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and R J Yáñez1,3
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Abstract. The kinetic energy of non-relativistic single-particle systems with
arbitrary D-dimensional central potentials is found to be bounded from below by
means of the orbital hyperangular quantum number, the dimensionality and some
radial and logarithmic expectation values of the form 〈rk〉 and 〈rk(ln r)m〉. Beyond
the intrinsic physico-mathematical interest of this problem, we want to contribute
to the current development of the theory of independent particles confined in
spherically symmetric traps with non-standard dimensions. The latter has been
motivated by the recent experimental achievements of the evaporative cooling of
dilute (i.e. almost non-interacting) fermions in magnetic traps.
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1. Introduction

The fundamental relevance and usefulness of spherically-symmetric potentials for the quantum-
mechanical description of the natural systems and phenomena is manifest from the early days
of quantum physics up until now [1]–[8]. Indeed, the central-field model of the atom [1, 3, 4]
is, together with the Pauli exclusion principle and Bohr’s atomic Aufbau principle, the theoretical
basis of the periodic system of Mendeleev [6]; see also [9]. Moreover, they have been used as
prototypes for numerous other purposes and systems not only in the three-dimensional world
but also for non-relativistic [5] and relativistic [2, 7] D-dimensional (D � 2) physics.

The study of the density-dependent properties of single-particle systems confined in
D-dimensional central potentials is of considerable current interest because of quantum dots
and wires and recent experiments of dilute bosonic [10, 11] and fermionic [12, 13] systems in
magnetic traps of extremely low temperatures. This is provoking a fast development of a density
functional theory of independent particles moving in multidimensional central potentials with
various analytical forms. Here we shall centre around the kinetic energy.

Since the works of Waller [14], Van Vleck [15] and Pasternack [16] in the thirties until the
recent attempts of Dong et al [17, 18], many recurrence relations of diverse types have been
produced for the calculation of the radial position and momentum expectation values and, at
times, matrix elements for some specific central potentials (e.g. harmonic oscillator, Coulomb,
Kratzer, . . . ) and, less frequently, for arbitrary D-dimensional central potentials. Nevertheless
they require for their application knowledge of the analytic form of the potential and, often, their
corresponding energy eigenvalues.

Unlike previous approaches, we propose in this paper an inequality-based method which
allows us to correlate the non-relativistic single-particle kinetic energy T (= 〈p2〉/2) with some
radial position expectation values for arbitrary D-dimensional central potentials of unknown
form. The resulting general inequalities are used to find lower bounds for the kinetic energy
of single-particle systems with a D-dimensional central potential of unknown analytic form,
by means of various radial position expectation values and the orbital hyperangular quantum
number. This procedure leads to the improvement of the corresponding sharp bounds for general
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systems existing in the literature, to the generation of novel bounds for these systems, and to the
generalization of recent results relative to non-relativistic particles in D-dimensions [19]–[21].

The structure of the paper is as follows. Section 2 gathers the known lower bounds to the
kinetic energy of spinless single-particle systems with potential of general form, with emphasis
on those which depend on the expectation values 〈r−2〉, 〈r−1〉 and 〈r2〉. Then, in section 3, the
main results of the paper are described: optimal lower bounds to the kinetic energy of particles
moving in central potentials of arbitrary form by means of various expectation values 〈rk〉. Later
on, in section 4, further bounds in terms of radial logarithmic bounds are obtained; at times,
depending on the potential, they improve the previous ones. Finally, the accuracy of some of the
novel bounds is numerically studied for the Coulomb and oscillator-like systems.

Atomic units will be used throughout the paper.

2. Kinetic energy lower bounds for general single-particle systems

Here we briefly review the present knowledge of the lower bounds to the non-relativistic kinetic
energy T of a spinless particle moving in a D-dimensional potential of unknown analytic form,
taking only into account those related results which are relevant for the purposes of the present
work.

According to Lieb et al [22] the kinetic energy T is known to be bounded from below
by means of the frequency moments of the quantum-mechanical probability distribution ρ(�r),
i.e. the quantities

ωt(ρ) ≡
∫

dDr[ρ(�r)]t, (1)

which are also called entropic moments because of their close connection with some information-
theoretic quantities such as the Shannon, Renyi and Tsallis [23, 24]. They found [25, 26] that

T � KDω1+(2/D)(ρ),

where the constant

KD ≡ 2πD

D + 2

[
�

(
D

2
+ 1

)]2/D

. (2)

Remark that for D = 3 this constant has the value K3 = (3/10)(6π2)2/3 � 4.5578. Actually
this constant has been numerically argued to be still improved [25] to 4.789. See [27, 28] for the
best available constants to date, and [29] for further references.

On the other hand, the entropic moments (1) have been variationally shown [30] to be
bounded from below in terms of the two radial expectation values of the form

〈rk〉 :=
∫

rkρ(�r) dDr.
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It has been variationally found [30] that the frequency moment ωt, t > 1, has the following lower
bound

ωt(ρ) � F(α, β, t, D)

[ 〈rβ〉t(α+D)−D

〈rα〉(t(β+D)−D

]1/(α−β)

, (3)

for α > β > −D(t − 1)/t. The constant is given by

F(α, β, t, D) = tt(α − β)2t−1

{
�DB

[
t(β + D) − D/(α − β)(t − 1), 2t − 1/t − 1

]}t−1

×
{

[t(β + D) − D]t(β+D)−D

[t(α + D) − D]t(α+D)−D

}1/(α−β)

, (4)

where �D = 2πD/2/�(D/2), and B(x, y) = �(x)�(y)/�(x + y) is the beta function expressed
by means of the well-known gamma function �(z).

Then, from the relations (1)–(4) one can easily obtain the following family of lower bounds
to the exact kinetic energy T :

T � CD(α, β)

[〈rβ〉α(1+2/D)+2

〈rα〉β(1+2/D)+2

]1/(α−β)

(5)

with CD(α, β) = KDF(α, β, t = 1 + (2/D), D) for α > β > −2D/(D − 2). Some particular
relevant cases are as follows.

1. Bound in terms of 〈r2〉. For α = 2 and β = 0, this relation gives

T � CD(2, 0)
1

〈r2〉 , D � 1

with

CD(2, 0) = 1

2

D2(D!)2/D

(D + 1)2
.

In particular, for D = 3 one has

T � 9

16

32/3

21/3

1

〈r2〉 ≈ 0.92867
1

〈r2〉 .

2. Bound in terms of 〈r−1〉. For α = 0 and β = −1 one has from (5) that

T � CD(0, −1)〈r−1〉2, D > 2

with

CD(0, −1) = (D!)2/D(D − 2)

21+(2/D)D
.

In particular, for D = 3 one has

T � 1

2 × 31/3
〈r−1〉2 ≈ 0.34668〈r−1〉2.
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The accuracy of these bounds can be increased by improving the value of the constant KD

[27, 28, 31]. In fact, it is known that

T � 9

8

1

〈r2〉 , (6)

T � 1
2〈r−1〉2, (7)

and

T � 〈r−2〉
8

(
1 − 〈r−1〉2

〈r−2〉
)−1

, (8)

for three-dimensional single-particle systems according to Yue–Janmim [32], Gadre–Pathak
[33, 34] and Thirring [35, 36], respectively. Bounds of semiclassical, maximum-entropy-based
and/or conjectured types for one- and N-electron systems are also known [32, 34], [36]–[40].

On the other hand, from the Pitt–Beckner inequality [41, 42] one knows that the expectation
values (〈pα〉, 〈r−α〉) are mutually related by

〈pα〉 � 2α

[
� (D + α/4)

� (D − α/4)

]2

〈r−α〉; 0 � α < D.

The particular case α = 2 provides the following lower bound for the kinetic energy.

3. Bound in terms of 〈r−2〉

T � (D − 2)2

8
〈r−2〉; D > 2,

so that for D = 3 one has [32, 33]

T � 1

8
〈r−2〉.

3. Kinetic energy lower bounds for the D-dimensional central force problem

In this section we obtain optimal lower bounds to the kinetic energy of non-relativistic particles
confined in a D-dimensional central potential of arbitrary form by means of some radial
expectation values 〈rk〉, and we illustrate that the resulting bounds with l = 0 and D = 3 give rise
to exact lower bounds for particles subject to general potentials. It happens that the expectation
values of lowest orders can be, at times, measured model-independently by low-energy and
high-energy experiments.

The non-relativistic motion of a single-particle system in a D-dimensional (D � 2) central
potential VD(�r) is governed by the Schrödinger equation

[− 1
2
�∇2

D + VD(�r)]	D(�r) = ED	D(�r), (9)
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with the Laplacian operator [2, 5, 20, 43] associated with the position vector �r = (x1, . . . , xD) =
(r, θ1, . . . , θD−1) ≡ (r, �D−1),

�∇2
D ≡

N∑
i=1

∂2

∂x2
i

= ∂2

∂r2
+

D − 1

r

∂

∂r
− �2

D−1

r2
,

and the squared hyperangular momentum operator �2
D−1 known to fulfil the eigenvalue equation

�2
D−1Yl,{µ}(�D−1) = l(l + D − 2)Yl,{µ}(�D−1).

The Y-symbol denotes the hyperspherical harmonics characterized by the D − 1 hyperangular
quantum numbers (l ≡ µ1, µ2, . . . , µD−1 ≡ m) ≡ (l, {µ}), which are natural numbers with
values l = 0, 1, 2, . . ., and µ1 � µ2 � · · · � µD−2 � |µD−1|.

The eigensolutions {	D(�r), ED} are usually determined by doing the ansatz

	D(�r) = uEl(r)

r(D−1)/2
Yl,{µ}(�D−1).

Then, (9) transforms into the one-dimensional equation in the radial coordinate r,
[
−1

2

d2

dr2
+ Veff(r)

]
uEl(r) = EDuEl(r), (10)

the so-called reduced radial Schrödinger equation in D-dimensions. The effective potential is

Veff(r) = l(l + D − 2)

2r2
+

(D − 1)(D − 3)

8r2
+ VD(r)

= 1

8r2

[
(D + 2l)2 − 4(D + 2l) + 3

]
+ VD(r)

= L(L + 1)

2r2
+ VD(r), (11)

where the notation

L = l +
D − 3

2
(12)

was used for the grand orbital quantum number. At this point it is worth making some important
observations. Firstly, remark that besides the force coming from the external potential VD(r)

there are two additional forces acting in the system: the centrifugal force associated with non-
vanishing hyperangular momentum, and a quantum fictitious force associated to the so-called
quantum-centrifugal potential (D − 1)(D − 3)/(8r2) of purely dimensional origin [44]. This
potential vanishes for D = 1 and 3, it is negative for D = 2 and positive for D � 4. Then,
the quantum fictitious force, which exists irrespective of the hyperangular momentum and has a
quadratic dependence on the dimensionality, possesses an attractive character for two dimensions
and is repulsive for D � 4 [19], [44]–[47]. Secondly, the above effective potential depends
on D and l through the combination D + 2l [5, 48, 49]. This provokes the phenomenon of
interdimensional degeneracy, first noted by Van Vleck [50], which implies, for example, that
for an arbitrary potential the energies of the seven-dimensional s states are the same as those of
the five-dimensional p states or the three-dimensional d states; see also [5, 48] in this respect.
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Thirdly, the Schrödinger equations (10) and (11) for D-dimensions are formally the same as
for D = 3 but with the orbital quantum number given by (12). This implies the existence of an
isomorphism [5, 49] between the dimensionality and the hyperangular quantum number, so that
D → D + 2 is equivalent to l → l + 1. Finally, note that the physical solutions of the Schrödinger
equation (9) require that uEl(r) tends to zero when r goes to zero and to infinity. Moreover, the
reduced radial eigenfunctions fulfil

∫ ∞

0
u2

El(r)dr = 1

because of the normalization to unity of the physical wavefunction 	D(�r).
Let us now consider the following radial inequality for the reduced radial eigenfunction

uEl ≡ uEl(r): ∫ ∞

0

(
u′

El − arαuEl − λrβuEl

)2
dr � 0,

with u′ = du

dr
and α, β, a, λ ∈ R. Working out the integral, we obtain

λ2〈r2β〉 − 2λ

[∫ ∞

0
rβuEl(r)u

′
El(r)dr − a〈rβ+α〉

]

+2T − L(L + 1)〈r−2〉 + a2〈r2α〉 − 2a

∫ ∞

0
rαuEl(r)′El(r)dr � 0,

where T denotes the expectation value of the non-relativistic kinetic energy operator T̂ , T ≡ 〈T̂ 〉,
of the system, and we have used that [21]

∫ ∞

0

[
u′

El(r)
]2

dr = 2T − L(L + 1)〈r−2〉, (13)

and the following notation for the expectation value of f(r)

〈f(r)〉 = 〈	D(�r)|f(r)|	D(�r)〉 =
∫ ∞

0
f(r)u2

El(r)dr.

Taking into account that
∫ ∞

0
rbuEl(r)u

′
El(r)dr = −b

2
〈rb−1〉, (14)

where the known boundary conditions uEl(r) ∼ rL+1 when r ∼ 0 are taken into account, so that
the real parameter b fulfils b + 2L + 2 > 0, one has that

2T � L(L + 1)〈r−2〉 − a2〈r2α〉 − aα〈rα−1〉 − 〈r2β〉λ2 − (β〈rβ−1〉 + 2a〈rβ+α〉)λ.

The optimization of this lower bound with respect to λ produces

2T � L(L + 1)〈r−2〉 − a2〈r2α〉 − aα〈rα−1〉 +
1

〈r2β〉
[
β

2
〈rβ−1〉 + a〈rβ+α〉

]2

, (15)
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which occurs for the following λ-value:

λ0 = − 1

2〈r2β〉
[
β〈rβ−1〉 + 2a〈rβ+α〉] .

The inequality (15) is valid for a ∈ R, α > −L − 3
2 and β > −L − 3

2 .
Let us now optimize the lower bound given by the relation (15) with respect to the parameter

a. This is attained for the value

a = β〈rβ−1〉〈rβ+α〉 − α〈r2β〉〈rα−1〉
2(〈r2β〉〈r2α〉 − 〈rβ+α〉2)

,

giving rise to the following optimal lower bound to the kinetic energy T in terms of the radial
expectation values 〈r−2〉, 〈rα−1〉, 〈r2α〉, 〈rβ−1〉, 〈r2β〉 and 〈rα+β〉:

2T � L(L + 1)〈r−2〉 +
α2〈r2β〉〈rα−1〉2 + β〈rβ−1〉[β〈rβ−1〉〈r2α〉 − 2α〈rα−1〉〈rα+β〉]

4[〈r2β〉〈r2α〉 − 〈rα+β〉2]
, (16)

which are valid for α and β bigger than −L − 3
2 . In the following we describe a few relevant

particular cases optimal in λ and a (see section 3.2) or only in λ (see section 3.1).

3.1. Lower bounds optimal in λ but not in a

They are obtained from relation (15). We shall give here only the bounds for three particular
values of the parameter a because of its intrinsic interest.

1. The inequality (15) gets simplified when a2〈r2α〉 + aα〈rα−1〉 vanishes, as occurs for a = 0
and a = −α〈rα−1〉/〈r2α〉. In both cases one has the lower bounds

2T � L(L + 1)〈r−2〉 +
1

〈r2β〉
[
β

2
〈rβ−1〉 + a〈rβ+α〉

]2

.

Some cases are intrinsically interesting for different reasons. Indeed, for a = 0 one
has that

2T � L(L + 1)〈r−2〉 +
β2

4

〈rβ−1〉2

〈r2β〉 .

This expression extends and improves to central potentials the three-dimensional and
D-dimensional bounds of similar type obtained from different means by various authors
[26, 32, 33, 40], [51]–[54]. In particular, this relation for β = −1 gives rise to the best
inequality between the expectation values 〈p2〉 and 〈r−2〉 recently discovered [55]:

2T �
(

L +
1

2

)2

〈r−2〉 =
(

l +
D − 2

2

)2

〈r−2〉. (17)

On the other hand, for a = −α〈rα−1〉/〈r2α〉 one obtains

2T � L(L + 1)〈r−2〉 +
[β〈rβ−1〉〈r2α〉 − 2α〈rα−1〉〈rβ+α〉]2

4〈r2β〉〈r2α〉2
.
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This expression provides the lower bound

2T � L(L + 1)〈r−2〉 +
(β + 2)2

4

〈rβ−1〉2

〈r2β〉 , D > 2 (18)

when α = −1, and

2T �
(
L + 1

2

) 〈r−2〉 +
1

〈r−2〉〈r2〉2
+

1

〈r2〉 , D > 2

for α = 1 and β = −1, which improves the inequality (17) but is less accurate than the
optimal relation (18). Besides, for α = −1 and β = 1 one has

2T � 9

4

1

〈r2〉 + L(L + 1)〈r−2〉, (19)

which, in particular, considerably improves the three-dimensional Heisenberg-like relation
〈p2〉〈r2〉 � D2/4.

2. Moreover the inequality (15) for a = L + 1 leads to the expression

2T � L(L + 1)〈r−2〉 − α(L + 1)〈rα−1〉 − (L + 1)2〈r2α〉 +
1

〈r2β〉
[
β

2
〈rβ−1〉 + (L + 1)〈rβ+α〉

]2

,

which for α = −1 allows us to obtain the following interesting lower bound in terms of the
radial expectation values 〈rβ−1〉 and 〈r2β〉:

2T � 1
4(2L + β + 2)2 〈rβ−1〉2

〈r2β〉 ,

for D > 1 − β, which extends and improves a number of general variational bounds
mentioned in section 2. Indeed, for β = −1 one obtains the lower bound (17) already
discussed; and for β = 0, 1 and 2 one has the lower bounds

2T � (L + 1)2〈r−1〉2 =
(

l +
D − 1

2

)2

〈r−1〉2, (20)

2T �
(
L + 3

2

)2 1

〈r2〉 =
(

l +
D

2

)2 1

〈r2〉 , (21)

and

2T � (L + 2)2 〈r〉2

〈r−4〉 =
(

l +
D + 1

2

) 〈r〉2

〈r−4〉 ,

respectively, which generalize and improve to D-dimensional central potentials similar
bounds with different origins obtained by various authors [32, 33, 38, 40, 42, 53] for
general three-dimensional single-particle systems. Let us highlight that particular cases
of these expressions are the D-dimensional Heisenberg-like relation 〈p2〉〈r2〉 � D2/4 and
the Bialynicki–Birula et al relation [19] 〈p2〉 � (D − 1)2〈r−1〉2/4, which correspond to the
exact inequalities (6) and (7), respectively, for D = 3.

Finally, let us also point out that the reciprocity of the position and momentum spaces
allows us to write the conjugate expressions for all the inequalities mentioned above. In
particular we have

〈r2〉 � 1
4(2L + β + 2)2 〈pβ−1〉2

〈p2β〉
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for D > 1 − β, which gives

〈r2〉 � (L + 1)2〈p−1〉2,

〈r2〉 �
(
L + 1

2

)2 〈p−2〉,
for β = 0 and −1 and D > 2, respectively. Again, these expressions extend and improve
to D-dimensional central potentials the corresponding three-dimensional relations already
known for general systems [32]–[34], [40].

3.2. Lower bounds optimal in λ and a

They are obtained from relation (16).

1. Bound in terms of 〈r−2〉 and 〈r−1〉. For α = −1 and β = 0,

2T �
(
L + 1

2

)2 〈r−2〉 +
1

4

〈r−2〉〈r−1〉2

〈r−2〉 − 〈r−1〉2
, D > 2. (22)

2. Bound in terms of 〈r−2〉 and 〈r2〉. For α = 1 and β = −1,

2T �
(

L +
1

2

)2

〈r−2〉 +
〈r−2〉

〈r2〉〈r−2〉 − 1
, D > 2. (23)

3. Bound in terms of 〈r−2〉, 〈r〉 and 〈r2〉. For α = 0 and β = 1,

2T � L(L + 1)〈r−2〉 +
1

4

1

〈r2〉 − 〈r〉2
, D > 3. (24)

4. Bound in terms of 〈r−2〉, 〈r〉 and 〈r4〉. For α = 2 and β = −1,

2T �
(

L +
1

2

)2

〈r−2〉 +
9

4

〈r−2〉〈r〉2

〈r−2〉〈r4〉 − 〈r〉2
, D > 3. (25)

5. Bound in terms of 〈r−2〉, 〈r〉, 〈r2〉 and 〈r4〉. For α = 2 and β = 0,

2T � L(L + 1)〈r−2〉 +
〈r〉2

〈r4〉 − 〈r2〉2
, D > 3. (26)

The bounds (22)–(26) generalize and improve the D-dimensional lower bounds (17) and
(19). Moreover, the inequality (22) takes the form

T � l(l + 1)

2
〈r−2〉 +

〈r−2〉
8

(
1 − 〈r−1〉2

〈r−2〉
)−1

for three-dimensional systems, which reduces to the exact Thirring bound (8) for the ground
state (l = 0). The inequalities (23)–(26) allow us to find the following lower bounds in a similar
manner:

T � 〈r−2〉
8

(
1 +

4

〈r2〉〈r−2〉 − 1

)
,
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T � 1

8

1

〈r2〉 − 〈r〉2
,

T � 〈r−2〉
8

(
1 +

9

(〈r−2〉〈r4〉/〈r〉2) − 1

)
,

and

T � 1

2

〈r〉2

〈r4〉 − 〈r2〉2
,

respectively, for general particles with l = 0 moving in the three-dimensional space.

4. Bounds in terms of log-moments

Here we obtain lower bounds to the kinetic energy of single-particle systems moving in a D-
dimensional central potential by taking into account not only the radial expectation values 〈rα〉
but also the logarithmic expectation values 〈rα ln r〉. This has been motivated by the physical
interest of the log-moments in atomic and molecular physics [39], [56]–[58]. These quantities
have been analytically determined for one- and D-dimensional hydrogenic systems [57, 59] and
numerically for various α-values in all neutral atoms of the periodic table [37, 60] in both position
and momentum spaces. The mean logarithmic radius 〈ln r〉 is of particular interest because (i)
it is experimentally accessible by electron scattering [61] and (ii) it provides tight bounds to
the atomic information entropy [58]. Moreover, the log-moments are closely connected with the
electron–electron coalescence phenomenon in atoms and molecules [56], and satisfy a number
of interesting inequalities and uncertainty relations [60].

We use a methodology similar to that developed in the previous section. We begin with the
following inequality fulfilled by the reduced radial wavefunction uEl(r) of the system,

∫ ∞

0
[u′

El − arα ln ru − λrβu]2 dr � 0,

where a, λ, α and β are real parameters.
Working out this integral and taking into account (13) and (14) together with the relation

∫ ∞

0
rα ln ruu′dr = −α

2
〈rα−1 ln r〉 − 1

2
〈rα−1〉,

one has that

2T � L(L + 1)〈r−2〉 − a2〈r2α ln2 r〉 − aα〈rα−1 ln r〉 − a〈rα−1〉 − λ2〈r2β〉
−βλ〈rβ−1〉 − 2aλ〈rα+β ln r〉. (27)

From this expression we can obtain a large number of lower bounds, according to the
expectation values we want to enter into play. Let us only enumerate a few particular cases.
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1. For β = 0 and optimizing (27) with respect to λ and a, one has

2T � L(L + 1)〈r−2〉 +
[〈rα−1〉 + α〈rα−1 ln r〉]2

4(rα ln r)
,

where

(rα ln r) = 〈r2α ln2 r〉 − 〈rα ln r〉2

denotes the uncertainty of rα ln r. In addition, this expression gives

2T � L(L + 1)〈r−2〉 +
(1 + 〈ln r〉)2

4(r ln r)

for α = 1, and

2T � L(L + 1)〈r−2〉 +
〈r−1〉2

4 (ln r)

for α = 0.
2. For β = −1 and optimizing with respect to λ and a one has the lower bound

2T � 〈r−2〉
4

[
(2L + 1)2 +

(1 + 2〈ln r〉)2

〈r−2〉〈r2 ln2 r〉 − 〈ln r〉2

]

for α = 1, and

2T � 〈r−2〉
4

[
(2L + 1)2 +

〈r−2〉2

〈r−2〉〈r−2 ln2 r〉 − 〈r−2 ln r〉2

]

for α = −1.
3. For λ = L + 1, β = −1 and optimizing with respect to the parameter a, one obtains that

2T � 1

4〈r2α ln2 r〉 [〈rα−1〉 + (2L + 2 + α)〈rα−1 ln r〉]2

for α ∈ R. Then we have the following bounds:

2T � 1

4〈r2 ln2 r〉 [1 + (2L + 3)〈ln r〉]2

for α = 1, and

2T � 1

4〈ln2 r〉 [〈r−1〉 + (2L + 2)〈r−1 ln r〉]2

for α = 0.
4. For λ = 0 and optimizing with respect to a, one has

2T � L(L + 1)〈r−2〉 +
[〈rα−1〉 + α〈rα−1 ln r〉]2

4〈r2α ln2 r〉
for α ∈ R. This expression allows us to find

2T � L(L + 1)〈r−2〉 +
(1 + 〈ln r〉)2

4〈r2 ln2 r〉
for α = 1, and

2T � L(L + 1)〈r−2〉 +
〈r−1〉2

4〈ln2 r〉
for α = 0.
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5. Numerical analysis for oscillator- and hydrogen-like systems

In this section we have performed a comparison between the six lower bounds to the kinetic
energy (17) , (20)–(23) and (8), in the two most important prototypes of D-dimensional systems:
the isotropic harmonic oscillator and the hydrogen atom. To facilitate our discussion, let us
introduce the ratios between each of these lower bounds, respectively, and the kinetic energy:

�1 = 1

2T

(
L + 1

2

)2 〈r−2〉 � 1,

�2 = 1

2T
(L + 1)2 〈r−1〉2 � 1,

�3 = 1

2T

(
L + 3

2

)2 〈r2〉−1 � 1,

�4 = 1

2T

[(
L + 1

2

)2 〈r−2〉 +
1

4

〈r−2〉〈r−1〉2

〈r−2〉 − 〈r−1〉2

]
� 1,

�5 = 1

2T

[(
L + 1

2

)2 〈r−2〉 +
〈r−2〉

〈r2〉〈r−2〉 − 1

]
� 1,

�6 = 1

2T

〈r−2〉
4

(
1 − 〈r−1〉2

〈r−2〉
)−1

� 1,

where the last ratio �6 is only defined for dimensionality D = 3.We have numerically studied
the dependence of these ratios on the dimensionality and on the principal quantum number of
the oscillator and hydrogen-like states.

5.1. Isotropic harmonic oscillator

The potential considered is V(r) = 1
2r

2. The behaviour of the ratios �i (i = 1, . . . , 5) as a function
of the dimension D for the state with quantum numbers (n, l, m) = (3, 1, 1) is shown in figure 1.
For the five cases, the ratio monotonically increases, i.e. the bounds improve, as D is augmented.
For any given dimensionality, ratios �4 and �5 give the highest values, being �4 a bit higher
than �5, but both ratios tending to the same value. The third highest ratio is �1 with a value very
close to these of �4 and �5. In the limit D → ∞, all the ratios approach the unity, i.e. �i → 1,
independently of the values of the quantum numbers n, l and m.

The ratios �i (i = 1, . . . , 6) are plotted in figure 2 as a function of the principal quantum
number n for D = 3 and angular quantum numbers l = m = 1. For the six cases, �i has a
qualitatively similar but quantitatively different behaviour as a function of n, monotonically
decreasing as n is enhanced. The inequalities worsen as the degree of excitation of the level
is augmented, and in the n → ∞ limit, �i → 0 for i = 1, . . . , 6. For n = 0, the inequality is
saturated with �3 = 1 and �5 = 1 for these two ratios, and the other two ratios get almost
saturated with �2 � 0.91 and �4 � 0.97. However, for the range of values of n considered, the
values of �1, �4 and �5 are reduced by almost two orders of magnitude with �i � 1–0.018
(i = 1, 4, 5) for the levels with n = 0 and 40 respectively; and the values of these three ratios
are higher for larger values of n, with each one asymptotically approaching each other.
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Figure 1. Ratios �i, i = 1 (©), 2 (+), 3 (�), 4 (�) and 5 (×), of the lower
bounds and the kinetic energy for the harmonic oscillator for the state with
quantum numbers (n, l, m) = (3, 1, 1) in terms of the dimension D.
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Figure 2. Ratios �i, i = 1 (©), 2 (+), 3 (�), 4 (�), 5 (×) and 6 (�), of the lower
bounds and the kinetic energy for the harmonic oscillator states with l = m = 1
and dimension D = 3 in terms of the principal quantum number n.

5.2. Hydrogen atom

Here the potential is V(r) = −1/r. Figure 3 shows the behaviour of ratios �i (i = 1, . . . , 5) as
a function of the dimension D for the level with quantum numbers (n, l, m) = (3, 1, 1) of the
hydrogen atom. These results resemble those given for the harmonic oscillator case in figure 1.
All the lower bounds increase as the dimensionality is enhanced. Again the ratios �4 and �5

tend to have the same value and are the nearest to the unity, but now �5 is a bit higher than �4.
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Figure 3. Ratios �i, i = 1 (©), 2 (+), 3 (�), 4 (�) and 5 (×), of the lower
bounds and the kinetic energy for the hydrogen atom in the state (n, l, m) =
(3, 1, 1) in terms of the dimension D.
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Figure 4. Ratios �i, i = 1 (©), 2 (+), 3 (�), 4 (�), 5 (×) and 6 (�), of the lower
bounds and the kinetic energy for the hydrogen atom in the state with l = m = 1
and dimension D = 3 in terms of the principal quantum number n.

With �1 again with the closest value to these ones. In the five cases, the ratios quickly reaches
the asymptotic behaviour for large D values, with �i → 1 for D → ∞, independently of the
quantum numbers n, l and m.

As a last example we plot for the hydrogenic levels with angular symmetry l = m = 1
the ratios �i, with i = 1, . . . , 6, as a function of the principal quantum number n for a three-
dimensional system in figure 4. As for the oscillator case the six bounds worsen as the degree
of excitation is enhanced, and they approach zero in the n → ∞ limit. For n = 2, the ratios
�2 = 1 and �4 = 1, indicating that the corresponding inequalities (20) and (22) reach saturation.
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Actually, this situation occurs for any state with l = n − 1. However, again for the range of values
of n considered, the values of �1, �4 and �5 are reduced by almost two orders of magnitude,
and have a similar asymptotical behaviour for larger values of n.

6. Conclusions

We have investigated the kinetic energy for single-particle systems subject to a central potential
confinement in arbitrary dimensions. Beyond its intrinsic physico-mathematical interest, this
theoretical work has been partially motivated by the recent experimental achievements of the
evaporative cooling of dilute (i.e. almost non-interacting) fermions [12, 13] in magnetic traps.
These experiments have opened the door to exploit the D-dimensional confinement of fermionic
gases in atomic traps of spherically symmetric type. This is a most relevant reason for the current
development of a density functional theory for independent particles subject to central-potential
(e.g. harmonic) confinement in non-standard dimensions [54, 62].

We have obtained sharp lower bounds to the kinetic energy which depend on the orbital
hyperangular quantum number, the dimensionality and one or more radial and logarithmic
position expectation values. The associated conjugate relations are also fulfilled, so that the
magnetic susceptibility of the system (which, a factor apart, is equal to 〈r2〉) is explicitly bounded
by means of one or more radial and logarithmic momentum expectation values. They are optimal
in the sense mentioned in section 3, so that they extend and improve to central potentials all the
corresponding ones for general systems, if they exist, published in the literature. Furthermore, it
is also claimed that these bounds with l = 0 and D = 3 give rise to exact lower bounds for the
kinetic energy of particles that are arbitrarily confined, i.e. subject to forces with a non-necessarily
central character.
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