 2

x
!Ψ0⎡⎣ ⎤⎦

′′ (x)− 2
x2
!Ψ0⎡⎣ ⎤⎦

′ (x)−

− !Ψ0⎡⎣ ⎤⎦
′ (x)

!Ψ0⎡⎣ ⎤⎦
′′ (x)+ 2

x
!Ψ0⎡⎣ ⎤⎦

′ (x)+ z+ !b+e
− z+ !Ψ

0 (x ) + z− !b−e
− z− !Ψ

0 (x )⎛
⎝⎜

⎞
⎠⎟

2

+ 4 !E1 +

                                                  +z+
2 !b+e

− z+ !Ψ
0 (x ) + z−

2 !b−e
− z− !Ψ

0 (x )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0
  

  (S3.4)

  

which is a generalization of the PB equation for a realistic salt-free concentrated 

suspension [10] with the inclusion of a dissolved salt, where the valences and non-

dimensional unknown coefficients for its cations and anions are given by  z+ ,  z− ,  !b+ ,  !b− , 

respectively. The boundary conditions are now: 

 

 

!Ψ0 (x = b / a = φ−1/3) = 0

!Ψ0⎡⎣ ⎤⎦
′ (x = b / a = φ−1/3) = 0

!Ψ0⎡⎣ ⎤⎦
′′ (x = 1) = − !σ

 (S3.5) 

where a new boundary condition (top one in Eq. S3.5) necessary for solving the third 

order differential PB Eq. (S3.4) has been added: it represents our choice for the origin of 

the electric potential at the outer surface of the cell (x=b/a, the non-dimensional cell 

radius). In Eqs. (S3.4-S3.5), we also have: 
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!E1 = !KW
0 + !K1

0 !NH2CO3

KW
0 = H+⎡⎣ ⎤⎦

0
OH−⎡⎣ ⎤⎦

0
,         !KW

0 = e2a2

ε rsε0kBT
⎛

⎝⎜
⎞

⎠⎟

2

KW
0 = e2a2

ε rsε0kBT
⎛

⎝⎜
⎞

⎠⎟

2

b
H+bOH− = !bH+

!b
OH−

K1
0 =

H+⎡⎣ ⎤⎦
0

HCO3
−⎡⎣ ⎤⎦

0

H2CO3⎡⎣ ⎤⎦
0 ,         !K1

0 = e2a2

ε rsε0kBT
⎛

⎝⎜
⎞

⎠⎟
K1

0

!NH2CO3
= e2a2

ε rsε0kBT
⎛

⎝⎜
⎞

⎠⎟
H2CO3⎡⎣ ⎤⎦

0
,         !σ = ea

ε rsε0kBT
σ

  

  (S3.6) 

where use has been made of the equilibrium mass-action equations for the species 

involved in the chemical reactions (Eq. (S1.10)). The concentration of CO2 molecules in 

water is determined from the solubility and partial pressure of CO2 in standard air. At a 

temperature of 25 °C and an atmospheric pressure of 1 atm, the concentration of 

carbonic acid  H2CO3⎡⎣ ⎤⎦
0  is roughly 2.0 × 10−8 M, and that of carbon dioxide 1.08 × 10−5 

M, depending on local environmental conditions. As above-mentioned, an iterative 

procedure must be used for numerically solving Eq. (S3.4) with boundary conditions 

Eq. (S3.5), so as to obtain finally the unknown  
!b+ ,  !b−  coefficients as well as the 

equilibrium electrical potential  !Ψ0 . Initial guess for  
b+  and  

b−  coefficients could be: 

 
b+
(0) = 0 ,  

b−
(0) = 0 (the realistic salt-free case). Solving for the initial guess we obtain 

 
Ψ0(0)(x) , and this permits us to calculate the new coefficients  

b+
(1)  and  

b−
(1)  by means of 

the equations: 

 

 

!b+
(1) =

!n+ l (1−φ)

3φ x2e − z+ !Ψ
0 (0 ) (x )⎡⎣ ⎤⎦ dx

1

b/a

∫
,       !b−

(1) =
!n− l (1−φ)

3φ x2e − z− !Ψ
0 (0 ) (x )⎡⎣ ⎤⎦ dx

1

b/a

∫
 (S3.7) 

where 
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n± l =

e2a2103 N A

ε rsε0kBT
c± l ( M )  (S3.8) 

and the non-dimensional form of Eq. (S2.4) (see also Eq. (S2.6) and Eqs. (S3.1)-(S3.3)) 

has been used. With the new coefficients we solve again the PB equation and get a new 

electric potential  
Ψ0(1)(x)  that allows the  

b+
(2)  and  

b−
(2)  coefficients to be obtained in a 

similar way as that described in Eq. (S3.7). We repeat this procedure until the difference 

between each of the successive coefficients is less than a selected value. The rest of 

unknown coefficients: 
   
b
H+ , 

   
b
OH−  and 

   
b
HCO3

− , can be calculated by solving the following 

equations: 

 

 

!σ = − !bH+ x2e
− z

H+
!Ψ0 (x )⎡

⎣
⎤
⎦ dx

1

b/a

∫ + !bOH− x2e
− z

OH−
!Ψ0 (x )⎡

⎣
⎤
⎦ dx

1

b/a

∫ + !bHCO3− x2e
− z

HCO3
−
!Ψ0 (x )⎡

⎣⎢
⎤
⎦⎥ dx

1

b/a

∫

!KW
0 = !bH+

!bOH−

!K1
0 !NH2CO3

= !bH+
!bHCO3−

  

  (S3.9) 

which represent the electro-neutrality of the cell (top equation) obtained by equating the 

particle charge with minus the total ionic charge in the solution, with the exception of 

that of the salt ions (the added salt is electro-neutral as a whole), and the equilibrium 

mass-action equations (the remaining equations) for the chemical reactions in non-

dimensional form (see Eq. (S3.6)). By using the definitions: 

 
 
J+ = x2e − Ψ0 (x )⎡⎣ ⎤⎦ dx,         J− = x2e

Ψ0 (x )⎡⎣ ⎤⎦ dx        
1

b/a

∫1

b/a

∫  (S3.10) 

and after some algebra, we finally obtain: 
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bH+ =
− σ σ 2 + 4 J+ J− E1

2 J+

bOH− =
KW
0

bH+

bHCO3− =
K1
0 NH2CO3
bH+

 (S3.11) 

 

S4. Standard cell model for concentrated suspensions in aqueous electrolyte 

solutions. 

 We show in this paragraph the characteristic equations of the standard cell 

model (ST model) for concentrated suspensions in aqueous electrolyte solutions based 

on Shilov-Zharkikh-Borkovskaya boundary conditions [5]. The interested reader can 

find all the details in many works in the literature [15-17]. After linearizing the 

fundamental electrokinetic equations by a similar first-order perturbation procedure as 

that shown in Eqs. 2-5 of the manuscript, we obtain: 

 
  
Lφ+ =

dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z+
e

kBT
dφ+

dr
− 2 h

D+r
⎛
⎝⎜

⎞
⎠⎟

 (S4.1) 

 
  
Lφ− =

dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

z−
e

kBT
dφ−

dr
− 2 h

D−r
⎛
⎝⎜

⎞
⎠⎟

 (S4.2) 

 
  
LY = −

zk
2e2nk

0

ε rsε0kBTk=+ ,−
∑ φk −Y⎡⎣ ⎤⎦  (S4.3) 

 
  
L Lh⎡⎣ ⎤⎦ = − e2

kBTηsr
dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟

zk
2nk

0φk
k=+ ,−
∑  (S4.4) 
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with Eqs. (S1.32-40) as boundary conditions, but restricted to just the external salt ions, 

the only ones considered by the standard model. We also need to solve the standard PB 

equation for the equilibrium electric potential: 

 

  

1
r 2  

d
dr

r 2 dΨ0

dr
⎛
⎝⎜

⎞
⎠⎟
= d 2Ψ0

dr 2 + 2
r

dΨ0

dr
= −

ρel
0

ε rsε0

ρel
0 (r) = zk  e nk

0(r) =
k=+ ,−
∑ zk  e 

k=+ ,−
∑ nk

∞ exp −
zk  e Ψ0(r)

kBT
⎛

⎝⎜
⎞

⎠⎟

 (S4.5) 

with boundary conditions in Eqs. (S3.2). The ionic concentrations 
  
n+ ,−
∞ in the standard 

PB equation and electrokinetic model for concentrated suspensions maintain the same 

notation as those representing the ionic bulk in the corresponding ones for dilute 

suspensions [18,19]. But unlike the dilute limit, there is no clear bulk in many situations 

in concentrated suspensions because of the unavoidable presence of neighbor particles 

with double layers that might overlap. Thus, a criterion must be defined to properly 

compare with the general model, that uses a priori unknown bj coefficients for the ionic 

species instead of the bulk
  
n+ ,−
∞ ’s in the Boltzmann-type concentration profiles. For the 

dilute ST model the zero electrical potential is located at an infinite distance from the 

particle surface. For the concentrated ST model, the same criterion is implicitly 

assumed according to the PB Eq. (S4.5), although it might not be found a distance from 

the particle in the space of the cell where the electrical potential attains a null value 

when double layer overlapping conditions take place. In the concentrated case, as 

particle volume fraction diminishes, the electric potential of the general model tends in a 

natural way to the one according to the standard dilute model. But at finite particle 

volume fractions, the standard ionic concentrations 
  
n+ ,−
∞  in Eq. (S4.5) must be 

adequately identified in order to compare with the general model predictions. As in the 

standard electrokinetic model for concentrated suspensions these coefficients are not 
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treated as Lagrange multipliers that are obliged to match experimental concentrations, 

we have made the discussion according to the way the model was interpreted, always 

comparing with dilute suspensions criteria and showing the differences that appear as 

particle concentration increases. Comparisons between standard model predictions and 

experimental data for concentrated suspensions have usually interpreted the electrolyte 

concentration values reported by the experimentalists as the necessary inputs   n+ ,−
∞

 of the 

standard model without further analysis. When there is not overlapping the latter 

identification is correct, but when the overlapping is present it is very important to use 

adequate PB coefficients and couple them to the average salt conditions. Recall that for 

the general non-equilibrium model the average concentrations of ions of the salt have 

been expressed as either averages in the liquid medium,   n+ ,− l , defined in Eq. (S2.3), or 

averages in the whole suspension volume,   n+ ,−S  (see also Eq. (S2.2)). It is obvious that 

as volume fraction decreases both choices will lead to the same results. The particular 

average concentration choice will depend on the experimental procedure used to 

estimate the final salt concentration in the suspension. Thus, the experimentalists may 

determine the average salt concentration by simply evaluating the number of moles of 

salt used in the preparation of the electrolyte solution, the particle volume fraction and 

the final suspension volume, and referring it to the full suspension volume or just to its 

liquid region. The general model in this work can be used with both concentration 

averages. In many cases, it is the electrical conductance of the supernatant while the 

suspension is cleaned, filtered through a membrane impermeable to particles, and 

washed with the required electrolyte solution that provides the final concentration of the 

salt that is used as input values for the bulk ionic coefficients of the standard model. 
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 Summarizing and for comparing the standard and general model for 

concentrated suspensions, equal values of salt concentration have been used as inputs in 

the models representing: i) average ionic concentrations referred to either the full 

suspension volume or its liquid part, for the general models; or ii) bulk 
  
n+ ,−
∞

 

concentrations for the standard model. It is important to point out that both types of 

average ionic concentrations give rise to indistinguishable numerical results as long as 

particle concentration tends to the dilute limit whatever the electrolyte concentration 

chosen. 
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