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The physics underlying the fall and eventual rise in various total cross-
sections at high energies has been investigated over a decade using a model
based on the Bloch–Nordsieck resummation in QCD. Here a brief review
of our latest results is presented and comparison made with experimental
data on pp, γ proton and γγ total cross-sections.

PACS numbers: 12.38.–t, 13.60.Hb, 13.85.Lg

1. Introduction

Total cross-sections at high energies provide significant information about
the distribution of the constituents and the nature of their interaction at very
short distances. Even though QCD is the fundamental theory for strong
interactions, our lack of knowledge about the confinement of quarks and
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glue has not allowed a first principle determination of hadronic total cross-
sections and hence one has to resort to phenomenological models. Over
several years we have developed and refined a model based on a Bloch–
Nordsieck (BN) resummation of soft partons. Through it, we have been im-
proving our understanding of the observed variations in the cross-sections,
in a quantitative way. Details of our work and its evolution, can be followed
through references [1–8]. A short summary of data for various processes and
their comparison with our model predictions are discussed in the subsequent
sections. Given the paucity of space, we shall only focus on the energy de-
pendences in pp, γp and γγ reactions and the uncertainities therein present.

2. QCD and the energy dependence of total cross-sections

In Fig. 1, we show a comparison of the energy dependence in different
processes. The data show a clear initial fall and eventual rise in the total
cross-sections for all processes.
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Fig. 1. pp/p̄p,γp and γγ total cross-sections. The scaling factor to compare photons

on the same scale is obtained from quark counting rules and VMD.

The uncertainties in the data for γp [9–12] and γγ [13, 14] are shown in
Fig. 2 and Fig. 3.

Theoretically, perturbative QCD provides a natural mechanism to ex-
plain the rise with energy of total cross-sections. As the hadronic c.m. en-
ergy increases from 5 to 104 GeV the number of parton collisions increases.
In this approach. it is the rise with energy of the jet cross-section

σjet =

√
s/2
∫

ptmin

dpt

1
∫

4p2
t
/s

dx1

1
∫

4p2
t
/(x1s)

dx2

∑

i,j,k,l

fi|a(x1)fj|b(x2)
dσ̂ij→kl(ŝ)

dpt
, (2.1)

which drives the rise of the total cross-section. This quantity depends
strongly on ptmin, the minimum transverse momentum of the produced jets
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Fig. 2. Photoproduction data compared with predictions from the Aspen model

and the EMM.
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Fig. 3. At left we show γγ cross-section data compared with predictions from

different models. At right the corresponding predictions for e+e− hadronic cross-

sections in the EMM, Aspen and BKKS models.

and can be calculated by convoluting the parton densities for protons and
photons. To satisfy unitarity, the jet cross-sections are embedded into the
eikonal formalism. In this Eikonal Minijet Model (EMM) the total cross-
section is given by

σtot = 2

∫

d2~b
[

1 − e−n(b,s)/2
]

, (2.2)

where n(b, s) is the average number of inelastic collisions at impact parame-
ter b. Introducing a separation between the soft and hard contributions and



738 G. Pancheri et al.

assuming factorization of the impact parameter and energy dependence we
can write

n(b, s) = nsoft + nhard = Asoft(b)σsoft + Ajet(b)σjet , (2.3)

where σjet drives the rise and the function A(b) represents the impact pa-
rameter distribution of partons in the collision.

In the simplest EMM formulation A(b) is obtained through convolution
of the electromagnetic form factors of the colliding particles, i.e.

Aab(b) ≡ A(b; ka, kb) =
1

(2π)2

∫

d2~qeiq·bFa(q, ka)Fb(q, kb) . (2.4)

This model is unable to describe — without further adjustments — the
experimental data for total cross-sections in all the energy range. This can
be seen in Fig. 2 where data for γp cross-section are compared with a band
corresponding to different sets of parameters in the EMM. Similarly, we
show in Fig. 3 γγ cross section data and its comparison with various models,
EMM [3], Regge–Pomeron [15], Aspen [16], BSW [17], GLMN [18], Cuddell
et al. [19], BKKS [20]. The predictions for e+e− → hadrons cross-section
appear in Fig. 3 for the Aspen [16], EMM [3] and BKKS [20] models.

2.1. Energy dependence of soft gluon emission

A more realistic EMM is obtained taking into account soft gluon emis-
sion from initial state valence quarks. In this model, the impact parameter
distribution of partons is obtained as the Fourier transform of the transverse
momentum distribution of the colliding partons computed through soft gluon
resummation techniques. The resulting expression is

ABN =
e−h(b,s)

∫

d2~b e−h(b,s)
, (2.5)

where

h(b, s) =
8

3π

qmax
∫

0

dk

k
αs(k

2) ln

(

qmax +
√

q2
max − k2

qmax −
√

q2
max − k2

)

[1 − J0(kb)] . (2.6)

The upper limit qmax is the maximum energy allowed to each single soft gluon
emitted in the collision and can be calculated for hard processes (those with
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pparton
t ≥ ptmin) by averaging over the valence parton densities, i.e.

M ≡ 〈qmax(s)〉 =

√
s

2

∑

i,j

∫

dx1

x1
fi/a(x1)

∫

dx2

x2
fj/b(x2)

√
x1x2

1
∫

zmin

dz(1 − z)

∑

i,j

∫

dx1

x1
fi/a(x1)

∫

dx2

x2
fj/b(x2)

1
∫

zmin

(dz)

(2.7)
with zmin = 4p2

tmin/(sx1x2). As qmax depends on the energy of the colliding
partons, the impact parameter distribution Eq.(2.5) will be energy depen-
dent. The behaviour of qmax with energy is shown in Fig. 4 where the upper
line is the one obtained with Eq.(2.7) and the lower curve are the qmax values
through which the soft part nsoft(b, s) has been calculated phenomenologi-
cally to describe pp scattering at low energy. Using these values of qmax, in
Fig. 4 we show the predictions of the model for pp and p̄p total cross-sections
with GRV [21] densities.
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Fig. 4. At left we show the energy dependence of the maximum energy allowed to

single gluon emission for hard or soft processes. At right we show pp and p̄p total

cross-sections data compared with predictions from EMM with Bloch–Nordsieck

soft gluon resummation.

The EMM model with Bloch–Nordsieck soft gluon resummation have
also been applied to γp and γγ collisions. Theoretical results are compared
with experimental data and shown in Fig. 5 for γp and in Fig. 6, for γγ, using
two different partonic densities for the photon, GRS [22] and CJKL [23].
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Fig. 5. We show photoproduction data compared with the soft gluon improved

EMM for different values of ptmin using GRS densities for the photon (at left) and

CJKL densities (at right).
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Fig. 6. We show γγ cross-section data compared with the soft gluon improved

EMM using GRS photon densities (at left) and CJKL densities (at right).

3. Conclusion

In this brief survey, we have presented a comparison of our model pre-
dictions with available data for various processes. The BN resummed gluon
distributions appear to describe quite adequately the rise and fall visible in
the data. Experimentally, there are still significant uncertainites. Theoret-
ically, we need a better understanding of the qmax parameter for the soft
part.
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