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Abstract

During the last years a tremendous interest in the analysis of human
behavior has emerged to better understand and meet people’s needs
and demands. One of the most relevant research areas that investigate
people behavior is human activity recognition. Human activity recog-
nition aims at identifying human conducts in an autonomous fashion
from the observation of a person’s actions and their interaction with
the surroundings. The flourishing of activity recognition is having a
great impact in society and is extremely valuable in a wide variety of
fields such as wellness, healthcare, sports or gaming.

The use of wearable or on-body sensors to monitor the human be-
havior is now on the forefront of human activity recognition. Neverthe-
less, the actual results for human activity recognition are fairly con-
strained and generally restricted to ideal or laboratory scenarios. Ac-
tivity recognition systems are designed to comply with ideal conditions
and are of limited utility in realistic domains. To become real-world
applicable, activity recognition systems must satisfy operational and
quality requirements that pose complex challenges, most of which have
been sparsely and vaguely investigated to date.

Classic activity recognition systems assume that the sensor setup
remains identical during the lifelong use of the system. However, in
users’ daily life, sensors may fail, run out of battery, be misplaced or
experience topological variations. These changes may lead to significant
variations in the sensor measurements with respect to the default case.
Consequently, activity recognition systems devised for ideal conditions
may react in an undesired manner to imperfect, unknown or anomalous
sensor data. This potentially translates into a partial or total malfunc-
tioning of the activity recognition system.

In this thesis, novel expert systems are proposed to address the
challenges of making activity recognition systems functional in real-
world scenarios.

An innovative methodology, the hierarchical weighted classifier, that
leverages the potential of multi-sensor configurations, is defined to over-
come the effects of sensor failures and faults. This approach proves to
be as valid as other standard activity recognition models in ideal condi-
tions while outperforming them in terms of robustness to sensor failure
and fault-tolerance. This methodology also shows outstanding capabil-
ities to assimilate sensor deployment anomalies motivated by the user
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self-placement of the sensors.
Furthermore, a novel multimodal transfer learning method that op-

erates at runtime, with low overhead and without user or system de-
signer intervention is developed. This approach serves to automatically
translate activity recognition capabilities from an existing system to
an untrained system even for different sensor modalities. This is of key
interest to support sensor replacements as part of equipment mainte-
nance, sensor additions in system upgrades and to benefit from sensors
that happen to be available in the user environment.

The potential of these advanced expert models leads to new re-
search directions such as autonomous systems self-configuration, auto-
adaptation and evolvability in activity recognition. Thus, this thesis
opens-up a new range of opportunities for activity recognition systems
to operate in real-world scenarios.
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Resumen

El análisis del comportamiento humano ha suscitado un tremendo
interés durante los últimos años. Este tipo de estudio se plantea como
una herramienta fundamental para un mejor entendimiento de las
necesidades individuales de cada persona aśı como para ayudar a satis-
facer dichas necesidades. Uno de los campos de investigación con más
relevancia dentro del estudio del comportamiento humano es el encar-
gado del reconocimiento de la actividad humana. El reconocimiento de
la actividad humana tiene como objetivo la identificación automática
de las conductas del ser humano a partir de la observación de las ac-
ciones ejecutadas por el mismo y su interacción con el entorno que
le rodea. El conocimiento adquirido a través del análisis del compor-
tamiento humano es actualmente aprovechado en múltiples áreas, tales
como el deporte o la industria del videojuego, manifestando un especial
interés en el ámbito de la salud y el bienestar.

Los sistemas de monitorización portables o “vestibles” se encuen-
tran a la vanguardia del reconocimiento de la actividad humana. Estos
sistemas hacen uso de sensores capaces de medir el movimiento hu-
mano y que son integrados en dispositivos espećıficos o art́ıculos de uso
cotidiano como relojes, brazaletes o bandas. Son muchas las contribu-
ciones proporcionadas hasta la fecha en el ámbito del reconocimiento
automático de la actividad humana, alcanzando muchos de los sistemas
propuestos una alta eficiencia en la detección e identificación de la ac-
tividad. No obstante, la inmensa mayoŕıa de los sistemas desarrollados
hasta la fecha son originariamente ideados para operar en condiciones
ideales o de laboratorio. En consecuencia, el uso de estos sistemas en
el mundo real presenta serias limitaciones que reducen de forma sig-
nificativa su utilidad o incluso imposibilitan su aplicación. Para poder
ser ampliamente utilizados en condiciones reales los sistemas de re-
conocimiento de la actividad requieren cumplir una serie de requisitos,
los cuales presentan complejos retos que apenas han sido investigados
en este campo.

Los sistemas de reconocimiento de la actividad son normalmente
diseñados asumiendo una configuración predeterminada de los sensores.
Más aún, se acepta que esta configuración permanece de forma in-
variable durante el uso habitual de dichos dispositivos. No obstante,
los sensores están sujetos a fallos, errores o defectos consecuencia de
cáıdas, roturas, falta de bateŕıa u otro tipo de anomaĺıas tecnológicas.
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Asimismo, el despliegue de los sensores puede cambiar sensiblemente
durante el uso de los sistemas de reconocimiento. Este tipo de varia-
ciones, perfectamente razonables en el mundo real, son dif́ıcilmente tol-
eradas por aquellos sistemas concebidos para operar en condiciones
ideales. En consecuencia, el uso de dichos sistemas en la vida real está
sujeto a fallos que pueden llevar en algunos casos incluso a una total
inoperancia del sistema.

En esta tesis se investiga el comportamiento de los sistemas de re-
conocimiento concebidos para operar en condiciones ideales cuando son
utilizados en escenarios reaĺısticos. Asimismo, esta tesis propone alter-
nativas a la metodoloǵıa de reconocimiento clásica para superar las
limitaciones impuestas por el uso de dichos sistemas en el mundo real.

Un nuevo sistema experto, el clasificador jerárquico ponderado, ca-
paz de aprovechar el potencial proporcionado por configuraciones multi-
sensor se ha desarrollado expresamente para lidiar con los efectos pro-
ducidos por fallos tecnológicos en los sensores. Dicho modelo demuestra
capacidades de reconocimiento similares a las que proporcionan otros
sistemas de reconocimiento estándar en condiciones ideales, además
de superar a éstos en términos de tolerancia a fallos en los sensores.
Asimismo, el clasificador jerárquico ponderado demuestra una alta to-
lerancia a variaciones introducidas en la disposición de los sensores en
el cuerpo del sujeto, normalmente motivadas por la forma en que los
usuarios se colocan los dispositivos que incorporan dichos sensores.

Otras variaciones en el sistema de sensado se pueden producir
cuando sensores defectuosos u obsoletos son reemplazados por otros
como parte de operaciones de mantenimiento, o cuando sensores adi-
cionales a los definidos en fase de diseño son incorporados en un proceso
de actualización del sistema de reconocimiento. En estos casos, resulta
necesario realizar un entrenamiento espećıfico para el uso de los nuevos
sistemas incorporados, lo cual requiere de un proceso muy costoso aten-
diendo al modo de aprendizaje estándar para estos sistemas. Alternati-
vamente, en esta tesis se define un nuevo método innovador que permite
la transferencia automática de las habilidades de reconocimiento de la
actividad de un sistema existente y funcional a otro que no cuenta con
dichas capacidades o no está entrenado. El método desarrollado permite
adems la transferencia de conocimiento multimodal, es decir, se puede
utilizar incluso para la transferencia de conocimiento entre sistemas que
operan sobre diferentes modalidades de sensores o fuentes heterogéneas
de información. El proceso de transferencia de conocimiento se realiza
de forma rápida y sin necesidad de intervención por parte del usuario
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o un experto, lo cual lo hace especialmente viable para su utilización
en contextos reales.

El potencial de los modelos expertos desarrollados en esta tesis
abre por śı mismo nuevas ĺıneas de investigación en el ámbito del re-
conocimiento de la actividad humana, como son los sistemas de re-
conocimiento auto-configurables y personalizables, los sistemas auto-
adaptativos y los sistemas de reconocimiento evolutivos. En este sen-
tido, esta tesis define un nuevo conjunto de oportunidades para opti-
mizar el funcionamiento de los sistemas de reconocimiento de la activi-
dad en el mundo real.
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1.1. Thesis goal

The goal of this thesis is to investigate on the effects of some of the most
prominent technological and practical challenges posed by the use of
on-body inertial sensing human activity recognition systems in the real-
world. Moreover, this thesis aims at contributing with the development
of robust expert models and systems especially devised to cope with
these issues.

1.2. Activity recognition

Automatic recognition of human physical activities, in general activity
recognition (AR), could be defined as the process of ascertaining the
actions and goals of a person from a series of observations on the per-
son’s behavior and their surrounding conditions. Behavior observation
and inference is normally performed through the use of computing and
sensing systems that can be found on the person’s area. Signal process-
ing, machine learning and pattern recognition techniques are employed
to capture the characteristics of people actions through the analysis of
their body or corporeal movements. The identification of human actions
is useful for a diverse range of applications that spans from healthcare
or assistance to gaming, sports, human-computer interaction or indus-
trial maintenance, among others.

Inference of human behavior could be approached through differ-
ent sensing platforms depending on whether the sensors are placed on
(wearable or on-body sensors) or around (ambient sensors) the person.
The use of ambient sensors such as cameras or microphones is com-
monly restricted to scenarios on which their deployment is feasible.
Consequently, AR capabilities are constrained to instrumented spaces
and stationary settings, generally applying to indoor scenarios. More-
over, these technologies hardly meet important application and user
requirements (e.g., privacy, occlusions, ambient noise) that make diffi-
cult their widespread use. On-body sensors lack of most of these limi-
tations, which has contributed to put these at the forefront of the AR
domain. On-body or wearable sensing promises ubiquitous and seam-
less recognition capabilities even for open-ended scenarios on which
ambient sensing is impractical. From the sort of sensors that may be
attached to the body, inertial sensors are the most exhaustively used,
especially accelerometers. Accelerometers have been deeply character-
ized in other demanding domains such as aeronautics or automobile
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industry, and can be now found in most mobile devices or embedded
in daily-use accessories such as watches or shoes. Accelerometers are
cheap, small and deliver rich information which make them specially
suitable for activity-aware applications.

AR integrates sensor networks with machine learning techniques to
model a wide range of human activities. The activity inference pro-
cess consists of a set of stages on which signal processing and machine
learning techniques are used. A set of sensors is deployed on the user’s
body to register their movements when performing a particular activity
or encountering a specific situation. These sensors deliver raw unpro-
cessed signals which represent the magnitude measured (e.g., accelera-
tion). The registered information may be disturbed by electronic noise
or other kind of artifacts. Depending on whether a certain information
loss is tolerated, sometimes the signals are pre-processed through a fil-
tering process. In order to capture the dynamics of the signals these
are partitioned into segments of a fixed or variable size. Subsequently, a
feature extraction process is carried out to enhance the characteristics
unique to each activity and provide a more tractable representation of
the signals for the pattern recognition stage. These features are pro-
vided as input to a classifier or reasoner, which ultimately yields the
recognized activity to one of the considered for the particular devised
problem. During the design phase, AR systems are trained on an an-
notated dataset of sensor readings on which experimental users are
recorded while executing the set of target activities.

1.3. Challenges for real-world activity recognition

In the past few decades much research has been conducted on human
activity recognition. Despite this, the take-up of the results has been
fairly limited and generally restricted to ideal or laboratory scenarios.
Laboratory systems are designed to comply with ideal conditions, how-
ever, real-world requirements are different. Consequently, AR systems
developed under laboratory assumptions are of little utility in realistic
domains. To become real-world applicable, AR systems must satisfy op-
erational and quality requirements that pose complex challenges, most
of which have been sparsely and vaguely investigated to date.

In the following, principal requirements and challenges of real-world
AR systems are detailed.
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Unobtrusiveness

Wearability limitations have traditionally been one of the most restric-
tive weaknesses in the real-world use of wearable computing. The ori-
gins of modern-day wearable computing could be attributed to the
first prototypes developed at MIT [1], which consisted in a backpack-
mounted computer to control cameras. Although pioneering everywhere
personal computing, this kind of equipment was bulky, heavy, and not
much ergonomic, thus far from being wearable but rather just portable.
Astonishing technological advances have taken place since then, princi-
pally allowing for an impressive sensor miniaturization and cost reduc-
tion that are permitting to embed sensing technology and computing
resources in a variety of items such as wrist-watches, glasses or other ar-
ticles. Similarly, this technology may be also found in general purpose
mobile devices, being smartphones the most broadly used exponent.
This constitutes a huge step forward to make wearable systems conve-
nient and acceptable for people of the real-world.

Although this new sort of systems are much more suitable than first
wearable devices, not all people are used or willing to put on a wrist-
watch, wear bracelets or use glasses. No one can deny that systems that
have not been part of our lives are now inconceivable out of them, as
occur for smartphones, however, it is more likely to get users approval
when technology gets part of their daily life in a soft manner. Spe-
cific of AR applications, systems must be comfortable and transparent
to users to avoid constraining their actions as well as to not condi-
tion the way people behave in their daily lives. Smart-clothing is the
paradigm devised to be the perfect means to support that. Neverthe-
less, smart-clothing poses complex challenges to be overcome. Apart
from the difficulty of incorporating sensing technology to traditional
apparel preparation procedures, major complexity is encountered to
make this technology resistant and resilient to habitual processes such
as washing, ironing and folding. In this regard, this technology must be
weatherproof, waterproof, flexible and stainless, otherwise, be robust
to real-world conditions.

Fashionability

There exist a stereotyped thinking of people carrying on wearable de-
vices as technological “freaks” or “geeks”. This has been fairly moti-
vated through the “extravagant” image given during the early stages
of wearable computing. The use of huge sensing prototypes pictured
a future closer to some film cyborgs and superheroes than systems
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for real-world applications and people. Although some people may like
this eccentric appearance, fashion plays an important role in our soci-
ety, thus trendiness and stylishness must be characteristics to take into
account when thinking of products to be commonly worn. Wearable
technology companies are lately putting special attention to this fact,
as demonstrates the incursion and alliances with several multinational
corporations engaged in the design, development, manufacturing and
worldwide marketing and selling of footwear, apparel and other type
of accessories. An example of this new trend is the new generation of
commercial items such as wrist-watches, bracelets or glasses that pur-
sue to blend in with daily living wearables articles. Fashion may also
help increase acceptability from those people that wish to preserve their
privacy when wearing this systems. For example, AR systems could be
utilized to help reduce childhood obesity, but users of dedicated sys-
tems could suffer from self-esteem or fear to be insulted or bullied in
presence of other children. Therefore, a strong collaboration between
technicians and fashioners is required to make these systems part of
people lives, socially accepted and with which persons are familiar.

Usability

AR systems and applications must be defined to be controllable by ordi-
nary people, which ranges from technological aware to non-expert users.
Simple and understandable systems normally demonstrate to prevail
over complex and cumbersome products. Therefore, sensor technolo-
gies and end-applications must be designed to minimize or even avoid
the need of a specific users learning.

With respect to the sensing equipment, it must be a key aim of AR
systems to guarantee as much flexibility as possible within the use of the
sensor devices. Since the tendency is to encapsulate sensors in garments
and accessories, it must be taken into account the way users normally
utilize these elements in their daily living. To that end, experts must
anticipate real-world situations that are normally disregarded during
systems design and may have a tremendous negative impact in the
correct functioning of AR systems. Typical in on-body motion sensing
systems, these effects are principally observed when the sensor deploy-
ment varies with respect to their ideal or default distribution. Standard
AR systems are not capable to cope with these variations, normally
leading to a significant recognition worsening. For example, an AR sys-
tem particularly designed to process the movements monitored on the
right wrist (e.g., through a smartclock), will potentially fail to provide
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activity detection when the sensor is worn on the left wrist. This kind
of situation is quite recurrent in real-world settings, since as for this
example some users may prefer to wear the wrist-watch on the left in-
stead of the right wrist. Moreover, even when the sensor is placed in the
correct limb or body part, nothing guarantees this will remain in that
very position lifelong, not even during a short period of time. Loose-
fitting garments or accessories are subject to placement drifts during
their use (e.g., a bracelet moves from the wrist to the elbow). Moreover,
users may wish to wear their clothes in a way different to the habit-
ual fashion (e.g., rolled up sleeves). Standard AR systems are normally
defined assuming that sensors are attached to the body in a firmly
and tightly manner, thus potential errors could be expected under the
event of sensor displacements. What must be clear is that these kind
of assumptions are not applicable in the real-world, apart from going
against important requirements such as unobtrusiveness and comfort-
ability. From a designing perspective these all are practical anomalies
derived from the systems use and must be neatly addressed to guaran-
tee an accurate and efficient activity assessment.

Privacy

Before the appearance of wearable systems, AR was mainly pursued
through image and audio processing. In fact, numerous contributions
have been provided during the last decades, with very promising results,
but unfortunately there is a limitation within their use that seems to
be impossible to overcome: privacy concerns. Recent experience demon-
strates that people are not willing to let cameras or microphones get
into their lives and observe what they normally do, independently of
the benefit derived from their use. Conversely, on-body motion sensors
surpass video and audio based systems since the recorded information
is unfamiliar and looks noninvasive to the general user, thus not cre-
ating much controversy. In fact, people do not feel themselves to be
observed but to be rather monitored, thus privacy concerns are almost
nonexistent.

Yet, privacy concerns are more than reasonable since human behav-
ior information could be maliciously utilized in case it ends up in the
“wrong hands”. It is true that many people actively share their life ex-
periences through platforms such as social networks or blogs, possibly
without knowing that some of this information could be used against
them, but society is also becoming more and more technological aware
and sensitive to the risks of sharing private information. Avoiding this
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in the wearables domain could have important negative effects in the
short-term, that may potentially lead to a generalized disbelief in the
use of these systems. Therefore, it is important to address these issues
in advance, ensuring mechanisms to fully protect users rights and pri-
vacy, as well as their safety.

Data-sharing

Another aspect that has not been deeply analyzed is the proprietary use
of the data collected through monitoring devices. Commercial AR sys-
tems are normally devised for specific applications (e.g., fitness track-
ing, gaming). Therefore, if users wish to access diverse services, they
need to wear multiple of these devices. For example, a user may wear
a bracelet to monitor their workout, another bracelet to detect sleep
disorders and a third one to determine their dietary habits, all devices
from different vendors. As the number of applications or uses increases
also the number of devices to be worn, which leads back to obsolete
and obtrusive sensor configurations as the ones used in the origins of
wearable computing. In many cases, the information captured through
all these devices will be likely the same (e.g., motion of the lower arm).
Therefore, the most reasonable option would be to have a set of gen-
eral wearable devices capable of tracking users activities. The infor-
mation collected through these systems could be leveraged by differ-
ent applications as occurs with data collected through smartphones. In
this regard, and to reduce to a bare minimum unobtrusiveness, smart-
clothing is here seen again to be the most appropriate platform. This
view opens-up a new market on which the focus is on the development
of applications, while standard measurement platforms are shared for
their use. Although a first attempt in this direction has being recently
observed with projects such as Google Glass [2], there is much work
to do to coordinate and generalize these ideas among application and
hardware developers.

Simplicity

Most of the work in AR has been devoted to the task of achieving as
much performance as possible in problems that account for an increas-
ing number of subjects and activities. To that end, models of growing
complexity are normally evaluated in lab settings and in an offline man-
ner, thus utilizing computational resources that may not be available
in real-world conditions. Although latest technical breakthroughs allow
for higher processing and faster communications, these normally en-
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tail important energy or battery demands, resources that are specially
lacking in wearable computing. As the rest of sensing and processing
units, batteries must also fit in shape and size with unobtrusiveness,
lightness and wearability requirements, which seriously restricts their
capacity. Wearable AR systems may be planned for an occasional us-
age, however, they are normally devised for an extensive daily utiliza-
tion. Therefore, an optimal use of the supplies is required, specially
for systems of long-term use. To reduce energy consumption AR sys-
tems should be simplified as much as possible. Nevertheless, to make
systems simpler may entail a reduction of the recognition capabilities.
Accordingly, a trade-off between simplicity and performance must be
considered depending on the particular application requirements.

Latency

Activity detection and identification is not performed in an instanta-
neous fashion. Nevertheless, depending on the particular target appli-
cation the inference of human behavior may be required at runtime or
rather be more flexible in terms of time. Critical recognition systems
such as the used to detect elderly falls should react as fast as possible to
alert caregivers or trigger an emergency call to the nearest healthcare
center. On the other hand, long-term monitors or trend analysis over
long periods could be performed in a more relaxed basis (e.g., report
on the calories burned during the last week).

As it happens to occur for simplicity and performance requirements,
latency also interrelates with these. Simpler computational recognition
models normally translates into faster activity detections, albeit this
may reduce the accuracy of the recognizer. The use of distributed or
parallel computing may also help reduce the reaction time for those
cases in which the recognition process could not be simplified.

Fault-tolerance

Important advances have been performed during the last years to make
sensor systems more efficient and perdurable. However, sensors are sub-
ject to degradation and damage due to their use, environmental changes
or possible manufacturing defects. Under the event of degradation, the
sensor data normally become corrupted or anomalous, therefore differ-
ent to what is expected in normal conditions. At worst, sensors may
break or stop working and no data explicitly delivered. Avoiding these
technical issues have critical consequences on the normal behaving of
standard recognition systems.
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AR systems should be capable of detecting and dealing with sensor
technical anomalies. Sensor anomalies detection is encountered of worth
to inform and request specific maintenance. However, more importantly
would be to make AR capable of handling these effects whether pos-
sible, specially for anomalies that are seen to appear occasionally or
sporadically. For example, a sensor may provide anomalous data be-
cause it is not adequately supplied, however, this situation could be
reversed when the battery is recharged. For such a task it makes no
sense to request the help of a support team, and for sure not throw the
sensor out. AR systems should be able to notice the importance of the
sensor anomaly and use the rest of the sensor ecosystem to overcome
the effects of this issue.

Critical sensor faults or breakdowns may normally require a com-
plete replacement of the affected sensor. During maintenance tasks,
AR systems should continue their work without interrupting the recog-
nition process. AR models are classically defined to operate on pre-
defined fixed sensor configurations, therefore they potentially need to
be stopped until the equipment is restored. Some applications may not
tolerate this type of interruptions, therefore recognition systems should
implement mechanisms to continue their task albeit this may imply a
worsening on the performance.

Self-configuration, auto-adaptation and evolvability

Configuration of AR systems is normally performed during the design
phase, however, real-world recognition systems are subject to runtime
changes hardly foreseeable during the systems development. Principal
changes are associated to variations on the sensor setup (e.g., a new
sensor introduced or an obsolete one replaced) or the activity concept
(e.g., a new activity is included, the description of an existing one up-
dated or unobserved activities removed from the original recognition
set). Consequently, AR systems must be capable of adapting to real-
world changing conditions of systems and users.

Like other systems, AR infrastructure is subject to upgrades and
repairs. Moreover, different sensor configurations are envisioned during
the course of a user’s normal day. Depending on the particular con-
text, users may wear specific garments (e.g., at work), casual clothes
(e.g., at home) or specific accessories (e.g., at the gym). During these
situations, sensors may be removed, substituted or newly added. Clas-
sic AR systems are trained on sensor data streams from datasets col-
lected at design time with predefined and optimal sensor configurations.
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Then, accounting for these variations would require to collect as many
datasets as possible sensor configurations, which happens to be un-
feasible. AR systems should implement mechanisms to autonomously
adapt and self-configure their models to the actual sensing configura-
tion. Likewise, these mechanisms should support the seamless integra-
tion of future sensing technologies with already existing, moving from
constructive to evolvable paradigms. AR systems should be also de-
fined to intelligently leverage those sensors that happen to be available
to the user. Moreover, depending on the particular application, the
use of part of the sensing infrastructure could be preferred. This may
help to minimize energy and resources consumption, as well as reduce
systems simplicity during execution time.

AR systems generally aim to work on a general basis, i.e., for di-
verse type of users. To that end, recognition models are built on data of
various persons, seeking to learn the actual variability among subjects.
Nevertheless, to capture the diversity among all people in the world is
quite challenging, almost impossible, and certainly difficult to perform
from the observation of a reduced set of experimental volunteers. To
make this feasible, AR systems should learn the particular attributes of
each user, thus adapting their parameters to their behavioral character-
istics. To this end, a general model could be used as base system, and
then evolve to fit with the user characteristics. Instead, systems could
be directly personalized during the design phase, but developing a cus-
tomized system for each person is unfeasible for obvious reasons. Even
when personalization of systems could be procured, it does not ensure
a lifelong operation of the system. Users characteristics and circum-
stances change during their life owing to diverse reasons (e.g., aging,
varying health conditions), which further translates into a continuous
drift on their normal behavior. In AR this means a change in the activ-
ities description with respect to the ones employed during the system
design. This effect, also known as “concept drift”, has to be taken into
account to support the utilization of the AR system for the long-term,
as well as to guarantee a certain level of recognition accuracy.

Systems need to dynamically and autonomously adapt to new sit-
uations that arise at runtime, evolving over time to operate in unfore-
seen circumstances during the initial design phase. However, for the
adaptation process systems require extra knowledge or feedback, pos-
sibly gained from the analysis of their own behavior and the learning
from past experiences. This feedback could come from external or inter-
nal sources. In recent works, external knowledge has been leveraged in
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AR to improve systems efficiency and robustness, for example through
asking users to notify whether the recognition system is making a de-
tection error or not. Nevertheless, involving users in an active manner
may generally result burdensome, which goes against systems usabil-
ity requirements. Moreover, the information may be biased or erroneous
because of unintentional misreports. The use of biofeedback (i.e., knowl-
edge gained from the analysis of physiological functions) could be an
appropriate means to avoid users explicit involvement, however, obtru-
sive interfaces are normally required (e.g., electroencephalogram caps
for the detection of EEG error-related potentials). The best choice is
possibly to make AR systems capable of providing its own internal feed-
back. Thus for example, recognition systems may exploit the knowledge
gained from ensembles of decision makers, in which each sensor node
provides a decision on the subject behavior and errors are detected
from the divergence with respect to the majority opinion.

Reliability

Reliability is a decisive factor to determine the success of a product,
specially for the long-term. Misleading users about AR system capa-
bilities that are vaguely or even not supported could translate into a
general disbelief in the use of these systems. In fact, day by day new
AR commercial systems appear in the market claiming to provide “full”
recognition capabilities, normally referring to the capacity of identify-
ing any possible activity the user is able to perform. This is normally
planned for marketing purposes, however, it does not reflect reality.
Numerous challenges need to be still solved before making AR systems
truly operable and reliable in the real-wold.

The accurate and precise detection of human activity poses several
complex challenges. One of the principal challenges refers to the activ-
ity concept or definition. Although it could seem trivial at first sight,
the complexity and diversity of human activities and actions make truly
difficult to elaborate a clear definition of them. In fact, the way people
interpret activities varies from person to person. Defining the start and
end of an activity may be difficult (e.g., cooking starts when the user ar-
rives to the kitchen or when the person holds the pan or when frying the
steak?), activities may be interleaved (e.g., a user awaiting for the pan
to get hot is just standing or also cooking?) or be of diverse granularity
(e.g., standing still is an action, posture, gesture, activity?). Moreover,
activities can be performed in many different ways, depending on who
carries out the activity, in which conditions, environmental context,
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etc. In human activity recognition using on-body inertial sensors, fac-
tors such as age, weight, height or other subject-related features, as well
as ambient and context-related factors (e.g., subject carrying items, un-
stable floor, etc.) may determine that highly different data could refer
to a similar activity concept. As an example, one cannot expect to reg-
ister the same kind of data when an adult is cycling than when an
elder does; similarly the gait may differ when walking on the ground,
the grass or a frozen surface. Fortunately, there are characteristics on
the habitual execution of some of these activities that in theory allow
us to discriminate them. For example, depending on the intensity of
the movements one should be able to distinguish between sedentary
and dynamic activities. Nevertheless, some metrics may be useful for a
group of people but not valid for others. For instance, speed could be
used to differentiate between walking and running, however, the speed
measured for an athlete when walking could possibly correspond to the
top velocity of an elder while running.

Classic AR systems are trained on data collected in laboratory or
ideal settings. People behavior in laboratory environments is normally
conditioned because of their awareness and the influence of experts
comments or presence. When applied to real-world conditions, a sig-
nificant worsening on the systems operation is observed. To overcome
this, real-world or naturalistic data should be used, thus helping over-
come the gap between ideal and actual human behavior. In this regard,
other important challenge in the AR field is to collect new datasets on
which systems may be evaluated. Differently to other fields, there is
no gold standard to universally validate the contributions. Therefore,
there exists the need of a joint effort of the AR research community
to collect rich general-purpose datasets as it occurs in other research
fields (e.g, speech recognition, computer vision). With the lack of stan-
dardized datasets, the task of reproducing research turns to be quite
difficult, which is found to be crucial in a research discipline.

Other challenges are faced during the learning of AR systems, such
as data imbalancement or null class identification. Activity imbalance-
ment refers to the fact that some activities are more frequently per-
formed than others. For example, in long-term daily monitoring most
of the time may be categorized in sleeping and working activities. Other
activities may appear more occasionally or be completely infrequent.
Models trained in an uneven amount of activity data could fail to gen-
eralize their recognition capabilities. Otherwise, some activities could
be rigorously learned, while others may be weakly characterized. An-
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other active area of investigation refers to the characterization of the
null or “garbage” class. The null class comprises all those activities or
actions that are not within the scope of the developed recognition sys-
tem. Normally, only a few parts of the data stream are of interest to the
AR systems (e.g., “data corresponding to gait”), thus there is a major
part of the stream which is irrelevant (e.g., “all data not correspond-
ing to gait”). This introduces once again an important imbalancement
problem in which activities of interest (e.g., “walking”) may be eas-
ily confused with activities of similar characteristics (e.g., “jogging or
running”). These problems are shared with the more general field of
pattern recognition, however, they must be also researched in the AR
domain.

With regard to some claims of commercial AR products, we wish
to specially notice that these systems are generally based on the use
of a sole sensor unit. To ensure that “absolute” recognition capabili-
ties could be achieved through the monitoring of a single body part
is completely unrealistic. It is true that depending on the target ap-
plication, the information registered through some body parts may be
more valuable than from others. Nevertheless, common sense and expe-
rience allow us to state that the more diverse the target activities the
more necessary a complete description of the body motion is required.
To recognize all possible human activities (which is yet to be seen),
information from the complete body is inevitably required.

Other important requirements such as an affordable price are not
here specifically described but rather assumed. In fact, AR systems
are envisioned to be applicable in many domains some of which are
of limited resources, such as it occurs in the delivery of healthcare
and remote assistance in developing countries. Therefore, and as a key
factor of competitiveness, AR systems developers must keep in mind
the use of realistic resources that do not excessively rise the price of
the end-product.

1.4. Motivation and objectives

In the light of the challenges presented in Section 1.3 there is an oppor-
tunity to create more advanced systems capable of handling real-world
AR issues as well as to incorporate more intelligent capabilities to trans-
form experimental prototypes into actual usable applications. Thus the
challenge facing this work is to identify and characterize some of the
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most relevant limitations in the AR domain and develop solutions that
may help overcome these complex problems.

The goal of this thesis is to investigate on the potential impact of
some of the most prominent technological and practical issues in the use
of on-body inertial sensing AR systems for the real-world, to demon-
strate the limitations of classic solutions and to provide alternatives to
cope with these effects. In this way, this work seeks to contribute to
a better understanding of the needs of realistic activity-aware appli-
cations and aims to help paving the path to a new generation of AR
systems readily available for their use in the real-world.

This thesis aims at achieving this goal via the following supporting
objectives:

Objective 1: Investigate the tolerance of standard AR systems
to unforeseen sensor failures and faults, as well as contribute
with an alternate approach to cope with these technological
anomalies.

Classic AR approaches assume that the sensor configuration remains
identical during the lifelong use of the system. Nevertheless, as it hap-
pens to occur to any other electronic device, AR sensing systems are
also subject to faults or technical anomalies normally due to harsh con-
ditions. Changes in the sensor internal characteristics such as battery
failures or sensor degradations may lead to potential variations in the
sensor readings. Consequently, models trained on ideal signal patterns
may react in a different fashion to imperfect or anomalous sensor data.

Major changes could be produced by critical sensor failures. At
worst, sensors may get broken or damaged to an extent so they stop
delivering data. Conceptually, similar situations may be observed when
the user leaves a sensor behind or it is powered down, resulting in the
loss of signals. Under these circumstances, AR models devised for ideal
sensor configurations may potentially fail to provide activity-awareness
capabilities.

Through this objective, the challenges posed by fault-tolerance re-
quirements are aimed to be investigated. To that end, the robustness
of standard AR systems to the effects of sensor functional anomalies
should be evaluated and benchmarked with respect to their perfor-
mance in ideal conditions. Likewise, this work also aims at contributing
with an alternative AR model that may deal with these effects.
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Objective 2: Research the robustness of standard AR systems
to unforeseen variations in the sensor deployment, as well as
contribute with an alternate approach to cope with these prac-
tical anomalies.

AR systems are normally designed to optimally operate on a specific
sensor deployment. If the sensor distribution is modified with respect
to the default deployment, the system recognition capabilities could
severely worsen. In that case, sensor data streams and activity pat-
terns registered from specific body parts and sensor orientations may
potentially change when the sensors are distributed or worn differently
to as originally planned. Therefore, standard AR systems learned on
activity patterns of a default or ideal deployment may likely incur in
misrecognition after changes in the sensor distribution.

Variations in the sensor deployment are principally motivated by
the way users self-place or wear the sensors. Motion sensors are seen to
be embedded into accessories or clothes, which may be worn on several
different ways. Thus, a sensor devised to be worn on a specific body
part could be accidentally or consciously placed in a different or even
completely unrelated location (e.g., a smartclock is worn on the left
instead of the right wrist, or a instrumented bracelet thought for the
ankle is placed on the wrist). Likewise, sensors orientation may change
when drifted or rotated (e.g., a wrist-watch pointing down instead of
up). Placement and orientation changes could not only be originated
when putting the sensors on but occur during the normal use of the
systems. Thus, a sensor placed on a predefined target limb may drift
during its use to a near position (e.g., a sport-belt devised for the chest
may move to the upper abdominals during the exercising). Sensors
embedded in loose-fitting garments are especially prone to experience
these displacements in a continuous manner.

Sensor deployment changes not only apply to instrumented apparel
or accessories but also to other articles. AR systems based on main-
stream sensing technologies such as the implemented by mobile devices
are also subject to deployment changes. For example, a smartphone
could change its orientation from time to time, be originally placed in
a shirt and then slip into a trousers pocket, or be held on a palm. Under
all these real-world circumstances, embedded motion sensors will likely
deliver different signals to what would be measured for a predefined or
ideal sensor deployment.

Usability requirements make us necessary to take into account these
potential situations and define more flexible models that may deal with
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the effects of varying sensor deployments. Through this objective this
thesis aims to analyze the effects of sensor changes derived from users
self-placement, as well as investigate the impact of large depositionings
that could be consequence of how people naturally wear and interact
with instrumented items in realistic scenarios. In this regard, this work
will also aspire to investigate the tolerance of classic AR systems to
these variations and define models that may cope with these effects.

Objective 3: Study the capacity of standard AR systems to
support unforeseen changes in the sensor network, as well
as contribute with an alternate approach to cope with these
topological variations.

Activity-aware systems are defined to be used for a specific sensor setup.
Therefore, changing the sensors normally requires redesigning the sys-
tem, which goes against durability and usability requirements. Sensor
network variations refers to removal, replacement or inclusion of new
sensors. Operationally, sensor removals are kind of similar to sensor
breakages when these fail to deliver data, thus already considered in
Objective 1. As a consequence, this objective rather focus on the chal-
lenge of substituting and adding sensors.

Sensor replacements are normally devised when a sensor breaks or
reaches the end of its useful life. In this way, sensor substitutions are
performed to recover the AR system default recognition capabilities.
However, the new sensor may have different characteristics than the
substituted one (e.g., different sampling rate, dynamic range), then the
AR model might be likely incapable of leveraging the data measured
through this. On the other hand, sensors could be newly incorporated
to the default sensor topology (e.g., the user buys a new gadget or
instrumented item). This poses a new sensor configuration that is nor-
mally unforeseen during the design phase. In both cases, a complete
redefinition and retraining of the system is required, which may need
to force the system to stop until the relearning is performed. Moreover,
the learning process requires to collect new experimental data, which
turns to be impractical for real-world settings.

Through this objective, some of the challenges posed by unobtru-
siveness, usability and self-configuration requirements are investigated.
Particularly, models to support sensor setup changes, i.e., inclusion of
new devices or equipment replacement, avoiding specific maintenance
and costly retraining of the systems are aimed to be developed.
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1.5. Outline

This thesis is structured in six chapters.
Chapter 1 presents the goal of this thesis, introduces the paradigm of

sensor-based human activity recognition, motivates research work in the
field of real-world activity recognition, defines principal requirements
and challenges related to this topic and details the supportive objectives
to achieve the thesis goal.

Chapter 2 gives a concise overview of human activity recognition
research, presenting the different stages of the activity recognition pro-
cess and describing the principal methods and configurations utilized
in on-body activity recognition. In a more detailed fashion, this Chap-
ter also presents background in prior research and methods for dealing
with sensor technological anomalies, sensor displacement and transfer
learning in the activity recognition domain, which constitutes the three
main areas of investigation of this thesis.

Chapter 3 investigates on the effects of sensor faults and failures
on classic activity recognition approaches and presents and alternative
method to cope with these technological issues.

Chapter 4 researches on the tolerance of activity recognition models
to the effects of sensor displacement.

Chapter 5 investigates on the instruction of newcomer sensor sys-
tems and proposes an alternate method to facilitate the transfer of
activity recognition capabilities between sensor systems.

Finally, in Chapter 6, achievements, contributions and final remarks
of this thesis are presented. Ideas for possible future extensions of the
presented research work are also drawn in this chapter.
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2.1. Activity recognition chain

The activity recognition chain (ARC) [3], is the methodology most
widely used in AR. The ARC consists of a set of specific steps that
combines signal processing, pattern recognition and machine learning
techniques to implement a specific AR system. Although most steps
are normally implemented, some of these are of optional application.
In the following the main stages of the ARC are described.

2.1.1. Signal acquisition

Firstly, the signals corresponding to the motion experienced by the
on-body sensors are acquired. Diverse type of sensors may be used
for this purpose, however, inertial measurement units (IMUs) such
as accelerometers, gyroscopes and magnetometers are predominantly
utilized. Accelerometers outstand among others due to their stability
characteristics, robustness to environmental changes, reduced energy
consumption and low cost. Moreover, these systems are highly minia-
turizable and embeddable in diverse kind of devices and items. All this
is possible due to a new generation of small devices called microelec-
tromechanical systems (MEMS) which possess special properties that
allow their integration in articles of the daily living.

Accelerometers produce voltage signals that are proportional to
the experienced acceleration. There exist diverse techniques for trans-
forming acceleration into an electrical signal. Generally, a mass is sus-
pended on a linear spring from a frame which surrounds the mass (Fig-
ure 2.1(a)). When the frame is shaken as a consequence of the applied
force, this begins to move further pulling the mass along with it. If the
mass suffers the same acceleration as the frame, there needs to be a
force exerted on the mass which leads to an elongation of the spring.
Accelerometers of a miniaturized size, i.e., MEMS accelerometers, base
on a slightly different structure. This consists of a suspended mass fixed
to a substrate by suspension arms (Figure 2.1(b)). The experienced ac-
celeration is proportional to the amount of displacement of the mass,
which is measured through the tilt of the arms. Diverse displacement
transducers could be used to measure this deflection, normally desig-
nating the accelerometer type. The most frequently used are capacitive,
piezoelectric and piezoresistive accelerometers.

In order to measure accelerations in different directions, various
accelerometers are simply positioned in an orthogonal manner. Bi-
axial or 2D-accelerometers (XY axes) and specially tri-axial or 3D-
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Figure 2.1: General structure of moving mass accelerometers. (a) A
mass is suspended from a frame on a linear spring with an elastic con-
stant k and a resort with a damping constant b. The elongation of the
spring is translated into a proportional voltage signal ∆V . (b) A mass is
suspended from arms on a substrate. A displacement of the mass implies
a tilt of the arms that are proportional to the experienced acceleration.

accelerometers (XYZ axes) are the most utilized configurations for in-
ertial sensing. Strictly speaking, a bi-axial accelerometer could be seen
as the combination of two uni-axial accelerometers, as well as three
uni-axial units define a tri-axial accelerometer. In fact, during the data
collection a signal is particularly measured for each corresponding frame
or axis. Therefore, in some works authors refer to this as a node or de-
vice that comprises various sensors. Nevertheless, in this dissertation
the concept of sensor is rather used akin to node, i.e., the complete
system capable of sensing, measuring, transducing and delivering the
data associated to the motion experienced by a given body part.

In a nutshell, the acquisition process comprises the measurement
of the physical phenomena (i.e., acceleration, inertia or movement suf-
fered from the body part on which the sensor is mounted), conversion
to electrical signals (i.e., transduction of the movements of the seis-
mic mass) and encoding into machine-readable digital data that can
be processed through computers (i.e., analog to digital converter). A
complete description of the operation process may be seen in [4].
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2.1.2. Signal preprocessing

Secondly, the registered data is preprocessed to remove noise and di-
verse type of artifacts such as spurious spikes or electronic noise, typ-
ically through a filtering process. Commonly used filters for accelera-
tion signals are median, Butterworth low/high-pass, discrete wavelet,
Wiener filters and Kalman filters.

Preprocessing of acceleration does not only comprise signal filter-
ing but involves, among others, calibration of the sensors (e.g., pro-
cure axes orthogonality, correct misaligment between body and sensor
frames), unit conversion (e.g., from ’mV ’ to ’G’ or ’m/s2’), synchroniza-
tion or resampling/downsampling. Most of this processing is directly
performed on a hardware basis, however, other techniques are applied
through specific or general computation. A review on preprocessing
techniques for AR from accelerometer data is presented in [5, 6].

Some applications also use preprocessing techniques to separate the
different components of the signal, for example into dynamic and static
acceleration components. Dynamic or linear acceleration component
represents the acceleration due to body motion while the static or
gravitational acceleration component relates to the force exerted by
the Earth’s gravity.

2.1.3. Signal segmentation

The preprocessed data stream is subsequently partitioned into segments
of a certain length to capture the dynamics of the signals. This pro-
cess has been performed in different ways in the AR field. Most of the
segmentation techniques could be categorized in three groups, namely
activity-defined windows, event-defined windows and sliding windows.
The activity-defined windowing procedure consists in the partitioning
of the sensor data stream based on the detection of activity changes.
Initial and end points are determined for each activity, prior to explic-
itly identifying the specific activity. The event-defined approach bases
on locating specific events which are further used to define successive
data partitioning. Since the events may not be uniformly distributed in
time the size of the corresponding windows is not fixed. In AR normally
identified events are heel strikes or toe-offs typically used in gait anal-
ysis. Finally, in the sliding window approach, the signals are split into
windows of a fixed size and with no inter-window gaps. A wide range of
window sizes have been used in previous studies from 0.1s [7] to 12.8s
[8] and even more [9]. An overlap between adjacent windows is toler-
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ated for certain applications [10, 11], however, this is less frequently
used. The sliding window approach is the most widely employed seg-
mentation technique in AR. Its implementational simplicity and lack of
preprocessing determines it as ideally suited to real-time applications.

2.1.4. Feature extraction and dimension reduction

Next, a characterization of each data segment is performed. The feature
extraction process is carried out to provide a more tractable represen-
tation of the signals for the pattern recognition stage. A wide range
of heuristics [12, 13], time/frequency domain [14, 15, 16], wavelets co-
efficient [17, 18] and other sophisticated mathematical and statistic
functions are used (see review in [18]).

In some cases, a feature selector is used to reduce redundancy among
features as well as to minimize the feature space dimension. In fact, the
higher the dimension of the feature space is, the more computationally
intensive the reasoning process turns to be. Minimizing computational
power, memory and bandwidth requirements is specially sought for
embedded systems for real-time AR. An important objective when se-
lecting features is to try to maintain the desired target performance,
however, sometimes a trade-off must be found. Examples of feature se-
lection methods used in AR are principal or independent component
analysis [19], forward-backward selection [7] or correlation [15]. The lit-
erature provides many more techniques that are used in other fields,
such as branch and bound, best first, beam search or relief. More in-
formation about feature selection techniques could be found in [20].

2.1.5. Classification

Finally, the resulting feature vector is provided as input to a reasoning
or classification model, which eventually yields the recognized activ-
ity. Classifiers identify to which of a set of classes a new observation
or instance belongs, on the basis of a training set of data contain-
ing instances whose category membership is known. A wide variety of
machine learning, pattern recognition and data mining techniques is
normally used for this purpose. This includes from models devised for
capturing time dependencies and sequences (hidden Markov models,
HMM) [21, 22], fuzzy models operating on rules and membership func-
tions for approximation [23], to techniques leveraging the potential of
ensembles of weak classifiers such as boosting and its variants [24, 25].
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Nevertheless, the most broadly used are classical or standard super-
vised techniques. Examples of these techniques are decision trees (DT)
algorithms which examine the discriminatory ability of the features one
at a time, creating a set of rules that ultimately leads to a complete
classification system. DT proved to perform well in combination with
time and frequency domain features [10, 15, 26], although they showed
less accurate for other setups [27]. Due to its simplicity, speed and ab-
sence of a training phase, the k-nearest neighbor (KNN) is also one of
the most used techniques in machine learning. Based on a neighborhood
majority voting scheme, the classification of a given sample is assigned
to the most common class amongst its K nearest neighbors. Interesting
results have been showed from its use in [7, 18, 28]. Another frequently
used approach is the based on the Bayes’ rule. The naive Bayes (NB)
algorithm can be a suitable approach as long as the stochastic inde-
pendence is guaranteed, which in practice is normally attained. This
technique has been successfully used in prior AR problems [16, 29, 15].
Support vector machines (SVM) is another standard learning technique
which has become very popular in the last years. The promising results
recently obtained in previous studies as [30] or [31] reinforce the idea
of its use.

2.1.6. Operation of the ARC

The ARC could be applied in two different modes of operation, namely
training or modeling and classification. Given a set of categorical labels
(ground truth) associated to a set of entries (inputs), the classification
task consists in assigning these entries (prediction) into one of the pre-
defined classes. In training mode, the features extracted in a previous
stage and the corresponding ground truth class labels are used as input
to train a classifier model. In classification mode, the features and the
previously trained model are used to calculate a score for each activity
class and to map these scores into a single class label in the classification
stage.

The classification may be of a binary (two activities) or N -ary (N
activities) nature. In the N -ary or multi-class scenario, the input is
normally to be classified into one, and only one, of N non-overlapping
classes. In the binary case (N=2), the input is to be classified into one,
and only one, of two non-overlapping classes.
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2.1.7. Performance and metrics evaluation

The evaluation of AR systems is normally carried out through a cross-
validation process. In AR two cross-validation methods are predom-
inantly utilized: leave-one-subject-out cross-validation (LOOXV) and
ten-fold cross-validation (10-fold XV). As summarized in [32] and ac-
cording to [33, 34], LOOXV is the best technique for risk estimation
whereas 10-fold XV is the most accurate approach for model selection,
which applies well for models comparison. Accordingly, and since this
work intends to compare the capabilities of multiple AR models, in
this thesis the evaluation is performed through the 10-fold XV model.
Moreover, the cross-validation process should be normally repeated a
sufficient number of times to ensure statistical robustness as well as to
procure an asymptotic converge to a correct estimation of the systems
performance [35].

To evaluate the performance of AR systems diverse metrics may be
used. The confusion matrix stands out among others since it collects
all the information corresponding to the performance evaluation in a
single matrix (Figures 2.2-2.3). From this matrix, several other metrics
could be simply derived.

For the binary classification (Figure 2.2) the system correctness is
assessed by computing the number of correctly recognized class exam-
ples (true positives, TP ), those that do not belong to the class (true
negatives, TN), the number of examples incorrectly assigned to the
class (false positives, FP ) and the ones not recognized as class exam-
ples (false negatives, FN). In the N -ary case (Figure 2.3) only the
diagonal elements corresponds to correct classifications (tpk) while the
off-diagonal comprises all missclassifications (εij).
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Table 1: Confusion matrix for a 2-classes problem (a.k.a, diagnostic or contingency table).
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Table 2: Confusion matrix for a N-classes problem. Classification errors between classes (off-diagonal) and correct classifications (diagonal
elements). ∀ j, i = 1, ...,N.

metric called F-score or F-measure is derived. The potential of all these features is demonstrated since they take class
imbalancement/skew for all activities into account. Yet, precision and recall (and by extension F-score) neglect the
correct classification of negative examples, they instead reflect the importance of retrieval of positive examples in
classification. The problem revolves then around the identification of scores that satisfy performance representation
and robustness to imbalancement requirements.

Given a set of categorical labels (ground truth) associated to a set of entries (inputs), the classification task consist
of assigning these entries (prediction) into one of the predefined classes. In the binary case, the input is to be classified
into one, and only one, of two non-overlapping classes. In the N-ary or multi-class scenario, the input is to be
classified into one, and only one, of N non-overlapping classes. These counts are normally summarized through the
so-called confusion matrix (Table 1-2). Now, for the binary classification (Table 1) the correctness may be assessed
by computing the number of correctly recognized class examples (true positives, T P), those that do not belong to
the class (true negatives, T N), the number of examples incorrectly assigned to the class (false positives, FP) and the
ones not recognized as class examples (false negatives, FN). In the N-ary case (Table 2) only the diagonal elements
corresponds to correct classifications (tpk) while the off-diagonal comprises the missclassifications (ǫi j).

The definition of performance measures in the context of multi-class classification is still an open research topic
as recently reviewed [16, 17]. One challenging aspect is the extension of such measures from binary to multi-class
tasks [18]. A generic analytic treatment of the problem is still unavailable.

Since most of the performance evaluation metrics are originally intended for binary-ruled problems, it is worth
interesting to define a means to extend their use to the multi-class context. The idea then would be to reduce the
original N-class confusion matrix to a 2-class confusion matrix (one per class) that condenses all the information in
terms of TP, FP, FN, TN. This is not a trivial task as demonstrates the inexistence of a definite, unified and commonly
accepted approach. As a rule of thumb, for the confusion matrix given in Table 2, the binarized confusion matrix for
a class k (∀k = 1, ...,N) could be defined as:

T Pk = tpk FPk = Ik − tpk FNk = Ak − tpk T Nk =

N∑

j,k

A j − Ik =

N∑

i,k

Ii − Ak = Q − Ak − Ik + tpk (1)

This is one of the most widely-used binarization approaches ([19], Matlab, R, Weka), however it is quite contro-

3

Figure 2.2: Confusion matrix for a binary problem (a.k.a, diagnostic
or contingency table). The matrix contains the true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN) scores.
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metric called F-score or F-measure is derived. The potential of all these features is demonstrated since they take class
imbalancement/skew for all activities into account. Yet, precision and recall (and by extension F-score) neglect the
correct classification of negative examples, they instead reflect the importance of retrieval of positive examples in
classification. The problem revolves then around the identification of scores that satisfy performance representation
and robustness to imbalancement requirements.

Given a set of categorical labels (ground truth) associated to a set of entries (inputs), the classification task consist
of assigning these entries (prediction) into one of the predefined classes. In the binary case, the input is to be classified
into one, and only one, of two non-overlapping classes. In the N-ary or multi-class scenario, the input is to be
classified into one, and only one, of N non-overlapping classes. These counts are normally summarized through the
so-called confusion matrix (Table 1-2). Now, for the binary classification (Table 1) the correctness may be assessed
by computing the number of correctly recognized class examples (true positives, T P), those that do not belong to
the class (true negatives, T N), the number of examples incorrectly assigned to the class (false positives, FP) and the
ones not recognized as class examples (false negatives, FN). In the N-ary case (Table 2) only the diagonal elements
corresponds to correct classifications (tpk) while the off-diagonal comprises the missclassifications (ǫi j).

The definition of performance measures in the context of multi-class classification is still an open research topic
as recently reviewed [16, 17]. One challenging aspect is the extension of such measures from binary to multi-class
tasks [18]. A generic analytic treatment of the problem is still unavailable.

Since most of the performance evaluation metrics are originally intended for binary-ruled problems, it is worth
interesting to define a means to extend their use to the multi-class context. The idea then would be to reduce the
original N-class confusion matrix to a 2-class confusion matrix (one per class) that condenses all the information in
terms of TP, FP, FN, TN. This is not a trivial task as demonstrates the inexistence of a definite, unified and commonly
accepted approach. As a rule of thumb, for the confusion matrix given in Table 2, the binarized confusion matrix for
a class k (∀k = 1, ...,N) could be defined as:

T Pk = tpk FPk = Ik − tpk FNk = Ak − tpk T Nk =
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This is one of the most widely-used binarization approaches ([19], Matlab, R, Weka), however it is quite contro-
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Figure 2.3: Confusion matrix for a N -ary problem. Classification er-
rors between classes correspond to the off-diagonal elements (εij) while
correct classifications are given in the matrix diagonal (tpk).

From all available metrics, accuracy is the most widely used. The
accuracy rate is defined as the proportion of correct classifications
(TP + TN in the binary case,

∑
tpk in the N -ary case) with respect

to the total classified instances (Qbin in the binary case, Q in the N -
ary case). The accuracy is a simple metric, although may suffer from
some limitations under the presence of data imbalancement [31], which
may be specially relevant in problems with a reduced class set. Sen-
sitivity (Se) and specificity (Sp) are metrics normally used in those
cases. Sensitivity defines the proportion of positive results that are cor-
rectly recognized (Se = TP/(TP + FN)), while specificity measures
the ability to identify negative results (Sp = TN/(TN + FP )). Other
metrics such as F-measure, G-mean, AUC, ROC or confusion entropy
are proposed in other fields [36, 31], but seldom used in AR evaluations.

2.2. Standard AR models

Depending on the employed sensor topology, diverse variants of the
general ARC may be devised. In this Section, the three most predom-
inant variants of the ARC are presented. The first one corresponds to
the case in which a single sensor unit is utilized. The second and third
models apply to multiple sensor setups.
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2.2.1. Single sensor ARC

The simplest ARC configuration is defined for the case in which a sole
sensor is used to register body motion. Hereafter called single sensor
activity recognition chain (SARC), the description provided in Sec-
tion 2.1 directly applies to this configuration. In Figure 2.4 a scheme of
the complete SARC is depicted. In short, a sensor S delivers a stream
of raw signals (u) corresponding to the motion measured for a spe-
cific body part (e.g., ’X-axis and Y-axis acceleration measured on the
wrist’). These signals are preprocessed before segmentation. The pre-
processed data (p) are subsequently k-partitioned (sk) and a set of fea-
tures (generically defined as f) are extracted from these. The feature
vector (f(sk)) is used as input to a trained classifier, which eventually
yields the recognized activity (c).
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Figure 2.4: Single sensor activity recognition chain (SARC). A sensor
S delivers raw signals (u) which may be optionally preprocessed (p). The
signals are k-partitioned (sk) and a set of features (generically defined
as f) are extracted from these. The feature vector (f(sk)) is used as
input to the classifier entity, which yields an activity or class c on a
N -class problem.

Many studies have explored the recognition of human activities
through the use of a single sensor [13, 16, 12, 37, 38, 39, 8].

2.2.2. Multi-sensor ARC

The monitoring of various body parts require the use of multiple sen-
sor devices. When several sensors are utilized the normal approach is
to partially or completely replicate the diverse stages of the ARC for
each sensor node. Therefore, given a body sensor network (BSN) com-
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posed by M sensors, the system comprises M individual ARCs, i.e.,
a multiple sensor activity recognition chain (MARC). Specific to this
approach, acquisition, preprocessing, segmentation and feature extrac-
tion stages are individually executed for each sensor stream. As a result,
a feature vector is provided for each individual sensor. At this point,
two approaches may be followed, either these M independent feature
vectors are combined in a way to be employed as input to a single clas-
sification entity (see Section 2.2.3) or respectively used as inputs to a
set of M standard classifiers (see Section 2.2.4).

2.2.3. Feature fusion multi-sensor ARC

Feature fusion, in advance defined as feature fusion multi-sensor activity
recognition chain (FFMARC), consists in the combination or aggrega-
tion of the feature vectors computed for each individual sensor [40]. The
resulting aggregated feature vector is used as input to a single classifier.
Strictly speaking, fusion of multiple signals is normally performed in
each individual ARC. Features extracted from each sensor frame (e.g.,
X axis and Y axis) are normally combined in a unique feature vector
that characterizes the motion measurements coming from that node.
Nevertheless, this is actually rather seen as a feature (e.g., ’standard
deviation of the acceleration measured in the X axis’). Therefore, the
concept of fusion is here applied to the aggregation of the information
collected from various body parts through diverse sensor devices.

The FFMARC operates as shown in Figure 2.5. M sensors de-
liver raw signals (u1, u2, ..., uM ) which are subsequently preprocessed
(p1, p2, ..., pM ). The preprocessed signals are partitioned into data win-
dows of a given length (s1k, s2k, ..., sMk) and a set of features are ex-
tracted from these, possibly different for each chain (f1, f2, ..., fM ).
For a specific time window k, the M feature vectors obtained
across all sensor streams are combined into a single feature vector
({f1(s1k), f2(s2k), ..., fM (sMk)}). The resulting feature vector is used
as input to a trained classifier, which eventually yields the recognized
activity (ck).

FFMARC is possibly the most widely used approach in AR for
multi-sensor configurations. It has been for example utilized in [19, 41,
42, 43, 10, 15].
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Figure 2.5: Feature fusion multi-sensor activity recognition chain
(FFMARC). M sensors deliver raw signals (u1, u2, ..., uM ) which are
subsequently processed (p1, p2, ..., pM ). The signals are k-partitioned
(s1k, s2k, ..., sMk) and a set of features extracted from each data window.
For each window k, the feature vector computed across all sensors is
aggregated into a single feature vector ({f1(s1k), f2(s2k), ..., fM (sMk)})
that is used as input to a classifier. The classifier yields an activity or
class c on a N -class problem.

2.2.4. Decision fusion multi-sensor ARC

AR for multi-sensor configurations may be also performed through the
combination of the decisions delivered by independent ARCs each one
associated to a sensor. Decision fusion, here defined as decision fusion
multi-sensor activity recognition chain (DFMARC), is shown in Fig-
ure 2.6. M sensors deliver raw signals (u1, u2, ..., uM ) which are sub-
sequently preprocessed (p1, p2, ..., pM ). The signals are segmented in
data windows of a given length (s1k, s2k, ..., sMk) and a set of features
are separately extracted from each data window. For a data window k,
the extracted feature vectors are used as inputs to the corresponding
classification entity (e.g., f1(s1k) for S1, f2(s2k) for S2, etc.). Every
individual classifier yields a class c on a N -class problem; thus M deci-
sions are in overall provided, one per sensor (c1, c2, ..., cM ). To provide
a unique recognized class, each sensor decisions are further combined
through a fusion model (ψ), which eventually yields the recognized ac-
tivity or class (c = ψ(c1, c2, ..., cM )).
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Figure 2.6: Decision fusion multi-sensor activity recognition chain
(DFMARC). M sensors deliver raw signals (u1, u2, ..., uM ) which
are next preprocessed (p1, p2, ..., pM ). The signals are k-partitioned
(s1k, s2k, ..., sMk) and a set of features extracted from each data window
k (f1(s1k),f2(s2k),...,fM (sMk)). Each feature vector is used as input to
the classifier entities. Each classifier yields a class c on a N -class prob-
lem, which are further combined through a decision fusion technique to
provide the eventual recognized class (c = ψ(c1, c2, ..., cM )).

There exist multiple aggregation models [44, 45], however, this work
particularly considers some of the most widely used. Concretely, hier-
archical decision (HD) and majority voting (MV) schemes are in the
following presented.

Hierarchical decision (HD)

Let us consider a set of classifiers each one operating on the data ex-
tracted from a specific sensor. Depending on the target activity, the
information captured through some of these sensors may be more valu-
able than through others. Therefore also the decisions provided by each
classifier may have different relevance. Then, the idea is to give more
importance to those classifiers that generally behave better, thus allow-
ing them to decide first. From this, decisions are made in strict order of
classification capabilities (the ranking is normally established accord-
ing to performance criteria). Thus, if a top ranked classifier positively
recognizes the activity, this would be provided as the eventual deci-
sion. On the contrary, if the class is rejected, the next classifier in the



2.3. Sensor faults and failures in AR 31

hierarchy is asked and so on.
One of the main drawbacks of the HD model is the dependence of

the low-level entities decisions on the upper ones. If a better ranked
classifier fails, the error propagates down through the hierarchy, poten-
tially leading to a misclassification. It is true that hierarchical configu-
rations in principle minimize the likelihood error when there exist large
reliability differences between top and weak classifiers. However, this
could turn against when a slight gap exists among the performances of
each decision entity. In that case, leaving reliable classifiers out of the
decision making is encountered to be a loss. HD is a model that be-
haves reasonably well when its top entities are reliable enough, but may
miss the classification potential of the middle- and low-ranked decision
entities.

Hierarchical decision models have been utilized in [46, 47, 48, 49,
26, 27, 50] for AR purposes.

Majority voting (MV)

Majority voting or plurality voting is a simple approach that relies on
an equality scheme. This model, based on a democracy-approach, give
the same opportunities to all decision entities. The eventual adopted de-
cision is the one obtaining more votes from the participant decision en-
tities. The main properties of this method are fairness and decisiveness,
which translate into a similar treatment of each vote. These properties
may be specially sought when rich sensor topologies are considered.

Nevertheless, MV advantages may also constitute its main limit-
ing drawbacks. Similar importance is given to all decisions even when
they may be differently accurate. Consequently, a relevant performance
worsening could be expected when a majority of the decision makers
are of weak or poor nature (“tyranny of the majority”).

Majority voting models have been utilized in [51, 52, 53, 54, 55, 56]
for AR purposes.

2.3. Sensor faults and failures in AR

Sensor devices are subject to technological faults and failures that may
affect the normal functioning of the AR systems. While sensor fail-
ures lead to an interruption of the sensor data streaming, faulty sen-
sors do not completely fail to continue reporting values, although these
normally have a new meaning or are potentially invalid. A complete
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taxonomy and review of common sensor faults and failures in sensor
networks is presented in [57].

Several techniques have been developed for the detection of node
failures in sensor networks. One of the most utilized approaches con-
sists in continuously querying the network nodes to identify sensors that
fail to deliver data [58, 59]. These methods are quite practical for sen-
sor failure detection but of little utility when detecting faulty sensors.
Accordingly, other more sophisticated techniques have been provided
in the literature to detect faulty sensors. Ramanathan et al. [60] exploit
the correlations between the data of neighboring sensors. In [53] the au-
thors utilize the correlation changes encountered between data streams
corresponding to the observation of a related physical phenomena. Also
at the signal level, Yao et al. [61] evaluate the similarity between data
streams to simply and efficiently identify sensor faults. These techniques
do not necessarily require to know the specific meaning of the sensor
data and may operate on the raw sensor signals. A comparison among
the measures of neighbor sensors is also carried out in [62]. Here a prob-
abilistic approach is particularly proposed to determine the status of
a sensor depending on the decisions of the surrounding sensors. In [60]
the authors detect sensor faults through the identification of outliers
at the feature level. Fault diagnosis has also been performed through
the use of clustering [63] and deterministic learning [64] techniques uti-
lized in a distributed manner to reduce communication overhead and
minimize energy consumption. Ganeriwal et al. [65] utilize reputation
systems to develop a community of trustworthy sensor nodes at run-
time based upon the behavior of these nodes. They provide a scalable,
diverse and generalized approach to counter all types of misbehavior
resulting from faulty nodes in a sensor network.

To overcome the effects of sensor faults and failures diverse ap-
proaches have been proposed. For general sensor networks, the use of
back-up sensor systems has been for example explored in [66]. Data
imputation techniques have been proposed in [67] to substitute sensor
missing values through artificially generated data. Similarly, regression
models have been recently utilized in [68] to predict and replace loss
sensor data. In [69] a fault-tolerant fusion rule that employs error cor-
recting codes to incorporate fault-tolerance capabilities is utilized for
wireless sensor networks. Kapitanova et al. [70] propose a general fail-
ure detection, assessment, and adaptation approach devised for smart
home applications. This approach utilizes semantics to deal with sensor
faults which are often difficult to detect, and it could be in principle
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leveraged for body sensor networks. The use of sensor fusion has been
principally utilized in the AR domain to deal with sensor technologi-
cal anomalies. Zappi et al. [51] show a significant tolerance increase by
using a large set of sensors in combination with MV or bayesian fusion
models. Multi-sensor fusion for counteracting the effects of calibration
drift has been also utilized in [71]. Chavarriaga et al. [52] use an infor-
mation theoretical approach to determine the level of noise in a sensor
network. Concretely accuracy and diversity techniques are employed
to select the most beneficial sensor nodes to compose the recognition
ensemble. A similar model is presented in [53, 55] to detect anomalies
and potential affected sensors in order to remove them from the sen-
sor ecology. In a very recent work, Sagha et al. [56] have presented a
more sophisticated model that not only attempts to detect the faulty
sensors but also retrains the classifier models of the sensors detected as
anomalous. In most of the previous approaches, MV is utilized for the
ensemble fusion.

2.4. Sensor displacement in AR

Sensor displacement is a well-known problem in AR. Particularly criti-
cal for on-body inertial sensing, diverse approaches have been proposed
in the literature to increase the robustness of AR methods to sensor
displacements.

One main direction to deal with this issue consists in identifying dis-
placement invariant features for recognition. Kunze et al. [72] studied
how acceleration and gyroscope signals are affected by sensor displace-
ment. They distinguished between gravitational, translational, and ro-
tational components in the acceleration signal and showed that the
acceleration component due to rotation is specially sensitive to sen-
sor displacement. Based on this observation they proposed a heuristic
method which achieved higher recognition rates for sensor displace-
ment within a particular body part. Another approach that uses dis-
placement invariant features was proposed by Foerster et al. [73]. By
extracting signals from several locations within a body segment and ap-
plying a genetic algorithm for feature selection they identified features
invariant to sensor displacement. They validated their approach using a
human-computer interaction (HCI) and a fitness dataset and achieved
improved recognition results with respect to standard features. These
heuristic methods are coupled to the assumption that the user performs
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the required specific activities at some point, which nevertheless might
not be always guaranteed.

Another main direction to increase recognition robustness against
sensor displacement is adapting the classifiers to the resulting shifts in
the signal and feature distribution. Gao et al. [71] utilize an estimate
of the constant gravity vector to transform the accelerometer signals
from the device coordinate system, which is sensitive to the orientation,
to the body reference coordinate system, which is seen to be steady.
This estimation is essentially possible when the user remains static.
The approach is evaluated for four categories of activities (lying down,
sitting, standing and walking) demonstrating an increase of the over-
all accuracy when using the body reference frame with respect to the
case in which the sensor original frame is considered. Also at the signal
level, in [74] a robust motion direction of the user is obtained for sen-
sors prone to rotation by using models based on principal component
analysis. In [75, 76] the authors proposed an unsupervised adaptation
method based on the expectation-maximization (EM) algorithm. They
assumed that the anomalies introduced by sensor displacements can be
characterized as a covariate shift [77]. They estimated this shift using
an online version of the EM algorithm and transformed the sensor read-
ings back in the feature space before classification. They tested their
method on HCI, fitness and daily living scenarios. While the previous
methods applied a transformation in the signal or feature space, in [78]
the authors proposed an online self-calibration method to dynamically
adapt the classifier model. The method consists of a calibration phase
and a recognition phase. The calibration phase is triggered by the user
when they observe that the recognition accuracy drops. In this phase
the cluster centers of a nearest centroid classifier are adjusted at a pre-
defined learning rate using the incoming instances after classification.
The process is stopped when the gradient of the distance between the
adapted class center and the original class center drops below a certain
threshold. This method is intrusive and depends on the capacity of the
user to identify erroneous recognition.

Multi-sensor fusion has been also utilized in the past for counteract-
ing the effects of sensor orientation changes. In [51] the authors showed
a significant tolerance increase by using a large set of sensors in com-
bination with MV or NB decision fusion models. A more sophisticated
scheme is presented in [53] which attempts to detect anomalies and po-
tential affected sensors in order to remove them from the sensor ecology.
This approach is further improved in [55] to also bring the system to
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a new stable state. This is accomplished through a self-training pro-
cess, which uses the fusion output to provide labels to retrain the sen-
sor systems identified as anomalous. For all these works, the models
are fundamentally validated on synthetically modeled rotations, but
an important lack is observed with respect to the evaluation of sensor
displacement due to translation.

2.5. Transfer learning in AR

Activity-recognition systems are usually designed around a set of sen-
sors that are selected to be highly discriminative of the activities of
interest [10, 79, 80, 81]. However, sensor configurations are prone to
changes due to system maintenance and upgrades. Likewise, sensors
availability may vary depending on the user context and needs during
the course of a day. In fact, there is a multitude of sensors readily de-
ployed by users themselves, with the widespread use of smartphones
[82], and the rising availability of sensorized gadgets and smart-objects
[83], or motion sensing shoes or garments [84], that may be arbitrar-
ily accessed by users during their daily life. Living environments are
also ever more richly sensorized in smart homes [85], but also chiefly
for climate control, security, and ever more for entertainment systems
supporting natural interaction [86].

Recently, diverse methods have been proposed to increase the tol-
erance to variability in the sensing environment at run-time by es-
sentially substituting the sensor environment which was foreseen at
design-time by the effective environment which is encountered at run-
time. For example, sensor-placement-independent AR can be achieved
by using datasets collected from multiple on-body locations [87]. This
requires training data provided by the user. Self-calibration approaches
require no user intervention, but were demonstrated only for specific
cases (e.g. displacement of accelerometers [76, 78]). Combinations of
multiple sensor modalities also help to tolerate on-body displacement
[72], or to substitute sensor modalities [88]. However, these combina-
tions must be predesigned for selected kind of variations. Alternatively,
sensors can self-characterize their on-body placement [89] and orienta-
tion [90] to select the appropriate activity models at runtime, but this
requires to predefine these models. One of the main limitations of most
of these approaches is that they are basically constrained to foreseen
run-time variations. Moreover, for each of them either activity models
must be collected or ad-hoc transformations between modalities must
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be designed. Transfer learning [91] is here devised to overcome these
limitations, thus specially suitable to support unforeseen sensor setup
run-time variations.

Practically, principles allowing a trained system to transfer AR ca-
pabilities to another system were proposed in [92, 93]. This approach
works across sensor modalities and was characterized on different body-
worn and ambient sensors. Essentially, an initial system recognizes ac-
tivities and supervises the learning of a new one, without user specific
intervention. Transfer learning methods were extended to operate on
time series resulting from the activation of switches to transfer AR ca-
pabilities from one type of smart home to another kind of smart home
with different and a-priori unknown number and placement of sensors
[85]. These approaches operate on long time scales as they require all
the relevant activities to be observed several times (e.g. timescale of
days or more). Besides, these methods are prone to incomplete transfer
learning since it is likely that the user does not perform the complete
set of target activities. An exhaustive review and taxonomy of transfer
learning approaches in AR is available in [3]. Here transfer methods
are categorized along the data processing stage to which they apply,
i.e., data acquisition and preprocessing, feature extraction, classifica-
tion and eventually symbolic processing.
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3.1. Introduction

Day by day we are witnessing the evolution of a society less tolerant
to errors and mistakes. In this new technological era, users demand a
seamless and fluent interaction with the technology of their daily liv-
ing, and actually, they are already getting used to it. Annoying system
outages, crashes, or reboots typical in the past are no longer tolerated,
and could be the reason for a business collapse. In an increasingly com-
petitive and diversified technological market, in which users may found
hundreds or thousands of alternatives of a very product, important de-
tails such as the robustness of systems are compelling factors in the
choice of one option instead of another. Moreover, people dissatisfac-
tion not only translates into the rejection of a product that does not
reach consumers expectations, but also may wage a smear campaign
that could have a devastating impact on the brand image.

In AR applications, errors may come from how the sensor data
stream is processed and/or be motivated by the sensor itself. Wearable
sensor technology is subject to intensive use and potential harsh con-
ditions, therefore prone to degradation and failures. For example, an
instrumented bracelet may suffer from extreme temperature variations
(e.g., from winter to summer), pressure (e.g., when carrying out objects
or while leaning against a wall) or humidity (e.g., moisten or get soaked
under heavy rain). Under these circumstances, sensors may degrade and
the information delivered be corrupted or anomalous, therefore differ-
ent to what is measured in normal conditions. At worst, sensors may
completely fail or stop working and no data explicitly provided. Ignor-
ing these potential anomalous situations may have a serious impact on
system performance and usability, and by extension lead to a user’s
lack of interest in the product.

Classic AR approaches assume that the sensor configuration re-
mains identical during the lifelong use of the system. Technological
anomalies generally lead to changes in the sensor data streams, which
are normally unforeseen during the design phase or unpredictable at
runtime use. Consequently, models trained on ideal signal patterns may
react in an undesired manner to imperfect or anomalous sensor data.
This potentially translates into a partial or total malfunctioning of the
AR systems. Given a malfunctioning situation, users normally need to
resort to a maintenance service or expert, which entails new cost for the
consumer, or the vendor as part of the warranty, apart from disturbing
the continuity of use of the system and applications. For example, a sen-
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sor may provide anomalous data because it is not adequately supplied,
however, this situation could be reversed when the battery is recharged.
For such a task it makes no sense to request the help of a support team,
and for sure not throw the sensor out. AR systems should be able to
notice the importance of the sensor anomaly and use the rest of the
sensor ecosystem to overcome the effects of this issue. In the event of
more critical or irrecoverable failures, assistance would be required but
yet the recognition capabilities maintained until the system is fixed.

3.2. Technological anomalies

Electronic devices are subject to diverse type of technological or hard-
ware anomalies. On-body inertial sensors are prone to changes in the
bias, scale factors, non-linearity or electronic noise among others, nor-
mally due to decalibration or battery failures. Some of these anomalies
have been extensively studied in the past, and actually important im-
provements have been made to minimize their effects. Nevertheless,
some others are more difficult to handle from a hardware perspective
and therefore more likely to appear during the use of these devices.

The principal effects of sensor hardware anomalies are depicted in
Figure 3.1. Bias or offsets appear when the sensor internal character-
istics such as the operation point alter due to environmental changes
(e.g., ambient temperature), normally leading to variations in signal
mean amplitude (i.e., DC component). Other typical artifacts are elec-
tronic noise and spurious spikes. Spurious spikes are short duration
electrical transients often caused by ringing (oscillation of a voltage or
current) or crosstalk (a circuit or channel induces an undesired effect
in another circuit or channel). These electronic anomalies are normally
due to parasitic capacitances, inductances or conductive coupling in the
hardware circuit. These artifacts are not part of the design but just by-
products of the materials used to construct the circuit, however, they
could be easily compensated through filtering and canceling techniques
(e.g., high-pass filters for offset removal or low-pass filters for electronic
noise cancellation). Nevertheless, other anomalies may imply a certain
information loss that cannot be rectified through preprocessing tech-
niques.

One of the most limiting data losing effects is associated to changes
in the sensor dynamic range. These variations could appear due to a
misconfiguration of the sensor or when the system is not adequately
supplied. Sensor misconfigurations rarely take place, however, battery
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Figure 3.1: Examples of the signal effects of the principal sensor tech-
nological anomalies. For the sake of interpretability, the anomalies are
depicted for a set of basic signals.

malfunctions may be more frequently observed. In the event of battery
faults, it happens to occur that internal amplifiers and analog-to-digital
converters are not appropriately fed and in consequence signal ampli-
fication and conversion incorrectly performed (new dynamic range).
This translates into signal distortions such as flattening or skew, which
basically correspond to an erroneous representation of the measured
data, since these fall out of the bounds of the new dynamic range (see
Figure 3.1, second row right column).

Another key shortcoming of on-body sensors, which applies to any
wireless technology, is energy limitations. Sensor batteries are not of un-
limited capacity and therefore need to be recharged from time to time.
Moreover, sensor batteries lose charge with time and its capacity re-
duces as they are charged and drained. Therefore, there exist potential
situations in which a sensor is not supplied, and consequently no data
delivered. Permanent critical failures could appear in more extreme
situations, for example when the sensor device falls to the ground, is
accidentally hit or physically damaged in any other way. In these situa-
tions, not only could the sensor itself be broken but any other electronic



3.2. Technological anomalies 41

element necessary for the data acquisition and delivery destroyed (e.g.,
communication interface, processing unit), thus leading to an absence
of signal or data (see Figure 3.1, bottom left corner).

Although some sensor anomalies may be solved during the ARC
preprocessing phase (e.g., electronic noise and spurious spikes filtering),
others are more difficult to overcome or avoid, specially at runtime. Un-
der the event of a critical sensor failure or malfunctioning (e.g., sensor
out of battery or totally broken), systems based on a single sensor unit
demonstrate futile. Activity inference in SARC models rely on a sin-
gle data stream, therefore no operation is logically possible since no
data would be available. In these circumstances, the use of redundant
or multi-sensor configurations appear to be a reasonable alternative.
However, not all MARC models are seen to cope with the problem of
a discharged or broken sensor. In fact, FFMARC models suffer from
the same limitations as SARC to this respect. In FFMARC, features
extracted from each sensor node are aggregated in a vector used as
input to the classifier or reasoner, thus if data from a sensor is missing
no features could be obtained for that node and thereby the feature
vector is incomplete. In consequence, FFMARC approaches cannot op-
erate and no activity-aware capabilities are then supported. Conversely,
this problem is not seen to occur to DFMARC models. DFMARC ap-
proaches are based on the aggregation of the decisions computed from
the individual processing of each sensor data stream. Therefore, even
whether a sensor data stream could not be available, a decision may be
made from the combination of the decisions obtained from the remain-
ing active sensors.

HD and MV were introduced in Section 2.2.4 as the two principal
models used for DFMARC. However, both HD and MV models demon-
strate significant weaknesses when dealing with sensor technological
anomalies. An example is used to illustrate this. Let us consider a sen-
sor setup consisting of seven sensors worn on diverse body parts. For
a given AR problem, the models are trained and performance metrics
obtained. From this, individual sensor performances1 (e.g., accuracy in
%) could be characterized for each respective sensor Si, e.g., S1=99%,
S2=85%, S3=82%, S4=55%, S5=39%, S6=36%, and S7=31%. Now,

1These performances could represent the recognition capabilities of the systems
for a given activity problem, but may differ for another problem. This justifies the
use of sensors that may not be found much reliable for the original target problem
but be of much utility for the discrimination of other activities of interest for other
applications.
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when the HD model is employed, the system accuracy will principally
depend on the performance of the decisor ranked on top of the hierar-
chy (i.e., S1). If a low-ranked sensor (e.g., S5 − S7) gets unavailable,
no variation is expected on the overall system performance. However, if
sensor issues affect the top-ranked decisors (e.g., S1, S2) the recognition
capacity may get seriously deteriorated. For example, if S1 gets out of
battery the bulk of the decisions would rely on S2, thus a drop on the
recognition performance is expected. Differently to HD, MV actually
leverages the disappearance of sensors that yield poor decisions. Thus
for this example, if S5, S6 or S7 is shutdown, it could be anticipated
an improvement of the recognition performance (in fact the more low-
rated sensors get unavailable the better the performance will in princi-
ple be). Unfortunately, this also applies the other way around. Then, if
a high-rated sensor becomes unavailable, the chances of misrecognition
increases, specially when this results in a majority of low-rated deci-
sion makers. For example, if S1 gets out of the pool of decision makers,
a plurality of low-rated sensors (S5, S6, S7) overtakes a minority of
higher-rated sensors (S2, S3) and the erratic decisions provided by S4,
thus leading to an overall low performance. According to this, HD and
MV models are qualitatively shown to have limited capabilities to deal
with sensor failures.

In the previous example, the most beneficial approach would consist
in relying the activity detection on the decisions made by the highest-
rated sensors (i.e., S2 and S3), which roughly corresponds to the combi-
nation of HD and MV models. In next section, a novel DFMARC model
that takes in this idea and leverages the potential of the remainder of
active sensors is presented.

3.3. Hierarchical weighted classifier

Taking into account the advantages and drawbacks of HD and MV
approaches, a new ensemble model is here presented to cope with the
effects of sensor anomalies. The model combines the decisions provided
by each sensor entity, making them all participatory on the decision pro-
cess, but also ranking the relative importance of each decision through
the use of weights based on the individual performance of each classi-
fication unit. Moreover, decisions are not only combined at the sensor
level but also at the activity level, which is devised to increase recog-
nition systems reliability and robustness, and specially important to
support flexible AR setups (Section 3.4.6).



3.3. Hierarchical weighted classifier 43

The proposed model [94], hereafter called hierarchical weighted clas-
sifier (HWC), is composed by three decision making levels or stages (see
Figures 3.3-3.4). Given a scenario with M nodes of information (sen-
sors) and N classes (activities), a set of M by N base classifiers (cmn,
∀ m = 1, . . . ,M, n = 1, . . . , N) is defined. These are binary classifiers
specialized in the discrimination of the activity or class n by using the
information obtained from the sensor or node m. Each base classifier
applies an one-vs-rest binary classification strategy2, which further al-
lows for the use of any type of standard classification paradigm. This
defines the first layer of the model, here identified as base, class or ac-
tivity level. The second classification level, here sensor level, is defined
through M node or sensor classifiers (Sm, ∀ m = 1, . . . ,M). Sensor
classifiers are not machine learning-type entities, but decision making
structures. Each sensor classifier is composed by N base classifiers (one
per class), whose decisions are combined through an activity-dependent
weighting scheme. Finally, the last layer, here called network level, is
in charge of the weighted aggregation of the decisions given by each
sensor classifier, eventually providing the recognized activity or class.
The weights used in the network level depends on the recognition ca-
pabilities of each individual sensor classifier.

The model training requires just a few steps (see Figure 3.2). Firstly,
the training dataset is partitioned into three equally-sample-distributed
parts to approximately cover the same sample space. One of these parti-
tions is used to train all base classifier entities. After training, a second
partition is used to test the performance of each base classifier. From
here, statistical metrics are obtained and further used to define the first
level of weighting parameters (α, β). Sensor classifiers are completely
defined at this point. Then, the weighting parameters for the network
level are assessed. To that end, the third yet unused part of the dataset
is considered now for the evaluation of each individual sensor classifier.
From their performance statistics the diverse network level weights are
obtained (γ, δ). The HWC is at this point completely characterized.

For this structure two weighting schemes are proposed. The first
approach (Figure 3.3) consists in the weighting of the decisions given
by each classifier by using a single weight that emphasizes the con-
tributions of insertions and rejections3 in a similar way (i.e., unified

2Other approaches as the one-vs-one may be similarly applied but here the one-
vs-rest is particularly recommended to minimize the number of classification enti-
ties.

3In machine learning [95], insertions (hits) and rejections (deletions) respectively
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Figure 3.2: Training steps of the HWC model.

weighting). The second approach (Figure 3.4) corresponds to an im-
proved version in which two independent weights are used to respec-
tively weight insertions and rejections (i.e., insertion-rejection weight-
ing). In the following, the process to compute the weights and decision
aggregation models are described for both approaches.

Unified weighting model (alfa-gamma)
The model characterization process starts by evaluating the indi-

vidual average accuracy of each base classifier. Since these are binary
classifiers the accuracy is computed as follows (see Section 2.1.7):

Rmn =
TPmn + TNmn

TPmn + FPmn + FNmn + TNmn
(3.1)

with TPmn (true positives), FPmn (false positives), TNmn (true neg-
atives) and FNmn (false negatives) computed from the evaluation of
the classifier cmn. This process is repeated for each individual node.
From these figures, the base classifier weights may be obtained through
averaging across all values:

refer to positive and negative classifications. For the one-vs-rest case, an insertion
is observed when the classifier recognizes a class as belonging to its class of special-
ization, while a rejection is produced when the class is identified as one of the rest
of classes.
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Figure 3.3: Structure of the HWC for the unified weighting scheme
(HWCαγ). The features extracted from each sensor are used as inputs
to a set of N by M base classifiers (cmn). Classifiers insertions are α-
weighted while rejections are ignored. These decisions are aggregated
through a combiner function (Ψ), thus yielding a decision for each sen-
sor classifier (Sm). The decisions made across all sensor classifiers are
γ-weighted and once again combined to provide the eventual recognized
activity.
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αmn =
Rmn
N∑
k=1

Rmk

(3.2)

These weights represent the importance that each base classifier
will have on the sensor classifier decision scheme. A specific voting
algorithm is considered to fuse all base classifiers decisions for each
corresponding sensor classifier. For a sensor m, given a window instance
smk characterized through the corresponding feature vector fm(smk),
and being q the activity or class predicted by cmn for that instance, if
such class belongs to the class of specialization of cmn (i.e., q = n) this
classifier will set its decision to αmn for the class n and 0 for the rest
of classes. The opposite is made for q 6= n. This could be written as
(∀ {q, n} = 1, . . . , N):

WDmn (fm(smk)) =


αmn, fm(smk) classified as q

0, fm(smk) not classified as q
(∀ q = n)

αmn, fm(smk) not classified as q

0, fm(smk) classified as q
(∀ q 6= n)

(3.3)
where WDmn represents the weighted decisions of the classifier cmn. To
compute the output of the m-th sensor classifier (Om), the weighted
decisions of each classifier are aggregated through a combiner func-
tion (ψ). Here, a cumulative sum function is specifically used across all
classes:

Omq (fm(smk)) =
N∑
n=1

WDmn (fm(smk)) (3.4)

The class predicted by Sm is the class q for which the sensor classifier
output is maximized:

qm (fm(smk)) = argmax
q

(Omq (fm(smk))) (3.5)

At this stage, sensor level classifiers are fully defined. In fact, each
sensor classifier could be already used in a SARC mode. Nevertheless,
the HWC is rather devised for MARC approaches.

Similarly to as performed for Equation 3.2 a weight γm is now cal-
culated for weighting the decisions provided by each sensor classifier
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Sm. This corresponds to the weights of the network level. To do so, the
accuracy performance rate of each sensor classifier is evaluated:

Rm =

N∑
i=1

tpi

Qm
(3.6)

with tpi the diagonal elements and Qm the cumulative sum of all the
elements of the confusion matrix obtained from the evaluation of Sm
(see Figure 2.3). Averaging across all sensor classifiers, γm is computed
as follows:

γm =
Rm
M∑
k=1

Rk

(3.7)

The output at the network level is now calculated taking into
account the individual outputs obtained from each sensor classi-
fier. Given a sample sk defined through the corresponding data
windows obtained from each respective sensor ({s1k, s2k, ..., sMk}),
and being characterized through their corresponding feature vectors
({f1(s1k), f2(s2k), ..., fM (sMk)}), the aggregated output is:

Oq (f(sk)) = Oq ({f1(s1k), f2(s2k), ..., fM (sMk)}) =

M∑
p=1

αpOpq (fp(spk))

(3.8)
Similar to Equation 3.5 the eventually yielded class q is obtained

as:

q = argmax
q

(Oq (f(sk))) (3.9)

At this point the HWC is simply defined through the trained class
classifiers (cmn), the class level weights (αmn) and the sensor level
weights (γm).

Insertion-rejection weighting model (alfa-beta-gamma-delta)
The main difference of this second model with respect to the pre-

vious one is that insertions and rejections are independently weighted.
This approach may leverage the potential of classifiers that may be ac-
curate inserters or rather be better qualified as rejecters, or both. For
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Figure 3.4: Structure of the HWC for the insertion-rejection weight-
ing model (HWCαβγδ). The features extracted from each sensor are
used as inputs to a set of N by M base classifiers (cmn). Classifiers
insertions and rejections are respectively α- and β-weighted. These de-
cisions are aggregated through a combiner function (Ψ), thus yielding
a set of decisions for each sensor classifier (Sm). The decisions made
across all sensor classifiers are γ-weighted (insertions) and δ-weighted
(rejections), and once again combined to provide the eventual recognized
activity.

example, a classifier cmn could be very precise when detecting data win-
dows that belongs to its class of specialization (q = n), but fail when
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distinguishing other classes from this (q 6= n). On the other hand, a
base classifier may be very accurate when identifying data windows as
not belonging to its specialization class (q 6= n) but imprecise when
detecting the actual class of specialization (q = n).

The process followed to characterize the insertion-rejection weight-
ing model is quite similar as for the unified model. At the activity level
two weights are obtained. These parameters are defined as αmn and
βmn, and respectively represent the insertion and rejection weights for
cmn. The values of αmn and βmn are obtained from the performance
assessment of cmn. In particular, αmn corresponds to the sensitivity
whilst βmn relates to the classifier specificity. These performance pa-
rameters have been selected since these represent well insertion and
rejection capabilities of the classifier. As described in Section 2.1.7,
given TPmn (true positives) the number of correctly identified sam-
ples, FPmn (false positives) the incorrectly identified samples, TNmn
(true negatives) the number of correctly rejected samples and FNmn
(false negatives) the incorrectly rejected samples, all specifically com-
puted from the evaluation of the classifier cmn, αmn and βmn define
as:

αmn =
TPmn

TPmn + FNmn
(3.10)

βmn =
TNmn

TNmn + FPmn
(3.11)

Akin to the unified model, a voting method is considered to fuse
all base classifiers decisions for each corresponding sensor classifier. For
a sensor m, given a window instance smk characterized through the
corresponding feature vector fm(smk), and being q the activity or class
predicted by cmn for that instance, if such class belongs to the cmn
class of specialization (q = n) this classifier will set its decision to αmn
for the class n and to 0 for the rest of classes. Otherwise (q 6= n), the
classifier decision is set to 0 for the class n and to βmn for the others.
In summary, the classifier cmn weighted decision (WDmn) for the class
q may be defined as (∀ {q, n} = 1, . . . , N):
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WDmn (fm(smk)) =


αmn, fm(smk) classified as q

0, fm(smk) not classified as q
(∀ q = n)

βmn, fm(smk) not classified as q

0, fm(smk) classified as q
(∀ q 6= n)

(3.12)
The aggregation of the weighted decisions provided by each base

classifier for them-th sensor classifier (Sm) may be computed as follows:

Omq (fm(smk)) =
N∑
n=1

WDmn (fm(smk)) (3.13)

The class predicted by Sm is the class q for which the sensor classifier
output is maximized:

qm (fm(smk)) = argmax
q

(Omq (fm(smk))) (3.14)

For the next level, similar parameters to αmn and βmn are obtained,
here defined as γm (insertions) and δm (rejections). Nonetheless, the
way these are computed varies slightly with respect to the formers. At
the network level the classifiers are not binary but multiclass models.
Therefore, the evaluation of each sensor classifier requires to extend
sensitivity and specificity concepts to the multiclass case (see details
in [96]). According to this generalization, γm and δm may be described
as:

γm = 〈γm1, γm2, . . . , γmn〉 =〈
TPm1

TPm1 + FNm1
,

TPm2

TPm2 + FNm2
, . . . ,

TPmn
TPmn + FNmn

〉
(3.15)

δm = 〈δm1, δm2, . . . , δmn〉 =〈
TNm1

TNm1 + FPm1
,

TNm2

TNm2 + FPm2
, . . . ,

TNmn
TNmn + FPmn

〉
(3.16)

where {TP/TN/FP/FN}mn refer to the classification counting values,
but here computed for each class k across the confusion matrix results
obtained from the evaluation of Sm (∀ m = 1, . . . ,M, n = 1, . . . , N).



3.4. Evaluation of AR systems tolerance to sensor technological anomalies 51

Since decisions are made in a multiclass fashion, γm and δm are used
to reward or penalize each considered class. Accordingly, given qm the
decision of Sm for the sample smk, the set of weighted decisions from
this classifier is defined as:

WDm (qm (fm(smk))) =

{
γmn, n = qm (fm(smk))

−δmn, n 6= qm (fm(smk))
(∀ n = 1, . . . , N)

(3.17)
The output at the network level is now calculated taking into

account the individual outputs obtained from each sensor classi-
fier. Given a sample sk defined through the corresponding data
windows obtained from each respective sensor ({s1k, s2k, ..., sMk}),
and being characterized through their corresponding feature vectors
({f1(s1k), f2(s2k), ..., fM (sMk)}), the aggregated output is:

Oq (f(sk)) = Oq ({f1(s1k), f2(s2k), ..., fM (sMk)}) =
M∑
p=1

WDp (qp (fp(spk)))

(3.18)
Finally, the class q yielded on top of the hierarchy is obtained as:

q = argmax
q

(Oq (f(sk))) (3.19)

3.4. Evaluation of AR systems tolerance to sensor
technological anomalies

In Section 3.2 it was qualitatively shown that some of the most widely
used AR approaches are not capable of operating under the event of
critical hardware anomalies. Moreover, models that could in principle
be thought more robust to sensor faults were also demonstrated of lim-
ited tolerance as illustrated for a particular example. In Section 3.3,
the HWC model was presented as an alternate new approach to cope
with the effects of sensor technological. This section aims at quantita-
tively demonstrating the utility of this approach. To that end, the HWC
model is first compared to standard AR models in ideal conditions (Sec-
tion 3.4.3), in order to prove it provides similar recognition capabilities
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to them. Next, the model is evaluated for the case in which critical sen-
sor failures are assumed, i.e., sensor do not deliver data (Section 3.4.4).
Finally, the recognition capabilities under moderate sensor faults are
also assessed (Section 3.4.5). The experimental evaluation is performed
on a well-known dataset broadly used in the wearable computing do-
main. This dataset is described in the following (Section 3.4.1).

3.4.1. Benchmark dataset

Sensor technological anomalies normally appear in a random and oc-
casional manner, thereby it could be complicated to find them during
experimental recordings. Nevertheless, an interesting characteristic of
these anomalies is that their effects may be reasonably easy modeled.
Therefore, the approach followed in this work consists in synthetically
introducing sensor hardware anomalies on the activity data experimen-
tally recorded in a daily living setting.

The activity dataset used in this work was first introduced in [10],
and has been repeatedly used to benchmark AR models [97], something
which is quite important in a field that lacks of specific gold standards.
This dataset has been considered specially interesting for evaluation
since not only includes data collected in a natural out-of-lab settings
but for a diverse sample population and activities. Moreover, this is
one of the few datasets that is publicly available4.

Training and evaluation of previous AR systems have been normally
performed on data collected in laboratory settings. However, when
these very systems are used in realistic scenarios, their performance
may severely worsen. This is normally consequence of the artificial con-
striction, simplification or influence that laboratory environments may
induce in people normal behavior. These data do not normally capture
relevant facets of a person’s daily life such as interaction with their
environment (objects, people, etc.) or absence of self-awareness when
carrying out habitual activities. To address this problem, two scenar-
ios are explored in this dataset, one corresponding to a classical in-lab
setting and a second one on which a semi-naturalistic scenario is de-
fined. For the semi-naturalistic scenario, users are succinctly oriented
to perform an activity that is not the actual action of interest. For
example, instead of asking a user to sit down and relax, the user is
asked to watch TV during a certain period of time on which “sitting”

4Dataset files and description could be obtained at
http://architecture.mit.edu/house n/data/Accelerometer/BaoIntilleData04.htm
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is recorded. Other examples are to stare in front of a painting (to record
“standing still”), sleep/rest (to record “lying down”) or move from one
stage to another (to record “climbing stairs”). To suppress any type of
influence from the presence of experts during the recordings, supervi-
sion or observation of researchers is avoided. A worksheet is provided
instead to each participant with the instructions of the course to per-
form. Participants are asked to execute a set of everyday tasks such
as “walking”, “folding laundry” or “riding escalator”, but no hint or
special indication on how these activities must be performed is given
by experts.

People’s activities are monitored through the use of wearable inertial
sensors devised to capture human body motion. Concretely, five bi-axial
accelerometers5 are employed to register the motion experienced by
the subjects’ right hip, dominant wrist, non-dominant arm, dominant
ankle and non-dominant thigh respectively. Twenty subjects aged 17
to 48 participated in the study in two runs each (laboratory/semi-
naturalistic). The data are registered at a sampling rate of 76.25Hz.
Multi-sensor data synchronization is achieved through the use of quartz
clocks and sinusoidal patterns recorded at the start and end of each
monitoring session. These patterns are obtained through simultaneous
shaking of all sensors in a given direction. For more specific details on
the hardware used, protocol and data statistics the reader is referred
to [10].

From the complete activity set, the most representative nine ac-
tivities were selected (Figure 3.5), covering from intense activities as
running or cycling to fitness exercises as stretching, or sedentary activ-
ities as sitting or lying down. The decision of leaving out some of the
original activity set is motivated by various reasons. During the data
inspection, missing or erroneously labeled data were encountered for
some activities and subjects. The use of these data may drive to an
unbalanced and possibly unfair comparison of the capabilities of the
systems when discriminating among the diverse activities. Others, al-
though relevant were found redundant, such as “sitting and relaxing”,
“sitting and working on computer” and “sitting and watching TV”,
thus defining some isolated clusters of activities. Finally, previous work
demonstrates that for the detection of some particular actions the com-

5Although the unit of measure of acceleration in the International System of
Units (SI) is m/s2, in most applications these are normally referred to the ’g’-value,
which approximately corresponds to 9.78m/s2. For convenience, this representation
is used in this work.
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Figure 3.5: Snapshots from the nine activities selected for evaluation.
Data correspond to acceleration signals (red, X-axis and blue, Y-axis)
registered through the arm sensor and for a particular subject.

#Subjects Age #Activities Sensors placement
20 17-48 9 H = Hip, W = Wrist, A = Arm, K = Ankle, T = Thigh

Table 3.1: Experimental dataset description summary.

bined use of on-body sensors with other sensing modalities is better rec-
ommended (e.g., RFID sensors for kitchen tasks [98]). In either case,
this number of activities is found representative for the purpose of this
study, especially taking into account the average number of activities
considered in previous related work. A summary of the experimental
dataset used in this work is presented in Table 3.1.

3.4.2. Experimental setup

For the activity recognition process, the diverse stages of the ARC
are implemented6 (see Section 2.1). Raw acceleration signals are ac-

6All the processing is performed in Matlab R2011b. For the preprocessing, fea-
turing and classification stages some of the functions provided in the Signal Pro-
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quired through the on-body inertial sensors. The recorded signals are
affected by spurious spikes and electronic noise, sensor anomalies that
can be eliminated during the signal preprocessing phase. To remove
these anomalies a 20Hz cutoff low pass elliptic FIR filter is used. This
is demonstrated not to eliminate valid information for daily physical
activity assessment [99, 100].

The signals are subsequently partitioned into windows of data of ap-
proximately 6 seconds as suggested in [10]. Next, features are extracted
to characterize each window data. To analyze the required classification
complexity for this problem, diverse feature vector lengths are tested
(1, 5, 10 and 20 features respectively). Here a subset of the complete
group of features proposed in a previous work is considered [101]. These
features corresponds to a combination of statistical functions such as
median, kurtosis, mode, range, and magnitudes or functions obtained
from a domain transformation of the original data such as energy spec-
tral density, spectral coherence or wavelet coefficients (“a1 to a5” and
“d1 to d5” Daubechies levels of decomposition) among others. The best
features ranked through the use of a receiver operating characteristic
feature selector [95] are chosen until complete the feature vector lengths
defined for each case. Specific of each ARC model (Section 2.2), SARC
builds on a single feature vector extracted from the data of the cor-
responding sensor used, FFMARC aggregates all feature vectors com-
puted across the five sensor streams into a single feature vector, and
DFMARC uses the feature vector extracted from each sensor as input
to each respective node classifier.

The classification stage is also different for each ARC model. SARC
and FFMARC employ standard multi-class classifiers such as the pre-
sented in Section 2.1. Concretely, a C4.5 implementation [102] is used
for DT, the approach presented in [95] for NB and empirically k-tuned
KNN models similar to the described in [103]. Also SVM models are
used for comparison, here implementing a radial basis function (RBF)
kernel with automatically tuned (grid search) hyper-parameters γ and
C [104]. These standard classifiers are also used as core of the base clas-
sifiers used in the DFMARC approaches (here, HD, MV and HWC).

The evaluation of the systems is carried out through a ten-fold
random-partitioning cross-validation to support an adequate compar-
ison among the models (Section 2.1.7). Moreover, this process is re-
peated 100 times to ensure statistical robustness and procure the con-

cessing, Statistics and Bioinformatics toolboxes have been used, while many others
have been specifically defined for this purpose.
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vergence to a correct estimation of the performance of the systems. In
each iteration the data sample is arbitrarily partitioned for the cross-
validation process.

Since this work aims at improving the understanding of the opera-
tion of AR systems in real-world conditions, the data collected for the
semi-naturalistic scenario is particularly employed for evaluation.

3.4.3. Performance in ideal conditions

The HWC is here particularly proposed to deal with the effects of sen-
sor failures and degradations, however, not only should the model be
useful to overcome these limitations but to be valid for AR tasks in
normal circumstances. Therefore, it is found necessary to first evalu-
ate its recognition capabilities in invariant setups. Moreover, the HWC
performance is compared to the baseline determined by standard AR
systems.

The HWC was defined from the observation of HD and MV limita-
tions to sensor failures. In fact, the HWC combines the main advantages
of both models, therefore it seems reasonable to first compare the recog-
nition performance for the three of them. In Figure 3.6, the confusion
matrices computed from the performance assessment of HD, MV and
HWC models for diverse feature vectors are shown. For the HWC, the
two proposed weighting models (unified weighting, HWCαγ ; insertion-
rejection weighting, HWCαβγδ) are respectively evaluated. From the
results, the HWC clearly exceeds the recognition performance shown
by HD and MV models. Moreover, this happens to occur for all classi-
fication paradigms and independently of the complexity of the feature
vector used. In fact, promising results are already obtained for the case
in which a sole feature is used for each base classifier, especially for the
HWCαβγδ approach. The performance proves to be close to absolute
(confusion matrices almost diagonal) when richer feature vectors are
used.

HD and MV models show worse recognition capabilities. A severe
misclassification rate is observed when simple feature sets are employed.
The performance is nevertheless enhanced when 10 and 20 features
are used (Figures 3.6(c)-3.6(d)), specially for the HD model. This is
motivated by an improvement of the recognition capabilities of each
individual node or sensor classifier. Then, HD models yield more ac-
curate decisions on top of the hierarchy and consequently reduce the
errors made through this. Decisions computed through MV are easily
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corrupted when the number of low performance decision entities over-
take the accurate ones. In such circumstances, the potential of high
performance sensor classifiers is hidden by a plurality of less accurate
node classifiers, introducing a systematic error that degrades the per-
formance of the whole recognition system. To compensate this situa-
tion, a majority of accurate sensor classifiers is required, which is here
encountered as the number of features increases.

From the previous results, it could be also concluded that the
HWCαβγδ model surpasses the HWCαγ approach. Actually, both mod-
els present a very high performance, which demonstrates the poten-
tial of the HWC structure, however, the slight improvement shown for
the HWCαβγδ approach also proves the importance of the weighting
scheme. For the sake of simplicity and since it proves to be the most
accurate approach, the HWCαβγδ will be used in advance as predomi-
nant HWC model.

Most of the contributions in the AR domain are based on a SARC
or FFMARC model. These approaches have demonstrated good recog-
nition capabilities in a wide sort of AR problems. In this way, SARC
and FFMARC models could be used to define a performance baseline
for recognition in ideal circumstances. For the here considered exper-
imental setup, five SARC models are devised (one per sensor) whilst
the fusion of the features extracted from each sensor data stream is im-
plemented for the FFMARC approach. In Figure 3.7, the performance
results obtained from the evaluation of SARC, FFMARC and HWC
models are depicted. From here, FFMARC and HWC clearly outstand
as the most accurate models. In general, the FFMARC outperforms the
HWC for simple feature sets (1 and 5 features). This is quite reasonable
since the aggregated feature vector used in FFMARC is richer than the
used for each HWC base classifier. This is especially relevant when a few
features are computed. For example, when a single feature is extracted
from each sensor stream, base classifiers operate on a 1-dimensional (1-
D) feature space while a 5-D space is used to characterize the activity
data in the FFMARC. Anyway, the differences are not higher than 7%
accuracy at worst case. The gap between both models reduces as more
features are employed, with the HWC the most accurate approach for
some cases, and performance levels that represent an almost perfect
discrimination of the activities.

SARC models provide discrete results, specially for reduced feature
sets. As it occurs for the rest of the models, higher performance values
are obtained as the number of features increases. This proves to be
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Figure 3.6: Confusion matrices obtained from the experimental evalu-
ation of each DFMARC modality (HD, MV, HWCαγ , and HWCαβγδ)
and machine learning paradigm (DT, KNN, NB, and SVM). Diverse
feature vector lengths are considered ((a) 1, (b) 5, (c) 10, and (d) 20
features). Confusion matrix legend (activities): 1 = Walking, 2 = Run-
ning, 3 = Cycling, 4 = Sitting, 5 = Standing, 6 = Lying down,
7 = Stretching, 8 = Strength-training, 9 = Climbing stairs.
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Figure 3.7: Accuracy (average - bar - and standard deviation -
whiskers -) results from the evaluation of the SARC (S), FFMARC
(FF) and HWC (HWC) approaches. Results are averaged across all
sensors for the SARC model. The insertion-rejection weighting scheme
is particularly used for the HWC model. Diverse feature vector lengths
are considered for evaluation ((a) 1, (b) 5, (c) 10, and (d) 20 fea-
tures). Legend: <classification paradigm><AR approach>.

very important for this model, whose best results are obtained for the
10 and 20 features case, but yet below 90% accuracy. This increase in
the recognition capabilities of single sensor systems, which are directly
combined in HD and MV, also explains the similar behavior described
for these DFMARC models.

To put it in a nutshell, from the previous results the HWC shows
as reliable as standard AR approaches in ideal circumstances, however,
in theory it further surpasses all the previously tested standard models
in terms of tolerance to sensor technological anomalies. This is investi-
gated in the next two sections.
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3.4.4. Tolerance to sensor failures

In Section 3.2, sensor technological anomalies were categorized in crit-
ical sensor errors or failures that suppose a complete data loss, and
sensor faults which translates into a degeneration of the sensor data
with respect to ideal conditions. From these, sensor failures pose the
worst changes in the sensor setup. A sensor may fail to deliver data be-
cause its battery is depleted or an electronic component broken. Similar
effects are practically seen when a sensor is left behind or shutdown.
Therefore, the study presented in this section not only applies to crit-
ical sensor failures but to any circumstance that represent a sensor
disappearance or removal from the original or default setup.

In the event of a sensor failure or shutdown, SARC and FFMARC
models are shown not to operate. Since no data are provided, SARC
models lack of practical information to proceed. FFMARC may utilize
the information of the remaining active sensors, however, the aggre-
gated feature vector cannot be in principle built since the values from
the affected sensor are missing. To keep the system operating, it could
be implemented a mechanism to replace the sensor missing values by
artificially generated data. Nevertheless, introducing artificial data may
have important consequences since this information may correspond to
data measured in normal conditions (e.g., missing values filled with ’0s’
could represent actual values measured for some activities). Moreover,
this turns to be less and less viable as the number of unavailable sensors
increases.

Conversely to SARC and FFMARC models, the HWC model was
devised to face the situation of having missing sensors. In the follow-
ing, the recognition capabilities under the event of critical sensor fail-
ures are analyzed. To that end, a HWC model designed for the ideal
or predefined sensor setup (i.e., the five sensors: hip -H-, wrist -W-,
arm -A-, ankle -K-, and thigh -T-) is tested on diverse setup configura-
tions respectively corresponding to cases in which data from a sensor
or multiple sensors are not available. Concretely, the HWCαβγδ with
KNN and ten features is employed given its demonstrated high quality
for recognition in ideal conditions (Figures 3.6-3.7). The results of this
evaluation are summarized in Figure 3.8.

For the case in which one sensor stops delivering data the perfor-
mance is observed to practically remain identical to when the complete
set of sensors is used (>97% accuracy). A subtle performance wors-
ening (≤2%) is only seen for the case in which T or W sensors are
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Figure 3.8: Confusion matrices for the HWCαβγδ model for all possi-
ble sensor setup configurations after the effect of sensor failures. KNN
and the ten features setting is used for the base classifiers. Top title
of each confusion matrix identifies active sensors and overall accuracy
(in brackets). Sensors legend: H = Hip, W = Wrist, A = Arm, K =
Ankle, T = Thigh. Confusion matrix legend (activities): 1 = Walking,
2 = Running, 3 = Cycling, 4 = Sitting, 5 = Standing, 6 = Lying down,
7 = Stretching, 8 = Strength-training, 9 = Climbing stairs.
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missing. A remarkable tolerance to the failure of two sensors is also ob-
served. For some sensor configurations the performance is in the range
of what is obtained for the default setup, at worst dropping the per-
formance a bit more than for the case of one unavailable sensor. Not
only may the HWC deal with failures on two sensors but even on three
of these. In fact, the performance remains unaltered for some combina-
tions of active sensors (W-T, W-K, H-W), and almost no worsening is
seen but for a few cases. Yet, the performance drop is lower to 4% for
those cases. At worst, the AR system must rely on the data captured
through a single active sensor. Under that circumstances, the recogni-
tion capabilities worsen, although differently for each sensor type. The
system accuracy is superior to 91%, this is a drop of less than 6%, for
setups on which only W, H or T remain operative. The performance
decays to approximately 81% when A and K are the functioning sen-
sors. The case in which all sensors are unavailable (e.g., a simultaneous
battery discharge) is not presented here since it is obvious that no sys-
tem could operate under such circumstances. In either case, this kind
of situation is remotely seen. Finally, from the previous results it could
be also concluded that some sensors are more important than others.
In fact, sensors on the thigh and wrist appear to provide the most ben-
eficial information, thus the highest impact of critical sensor anomalies
is observed for configurations lacking of these sensors.

3.4.5. Tolerance to sensor faults

Conversely to what happens to occur to sensor failures, a faulty sensor
is capable of delivering data. Nevertheless, sensor faults generally en-
tail signal degradation. Some of the signal artifacts may be eliminated
during the preprocessing stage, however, other anomalies may imply
a certain information loss. The effect of this type of anomalies is here
investigated.

As introduced in Section 3.2, when the sensor circuitry is not ad-
equately supplied a reduction of the sensor dynamic range could be
observed. This shortening translates into a change in the boundaries
of the signal space, thus potentially leading to a misrepresentation of
the actual body motion. For example, the sensors used in this study
are capable of converting all measured accelerations within the range
[-10g,10g]. Therefore, if the signal range is reduced to a tenth of the
original interval (i.e., [-1g,1g]), most of the digitized signals will likely
not represent the actual measured motion (see Figure 3.9).
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Figure 3.9: Acceleration signals when the dynamic range reduces to a
tenth of the original one (i.e., from ±10g to ±1g). Original acceleration
signals are depicted in Figure 3.5.

The tolerance of HWC and standard AR models to this phenomena
is here analyzed. To that end, the systems performance is evaluated
for two scenarios. In the first case, the dynamic range is reduced to
a 30% of the original one (i.e., [-3g,3g]). In this new signal space ac-
tive exercises are expected to be misrepresented, whereas low intensity
activities will in principle not suffer relevant variations. In the second
more challenging scenario, the dynamic range is reduced to a 10% of
the predefined interval (i.e., [-1g,1g]). For this latter case, alterations in
all activity patterns are devised. It must be noted that these scenarios
are neatly selected after inspecting the considered dataset; highest ac-
celeration values are slightly above 5g, therefore no relevant influence
is expected when changing the dynamic range above ±5g.

Changes in the dynamic range may be simply modeled through a
thresholding process (Figure 3.9). Concretely, those measures values
that fall outside the bounds of the considered dynamic range are set
to the interval extreme values. For the AR models, similar settings to
the considered for the study of the tolerance to sensor failures are here
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AR model\#faulty sensors 0 1 2 3 4 5

New dynamic range = 30% original dynamic range
SARC (hip) 81.52±4.56 66.15±3.78 - - - -
SARC (wrist) 87.52±5.12 53.51±6.31 - - - -
SARC (arm) 80.16±3.16 57.83±7.23 - - - -
SARC (ankle) 82.52±3.79 58.16±8.12 - - - -
SARC (thigh) 88.52±2.03 71.98±4.21 - - - -
FFMARC 97.39±1.69 88.31±4.01 76.14±4.79 61.15±8.36 42.39±11.15 39.15±13.16

HD 89.84±2.57 85.35±4.16 79.77±8.96 68.21±13.15 59.17±16.14 52.75±20.07
MV 82.07±6.17 79.29±5.36 66.74±7.12 43.21±10.11 36.29±14.79 31.47±19.02

HWCαβγδ 96.34±2.34 95.68±2.17 92.77±3.78 86.21±5.22 73.34±8.16 65.36±13.98
New dynamic range = 10% original dynamic range

SARC (hip) 81.52±4.56 21.36±11.18 - - - -
SARC (wrist) 87.52±5.12 17.78±9.37 - - - -
SARC (arm) 80.16±3.16 26.31±14.13 - - - -
SARC (ankle) 82.52±3.79 21.16±7.18 - - - -
SARC (thigh) 88.52±2.03 19.98±6.41 - - - -
FFMARC 97.39±1.69 69.16±5.39 41.26±8.12 17.23±15.13 21.07±10.86 18.19±8.94

HD 89.84±2.57 79.96±6.31 59.49±13.12 41.92±11.69 29.75±17.25 21.16±15.78
MV 82.07±6.17 77.16±6.01 46.19±11.16 38.21±9.98 27.18±12.87 26.36±8.37

HWCαβγδ 96.34±2.34 94.23±1.79 86.77±6.03 53.21±21.84 27.18±16.65 25.12±19.21

Table 3.2: Average (standard deviation) accuracy values obtained for
each ARC approach for diverse number of anomalous sensors. KNN
and the ten features setting is used for standard and base classifiers.

used (i.e., KNN and ten best ranked features). In fact, this configura-
tion renders highest average performance for the diverse AR models in
absence of anomalies (Figure 3.7). For the SARC model, the dynamic
range of the corresponding sensor is modified. For MARC approaches,
various configurations with an increasing number of anomalous sensors
are evaluated. The faulty sensors are randomly selected from one iter-
ation to another, but for the case in which all sensors are anomalous.
The results obtained after evaluation are presented in Table 3.2.

For the case in which the dynamic range is reduced to a 30% of
the original interval, a considerable performance worsening is seen for
most AR systems. Models that rely on a single sensor are clearly the
most sensitive to sensor faults. Nonetheless, practical differences are
observed among the sensors considered in this study. Concretely, those
sensors placed on body locations that are subject to lower accelerations
demonstrate more robust, as it occurs for the hip and thigh whose
performance decreases around 15%. On the contrary, wrist, arm and
ankle sensors suffer from a higher reduction on their performance (35%
at worst). This is motivated because sensors worn on the extremities are
normally subject to higher accelerations, specially during the execution
of intense activities such as running or cycling, and also walking to a
lesser extent. These accelerations values are prone to fall out of the
bounds defined for the new dynamic range. More tolerance to sensor
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faults is gained when using multi-sensor configurations. Nevertheless,
once again not all models behave similarly. FFMARC appears to be
the most vulnerable MARC model to changes in the dynamic range,
specially when two or more sensors malfunction. More than 20% drop
with respect to the baseline is observed when two sensors are affected,
35% for three anomalous sensors and more than 50% for four or more
faulty sensors.

DFMARC approaches turn to be the most consistent. MV demon-
strates capable of dealing with changes on a sole sensor, but low tol-
erance to anomalies in a plurality of sensors (>40% performance drop
from baseline). AR systems based on a HD approach appear to be more
robust than those using MV. If top-ranked sensor classifiers are not af-
fected by anomalies the performance is expected to be near to the
baseline. However, as the number of erroneous sensors increases also
grows the possibility of having a faulty high-ranked sensor. At worst
conditions, the performance is observed to drop up to 40% from base-
line. The high standard deviation values obtained for the HD approach
could be explained since the anomalous sensor/s are randomly selected
from one iteration to another. This leads to setups on which the desig-
nated faulty sensor/s may be either low-ranked (good HD performance)
or high-ranked (poor HD performance). From all evaluated models, the
HWC clearly outstands as the most robust approach to sensor faults.
In fact, almost no worsening is detected when a minority of the sensors
are affected, and only a 10% drop is seen when three faulty sensors are
considered. The performance reduces to approximately 70% accuracy
when the complete set of sensors functions defectively.

A much higher impact is seen when the dynamic range is shorten
to a 10% of the default interval. Here, the performance of SARC mod-
els plummet to negligible values. FFMARC models also severely suffer
from the effects of sensor faults. Already for one anomalous sensor the
accuracy drops more than 25%, more than 50% for two affected sen-
sors and nearly 80% when all sensors are faulty. The performance also
declines more profoundly for the DFMARC approaches. HD shows a
similar tendency to what was seen for the previous scenario. Then, if
the sensor affected by the anomaly is low-ranked almost no influence is
made on the final yielded decision, observing the opposite effect when
the faulty sensor is high-rated. Anyway, very low performances are seen
for two or more anomalous sensors. MV provides a reasonable tolerance
to faults on one sensor, but no practical utility when two or more fail.
Again, the most robust approach is the HWC, which shows almost no
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worsening for an erroneous sensor, and a acceptable decline for two
faulty sensors, thus confirming its potential use for dealing with sensor
technological anomalies. Yet, under this complex scenario the model is
not capable of overcoming the effects of a majority of faulty sensors.

3.4.6. Discussion

Performance in ideal conditions

This work does not aim at delving into the capabilities of AR systems
devised for ideal technological conditions. In fact, to this respect much
research has been performed during the last years and good models
are available. The evaluation performed in Section 3.4.3 was rather
planned to compare the recognition capabilities of the proposed HWC
with respect to well-known standard AR approaches. Moreover, these
results serves to this work as a baseline of the recognition capacity in
absence of sensor anomalies. In the following the main characteristics
of each model are succinctly described.

Systems based on a single sensor could provide an acceptable recog-
nition performance, but at the expense of a rich feature vector. This
translates into a more complex classification stage, thus potentially re-
quiring more time for the system training and also increasing its latency
during runtime use. Sensor fusion introduces a remarkable improvement
with respect to the use of a single sensor. This is quite reasonable, since
generally the more information from the body motion is available the
better the user activity is normally described, albeit this might not be
necessary for some specific actions (e.g., ankle sensor while detecting
“hand-writing”). Concretely, FFMARC proves to be the most reliable
approach from tested, specially when reduced feature vectors are used.
Although a few features may be enough to provide an accurate solu-
tion, the size of the aggregated feature vector is proportional to the
number of combined sensors, thus also increasing the complexity of the
classification process.

Diverse interpretations could be extracted from the evaluation of
the DFMARC models. In broad strokes, HD and specially MV demon-
strate weak approaches when a reduced set of features is used. MV per-
formance limitations come from the fact that all sensors have the same
relevance into the decision process. When a majority of the sensors fail
to recognize the activity, the eventually yielded activity is erroneous. In
HD models the final decision normally relies on the high-ranked classi-
fication entities, therefore errors on top of the hierarchy are especially
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critical. As individual sensor classifiers generally improve their recogni-
tion capabilities as the number of features increases, the overall perfor-
mance of HD and MV models also grows. Through exploiting the main
advantages of HD and MV models, i.e., a hierarchical and plural contri-
bution of sensor decisions, the HWC manages to achieve a recognition
characteristics similar to those obtained for the most reliable approach
(i.e., FFMARC). For simple feature sets the HWC already proves to
be quite accurate, which helps to reduce computational costs at the
feature extraction stage. Even though, the HWC requires a consider-
able set of decision entities or base classifiers (N x M), which increases
as the number of sensors (M) and activities (N) does. However, these
are simple models that could further benefit from parallel computing,
something that cannot be easily applied to other standard models. In
either case, a fair comparison of the resources required for each model
would be needed to this respect.

Tolerance to sensor failures

Major changes in on-body sensor setups are normally produced by crit-
ical sensor failures. At worst, sensors may get broken or damaged to
an extent so they stop delivering data. Conceptually, similar situations
may be observed when a user leaves a sensor behind, it gets out of bat-
tery or is powered down, resulting in a permanent loss of the signals.
Under these circumstances, standard AR models devised for steady
sensor configurations are prone to fail to provide activity-awareness
capabilities.

From the analysis elaborated in Sections 3.2 and 3.4.4, single sensor
approaches turn to be completely useless in the event of sensor failures.
Since SARC models rely on the data collected through a particular
sensor, if this fails to deliver data no recognition capabilities may be
provided. Similarly, feature fusion multi-sensor approaches also become
unusable in this context. FFMARC classification models are designed
to operate on a particular input (i.e., aggregated feature vector), thus
they cannot be naturally used if this input is incomplete. FFMARC
models could be redesigned to operate with the remaining active sen-
sors, however, this involves a complete retraining of the model, which is
quite costly as well as impractical to be performed during the runtime
use of the system. Therefore, AR applications based on SARC or FF-
MARC models present no other option than switching off the system
and stopping the monitoring process until the setup is recovered to its
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original or default form.
Halting the recognition process could be unacceptable for some ap-

plications (e.g., elderly fall detection, freezing of gait in Parkinson, or
epileptic seizures detectors), and specially burdensome and discourag-
ing for general users. Decision fusion models such as the one proposed
in this dissertation are seen to be a valid solution to help not interrupt
the AR process. In fact, since DFMARC models operate on the individ-
ual decisions provided by each sensor classifier or entity, modifications
in the sensor network are in principle supported. Although applicable,
HD and MV were qualitatively shown to be sensitive to these changes.
Conversely, the HWC proves to be very robust to sensor failures. In
fact, the model practically maintains baseline recognition capabilities
even when a majority of the sensors are missing. At worst, when a sole
sensor remains operational, the performance is similar or even higher to
the obtained through a SARC approach, thus demonstrating the poten-
tial of the HWC also for single sensor setups, as well as its considerable
scalability properties.

Not only should be the AR models capable of coping with the effects
of occasional sensor failures but to facilitate user maintenance tasks.
Thus for example, to provide a means to continue operating while a
discharged sensor is being recharged is specially important in realistic
applications. As concluded before, the HWC helps to provide seamless
recognition capabilities, thus supporting quotidian real-world situations
that may lead to a temporary absence of part of the utilized sensors.

Tolerance to sensor faults

Although less damaging than critical failures, sensor faults could also
lead to a potential malfunctioning of AR systems. Conversely to the for-
mers, faulty sensors are capable of delivering data, albeit this informa-
tion is subject to degradation. This degradation normally corresponds
to signal artifacts, some of which can be removed at the preprocessing
stage (e.g., electronic noise could be filtered). However, other anomalies
may entail a certain information loss that cannot be recovered through
preprocessing techniques. This is the case of changes in the sensor dy-
namic range due to an inadequate energy supply of the device.

Variations of the dynamic range may suppose a misrepresentation
of the measured body motion signals. Clearly, the most reduced the
dynamic range becomes the higher the impact this anomaly has. Nev-
ertheless, changes in the dynamic range produce a different impact on
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each activity pattern. On the one hand, intense activities that involve
a high body motion are primarily distorted, since their acceleration
values may potentially fall outside the bounds of the anomalous sensor
range. This is the case of running, cycling or walking for the activity
set considered in this work. On the other hand, resting or low motion
activities could remain unaffected if the variation of the dynamic range
is not pronounced, but also distorted if this reduces sufficiently.

When sensors suffer from a moderate reduction of the dynamic
range, the performance of SARC models considerably declines. The
highest performance worsening is seen for those SARC models operat-
ing on data collected from body parts subject to intense accelerations
(i.e., body extremities). This fits well with the explanation provided
above to this respect. The use of various sensors may help overcome
the effects of sensor faults, however, not all MARC models show sim-
ilar robustness. FFMARC models are capable of partially coping with
changes in one of the sensors, but show low tolerance to two or more
faulty sensors. Artifacts introduced by individual faulty sensors con-
taminate the complete aggregated feature vector, therefore leading to
misclassifications. The effects are more prominent as the number of
anomalous sensors increases. DFMARC models benefit from the inde-
pendence of each sensor classifier. In this way, HD and MV proves to
be capable of facing the challenge of one faulty sensor, however, their
recognition capabilities considerably drop when two or more sensors
become anomalous. From all tested models, the HWC shows the best
fault-tolerance. In fact, almost no worsening is observed when two or
less sensors are affected, which keeps in reasonable levels also for three
sensors. When a majority of the sensors are distorted, the performance
notably reduces but it is still higher to what is achieved for other AR
models in more beneficial circumstances.

When the dynamic range is more severely reduced, SARC and FF-
MARC models show almost as useless as for the case of having sensor
failures. HD and MV also show little resistance to the effects of the
sensor anomalies, even when a single sensor is affected, thus of doubt-
ful utility. Only the HWC offers an strong resilience to sensor faults,
perfectly dealing with the situation of a faulty sensor and moderately
coping with the effects of two anomalous sensors. Nonetheless, when a
plurality of sensors are affected the HWC approach neither overcomes
the effects of severe changes in the sensor dynamic range.
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HWC advantages

The HWC was originally devised to cope with the effects of sensor
failures and faults. To this respect, promising capabilities have been
demonstrated along this discussion. Nevertheless, the HWC possesses
other remarkable properties that are specially required in AR systems
for the real-world. In the following these characteristics are described.

SARC and FFMARC models cannot function when a sensor breaks
or disappears from the original sensor topology, whereas DFMARC
models could leverage the information provided by the rest of active
sensors. In this way, DFMARC models in general and the HWC in par-
ticular allow for an uninterrupted AR. Now, to return the system to its
initial performance, the broken sensor must be replaced or substituted
with a new one that may potentially have different characteristics (e.g.,
different calibration or signal modality). In this context, SARC and FF-
MARC could be newly utilized, but they require a complete retraining
of the model. Conversely, decision fusion models only require to train
the sensor classifier that operates on the new sensor. This training could
be performed in a rapid fashion through expert models as will be inves-
tigated in Chapter 5. This is a very valuable characteristic in the AR
domain, since depending on the problem complexity systems retraining
may take a significant time.

The HWC also proves to scale well to the number of used sensors.
As shown in Section 3.4.4, the HWC provides good results for diverse
sensor setups, even for combinations of a reduced set of sensors or a sole
single device. From this, not only does the HWC show to be useful for
multi-sensor configurations but also applicable in single sensor setups.
Anyway, these properties will be more deeply observed in Chapter 4,
where more complex scenarios in terms of sensors and activities are
evaluated.

The flexibility of the HWC not only applies at the sensor level but
also at the activity level. AR systems are normally devised for a set
of particular activities, however, this may change in the course of time
depending on the particular user and application needs. For example,
additional activities to the originally planned may be required when a
new exercise routine is considered or a workout plan modified. These
changes are not only seen to add new activities but also remove some
of these at the point of need. This is found of special interest to reduce
systems complexity and increase their recognition performance, as well
as to procure systems personalization to subjects. Schemes based on a



3.4. Evaluation of AR systems tolerance to sensor technological anomalies 71

standard AR model require a complete system rebuilding when the ac-
tivity set is varied. Multi-decision or fusion techniques such as adaboost,
decision stumps, random forests or other popular ensembles and meta-
learners likewise require to utterly retrain the model. Conversely, the
HWC supports this kind of reconfigurations. For the inclusion of new
activities, only new base classifiers must be trained for the added ac-
tivities, and their associated weights computed. If an activity is rather
removed, an update of the model weights is only required. These prop-
erties are eligible to support important requirements of real-world AR
systems such as self-configuration, auto-adaptation and evolvability.
Section 6.3 shows next steps in this direction.

Two weighting models were proposed as part of this work, one
corresponding to a unified weighting of each base classifier decision
(HWCαγ) and a second model on which insertions and rejections are
independently weighted (HWCαβγδ). Although both models show good
classification properties, the second weighting approach demonstrates
a higher potential. Through independently weighting insertions and
rejections the HWC becomes more problem-sensitive, and capable of
leveraging the use of all base classifiers even when their classification
or rejection capabilities might be unbalanced. According to the weights,
these could be defined through diverse criteria. In this work, accuracy
(HWCαγ) and sensitivity-specificity (HWCαβγδ) metrics have been par-
ticularly considered, however, an important asset of this model is that
it could be likewise operated by using other metrics or figures.

Open issues

In research, as important as it is to propose a new model or evalu-
ate a technique is to compare these with previous works in the field.
Unfortunately, the comparison with related work is here difficult since
the effects of sensor failures and faults have been seldom investigated in
the AR domain. Moreover, as mentioned in Section 1.3, there is no gold
standard and also a clear lack of datasets for benchmarking AR models.
To compensate all this, a comparison of the capabilities of the HWC
with the most widely used AR solutions has been provided. Moreover,
in order to ensure the reproducibility of our experiments, the models
are evaluated on a dataset that has been extensively employed in this
domain. Anyway, a strong effort must be put in the wearable AR do-
main to collect new datasets that may serve to validate these and other
models.
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The models used here to emulate the effects of sensor technological
anomalies represent quite precisely what can be observed in a realistic
setting. In fact, no differences are expected for critical anomalies or sen-
sor failures. However, it would be of much interest to not only simulate
their impact but further observe them in a real-world scenario. Unfortu-
nately, this is not an easy task since sensor failures appear in a random
and occasional manner. The closest approach to this respect could be
the dataset collected in [105]. Here the authors gathered multimodal
AR data on which sensors are sometimes switched off, but principally
for energy saving reasons. Packets loss are also reported in this dataset,
however, these are normally associated to missing data from turned-off
sensors. In this direction, a long-term AR dataset including realistic
sensor anomalies could be of much utility to further validate some of
the results presented in this work.

The HWC model has been clearly demonstrated as the most robust
approach. Nevertheless, for a plurality of faulty sensors the system re-
duces its performance, which may be more or less critical depending on
the magnitude of the fault. To overcome this, a error detection proce-
dure could facilitate to exclude the decisions yielded by faulty sensors.
In this line, a recent work [55] proposed the use of distance measures
and information theory techniques to identify erroneous measurements
in a multi-sensor setup. The HWC could leverage this type of mech-
anism to not only identify the damaged sensors but also update the
corresponding weights (γm and/or δm), thus lowering their impact on
the eventual yielded decision.

Not only could changes in the sensor setup be incorporated in the
HWC model but also at the activity level. Sensor anomalies may affect
the recognition of part of the activities (e.g., intense activities when the
dynamic range is reduced), but not alter the identification capabilities
for others. Then, instead of reducing the decision weight at the net-
work level (γm, δm) this could be rather performed at the sensor level
(αmn, βmn), thus only the weights of those base classifiers associated
to unrecognizable activities are modified. This updating procedure is
not only devised to overcome the limitations imposed by sensor tech-
nological anomalies but may be also utilized to dynamically adapt the
AR system to people changing conditions. This is discussed in detail in
Section 6.3.
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3.5. Conclusions

Classic AR systems assume that the sensor setup remains invariant
during the lifelong use of the system. Nevertheless, as other electronic
devices, on-body sensors are subject to faults and failures. These tech-
nological anomalies lead to changes in the sensor data streams, which
are normally unforeseen during the design phase and unpredictable at
runtime. Consequently, models trained on ideal signal patterns may re-
act in an undesired manner to anomalous sensor data. This potentially
translates into a partial or total malfunctioning of the AR systems.

Sensor technological anomalies are categorized in sensor faults or
failures depending on their criticallity. Faulty sensors are capable of de-
livering data, although normally containing artifacts that translate into
signal degradation. Sensor faults could be produced by decalibration,
parasitic circuit effects or an inadequate energy supply. More delete-
rious are sensor failures since they imply a total loss of information.
Sensor failures are normally motivated by critical sensor breakdowns
or damages, or simply appear when a sensor gets out of battery or
shuts down. Similar effects could be seen when a user leaves a sensor
behind or forgets to switch it on because for all these cases no data is
available. In this chapter, the impact of sensor technological anomalies
on standard AR solutions has been investigated, and a new method to
deal with the effects of these anomalies has been proposed.

From the analysis of failure tolerance of standard AR approaches, it
can be concluded that these are in general incapable of coping with the
effects of sensor failures. AR systems based on a single sensor (SARC)
cannot operate when the device stops delivering data, for example, sim-
ply when the sensor gets out of battery. The use of multi-sensor setups
may help to overcome this limitation through leveraging the remain-
ing active sensors. However, in practice not all sensor fusion models
are capable of dealing with failures. In fact, feature fusion models (FF-
MARC) show no tolerance to sensor failures. FFMARC aggregates all
features extracted from each sensor in a single vector, which is input
to a given classifier. This classifier is trained at design time to work
on this predefined feature structure. Thereby, if some sensor data are
missing, the feature vector is incomplete and the model incapable of
providing recognition. Conversely, decision fusion models (DFMARC)
combine the individual decisions yielded by each sensor classifier, thus
supporting a continuity of recognition through the use of the rest of
unaffected sensors. Nevertheless, it is shown that HD and MV, the two
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possibly most used DFMARC models, present special limitations that
make them specially sensitive to sensor failures. HD performance dete-
riorates when has to rely on average sensor classifiers while MV suffers
from the “tyranny” of a plurality of weak sensor classifiers.

Some sensor faults could be solved during the preprocessing stage
(e.g., spurious spikes or electronic noise removal through a filtering pro-
cess). However, other anomalies imply information loss that cannot be
solved through signal processing techniques. This is the case of varia-
tions in the dynamic range, normally associated to the malfunctioning
of the batteries or the irregular supply of the sensor circuitry. Upon
assessing the robustness to dynamic range faults, standard AR systems
demonstrate little capacity to deal with their effects. The recognition
capabilities of SARC approaches severely degrade, specially for those re-
lying on sensors placed on body parts subject to high motion. Likewise,
FFMARC models show an important performance worsening since the
anomalies introduced by a sensor contaminate the complete feature vec-
tor built during the aggregation process. The performance degradation
is seen to increase as the number of anomalous sensors grows. Finally,
once again DFMARC models present the highest tolerance to sensor
anomalies, however, this reduces with the increase of the amount of
faulty sensors.

From the observation of the lacks of classic AR approaches, an orig-
inal alternate model to deal with sensor technological anomalies has
been presented. The HWC leverages the benefits of HD and MV models
and avoids their limitations. For each particular sensor, base classifiers
are defined for the identification of each activity class. The decisions
provided by these classifiers are weighted according to their recogni-
tion capabilities. The weighted decisions are fused for each sensor. The
decisions adopted at sensor level are further weighted and combined
to yield the eventual recognized activity. In ideal conditions, the HWC
renders a performance quite similar to the FFMARC, and far higher
than SARC, HD and MV models. Even more important is that the
HWC proves to deal with sensor failures under which conditions SARC
and FFMARC do not work at all, and HD and MV show low robust-
ness. Moreover, the HWC demonstrates a high fault tolerance when a
minority of the sensors are affected. Nonetheless, when a plurality of
sensors are affected the HWC approach does not overcome either the
effects of severe sensor faults. Detecting sensor faults could be of much
utility to temporarily leave these faulty sensors out of the inference pro-
cess. The flexibility of the HWC model may support these situations
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through the dynamic reconfiguration of the sensor setup.
Other properties that facilitate the seamless use of the recognition

system have been identified for the HWC. For example, the model may
be easily modified to recognize new activities or adapt to user chang-
ing conditions. Likewise, the HWC flexible structure can support the
sensor network reconfiguration at runtime. Through this, hot swaps
or setup changes are in principle allowed, only requiring a training of
the newcomer device and an update of the model parameters to the
new sensor setup. A novel method to support the online training of
newcomer sensors is presented in Chapter 5.
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4.1. Introduction

Technologies of daily living are devised to facilitate users normal ac-
tivity and safeguard their welfare. In the last decades, thousands of
products have been released to make our life easier, safer and more
comfortable, thus allowing us to concentrate on more important tasks.
In this context, wearable technology appears to provide new services
to empower people in their habitual tasks in a transparent manner. To
that end, sensors and systems are made part of articles of everyday
use, principally embedded in accessories. However, transparency is not
only achieved through concealing technology in a physical manner but
when no influence on the human normal behavior is attained. In fact,
on-body systems cease to be transparent when users start needing to
wear the sensors in a particular manner, for example, when a bracelet
must be worn on a specific limb or a watch positioned in a determined
orientation.

To implement activity recognition, current systems normally require
that sensors must be attached at predefined positions to discriminate
between different actions. Pattern models are derived in a training step
before the system deployment, where the sensor positions are consid-
ered to be constant. In particular for on-body sensors, a constant po-
sition on the body cannot be maintained in real-life scenarios. Sensor
deployments are subject to variations introduced by the people normal
use of the accessories into which these sensors are embedded. These
variations correspond to sensor position changes or displacements at
the user’s body. Displacements can remain static during the execu-
tion of many activity instances, e.g., when sensors are misplaced and
kept that way for the whole day. Sensors may further be dynamically
displaced due to the effect of loose-fitting attachments, e.g., when in-
tegrated into baggy clothes. The effect of placement-related changes
on sensor measurements is profound. Compared to expected patterns,
sensor data distributions can change widely and along extended time
spans. As a consequence, previously trained pattern models may fail to
identify actions in the observed sensor data.

4.2. Sensor displacement

Sensor displacement stems from the position variations that a sensor ex-
periences when moved with respect to an initial given placement. In on-
body sensing, sensor displacement is observed when a sensor mounted
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on a given body part is moved to another body location, which may be
close (small to moderate displacement) or distant (extreme deposition-
ing) to the initial placement. Displacement related sensor anomalies
are seen to be highly relevant for inertial sensors, thus in this work
profoundly analyzed.

Sensor displacement may be seen as the combination of two trans-
formations: rotations and translations. According to the physics of the
rigid body1, rotations refer to the circular movements that the sensor
experiences around its rotation axes or upon itself. Translations corre-
spond to the movements of the sensor from a given position to another
distant position through a specific direction. While sensor displacement
between different limbs are less common in real-life applications, shifts
and rotations on the same limb occur frequently.

Sensor displacement applies to each inertial sensing modality (ac-
celeration, rate of turn, magnetic field) to a different extent. Thus for
example, acceleration is specially sensitive to rotations. Rotations in-
troduce a change in the sensor local frame of reference with respect to
its original spatial distribution. This causes a shift in the direction of
the gravitational component with respect to the sensor reference frame.
The effect of translations is normally more dependent on the initial and
end position as well as the magnitude of the acceleration experienced
by the sensor. Thus for example, a sensor which is displaced from the
upper arm to the lower arm will generally measure higher acceleration.
On the contrary, during inactivity or while idling this change may not
have appreciable consequences. More robust to displacement anomalies
are gyroscopes, which are minimally affected by rotations along their
rotation axis and translations along the same body limb. Gyroscopes
do not measure exact angles but angular velocity which is integrated
to obtain angular positions. In case of motion, the gyroscope remains
unaffected by displacements along a given body limb since during a
translation or rotation all points of the rigid body are rotated or moved
to a similar extent (same linear and angular velocity/acceleration for
all points of the same body limb). However, gyroscopes provide no rel-
evant information when the user remains still, thus proving of little
utility to assess sedentary or passive activities. The compass (magnetic

1A common approximation used in biomechanics or human body motion model-
ing consist of rigid segments (mostly representing body limbs) which are connected
through joints that allow rotation around one (e.g., elbow) or more (e.g., wrist)
axes. Although the human body cannot be literally seen as a rigid body (soft tissue,
skin motion, muscle activity) this fairly approximates most motion interactions and
provides a tractable approach for analysis and representation.
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field sensor) measurements are also affected by rotations and to a lower
extent by translations when assuming no gimbal lock degeneration2.

Sensor displacement leads to a new sensor position which results in a
change in the signal space. The impact of the displacement on the sensor
signal may vary depending on several factors, such as the magnitude of
the displacement or the body part considered. Likewise, these displace-
ment effects are also subject to the particular activities, gestures or
movements the user performs. For example, a higher acceleration may
be measured during running exercises when a sensor is displaced from
the upper arm to the wrist, however, for this very case smaller accel-
erations could be registered when the user performs strength-training
exercises such as push-ups. In either case, the sensor readings in the
new signal space likely differ with respect to those expected from a de-
fault or predefined sensor placement. These changes propagate through
the different stages of the ARC, thus affecting the inference process. An
example of such effects is depicted in Figure 4.1. Here, a sensor displace-
ment is unintentionally introduced by the user when self-attaching the
devices (Figure 4.1(a)). This displacement translates into a significant
drift at the feature level (Figure 4.1(b)). This shift in the feature space
complicates the posterior reasoning process. Therefore, a model trained
under the assumption of a predefined placement of the sensors (and ac-
cordingly a bounded feature space) may not correctly operate due to
the variations introduced by the new feature space.

4.3. Synthesizing sensor displacement

To investigate the effects of sensor displacement requires actual situ-
ations on which these displacements manifest. Unfortunately, most of
the datasets used in AR do not account displacement issues, i.e., all
assume fixed sensor deployments [10, 106, 107, 108, 109, 110]. Then,
these data are in principle useless for the sake of this study. However,
an alternative is proposed in previous work, which consists in modeling
the effects of sensor anomalies by introducing synthetic variations into
the original recorded data. These variations try to emulate the trans-

2Gimbal lock refers to the loss of one degree of freedom within a gimbal system -
pivoted support that allows the rotation of an object about a single axis - in a three-
dimensional space that occurs when two out of three gimbals line up in a parallel
configuration, “locking” the system into a rotation in a degenerated two-dimensional
space.
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(a) Sensor displacement originated during a user
self-placement of the sensors
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Figure 4.1: Example of sensor displacement introduced during the user
self-placement of a sensor (a) and its effect at the feature level (b). In
this particular example the displacement from the predefined deploy-
ment to the self-placement case applies to the right calf (RC) while the
placement remains approximately similar for the sensor attached to the
left calf (LC). In (b) the mean and standard deviation computed from
the sensor acceleration signals is represented for various instances of a
given activity.

formations experienced by the default signal space as consequence of
the sensor positioning change.

By following the aforementioned approach, this section aims at an-
alyzing the effects of sensor displacement on standard AR systems,
particularly comparing their impact on systems based on a single on-
body sensor and for those of multiple body parts sensing. Likewise, the
HWC model proposed in Chapter 3 is here also evaluated as a possible
means to deal with the effects of sensor displacement. Additionally, this
section aims to gain insight into which body locations are most robust
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to the effects of sensor displacement as well as how each component of
displacement, i.e., rotation and translation, contributes to these effects.

4.3.1. Rotational and additive noise models

The modeling of sensor displacement requires to emulate both rota-
tions and translations. From the literature, these could be approached
through the so-called rotational (RN) and additive (AN) noise [51, 53].
Here the noise does not refer to the classical idea of “unwanted data
without apparent meaning” but to an unexpected by-product of the
sensor positioning changes when a fixed setup is presumed. Moreover,
RN and AN models are hereafter defined only for acceleration data.
Other synthetic models would be necessary for different signal modal-
ities. At any rate, RN and AN must be seen as approximations to the
actual sensor displacement phenomena.

According to the physics of the rigid body, sensors may experience
a rotation in the 3-dimensional Cartesian space. The rotation implies a
change in the sensor local frame of reference with respect to its original
spatial distribution. To refer the original signals to this new coordinates
system an Euclidean transformation is used. This transformation is
modeled through a rotation matrix3 defined by the Euler angles (φ =
φRN , θ = θRN , ψ = ψRN ) which represent the rotation along the axes
of the original frame of reference:

MRN =

 c(θ)c(ψ) −c(φ)s(ψ) + s(φ)s(θ)c(ψ) s(φ)s(ψ) + c(φ)s(θ)c(ψ)
c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


(4.1)

The translation of the original signals (xraw, yraw, zraw) into the
rotated coordinates system (xrot, yrot, zrot) is obtained through: xrot

yrot
zrot

 = MRN

 xraw
yraw
zraw

 (4.2)

The modeling of a sensor translation is not as “trivial” as for the
rotation case. Sensor translation not only depends on the magnitude
of the translation but also on the original location and its direction.
For example, when sensors originally devised for the upper part of the
extremities (shoulder/thigh) replace on the lower part (wrist/ankle),

3c() and s() represent cosine and sine functions respectively.
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higher acceleration could be measured. An attenuation might be con-
versely observed when the sensors are displaced the other way around.
Nevertheless, this behavior pattern is not always generalizable since it
varies with the particular executed actions as commented in Section 4.2.
The problem could be even more challenging if the sensors are depo-
sitioned from their predefined placement to a completely uncorrelated
body part (e.g., from the ankle to the wrist).

Bearing in mind the complexity of the modeling of sensor transla-
tion it is here approximated through a stochastic model. Concretely, a
similar model to the proposed in [53] is considered, which is based on
additive white Gaussian noise characterized by a zero mean and with
the strength of the anomaly in the value of the variance (σ2

AN ). Even
if this model is not as precise as the defined for the rotational noise,
the additive noise may model the casuistry of the problem as well as
emulate some of the expected changes in the signal space. Besides, this
kind of model could be particularly suited for the modeling of multi-
ple translations along a given direction originated from a loose-fitting
sensor.

4.3.2. Experimental setup

To analyze the robustness of AR systems to sensor displacement, simi-
lar systems to the ones studied in Chapter 3 are here evaluated4. Thus,
the very setup and dataset used in previous experiments are here also
employed (see Section 3.4.2). In short, the used dataset comprises accel-
eration data registered for 20 subjects while performing a set of daily
living activities. From the complete set of activities the most repre-
sentative nine are selected. AR systems based on a single or individual
sensor and those of a multi-sensor configuration are respectively tested.
For the single sensor approach a sole ARC is required (i.e., SARC). For
the multi-sensor system, feature fusion (FFMARC) and decision fusion
(DFMARC) approaches are followed. For the decision fusion approach,
the HWC structure is utilized, concretely the HWCαβγδ given its out-
standing capabilities. From the evaluation performed in Section 3.4.3,
the configuration that yielded the best performance in ideal conditions
for the different AR models is here employed. Thus, the ten best fea-
tures ranked from an original set of up to 861 features [101] are consid-

4All the processing is performed in Matlab R2011b. For the preprocessing, fea-
turing and classification stages some of the functions provided in the Signal Pro-
cessing, Statistics and Bioinformatics toolboxes have been used, while many others
have been specifically defined for this purpose.
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ered. For that search a feature selector based on the receiver operating
characteristic is used [95]. KNN models similar to the ones used in prior
work of this thesis are used as classification paradigm [103]. The coeffi-
cient k is empirically obtained and set to three since this rendered the
best performance. A ten-fold random-partitioning cross-validation is
performed to support an adequate comparison among the models (Sec-
tion 2.1.7). The experiment is repeated 100 times to ensure statistical
robustness.

Concerning the use of the displacement models presented in Sec-
tion 4.3.1, it should be first considered the particularities of the sensors
used in this evaluation. Concretely, biaxial (XY) accelerometers are
used to register the body motion, thus only two rotated signals may be
obtained from Equation 4.2. Thus, given xraw and yraw, and consider-
ing zraw = 0̄, the signals after introducing rotational noise are:

xrot = [c(θRN )c(ψRN )]xraw − [c(φRN )s(ψRN ) + s(φRN )s(θRN )c(ψRN )] yraw
yrot = [c(θRN )s(ψRN )]xraw + [c(φRN )c(ψRN ) + s(φRN )s(θRN )s(ψRN )] yraw

(4.3)

On the contrary, the additive noise is applied independently of the
number of dimensions (axes) the sensor has. An example of the effects
of the modeled sensor displacement could be seen in Figure 4.2.

The particular considered procedure consists in the application of
each respective noise model to each individual instance or data window.
Only test instances are subject to RN or AN since the training data are
assumed not to comprise such variations (i.e., predefined AR system).
The rotation angles (φRN , θRN , ψRN ) are arbitrarily varied for each
instance from 0 to a maximum value ∠RN for the rotational noise,
while the noise variance coincides with the level defined by σ2

AN for the
additive noise.

4.3.3. Single sensor performance

The performance for the single sensor-based recognition models under
the effect of rotational and additive noise is depicted in Figure 4.3. Base-
line recognition performance is shown for ∠RN = 0◦ and σ = 0g, which
correspond to ideal circumstances. For both rotations and translations,
it is observed that the higher the noise (displacement) introduced the
lower the accuracy of the recognition system is.

Particularly, for the case of the rotational noise (Figure 4.3(a)) slight
sensor variations (∠RN≤15◦) are normally well tolerated. However, a
significant drop is observed for sensor rotations of 30◦ or more. Clearly,
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Figure 4.2: Effect of the rotational and additive noise. X-axis (green)
and Y-axis (blue) accelerations recorded through the hip sensor when
(a) walking and (b) sitting. Legend: ‘Original’ ≡ raw signals, ‘φRN =
θRN = ψRN ’ ≡ data with rotational noise (in ◦), ‘σAN ’ ≡ data with
additive noise (in g).

as may be concluded from Equation 4.3, the effect of the rotation is
more profound as higher its value. For example, for θRN=90◦ xrot
turns to be a scaled version of yraw, with φRN and ψRN determin-
ing the scale factor. Therefore, the signal measured on the X axis has
almost no relation with the signal that would be measured in absence
of displacement. As for this example, there are infinite combinations of
φRN , θRN and ψRN leading to infinite transformations of the original
signal space. This translates into variations of the feature space that
cannot be followed by the predefined SARC model.

A particularized analysis of the performance for each sensor drives
us to think that hip and thigh sensors are in principle the less robust to
rotations. This is probably because the magnitude of the acceleration
registered in these positions is lower than for the rest of sensors, thus
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Figure 4.3: Effect of the (a) rotational and (b) additive noise on the
performance of predefined SARC models. Each SARC model operates
on the data registered through each individual sensor. The error bars
along the curves correspond to the standard deviation of the recognition
accuracy.

defining more sensitive classification boundaries. On the contrary, wrist
and ankle sensors happen to be the most robust to rotations.

The performance of the systems remains practically unaffected when
a negligible level of additive noise is applied. This might correspond
to a subtle translation. However, when the noise level is increased up
to 100mg or more the systems are incapable of accurate recognition.
Quantitatively, this translates into a 15-20% average performance drop
with respect to the accuracy obtained in normal circumstances. The
drop further grows above 40% and 60% when σAN is increased up to
200mg and 500mg respectively.

As for the rotational noise, the most sensitive sensors are those
placed on hip and thigh. A similar explanation to the one provided for
the rotational noise may be likewise used here. Therefore, it can be in
principle stated that hip and thigh locations are less recommendable
(in terms of robustness to displacement) for AR solutions based on a
single sensor.

Finally, it is also important to stress on the increasing standard
deviation values obtained as the level of noise grows. Different dis-
placement settings are tested since the rotation is varied between 0 and
∠RN for each experiment (iteration), thus driving to diverse perfor-
mance results. This provides performance bounds (best and worst) for



4.3. Synthesizing sensor displacement 87

the impact of sensor displacement. For the case of the additive noise
the standard deviation proceeds from the stochastic model considered.

4.3.4. Multi-sensor fusion performance

A similar study is presented in Figure 4.4 for the multi-sensor approach.
Here both feature fusion and HWC approaches are tested to evaluate
the tolerance of these models to displacement. Now, a subset S of the
complete set of sensors is affected by the corresponding noise for each
case. The displaced sensors are randomly selected from one iteration to
the next in order to guarantee that different combinations of sensors
are tested, thus reflecting what may happen in a realistic scenario.

Significant differences may be seen with respect to AR systems of
one individual sensor. As already demonstrated in Chapter 3, multiple
sensor configurations perform normally better than single sensor-based
models. Apart from that, fusion approaches also tend to be more robust
to sensor anomalies. However, feature fusion and decision fusion models
behave differently in presence of sensor rotations.

The feature fusion model (FFMARC) partially copes with the ef-
fects of rotations of a sole sensor. At worst, the performance drops
around 20% with respect to ideal circumstances. Also rotations of
two sensors may be assumed but for moderate figures (θRN≤30◦), in
which the performance is found to worsen 15% or less. However, the
worsen is more dramatic when rotations of higher magnitude are con-
sidered and/or more sensors are rotated. Thus for example, for S=2 and
θRN≤45◦ the average recognition performance is below 80%, which pro-
gressively declines to almost 40% for rotations of 90◦. The results are
even much worse when three or more sensors are displaced, leading to
recognition systems of limited utility when sensor rotations of 30◦ or
more are applied.

The performance of the HWC model remains practically the same
independently of the level of noise added when one sensor is rotated.
This is due to the fact that the decisions yielded by the rest of the
sensors cope with the failures introduced by the disturbed one, thereby
allowing for a performance almost similar to what is achieved in nor-
mal circumstances. The model is also able to satisfactorily overcome
the challenge of two rotated sensors, with a performance drop inferior
to 10% for θRN=45◦, and 20% at worst conditions (i.e., θRN=90◦).
However, as the number of rotated sensors increases the probability
of misclassification grows. This leads to certain cases where the fusion
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(c) HWC (RN)
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Figure 4.4: Effect of the (a,c) rotational and (b,d) additive noise on
the performance of predefined sensor fusion models. (a,b) correspond
to a FFMARC approach while in (c,d) the HWC is used. S identifies
the number of sensors simultaneously ’displaced’ through the respective
noise.

performance severely worsens. In fact, this may be seen when a ma-
jority of the sensors are rotated (S≥3), with a decreasing performance
which nevertheless overtakes the achieved for SARC and FFMARC
approaches.

The above analysis could be also extended for the case of the emu-
lated translations. Low levels of additive noise do not affect much the
performance of fusion approaches. FFMARC tolerates well moderate
noise levels (i.e., σAN=0.1) when a sole sensor is affected. However, the
worsen is much more pronounced for the case of two or more anoma-
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lous sensors. For this case, the performance may drop from 60% to
80% for most noisy conditions and a majority of the sensors affected.
The HWC model shows a higher robustness, even for considerable noise
levels. Actually for S≤ 2 the system performs almost perfectly, but a
significant level of noise (σAN≥0.2) on three or more sensors results in
an important performance worsening. In any case, the HWC model out-
performs once again SARC and FFMARC models, thus demonstrating
the usefulness of this approach.

4.3.5. Discussion

Single vs. multiple sensing

AR systems based on a single sensor have been demonstrated worthless
but for very small displacements. Moreover, the impact of sensor dis-
placements has been shown to depend on where the sensor is originally
attached as well as the particular activity performed. Those sensors lo-
cated on body parts subject to a low motion (e.g., hip, thigh) normally
measure lower levels of acceleration, thus being specially indicated for
the discrimination among sedentary activities. In such circumstances
the static acceleration basically dominates, thus the effect of the dis-
placement becomes particularly relevant, especially for the rotations.
For example, a sensor placed on the hip may help to discriminate be-
tween activities such as standing or lying down, but if the sensor is sig-
nificantly rotated the system may interpret the former activity as the
latter and vice versa. On the contrary, sensors located on the extrem-
ities (primarily the upper ones) appear to suffer from sensor position
variations to a lower extent. In this regard, the wrist sensor turns to
be the most robust of the whole set of analyzed on-body placements.
Differences on the translation effects among different body parts are
not that clear to interpret. At first glance, the effects of translations
are expected to be more critical when the sensor is placed on a limb.
Nevertheless, this may vary depending on the actions the user carries
out. This means that the results are in principle activity-dependent.

The use of multi-sensor configurations demonstrates highly recom-
mendable to counteract the effect of sensor displacement anomalies.
FFMARC models cope with the limitations introduced by low to mod-
erate rotations and translations, but only under the assumption of one
rotated sensor. Nevertheless, as the number of affected sensors increases
the effect of rotations and translations turn to be more harmful than
for single sensor configurations.
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The HWC model proves to be the most robust approach to sensor
displacements. For a minority of displaced sensors, and independently
of the magnitude of the displacement, the HWC model maintains rea-
sonable recognition capabilities. For some cases, the performance is
almost similar to what is achieved in ideal circumstances. In fact, prac-
tically no drop in the performance is observed when just one sensor is
displaced. The tolerance of the HWC to sensor displacement is seen to
depend on the magnitude of the displacement when a majority of the
sensors are displaced. Thus a significant worsening is observed for large
rotations and translations.

HWC advantages

The use of multiple sensor configurations provides higher tolerance to
sensor displacement. Fusion approaches are meant to combine the data
delivered by these sensors, however, not all aggregation models are
demonstrated to be robust to displacement. Feature fusion defines a
single feature vector with the data coming from each sensor. Any vari-
ation in the signals (even for only one sensor) is further propagated to
this vector, thus introducing a change into the original feature space.
As for single sensor-based AR systems, this reduces the detection ac-
curacy. HWC overcomes this limitation by treating each sensor data
individually. Therefore, the fusion of the decisions yielded by each sen-
sor instead of the aggregation of their features allow us to cope with
variations in a minority of the sensors.

A quantitative comparison with other related approaches is diffi-
cult since different setups, datasets and methodologies are considered
for each case. In addition to that, there are very few contributions that
analyze the effects of sensor displacement as indicated in Section 2.4.
From these, [51] is here considered for comparison given the similarity
to our approach. In [51] the authors showed that simple decision fu-
sion models such as MV may be used to deal with rotation and faults
anomalies when a significant number of nodes (up to 19) is considered.
Nevertheless, the performance significantly decreases for reduced sensor
networks. As demonstrated in previous work of this thesis, MV suffer
from serious limitations specially for reduced sensor networks. In this
regard the HWC model offer a more scalable solution with remarkable
results even when just five sensors define the whole network. Moreover,
the study performed in [51] is limited to the analysis of upper body
extremities, and no analysis is provided to identify which body parts
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are more sensitive to sensor displacement or other anomalies. Finally, it
is also important to highlight that the results shown in [51] correspond
to a subject-specific (in fact just one) and instance-based setting, with
multiple subsequent repetitions of a specific gesture. These realizations
define a much more compact signal space where the effect of displace-
ment is more evident. Our approach has been conversely tested on a
more general context, for a higher number of subjects and for a more
realistic daily living scenario, yet displacement anomalies have been in
both studies synthetically introduced.

Design and evaluation tool

Figures such as the ones obtained from the evaluation of displacement
effects (Figure 4.3-4.4) could be “reversely” used to identify the number
of affected sensors in a given deployment as well as the magnitude of
the displacements. On the one hand, given the performance of the AR
system, ∠RN or σAN could be identified. On the other hand, once
fixed the level of RN and AN, the amount of displaced sensors could
be extracted for multi-sensor configurations. More importantly, this
might also serve to identify which sensor (i.e., body part) is subject to
displacement if a single sensor setup is used. Anyway, it must be born in
mind that the use of these results for designing purposes is particularly
devised for AR problems that consider activities of similar nature to
the ones here evaluated.

Similar figures could be also used during the recognition system
design phase for those cases in which the level of displacement could be
foreseen and is somehow constrained. In either case, further evaluation
would be required to provide more precise problem-specific figures for
this purpose.

Displacement effects

From the two sensor displacement components, rotations seem to pro-
duce the higher worsening of the AR systems performance. Small rota-
tions have been shown to already have a severe impact on the systems
recognition capabilities, specially for single sensor approaches. Accord-
ing to the synthetic model for rotations, a drift of the sensor frame with
respect to its predefined orientation may lead to offset variations, signal
attenuation or amplification, or even more harmful changes in the signal
pattern. Small sensor translations introduce little changes with respect
to the default signal patterns, which can be faced by most recognition
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systems. Even though, the models demonstrate quite sensitive to large
translations (i.e., high additive noise levels).

During the experimental evaluation of sensor displacement, a fixed
displacement was not applied but rather dynamically varied. The ro-
tation angles were arbitrarily changed for each instance from 0 to a
maximum value ∠RN . The additive noise also varied for each iteration
owing to its stochastic character. Therefore, the results presented along
this section may not only describe the effects of static displacement but
also dynamic sensor position variations, such as the observed when the
sensors are embedded in loose-fitting clothes or accessories. In either
case, synthesizing displacement effects has important shortcomings that
are next analyzed.

Open issues

Emulating sensor displacement in a synthetic manner may serve us to
provide a first idea about how sensor displacement affects the normal
behavior of AR systems. Moreover, synthetic approaches allow us to
evaluate multiple scenarios and conditions, which are difficult to cap-
ture in a real setting. However, this approach lacks of various aspects.
The rotational model applies well to accelerations, specially for low in-
tensity movements. Nevertheless, the fact that both static and dynamic
components are superimposed determines this is an average transfor-
mation. The additive noise, although also used in previous works, does
not completely describe sensor translations since it may also represent
other possible anomalies. Moreover, the models applied to the accelera-
tion data are in principle not suitable for other sensing modalities. The
modeling of rotations and translations for other inertial sensors such as
gyroscopes or magnetometers is considered to be more complex than
for the acceleration model. Thus, RN and AN should be redefined for
the evaluation of displacement effects on these other modalities.

The dataset used here comprises 2D acceleration data, thus the syn-
thetic models could not perfectly represent actual sensor displacements.
The rotated signals are summed scaled versions of the signals registered
under absence of displacement. Thus, when one of the components (here
the Z-axis) is missing the estimated signals may be somehow biased.
Even when from a mathematical perspective this is completely correct,
practical differences could be seen when compared to a real setting.
Conversely, the additive noise model works well with independence of
the number of axes the sensors have since this transformation is indi-
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vidually applied to each signal.
Sensor displacement has been here decomposed into two different

problems, rotations and translations. Although this is interesting to
analyze the impact of each displacement component and applies well
when only one of them affects the sensor, in daily living settings a
combination of these may be normally expected. Therefore, a model
that includes both rotations and translations is particularly required
for an extended evaluation of sensor displacement effects.

For the multi-sensor approach it should be also considered the un-
likely event in which most sensors are displaced, case where the prob-
lem of the performance worsening is not completely solved. For that
reason other additional mechanisms could be possibly considered. One
approach is increasing the robustness of the recognition system through
the definition of more robust data distributions. The idea would be to
emulate the possible changes in the signal space and include them in
order to be learned during the system training. For example, for the
problem associated to sensor rotations one may think about training the
system with artificially modified data for different magnitude rotations.
Another alternative would be to collect data for a sufficient number of
representative possible rotations, but it results almost impossible to
fully cover all the potential rotations that a sensor may suffer from its
original position. An investigation of real-world observations of sensor
displacements may nevertheless reveal more about the impact of sensor
displacements. In the following, an extensive investigation is performed
in this direction.

4.4. Realistic sensor displacement

Section 4.3 presents a complete evaluation of the effects of synthetically
modeled sensor displacements on diverse types of AR systems. How-
ever, synthetic models are an approximation to the real phenomena,
thus they may not perfectly represent the actual effects of sensor dis-
placements. Sensor rotations could be moderately well emulated, how-
ever, translations have demonstrated to be more complex to model. In
fact, the additive noise model used to approximate sensor translations
may not only represent the effects of translation but also other sensor
anomalies. Therefore, it is seen necessary to further extend the analysis
performed for the synthetic case to a more practical setting.

The effects of sensor displacement in real-world conditions are an-
alyzed in this section. To that end, a complete benchmark dataset ac-
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counting for realistic sensor displacements is collected, to date missing
for the study of this problem. Various concepts of displacement are in-
vestigated, including those originated from the user self-positioning of
the sensors or from a large sensor depositioning. Moreover, a means
of introducing sensor displacement anomalies in a practical and struc-
tured fashion is also presented. The effects of displacements are ana-
lyzed from both statistical and recognition performance points of view.
Systems akin to the ones used in previous sections are here considered
for evaluation.

4.4.1. Implementing realistic sensor displacement

Although there exist multiple datasets to benchmark AR systems, there
is no single dataset that widely investigates the effects of sensor dis-
placement. To the best of our knowledge only a few works approached
the problem through “realistic” data, but for a specific body limb and
for in-lab conditions. These few datasets are further constrained in
terms of number of subjects, activities and even the type of displace-
ment considered, since they focus exclusively on translation. Moreover,
they usually lack of a realistic user self-placement mode of introduc-
ing sensor displacement and solely rely on a displacement “induced”
by the expert. Besides, most of these datasets are proprietary and not
freely available for their use. Thus, a dataset that supports real-world
sensor displacement is missing. Here an open-access5 dataset that pro-
vides multiple concepts of sensor placement and displacement, namely
ideal-placement, self-placement and induced-displacement is presented.

A predefined sensor deployment is habitually considered for activ-
ity recognition tasks (e.g., Figure 4.5(a)). The recognition system is
usually trained on this ideal setup. However, users may introduce sen-
sor displacement as consequence of the self-placement of the sensors
or during the performance of the exercises (e.g., Figure 4.5(b)). Larger
displacements may be obtained through an intentional depositioning
of the sensors (e.g., Figure 4.5(c)), which may be used to investigate
the effects of displacement at worst conditions. To study all these cases
the following three scenarios regarding sensor deployment in real-world
settings are defined (also summarized in Table 4.1):

• Ideal-placement or default scenario. The sensors are positioned
by the instructor on predefined locations within each body part.

5The dataset is accessible at http://www.ugr.es/~oresti/datasets.

http://www.ugr.es/~oresti/datasets
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Type of displacement Description

Ideal-placement
No displacement is introduced.
This is the default sensor deploy-
ment.

Self-placement

The users are asked to posi-
tion a subset of the sensors by
themselves on the specified body
part/s (e.g., “please position sen-
sor X on your left thigh”).

Induced-displacement

Sensors are intentionally dis-
placed from the ideal position by
the expert, typically introducing
a large displacement.

Table 4.1: Methods for implementing realistic sensor displacement.

The data stemming from this scenario could be considered as the
’training set’ for supervised activity recognition systems.

• Self-placement. The user is asked to position a subset of the sen-
sors themselves on the body parts specified by the instructor, but
without providing any hint on how the sensors must be exactly
placed. This scenario is devised to investigate some of the vari-
ability that may occur in the day to day usage of an activity
recognition system, involving wearable or self-attached sensors.
Normally, the self-placement will lead to on-body sensor setups
that differ with respect to the ideal-placement. Nevertheless, this
difference may be minimal if the subject places the sensor close
to the ideal position.

• Induced-displacement. An intentional depositioning of sensors us-
ing rotations and translations with respect to the ideal placement
is introduced by the instructor. One of the key interests of includ-
ing this last scenario is to investigate how the performance of a
certain method degrades as the system drifts far from the ideal
setup.

4.4.2. Dataset for displacement evaluation

In the following the particular dataset collected as part of this work
is described. The diverse concepts of displacement described in the
previous section are here utilized.
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(a) (b) (c)

Figure 4.5: Example of possible sensor placements according to the
(a) ideal (b) self-placement and (c) induced-displacement deployments.
In (b) the sensor is arbitrarily rotated 180◦ (approx.) by the user with
respect to the ideal positioning (a). In (c) the expert explicitly displaces
the sensor from the middle upper arm to the elbow.

Activity set

The dataset consists of a set of up to 33 typical warm up, fitness and
cool down exercises (see Table 4.2). In particular, the dataset includes
activities involving translation (L1-L3), jumps (L4-L8) or general fit-
ness exercises (L31-33) as well as body part specific activities focused
on trunk (L9-L18), upper extremities (L19-L25) and lower extremities
(L26-L30). Diverse reasons support to considering this particular ac-
tivity set. The activities were selected so that different combinations
of body parts are involved in each exercise. Some activities imply the
motion of the whole body (e.g., walking or jumping) while others focus
on training individual parts (e.g., legs for cycling). Since the activities
were very easy to perform, participants had no difficulty in doing the
exercises. This simplifies the recording process, helps to collect abun-
dant data and allows for the natural behaving of the users. The exercise
type also influences the impact of the displacement on the sensor sig-
nals. Rotation related anomalies will be constantly present, even when
the sensor remains still, due to the orientation drift measured with re-
spect to the gravitational component for accelerometers. On the other
hand translation related anomalies might particularly be observable
when the sensor is in motion.
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Activity set

L1: Walking (1 min) L18: Upper trunk and lower body opposite twist (20x)

L2: Jogging (1 min) L19: Arms lateral elevation (20x)

L3: Running (1 min) L20: Arms frontal elevation (20x)

L4: Jump up (20x) L21: Frontal hand claps (20x)

L5: Jump front & back (20x) L22: Arms frontal crossing (20x)

L6: Jump sideways (20x) L23: Shoulders high amplitude rotation (20x)

L7: Jump leg/arms open/closed (20x) L24: Shoulders low amplitude rotation (20x)

L8: Jump rope (20x) L25: Arms inner rotation (20x)

L9: Trunk twist (arms outstretched) (20x) L26: Knees (alternatively) to the breast (20x)

L10: Trunk twist (elbows bended) (20x) L27: Heels (alternatively) to the backside (20x)

L11: Waist bends forward (20x) L28: Knees bending (crouching) (20x)

L12: Waist rotation (20x) L29: Knees (alternatively) bend forward (20x)

L13: Waist bends (reach foot with opposite hand) (20x) L30: Rotation on the knees (20x)

L14: Reach heels backwards (20x) L31: Rowing (1 min)

L15: Lateral bend (10x to the left + 10x to the right) L32: Elliptic bike (1 min)

L16: Lateral bend arm up (10x to the left + 10x to the right) L33: Cycling (1 min)

L17: Repetitive forward stretching (20x)

Table 4.2: Warm up, cool down and fitness exercises considered for
the activity set. In brackets the number of repetitions (Nx) or duration
of the exercises (in minutes).

Study setup

A set of nine inertial measurement units (Xsens MTx, [111]) are dis-
tributed on the subject’s body as shown in Figure 4.6. These nodes
provide several sensing modalities including acceleration, rate of turn,
magnetic field and derive the orientation estimates of the sensor frame
with respect to the Earth reference. Sensors and Xsens Master are wired
together in a serial connection that nevertheless do not limit users mo-
bility. The Master device is interfaced over Bluetooth to a laptop which
continuously stores the information delivered by the nodes. The laptop
is also used for labeling purposes. Both data storage and labeling pro-
cesses are performed using the CRN Toolbox [112]. The sampling rate
is established to 50Hz which suffices for the exercises requirements.

Eight of the sensors are normally positioned on the middle of the
limb (for each extremity). An additional one is centered on the back,
slightly below the scapulae. The sensors were attached to the body
using elastic straps and velcro. Trousers and sports jackets of different
sizes were provided in order to ensure the fit to the user.

All sessions were recorded using a video camera. The video recording
is useful to check anomalous or unexpected patterns in the data and
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RUA
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LUA
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Camera

Recording
laptop

Master

Figure 4.6: Experimental setup (cardio-fitness room). Eight Xsens
units are placed on each body limb and an additional one on the back.
A laptop is used to store the recorded data and for labeling tasks. A
camera records each session for offline post-processing. Sensor legend:
left calf (LC), left thigh (LT), right calf (RC), right thigh (RT), back
(BACK), left lower arm (LLA), left upper arm (LUA), right lower arm
(RLA), and right upper arm (RUA).

correct labeling mistakes. In some recordings two subjects performed
the exercises in parallel for efficiency.

Experimental protocol

The experiments took place in a cardio-fitness room at the Student
Sport Centre Eindhoven. The recordings were performed for 17 volun-
teers, seven females and ten males, with ages ranging from 22 to 37
years old. The experiment consisted in performing two complete runs
of the exercises, once with the self-placed and once with the default
sensor setup. The self-placed run was performed first as to not give any
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clues on the default sensor position to the participant. One run-through
of the exercises lasted 15-20 minutes. Each session was preceded by a
preparation phase lasting around 30 minutes. For the self-placement
recordings, first the users self-positioned three6 out of the nine sensors,
while the remaining sensors were attached by the specialist on their
predefined placements. For the second run, self-placed sensors are relo-
cated in their default placements. The preparation phase also comprised
the connection of the sensors to the XBUS Master, setting up the video
camera, and establishing the Bluetooth connection between the Xsens
Master and the laptop. Before starting the exercises, the exact position
of the sensors was documented using the video recording.

Three7 out of the 17 volunteers were recorded for the induced-
displacement scenario (concretely subject 2, 5 and 15). For this, the
instructor depositioned a subset of the sensors while maintaining the
rest in their original location. Data for various sensor configurations
were registered, concretely for the case in which four, five, six or even
seven out of the nine sensors are misplaced. The participants performed
a specific run for each sensor configuration. For both, self-placement
and induced-displacement scenarios the displaced sensors were neatly
selected to fairly cover all body parts.

An instructor demonstrated each exercise before the user performed
them, although the participants were asked to freely execute the activ-
ities while trying their best. In general 20 repetitions were recorded for
each activity except for those exercises that required the subject’s in-
teraction with gym machines (i.e., L1-L3 and L31-L33 from Table 4.2)
for which roughly a minute of exercising was recorded. This constitutes
an interesting means of gaining a relevant number of instances for each
class. The two runs were separated by a break during which the battery
levels were checked and the setup for the next run prepared. The exer-
cises were labeled online using the CRN toolbox [112]. The inevitable
errors in the online labeling were eliminated in post processing with
the help of a commentary sheet to track the errors in addition to the
video recording.

6This is considered a reasonable estimate of the proportion of sensors that may
be misplaced during the normal wearing of the devices.

7Conversely to the self-placement case in which the inter-subject variability
wants to be observed when self-placing the sensors, this scenario rather focus on
the study of the effects of large displacements that are purposely introduced.
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Deployment #subjects #anomalous sensors #activities duration/total duration
Ideal-placement 17 0 226.84/860.19
Self-placement 17 3 220.73/895.42

Induced-displacement 3 {4,5,6,7} {47.72,45.39,48.58,46.76}/632.28

Table 4.3: Dataset description summary. Overall cumulative duration
for the complete set of activities with respect to all the collected data is
given in minutes.

Statistics

Table 4.3 presents the statistics on the available exercise data with re-
spect to the complete recorded data for each displacement concept con-
sidered in this work. The entire dataset contains over ten hours of exer-
cise data and lasts over 39 hours in total. Self-placed and ideal record-
ing sessions contain approximately 15 hours of data each. Induced-
displacement sessions include more than ten hours of data distributed
among the different runs. The difference between exercise duration and
the total duration provides the amount of data corresponding to unre-
lated activities. The average ± standard deviation duration in minutes
of the exercise data (total data) recorded per subject is 13.02 ± 5.26
(51.31 ± 20.35) for the ideal concept, 13.96 ± 3.78 (50.59 ± 17.41) for
the self-placement scenario and 14.75 ± 5.36 (49.24 ± 22.43) for the
induced case.

During the data post-analysis some parts of the recordings were
identified as either corrupted or missing. The recorded videos were
demonstrated especially useful for rejecting erroneous labels as well
as checking the validity of the annotated data. Figure 4.7 shows the
missing activity data8 for each subject or run. No activity data is avail-
able for subject 6 and 13 for the self-placement setup. For participant
7 there is almost no data available in the ideal scenario. A few addi-
tional activities are missing for some of the remaining subjects. For the
induced-displacement dataset (Figure 4.7(b)), the worst data loss was
incurred for subject 3 where activities L13 to L29 are missing. A few
additional activities are also missing for the rest of the subjects. Fi-
nally, the sensors that have been displaced for each subject and setup
are depicted in Figure 4.8.

8The amount of missing data is negligible compared to the number of valid
samples, thus it was discarded to redo the corresponding experiments.



4.4. Realistic sensor displacement 101

Subjects

A
ct
iv
iti
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

None Self−placement Ideal Both

(a)

Number of displaced sensors

A
ct

iv
iti

es

4 5 6 7 4 5 6 7 4 5 6 7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Subject 2 Subject 5 Subject 15

(b)

Figure 4.7: Missing activity data for each particular subject. (a) For
ideal and self-placement conditions: the legend identifies the correspond-
ing sensor deployment (both ≡ self-placed and ideally-placed). (b) For
the induced-displaced condition: only participants 2, 5 and 15 were con-
sidered.
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Figure 4.8: Shading spots identify the displaced sensors for the (a) self-
placement and (b) induced-displacement deployments. Only participants
2, 5 and 15 were considered in (b).
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4.4.3. Statistical evaluation of realistic sensor displacement

A preliminary analysis of the variability captured in this dataset is here
conducted to underline that it is indeed useful for studying displace-
ment related sensor anomalies and can be considered for benchmarking
displacement effects. Mean and standard deviation features are consid-
ered for acceleration signals across all sensors. The data is partitioned
in such a way that each instance corresponds to roughly one repetition
of a given activity.

Figure 4.9 gives a particular example of how the feature distribu-
tion is affected by sensor displacement. It can be observed the shift
in the feature space for the displaced sensor between the ideal and
self-placement scenario. Figure 4.10 shows the variance along the prin-
cipal components of the features across all subjects for each activity
performed for the self-placement and the default scenario. In the ideal
sensor placement the variance observed is due to the intra and inter
subject variability in performing the exercises. The random sensor dis-
placements introduced in the self-placement scenario result in a higher
overall variance, which can be seen by comparing Figure 4.10(b) to
Figure 4.10(a). Figures 4.11(a) to 4.11(f) provide a similar illustration
for the induced-displacement runs. Here it can be further observed an
increasing variance as the number of displaced sensors grows.

An indicator of the average variance for each scenario is shown in
Figure 4.12 by marginalizing over the activities and feature dimen-
sions. Figure 4.12(a) compares the average variance for the ideal and
self-placement setup. Even though the users only displaced three out
of nine sensors within the specified body segment in the self-placement
scenario, the increase in variance compared to the ideal setup is consid-
erable. In Figure 4.12(b), a higher variability is once again observed as
the number of anomalous sensors increases. These results suggest that
activity recognition systems that do not consider sensor displacement
mask a huge source of variability.

It can be considered that the activity instances for a given partici-
pant form a cluster in the feature space (Figure 4.9). Then, by calcu-
lating the normalized cluster distance for a given subject and activity
between the ideal and an anomalous setup it is possible to obtain the
shift in the feature space caused by the sensor displacement. Figure
4.13 shows the normalized cluster distance between the ideal and self-
placement run for subject 10. The feature directions with the highest
cluster distances indicate the three particular sensors (LT, RT and RC,
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Figure 4.9: Example of the data drift introduced by the sensor self-
placement. The sensor attached to the right calf (RC) was one of the
sensors positioned by the user during the self-placement recording ses-
sion while the left calf (LC) was placed in the ideal position. A shift in
the data distribution may be observed between ideal and self-placement
run for the displaced sensor, while that of the non-displaced sensor stays
the same.
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Figure 4.10: Normalized variance across participants for each activity
along the 15 most significant principal components for the ideal and self-
placement scenarios. The components are evaluated over the mean and
standard deviation features extracted from the tri-axial accelerometer
measurements for the nine sensors.
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Figure 4.11: Normalized variance across participants 2, 5 and 15, for
each activity along the ten most significant principal components for
the ideal-placement, self-placement and induced-displacement scenarios.
The components are assessed over the mean and standard deviation
features extracted from the tri-axial accelerometer measurements for
the nine sensors.

see Figure 4.8) the participant displaced as a consequence of their self-
attachment. Highest variations are observed in the acceleration mean,
which especially relates to the gravitational component.

4.4.4. Classification impact of realistic sensor displacement

This section analyzes the tolerance of AR systems to the effects of
sensor displacement measured in a realistic settings. Similarly as to
Section 4.3, here both single and multiple sensor configurations are
evaluated.



4.4. Realistic sensor displacement 105

Ideal Self−Placed
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3 Average variance (all subjects and activities)

(a)

Ideal Self Induced (4) Induced (5) Induced (6) Induced (7)
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3 Average variance (subjects 2, 5 and 15 and all activities)

(b)

Figure 4.12: Variance across subjects averaged over activities and fea-
tures. In (b) the ideal and self-placement results are obtained from the
data of participants 2, 5 and 15. For the induced-displacement the num-
ber of depositioned sensors is given in brackets.
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Figure 4.13: Example of the cluster distances between activities for
ideal and self-placement recordings for participant 10. Sensors RC, RT
and LT were self-placed. In (a), clusters were obtained from mean and
standard deviation features along X, Y, and Z axes of the acceleration
measurement of each sensor (1 to 9 ≡ RLA, RUA, BACK, LUA, LLA,
RC, RT, LT, LC) for all annotated dataset activities. In (b) only the
mean is considered along the same tri-axial directions.
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Experimental setup

In Section 4.3 a set of nine activities was considered for evaluation.
Taking advantage of the amount of exercises registered in this dataset,
diverse scenarios are defined to further analyze the impact of the AR
problem complexity on the robustness of the systems to sensor displace-
ment. Two reduced versions of the original dataset, i.e., comprising a
subset of the whole group of activities, and the actual original dataset
are used for evaluation. Concretely, these datasets respectively embrace
10-activities, 20-activities and 33 activities (all) from the original set. To
ensure a fair distribution of the diverse type of activities registered for
this dataset, exercises that involve the motion of part or the complete
users’ body are selected for the 10-activities and 20-activities datasets.
The selected exercises are 1, 4, 8, 10, 12, 18, 22, 25, 28, and 33 for the
10-activities scenario, and 1, 2, 3, 7, 12, 13, 17, 18, 19, 20, 21, 23, 25,
27, 28, 29, 30, 31, 32, and 33 for the 20-activities case (see Table 4.2
for equivalence). The data corresponding to these activities is chosen
for the diverse concepts of sensor placement and displacement (’ideal’,
’self’ and ’induced’).

Here again, AR systems based on a single or individual sensor and
those based on a multi-sensor configuration are respectively tested9.
For the single sensor approach a sole ARC is required (SARC). For the
multi-sensor system, FFMARC and HWC models are approached. A
segmentation process consisting of a non-overlapping sliding window (6
seconds size, as suggested in [10]) is applied to each data stream. Three
feature sets (FS) are respectively extracted for evaluation: FS1=’mean’,
FS2=’mean and standard deviation’ and FS3=’mean, standard devia-
tion, maximum, minimum and mean crossing rate’. These are features
widely used in activity recognition [43, 10, 16, 5, 39] for their discrimi-
nation potential and ease of interpretation in the acceleration domain.
Additionally, the use of these features may also simplify the task of
reproducing these experiments for future work comparison. Likewise,
three of the most extensively and successfully machine learning tech-
niques used in previous activity recognition problems are considered
for classification: C4.5 decision trees (DT, [102]), k-nearest neighbors
(KNN, [103]) and naive Bayes (NB, [95]). The k-value for the KNN
model is particularly set to three as it has been shown to provide good

9All the processing is performed in Matlab R2011b. For the preprocessing, fea-
turing and classification stages some of the functions provided in the Signal Pro-
cessing, Statistics and Bioinformatics toolboxes have been used, while many others
have been specifically defined for this purpose.
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results in prior work of this thesis. These techniques are used for the
standard classifiers and for the HWC base classifiers units.

The evaluation of the activity recognition models for the ’ideal’
settings is performed through a ten-fold random-partitioning cross-
validation process applied across all subjects and activities. This pro-
vides the baseline recognition capabilities of these systems in absence
of displacement. This process is repeated 100 times for each method to
ensure statistical robustness. A testing procedure is applied for ’self’
and ’induced’ settings. Thus, self-placement and mutual-displacement
data is inputted to a predefined AR system which is obtained from the
training on the data registered for the ideal-placement setting.

Single sensor performance

In this section the results corresponding to the evaluation of the SARC
systems are presented. The performance results obtained from the eval-
uation across each individual sensor are depicted for each displacement-
concept setting in Figure 4.14.

In general terms, two tendencies could be discerned for all settings
and scenarios. First, as the complexity of the problem increases, i.e.,
the number of considered activities grows the detection performance re-
duces. Second, the use of richer feature sets helps improve the recogni-
tion capabilities of the systems, thus best results are normally obtained
for FS3, followed by FS2 and FS1. This is consistent with previous stud-
ies of this dissertation.

For the ideal-placement (Figure 4.14(a)), from all evaluated mod-
els the KNN stands out with values above 90% accuracy for the 10-
activities and 20-activities problems. The performance drops to a bit
more than 80% for the 33 activities scenario. The other two paradigms
demonstrate limited applicability for recognition, specially for the most
complex scenarios.

A significant drop on the recognition capacity is seen when the users
self-place the sensors (Figure 4.14(b)). Through comparing these results
with the ones obtained for the ideal case, for the simplest scenario (i.e.,
10-activities) a drop of approximately 40% accuracy is observed for
the KNN approach and FS1, that nevertheless gets reduced to almost
35% and 25% drop for FS2 and FS3 respectively. This “enhancement”
for FS2 and FS3 could be explained since the use of richer feature
vectors may help compensate the sensitivity to displacement variations
of the features used in FS1. The performance gap is higher for the
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Figure 4.14: Accuracy (average - bar - and standard deviation -
whiskers -) results from the evaluation of the single sensor approach
across all subjects and sensors for the (a) ideal-placement, (b) self-
placement and (c) induced-displacement settings. Top legend identifies
the classification paradigm. Horizontal axis labels identify the feature set
used for each experiment. The AR dataset (i.e., number of activities)
used is respectively underlined.

20-activities and 30-activities scenarios, on which the accuracy falls up
to 45%. The tendencies observed for the KNN are similarly applicable
to the DT model. On the other hand, NB appears to be the most
robust approach. The drops are very similar for all scenarios (around
20-25%, the lowest of evaluated). In fact, the performance for NB after
displacement is quite similar to as for the KNN model. In either case,
since the maximum performance across all models and paradigms is of
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65%, it can be concluded that none of the models satisfactorily cope
with the displacement introduced by the users when self-placing the
sensors. In other words, these models are not practical for recognition
purposes under these circumstances.

Finally, for the induced-displacement setting, the data correspond-
ing to the displaced sensors of all categories (four, five, six and seven
displaced sensors) are used for evaluation. Similarly as to for the self-
placement setting, an overall analysis of the effects for each sensor (i.e.,
body location) is here feasible since most possible combinations of dis-
placed sensors where considered during the dataset recording process
(see Figure 4.8). From Figure 4.14(c) it could be seen the tremen-
dous performance worsening that the diverse recognition systems suffer
under the assumption of an intentional depositioning of the sensors.
Clearly, these are the poorest results among the three settings with
performance values that are below 50% accuracy at best. As for the
self-placement setting, the minimum performance fall is encountered
for the NB model, while the highest drop is found for the KNN tech-
nique, although this yields best performance values from the evaluated
models.

Multi-sensor fusion performance

The accuracy results for both feature fusion (FFMARC) and decision
fusion (HWC) approaches are respectively depicted in Figures 4.15-
4.16. It should be noted that differently to the individual sensor analysis
here all sensors are simultaneously used, then the evaluation could be
respectively performed on the diverse categories devised for the mutual-
displacement setting (i.e, four, five, six or seven out of the nine sensors
are depositioned).

Similarly to what was commented for the individual sensor ap-
proach, it could be seen that the performance of the diverse recognition
systems improves as the number of features grows. On the other hand,
the performance decreases as the activity detection problem gets more
complex (i.e., number of activities increases), albeit this performance
fall is less marked than for the SARC models.

The feature fusion model demonstrates high recognition capabilities
for all AR scenarios when an ideal placement of the sensors is considered
(Figure 4.15(a)). In fact, the performance is near absolute recognition
for models implementing the KNN technique, with an accuracy of more
than 95% for the most complex scenario. Also very high figures are
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Figure 4.15: Accuracy (mean and standard deviation) results from
the evaluation of the feature fusion model for the (a) ideal-placement,
(b) self-placement and (c-f) induced-displacement (# sensors) settings.
Top legend identifies the classification paradigm. Horizontal axis labels
identify the feature set used for each experiment. The AR dataset (i.e.,
number of activities) used is respectively underlined.
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Figure 4.16: Accuracy (mean and standard deviation) results from the
evaluation of the decision fusion model for the (a) ideal-placement,
(b) self-placement and (c-f) induced-displacement (# sensors) settings.
Top legend identifies the base classifiers paradigm. Horizontal axis labels
identify the feature set used for each experiment. The AR dataset (i.e.,
number of activities) used is respectively underlined.
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obtained for the other two methodologies. DT proves to be the less
reliable from all methods, yet it provides performance values above 90%
for the 10 and 20-activities scenarios. Finally, NB yields accuracies that
spans from 87% for the most complex scenario and FS1, to 97% for the
simplest scenario and FS2 or FS3.

Different readings could be extract for the self-placement case (Fig-
ure 4.15(b)). Here the KNN model stands out as the most reliable
technique and also the most robust as this suffers from the lowest per-
formance falls with respect to the default setup. Despite there is a
moderate drop for the simplest AR scenarios when rich feature sets
are used (84% and 87% accuracy for the 10 and 20-activities while us-
ing FS3), a considerable drop is found for the most complex scenario
that leads to average top performances of less than 80%. Highest drops
could be seen for the use of FS1 as feature input, with average per-
formance values that reach 70% accuracy at best and for the simplest
scenario, to almost 50% for the 33 actitivies case. In summary, the per-
formance fall approximately spans from 13% at best to more than 40%
at worst case. The worsening is even higher for the DT and NB, with
performance drops that range between 20% and 60%.

The effects of the induced-displacement are shown to be in general
more harmful than for the self-placement case. Similarly as for the ideal
and self-placement cases, KNN proves to be the most accurate model
in general terms. Nevertheless the performance falls differently for each
scenario. Starting with the case in which four sensors are intentionally
depositioned (Figure 4.15(c)), it can be observed that a maximum ac-
curacy above 80% is guaranteed for FS3 and 10 or 20-activities. This
represents a reduction of approximately 20% with respect to the ideal
case. For the rest of evaluations the drop is very significant, falling in
some cases up to 90% with respect to ideal circumstances. When five
sensors are displaced the performance drops span from 20% to 85% at
worst. An improvement is observed for the case of depositioning six
sensors for the 10-activities scenario, although the performance wors-
ens for the other two scenarios (up to 75% loss). Finally, as could be
expected worst results are obtained when seven out of the nine sensors
are displaced. In average terms, none of the models gets a performance
superior to 75%, specially for the most complex scenarios, on which the
highest drop is about 85%. To explain the singularity found for the six-
sensors-displaced setting (better overall results for the simplest scenario
than for four and five) it must be born in mind that for the induced-
displacement evaluation the recordings for just three participants are
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available, thus the conclusions could be in principle less generalizable
than for the self-placement case. Moreover some data are missing for
part of the users as illustrated in Figure 4.7(b), particularly for one of
the volunteers that participated in the induced-displacement (5) record-
ings, which may also explain these trends. The differences among these
could be also explained through the random nature of the displacement
introduced from run to run, thus larger sensor displacements may be
present for this settings than for others. In either case, this idea fits
well with what can be observed in realistic settings.

According to the HWC model, in ideal settings very promising re-
sults are obtained for all scenarios, although this specially applies to
DT and KNN models. Accuracy rates above 90% and 95% may be
respectively obtained for DT and KNN models for all scenarios and
features sets, albeit these reduce for the most complex scenarios when
the simplest feature set is used (FS1). The NB technique proves to
be the less reliable, with performance values that improve when richer
feature sets are used. Although performances over 87% and 85% could
be obtained for the 10 and 20-activities scenarios, only a 70% accuracy
may be achieved for the 33-activities case when using the NB technique.

The HWC model significantly overcomes the worsening experienced
by SARC and FFMARC models when the user self-places the sensors,
specially for the most complex scenarios. Similarly as for the feature fu-
sion model, KNN is once again the most promising technique to be used
as base classifier. For this, when FS2 and FS3 are used the performance
achieved is superior to 95% for the 10-activities scenario, 92% for the
20-activities case and close to 90% for the 33 activities scenario and
FS3. This translates into very reduced performance drops that span
from 3% to 6% worst. As it happens to occur to SARC and FFMARC
models, the approaches that utilize the FS1 are not capable of deal-
ing with the effects of displacement, however, the drops are yet lesser
than for the single sensor and feature fusion models. DT and NB mod-
els appear to be quite robust considering their moderate performance
drops, which in most cases are as reduced as for the KNN approach.
This clearly supports that such robustness falls on the HWC structure,
since the behavior is quite similar with independence of the machine
learning paradigm used for the base units.

Similarly as in the previous cases, the combination of HWC and
KNN turns to be the most reliable model under the assumption of
induced displacements (Figure 4.16(c)-4.16(f)). Besides, NB confirms as
the approach that, even not yielding best average performance, suffers
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from the lowest falls. From an individualized observation, performance
rates of up to 94% may be achieved for the simplest scenario when four
sensors are depositioned. This performance decays to 85% and 70% for
the 20-activities and 33 activities scenarios, quite in line with the results
obtained for the feature fusion, which here nevertheless correspond to
a lower performance fall. Concretely, the performance drops for this
case range from 5% to 35% for KNN and FS2 or FS3, and reach a 60%
drop when FS1 is used. For NB and DT the falls are found to be even
lesser, with a performance improvement only shown for a few cases. The
evaluation on the data pertaining to the depositioning of five sensors
gives results that show no deterioration of the performance for KNN-
FS3 and 10-activities, while a significant worsening is seen for the most
complex scenarios. Particularly, the performance falls range between
2% and 45% for this setting. Slightly better results are obtained for the
six-sensors-displaced case, in which accuracies of more than 90% are
reached for the 10 and 20-activities scenarios, while little more than
75% could be achieved for the 33 activities problem. In overall, the
performance drop spans from 3% at best to 55% at worst case. Finally,
worst results are obtained for the seven depositioned sensors setting.
Newly, NB proves to be the most robust technique whereas maximum
performances are generally obtained for KNN. The performance drop
ranges from 2% to more than 55%. The high standard deviation values
for this last setup reflect the differences about the deployment used for
each user and run.

4.4.5. Discussion

In general terms, two tendencies could be discerned for all results inde-
pendently of the sensor deployment settings. First, as the complexity of
the problem increases, i.e., the number of considered activities grows,
the detection performance reduces. Second, the use of richer feature
sets helps to improve the recognition capabilities of the considered sys-
tems, thus best results are normally obtained for FS3, followed by FS2
and FS1. This is consistent with previous studies of this dissertation.

The accuracy results demonstrate that the evaluated AR approaches
could be adequate solutions under the assumption of an invariant sen-
sor deployment. Nevertheless, both sensors self-placement and induced-
displacement settings introduce a significant drop on the performance
of standard AR systems with respect to an ideal sensor deployment,
which confirms the effects described in section 4.2. Clearly, the more
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profound the displacement applied the higher the performance drop.
Likewise, the more sensors are depositioned in a multi-sensor setup,
the more limited the recognition accuracy is. The HWC model proves
to be the most robust approach from all evaluated systems, capable of
dealing with the variations introduced during the user self-placement
of the sensors and also overcoming the impact of large depositionings
for particular scenarios.

Single vs. multiple sensing

For the single sensor-based approach, KNN appears to be the most reli-
able technique in ideal circumstances, but possibly the most sensitive to
sensor displacement. This could be consequence of the way the activity
clusters drift in the feature space because of the displacement effects.
On the contrary, models based on NB appear to be the less accurate
for predefined conditions, although these suffer from the lowest drop
on the performance when the sensors are misplaced. In any case, the
maximum performance obtainable in the event of sensor displacement
do not suffice for the purpose of AR, thus once again demonstrating
the potential limitations of SARC approaches in realistic settings.

Models based on a multi-sensor setup generally allow for an opti-
mal recognition capabilities given a default deployment of the sensors.
Besides, more promising results are obtained under the effects of sensor
displacement than for the individual sensor approach. Nevertheless, not
all models demonstrate the same tolerance to sensor misplacement. In
fact, the FFMARC model shows an important worsening for the case
in which the user self-places the sensors. The performance drop is even
higher when the sensors are purposely depositioned. For the FFMARC
model NB proves to be the most sensitive to sensor drifts, while the
opposite is observed for the KNN technique.

On the contrary, the HWC model deals quite well with the effects of
sensor displacement introduced by a user self-placement of the sensors.
The HWC model also demonstrates a high tolerance to large deposition-
ings for simple AR scenarios. This is shown to happen independently
of the classification paradigm utilized for the base classifiers. However,
as the number of displaced sensors increases, the performance of both
FFMARC and HWC approaches generally declines. The recognition
capabilities are specially reduced when a majority of the sensors are
displaced and for very complex recognition problems. Even though,
comparatively here again systems based on the HWC scheme signifi-
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cantly overcome the robustness capacity of FFMARC models.

HWC advantages

The HWC model provides us with several benefits some of which have
been already described in previous sections of this dissertation. Some
of them are further supported by the results obtained in this study,
while new others are specifically identified from the analysis of realistic
sensor displacements.

HWC assures a higher robustness to sensor displacement effects
than standard AR approaches. These better results for the HWC may
be explained since individual variations of a sensor with respect to its
default behavior have less impact in the classification process. This is
possible since each sensor contributes in an independent manner to
the final delivered decision, thus a majority of sensors (normally un-
affected) overcomes the decisions obtained from the displaced sensors.
Conversely, single sensor models and feature fusion models incorporate
data from displaced sensors in a unique feature vector, thus leading to a
potential feature drift that cannot be handled by the reasoning model.

The HWC model demonstrates an important tolerance to sensor
displacement, although it is subject to a certain performance drop.
However, it is worth noting that this drop applies homogeneously to
each classification paradigm, which leads us to conclude that the po-
tential robustness of the system truly relies on the HWC structure,
more than the specific techniques used for the base classifiers. In this
way, the HWC model proves to increase the classification potential and
robustness of standard multi-class models.

Although a comparison with previous works could be performed for
the synthetic displacement analysis (Section 4.3.5), here this is not pos-
sible due to the novelty of this approach. To the best of our knowledge
there is no investigation that treated on-body sensor displacement in
this regard, thus this contribution could be thought as a starting point
of investigation in this field.

Finally, the HWC demonstrates high potential for its application
in ideal circumstances. Moreover, the proposed model also shows no-
table scalability properties. It was shown to provide good performance
for reduced sensor networks such as the considered in Chapter 3, and
here also successful for more complex deployments. Likewise, the dual
weighting scheme (insertion/rejection) also demonstrates of relevant
capacity. For the most challenging scenario, the decisions of up to 297
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(9x33) base classifiers must be combined, thus an efficient aggregation
mechanism is required. The weighting model used seems to operate well
in such a dense ecosystem.

Concepts of displacement

This is the first study in this field that widely accounts for the problem
of sensor self-placement in the investigation of real-world AR issues. As
demonstrated through this work, there are serious consequences when
freeing users to place the sensors. AR systems based on a single sensor
may be useless if the user does not follow the specific deployment in-
structions. This is a limitation that goes against usability requirements
of real-world AR systems. Sensors are devised to be embedded in ar-
ticles of the daily living, thus restricting the way these must be worn
proves burdensome and could reduce users’ acceptance. When porting
multiple sensors, the effect of isolated sensor misplacements may be re-
duced. In fact, it could be seen that a bracelet is worn on the upper arm
instead of the lower arm, but it is normally expected that a majority
of other instrumented items such as shoes, trousers or shirts are put
on a quite predefined manner. In this direction, the HWC model helps
overcome the limitations introduced by a minority of drifted sensors.

The induced-displacement setting was originally planned to analyze
the effects of a hard depositioning of the sensors. This could be also
part of the day to day usage of the systems, but it is rather expected to
be seen in occasional circumstances. In real-world settings, this could
apply to sensor displacements such as those introduced when rolling up
the sleeves of an instrumented shirt or when wearing the shirt back-
to-front. In wearable AR, this type of displacement has been discreetly
studied but for a particular body part and in a very limited way in
terms of number of users and activities. In this work several configura-
tions and settings are analyzed, thus bringing added value with respect
to the state-of-the-art. This study also shows the increasing worsening
of the recognition capabilities as the number of displaced sensors in-
creases. Neither individual sensor approaches nor feature fusion models
are found to be capable of overcoming the challenge of multiple dis-
placed sensors. The HWC model partially deals with this, but for the
simplest scenarios.
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AR problem complexity

In general, as the complexity of the recognition problem grows an ac-
curate recognition of the diverse activities turns to be more difficult.
Something similar is observed under the assumption of sensor displace-
ment. Concretely, for the ten activities scenario low performance re-
ductions are seen, specially when the HWC and richest feature sets are
utilized. However, as the number of activities grows also the effects of
displacement are more prominent, and by extension also the recognition
worsening more profound. This may be explained since the probability
of misclassification of a given instance is higher because there are more
potential activity clusters with which this may be confused. The use of
more features or kernel-type transformations of the feature space could
be of interest to separate as much as possible the diverse class clusters
and therefore reduce the activity confusion likelihood.

Study generalization

One of the key elements that supports the generalization of the conclu-
sions of this study is the data employed for evaluation. The considered
sensor deployment comprises some of the most widely used placements
in wearable sensing. Sensors are located in unobtrusive and comfortable
positions that permit the normal behaving of users during their daily
living. Moreover, the deployment almost covers the complete body, con-
cretely registering the movements of all limbs and trunk. To be perfectly
complete, sensors on the head should be mounted, however, this option
was dismissed considering its rare application normally motivated to
avoid users’ discomfort. In terms of activities, a broad number of exer-
cises of diverse type are considered. This includes exercises of different
intensity and velocity that also involve diverse combinations of body
parts. This helps to get insights into the effects of sensor displacement
for activities in which some body parts are still or quasi-static, to others
in which these are in motion, thus tackling a wide spectrum of activ-
ities. A considerable number of participants were also considered for
the recordings, thus better supporting the validation of the study out-
comes. Although participants of relatively similar age were considered
for evaluation, their physical conditions were quite diverse thus ensuring
different kinds of executions. This is further supported through freeing
the users to execute the activities in a natural way.

For the sake of generalization, the here tested recognition systems
correspond with some of the most widely used in related works. More-
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over, simplicity and comprehensiveness were key elements born in mind
during the selection of these models, thereby allowing us to focus on
the potential impact of the displacement effects. Thus for example,
data directly captured through the sensors are used, avoiding any kind
of filtering or preprocessing. These procedures normally remove some
parts of the raw signals that may potentially lead to a change in the
signal space that could mask the actual effects of sensor displacement.
Moreover, the features used are simple, easy to calculate and with inter-
pretable physical meaning. Concretely, the ’mean’ allows us to extract
the gravitational component contribution to the acceleration which is
particularly informative for distinguishing among low intensity activi-
ties. ’Standard deviation’, ’minimum’ and ’maximum’ provide insights
into the intensity and magnitude of the movements, while the ’mean
crossing rate’ correlates with the dynamicity and frequency of the exe-
cutions. Moreover, the use of lightweight features helps reduce latency
which is a key factor during online operation of the systems. Similar
tendencies have been found for the various feature sets for each inde-
pendent classification methodology, thus demonstrating that the results
obtained here could be extrapolated to other systems of similar nature.
In either case, the differences among performance quality for each fea-
ture set determine that an automatic selection of better features as
performed in previous experiments could possibly lead to improved re-
sults.

Open issues

The aim of this work was to analyze the effect of static displacements
normally introduced during sensors placement or relocations. These
displacements remains in principle static during the use of the systems,
although small variations of the sensor positioning are sometimes ob-
served because of loose-fitting attachments or when performing the ac-
tivities. This is in this work leveraged to further extend some of the
conclusions to the case of dynamic displacements. Nevertheless, a pro-
found investigation in this direction is required to better determine the
specific effects of sensor dynamic displacements.

Future work may also include the evaluation of the effects of extreme
sensor depositionings. Extreme sensor depositioning here refers to the
displacement introduced when two or more sensors are exchanged, thus
relocated in body parts completely unrelated to the devised at design
time. For example, it could be expected that a user misplaces a sen-
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sor during the self-placement process, consequence of a mistake (e.g.,
the wrist-sensor is positioned on the ankle). Although less frequent,
real-world AR systems should account for these extreme sensor mis-
placements, thus contributing to a freer use of the devices.

Similarly, for the self-placement setting it would be also interesting
to provide total freedom to users to place the sensors wherever they
prefer. Although no hints were given to the participants on how they
had to put the sensors on, indications about the particular body part
were provided. This was necessary to complete the sensor deployment
with the default placement of the remaining sensors. Therefore, a study
on which the users self-attach the complete set of sensors in an arbitrary
manner could be of utility.

When a majority of the sensors are depositioned, and especially
for complex scenarios, the proposed models are not capable to deal
with the effects of the displacement. Some possible next steps in this
direction were already presented in Section 4.3.5. Apart from these,
other approaches are here suggested as future work. Considering the
structure of the HWC model, an interesting approach would be to au-
tomatically update the parameters of the model to reduce the impact
of the decisions yielded by the displaced sensors. To that end, ascer-
taining which sensors have been displaced is completely necessary. This
could be performed through the use of the collectivity to identify which
sensors are anomalously behaving or through an statistical analysis of
the variations of each sensor data stream.

4.5. Conclusions

Most AR systems assume a predefined sensor deployment that further
remains unchanged during runtime. However, these are not lifelike as-
sumptions. Restricting the way on how users must place their wearable
sensor devices is unrealistic, unpractical and contributes to people’s
lack of interest in the use of these systems. In fact, when considered
these sensors to potentially be embedded in clothes, garments or other
portable accessories of the daily living, it must be seriously taken into
account the casualness and naturality with which users normally put
on these items.

When a sensor is placed in a different position with respect to its
ideal or default placement, an effective displacement could be identified
from the former to the latter position. This sensor displacement, that
could be categorized as a combination of rotations and translations,
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normally translates into a drift of the original signal space, variation
that further propagates along the complete ARC. This may potentially
lead to a malfunctioning of AR systems designed to operate on a definite
sensor deployment. Given the importance of this issue, and the shortage
of knowledge to this respect, in this chapter a wide analysis of the effects
of sensor displacement for diverse setups, methodologies and settings
has been elaborated.

To analyze the effects of sensors displacement, systems originally
planned for a predefined sensor deployment are tested on data mea-
sured after displacement, here demonstrating an affective worsening of
the system recognition capabilities as consequence of the displacement
effects. In this investigation two main approaches were followed.

Firstly, the effect of displacements are analyzed for motion data
synthetically treated to incorporate the effects of rotations and transla-
tions. Systems trained under the consideration that the devices remain
unaltered during runtime have been demonstrated not to suffice when
based on a single sensor (SARC). The comparison of the robustness of
sensors located on different body parts demonstrates that those loca-
tions which are more constrained in terms of mobility (such as the hip
or thigh) are more sensitive to the sensor displacement anomalies.

The use of multi-sensor configurations help compensate the effects
of sensor position variations. Feature fusion (FFMARC) and decision
fusion (HWC) models are evaluated, yielding different performances.
Changes in any of the individual sensors are assimilated in the aggre-
gated feature vector similarly as for the single sensor approach, thus
the FFMARC model proves to be too much sensitive but for small dis-
placements. Conversely, and even when the sensor deployment is hardly
modified with respect to the originally considered, HWC enhances the
robustness of individual sensors in more than 60% at worst conditions
when a minority of the sensors are affected. Furthermore, when slight
to moderate variations are considered, this decision fusion model copes
with the effect of the disturbances independently of the number of af-
fected sensors.

The other investigated approach consists in the observation of sen-
sor displacements in realistic settings. This research focuses on the ef-
fects of the displacements introduced during the normal use of the
sensors, particularly when wearing the devices. To that end, a novel
open-access benchmark dataset was collected as part of this work,
to date missing for the study of this problem. A concept for catego-
rizing inertial sensor displacement conditions in ideal-placement, self-
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placement, and induced-displacement is introduced. Ideal-placement
settings correspond to the case in which the sensors are positioned
according to the default sensor deployment devised during the design
phase, thus representing a recognition baseline for default conditions.
Self-placement settings reflect a user-centered observation of how people
place the sensors by themselves, e.g., in a sports or lifestyle application.
Induced-displacement conditions correspond to extreme displacement
variants and thus could represent boundary conditions for recognition
algorithms. The collected dataset is not only devised for the sake of
this investigation but may become a valuable tool to compare perfor-
mance of different methods and conditions. Moreover, with the large
set of annotated activities, the dataset lend itself primarily for activ-
ity classification problems. A wide variety of sensors were considered
for displacements to capture potential effects on a recognition methods
feature extraction and recognition.

First, an statistical analysis of the effects of displacement is per-
formed. This evaluation confirms that mean shifts and increased vari-
ance can be observed from ideal to self-placement condition. This result
is further confirmed by PCA analysis of all acceleration sensors across
the activities. Moreover, a cluster-based analysis demonstrates that a
substantial distance increase between ideal and self-placement condi-
tions can be obtained. The disparity is even higher for the case in
which the sensors are largely depositioned, here observed through the
induced-displacement case.

From the diverse concepts of displacement proposed as part of this
work, it could be seen that the way users place the sensors in a nat-
ural manner could have serious consequences on the systems recogni-
tion capabilities. A practical worsening is observed in most recognition
systems, specially on those based on a single sensor unit. Actually, sys-
tems of an individual sensor seem to be useless under the assumption
of displacement. The use of multi-sensor configurations help counteract
the variations introduced in the sensor deployment. Nevertheless, not
all MARC models demonstrate the same tolerance to sensor displace-
ment. In fact, the performance of feature fusion approaches is subject
to a severe worsening for the case in which the user self-places the
sensors. The performance drop is even higher when the sensors are
purposely depositioned. FFMARC models severely suffer from the ef-
fects of displacement since changes in the signal space are naturally
incorporated into the aggregated feature vector. Neither SARC nor
FFMARC approaches demonstrate acceptable recognition capabilities
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after displacement. On the contrary, and here again, the HWC model
outstands as the most robust approach from evaluated. Decision fusion
models play an interesting role to help avoiding the effects introduced
by each individual sensor displacement. This is possible because deci-
sions are considered independently and the collectivity copes with the
errors introduced by displaced sensors. The performance drop is more
significant when a majority of sensors are displaced in a heavy fashion.
In this case, only the HWC model demonstrates accurate recognition
but for the simplest AR scenario. In either case, when a majority of
the sensors are displaced more robust alternatives should be considered,
techniques that are planned as future work of this dissertation.
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5.1. Introduction

Nowadays technology progresses in a way never thought before. This
technological evolution is seen to empower applications with extraor-
dinary new characteristics as well as remarkably improve user expe-
rience. To support that, apps are continuously updated, devices are
under timely maintenance and systems frequently upgraded. Likewise,
AR systems of the real-world requires a constant adaptation to ensure
a seamless, efficient and lifelong usage.

Sensing technology is subject to failures or faults that may be ir-
recoverable. Although models are devised in this work to overcome the
effects of sensor technological anomalies, a replacement of the affected
sensor may be required to restore the system to full operating capac-
ity. To that end, the damaged sensor is ideally substituted through a
new device of similar characteristics. Moreover, not only sensors are re-
placed when detected not to function but also when higher efficiency or
new features are sought. Thus for example, a new sensor that reduces
energy needs or proves more robust to sensor failures may replace an
early sensor used for the same purpose. Old-fashioned or legacy devices
could be also substituted by novel models that fit better with usabil-
ity and fashionability requirements. For all these cases, the newcomer
sensor may potentially have different characteristics to the substituted
one (e.g., different sampling rate, dynamic range, modality), then pre-
defined AR systems may be likely incapable of profiting from data
obtained through the new sensor.

Sensors could also be newly incorporated to the default sensing
topology. The addition of new sensors could be part of a specific system
upgrading, e.g., to enhance the recognition accuracy or provide network
redundancy. More habitually, users may acquire new gadgets or devices
to benefit from other services not supported by the current employed
systems. This poses a new sensor setup configuration that is hardly
foreseeable during the design phase. Consequently, default AR systems
may not directly leverage the data obtained through the novel sensor
devices.

Sensors may just happen to be discovered as available to the cur-
rent user context. In fact, there is a tendency towards an increased
availability of sensors readily deployed by users by themselves (e.g.,
smartphones, sensor-equipped gadgets, smart objects, smart clothing)
or integrated as part of living environments (e.g., sensors for climate
control, security, or entertainment). In the general case, many of these
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sensors may not have associated activity models to use them for activ-
ity recognition, as they are deployed for other purposes. However, most
of this sensing equipment could be used for AR purposes since they are
in principle capable of measuring human behavior (e.g., body motion).

5.2. Instruction of newcomer sensors

In case the replaced sensor is different from the predecessor one, or a
new sensor is introduced in the network, a complete redefinition and
retraining of the AR system is required. Likewise, if recognition capa-
bilities want to be given to a sensor originally not devised for behavior-
awareness tasks, a new model must be built according to their particu-
lar characteristics. Following a classic learning process is in both cases
quite costly, since it normally requires to collect new experimental data.
The collection of new data implies to record the behavior of a person
or set of people while performing the activities of interest for the new
sensor setup. Apart from being a very long and tedious process, sensor
setups may vary from person to person, or even from one context to
another, thus this approach proves impractical for real-world settings.

The training of newcomer sensors should be performed without the
involvement of a system designer, which otherwise would limit the ap-
proach to predefined sensor setups and deployments. This must also
happen without user involvement. To fulfill these requirements, the
most reasonable approach is to use the actual knowledge of the exist-
ing AR system to instruct the new sensors on the activity-awareness
tasks. This is accomplished in a process in which the original AR sys-
tem or “teacher” transfers its knowledge to the newcomer untrained
sensor or “learner”. Also known as inductive transfer or transfer learn-
ing [91], this corresponds to a research problem in machine learning
that focuses on translating the knowledge available to solve a problem
in one domain to a different but related domain.

Transfer learning has been rarely approached in AR, although a few
recent works have contributed to this respect (see Section 2.5). A naive
approach to pursue transfer learning consists in directly utilizing the
activity model defined for a particular sensor on the data measured
through the newcomer sensor. This may be performed in a fast way,
and no specific training of the newcomer system is required. However,
this approach suffers from important limitations. First, even assuming
that both teacher and learner sensors are of identical characteristics and
modality, if the newcomer sensor is devised to be placed in a body part
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distant from the teacher default placement (e.g., wrist sensor to be the
teacher and upper arm sensor to be the learner), the translated model
may be expected not to suit for the purpose of recognition. Moreover, if
teacher and learner build on sensors of the same modality but different
technical characteristics, it could also be expected that this approach
fails to provide an accurate transfer of activity-awareness. More impor-
tantly, the predefined AR system cannot be in principle used for the
newcomer sensor if this is of a different modality to the teacher sensor
(e.g., a system devised to operate on acceleration data is used to work
on the signals measured through a gyroscope).

An alternative consists in transferring the capacity of recognizing
activities of an existing sensor to another untrained node through an
online supervised learning, where the supervision (i.e., the labels) is
provided by the former. To that end, the activity class identified by
the teacher sensor is employed to tag or label the data measured at
each time by the learner sensor. Through this model, newcomer sensors
could be learned even when these differ in characteristics or modal-
ity with respect to the teacher sensors. However, this approach also
presents important drawbacks that complicates its use in realistic set-
tings. Firstly, only the data of those activities performed by the user
could be tagged. This is very limiting, since some activities are more
habitually performed than others during daily living conditions. For
example, in long-term behavioral monitoring only a few activities oc-
cur often (e.g., sleeping, sitting), whereas most activities happen rather
occasionally (e.g., open a window). In this regard, the transfer learning
may take long time spans to address the complete activity set, and at
worst be incomplete. This also leads to an activity imbalancement that
may bias the system capabilities during learning. The learning process
is further coupled to the performance of the teacher system. Errors
made during the recognition of actual activities are propagated to the
learner system through the labeling process. This determines that the
performance of the newcomer will be in general less or equal to the
one achieved by the teacher system. The situation becomes even worse
when these errors are not only associated to the normal functioning of
the recognizer but also to sensor anomalies such as faults or displace-
ments. In that case, the newcomer system may learn the anomalous
behavior of the teacher system, thus leading to a malfunctioning of the
learner system. At worst, the teacher system could not provide tags
as it is incapable of activity recognition (e.g., sensor out of battery).
Under these circumstances, the learning process may be interrupted or
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not performed at all.
Taking into account the shortcomings of the previous models, it

seems clear that transfer learning for real-world conditions requires to
be performed in an autonomous and rapid fashion and apply to het-
erogeneous sensor configurations. Through the use of transfer learning
concepts, this work aims at making it possible to apply the activity
models of a predefined sensor system or source to the data from a
newly discovered sensor system or target that lacks of such models. It
is assumed that both systems coexist for a short time and that there
is a (unknown, to be determined) function that allows for mapping be-
tween the signals of source and target sensor systems. In the following,
the models proposed to identify these relations as well as to transfer
the AR models are presented.

5.3. Multimodal transfer methods

The idea of transfer learning is here meant as the means to translate
a source system capable of activity recognition (teacher) to a target
system which lacks this ability (learner). Two transfer learning methods
are proposed depending on whether the source or teacher AR system is
defined through activity templates (signal patterns) or activity models
(feature/classification models).

The proposed transfer methods work in two steps. First, a system
identification technique (Section 5.3.1) finds a function that maps the
signals of the source sensor to the signals of the target sensor. This pro-
cess can be carried out on signals corresponding to different domains or
modalities (cross transfer) or between data corresponding to the same
domain (identical transfer). Based on this mapping, the AR system is
then translated. For the AR system based on templates (Section 5.3.2)
the translation process consists in transforming the activity templates
from the source to the target domain. These new templates may be
used for recognition or to build an activity model for the target sensor.
For the recognition system based on activity models (Section 5.3.3) the
translation process consists in literally conveying or copying the source
activity model to the target system. To operate on this activity model
the target system needs to map its signals to the source domain in
which the activity model was originally defined.
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5.3.1. System identification

The complexity of the signal mapping transfer starts from the physics
of the domain transformation. In some cases the underlying relationship
is well-defined and known (e.g., position to acceleration) but for other
cases may not be clearly identifiable (e.g., position to magnetic field).
In addition, the setup constraints associated to each particular context
and subject reduce the generalization capabilities of those models which
are problem-specific defined. In many cases such models will be overly
complex and almost impossible to obtain in reasonable time due to
the complex nature of many systems and processes. Furthermore, the
complexity of this engineering design increases dramatically when the
number of sensors also grows, thus constituting a non scalable approach.

The transformation or mapping of data from one domain to a sim-
ilar or different domain is normally approached in base of the a priori
knowledge of the underlying relationship among domains. White-box
(WB) models, also known as user-defined models, are usually selected
when all the necessary information about the problem domain is avail-
able. Hence, WB designs require to know for instance the placement
and nature of the sensors, the features delivered by each sensor node
(data range, units) or the number and type of sensors (modalities) in
order to define an appropriate mapping transfer function. This task is
extremely time and resource-consuming because a design team is re-
quired to analyze and implement the models for each combination of
sensors and domains. Moreover, this approach does not fulfill the de-
sired autonomous characteristic of the system, where no prior knowl-
edge of the problem domain and sensor ecosystem must be assumed.

Black-box (BB) models are encountered to be more appropriate
for this problem as they are data-driven models where only the in-
puts (source) and outputs (target) are needed, with limited additional
knowledge about the internals of the model [113]. BB modeling is of-
ten employed when assumptions on the nature of the underlying sys-
tem are hard to make, when the complexity of the underlying relation
is extremely high, or to avoid designer’s bias, which fits in well with
the characteristics of this problem. The choice of the mathematical
functions within BB models is normally made depending on whether
the system to model is linear or non-linear, and whether it is time-
dependent or time-independent. A system can also have single or mul-
tiple inputs and/or outputs or explicitly incorporate external exogenous
disturbances such as noise. In summary, the most interesting charac-
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teristics of the use of BB models instead of a classical WB approach
are:

• Generalization capabilities: it can be in principle used for
whichever kind of mapping, even combining different type of do-
main sources or using abstract magnitudes, such as proximity or
object-interaction sensors (e.g., switch buttons, RFID).

• Scalability : in general the model may be applied with no much
effort to a larger set of sensors or signals, i.e., inputs, of different
nature.

• Robustness to information loss: the statistical capabilities of some
of its regression and prediction models allow for learning even
when data loss events are present.

• Design complexity : there is no need to explicitly discover the un-
derlying relation that links the domain transformation; no extra
information about the sensor deployment is a priori required; re-
duced design time, normally automatic and autonomously per-
formed.

• User abstraction: no specific user intervention is required, thus
keeping aside burdensome data collection procedures for training
of the systems.

The field of system identification provides techniques to build mod-
els1 of dynamical systems from data [114, 115, 116, 117, 118]. Exam-
ples of these techniques are state-space models [119], which use state
variables to describe a system by a set of first-order differential or dif-
ference equations. Artificial neural networks (ANNs) offer rich sets of
transfer functions such as linear or non-linear time-invariant functions
(e.g., with multi-layer perceptrons) and time-variant functions (e.g.,
with time-delay neural networks or recurrent neural networks), but
at the expense of large training data and slow training process [120].
Autoregressive-moving-average (ARMA) models represent a family of

1Note the distinction between models used for AR (here “activity models”) and
models resulting from system identification (“system identification model” or “map-
ping”). The latter is meant here. It is a mathematical description of the relation
between quantities of a physical system, such as the readings delivered by multiple
sensors.



132 Supporting AR systems network changes

tools to predict future values of a time series [113]. They are com-
monly used in signal processing, speech processing and automatic con-
trol. They offer more constrained transfer functions and have the ad-
vantage of using less training data and relatively simple learning rules
(least square regression). Exogenous or independent inputs may also be
modeled through a generalization of the ARMA model (autoregressive-
moving-average with exogenous inputs (ARMAX)). ARMA and AR-
MAX models are commonly used for time-series forecasting, in appli-
cations as diverse as electric load [121], water resources [122], or me-
chanical structures [123].

The system identification model should allow for transformations
between the habitual sensing modalities that are used for AR, most of
them identified as of a linear nature. Some typical static transforma-
tions include scaling (sensors with different sensitivity or units - abso-
lute/relative -) and affine transformations, offset (different zero value),
non-linearity (compression of the dynamic range), translation or rota-
tion (e.g., when an acceleration sensor is displaced - translated and/or
rotated -). Dynamic transformations may include multiple differentia-
tion or integration operations (e.g., between position or angle and linear
or angular velocity), or hysteresis. Besides, most sensors utilized in AR
problems measure various axes at once (e.g., tri-axial accelerometers,
positioning systems, etc.) which are not independent, so the system
identification model has to be of the multiple-input-multiple-output
(MIMO) kind.

Accordingly, this work proposes the use of a parametric linear
model, which surpasses non-linear approaches in terms of [117]: inter-
pretation (i.e., represents and extracts the properties and knowledge
of the underlying relationship); generalization (i.e., captures the true
dynamics and predicts accurately the output for unseen new data);
robustness to overfitting and noise rejection; speed; and amount of
data required for the training and complexity (i.e., training time, com-
putational resources required, etc.). Here a linear MIMO mapping is
specifically used for system identification [124]. Such mappings can be
directly learned from data. This permits to learn mappings in a wide
range of sensing environments without designer involvement or bias. In
the following, the mathematical description of the employed models is
provided.

Let us define xS(t) as an nS-by-1 vector of sensor data from the
source domain S at time t and xT(t) as an nT -by-1 vector of data of the
sensors of the target domain T . A mapping relating the sensor signals in



5.3. Multimodal transfer methods 133

different domains is first identified. This may be from source to target
signals, or target to source signals, whichever can be best identified. Let
us denote with ΨS→T the function that maps the source to the target
signal: ΨS→T : xS(t) → x̂T(t) ≈ xT(t). ΨT→S defines as the function
that maps the target to the source signal: ΨT→S : xT(t) → x̂S(t) ≈
xS(t). The ˆ symbol is used to indicate that the signal is predicted in
a given domain from the known signal of another domain.

A linear MIMO mapping is defined as follows:

xT(t) = B(l)xS(t) (5.1)

where B(l) is a nT -by-nS polynomial matrix in the delay operator l−1

(i.e., each entry of the matrix is a polynomial in l−1). The operator
l−k introduces a delay of k samples in the signal to which it is applied:
l−kx(t) = x(t− k). The source and target sensor signals are the inputs
and outputs of the model. The matrix B(l) contains elements bik(l),

B(l) =


b11(l) b12(l) · · · b1nS

(l)
b21(l) b22(l) · · · b2nS

(l)
...

...
. . .

...
bnT 1(l) bnT 2(l) · · · bnTnS

(l)

 (5.2)

of the form:

bik(l) = b
(0)
ik l
−sik + b

(1)
ik l
−sik−1 + . . .+ b

(q)
ik l
−sik−q (5.3)

where q is the number of past input samples that are used for the
computation of the current output sample and sik are the static delays
from the k-th input to the i-th output. Otherwise, bik(l) represents
the transfer function in the Z-transform domain from the k-th input
(k-th channel of the source system) to the i-th output (i-th channel of
the target system). In this way, B(l) accounts for the contributions of
all inputs to calculate the outputs. For the identification of the (q +
1) × nT × nS coefficients of the polynomials and the nT × nS static
delays, a least squares approach is followed. QR factorization solves the
overdetermined set of linear equations that constitutes the least-squares
estimation problem. Internal loop feedback is here not considered for
the sake of simplicity, thus the transfer function is rather devised as
a forward combination of the inputs, i.e., a linear combination of the
tapped delay inputs.

The linear MIMO mapping allows for combinations of subsets of
the transformations mentioned above:
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• Scaling. This is obtained by setting b
(0)
ik to the scaling factor and

b
(s)
ik to zero ∀ s > 0,∀ i = k. Furthermore, all the coefficients

b
(s)
ik , i 6= k of the off-diagonal polynomials will be zero, yielding a

diagonal matrix.

• Rotation. This is obtained by setting b
(0)
ik to the corresponding

element at position ik in the rotation matrix and by setting b
(s)
ik

to zero ∀ s > 0.

• Differentiation of order h. This is obtained by setting b
(s)
ik ,∀s ≤ h,

∀ i = k to the corresponding coefficients of the transfer function
of the derivative. All the other coefficients are set to zero.

5.3.2. Transfer of activity templates

Given a source recognition system defined through activity templates2,
the objective here is to transfer this system recognition capabilities to
a new target system. To that end, the source system activity templates
need to be translated to the target system domain, where the latter
may use them for AR.

The complete architecture of the method is depicted in Figure 5.1.
It starts from a source operational AR system (i.e., trained) that rec-
ognizes activities (act) from the data of a sensor (encircled S). The
recognition system devised for the source domain also stores the ac-
tivity templates TS . TS consists of raw sensor signals xS(t) and the
corresponding class labels. First, a mapping function ΨS→T between
source and target sensor signals is obtained through system identifica-
tion (Section 5.3.1). Then, ΨS→T is used to translate the templates TS
into templates TT containing the predicted sensor signals x̂T(t) in the
target domain, and the corresponding class labels. The target system
trains its AR system based on TT (e.g., running a feature extraction
and selection process and training a classifier based on TT ). At this
point the target system is ready to operate on the data of domain T .

2Activity templates are signal patterns that represent certain activities or ges-
tures. These patterns may be directly used for signal recognition or pattern matching
(dynamic time warping [125], shapelets [126], etc.) or for building more sophisticated
activity models through feature extraction and classification procedures.
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Figure 5.1: Architecture for the transfer of activity templates. From
left to right, initially a fully operational AR system defined through ac-
tivity templates is identified. Second, a mapping function between source
and target domains is discovered through system identification. There-
after, the activity templates are translated from source to target domain,
thus allowing the target system to use the translated templates to build
its own AR system. Finally, the target system is ready to operate. Note:
the depicted signals may for example represent position (source domain)
and acceleration (target domain).

5.3.3. Transfer of activity models

In this case, the recognition system devised for the source domain relies
on activity modelsMS (i.e., the parameters of the recognition system,
including the selected set of features, the trained classifiers, etc.). The
idea is that the target uses the same activity models (MT = MS).
Therefore, the translation process basically consists in copying MS

to the target model. However, to be capable of using MT the target
system requires their signals to be translated into the source domain.
To do so, the target system uses ΨT→S to translate the sensor signals
of domain T (xT(t)) into domain S (x̂S(t)) prior to applying the AR
model. Here again, ΨT→S is obtained through system identification
(Section 5.3.1). The complete activity model transfer architecture is
shown in Figure 5.2.
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Figure 5.2: Architecture for the transfer of activity models. From left
to right, initially a fully operational AR system defined through activ-
ity models is identified. Then, a mapping function between target and
source domains is discovered through system identification. Thereafter,
the source activity models are translated to the target domain so both
use the same activity models. These activity models also define the tar-
get AR system. Finally, the target system continuously translate their
signals into the source domain to operate the recognition system. Note:
the depicted signals may for example represent position (source domain)
and acceleration (target domain).

5.4. Evaluation of multimodal transfer

To evaluate the capabilities of the proposed transfer methods a mul-
timodal setting is particularly considered. This consists of a gesture-
based HCI scenario in which AR capabilities are transferred between
sensors of the same modality (between body-worn and body-worn sen-
sors, i.e., identical transfer) and different modality (between body-worn
and ambient sensors, i.e., cross transfer). The body-worn sensors are
five IMUs of which only the acceleration is used. The ambient sensor
is a consumer vision-based skeleton tracking system (Microsoft Kinect)
that provides the position of the body joints. The fact that the Kinect
sensor normally builds on activity templates, and AR systems based
on IMU sensors operate on either activity templates or activity mod-
els, makes of this a fairly setup to evaluate both transfer methods.
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5.4.1. Experimental setup and dataset

The test bench for this work is a gesture recognition setup (Figure 5.3)
with five body-worn IMUs and a consumer vision-based skeleton track-
ing system (Microsoft Kinect). These sensors are commonly deployed
for AR. IMUs are widely available on smartphones and can be highly
miniaturized, e.g., for integration in garments [127]. Kinect allows
activity-aware gaming on the Xbox console. Apart from the accuracy
and precision of the Kinect model to obtain a reliable description of
the body model, the idea of using this system is supported by the low
cost, setting simplicity (plug-and-play) and increasingly developer sup-
port which constitute it as the hottest platform in the industry for
building new inventions and the fastest selling electronics device ever3.
Obviously other approaches based on general purpose cameras can be
similarly considered, but the user accessibility and research potential
for Kinect is nowadays incomparable. In AR the Kinect sensor has been
used for example for the recognition of activities of daily living [128]
and gait analysis [129].

Kinect contains an 8-bit 640×480 RGB camera, an infrared (IR)
LED projecting structured light and an IR camera. It computes on-
the-fly an 11-bit 640x480 depth map in a range of 0.7-6m from the
reflected IR light. The drivers fit a 15-joint skeleton on the depth map
(proprietary algorithm similar to [130]) in real time and deliver 3D joint
coordinates in millimeters measured from the Kinect center. Tracking
is specified in a range of 1.2-3.5 meters [131]. Kinect is interfaced over
USB to a PC. The RGB and depth map videos and the joint coordinates
are recorded at 30Hz by using [132]. The 3D coordinates of the joints
and center of mass are provided in millimeters from a Kinect-centered
coordinates system together with an estimate of the position accuracy
between 0 and 1. This permits to filter unreliable data.

Five IMUs (XSens [133]) wired to a PC sense the upper body orien-
tation. These IMUs contain gyroscope, magnetometer and acceleration
sensors combined with a Kalman filter to yield the device orientation
in a world coordinate system in real-time. Here [112] is used to acquire
the raw sensor data and the device orientation at 30Hz. For the sake
of this evaluation only the 3D (tri-axial) acceleration measured by the
IMUs is used.

3Kinect sold 10 millions units between its release on November 4th, 2010 and
March 2011, earning it the Guinness World Record of the “Fastest selling consumer
electronic device”. Its low cost (150$) puts it in the reach of many households.
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(a) Experimental Setup

(b) Kinect depth map and skeleton (left) and RGB (right)

(c) HCI gestures (position, acceleration)

Figure 5.3: Kinect and IMU experimental setup. (a) IMUs and a
Kinect capture the user’s movements. (b) The Kinect sensor delivers a
depth map, a color image and a 15-joint skeleton of the user. (c) The
right hand position and limb acceleration are synchronously recorded
for five gesture kinds.
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The Kinect and IMU data are independently recorded and resam-
pled offline to the regular Kinect sampling rate to obtain a synchronized
dataset4 comprising acceleration, position and labels. A single subject
performs five kinds of geometric gestures (circle, infinity, slider, trian-
gle, square) with the right hand in alternation 48 times (Figure 5.3(c)).
These gestures were selected because similar ones were demonstrated to
be recognizable by wearable sensors [78, 134, 76] or Kinect [131]. They
involve the lower and upper arm, which permits to assess the approach
for the transfer of AR systems between limbs. They are also diverse
enough, which allows us to study if there are preferential movements
leading to a faster identification of the mapping between the two sys-
tems. The average±standard deviation of the duration of each gesture
classes are 2.97(89)±0.34(10), 3.28(98)±0.38(11), 2.23(66)±0.35(10),
3.12(93)±0.35(10) and 2.66(79)±0.48(14) seconds(samples). A five min-
utes long “idle” dataset, where the user performs infrequent low-
amplitude arm movements and moves around, without any specific task
is also recorded. The subject is between 2-3 meters from the Kinect
sensor facing it within ±30◦ to avoid occlusions (Figure 5.3(a)). Anno-
tation was performed on-the-fly and corrected later using video footage
of the Kinect (Figure 5.3(b)). Hand-claps at the start and end of the
recording are also used for offline synchronization.

No constraints were placed on the way the gestures are executed
with the exception that the subject should try his best to execute them
in a similar manner. However, it was observed that gestures were exe-
cuted somewhat faster later in the recording, and that the user position
shifted away from the center of the camera field of view, until the user
consciously moved back to the center. The left arm does not experience
significant movement, thus the information monitored is not considered
for this particular experiment. Moreover, since the ultimate goal would
be to perform the transfer in a short time, for example, just by per-
forming a reduced subset of informative gestures (ideally just one single
gesture) to learn the mapping, this scenario is considered the most ad-
equate for that purpose. One subject is just involved since the mapping
should be learned with independence of who performs the movements.

The capacity of the transfer methods is assessed through two met-
rics. First, the system identification performance is evaluated by assess-
ing the quality or fit of the signal x̂T , obtained by mapping xS to the
target domain with the MIMO model, compared to the measured sig-
nal xT . Second, it is assessed the accuracy with which the system can

4The dataset is accessible at http://www.ugr.es/~oresti/datasets.

http://www.ugr.es/~oresti/datasets
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classify the gestures after transfer to the target domain T , compared
to the accuracy in the source domain S which is used as a baseline.

The fit5 between the measured on-body acceleration xT = xI and
the predicted acceleration x̂T = x̂I, obtained by mapping the source
signals xK to the target domain is calculated for each channel i:

BestF iti = 1−

(∑N
t=1

(
x
(i)
T (t)− x̂T (i)(t)

)2) 1
2

(∑N
t=1

(
x
(i)
T (t)− x̄T (i)

)2) 1
2

(5.4)

with N the number of signal samples, and x̄T
(i) the mean over time

of x
(i)
T (t). The BestF iti is then averaged on all channels, resulting in

a unified BestFit value. A BestFit of 1 indicates a perfect fit. Values
above zero qualitatively indicate a good fit (Figure 5.4). As BestFit
tends to −∞, the prediction differs more and more from the target.
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Figure 5.4: Comparison between the actual acceleration measured at
the lower arm and the predicted after mapping from the hand position
sensed by Kinect, for a circle (left) and a slider (right). Visually, a good
match between predicted and measured signals is obtained for BestFit
values above 0.

Three kinds of MIMO mappings are evaluated in this work:

• Problem-domain mapping (PDM). This is a generic mapping
learned on instances of all classes in equal proportions.

5Mean square error (MSE) and root mean square error (RMSE) are commonly
used to measure the fit in a regression problem. These metrics however are highly
affected by scale and offset of the signals. This may be partially addressed by the
normalized variants (NMSE and NRMSE) and mean subtraction, which is essen-
tially used in the BestFit definition. Other similarity measures such as correlation
or mutual information could be also used.
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• Gesture-specific mapping (GSM). This is a mapping learned on
instances of a single class. It is used to analyze whether specific
movements are more suited to identify the system dynamics.

• Unrelated-domain mapping (UDM). This is a mapping learned
from a sequence of samples from the idle dataset. It is used to
assess mapping generalization across scenarios.

The models are trained with a minimum of data corresponding to
roughly the duration of the longest gesture, which is set to 100 sam-
ples. Thus GSM and UDM are learned on 100 samples and PDM on
500 (as it requires data of each of the 5 gestures). The MIMO mappings
are learned on a subset of the dataset and evaluated on the rest. The
learning subset is obtained from a particular instance (GSM), by ag-
gregating multiple activity instances (PDM), or obtained from the idle
dataset (UDM). For this evaluation the selection is randomly repeated
20 times in an outer cross-validation process.

To evaluate6 the accuracy of the transfer three non-overlapping
parts of the dataset are used to learn the MIMO mapping, to train
the source recognition system, and to test the translated target recog-
nition system. The classifier training and testing sets are defined by an
instance-based random-seed 10-fold inner cross-validation process, re-
peated 100 times. The data used to learn the MIMO mapping is selected
as indicated previously in an outer cross-validation process. Source and
target baseline classification accuracies are assessed by training and
testing on data from the same domain. For the transfer of activity tem-
plates, the translation is evaluated by training the recognition system
on the predicted acceleration and testing it on the measured acceler-
ation. For the transfer of activity models, the translation is evaluated
by training the recognition system on the measured acceleration and
testing it on the predicted acceleration.

Two feature sets are used. Each instance is subdivided into 4 sub-
windows that capture the temporal dynamics and features are com-
puted on them. Typical features used in AR systems are employed.
Concretely, FS1 corresponds to the mean of each axis (12 features)
while FS2 is the maximum and minimum of each axis (24 features).

6All the processing is performed in Matlab R2011b. For the system identification
some of the functions provided in the System Identification toolbox have been used,
while many others have been specifically defined for this purpose. Signal processing,
featuring and classification is performed through the use of models similar to the
used in previous work of this thesis.
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The accuracy for segmented gestures recognition with a KNN classi-
fier is reported. A model similar to the one proposed in [103] is here
used. The k-value for the KNN model is set to three for the sake of
simplicity and given the good results shown for previous work of this
thesis. In fact, KNN models have been proven to perform well in gesture
recognition for both Kinect [135] and IMUs [136, 28].

5.4.2. Transfer between IMU and IMU

Here the transfer of the recognition capabilities of an existing AR sys-
tem operating on an IMU to a new untrained system devised to operate
on a different IMU is investigated. For the sake of simplicity, the source
recognition system will be identified in advance as IS and the target as
IT . The translation between IMU and IMU relies on the identification
of ΨIS→IT or ΨIT→IS which correspond to a 3-input (3D acceleration)
3-output (3D acceleration) MIMO mapping with 10 tap delays (q =
10, nS=3, nT=3, implies 108 parameters to learn, which refers to the
(q + 1) × nT × nS coefficients of the polynomials and nT × nS static
delays, as described in Section 5.3.1). The tap delay is set to this value
to procure that the MIMO model captures the dynamics of the trans-
formation. Although the overfitting of the models potentially increase
with the number of parameters, this is here avoided through the cross-
validation procedure.

In Section 5.3 two methods that allow us to transfer AR systems
through the exchange of either activity templates (T ) or activity models
(M) were presented. Now, the specialization of these techniques to the
IMU and IMU test case is described. AR systems based on IMU sensors
may operate on both activity templates T and activity models M.
Therefore, the two types of transfers are evaluated.

First of all, the signal mapping from the source IMU (acceleration)
to the target IMU (acceleration) is identified. The System Identifi-
cation process characterizes through:

• A MIMO mapping ΨIS→IT from the 3D acceleration of the source
IMU to the 3D acceleration of the target IMU is learned for the
transfer of activity templates.

• The reverse MIMO mapping, ΨIT→IS , is needed for the transfer
of activity models.
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For the Transfer of Activity Templates:

• The source domain recognition system works on the 3D accel-
eration measured by the source IMU. It also stores the activity
templates TS = TIS that are the 3D acceleration patterns for each
gesture.

• xS = xIS is the 3D acceleration measured on the body by the
source IMU.

• xT = xIT is the 3D acceleration measured on the body by the
target IMU.

• x̂T = x̂IT = ΨIS→IT (xIS) is the acceleration predicted on the
body from the known source acceleration.

• After template translation, TT = TIT are the predicted 3D on-
body acceleration patterns for each gesture and the corresponding
class labels.

• The target recognition system is automatically trained at run-
time on the templates TT , and finally operates on the acceleration
sensed by the target IMUs.

For the Transfer of Activity Models:

• The source domain recognition system works on the 3D acceler-
ation sensed by the source IMU. It uses models MS = MIS for
the recognition.

• xS = xIS is the 3D acceleration measured on the body by the
source IMU.

• xT = xIT is the 3D acceleration measured on the body by the
target IMU.

• x̂S = x̂IS = ΨIT→IS (xIT) is the acceleration predicted on the
body from the unknown source acceleration.

• After translation, the 3D acceleration of the target IMU are
mapped to “look like” the acceleration measured on the source
IMU. In this way, the recognition models devised for the source
IMU are used as is by the target system (MT =MS) that now
operates on the target IMU data.
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The transfer among all possible pair combinations of the IMU sen-
sors placed on the user right lower arm (RLA), right upper arm (RUA)
and back (BACK) are considered for evaluation. This leads to six cases
of transfer of AR from a source to target domain, concretely from RLA
to RUA, RLA to BACK, RUA to RLA, RUA to BACK, BACK to
RLA and BACK to RUA. For all these combinations both transfer of
activity templates and activity models are analyzed. These scenarios
are devised to help investigate the potential of the transfer methods for
sensor systems of same modality (acceleration) and of diverse charac-
teristics (centered on close-by or unrelated body parts).

System identification performance

The BestFit7 computed from the evaluation of all possible pair com-
binations of mappings between RLA, RUA and BACK is depicted in
Figure 5.5. For example, the BestFit for the RLA to RUA mapping
is computed between the acceleration measured at the lower arm and
the acceleration predicted from the upper arm. From the results, the
best fit tends to be obtained with PDM (Figure 5.5(a)). For this case,
almost all BestFit values are above 0, which was shown in Section ?? to
correspond to a good fit. Moreover, for some mappings the BestFit dis-
tributions are close to 1, which represents an almost perfect mapping.
This may be expected, as the mappings are learned on the dynam-
ics of all gestures. The results are also very promising for the GSM
model. Once again, BestFit values superior to 0 are generally obtained
but for triangle and square gestures for some sensor combinations. A
good fit is obtained for the rest of gestures, thus one of them could
be in principle enough to learn a mapping model. Finally, the UDM
model provides the worst fit performances (Figure 5.5(c)). Although
high BestFit values are obtained for some mappings, these are in many
cases below 0. The large dispersion in the results demonstrate that some
of the movements performed while idling may be used for learning a
mapping, however, many others fail to provide valuable information
for capturing the dynamics of the physical system. This is consistent
with the characteristics of the idle dataset, since it has only rare oc-
currences of large amplitude limb movements. However, this does not
exclude that a dataset from a domain not comprising the activities to

7The interest of these results is not focused on the analysis of particular BestFit
values but on the comparison of the statistical distribution for each case.
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recognize, but containing richer limb movements, may not be used to
learn an adequate mapping model.

Best fits are obtained between close-by limbs. Concretely, mappings
from the lower arm to the upper arm and vice versa obtain the highest
BestFit values for all types of mappings. Likewise, mappings between
upper arm and back prove to be good-enough. The fit worsens as the
mapping model is computed between less related body regions (back
to lower arm). This seems to be quite reasonable since lower arm and
upper arm movements, and upper arm and back movements are more
related to each other than between lower arm and back.

Transfer accuracy

Source and target baseline classification accuracies are assessed by
training and testing on data from the same domain. The IMU to IMU
transfer of activity templates is evaluated by training the recognition
system on the predicted acceleration x̂IT = ΨIS→IT (xIS) and testing
it on the measured acceleration xIT . The IMU to IMU transfer of ac-
tivity models is evaluated by training the recognition system on the
measured acceleration xIS and testing on the predicted acceleration
x̂IS = ΨIT→IS (xIT).

Classification accuracy baselines in the source (BS) and target do-
main (BT), and those after transfer to the target domain are presented
in Figure 5.6 for FS2 (this set is used because it is more sensitive to
inaccurate signal mapping). The baselines represent the accuracy ob-
tained by a recognition system that is trained and tested on the same
sensor (no transfer). The GSM mapping is learned on the “circle” ges-
ture, which was identified as one of the best gestures to learn a map-
ping model. The baselines indicate that the gestures can be classified
with an accuracy of 98% or more with the lower-arm acceleration and
the upper-arm acceleration. The high accuracy obtained with the back
acceleration (baseline of about 89%) indicates that torso movements
are correlated with the execution of the gestures. This is a particular
characteristic of this scenario, that likely does not generalize to other
scenarios. The results after transfer must be assessed according to the
performance drop from the baselines. The performance drop from BS
indicates how much worse the system becomes after transfer. The drop
from BT indicates how much better would be a system devised specif-
ically for the target domain.

The transfer between close-by limbs proves to be the most efficient.
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Figure 5.5: Box plot of the BestFit distributions for all possible pair
combinations of mappings between RLA, RUA and BACK. The box
plot represents the statistic distribution of the sample set (the central
mark is the median, the edges of the box are the 25th and 75th per-
centiles, and the whiskers the most extreme results not considered out-
liers). BestFit for RLA to RUA, RLA to BACK, RUA to RLA, RUA to
BACK, BACK to RLA and BACK to RUA mappings are respectively
represented by each box within each gesture group. (a) The mapping is
trained on all gestures and the fit computed on the indicated gestures.
(b) The mapping is trained on the indicated gesture and the fit com-
puted on all of them. (c) The mapping is trained on data from another
domain, and the fit is computed on the indicated gestures.

Accordingly, best results are obtained for the translation between up-
per arm and lower arm. For both PDM and GSM models the transfer
from the lower arm to the upper arm is practically similar to when
performed the other way around. Moreover, almost no drop is observed
after transfer for these combinations. In fact, the performance obtained
when using the PDM model is similar to baseline, and reduces less than
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Figure 5.6: Classification accuracy (average - bar - and standard de-
viation - whiskers -) for the translation between two IMU systems with
FS2. Transfer from a source system operating on (a) activity templates
or (b) activity models to an untrained new system. Source and target
systems are respectively identified through the X-axis. BS and BT indi-
cate the baseline accuracies obtained with a system trained and tested
on the source and target domain.
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3% at worst for the GSM model. This implies that executing a single
“circle” is sufficient to identify a reliable mapping model. Transfers
between distant body parts provide in general the worst results. The
transfer between the lower arm and the back acceleration shows a vari-
able drop from baseline depending on the mapping (10% to 65% for
the activity templates and 5% to 55% for the transfer of activity mod-
els). This is observed for both directions of the transfer. Better results
are obtained when translating recognition capabilities between upper
arm and back systems. This demonstrates that the MIMO model learns
more precisely the relations between linked domains. UDM appears to
be in principle unsuitable for the transfer but for some isolated cases
for the translation between lower and upper arm. With regard to the
particular transfer method employed, it is difficult to conclude which
performs better from the obtained results. It could be said that for
the evaluated translations the transfer of activity models in principle
provides better results, although the opposite is seen for some other
cases.

5.4.3. Transfer between Kinect and IMU

The transfer between sensors of different domain (cross transfer) is
here evaluated. The translation between Kinect and IMU relies on the
identification of ΨK→I which is next characterized. ΨK→I is a 3-input
(3D position) 3-output (3D acceleration) MIMO mapping with 10 tap
delays (q = 10, 108 parameters to learn). As for the transfer between
IMUs, the tap delay is set to this value to ensure that the MIMO model
captures the dynamics of the underlying relation that links the domain
transformation.

The specialization of the transfer of activity templates (T ) and ac-
tivity models (M) to the Kinect and IMU test case is now described.
The Kinect recognition system is based on T , while the IMUs are seen
to employ M. Accordingly, the transfer learning from Kinect to IMUs
will make use of the transfer of activity templates whilst the translation
from IMUs to Kinect will be performed through the transfer of activity
models.

First of all, the signal mapping from Kinect (position) to IMU (ac-
celeration) is identified. The System Identification process charac-
terizes through:

• A MIMO mapping ΨK→I from the 3D Kinect joint coordinate, to
the 3D acceleration (intuitively it can be seen that this requires
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the MIMO mapping to realize at least a 2nd order differentiation)
is learned.8

• This model can be used both to translate from Kinect to acceler-
ation, and from acceleration to Kinect, thanks to the two transfer
models. The reverse MIMO mapping is not needed.

For the Transfer of Activity Templates (from Kinect to IMU):

• The source domain recognition system works on the 3D position
coordinates. It also stores the activity templates TS = TK that
are the 3D joint coordinates for each gesture.

• xS = xK is the 3D joint position measured by the Kinect sensor
(source)

• xT = xI is the 3D acceleration measured on the body (target)

• x̂T = x̂I = ΨK→I(xK) is the acceleration predicted on the body
from the known joint position.

• After template translation, TT = TI are the predicted 3D on-body
acceleration patterns for each gesture and the corresponding class
labels.

• The target recognition system is automatically trained at run-
time on the templates TT , and finally operates on the acceleration
sensed by the IMUs.

For the Transfer of Activity Models (from IMU to Kinect):

• The source domain recognition system works on the 3D accel-
eration sensed by an IMU. It uses models MS = MI for the
recognition.

• xS = xI is the 3D acceleration measured on the body (source)

• xT = xK is the 3D joint position measured by the Kinect sensor
(target)

• x̂S = x̂I = ΨK→I(xK) is the acceleration predicted on the body
from the joint position.

8I or K are used instead of the S or T subscripts in Ψ or x to be specific about
whether the signals come from the IMUs or the Kinect.
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• After translation, the 3D joint coordinates of the Kinect are
mapped to “look like” acceleration. The recognition models de-
vised for the IMU are used as is by the target system (MT =MS)
that now operates on the Kinect data.

According to the devised experimental setup, six cases of transla-
tion of AR from a source to target domain are studied. Three are cases
of translation of an existing ambient AR system operating on the joint
positions delivered by the Kinect hand, towards a system which will
use body-worn accelerometers for AR. The on-body sensors are worn
either on the lower arm, the upper arm, or the back. This is done with
the transfer of activity templates. Three other cases translate an exist-
ing wearable AR system operating on on-body accelerometers towards
an ambient system which will use the joint position of the hand deliv-
ered by Kinect. The on-body sensors are worn either on the lower arm,
the upper arm, or the back. This is done using the transfer of activity
models. These scenarios are devised to help investigate the potential
of the transfer methods for sensor systems of diverse modality (posi-
tion/acceleration) and of diverse characteristics (centered on close-by
or unrelated body parts).

System identification performance

The BestFit computed between the acceleration measured at the lower
arm, upper arm and back, and the acceleration predicted from the
Kinect hand position is presented in Figure 5.7. The best fit tends to
be obtained with PDM (Figure 5.7(a)). This may be expected, as the
mappings are learned on the dynamics of all gestures. Learning can
also occur on one gesture of a given class (Figure 5.7(b)). In that case,
the best unique gesture to learn a mapping model appears to be the
circle, followed by triangle or square (highest BestFit). Thus, one ges-
ture may be sufficient for the mapping to capture the dynamics of the
physical system and extrapolate to a wider range of body movements.
UDM does not achieve an adequate mapping (Figure 5.7(c)). The idle
dataset has only rare occurrences of larger amplitude limb movements
and is insufficient to represent the dynamics of the physical system.
Nevertheless, a dataset from a domain which does not comprise the
activities to recognize but which contains richer limb movements may
possibly be used to learn a satisfactory mapping model. In either case,
it will be seen later that this can be compensated by using more data
(Figure 5.9). The fit worsens for mappings between less related body
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regions. Nevertheless, the fit between hand position and upper arm ac-
celeration is close to that of the hand position to lower arm acceleration.
This suggests that this approach may be applicable to transfer activity
models across close-by and related limbs also for cross domains. The
back acceleration is hardly predictable from the hand position, which is
consistent with the explanation given for the IMU to IMU translation
to this respect.

Transfer accuracy

Source and target baseline classification accuracies are assessed by
training and testing on data from the same domain (position or ac-
celeration). The Kinect to IMU translation is evaluated by training the
recognition system on the predicted acceleration x̂I = ΨK→I(xK) and
testing it on the measured acceleration xI. The IMU to Kinect transla-
tion is evaluated by training the recognition system on the measured ac-
celeration xI and testing on the predicted acceleration x̂I = ΨK→I(xK).

Figure 5.8 depicts the classification accuracies baselines in the
source (BS) and target domain (BT) and those after transfer to the
target domain. As well as in the IMU to IMU case transfer here FS2 is
utilized. The baselines represent the accuracy obtained by a recognition
system that is trained and tested on the same sensor (no transfer). The
GSM mapping is learned on the “circle” gesture, which was identified
as the best gesture to learn a mapping model. Similarly as for the IMU
to IMU scenario, the baselines indicate that the gestures can be classi-
fied with an accuracy of 98% or more with the lower-arm acceleration
and the upper-arm acceleration. Similar baseline performances are also
obtained for the hand position registered through the Kinect sensor.
The results after transfer must be assessed with respect to the perfor-
mance drop from the baselines. In this regard, the performance drop
from BS indicates how much worse the system becomes after transfer
while the drop from BT indicates how much better would be a system
devised specifically for the target domain.

In the transfer between hand position and lower or upper arm accel-
eration, the PDM and GSM models tend to perform equally well. The
best results are obtained when translating from hand position to lower-
arm acceleration or vice versa, with less than 4% drop from BS. The
drop in performance from BS is less than 8% for the translation from
hand position to upper-arm acceleration and vice versa. The direction
of the transfer does not affect the results much. The GSM results show
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Figure 5.7: Logarithmic box plot. The boxplot represents the statistic
distribution of the sample set (the central mark is the median, the edges
of the box are the 25th and 75th percentiles, and the whiskers the most
extreme results not considered outliers) of 1−BestF it between the ac-
celeration measured at the lower arm, upper arm and back (first, second
and third box within each gesture group) and the acceleration predicted
at that location from the position of the hand measured by Kinect. (a)
The mapping is trained on all gestures and the fit computed on the in-
dicated gestures. (b) The mapping is trained on the indicated gesture
and the fit computed on all of them. (c) The mapping is trained on data
from another domain, and the fit is computed on the indicated gestures.

that executing a single “circle” is sufficient to identify a mapping model
that leads to a transfer with performance drop between 1% to 7% from
BS. The transfer between the hand position and the back acceleration
shows a large drop from BS with all mappings (30% to 70%). This is
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Figure 5.8: Classification accuracy (average - bar - and standard devi-
ation - whiskers -) for the translation between an ambient and wearable
system with FS2. Left half: transfer from a system trained on the Kinect
hand position to a system operating on the acceleration measured at the
indicated positions. Right half: transfer from a system trained on the ac-
celeration signals measured at the indicated positions to a system using
the Kinect hand position. BS and BT indicate the baseline accuracies
obtained with a system trained and tested on the source and target do-
main.

consistent with the low BestFit obtained when attempting to predict
the back acceleration from hand position. UDM appears to be in prin-
ciple unsuitable for the transfer. This is consistent with the analysis of
BestFit.

The UDM mapping improves when learned on more “idle” data
(Figure 5.9). With 2000 samples (67 seconds), the performance is about
15% to 30% below the corresponding baselines for FS2 and FS1 re-
spectively. This indicates that, with sufficient data, a dataset from an
unrelated domain allows the MIMO mappings to capture the dynamics
of the physical system. The difference between FS1 and FS2 highlights
that an automatic selection of better features by the source or target
system may lead to improved results. Thus, the reported results are a
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Figure 5.9: Effect of the amount of idle data used to learn the UDM
mapping on the translation accuracy from the Kinect hand position to
acceleration at the lower arm (left) and vice versa (right) for feature sets
1 an 2 (FS1T, FS2T). BS and BT are the source and target baselines.

lower bound on the performance.

5.4.4. Discussion

Instruction of newcomer sensors

Real-world AR systems are subject to changes in the sensor setup nor-
mally due to equipment upgrades and maintenance (i.e., replacement
or addition). To make use of the newly introduced sensors, standard
AR systems normally need from a complete retraining. This training
requires the collection of large datasets which turns to be completely
unsuitable in real-world applications. The transfer approach proposed
in this work serves to translate the recognition capabilities of an ex-
isting system to a newly introduced untrained system, which may be
performed at runtime and without requiring expert or user intervention.

Although this study has particularly explored the transfer between
recognition systems operating on individual sensor nodes, approaches
such as the ones suggested in previous work of this thesis may eas-
ily benefit from this. Concretely, the HWC provides a scheme on which
each sensor node operates in an independent basis, thus it is completely
feasible to only train the corresponding sensor classifier associated to
the newcomer node, without requiring to stop the recognition process
at any rate. Thus for example, the HWC may help provide activity-
awareness until the replacement for a broken sensor is provided. As-
suming that the new sensor is of different characteristics to the substi-
tuted one, a new sensor classifier must be developed for the newcomer
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system. Similarly, the HWC supports the addition of new nodes at the
network level, which also require to build new sensor classifiers. The
training of this sensor classifiers may be performed in a simple and
agile manner through the transfer methods proposed here.

Transfer method advantages

The evaluation of the proposed approach has been demonstrated to suc-
ceed for transfers between same and different domains. The model is
capable of capturing the underlying relation between systems of identi-
cal modality translated or rotated with respect to each other. Similarly,
the proposed transfer approach proves to be capable of discovering the
physical relation between cross domains. Although this has been here
demonstrated for Kinect-based and accelerometer-based systems, the
approach itself is generic and can be applied to other sensing systems.

The method should scale well with the number of classes, since a
mapping learned with one instance of a single class (GSM) performed
well on the prediction of the signals of other gestures. This indicates
that the mapping approximated the physical relations between the sens-
ing systems, independently of the gestures. Isolated AR was in this work
evaluated, but the approach is also applicable for continuous recog-
nition (spotting). Therefore, once a mapping model is identified, the
target signal can be transformed to essentially be like a signal from a
source system on which an existing spotter operates.

Low-variance data unrelated to the activities of interest can be used
to learn a mapping (UDM), albeit with more data. This has practical
benefits, since “unrelated” domain data can easily be acquired “in the
background”, whenever the user is in the sensing range of source and
target sensor systems. For example, when a new sensor is added or
replaced, the learning may be performed while the user executes their
daily routines, yet in a reasonable time period. Learning, however, ben-
efits from the execution of movements highlighting the physical relation
between the sensor systems.

The learning of the mapping model is not affected by the choice of a
feature set. This work analyzes the system performance with predefined
simple feature sets, which suffice for the AR problem complexity. In
either case, it is proved that this constitutes a lower performance bound
of the system. In the model transfer architecture the target system
may run a feature extraction and selection method, and thus possibly
improve upon the results presented here. Assuming an ideal mapping
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model, the signal transfer architecture would also benefit from feature
extraction and selection in the source domain.

The approach was evaluated in simulation. It is however entirely
suitable for online, real-time implementation, for instance in sensor
nodes.

Transfer learning principles allowing a trained system to transfer
activity recognition capabilities to another system have been proposed
for body-worn sensors [93] and ambient sensors [85]. These approaches
have in common that they operate on long time scales as they require
all the relevant activities to be observed several times (e.g., timescale
of days or more). Moreover, the transfer may be incomplete when part
of the activities are not performed. These models present some other
important limitations such as the need of predefining allowed run-time
variations or not be defined for adaptation across sensor modalities.
The approach proposed here neatly overtakes previous contributions by
fulfilling these requirements of real-world AR systems. The proposed
transfer model can be performed in a very short time scale, it is capable
of learning despite sensor variations such as rotations or translations,
and also applies well to cross domain transformations.

This approach may be useful in crowd-sourcing scenarios [137] to
translate generic activity models to the specific sensor modalities that
one user has. Moreover, some fields such as gaming could highly leverage
from this type of learning since multi-sensing platforms not envisioned
during design time may be easily learned and utilized to enhance user
experience. For example, users may play with the Kinect when staring
in front of the camera, but keep playing when they get out of the sensing
range of this sensor through transferring recognition capabilities to a
smartclock or smartphone. Transfer learning may also facilitate games
developers tasks when porting functionality and playability from a sens-
ing platform (e.g., Kinect) to a different but related sensing equipment
(e.g., Wii Remote or Motion Plus).

System identification

For specific and tractable cases, a white-box mapping may be devised.
Nevertheless, that approach would not generalize to modalities or con-
figurations not foreseen by the system designer (changeable configura-
tions). The approach that is here proposed allows us to take advantage
of additional sensors as they become available and to learn the map-
ping without expert intervention. The approach may be improved by
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non-linear or time-varying models, e.g. with time-delay neural networks
[120] or non-linear ARMA [113], or by modeling the transformations
between multiple sensors (e.g. two joint coordinates and one accelera-
tion). These models support non-linear transformations, such as those
needed when a sensor changes properties over time. Nevertheless, more
complex transformations likely need longer coexistence time between
source and target to estimate the model parameters. Besides, non-linear
models are more prone to overfitting and learning of noise and signal
artifacts which typically appear on the registered data. The possibil-
ity of updating the system identification model instead of relearning it
from scratch is also of much interest in our context. On-line non-linear
system identification models are meant to do that [117].

Gray-box (GB) models, an intermediate approach between BB and
WB modeling could be also considered. GB models combine the best
of WB and BB approaches [138], this is, knowledge-based modeling
through mathematical equations that describe the physical process and
black-box modeling, whereby a parametrized model is designed and
whose parameters are estimated solely from measurements made on the
process. Yet, the limitations already described for WB may similarly
apply to GB, thus the extent to which these models may be applicable
in our context depends on how the GB model is specifically defined.

The mapping between the modalities considered here might look
trivial at first glance. For example, accelerations of the body are re-
lated by biomechanics constraints, and acceleration can be calculated
from position. However, the acceleration measured by the IMUs is in
a local, time-varying frame of reference. The frames of reference of the
sensors are not identical and their relative orientation may change over
time. Moreover, these modalities exhibit complex transfer characteris-
tics between each other. In fact, there is a dynamic relation between
acceleration and position involving current and past samples. Thus,
this setup allows us to conduct a non-trivial, yet manageable analysis
of our method.

System identification models are shown to cope with the complexity
of the signal mapping. Nevertheless, it must be present the importance
of synchronization among source and target signals during the mapping
learning process. Although the models have a certain tolerance (not an-
alyzed here) a significant delay or jitter might prevent us from obtaining
a functional transfer model. Therefore, synchronization among signals
as well as (re/down)sampling techniques should be somehow considered
at the point of need.
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BestFit

The BestFit indicates the quality of the mapping and to some extent the
quality of the resulting translation. This may be an indicator guiding
the self-organization of an ecology of sensor systems for opportunistic
AR [139].

Since the BestFit tends to be highest when sensors measure the
movement of the same limb, further investigation may evaluate whether
this could be used to automatically localize on-body IMU placement
when in range of a skeleton tracking system. The use of other statistical
metrics such as mutual information are also here identified for future
work in this direction.

Transfer of Activity Templates vs. Transfer of Activity Models

The transfer models differ in their computational complexity and mem-
ory needs. Templates transfer does not add computational load on the
target system after translation but it requires the source system to
store activity templates. However, this does not demand large amount
of space (47kBytes in floats here). This is well suited for an ambient
source and a wearable target system. In contrast, transfer of activity
models requires that the target sensor signals are continuously trans-
lated. This increases the computational load on the target, but the
mapping complexity is low and easily benefits from single instruction
multiple data (SIMD) computation. The storage requirement is lower,
since only the activity models need to be stored. This is well suited for
a wearable source and an ambient target system. The models also differ
in whether the source signal is mapped to the target, or vice versa. If
a mapping model exist both ways, as it happens to occur for the IMU
to IMU case, then the choice of the transfer is based on computational
and memory requirements. If the mapping model is more accurate in
one way, then the transfer that uses this mapping is favored. In this
work the mapping from position to acceleration influenced the transfer
model choice.

Supporting adaptive and evolvable AR

Sensor setup changes do not only appear after a maintenance or up-
grade operation. In fact, different sensor configurations are envisioned
during the course of a user’s normal day. Depending on the particu-
lar context, users may wear specific garments (e.g., at work), casual
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clothes (e.g., at home) or specific accessories (e.g., at the gym). During
these situations, sensors may be removed, substituted or newly added.
Classic AR systems are trained on sensor data streams from datasets
collected at design time with predefined and optimal sensor configura-
tions. Then, accounting for these variations would require here again to
collect as many datasets as possible sensor configurations, which hap-
pens to be unfeasible. Transfer approaches are devised as a means to
help support a continuity of recognition by adapting to the actual sens-
ing configuration. AR systems may dynamically transfer their recogni-
tion capabilities among themselves, thus all available systems may be
readily prepared to be used for the required activity-aware services.

The potential of transfer learning is not only restricted to wear-
able sensing but other sensing platforms. In fact, an important feature
of activity recognition systems is to provide a continuity of context-
awareness across different sensing environments, as the user changes
location or carry-on devices. As the user performs their daily activi-
ties, various sensor systems may be discovered. These sensor systems
may not necessarily be capable of activity recognition, as they may also
be deployed for other purposes. For instance, a user relies on a smart-
phone for activity awareness (e.g. for energy expenditure analysis). The
user enters a room with an activity-aware gaming system and leaves the
smartphone on a desk. The smartphone now cannot recognize the user’s
activities. The gaming system can sense their movements, but may not
be devised to recognize the same activities as the smartphone did. Thus,
in principle, even if the gaming system sensors deliver relevant data,
these data cannot be used to substitute the phone sensors, unless some
translation occurs. The use of the proposed transfer methods may allow
to provide the gaming system with the smartphone recognition capabil-
ities. This kind of situations, which fit well with the experimental setup
evaluated in this work, are seen to be more and more frequent due to
the increasing sensor equipment of living environments and users.

Transfer learning is observed to be very important to keep the
knowledge gained during the use of the recognition systems. AR sys-
tems should be defined to personalize and evolve while learning from
the user experience, context and conditions. All this knowledge may
be potentially lost when the system is forced to operate on new sens-
ing infrastructure. The use of transfer learning techniques such as the
proposed in this work may help to translate this knowledge to the new
domain, thus allowing the system to function in a natural way.
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Open issues

In the current dataset, the gestures are performed in a quite slow way,
leading to accelerations with intensity lower than 1.3g for most cases.
This means that the accelerometer readings are mainly due to the time-
varying angle formed between the sensor and the gravity vector. If
higher dynamics are present, the mapping has to learn how to calcu-
late the transformed static part (due to gravity) and the dynamic part
(due to movements) and the transformations are not necessarily iden-
tical (e.g., accelerometers mounted on two different positions of the
forearm might have the same orientation with respect to gravity, but
the dynamic acceleration will in principle grow with the distance from
the elbow). Furthermore, since accelerometers alone measure their data
within a local frame of reference, while an external positioning system
(like Kinect) collects data referred to a fixed (world) frame, the rota-
tion matrix needed for transformation is dependent on the body pos-
ture itself in a non-linear manner. In other words, the signal mapping
would have to include not only a second derivative, but also a rotation
which is depending non-linearly on the body posture. The linear MIMO
model can only approximate the second derivative and a fixed rotation,
which would be an average rotation. This may become an issue with
more ample movements, but in our dataset the relative rotation of the
frames of reference was limited for most gestures (±30-40◦). Only for
the slider gesture the lower arm rotates by almost 90◦ at the extreme
of the movement, compared to the starting position.

Kinect and other video-based tracking systems are affected by oc-
clusions. Since only a small amount of data are needed to learn the
mapping, this process is likely feasible in-between occlusions. Further-
more, during an occlusion the BestFit decreases, so it may be enough
to let the system learn only when BestFit is higher than a certain
threshold.

Another limitation is that some sort of movements may not be
sensed by certain modalities. For example, Kinect cannot detect tor-
sions of hand and forearm (e.g., in gestures like turning a knob or
tightening a screw). These torsions translate into changes of the local
IMU frame of reference with respect to the camera world coordinates by
Kinect. Figure 5.10 (left) shows an ilustrative example where the arm is
rotated along its generation axis but no movement is appreciated from
the body joint camera model. This may be part of an specific gesture
or movement as shown in Figure 5.10 (right). In both cases diverse ac-
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celeration signals may normally be expected (at least variations on the
static component resulting from the IMU frame of reference rotation).
In contrast, torsions are easily sensed by gyroscopes and accelerome-
ters, meaning that the expected transfer performance is modality- and
gesture-dependent. This makes this approach well suited to opportunis-
tically improve the mapping models by taking advantage of additional
sensor modalities as they become available.

Figure 5.10: Example of torsion along the forearm (left). Example of
torsion when performing a gesture (right). The superimposed axes show
the change of the local frame of reference of an IMU sensor placed on
the wrist. Torsion may not be sensed through the 3D-position Kinect
model.

The problem of having diverse possible representations for a gesture
or movement in one domain that may correspond to a unique repre-
sentation in the other domain also applies the other way around. Let
us imagine a subject that performs a gesture in a given position, and
then moves to another distant position (yet in the range of Kinect) and
executes an exact reply of the very first gesture. The registered inertial
signals are seen to be identical for both executions but different for
Kinect. A small set of tests was performed to analyze how the mapping
model deal with this situation. First, all the Kinect 3D coordinates of
the hand signals where referred to a similar origin randomly selected.
No significant difference was encountered in terms of both fitness and
transfer accuracy. Moreover, it was evaluated the removal of the body
model center of mass to provide a common reference. Again, no better
results were obtained than for the original data. From a mathematical
point of view this is expected since the derivatives (position to accel-
eration) filter out the offset between both spacial gesture realizations.
This confirms once more the capacity of the considered mapping model
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for capturing the physics of the underlying systems relation.
Kinect suffers from other more complex technical limitations on

which the mapping model is likely to fail. One example is the abnormal
skeleton model obtained when the subject interacts with some partic-
ular objects. When the user holds an object like a stick or gets too
much close to other habitual items of the environment such as tables or
chairs, Kinect tends to incorporate these objects as part of the complete
skeleton model (e.g., a stick may be interpreted as an extension of the
hand). These and other previously presented problems are currently
being investigated, for example through the use of arrays of cameras
or techniques based on the body velocity measurement to avoid the
occlusions [140, 141].

5.5. Conclusions

AR systems of the real-world are subject to sensor setup changes. Ob-
solete or damaged sensors may be replaced with sensors of different
characteristics or new sensors added as part of equipment maintenance
and upgrades. Moreover, sensors availability may also vary during the
normal course of a person’s day depending on their particular context
(e.g., a user wears specific apparel at work, casual clothes at home or
fitness accessories at the gym). These sensors may not be capable of
specific activity recognition since either they may not have associated
activity models or are originally devised for other purposes. However,
most of this sensing equipment could be profit for AR purposes since
they are in principle capable of measuring human behavior (e.g., a
bracelet to detect dietary conducts could be also employed to moni-
tor the user workout). In all cases, a specific training is required for
these newcomer systems to become usable for the recognition of the
activities of interest. To build the recognition models, the collection of
new experimental data is in principle required, which happens to be
unpractical and unapproachable in realistic scenarios. Transfer learn-
ing is here devised as the perfect medium to perform this training in a
suitable way.

In this work, a means to automatically translate AR systems be-
tween sensor modalities, thereby effectively allowing to transfer AR
capabilities from an existing or source system to an untrained or target
system has been proposed. The approach relies on the learning of a
mapping between source and target sensor signals. Two transfer modes
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are proposed for the translation of AR systems that operate either on
activity templates or activity models.

The transfer learning models are evaluated in a multimodal gesture
recognition setting consisting of a vision-based skeleton tracking system
and body-worn accelerometers. For this, two scenarios of transfer learn-
ing have been analyzed. For the first case, the transfer between sensors
of the same modality (identical transfer) is studied. To that end, the
translation between accelerometers placed in different body parts is
evaluated. System identification techniques can be used to learn a lin-
ear MIMO model that maps the 3D accelerations sensed by source and
target IMUs. As few as a single gesture (3 seconds) of data is enough
to learn a mapping model that captures the dynamics of the physical
system. This permits to perfectly transfer the recognition capabilities
of systems that operate on close-by or related sensors. The IMU to
IMU translation across adjacent limbs (here lower arm and upper arm)
achieves a recognition accuracy superior to 97%, which is less than 2%
below the accuracy of the initial system. This proves to be independent
of the direction of the transfer.

The second scenario refers to the case in which the transfer be-
tween sensors of different modality (cross transfer) is pursued. A linear
MIMO model that maps 3D positions sensed by a Kinect to the 3D
acceleration measured on-body by IMUs can be obtained through sys-
tem identification. Here again, a sole gesture is sufficient to learn a
mapping model that captures the dynamics of the physical system and
generalizes to unseen movements when the user is active. When the
user is idle, more data is required to learn this mapping, yet much less
than other transfer approaches. The Kinect to IMU and IMU to Kinect
translation achieves a recognition accuracy of 95%, and is less than 4%
below the accuracy of the initial system. When translating across sen-
sor modalities and also to an adjacent limb (e.g., Kinect hand to IMU
on the upper-arm), the accuracy after translation is 8% below baseline.

The approach is generic and could be applied to other sensors, for
example between a gyroscope and an angle sensor such as a stretch
sensor integrated in clothing. The approach is suited for online use and
can be similarly used to translate gesture spotting capabilities across
modalities.

The MIMO models can be replaced by nonlinear ARMA models
[113], time-delay neural networks [120] or evolutionary techniques [142],
that may help capture more complex dynamics of the physical system,
for instance for combinations of sensors.
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This work supports the translation of AR capabilities between sen-
sor modalities without user or system designer’s intervention. This is
an important characteristic for AR in open-ended environments, where
the nature and availability of sensors may change over time.

The approach supports the multi-modal recognition of activities by
allowing for example to combine video and motion information. Com-
puter vision and wearable inertial sensing are probably the most prolific
domains in AR. Connecting these two domains is encountered to be of
high value to the field. This work contributes to define a means to re-
late both domains and even transfer AR models that are predefined for
operating in one domain to be used in the other domain. In the future,
this may be further used to learn activity models from existing anno-
tated video sources (e.g., from YouTube), and apply them to movement
data sensed on the body (e.g., with a smartphone). This is supported
by recent results in skeleton tracking from monocular cameras [143].
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6.1. Achievements

Much research has been performed during the last years in the activity
recognition (AR) domain. Nevertheless, most of the activity recognition
solutions provided so far are devised for ideal scenarios, thus they may
unexpectedly behave when applied to real-world conditions. Therefore,
the goal of this thesis was to investigate on the effects of some of the
most prominent technological and practical challenges posed by the use
of on-body inertial sensing human activity recognition systems in the
real-world. In the following, the achievement of the three objectives de-
fined to support this goal is described.

Objective 1: Investigate the tolerance of standard AR systems
to unforeseen sensor failures and faults, as well as contribute
with an alternate approach to cope with these technological
anomalies.

Classic AR systems assume that the sensor setup remains invariant
during the lifelong use of the system. Nevertheless, as other electronic
devices, on-body sensors are subject to faults and failures. These tech-
nological anomalies lead to changes in the sensor data streams, which
are normally unforeseen during the design phase and unpredictable at
runtime. Consequently, models trained on ideal signal patterns may re-
act in an undesired manner to anomalous sensor data. This potentially
translates into a partial or total malfunctioning of the AR systems.

In this work, the principal sensor technological anomalies have been
introduced and particularly categorized in failures and faults. For the
first of these categories, a qualitative evaluation of the effects of sensor
failures on standard AR systems has been performed. From here, sys-
tems based on a single sensor have been demonstrated not to operate
when the sensor stops delivering data. The use of multi-sensor setups
has been proposed in the literature to overcome this limitation through
leveraging the remaining active sensors. However, not all sensor fusion
models have been proved to be capable of dealing with failures. In fact,
multi-sensor fusion at the feature level has been shown not to func-
tion when a sensor fails. Multi-sensor decision fusion models have been
used in related work to deal with sensor breakdowns since independent
recognition systems are defined for each sensor node. Nonetheless, hi-
erarchical decision and majority voting, two of the most widely used
decision fusion methods have been here demonstrated to present im-
portant limitations to overcome the effects of sensor failures. Taking
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into account the shortcomings of hierarchical decision and majority
voting models, a novel methodology that combines their principal ad-
vantages and avoids their main limitations has been proposed in this
work. This innovative model, so-called hierarchical weighted classifier
(HWC), has been benchmarked in ideal circumstances and proved to
provide a performance comparable to the standard AR systems. More
importantly, the HWC has been proven to succeed when dealing with
the effects of sensor failures, even when a majority of the sensors fail.
For the second category of sensor technological anomalies, namely sen-
sor faults, the tolerance to the effects of sensor dynamic range changes
has been evaluated for the proposed HWC model and standard AR
approaches. Systems of a single sensor and those of multi-sensor fu-
sion at the feature level have been demonstrated to severely degrade
their recognition performance under harsh conditions. State-of-the-art
decision fusion models have proved a higher fault-tolerance, but still
far from being capable of providing accurate activity-awareness. Con-
versely, the HWC model has been shown to be tolerant to sensor faults
when a minority of the sensors are damaged, here serving to provide
accurate activity recognition in faulty setups.

The first objective of this thesis has been fulfilled since the behavior
of standard AR systems have been evaluated under the effect of sensor
technological anomalies and a novel approach has been alternatively
proposed to cope with the effects of sensor failures and faults.

Objective 2: Research the robustness of standard AR systems
to unforeseen variations in the sensor deployment, as well as
contribute with an alternate approach to cope with these prac-
tical anomalies.

Most AR systems assume a predefined sensor deployment that further
remains unchanged during runtime. Nevertheless, these are not lifelike
assumptions. During the normal use of the systems, users may place
the sensors in a different position to their ideal or default distribution.
Likewise, the sensors may move from their original location to a dif-
ferent one due to a loose-fitting attachment. AR systems learned on
activity patterns characteristic of a default or ideal deployment may
likely incur in misrecognition due to sensor displacements.

In this work, the concept of sensor displacement has been presented
and particularly defined as a combination of rotations and translations.
Moreover, the principal effects of sensor displacement on on-body iner-
tial modalities have been illustrated. To investigate the practical con-
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sequences of sensor displacement two approaches have been followed.
Firstly, the effect of sensor displacement on AR models has been ana-
lyzed for synthetically modeled rotations and translations. From here,
recognition systems based on a single sensor have proved to be very sen-
sitive to both rotations and translations, specially when the displaced
sensors are originally devised to be mounted on body parts subject to
low mobility. Multi-sensor configurations have shown more tolerance
to sensor deployment variations. Feature fusion approaches have only
demonstrated moderate robustness for subtle deployment variations,
as well as being incapable of recognition when more than one sensor is
displaced. The innovative HWC model proposed in this thesis has been
proved to satisfactorily cope with slight to moderate variations for any
number of displaced sensors, and to be also good enough when a mi-
nority of the sensors are hardly modified with respect to their original
positions. Secondly, the effects of sensor displacement have been inves-
tigated when observed in realistic settings. As part of this work, a novel
benchmark dataset has been collected since there was none available
for the study of this kind of problem. This dataset has been devised
to innovatively explore sensor displacements generated by people when
self-attaching the devices and large sensor depositions purposely in-
troduced to represent boundary conditions for recognition algorithms.
For this dataset, a statistical analysis of the effects of displacement
has been performed to quantitatively demonstrate the variations intro-
duced with respect to the ideal sensor deployment. A relevant disparity
in the data has been observed when the user self-placed the sensors,
which substantially increased when a large sensor depositioning was in-
tentionally introduced. The effect of these variations on the AR systems
performance has been further analyzed. Neither single sensor recogni-
tion systems nor multi-sensor feature fusion approaches have demon-
strated to be capable of coping with sensor displacements motivated by
the user self-placement or the large depositioning of the sensors. The
HWC model has conversely proved outstanding capabilities to assimi-
late the changes introduced during the self-placement of the sensors and
to moderately overcome the situation of largely depositioned sensors.

The second objective of this thesis has been fulfilled since the be-
havior of standard AR systems have been evaluated under the effect of
sensor deployment variations and a novel approach has been alterna-
tively devised to deal with the changes introduced by sensor displace-
ments.
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Objective 3: Study the capacity of standard AR systems to
support unforeseen changes in the sensor network, as well
as contribute with an alternate approach to cope with these
topological variations.

Real-world AR systems are subject to sensor setup changes. During
equipment maintenance obsolete or damaged sensors may be replaced
with sensors of different characteristics. Likewise, new sensors may be
added as part of system upgrades. Moreover, sensors availability may
vary during the normal course of a person’s day depending on their
particular context. In these scenarios, newcomer sensors may not be
capable of recognizing specific activities because they do not have as-
sociated the required activity models. Consequently, a specific training
of new AR models is required to become usable for the recognition of
the activities of interest. To build the recognition models, the collection
of new experimental data is required, which happens to be unpractical
and unapproachable in realistic scenarios.

In this work, it has been analyzed the shortcomings of transfer learn-
ing approaches devised in the literature as practical solutions for train-
ing newcomer sensor systems. Taking into account these limitations, it
has been proposed a novel means to automatically translate AR ca-
pabilities from an existing or source system to an untrained or target
system even for different sensor modalities. This new approach, which
relies on the learning of a mapping between source and target sensor
signals, has been defined for the translation of AR systems operating
either on activity templates or activity models. The proposed transfer
method has been evaluated in a multimodal gesture recognition scenario
consisting of wearable and ambient sensors. Transfers of AR systems
between sensors of the same modality (identical transfer) and between
sensors of different modality (cross transfer) have been assessed. The
identical transfer has been here evaluated for the translation between
IMU-based systems. In this case, the translation of activity templates
and activity models across sensors placed on adjacent limbs has been
proved to perfectly succeed, thereby maintaining nearly the same per-
formance as the source system. Likewise, cross transfers, here defined
for the translation between IMU and video-based systems, have been
shown to provide a quite similar performance for the translations be-
tween contiguous limbs. For both identical and cross transfers, the data
of a sole gesture has been proved to be sufficient to learn a mapping
model that captures the dynamics of the physical underlying relation
between source and target systems. This mapping learned for a single
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gesture has been demonstrated to generalize to other unseen move-
ments. More data has been determined to be required to learn this
mapping when the user behaves arbitrarily or idly. Yet, much less data
is required than for other state-of-the-art transfer approaches. Both for
identical and cross transfer cases, the translation has been shown to be
accomplished in a very short time and without requiring from user or
system designer’s intervention. These characteristics of the presented
method fit in well with real-world AR requirements.

The third objective of this thesis has been fulfilled since the limita-
tions of classic AR approaches to train newcomer sensor systems have
been identified and a novel approach has been alternatively proposed
to practically learn new AR systems under realistic conditions.

6.2. Contributions

In Section 6.1 it has been proved that the objectives of this thesis have
been thoroughly fulfilled. Now, the main contributions of this thesis are
listed:

• Identification of the requirements and challenges posed by AR
systems in real-world conditions.

• Evaluation of the tolerance of standard AR systems to sensor
technological anomalies, particularly sensor failures and faults.

• Definition and development of a novel model, so-called HWC, to
overcome the effects of sensor failures and faults.

• Evaluation of the robustness of the proposed HWC model to the
effects of sensor failures and faults.

• Evaluation of the tolerance of standard AR systems to sensor de-
ployment variations, particularly static and dynamic sensor dis-
placements.

• Evaluation of the robustness of the proposed HWC model to the
effects of sensor displacements.

• Definition, development and validation of a novel multimodal
transfer learning method that operates at runtime, with low over-
head and without user or system designer intervention.
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• Collection and curation of a benchmark dataset to investigate
the effects of sensor displacement, introducing the concept of
ideal-placement, self-placement and induced-displacement. This
dataset includes a wide range of physical activities, sensor modal-
ities and participants. Apart from investigating sensor displace-
ment, the dataset lend itself for benchmarking activity recog-
nition techniques in ideal conditions. The dataset is publicly
available to the research community at http://www.ugr.es/

~oresti/datasets.

• Collection and curation of a multimodal dataset to investigate
transfer learning among ambient sensing and wearable sensing
systems. The dataset could be also used for gesture spotting and
continuous activity recognition. The dataset is publicly available
to the research community at http://www.ugr.es/~oresti/

datasets.

6.3. Outlook

Given the novelty of this work, there is still much room to investigate
new methods and approaches. In this section, possible future directions
to continue and extend the work presented in this thesis are described.

6.3.1. Collection of large standard datasets

One of the main limitations of the wearable AR domain refers to the
lack of available datasets to benchmark new models and compare them
with prior work. This demonstrates of key importance in a field that
lacks of a specific gold standard. Consequently, a strong effort must be
put by the wearable scientific community to collect new datasets that
may serve to validate AR approaches. In the domain of real-world ac-
tivity recognition, new realistic datasets should be collected to observe
some of its associated challenges. Thus for example, datasets address-
ing real-life sensor faults and failures are seen to be of much value to
evaluate the capabilities of models dealing with technological anoma-
lies. Likewise, an extension of the dataset proposed here to investigate
the effects of sensor displacement would be appreciated. Concretely, it
would be interesting to observe the displacement introduced during the
normal use of instrumented gadgets or garments deployed in realistic
scenarios. This would reduce the influence on people’s normal behav-
ior because of their experimental awareness. The use of massive- and

http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
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crowd-monitoring protocols is also seen as a leading direction to enrich
datasets, thus allowing for a better understanding of human behavior
and people interaction.

6.3.2. Dynamic reconfiguration of the HWC

One of the most relevant properties of the proposed HWC model is its
flexibility to sensor setup changes. Sensors may be removed or newly
added to the original sensing ecosystem while keeping the consistency
of the whole recognition process. This property is specially eligible to
intelligently leverage those sensors that happen to be available to the
user. Depending on the particular application, the use of a specific part
of the sensing infrastructure could be preferred. Moreover, this is seen
to be of high importance to support the seamless integration of future
sensing technologies with already existing ones. This opens-up a new
range of opportunities for AR systems moving from constructive to
evolvable paradigms.

AR systems are normally devised for a set of particular activities,
however, this may change in the course of time depending on the par-
ticular user and application needs. Additional activities to the ones
devised at design-time may be required when for example a new exer-
cise routine is considered or a workout plan is modified. These changes
are not only seen to add new activities but to also remove some of
these at the point of need. This is found of special interest to reduce
systems complexity and increase their recognition performance, as well
as to procure systems personalization to subjects. Schemes based on
standard AR models require a complete system rebuilding when the
activity set is varied. Likewise, multi-decision or fusion techniques such
as adaboost, decision stumps, random forests or other popular ensem-
bles and meta-learners require to retrain the model. Conversely, the
HWC supports this kind of reconfigurations since its flexibility does not
only apply at sensor level but also at activity level. New base classifiers
must only be trained for the newly added activities, and their asso-
ciated weights computed. If an activity is rather removed, an update
of the model weights is just required. Future work aims at evaluating
the capabilities of the HWC model to this respect specially for online
realistic scenarios.
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6.3.3. Self-adaptive HWC

The proposed HWC model has shown an important tolerance to sensor
anomalies. Nevertheless, this approach takes into account the potential
decisions provided by all considered sensors, thus reducing its robust-
ness when a majority of the sensors are severely disturbed. The def-
inition of an adaptive mechanism to automatically update the sensor
classifier weights could be of much value to reduce the impact of those
decisions provided by the anomalous sensors. However, for the adap-
tation process extra knowledge or feedback is required to determine
whether or not a system operates properly. Involving users in this pro-
cess, for example, asking them to notify whether the recognition system
is making a detection error or not, may be burdensome and lead to mis-
reports. Instead, the use of distance measures and information theory
techniques to identify erroneous measurements in a multi-sensor setup
could be employed. Likewise, the knowledge of the collectivity may be
utilized to define an oracle that helps to identify misperforming sensors.
These techniques may allow for an autonomous self-adaptation of the
HWC model parameters to the actual network conditions.

Certainly, much benefit could be obtained through reducing the
weights of the anomalous sensors or even removing them from the de-
cision fusion process. However, sensor anomalies must not necessarily
degrade the recognition of all activities. In fact, some activities may be
more affected by sensor faults than others as it was shown in this thesis.
Likewise, after sensor displacement the signal characteristics of some
activities may change to an extent they are not recognizable anymore
whilst others are still recognizable. Bearing in mind the flexibility of
the HWC structure, the weights of the misrepresented activities could
be reduced while maintaining the original weights for the rest of unaf-
fected activities. This is more precise than reducing the weights at the
sensor level and permits to leverage the potential of the affected sen-
sor for the well-recognized activities. The self-adaptation of the HWC
model through using the aforementioned ideas is aimed to be part of
future work.

6.3.4. Tolerance to other sensor technological and topological
anomalies

Apart from the sensor anomalies investigated in this work there exist
others that would be interesting to be addressed. For example, some
sensor technological anomalies are more dependent on how the signals
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are simultaneously registered and processed. In multi-sensor configura-
tions diverse signals are recorded through the different sensor nodes.
Although assuming the data are collected at a similar sampling rate,
drifts among the signals could appear. To avoid these time deviations,
wired configurations are normally required which are impractical in
realistic scenarios. In wireless approaches synchronization is pursued
by using a common clock reference, however, time skews are normally
present. The impact of sensor signal drifts also tends to increase as
the number of sensors grows. The evaluation of signal drifts in multi-
sensor systems (specially for highly dense deployments) is thus seen as
an interesting challenge to be addressed in future work.

The effects of sensor displacement have been particularly analyzed
for the acceleration domain. Investigating the effects of realistic sensor
displacement on other sensor modalities or domains is also found very
interesting. In fact, in a recent preliminary work [144] the effects of sen-
sor displacement were researched for various inertial sensing modalities.
Future work in other sensor modalities could also include the evaluation
of the effects of extreme sensor depositionings. Extreme sensor deposi-
tioning refers to the displacement introduced when two or more sensors
are exchanged. Thus, they are relocated in body parts completely unre-
lated to the ones devised at design-time. Although this is less frequent,
a user could misplace a sensor during the self-placement process as a
consequence of a mistake (e.g., the wrist-sensor is positioned on the
ankle). Real-world AR system should also account for these extreme
sensor misplacements, thus contributing to a freer use of the devices.

6.3.5. Multiple trainers and complex modalities in transfer
learning

In this thesis the mapping between wearable sensors and between wear-
able and ambient sensors has been analyzed. Concretely, acceleration to
acceleration and position to acceleration mappings have been character-
ized. Although this is a difficult problem per se, more complex sensing
mappings may be envisioned. For example, ambient sensors like switch
buttons could be used to detect household activities. The mapping from
this ambient sensing modality to an on-body inertial modality could be
normally discarded from a rational perspective. However, through more
complex mappings it could be possible to effectively relate them. In this
line, the combination of diverse source sensing modalities to predict a
given target modality is meant to provide a more complete descrip-
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tion of the phenomena. This may potentially lead to more accurate
mappings but at expense of a more complex modeling.

Modeling the transformations between multiple sensors (e.g., from
two joint positions to one acceleration) is another interesting future
research direction. This thesis already demonstrated the need of moni-
toring diverse body parts to more accurately recognize human behavior.
Likewise, the use of multiple sensors is here envisioned to improve the
quality and robustness of the mapping among sensor modalities. In this
work, the learning of the mapping was performed between individual
body joints; however, it is reasonable to think that more accurate map-
pings may be obtained when using multiple sensors from which the
orientation of the complete limb could be deduced.

Benefiting from more sensor inputs and more complex sensor modal-
ities would translate into the need of more sophisticated models. The
dynamic selection of the best set of trainers in terms of both sensor char-
acteristics and modalities could be used to provide an optimal mapping
model. The definition of optimal sophisticated models opens-up a new
spectrum of research opportunities for lifelong AR systems.





7
Conclusiones
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7.1. Logros

Son muchas las investigaciones desarrolladas en los últimos años en
el área del reconocimiento de la actividad humana. Sin embargo, la
mayoŕıa de las soluciones propuestas hasta la fecha en este ámbito han
sido diseñadas para condiciones ideales, por lo que pueden comportarse
de forma inesperada cuando se aplican a escenarios del mundo real. Es
por esto que el propósito fundamental de esta tesis ha consistido en
investigar los efectos de algunos de los retos técnicos y prácticos más
destacados derivados de la utilización de sistemas de monitorización
inercial del movimiento corporal en el mundo real. A continuación se
describen los logros obtenidos para cada uno de los objetivos plantea-
dos como parte de esta tesis.

Objetivo 1: Investigar la tolerancia de los sistemas estándar
de reconocimiento de la actividad ante posibles fallos y de-
fectos imprevistos de los sensores, aśı como contribuir con
una solución alternativa para lidiar con estas anomaĺıas tec-
nológicas.

Los sistemas tradicionales de reconocimiento de la actividad presupo-
nen que la configuración de los sensores permanece invariante durante
toda la vida útil del sistema. Sin embargo, como otros dispositivos
electrónicos, los sensores vestibles experimentan fallos y defectos. Es-
tas anomaĺıas tecnológicas introducen variaciones en las señales normal-
mente registradas a través de los sensores, siendo imprevisibles durante
la fase de diseño e impredecibles en tiempo de ejecución. Por consi-
guiente, los modelos entrenados con patrones de señales ideales pueden
reaccionar de una forma indeseada al recibir datos anómalos por parte
de los sensores. Esto se traduce en un potencial mal funcionamiento
parcial o total del sistema de reconocimiento de la actividad.

En esta tesis se han presentado las principales anomaĺıas tec-
nológicas que pueden sufrir los sensores, y se han categorizado en errores
cŕıticos o fallos (ej., rotura por cáıda) y anomaĺıas parciales o defectos
(ej., bajo nivel de bateŕıa). Para la primera de estas categoŕıas se ha
realizado una evaluación cualitativa de los efectos de los fallos de los
sensores en los sistemas estándar de reconocimiento de la actividad. Se
ha discutido la obvia inoperancia de los sistemas basados en un solo sen-
sor cuando este deja de transmitir datos. Para superar esta limitación
en la literatura se ha propuesto el uso de configuraciones multi-sensor
que aprovechan los restantes sensores que permanecen activos a través
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del uso de mecanismos de fusión. Sin embargo, no todos los modelos
de fusión de sensores han demostrado ser capaces de lidiar con fallos
en los sensores. De hecho, se ha demostrado que sistemas de fusión
multi-sensor a nivel de caracteŕısticas dejan de funcionar cuando falla
un sensor. La fusión multi-sensor a nivel de decisiones se ha utilizado
en trabajos relacionados para hacer frente a roturas de los sensores ya
que en estos modelos se definen sistemas de reconocimiento indepen-
dientes para cada sensor. No obstante, se ha demostrado en esta tesis
que la decisión jerárquica y la decisión por mayoŕıa, dos de los métodos
más utilizados para la fusión a nivel de decisiones, presentan impor-
tantes limitaciones para superar los efectos de los fallos de los sensores.
A partir de la identificación de las deficiencias de los modelos de de-
cisión jerárquica y de decisión por mayoŕıa se ha definido en este tesis
una metodoloǵıa novedosa que combina sus principales ventajas y evita
sus principales limitaciones. Este modelo innovador denominado clasi-
ficador jerárquico ponderado (HWC) se ha evaluado en circunstancias
ideales y se ha probado que proporciona un rendimiento comparable a
los sistemas estándar de reconocimiento de la actividad. Incluso más
importante que esto se ha demostrado que el HWC es capaz de paliar
los efectos de los fallos de los sensores aún en el caso en que la mayoŕıa
de estos dejen de funcionar. Para el caso de la segunda categoŕıa de las
anomaĺıas tecnológicas, esto es, defectos de los sensores, se ha evalu-
ado la tolerancia del HWC y los modelos estándar de reconocimiento
de la actividad a los efectos del cambio del rango dinámico de los sen-
sores. Se ha demostrado que los sistemas basados en un solo sensor y
los basados en la fusión multi-sensor a nivel de caracteŕısticas sufren
una degradación en su capacidad de reconocimiento cuando actúan en
condiciones muy adversas. Además, se ha probado que los sistemas
estándar de fusión multi-sensor a nivel de decisiones proporcionan una
mayor tolerancia a los defectos en los sensores pero están aún lejos de
ser capaces de proporcionar un reconocimiento preciso de la actividad.
Por el contrario, se ha demostrado que el modelo HWC propuesto en
esta tesis es tolerante a los defectos de los sensores cuando una minoŕıa
están dañados. De este modo, este modelo se demuestra útil para el
reconocimiento de la actividad en configuraciones con sensores defec-
tuosos.

El primer objetivo de esta tesis se ha cumplido con éxito ya que se ha
evaluado el comportamiento de los sistemas estándar de reconocimiento
de la actividad bajo los efectos de posibles anomaĺıas tecnológicas de
los sensores, y se ha contribuido con una solución alternativa e inno-
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vadora para lidiar con los efectos de fallos y defectos imprevistos de los
sensores.

Objetivo 2: Investigar la robustez de los sistemas estándar de
reconocimiento de la actividad ante posibles variaciones im-
previstas en el despliegue de los sensores, aśı como contribuir
con una solución alternativa para lidiar con estas anomaĺıas
prácticas.

La mayoŕıa de los sistemas de reconocimiento de la actividad asumen
un despliegue predefinido de los sensores aśı como que este se mantiene
sin cambios durante el uso del sistema. Sin embargo, estas suposiciones
no son realistas puesto que los sensores pueden sufrir cambios en su dis-
tribución o emplazamiento en tanto en cuanto el usuario los coloca de la
forma que considera más oportuna. Asimismo, los sensores pueden ser
objeto de modificaciones con respecto a su emplazamiento original al
estar integrados en ropa holgada o accesorios que no están firmemente
sujetos al cuerpo. En estas circunstancias existe una alta probabilidad
de que los sistemas de reconocimiento entrenados para un despliegue
ideal de los sensores dejen de funcionar correctamente debido al des-
plazamiento de los sensores con respecto a su ubicación por defecto.

En este trabajo se ha introducido inicialmente el concepto de des-
plazamiento del sensor, el cual ha sido definido particularmente como
una combinación de rotaciones y traslaciones. Además, se han presen-
tado los principales efectos del desplazamiento en sensores portables
inerciales. Se han planteado dos enfoques para el estudio de los efectos
del desplazamiento de los sensores en los sistemas de reconocimiento de
la actividad. En primer lugar, dicho efecto ha sido analizado para rota-
ciones y traslaciones modeladas de forma sintética. A partir de este
análisis se ha demostrado que los sistemas de reconocimiento basa-
dos en un solo sensor son muy sensibles tanto a rotaciones como a
traslaciones, especialmente aquellos que están concebidos para ser em-
plazados en partes del cuerpo sujetas a una reducida movilidad. Las
configuraciones multi-sensor han demostrado una mayor tolerancia a
los efectos del desplazamiento. Los modelos basados en fusión de car-
acteŕısticas han demostrado una tolerancia moderada sólo para despla-
zamientos sutiles de los sensores, resultando de poca utilidad cuando
más de un sensor es desplazado. A diferencia de estos, el modelo HWC
propuesto en esta tesis ha demostrado ser capaz de afrontar variaciones
moderadas en los sensores con independencia del número de sensores
desplazados, aśı como proporcionar una alta tolerancia a grandes des-
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plazamientos con respecto a su ubicación original cuando una minoŕıa
de los sensores están afectados. En segundo lugar, los efectos del despla-
zamiento de los sensores han sido investigados a partir de su observación
en escenarios reales. Como parte de este trabajo, un nuevo conjunto o
base de datos ha sido registrado para su uso en este tipo de evaluación
dado que no existe ninguno disponible para el estudio del problema
del desplazamiento de los sensores. La colección de esta base de datos
ha sido concretamente ideada para explorar tanto los efectos de los
desplazamientos de sensores introducidos por las personas al colocarse
los dispositivos en el cuerpo, como el impacto de grandes desplaza-
mientos que representan condiciones extremas para los algoritmos de
reconocimiento. Para este conjunto de datos se ha realizado un análisis
estad́ıstico de los efectos del desplazamiento mostrando de forma cuan-
titativa las variaciones que dichos desplazamientos introducen en las
señales con respecto a un despliegue ideal de los sensores. Este estudio
ha permitido comprobar la marcada disparidad en las distribuciones
de los datos cuando los usuarios ubican los sensores de forma arbi-
traria, la cual se acrecienta de forma substancial cuando los sensores
son ampliamente desplazados con respecto a su ubicación predetermi-
nada. Dichos efectos también han sido analizados desde el punto de
vista del rendimiento de los sistemas de reconocimiento de la actividad
en presencia de desplazamiento de los sensores. Se ha comprobado que
ni los sistemas de reconocimiento basados en un sensor ni aquellos que
se basan en la fusión de múltiples sensores a nivel de caracteŕısticas son
capaces de lidiar con los efectos del desplazamiento de los sensores. A
diferencia de los anteriores, el HWC śı ha demostrado una capacidad
destacada para asimilar los cambios introducidos por la colocación de
los sensores por parte de los usuarios, aśı como para operar de forma
moderada en aquellas situaciones en las que los sensores son significa-
tivamente desplazados.

El segundo objetivo de esta tesis ha sido alcanzado puesto que se
ha realizado la evaluación del comportamiento de sistemas estándar de
reconocimiento de la actividad ante los efectos de cambios en el desplie-
gue de los sensores y se ha planteado una posible alternativa para lidiar
con las variaciones introducidas por el desplazamiento de los sensores.

Objetivo 3: Estudiar la capacidad de los sistemas estándar de
reconocimiento de la actividad para soportar posibles cambios
en la red de sensores, aśı como contribuir con una solución al-
ternativa para lidiar con estas variaciones topológicas.
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En el mundo real, los sistemas de reconocimiento de la actividad están
sujetos a variaciones en el equipamiento. Por una parte, sensores ob-
soletos o dañados pueden ser reemplazados por otros de caracteŕısticas
diferentes durante operaciones de mantenimiento. Igualmente, nuevos
sensores pueden ser incorporados a la red de sensores original como
parte de procesos de actualización del sistema. Finalmente, la disponi-
bilidad de los sensores puede variar durante el curso normal de d́ıa
dependiendo del contexto particular en el que se encuentra la persona.
En estos escenarios, los nuevos sensores incorporados a la topoloǵıa de
sensores concebida durante la fase de diseño carecen en principio de
capacidades de reconocimiento de la actividad puesto que no tienen
asociado un sistema para ello. En consecuencia, es necesaria la gen-
eración de nuevos sistemas de reconocimiento de las actividades de in-
terés a través de un entrenamiento espećıfico para los nuevos sensores.
Este entrenamiento requiere a su vez del registro de bases de datos
espećıficas, lo cual resulta inabordable en escenarios reales.

En este trabajo se han analizado las principales limitaciones de las
técnicas de transferencia de conocimiento planteadas en la literatura
como solución al entrenamiento de nuevos sistemas de reconocimiento.
Teniendo en cuenta estas limitaciones (alta latencia, falta de general-
ización, unimodalidad), se ha propuesto un novedoso método que per-
mite transferir de forma automática las capacidades de un sistema de
reconocimiento existente o fuente, a un sistema de reconocimiento no
entrenado u objetivo, incluso cuando las modalidades de sensado de
fuente y objetivo difieren. El modelo propuesto se basa en el aprendizaje
de una función de mapeado entre las señales del sensor fuente y el sensor
objetivo, la cual es utilizada para transferir modelos de reconocimiento
de actividad o patrones de reconocimiento de actividad dependiendo del
modo de operación del sistema de reconocimiento fuente. El método
propuesto ha sido evaluado en un escenario multimodal para el re-
conocimiento de gestos, en el que se utilizan tanto sensores ambientales
como vestibles. Se ha estudiado tanto la transferencia de capacidades de
reconocimiento entre sensores de la misma modalidad como entre sen-
sores de distinta modalidad. Para el primer caso, la transferencia entre
sensores vestibles ha sido evaluada, demostrándose el éxito del modelo
tanto para la transferencia de modelos de reconocimiento o patrones de
reconocimiento entre sensores ubicados en miembros adyacentes. Igual-
mente, se ha comprobado que la transferencia de modelos y patrones
entre sistemas de reconocimiento operando en sensores ambientales y
vestibles es satisfactoria. Tanto para la transferencia entre sensores de
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la misma modalidad como sensores de distinta modalidad se ha de-
mostrado que la información proporcionada por un solo gesto es sufi-
ciente para que el modelo de transferencia aprenda la relación f́ısica que
permita mapear las señales fuente y objetivo. Además, este mapeado es
generalizable a otros movimientos o gestos diferentes al realizado para
el aprendizaje de dicha relación. Se ha comprobado asimismo que se
necesita de una mayor cantidad de información para el aprendizaje de
la función de mapeado cuando el usuario se comporta de forma libre o
arbitraria. No obstante, la cantidad de información necesaria en dicha
situación es muy inferior a la requerida por otros modelos propuestos
en trabajos previos. Además de permitir una transferencia exitosa de
las capacidades de reconocimiento, esta se realiza de forma rápida y sin
requerir la intervención del usuario o el diseñador del sistema en ningún
caso. Estas caracteŕısticas son especialmente interesantes atendiendo a
las necesidades de los sistemas de reconocimiento del mundo real.

El tercer objetivo de esta tesis ha sido completado puesto que
las principales limitaciones de los modelos clásicos de entrenamiento
de nuevos sistemas de reconocimiento han sido identificadas, y un
nuevo modelo ha sido propuesto para suplir dichas limitaciones pro-
porcionando un medio para el aprendizaje de nuevos sistemas de re-
conocimiento en condiciones reales.

7.2. Contribuciones

En la Sección 7.1 se ha descrito que los objetivos de esta tesis se han
cumplido de forma satisfactoria. Las principales contribuciones de esta
tesis se listan a continuación:

• Identificación de los requerimientos y retos planteados por los
sistemas de reconocimiento de la actividad en condiciones reales.

• Evaluación de la tolerancia de los sistemas de reconocimiento
estándar a los efectos de anomaĺıas tecnológicas de los sensores,
particularmente fallos y defectos.

• Definición y desarrollo de un modelo novedoso (HWC) para lidiar
con los efectos de fallos y defectos en los sensores.

• Evaluación de la robustez del modelo HWC a los efectos de fallos
y defectos en los sensores.
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• Evaluación de la tolerancia de los sistemas de reconocimiento
estándar a variaciones en el despliegue de los sensores, partic-
ularmente desplazamientos estáticos y dinámicos.

• Evaluación de la robustez del modelo HWC a los efectos de des-
plazamientos de los sensores.

• Definición, desarrollo y validación de un sistema novedoso de
transferencia de conocimiento multimodal, capaz de operar en
tiempo real, con poca carga computacional y sin necesidad de in-
tervención alguna por parte del usuario o diseñador del sistema.

• Registro y adecuación de un conjunto de datos destinados a in-
vestigar los efectos de variaciones en el despliegue de los sen-
sores (desplazamiento de los sensores). Esta base de datos con-
tiene información correspondiente a un amplio rango de activi-
dades, sensores y sujetos. Además de su uso para la investi-
gación del problema del desplazamiento de los sensores, la base
de datos registrada en este trabajo se puede utilizar también
para comparar técnicas de reconocimiento de la actividad en
condiciones ideales. La base de datos está disponible en http:

//www.ugr.es/~oresti/datasets.

• Registro y adecuación de un conjunto de datos destinados a in-
vestigar la transferencia de conocimiento multimodal entre sis-
temas de reconocimiento basados en sensores ambientales y sen-
sores vestibles. La base de datos puede ser también utilizada
para detección de gestos y reconocimiento de la actividad. La
base de datos está disponible en http://www.ugr.es/~oresti/

datasets.

7.3. Trabajo futuro

Teniendo en cuenta la novedad de este trabajo existe todav́ıa un amplio
margen para la investigación de nuevos modelos de reconocimiento de
la actividad para el mundo real. En esta sección se presentan diversas
ĺıneas de trabajo futuro identificadas como continuación o extensión de
la investigacin desarrollada en esta tesis.

http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
http://www.ugr.es/~oresti/datasets
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7.3.1. Registro de nuevas bases de datos para validación de
modelos de reconocimiento

Una de las principales limitaciones en el campo del reconocimiento de
la actividad humana basada en sensores vestibles es la falta de bases
de datos que permitan comparar los nuevos modelos propuestos con
los métodos desarrollados en trabajos previos. En consecuencia, la co-
munidad cient́ıfica debe hacer un esfuerzo importante para tratar de
generar nuevas bases de datos que puedan ser libremente utilizadas
para validar soluciones pasadas, presentes y futuras al problema del
reconocimiento de la actividad humana. De forma más concreta, se de-
beŕıa plantear la creación de bases de datos que reflejen los problemas
que deben afrontar los sistemas de reconocimiento en el mundo real.
Por ejemplo, bases de datos que incluyan anomaĺıas de tipo tecnológico
como fallos o defectos son especialmente valiosas para testear modelos
diseñados para lidiar con los efectos de dichas anomaĺıas. Asimismo,
seŕıa de una gran utilidad una extensión de la base de datos propor-
cionada en este trabajo para investigar los efectos del desplazamiento
de los sensores. Concretamente, resultaŕıa de especial interés observar
el desplazamiento introducido durante el uso habitual de los art́ıculos
cotidianos que incluyen estos sensores. Finalmente, el uso de protocolos
de monitorización masiva, esto es, cientos o miles de personas, se con-
sidera de especial trascendencia de cara a obtener una gran cantidad
de información que permita generalizar la validación de los modelos
propuestos.

7.3.2. Reconfiguración dinámica del HWC

Son muchas las propiedades a destacar del modelo HWC propuesto en
esta tesis. De entre estas, una de las más importantes es su flexibilidad a
variaciones en el equipamiento de sensado. Este modelo ha demostrado
que los sensores pueden ser eliminados o añadidos manteniendo la ca-
pacidad de reconocimiento en todo momento. Esto es especialmente
importante de cara a soportar la integración de futuras tecnoloǵıas de
sensado no conocidas durante la fase de diseño del sistema.

Los sistemas de reconocimiento son normalmente diseñados para
la detección e identificación de un conjunto de actividades espećıficas.
No obstante, las actividades de interés pueden cambiar durante el curso
del tiempo dependiendo de las necesidades particulares del usuario. Por
ejemplo, actividades adicionales a las consideradas durante la fase de
diseño pueden ser requeridas cuando los ejercicios de un plan de en-
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trenamiento son modificados. Estos cambios pueden conllevar no sólo
la inclusión de nuevas actividades sino también la eliminación de otras
que pasan a no ser objetivo espećıfico del usuario. Esto es de especial in-
terés de cara a reducir la complejidad de los sistemas de reconocimiento
e incrementar su eficiencia, aśı como para permitir la personalización
de dichos sistemas a los intereses y necesidades de cada usuario. Este
tipo de cambios no son aplicables en los modelos de reconocimiento
estándar puesto que cualquier variación en el conjunto de actividades
objetivo implica un reentrenamiento completo del sistema. A diferencia
de estos, la flexibilidad del modelo HWC tolera modificaciones de este
tipo. De hecho, sólo es necesario entrenar el clasificador base asociado
a la nueva actividad y actualizar los pesos en concordancia. En el caso
de que una actividad sea eliminada, el proceso simplemente consiste
en quitar el clasificador asociado a esta y recalcular los pesos. Parte
del trabajo futuro de esta tesis tiene como objetivo la evaluación de la
capacidad del modelo HWC en esta dirección.

7.3.3. HWC auto-adaptativo

El modelo HWC propuesto en esta tesis ha demostrado una impor-
tante tolerancia a los errores introducidos por anomaĺıas en los sen-
sores. No obstante, este método tiene en cuenta las decisiones de todos
los sensores considerados durante el proceso de diseño, de modo que
su robustez se ve afectada cuando una mayoŕıa de sensores son mod-
ificados de forma sustancial. La definición de un modelo adaptativo
que permita actualizar de forma autónoma los pesos asociados a cada
uno de los sensores permitiŕıa reducir el impacto de aquellas decisiones
adoptadas sobre la información registrada por sensores anómalos. Sin
embargo, dicho proceso de adaptación requiere de un conocimiento ex-
tra o realimentación para determinar qué sensores se comportan de
forma anómala. Dicha información podŕıa ser proporcionada directa-
mente por el usuario, el cual puede ser consciente de si el sistema está
acertando en el proceso de reconocimiento o no. No obstante, esto rep-
resenta una tarea tediosa que puede suponer una verdadera molestia
para el usuario. Por otra parte, se podŕıa plantear la utilización del
conocimiento obtenido de la colectividad de sensores para determinar
cuál o cuáles se comportan de forma indeseada. Este tipo de técnicas
permitiŕıan la auto-adaptación del modelo HWC a las condiciones conc-
retas del equipamiento utilizado.

Reducir los pesos para aquellos sensores identificados como anómalos
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o incluso eliminarlos del proceso de toma de decisiones puede ser una
buena práctica para mantener la capacidad de reconocimiento. Sin em-
bargo, las anomaĺıas que experimentan los sensores no siempre afectan
de la misma forma al proceso de reconocimiento de las diversas activi-
dades consideradas. De hecho, algunas actividades pueden verse más
afectadas por fallos en los sensores que otras tal y como se ha mostrado
en esta tesis. Asimismo, el desplazamiento de un sensor con respecto
a su emplazamiento predeterminado puede hacer imposible la iden-
tificación de algunas actividades mientras que otras pueden ser aun
perfectamente reconocibles. Teniendo en cuenta la flexibilidad de la es-
tructura del HWC seŕıa posible reducir el valor de los pesos asociados
a aquellas actividades que se ven alteradas por las citadas anomaĺıas,
manteniendo los pesos para aquellas otras que se siguen reconociendo
sin ningún tipo de problema. Este tipo de procedimiento es bastante
más preciso que la reducción de los pesos a nivel de sensor o incluso su
eliminación en la toma de decisiones, y permite aprovechar el potencial
de los sensores afectados para las restantes actividades reconocibles.
Parte del trabajo futuro de esta tesis tiene como objetivo la definición
de un mecanismo de auto-adaptación que extienda las capacidades del
modelo HWC en esta dirección.

7.3.4. Tolerancia a otras anomaĺıas tecnológicas y topológicas

Además de las anomaĺıas investigadas en esta tesis existen otras que
también seŕıa importante estudiar. Por ejemplo, algunas anomaĺıas de
tipo tecnológico son más dependientes de cómo se registran y procesan
las señales de forma simultánea en las configuraciones multi-sensor.
Aunque normalmente se asume que las señales de movimiento son
registradas por cada sensor a una tasa de muestreo similar, puede
suceder que exista desincrońıa entre las señales al ser referidas a una
misma referencia temporal. Para evitar este tipo de desviaciones tem-
porales normalmente se utilizan configuraciones cableadas de los sen-
sores, lo cual es totalmente impráctico para contextos reales. En las
redes inalámbricas se usa una misma referencia temporal para cada
sensor sin embargo normalmente aparecen desviaciones entre estas. La
evaluación de estas derivas temporales, especialmente en despliegues
con multitud de sensores, representa un interesante reto a considerar
como trabajo futuro de esta tesis.

Los efectos del desplazamiento de los sensores han sido particular-
mente analizados para datos de aceleración. La investigación de dichos
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efectos en otras modalidades inerciales resulta igualmente interesante.
De hecho, en un trabajo reciente [144] se ha proporcionado una evalu-
ación preliminar de los efectos de desplazamiento para diversas modal-
idades inerciales. Además de esto, como trabajo futuro de esta tesis
se plantea el análisis de los efectos de desplazamiento extremo de los
sensores, esto es, cuando dos o más sensores son intercambiados de sus
posiciones originales de una forma drástica. Este seŕıa el caso en el que
un usuario coloca un brazalete idealmente diseñado para ser puesto en
la muñeca en otra parte del cuerpo, por ejemplo el tobillo. Este tipo de
investigación se prevé de especial importancia de cara a dar la máxima
libertad al usuario a la hora de utilizar los art́ıculos que incluyen los
sensores de medición del movimiento.

7.3.5. Transferencia de conocimiento entre múltiples modali-
dades de sensado

En esta tesis se ha analizado el mapeo entre sensores vestibles y entre
sensores vestibles y ambientales. Concretamente se han caracterizado
modelos de mapeo de aceleración a aceleración y aceleración a posición.
Si bien este es un problema complejo per se, otras combinaciones más
complejas son posibles. Por ejemplo, sensores ambientales como los uti-
lizados para detectar la interacción del usuario con el entorno (por ejem-
plo, pulsadores) son habitualmente utilizados para inferir actividades
de tipo doméstico. El mapeo desde esta modalidad ambiental a una
modalidad de sensor de tipo vestible puede resultar inconcebible. No
obstante, el uso de modelos de mapeo más complejos podŕıa permitir
encontrar la relación entre este tipo de dominios complejos. Este tipo
de modelos podŕıa beneficiarse de la combinación de fuentes de infor-
mación heterogéneas que permitan describir mejor el fenómeno obser-
vado. Esto permitiŕıa la definición de funciones de mapeo más precisas,
si bien ello se lograŕıa a expensas de un modelado más complejo.

El modelado de las transformaciones entre múltiples sensores (por
ejemplo, de dos medidas de posición a una de aceleración) es otra ĺınea
de investigación futura interesante. En esta tesis se ha demostrado la
importancia de monitorizar diferentes partes del cuerpo de cara a pro-
porcionar un reconocimiento preciso y robusto de las actividades eje-
cutadas por el individuo. De forma análoga, el uso de múltiples fuentes
de información o sensores se plantea aqúı para mejorar la capacidad de
generalización y robustez de la función de mapeado.

Para poder hacer uso de múltiples fuentes de información o sensores
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resulta necesario utilizar modelos más complejos a los presentados en
esta tesis. La selección dinámica del mejor conjunto de señales de en-
trada para obtener un mapeo óptimo también puede ayudar a conseguir
unos mejores resultados. En cualquier caso, la definición de modelos
sofisticados como los presentados en esta tesis abren un nuevo espectro
de posibilidades en la investigación de sistemas de reconocimiento de
la actividad para el mundo real.





Glossary

Activity Recognition Chain set of tools used for the AR process.

Black-box device, system or object which can be viewed in terms of its
input, output and transfer characteristics without any knowledge
of its internal workings.

Body Sensor Network also known as a wireless body area network
(WBAN) or body area network (BAN), refers to a wireless net-
work that consists of several wearable computing devices..

Gray-box device, system or object for which inputs, outputs and in-
ternal features are partially-known. To construct the model GB
combines both (system insights) and (experimental data) tech-
niques.

Human-Computer Interaction comprises the study, planning, and
design of the interaction between people (users) and computers
(machines).

White-box device, system or object for which inputs, outputs and
internal features are well-known and can be modeled.

Accelerometer device that measures proper acceleration. MEMS ac-
celerometers are increasingly present in portable electronic de-
vices to detect the position and orientation of the device, as well
as to register the motion it is subject to..

Gyroscope device that measures proper orientation based on the prin-
ciples of angular momentum and rate of turn. MEMS gyroscopes
takes the idea of the Foucault pendulum and uses a vibrating el-
ement. They can be found on some consumer electronic devices
and are normally included in inertial navigation systems..

Inertial Measurement Unit device that measures the proper veloc-
ity, orientation, and gravitational forces, using a combination of
accelerometers and gyroscopes, sometimes also magnetometers.
IMUs are specially utilized in aircraft, spacecraft, watercraft, and
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guided missiles, and during the last years also part of on-body
AR systems..

Magnetometer device that measures the direction of the magnetic
field at a point in space. Although magnetometers are utilized
in a wide range of applications, in AR these systems serve as a
compass. They can be found on some consumer electronic devices,
principally in smartphones..

Microelectromechanical systems also referred to as micro systems
technology, is the technology of very small devices. It normally
consists of a central unit that processes data and several compo-
nents that interact with the surroundings such as microsensors.
MEMS devices are highly exploited in markets such as automo-
biles, biomedical, and electronics, being examples of these sys-
tems accelerometers, gyroscopes, magnetometers or microphones
among others..



Acronyms

ANN Artificial Neural Network.

AR (Human) Activity Recognition.

ARC Activity Recognition Chain.

ARMA Autoregressive-moving-average.

ARMAX Autoregressive-moving-average with exogenous inputs.

BB Black-box.

BSN Body Sensor Network.

DFMARC Decision Fusion Multi-Sensor Activity Recognition Chain.

DT Decision Trees.

FFMARC Feature Fusion Multi-Sensor Activity Recognition Chain.

GB Gray-box.

HCI Human-Computer Interaction.

HD Hierarchical Decision.

HWC Hierarchical Weighted Classifier.

IMU Inertial Measurement Unit.

KNN K-Nearest Neighbor.

MARC Multiple Sensor Activity Recognition Chain.

MEMS Microelectromechanical systems.

MIMO Multiple-input-multiple-output.
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MV Majority Voting.

NB Naive Bayes.

SARC Single Sensor Activity Recognition Chain.

SVM Support Vector Machines.

WB White-box.
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displacement deployments. In (b) the sensor is arbitrar-
ily rotated 180◦ (approx.) by the user with respect to
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4.6 Experimental setup (cardio-fitness room). Eight Xsens
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4.7 Missing activity data for each particular subject. (a) For
ideal and self-placement conditions: the legend identifies
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and ideally-placed). (b) For the induced-displaced con-
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4.8 Shading spots identify the displaced sensors for the
(a) self-placement and (b) induced-displacement deploy-
ments. Only participants 2, 5 and 15 were considered in
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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5.1 Architecture for the transfer of activity templates. From
left to right, initially a fully operational AR system de-
fined through activity templates is identified. Second, a
mapping function between source and target domains
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get domain, thus allowing the target system to use the
translated templates to build its own AR system. Finally,
the target system is ready to operate. Note: the depicted
signals may for example represent position (source do-
main) and acceleration (target domain). . . . . . . . . . 135

5.2 Architecture for the transfer of activity models. From
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5.4 Comparison between the actual acceleration measured
at the lower arm and the predicted after mapping from
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5.5 Box plot of the BestFit distributions for all possible
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viation - whiskers -) for the translation between two IMU
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



List of Figures 203
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to a system operating on the acceleration measured at
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G. Tröster. Incremental knn classifier exploiting correct - error
teacher for activity recognition. In Procedings of the 9th Interna-
tional Conference on Machine Learning and Applications, pages
445–450, 2010.

[29] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford.
A hybrid discriminative/generative approach for modeling human
activities. In Proceedings of the 19th international joint confer-
ence on Artificial intelligence, IJCAI’05, pages 766–772, 2005.

[30] J. Parera, C. Angulo, A. Rodriguez-Molinero, and J. Cabestany.
User daily activity classification from accelerometry using feature
selection and svm. In Bio-Inspired Systems: Computational and
Ambient Intelligence, LNCS, pages 1137–1144, 2009.

[31] H. He and E. A. Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering, 21(9):1263–
1284, 2009.

[32] S. Arlot and A. Celisse. A survey of cross-validation procedures
for model selection. Statistics Surveys, 4:40–79, 2010.

[33] L. Breiman and P. Spector. Submodel selection and evaluation in
regression. the x-random case. International Statistical Review,
60(3):291–319, 1992.

[34] R. Kohavi. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, pages
1137–1143, 1995.

[35] M. Stone. Asymptotics for and against cross-validation.
Biometrika, pages 29–35, 1977.

[36] M. Sokolova and G. Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing
and Management, 45(4):427 – 437, 2009.

[37] A. M. Khan, Y. K. Lee, S. Y. Lee, and T. S. Kim. A triaxial
accelerometer-based physical-activity recognition via augmented-
signal features and a hierarchical recognizer. IEEE Transac-
tions on Information Technology in Biomedicine, 14(5):1166–
1172, September 2010.



Bibliography 211

[38] A. Akl, C. Feng, and S. Valaee. A novel accelerometer-based ges-
ture recognition system. IEEE Transactions on Signal Processing,
59(12):6197–6205, December 2011.

[39] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity recognition
using cell phone accelerometers. 17th Conference on Knowledge
Discovery and Data Mining, 12(2):74–82, 2011.

[40] Y. Fu, L. Cao, G. Guo, and T. S. Huang. Multiple feature fusion
by subspace learning. In Proceedings of the 2008 International
Conference on Content-based Image and Video Retrieval, pages
127–134, 2008.

[41] K. Van Laerhoven, A. Schmidt, and H.-W. Gellersen. Multi-
sensor context aware clothing. In Proc. of the 6th International
Symposium on Wearable Computers, pages 49–56, 2002.

[42] P. Lukowicz, H. Junker, M. Staeger, T. von Bueren, and
G. Troester. WearNET: A distributed multi-sensor system for
context aware wearables. In Proceedings of the 4th International
Conference on Ubiquitous Computing, pages 361–370, September
2002.

[43] N. Kern, B. Schiele, and A. Schmidt. Multi-sensor activity con-
text detection for wearable computing. In European Symposium
on Ambient Intelligence, pages 220–232, Eindhoven, The Nether-
lands, November 2003.

[44] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining
classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(3):226–239, March 1998.

[45] D. Ruta and B. Gabrys. An overview of classifier fusion methods.
Computing and Information Systems, 7:1–10, 2000.

[46] J. Fahrenberg, F. Foerster, M. Smeja, and W. Miller. Assessment
of posture and motion by multichannel piezoresistive accelerom-
eter recordings. Psychophysiology, 34(5):607–612, 1997.

[47] S. H. Lee, H. D. Park, S. Y. Hong, K. J. Lee, and Y. H. Kim. A
study on the activity classification using a triaxial accelerometer.
In Proceedings of the 25th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, volume 3,
pages 2941–2943 Vol.3, September 2003.



212 Bibliography

[48] M. J. Mathie, A. C. F. Coster, N. H. Lovell, B. G. Celler, S. R.
Lord, and A. Tiedemann. A pilot study of long-term monitoring
of human movements in the home using accelerometry. Journal
of telemedicine and telecare, 10(3):144–151, 2004.

[49] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell,
and B. G. Celler. Implementation of a real-time human move-
ment classifier using a triaxial accelerometer for ambulatory
monitoring. IEEE Transactions on Information Technology in
Biomedicine, 10(1):156–167, 2006.

[50] L. Gao, A. K. Bourke, and J. Nelson. Activity recognition us-
ing dynamic multiple sensor fusion in body sensor networks.
In Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 1077–1080, September 2012.

[51] P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and
G. Troster. Activity recognition from on-body sensors by classi-
fier fusion: sensor scalability and robustness. In 3rd International
Conference on Intelligent Sensors, Sensor Networks and Infor-
mation, pages 281–286, December 2007.

[52] R. Chavarriaga, H. Sagha, and J. del R. Millan. Ensemble cre-
ation and reconfiguration for activity recognition: An informa-
tion theoretic approach. In IEEE International Conference on
Systems, Man, and Cybernetics, pages 2761–2766, October 2011.

[53] H. Sagha, J. del R. Millan, and R. Chavarriaga. Detecting and
rectifying anomalies in opportunistic sensor networks. In 8th Int.
Conf. on Networked Sensing Systems, pages 162–167, Penghu,
Taiwan, June 2011.

[54] P. Zappi, D. Roggen, E. Farella, G. Tröster, and L. Benini.
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