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Abstract. Continuous in situ measurements of aerosol opti-
cal properties were conducted from 29 June to 29 July 2012
in Granada (Spain) with a seven-wavelength Aethalometer, a
Multi-Angle Absorption Photometer, and a three-wavelength
integrating nephelometer. The aim of this work is to describe
a methodology to obtain the absorption coefficients (babs)
for the different Aethalometer wavelengths. In this way, data
have been compensated using algorithms which best estimate
the compensation factors needed. Two empirical factors are
used to infer the absorption coefficients from the Aethalome-
ter measurements:C – the parameter describing the enhance-
ment of absorption by particles in the filter matrix due to
multiple scattering of light in the filter matrix – andf , the
parameter compensating for non-linear loading effects in the
filter matrix. Spectral dependence off found in this study is
not very strong. Values for the campaign lie in the range from
1.15 at 370 nm to 1.11 at 950 nm. Wavelength dependence
in C proves to be more important, and also more difficult
to calculate. The values obtained span from 3.42 at 370 nm
to 4.59 at 950 nm. Furthermore, the temporal evolution of
the Ångström exponent of absorption (αabs) and the single-
scattering albedo (ω0) is presented. On averageαabsis around
1.1± 0.3, andω0 is 0.78± 0.08 and 0.74± 0.09 at 370 and
950 nm, respectively. These are typical values for sites with a
predominance of absorbing particles, and the urban measure-
ment site in this study is such. Thebabsaverage values are of
16± 10 Mm−1 (at 370 nm) and 5± 3 Mm−1 (at 950 nm), re-
spectively. Finally, differences between workdays and Sun-

days have been further analysed, obtaining higherbabs and
lower ω0 during the workdays than on Sundays as a conse-
quence of the diesel traffic influence.

1 Introduction

The radiative forcing in the Earth’s atmosphere caused by
aerosols is highly uncertain (IPCC, 2013). The direct effect
of aerosol influence is exhibited by scattering and/or absorb-
ing solar radiation. By scattering the light they contribute
to the cooling of the underlying atmosphere and the surface
(negative radiative forcing). Furthermore, by absorbing light
they contribute to the heating of the atmosphere (positive ra-
diative forcing). The latter is an important component of the
radiation budget of the atmosphere which still needs to be
better characterized to reduce uncertainties in climate models
(Houghton et al., 2001; Ramanathan et al., 2001; Kirchstetter
et al., 2004).

The major light-absorbing compounds among aerosols are
carbonaceous substances and mineral dust. However, the
spectral dependence of the aerosol absorption coefficient
varies depending on their chemical and physical properties.
Light absorption by black carbon (BC) is generally con-
sidered to vary weakly with wavelength (Bergstrom et al.,
2007). Nevertheless, other aerosol components – such as
desert aerosols (Dubovik et al., 2002), organic compounds
(Jacobson, 1998), or biomass burning (Mukai and Ambe,

Published by Copernicus Publications on behalf of the European Geosciences Union.



2374 S. Segura et al.: In situ spectral aerosol optical properties

1986) – exhibit a stronger wavelength dependence. There-
fore, the spectral dependence of aerosol absorption coeffi-
cient is important to distinguish different aerosol-absorbing
components (Collaud-Coen et. al, 2004; Fialho et al., 2005;
Sandradewi et al., 2008a).

Different methods and instruments are used to measure
light absorption (Hansen et al., 1984; Horvath, 1993; Bond
and Bergstrom, 2006; Moosmüller et al., 2009; Müller et al.,
2011). The most widely used method for in situ measure-
ments is the filter-based technique, which relies on determin-
ing the absorption coefficient by measuring the change of
light attenuation due by aerosol collected on a filter matrix
(Hansen et al., 1982). Instruments currently used for deter-
mining the aerosol absorption coefficient using filter-based
techniques are the Aethalometer (Hansen et al., 1984), the
Particle Soot Absorption Photometer (PSAP) (Bond et al.,
1999) and the Multi-Angle Absorption Photometer (MAAP)
(Petzold and Schönlinner, 2004).

It is known that all filter-based instruments suffer from
several artefacts (Schmid et al., 2006; Müller et al., 2011;
Collaud-Coen et al., 2010). Therefore, it is necessary to ap-
ply compensation to the data to determine the absorption co-
efficient. Several studies have proposed different numerical
methods to compensate these artefacts (Bond et al., 1999;
Weingartner et al., 2003; Arnott et al., 2005; Schmid et al.,
2006), and have proven to give quite satisfactory results when
compared to other non-filter-based instruments.

From the instruments mentioned above, the MAAP is
one of the newer filter-based instrument for measuring
the aerosol absorption coefficient (Petzold and Schönlinner,
2004; Petzold et al., 2005). Measurements provided by the
MAAP are only available for one wavelength, which is a dis-
advantage since it is important to determine bothbabs and
its spectral dependence. This information can be obtained by
combining the MAAP measurements with those performed
by a multi-wavelength Aethalometer AE-31, which performs
measurements at seven different channels covering the range
from the ultraviolet (UV, 370 nm) to near infrared (NIR,
950 nm).

The aim of this work is to obtain the spectral variation of
the compensation factors of the Aethalometer data and then
apply them to the measurements performed at the different
channels of the Aethalometer. In this way, the aerosol ab-
sorption coefficients at all the different Aethalometer chan-
nels are calculated, and then other optical parameters, such
as the spectral single-scattering albedo (ω0) or the Ångström
exponent of absorption (αabs), are determined and analysed.

The data set presented in this study was measured during
one month, from 29 June 2012 to 29 July 2012, in Granada
(Spain) using a MAAP, an Aethalometer, and a nephelome-
ter. In this work we will discuss the methodology used for
compensating the Aethalometer and MAAP data. Finally,
the temporal evolution of the results obtained is presented
and compared with results in other works to evaluate the
reliability of the data.

2 Site description and instrumentation

2.1 Measurement site

Measurements presented in this study were performed
in Granada, from 29 June to 29 July 2012. Granada
(37.18◦ N, 3.58◦ W, 680 m a.s.l.) is a non-industrialized
medium-size city located in southeastern Spain with a popu-
lation of around 500 000 inhabitants, considering the whole
metropolitan area (http://www.juntadeandalucia.es/). Near-
continental conditions prevail at this site and are responsible
for large temperature differences, providing cool winters and
hot summers (Lyamani et al., 2010).

The measurement station is located in the southern part of
the city, less than 500 m away from a highway that surrounds
the city. Local aerosol sources are mainly road traffic (domi-
nated by diesel engines) together with soil re-suspension, es-
pecially during the warm-dry season when the reduced rain-
fall may increase the contribution of local mineral dust. Due
to its location in the Mediterranean basin, it is influenced by
two major aerosol source regions: Europe, as a source of an-
thropogenic pollutants, and northern Africa, as a source of
natural mineral dust (Lyamani et al., 2010).

2.2 Instrumentation

Sampling for all the different instruments was obtained us-
ing a stainless steel tube 20 cm in diameter 5 m in length
(Lyamany et al., 2008). The inlet was located about 15 m
above the ground. Measurements were carried out without
an aerosol size cut-off or heating of the sampled air. From
the tube, several stainless steel pipes led the sampled air to
each instrument at the appropriate flows. Different diameters
were adjusted to maintain the laminar flow in the tubes and
minimize particle losses (Baron and Willeke, 2005).

The aerosol light absorption coefficient was measured
using two different filter-based instruments. The MAAP
(Thermo Scientific) measures the light transmitted through
and backscattered from a particle-loaded filter. Thebabs at
637 nm (Müller et al., 2011) is calculated using radiative
transfer model which includes a treatment of the scatter-
ing effects of the filter matrix and the light scattered by the
aerosol component. A detailed description of the method is
provided by Petzold and Schönlinner (2004). The MAAP
works at a constant flow rate of 16.7 L min−1 and provides
measurements every minute. The total method uncertainty
for the aerosol light absorption coefficient inferred from
MAAP measurement is around 12 % (Petzold and Schönlin-
ner, 2004; Petzold et al., 2005).

The MAAP was believed to be the instrument which is the
least affected by artefacts for obtaining the aerosol absorp-
tion coefficient among all the different filter-based methods.
Different studies have shown thatbabs measured by MAAP
is in good agreement with those measured by photoacoustic
spectrometry (e.g. Petzold et al., 2005; Sheridan et al., 2005).
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However, a recent study by Hyvärinen et al. (2013) showed
that MAAP measurements suffer from some artefacts in lo-
cations with high concentrations of light-absorbing parti-
cles. Therefore, to avoid these artefacts, MAAP data have
been compensated using the method described in Hyvärinen
et al. (2013). A more detailed explanation can be found in
Sect. 3.1.

The other instrument used to measure thebabs is the
Aethalometer model AE-31-ER (Magee Scientific). The AE-
31 measures light attenuation at seven different wavelengths
(λ) covering the UV (370 nm), visible (470, 520, 590, and
660 nm), and NIR (880 and 950 nm) ranges. A complete de-
scription of the operating principles of Aethalometers can be
found in Hansen (2005).

The Aethalometer measures the light attenuation through
a quartz filter matrix as aerosols are deposited on the filter.
This parameter is defined by

ATN (λ) = − ln

(
I (λ)

I0 (λ)

)
, (1)

where I is the intensity of light that passes though the
particle-loaded part of the filter, andI0 is the intensity of light
passing through the unloaded part of the filter. The attenua-
tion coefficient (bATN) at each wavelength can be obtained
by

bATN (λ) =
A

V

1ATN (λ)

1t
, (2)

whereA is the filter spot area (1.67 cm2), V the flow rate,
and1ATN is the variation in the attenuation measured dur-
ing the time interval1t . The attenuation coefficient is deter-
mined from the change of attenuation and is therefore due
entirely to the loading of the filter by aerosols. In this work
the instrument was operated with a flow rate of 4 L min−1 and
a sampling interval of 5 min. The compensation algorithm to
obtainbabsfrom bATN is described in more detail in Sect. 3.2.

Aerosol scattering (bscat) and backscattering (bbsp) coef-
ficients at ground level were measured using a TSI Model
3563 three-wavelength (450, 550, 700 nm) integrating neph-
elometer (Anderson et al., 1996; Heintzenberg et al., 2006).
This instrument draws the ambient air through a temperature-
monitored inlet at a flow rate of 30 L min−1, illuminates the
sample with a halogen lamp, and measures the scattered light
using three photomultiplier tubes. The scattered light is inte-
grated over an angular range which can be adjusted to ei-
ther 7–170◦ or 90–170◦, using a backscatter shutter to give
total scatter and backscatter signals. Pressure and tempera-
ture are measured in the sample chamber, so scattering by
air molecules can be calculated and then subtracted from the
total scattering to determine scattering by aerosol particles.
In our case, although no drying of the aerosol stream was
performed, the relative humidity measured within the neph-
elometer chamber was low with a mean value of 28± 10 %.
Thus, we can consider that the hygroscopic growth does not

affect our measurements. In this study, non-idealities due
to truncation errors were corrected (Anderson and Ogren,
1998). Uncertainties in the nephelometer measurements con-
sist of angular truncation errors, non-Lambertian nature of
the light source, and wavelength non-idealities. The calibra-
tion uncertainty is approximately 7 % (Anderson et al., 1996;
Anderson and Ogren, 1998; Esteve et al., 2012).

3 Data compensation and methods

All filter absorption photometers are affected by loading ef-
fects which need to be compensated, and the various com-
pensation methods relied mostly on the continuity of data
(Weingartner et al., 2003; Virkkula et al., 2007; Hyvärinen
et al., 2013) to derive the compensation parameters. Here we
propose a more robust method to determine the quality of the
compensation for loading effects: the slope of the absorp-
tion coefficient vs. the loading of the spot. This method was
used to compensate the BC measurements (Park et al., 2010),
but here we use it as an independent criterion to evaluate the
compensation. This criterion does not use any assumptions
or external data, only the measurements from a single instru-
ment – it checks the measured parameters for internal con-
sistency. For a long period of homogeneous measurements
in terms of the sources and meteorology, the absorption co-
efficient should not depend on the loading of the spot. The
uncompensated measurements of BC in filter photometers
are proportional to the time derivative of the attenuation of
detected light intensity (MAAP: in reflection; Aethalometer:
in transmission), not on the absolute attenuation values. Any
dependence of the measured absorption on the loading (at-
tenuation) is evidence of a bias due to the loading of the spot.
The parameter, which was shown to be most representative of
these effects, is the slope of the attenuation or absorption co-
efficient or as a function of the loading (following the logic in
Park et al., 2010). We will demonstrate the usefulness of this
method as an independent criterion of the compensation for
both absorption photometers used in the study – the MAAP
and the Aethalometer AE-31 – by plotting the average value
of the attenuation or absorption coefficient as a function of
the loading of the spot with BC.

3.1 MAAP compensation

Hyvärinen et al. (2013) observed that at high BC concen-
trations the MAAP measurements are also affected by arte-
facts which are different to those seen in other filter-based
instruments, such as the PSAP or the Aethalometer. Two so-
lutions were proposed to avoid or compensate for this prob-
lem: either applying a compensation algorithm to thebatn
given directly by the MAAP’s internal algorithm or using re-
flectance signal only, as obtained from the photodetector at
165◦, which was found to be relatively free of this artefact,
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Figure 1. Non-compensated absorption coefficient (batn,MAAP) vs.
compensated absorption coefficient obtained from the reflected sig-
nal (babs,MAAP), showing the relationship between thebatn,MAAP
given by the MAAP, as explained in Sect. 2.2, and the compensated
babs,MAAP obtained with the reflected signal at 165◦.

albeit exhibiting more scatter and not completely eliminating
the artefact jump at the tape advance (Hyvärinen et al., 2013).

In this work, the MAAP was set to give the photodetector
raw signals as an output, so the reflected signal at 165◦ was
chosen to obtain the absorption coefficient at 637 nm. The at-
tenuation coefficient given by the MAAP (batn,MAAP) can be
determined from the reflected signals by using the following
equation (Petzold et al., 2005):

batn,MAAP = 0.5
A

V
ln

(
R0

R

)
, (3)

where, in our case, (R0/R) is the ratio of the photodetector
signal at 165◦ for a particle-free to a particle-loaded filter,A

is the filter spot area (2 cm2), andV is the sampled volume.
The multiplication factor of 0.5 in Eq. (3) has to be applied
because the light passes through the layer of sampled aerosol
twice before reaching the photodetector.

The value obtained from Eq. (3) does not correspond to
the absorption coefficient since there is a filter-loading effect
which influences the measured signals. Petzold et al. (2005)
determined an empirical method to compensate this arte-
fact using test aerosols. These test aerosols consisted of pure
black aerosol samples from kerosene flame particles, and ex-
ternally mixed grey and black aerosols of varying single-
scattering albedo. The obtained relation for the aerosol ab-
sorption coefficient for these aerosols using the reflected sig-
nal is

babs,MAAP = batn,MAAP

(
0.226+ 1.415

R

R0
.

)−1

(4)

Figure 2.Average attenuation and absorption coefficient vs. loading
of the spot:(a) the non-compensated MAAP attenuation coefficient
batn,MAAP and the compensated (Eq.4) MAAP absorption coeffi-
cient babs,MAAP , and(b) the Aethalometer attenuation coefficient
bATN and the compensated (Eq.7) Aethalometer absorption coeffi-
cientbabs.

Similar to Hyvärinen et al. (2013), values automatically pro-
vided by the MAAP are lower than those calculated from raw
reflected signal for high absorption coefficients (babs,MAAP)

(Fig. 1). We do not observe any systematic saturation in the
measurements as found previously (Kanaya et al., 2008) or
large discontinuities in the data at the tape advance (Brito
et al., 2013). This indicates that the use of the reflection
signals rather than the default values compensated the data
successfully. To check the compensation, we plot (Fig. 2a)
the average value of the MAAP attenuation and absorption
coefficient in a spot-loading bin (with width 0.3 µg cm−2)

as a function of the loading of the spot with BC between
a clean filter (no loading) and the BC value with enough
data in the campaign to gather enough statistics (just above
5 µg cm−2). The slope of the compensated MAAP absorp-
tion coefficient is half of that of the uncompensated ones,
proving that the compensation reduces the loading effects.
Another feature which is informative is the intercept of the
fit: this is the uncompensated MAAP attenuation coeffi-
cient (7.83 Mm−1; Fig. 2a) or the compensated absorption
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coefficient (6.94 Mm−1; Fig. 2b) characteristic for the cam-
paign. We propose to use the difference between the intercept
6.94 Mm−1 (that is, the compensated absorption coefficient,
representative for the campaign) and the campaign average
absorption coefficient 7.25 Mm−1 as an additional internal
criterion for the “efficiency of compensation” with an empir-
ical limit of 5 %. The compensation of the MAAP data using
the reflection measurements, rather than the raw MAAP data,
satisfies this criterion, and we use the compensated MAAP
absorption coefficient for comparison with the Aethalometer
attenuation and absorption coefficients.

3.2 Aethalometer

3.2.1 Data pre-processing

The Aethalometer raw data were first screened with three
criteria: data showing excessive noise, and the upper and
lower limits of the Aethalometer detection. High noise in the
measurements degrades the determination of the absorption
spectral dependence. This wavelength dependence can be ap-
proximated by a power-law expression (Ångström, 1929).
A measurement is considered too noisy if the curve cannot
fit a spectrum satisfactorily (Rizzo et al., 2011); therefore,
only fits with R2 higher than 0.85 have been chosen to re-
duce noise. The same data treatment was applied to the neph-
elometer data as well.

The second criterion is related to the lower detection limit
of the instrument, as the measured attenuation should be
above it. According to the Aethalometer manual, this limit
corresponds to a mass increase of 5 ng and can be expressed
in units of thebabs(Mm−1) by the following expression:

min(babs) =
m · σATN (λ)

1t · V
, (5)

where m = 5 ng, σATN(λ) is the mass-specific attenuation
cross section in m2 g−1, 1t is the time-based period (set to
5 min in our case), and V is the sampling flow in L min−1

(4 L min−1 in our instrument). The attenuation cross section
is calculated using the following equation:

σATN =
14625

λ [nm]
. (6)

This equation is based on a calibration at 880 nm using the
Malissa–Novakov method, a solvent-based thermal desorp-
tion method for elemental carbon analysis (Gundel et al.,
1984).

Also, as a consequence of random voltage fluctuations and
from recording discontinuities which take place during the
Aethalometer’s tape advance, a third criterion related to the
upper detection limit is applied (De Castro et al., 2008). To
identify these low-quality data, the 99th percentile of the at-
tenuation coefficient (i.e. 162.2 Mm−1 at 660 nm) was cho-
sen as the extreme upper limit.

From the whole data set, 4 % of the data did not satisfy
any of these three criteria, leaving a total number of 8276
measurements.

3.2.2 Data compensation

Aethalometer artefacts, unlike MAAP artefacts, are well
known and five different algorithms have been proposed to
compensate them (Weingartner et al., 2003; Arnott et al.,
2005; Schmid et al., 2006; Virkkula et al., 2007; Collaud-
Coen et al., 2010). The light beam crossing the filter suf-
fers (1) multi-scattering effects due to the filter fibres;
(2) single-scattering effects, due to the aerosol particles de-
posited in the filter; and (3) filter-loading effects, which are
related to the shadowing produced as the particles accumu-
late on the filter. The result of these optical interactions is
thatbATN is generally larger thanbabs (Petzold et al., 1997;
Ballach et al., 2001).

Due to the aforementioned aerosol–filter interactions, the
Aethalometer requires specific site compensation factors. In
this sense, we have calculated these compensation factors
for our site and used them to compensate the Aethalometer
data by applying the algorithms proposed by Weingartner et
al. (2003) and Schmid et al. (2006). The reason to select these
two algorithms, out of the five existing ones, is that Wein-
gartner et al. (2003) and Schmid et al. (2006) found a way
to obtain the spectral dependence of the multiple-scattering
compensation factor from aerosol single-scattering albedo.
Knowing this spectral dependence will allow us to convert
bATN to babs for all seven Aethalometer wavelengths. The
most important difference between these two algorithms lies
in the fact that Weingartner’s algorithm does not consider
the artefact produced by the single-scattering effect, while
Schmid’s does.

In their test with ammonium sulfate, Weingartner et
al. (2003) found no significant dependence ofbATN on the
scattering component of the aerosol in the filter. Therefore,
they proposed an algorithm to obtainbabswithout taking into
account the single-scattering effect of the aerosols:

babs=
bATN

C · R(f,ATN)
, (7)

whereC is the parameter describing the enhancement of ab-
sorption particles in the filter matrix and compensates for the
multiple-scattering effects exhibiting values≥ 1 andR(f ,
ATN) for the loading effect with values≤ 1. The loading
compensation depends on the amount of the sample collected
on the filter and is hence dependent on the attenuation mea-
sured by the Aethalometer. The parameter can be expressed
as proposed in Weingartner et al. (2003):

R(f,ATN) =

(
1

f
− 1

)
lnATN − ln10%

ln50%− ln10%
+ 1, (8)

wheref is the shadowing factor, which depends on the type
of the aerosols. This parameter has been calculated by min-
imizing the difference between the ratio ofbATN before and
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Table 1.Compensation factors obtained for the seven Aethalometer
wavelengths:f corresponds to the “shadowing effect” in the load-
ing compensation; 100ms is the value given in Arnott et al. (2005)
to the scattering fraction of particles;C∗

Arnott is the value given in
Arnott et al. (2005) to the multiple-scattering compensation factor
(C∗ in Schmid et al., 2006, and in this work);C∗ andC are the
values specifically site-calculated in this work.

Spectral compensation factors

λ (nm) 370 470 520 590 660 880 950
f 1.204 1.141 1.120 1.093 1.084 1.044 1.041
100ms 3.35 4.57 5.23 6.16 7.13 10.38 11.48
C∗

Arnott 1.813 2.073 2.076 2.104 2.182 2.226 2.199
C∗ 3.26 3.72 3.73 3.78 3.92 3.99 3.95
C 3.42 3.87 3.90 3.98 4.19 4.35 4.59

after the filter spot change. The calculated medianf values
were plotted as a function ofλ and fitted with a linear equa-
tion (Sandradewi et al., 2008b). Values obtained for this pa-
rameter are shown in Table 1.

The effect of the compensation of the Aethalometer mea-
surements is shown in Fig. 2b. The slope reduces signif-
icantly to a value which is non-distinguishable from 0 –
the compensation is efficient in eliminating the loading ef-
fects. The difference between the intercept 7.14 Mm−1 (the
compensated absorption coefficient, representative for the
campaign) and the campaign average absorption coefficient
7.10 Mm−1 satisfies the empirical 5 % criterion. Addition-
ally, the value lies extremely close to the average and the
intercept determined from the analysis of the MAAP com-
pensation (Sect. 3.1).

Since the loading effect is small for lightly loaded filters
(Weingartner et al., 2003),C can be determined by compar-
ing low loaded Aethalometer measurements (ATN< 10 %)
with the ones obtained by a different comparison instrument.
In this study we compared the Aethalometer-derived absorp-
tion coefficient withbabs,MAAP from the MAAP, andC is
determined using the equation proposed in Weingartner et
al. (2003) as

C =
bATN (ATN < 10)

babs,MAAP
. (9)

C has been calculated at 637 nm, as the MAAP measure-
ments are performed at this wavelength. Since the nearest
wavelengths in the Aethalometer are 590 and 660 nm,bATN
(637 nm) has been calculated by approximating the wave-
length dependence of the attenuation spectra for each mea-
surement to a power-law expression, such as

bATN (λ) = a · λ−αatn, (10)

wherea is a fitting parameter andαatn is the Ångström expo-
nent of attenuation.

After taking logarithm of Eq. (10), a “linear fit” was ap-
plied to the log–log curve:

ln [bATN (λ)] = lna − αatnln(λ) . (11)

To calculateC, bATN at 637 nm for the Aethalometer data
has to be calculated sincebabs,MAAP in Eq. (9) is related to
637 nm. The averageC value at the wavelength of 637 nm
(C637) was determined to beC637 = 4.22± 0.06 from the
arithmetic mean (95 % confidence level of the mean) of the
ratios of bATN (637) andbabs,MAAP (Schmid et al., 2006).
Collaud-Coen et al. (2010) obtained differentC values rang-
ing between 2.8 and 7.8 at several sites. In particular, from
the different sites chosen in that paper, our value is close to
those obtained (C = 4.12± 0.06 at 660 nm,C660) at Cabauw
(the Netherlands), a background site located near populated
and industrialized areas (Collaud-Coen et al., 2010).

Some publications (Lack et al., 2009; Nakayama et al.,
2010) indicate that the multiple-scattering compensation fac-
tor might depend on the particle size, as the aerosol penetra-
tion depth into the filter varies depending on the size. Since
this effect is still difficult to quantify (Rizzo et al., 2011), it is
not straightforward to conclude if there will be an overesti-
mation or underestimation in our absorption coefficients due
to this effect. A significant part of the aerosol loading on the
filter tape on the measurement site is always diesel exhaust
particles, so at least this part of the loading is extremely ho-
mogeneous. Therefore, we did not consider this effect further
in this manuscript.

3.2.3 Spectral dependence ofC and Aethalometer
absorption coefficients

Schmid et al. (2006) parameterized (based on Arnott et al.,
2005) the spectral dependence ofC using the following ex-
pression:

C (λ) = C∗ (λ) + ms(λ)
ω0 (λ)

1− ω0 (λ)
, (12)

where C∗ is the multiple-scattering compensation factor,
which includes the effects of aerosol scattering;ms is the
fraction of the aerosol scattering coefficient erroneously in-
terpreted as absorption;ω0 is the aerosol single-scattering
albedo; andλ is the wavelength. BothC∗(λ) andms were
calculated for ammonium sulfate particles by Arnott et
al. (2005). They however showed that these values gave un-
satisfactory results when used to correct ambient measure-
ments.

Equation (12) has been used to obtainC∗ at 637 (C∗

637)

usingC637 calculated in the previous section with Eq. (9).
Once it is calculated,C∗ values for the other wavelengths
will be obtained assuming the same wavelength dependence
as in Arnott et al. (2005). Values ofms used here were taken
from Arnott et al. (2005) since with our data it is not pos-
sible to determine them.ω0 (637) was calculated using the
following expression (Schmid et al., 2006):

ω0 (637) =
bscat(637)

bscat(637) + babs,MAAP (637)
, (13)

where babs,MAAP (637) is the MAAP absorption coeffi-
cient measured at 637 nm andbscat (637) is the scattering
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coefficient from the nephelometer, interpolated to 637 nm by
using Eqs. (10) and (11) for bscat(λ).

To obtain the differentC values for the remaining
Aethalometer wavelengths,ω0(λ), C∗(λ), and ms(λ), are
required (Eq.12). Equation (13) is not useful in this case
since MAAP absorption is only obtained at one wavelength
and cannot be applied for the other Aethalometer channels.
Therefore, for calculatingω0(λ) we used the following ex-
pression (Schmid et al., 2006):

ω0 (λ) =

ω0,ref

(
λ

λref

)−αscat

ω0,ref

(
λ

λref

)−αscat
+

(
1− ω0,ref

)(
λ

λref

)−αabs
, (14)

whereω0,ref is the reference single-scattering albedo calcu-
lated at 637 nm (λref) using Eq. (13), αscat is the Ångström
exponent of scattering, andαabs is the Ångström exponent
of absorption.αscat depends on thebscat measured at differ-
ent wavelengths and can be obtained from the nephelome-
ter measurements (450–700 nm). However,αabs is calculated
from the babs measured by the Aethalometer at different
wavelengths.

Schmid et al. (2006) used fixed values forαscatcalculated
using wavelengths 450–700 (αscat,450−700) andω0(545) mea-
surements given by Chand et al. (2006) for Amazonia, and a
range of differentαabs based on Kirchstetter et al. (2004) to
obtain a parameterization function ofC(λ) andαabs. Then
they applied an iterative procedure over this function to
obtain C(λ) and αabs. The fixed values used wereαscat=

2.0± 0.4 andω0(532)= 0.92± 0.02, which differ from our
values in Granada during July 2012,αscat,450−700 = 1.3± 0.3
and ω0(637)= 0.76± 0.08, consistent with the prevalence
of diesel traffic on the highway near the measurement site.
These differences between both sites are significant and
make the parameterization function ofC(λ) given by Schmid
et al. (2006) not applicable to our measurements. Therefore,
based on their work, the iterative procedure has been used to
calculateαabs and, then,C(λ) andbabs(λ), following these
steps:

1. The Ångström exponent of attenuation (αatn) is calcu-
lated by fitting the logarithm of the spectral attenuation
coefficients with a linear fit as presented in Eq. (11).

2. Theαatn is used in Eq. (14) as a first estimation ofαabs,
to obtainω0(λ), and then the compensation factorC

for each Aethalometer wavelength is calculated using
Eq. (12).

3. The compensation factorC(λ) at different wavelengths
is used in Eq. (7) to obtain the new compensated absorp-
tion coefficients (babs).

4. This newbabs(λ) is used again in step 1 to get a better
estimation forαabs.

5. Repeat steps 2–4 untilαabs converges with a precision
of 0.005.

Figure 3. Comparison of the Aethalometer vs. MAAP absorp-
tion coefficient (babs,MAAP) at 637 nm for(a) non-compensated
Aethalometer data (bATN) and (b) Weingartner’s compensation
(babs,W).

4 Results of the compensations

4.1 Non-compensated/compensated Aethalometer vs.
MAAP data

In Fig. 3a, non-compensated Aethalometer data (bATN) at
637 nm obtained using Eq. (11) are compared tobabs,MAAP
values. The Aethalometer and the MAAP are well correlated,
with R = 0.917, while the slope of 3.66 shows the relation-
ship between the Aethalometer attenuation coefficient and
the MAAP absorption.

After Weingartner’s compensation (Weingartner et al.,
2003) is applied to the Aethalometer attenuation coefficient,
we obtain the compensated Aethalometer absorption coef-
ficient, which is represented asbabs,W in this section to
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Table 2.Statistics of MAAP and Aethalometer compensated and non-compensated absorption coefficients at 637 nm: mean standard error,
standard deviation, median, maximum, minimum, 25th percentile, and 95th percentile. MAAP corresponds tobabs,MAAP statistics;bATN
corresponds to non-corrected Aethalometer data;babs,W corresponds to data compensated as proposed by Weingartner et al. (2003); and
babs,Arnott represents data compensated with the algorithm and compensation factors (M andα) from Arnott et al. (2005).

b637 (Mm−1) Mean± SE SD Median Minimum Maximum P25 P95

babs,MAAP 9.15± 0.07 5.8 7.7 1.76 49.0 5.3 20.2
bATN 34.0± 0.2 21.5 28.7 6.37 171.5 19.7 76.0
babs,W 9.35± 0.07 6.1 7.8 1.87 48.0 5.3 21.3
babs,Arnott 17.84± 0.13 11.6 14.8 3.56 91.5 10.1 40.6

highlight that it has been obtained using Weingartner’s com-
pensation. The slope betweenbabs,W andbabs,MAAP changes
to 1.005 and there appears a slight increase of the correlation
coefficient: from 0.917 to 0.926 (Fig. 3b). The compensation
factors used (C637= 4.22± 0.06 andf637≈ f660= 1.131)
were already obtained in Sect. 3.2.2. Dispersion of some
points is due to some noise in the data which has not
been removed by the filtration algorithm described above in
Sect. 3.2.1.We can further reduce this dispersion by averag-
ing the data over a more extended period of time. Further-
more, the compensatedbabs,W values are on average 73 %
lower than corresponding non-compensatedbATN values and
differ from babs,MAAP on average by around 2 %.

The statistics of the comparison between the two data
sets are shown in Table 2. Average values ofbabs,MAAP
andbabs,W with their standard deviations are 9.2± 5.8 and
9.4± 6.1 Mm−1, respectively. The 25th and 95th percentile
for both data sets are very similar, indicating a similar dis-
tribution of the data. The statistical analysis shows a good
agreement betweenbabs,MAAP and babs,W. Therefore it is
concluded that Weingartner’s compensation, with our site-
specific compensation parameters, compensates satisfacto-
rily the AethalometerbATN to obtain absorption coefficients
which agree well with those measured by the MAAP.

4.2 Compensation parameters at different wavelengths
and final compensation

The spectral dependence ofC can be obtained using Eq. (12).
To start, C∗ and ms as proposed in Arnott et al. (2005)
for 660 nm were used (see Table 2). TheC660 value of
2.21 was obtained, which is only∼ 50 % of the value ob-
tained at 637 nm (see previous Sect. 3.2.2). Applying this
compensation factor leads to unsatisfactory comparison with
babs,MAAP , since the new compensated data (babs,Arnott) over-
estimate the MAAP data (slope of 1.92). The statistics of the
comparison of these two data sets are shown in Table 2 as
babs,Arnott. These results corroborate that theC∗ andms pa-
rameter values from Arnott et al. (2005) are not applicable
for this campaign. To get a better estimation of the spec-
tral dependence onC, specific ambient measurements were
calculated to obtainC∗(λ). As we only have availableC637
for the direct comparison of the two absorption photome-

ters,C∗

637 can be calculated by using Eq. (12) and assuming
ms(637) ≈ ms(660)= 0.0713 (Table 1). The value obtained
is 3.93, which differs from the value obtained by Arnott et
al. (2005) in the laboratory (C∗

Arnott of 2.182 at 660 nm), as
can be seen in Table 1. On the other hand, this value is con-
sistent with their proposal ofC∗ (521)= 3.69 for ambient
measurements. Following this,C∗(λ) values at other wave-
lengths have been calculated assuming the same spectral de-
pendence ofC∗

Arnott (λ) given by Arnott et al. (2005) and nor-
malized toC∗

Arnott(660). As can be seen from Table 1, the ob-
tainedC∗(λ) are much higher than those estimated by Arnott
et al. (2005) or by Weingartner et al. (2003) in the laboratory.

Once we had retrieved theC∗(λ) values, the iterative
method explained in Sect. 3.2.3 was applied for each mea-
surement to calculate theC(λ), which will be used to com-
pensatebATN(λ). Almost 93 % of the data converges at the
fourth iteration, while the remaining 7 % does at the fifth
iteration. The averaged values forC(λ) are shown in Ta-
ble 1. It is evident thatC increases withλ, from 3.42 in
the UV (370 nm) channel to 4.59 in the infrared (950 nm).
Comparing these values with our referenceC637, calculated
using Eq. (9), a higher wavelength dependence is observed
at lower wavelengths (∼ 23 % forC at 370 nm) than at near-
infrared wavelengths (∼ 4 % for C at 950 nm). Weingartner
et al. (2003) assumed that there was no wavelength depen-
dence onC since the difference in their measurements be-
tween 450 and 660 nm was smaller than 10 %. This is con-
sistent with our data since the difference inC between 470
and 660 nm is≈ 8 %, and the only wavelength differing more
is 370 nm (see Table 1). Furthermore, the differences in our
calculatedC values at each wavelength are similar to the
ones reported in Schmid et al. (2006) forαabs≈ 1. In addi-
tion, the averageαabsobtained with the iterative method was
found to be 1.09 with a standard deviation of around 0.25.
We performed a sensitivity analysis on the effect of the com-
pensation on theC values: a 15 % change of the parameter
f causes a change in theC values smaller than 1 % for all
wavelengths.

The obtainedbabs are, on average, around 72 and 79 %
lower than the correspondingbATN values measured at 370
and 950 nm, respectively. Rizzo et al. (2011) reported a de-
crease of 75 % at 450 nm, which is similar to the findings in
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Figure 4. Whisker boxplot of(a) the Aethalometer (black) and
MAAP (red) compensated absorption coefficients (babs) and (b)
single-scattering albedo (ω0) for the seven aethalometer channels.
The square inside the boxes represents the average; the central
line corresponds to the median; the edges of the box are the 25th
and 75th percentiles; the whiskers correspond to 5th and 95th per-
centiles; and horizontal lines outside the boxes correspond to max-
ima and minima.

this study. Figure 4 shows a boxplot of the compensated ab-
sorption coefficientsbabs at each wavelength obtained from
the Aethalometer and the MAAP. On one hand, it can be
seen that the MAAP absorption coefficient is in reasonable
agreement with the boxes from the compensated Aethalome-
ter data at 590 and 660 nm. This is expected when the data are
properly compensated, since the spectral behaviour of the ab-
sorption coefficient follows a power law as shown in Eq. (10).

Rizzo et al. (2011) performed sensitivity tests and showed
that the main source of error due tobabsandαabs is driven by
the choice ofαscat. Since they used averaged values over the

whole measurement period, their sensitivity tests consisted in
varying these values and seeing how this affected the final re-
sult forbabsandαabs. They obtained a maximum deviation in
the results of±10 and±40 % onbabsandαabs, respectively.
Following their tests, in our measurements, only±1 % for
babs and±2 % for αabs deviations are observed. This is due
to the fact that we have used concurrent absorption and scat-
tering measurements at multiple wavelengths and have thus
reduced deviations inbabsandαabssignificantly.

5 Spectral absorption coefficient, spectral
single-scattering albedo, and Ångström
exponent of absorption

5.1 Temporal evolution of aerosol spectral properties

The statistics forω0 obtained for the seven Aethalometer
channels were calculated (Fig. 4b). Averagedω0 values from
370 to 950 nm lie between 0.78 and 0.74, with a standard
deviation of 0.08–0.09. Lyamani et al. (2010) reported an av-
erage value ofω0 at 670 nm of 0.73± 0.06 in summer, which
is close to the value obtained in this work,ω0 at 660 nm of
0.76± 0.08. In general, theω0(λ) average values show that
during the measurement period the atmosphere in Granada at
surface level contained a large fraction of absorbing particles.

Figure 5 shows the temporal evolution of hourly and daily
averaged data for the different optical aerosol parameters
calculated in the previous section during the period from
29 June to 29 July. Figure 5a and b display the hourly
and daily average values ofω0(λ) obtained for the 370 and
950 nm channels of the Aethalometer. In Fig. 5a it can be
observed that theω0 minima of 0.5–0.6 correspond to max-
imum peaks ofbabs (Fig. 5d). These maxima inbabs are a
consequence of traffic emissions; this suggests that lower val-
ues ofω0 are caused by traffic emissions which increase the
absorbing component at surface level (Lyamani et al., 2010,
2011). During the whole periodω0 at 950 nm is higher than
ω0 at 370 nm, except for ordinal days 181 (29 June) and 202–
203 (20 and 21 July). A more detailed analysis of these days
will be discussed below.

In the case of theαabs (Fig. 5c), except for the men-
tioned special episodes, values of this parameter show point-
to-point variations no greater than 0.1. Hourly average val-
ues ofαabs are mostly between 0.9 and 1.2. The spectral
dependence ofbabs does not vary a lot, nor does the daily
average ofαabs, which exhibits values around 1.1 for most
of the month. Values ofαabs around 1 are related to the
presence of traffic aerosols (Sun et al., 2007) and are typ-
ical of urban areas (Bergstrom et al., 2007). This corrobo-
rates the fact that the site in Granada is dominated by ur-
ban aerosols whose major source is traffic (Lyamani et al.,
2008, 2010; Titos et al., 2012). Maxima are greater than 1.55
(P95) and reach values up to 2.5. These high values are re-
lated to special aerosol episodes (dust and biomass burning
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Figure 5. Temporal evolution of:(a) ω0,370 andω0,950 hourly av-
eraged,(b) ω0,370andω0,950daily averaged,(c) αabshourly (black
line) and daily averaged (blue dots), and(d) babs,370 andbabs,950
hourly averaged and daily averaged values forbabs,370 (blue dots)
with their standard deviations. Black lines correspond to hourly av-
erages at 370 nm and red lines to hourly averages at 950 nm, except
for αabsand panel(b), where they correspond to daily averages. All
these data correspond to the period June–July 2012.

particles) affecting Granada during the measurement period,
which will be described in more detail below.

Figure 5d shows the hourly average values of thebabs at
370 and 950 nm. Both channels exhibit very similar tempo-
ral behaviour, although absorption coefficients in the UV are
considerably higher than those in the near infrared. The same
evolution is seen forbabsat the other five channels, with val-
ues located between these two channels (not shown). Aver-
aged values obtained for the compensatedbabsrange between
16 (at 370 nm) and 5 Mm−1 (at 950 nm) with standard devi-
ations of 10 and 3 Mm−1, respectively (Fig. 4a).

For the two events already mentioned – ordinal days 181
(29 June) and 202–203 (20 and 21 July) – an extended
analysis of surface level characteristics was made using
back trajectories and results from the Navy Aerosol Anal-
ysis and Prediction System (NAAPS,http://www.nrlmry.
navy.mil/aerosol/). The model used for calculating back
trajectories is the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory Model (HYSPLIT) developed by the Na-
tional Oceanic and Atmosphere Administration (Draxler and
Rolph, 2003). On the other hand, the NAAPS model is a
global model that predicts concentrations of sulfates, dust
and smoke aerosols at ground level and in the atmospheric
column (Christensen, 1997). Measurements of a Raman li-
dar operated at Granada station (Guerrero-Rascado et al.,

Figure 6. Five-day back trajectories from HYSPLIT at three differ-
ent heights (500 (red), 1500 (blue), and 3000 m (green) a.g.l.) for
(a) 29 June and(b) 20 July.

2008) and included in EARLINET (European Aerosol Re-
search Lidar Network; Boesenberg et al., 2001) were used to
support the interpretation of the data. Images of the tempo-
ral evolution of the lidar range-corrected signal (RCS) can be
consulted online athttp://atmosfera.ugr.es/inv/index.php/en/
quicklooks.html.

Figure 6 shows the five-day back trajectories arriving at
Granada on 29 June and 20 July 2012. Figure 7 shows the
concentration of different types of particles (dust, biomass
smoke) at ground level predicted by the NAAPS model for
29 June and 20 July at 12:00 and 18:00 UTC. On 29 June,
the trajectories arriving at 1500 and 3000 m a.g.l. came from
the western Sahara, while the trajectory at 500 m a.g.l. came
from the Mediterranean Sea between Spain and northern
Africa (Fig. 6a). In addition, from Fig. 7a it can be seen that
on 29 June NAAPS predicted a significant surface concen-
tration of dust particles (80–160 µg m−3) at Granada. Fur-
thermore, no significant contributions from biomass burning
and sulfate aerosols were obtained from the NAAPS model.
Figure 8a shows the temporal evolution of the lidar RCS at
532 nm on 29 July. Early in the morning the presence of an
aerosol layer decoupled from the planetary boundary layer
is evident. The analysis of the backward trajectories suggests
that the decoupled layer extending from 2000 to 3000 m a.s.l.
originated in northern Africa. This is clear evidence of the
Saharan dust outbreak over our station.

To study whether there is any noticeable effect in the opti-
cal properties at ground level or not, the 24 h average values
of bothω0(λ) andbabs(λ) obtained on 29–30 June and 20–
21 July are shown in Fig. 9a and b, respectively. Figure 9a
shows a strong spectral dependence ofω0(λ) on 29 June with
considerably lower values (∼ 0.80) for the UV channel than
in the IR, which is a well-known characteristic of dust. On
30 June, the spectral dependence ofω0(λ) is not strong, and
can be related to the fact that the dust intrusion is over and ur-
ban aerosols are dominant again. Collaud-Coen et al. (2004)
proposed a method for detecting Saharan dust events based
on the change of the Ångström exponent of single-scattering
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Figure 7.Total surface dust and biomass burning concentration pre-
dicted by the NAAPS model for 29 June at(a) 12:00 UTC and(b)
18:00 UTC,(c, d)20 July 12:00 UTC, and(e, f)20 July 18:00 UTC.
Biomass burning concentration is only shown for 20 July since on
29 June there were no concentrations of this type over Granada.

albedo (αSSA). Negative exponent values of theαSSA are due
to the large size of mineral aerosols. In our case, on 29 June
a αSSA= −0.09 is obtained, which is related to the presence
of dust in the atmosphere. On 30 June this wavelength de-
pendence decreased toαSSA= −0.007, indicating that the
mineral dust intrusion was over. In the case of thebabs(λ)

a stronger spectral dependence for the values obtained on
29 than for 30 June is found (Fig. 9b). This spectral depen-
dence leads to the values ofαabsof 1.34 and 1.09 on 29 and
30 June, respectively. The return of the exponent to a value
close to 1 is consistent with diesel aerosols becoming pre-
dominant again. Figure 5c shows that theαabs reached val-
ues up to nearly 2.0 during the dust intrusion on 29 June. To
study the consistency of theαabsvalues obtained during this
dust event, they were compared with those obtained in other
studies. Collaud-Coen et al. (2004) reportedαabs values be-
tween 1.5 and 1.8 during Saharan dust events at Jungfrau-
joch, as well as a non-negligible spectral dependence ofω0.
Values ofαabsof 2.2 were reported by Bergstrom et al. (2002)
for mixed urban pollution and desert dust aerosols in ACE-
Asia (Aerosol Characterization Experiment). Therefore, it

can be concluded that our determination of the Saharan dust
episodes and the associated values of the Ångström expo-
nent of single-scattering albedo are in good agreement with
the published values.

Another event was detected on 20 (day 202) and 21 (day
203) July. HYSPLIT back trajectories arriving on 21 July at
500 and 1500 m a.g.l. reached Granada proceeding from the
Mediterranean Sea, along northern Africa’s coast, although
they have their origin in western France. At 3000 m a.g.l. they
originate from the Atlantic Ocean (Fig. 6b). NAAPS predic-
tions, presented in Fig. 7b and c, show influence of both dust
and smoke aerosols at surface level on 20 July. The temporal
evolution of RCS at 532 nm obtained from lidar measure-
ments (Fig. 8b) shows the presence of aerosol particles up
to 4000 m a.s.l., and especially high concentrations are mea-
sured up to 2000 m a.s.l. Based on the NAAPS model and
lidar measurements, aerosols measured at surface level are
considered to be affected by wood smoke and mineral dust.

Values on 20 July were daily averaged starting at
12:00 UTC, when the event is first detected. The analysis
of the wavelength dependence ofω0 leads toαSSA= −0.08
on 20 July, showing again presence of dust, and to
αSSA= −0.011 on 21 July, when the episode is over. In
Fig. 9a a stronger spectral dependence ofω0 during the event
is observed. Similar to the event on 29 July, variations in the
spectral dependence indicate a change in the dominant source
and origin of the aerosols which is corroborated with NAAPS
predictions of dust and smoke aerosols at surface level. Fig-
ure 9b shows that the spectral dependence ofbabs does not
show significant differences from one day to another; the val-
ues ofαabsare 1.28 and 1.31 for 20 and 21 July, respectively.

Although there are similarities in the spectral dependen-
cies of the optical parameters, the two events differ: on
29 June the event is dominated by dust with largerω0 and
lower babs; on 20 and 21 July the aerosol is a mixture of
smoke and dust, with lowerω0 and higherbabs.

5.2 Comparison between workdays and Sundays

In Fig. 5d, based on the daily averages (blue dots), it was
already observed thatbabswas generally higher during work-
days than on Sundays. Due to these differences, the hourly
average values in UTC ofω0 at 370 and 950 nm,babs at
370 and 950 nm, andαabshave been calculated for workdays
(Monday to Friday) and Sundays (Fig. 10).

In Fig. 10a it can be seen that during daytimeω0 is in
general slightly higher on Sundays than workdays. At night-
time, ω0 values are very similar, the difference being only
0.05. The fact that a less absorptive atmosphere is found on
weekends than on workdays results directly from thebabsbe-
haviour. During the daytime,babs for workdays is consid-
erably higher than during Sundays (Fig. 10b), which also
causes lowerω0 from Monday to Friday. It is also seen
that on workdays and Sundaysbabs has two maxima, one
in the morning (between 04:00 and 09:00) and another in
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Figure 8. Lidar vertical profiles obtained for(a) 29 June from 08:57 to 14:00 UTC and(b) 20 July 11:30 to 13:30 UTC.

Figure 9. Spectral dependence of daily averaged(a) ω0 and (b)
babsfor 29 June (black), 30 June (green), 20 July (red), and 21 July
(blue).

the afternoon (between 18:00 and 21:00). Those maxima are
strongly related to minima inω0. Usually, the morningbabs
maximum is considerably higher on workdays than on Sun-
days due to its relation with traffic volume, which is more
intense from Monday to Friday. This causes a more pro-
nounced decrease inω0 during the workdays. On the other
hand, the evening maximum appears to be very similar for
workdays and Sundays.

The diurnal variation of the exponentαabsshows no impor-
tant differences between workdays and Sundays. Unlikeω0,
this parameter appears to be not affected by maxima inbabs.
This corroborates the fact thatαabs is a parameter related to

Figure 10. Comparison of average during cycles for work-
days (black) and Sundays (green) of:(a) single-scattering albedo
(ω0,660), (b) absorption coefficient (babs,660), and(c) αabs.

the type of absorbing particles and their source rather than to
their concentration.

6 Conclusions

The aim of this study has been to obtain the compen-
sated absorption coefficient for all seven Aethalometer AE-
31 channels, generalizing the method proposed by Schmid
et al. (2006). Once the Aethalometer coefficients have been
compensated, the temporal evolution ofω0(λ), babs(λ), and
αabs(λ) was analysed. In addition, during the measurement
period two different sources of aerosolized particulate mat-
ter affecting Granada were investigated, and the differences
between workdays and Sundays were presented.
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The attenuation coefficient at 637 nm was compensated
applying the method proposed by Weingartner et al. (2003)
and then compared tobabs obtained from MAAP measure-
ments. Furthermore, site-specific parameters for the load-
ing (R (f,ATN)) and multiple scattering (C) were obtained.
The values for the loading parameter (f ) range from 1.15 at
370 nm to 1.11 at 950 nm, which is consistent with previous
values reported by Weingartner et al. (2003), Sandradewi et
al. (2008b), and Collaud-Coen et al. (2010), among others.
Compensated data from both instruments were checked for
any remaining loading effects, and none were found.

For the multiple-scattering effect, theC value at 637 nm
was found to be 4.22± 0.06, and it is in agreement with val-
ues published in the literature for sites with similar character-
istics. Results of the comparison with the MAAP give a slope
of 1.005 and a correlation coefficient of 0.926. Therefore, the
compensated factors obtained in this study provide a satisfac-
tory compensation of the data and are used to calculate theC

factor at other wavelengths.
To obtain the wavelength dependence ofC(λ), the addi-

tional parametersms and C∗ are needed, which were ob-
tained by Arnott et al. (2005) in laboratory experiments.
These values proved to be quite low when applied to ambient
measurements, so newC∗( λ) values were calculated in this
study. TheC∗ value for ambient data calculated at 637 nm
for this campaign exhibits a value of 3.93, while thems used
is the value provided by Arnott et al. (2005). Differences in
C∗ agree with those expected from Arnott et al. (2005) for
ambient measurements. The same spectral dependence as in
Arnott et al. (2005) has been used to obtainC∗ at other wave-
lengths.

Applying the iterative procedure proposed by Schmid et
al. (2006),C(λ), ω0(λ), andαabsusing wavelengths from 370
to 950 nm were calculated.C values obtained span from 3.42
at 370 nm to 4.59 at 950 nm, and their spectral differences are
in agreement with the ones observed in Schmid et al. (2006)
for the Amazon Basin.

Once the different parameters had been compensated and
calculated at each wavelength, a study of their temporal evo-
lution was performed. Averaged values ofω0 range between
0.784 (at 370 nm) and 0.737 (at 950 nm), indicating that dur-
ing July 2012 Granada’s atmosphere was significantly bur-
dened with absorbing particles. This is in agreement with re-
sults obtained by Lyamani et al. (2010) for the summer pe-
riod. An average value of 1 forαabs is explained by the fact
that the Granada site is dominated by urban aerosols (Sun et
al., 2007) whose major source is traffic.

Finally, the difference between workdays and Sundays
shows that the absorption coefficients are higher during
workdays than during Sundays as a consequence of the traf-
fic intensity on the highway close to the station. These values
cause decreases inω0, leading to an atmosphere with more
absorbing particles during the workdays. However,αabs is
not affected and exhibits no differences between work days

and Sundays as this value is more related to the aerosol type
and their source, which does not strongly change at this site.
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