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Resumen

En la actualidad, existe un gran interés en el almacenamiento de datos de cualquier

ı́ndole, tanto a nivel personal como empresarial. En ocasiones, estos datos son al-

macenados sin reportar ninguna información de interés, por lo que muchos de estos

datos son almacenados pero nunca utilizados. La extracción de reglas de asociación

es una tarea de la mineŕıa de datos que permite describir comportamientos y rela-

ciones entre grandes conjuntos de datos. Es en esta tarea en la que se centra la

presente Tesis Doctoral, dando solución a muchos de los interrogantes abiertos en

el campo y que han sido previamente estudiado y analizados.

En primer lugar, se ha llevado a cabo un estudio detallado del estado del arte

en la campo de la mineŕıa de asociación, describiendo su origen, la evolución de

las propuestas, aśı como los temas abiertos. Las primeras propuestas se basaron

en una búsqueda exhaustiva del espacio de soluciones, por lo que el dominio de

búsqueda deb́ıa ser finito. Numerosas investigaciones se han llevado a cabo en

este campo, proponiendo algoritmos que permitan buscar soluciones en dominios

numéricos donde las soluciones no son finitas. Sin embargo, no sólo la búsqueda

en dominios numéricos es un tema de estudio en mineŕıa de asociación, sino que el

uso de asociaciones negativas, o incluso raras o poco frecuentes, son temas abiertos

en este área.

La presente Tesis Doctoral incluye una serie de propuestas para la extracción de re-

glas de asociación mediante una metodoloǵıa basada en programación genética gra-

matical. El objetivo es proponer nuevos algoritmos de asociación que permitan la

extracción de reglas en un único paso y de un modo eficiente. El uso de gramáticas

para la codificación de las soluciones permite que el conocimiento adquirido sea

muy flexible, y que las reglas descubiertas puedan incluir condiciones tanto positi-

vas como negativas, o incluso numéricas.

En una primera propuesta, se presenta un algoritmo de programación genética

gramatical para la extracción de reglas de asociación frecuentes, el cual es conocido

como G3PARM. Este algoritmo ha sido espećficamente diseñado para la tarea

de asociación, incluyendo dos operadores genéticos basados en la frecuencia de

aparición de las condiciones. El análisis de este algoritmo demuestra su enorme

eficiencia, extrayendo reglas en un único paso y mediante un proceso evolutivo.

G3PARM ha sido comparado con algoritmos clásicos o deterministas, aśı como con

propuestas posteriores basadas en metodoloǵıas evolutivas. Dicha comparación ha

sido llevada a cabo mediante un análisis estad́ıstico, cuyos resultados corroboran

la importancia de G3PARM en el campo de la mineŕıa de asociación.



Debido a los buenos resultados de G3PARM, se propone un posterior modelo para

la extracción de reglas asociación poco frecuentes. Este tipo de asociaciones no han

sido muy estudiadas, aunque son de gran relevancia, describiendo comportamientos

anómalos pero no por ello poco interesantes. Este tipo de comportamientos son

realmente interesantes en medicina o en educación, donde relaciones poco frecuentes

puede describir el comportamiento de personas con dificultades en su proceso de

aprendizaje.

En mineŕıa de asociación, existen multitud de medidas que determinan la calidad de

las reglas obtenidas. Muchas de estas son contrapuestas, por lo que la optimización

de una determinada medida implica la ausencia de otra medida. Existen muchos

problemas donde es necesario llegar a un compromiso entre las medidas, por lo

que el uso de metodoloǵıas multi-objectivo son de gran interés. La presente Tesis

Doctoral describe dos algoritmos multi-objetivo que son capaces de optimizar dos

medidas de asociación a la vez. Estos modelos están basados en dos modelos de

gran relevancia en la optimización multi-objectivo, como son NSGA-2 y SPEA-2.

Por último, una de las principales dificultades en el uso de algoritmos evolutivos es

la necesidad de optimizar los parámetros que se requieren para su ejecución, lo que

lleva a que la mayoŕıa de sus usuarios son expertos en la materia. En este sentido,

se proponen dos algoritmos evolutivos que auto-ajustan sus parámetros en función

de las caracteŕısticas de los datos. Estas propuestas resultan de gran interés para

usuarios no expertos en el campo, permitiendo que cualquier tipo usuario pueda

hacer uso de estos algoritmos y de las ventajas que conllevan.

Las propuestas presentadas en esta Tesis Doctoral han sido llevadas a cabo en un

campo de aplicación real. Uno de los campos de mayor interés en el descubrimiento

de relaciones de interés entre patrones es el ámbito de la educación. El objetivo

es descubrir relaciones que permitan describir comportamientos (tanto frecuentes

como anómalos) que ayuden al profesor o tutor en su proceso de enseÃ±anza. Estas

relaciones descubiertas permite describir y ayudar a alumnos con determinados

problemas en el aprendizaje y mejorar sus resultados.

Todos los algoritmos propuestos en la presente Tesis Doctoral han sido estad́ıstica-

mente evaluados mediante una serie de tests no paramétricos. Los algoritmos han

sido comparados con otros algoritmos de reconocido prestigio dentro del campo

de la mineŕıa de asociación, demostrando la enorme eficiencia de los modelos pro-

puestos.

En un caṕıtulo final se presentan una serie de nuevas ĺıneas de investigación que

han surgido con la elaboración de la presente Tesis Doctoral. Todas estas nuevas

ĺıneas están en mayor o menor medida relacionadas con la mineŕıa de reglas de



asociación. Ha surgido la necesidad de extraer reglas de asociación en entornos

relacionales. El creciente interés en la recolección de datos ha dado lugar a su

almacenamiento en entornos relacionales, por lo que los datos se encuentran sep-

arados en diferentes tablas o incluso diferentes localizaciones f́ısicas. En segundo

lugar, ha surgido la necesidad de extraer reglas de asociación que sean sensibles al

contexto, por lo que un mismo dato puede tener connotaciones diferentes en base

a su contexto. También se ha propuesto, como ĺınea de investigación nueva, la

extracción de relaciones excepcionales entre los datos. Una relación es excepcional

si el comportamiento que representa es completamente opuesto al comportamiento

esperado. Por último, se propone la aplicación de reglas de asociación al campo

del descubrimiento de subgrupos, es decir, describir grupos de elementos cuyas

caracteŕısticas están estrechamente relacionadas.





Abstract

This Doctoral Thesis involves a series of approaches for mining association rules

by means of a grammar-guided genetic programming based methodology. The

ultimate goal is to provide new algorithms that mine association rules in only one

step and in a highly efficient way. The use of grammars enables the flexibility of the

extracted knowledge to be increased. Grammars also enable obtaining association

rules that comprise categorical, quantitative, positive and negative attributes to be

mined.

Firstly, as for the mining of frequent association rules, a novel grammar-based

algorithm, called G3PARM, has been proposed. It is able to discover rules having

positive, negative, categorical and quantitative attributes. The evolutionary model

is able to perform the mining process in one single step. This PhD Thesis also

includes a model for mining rare or infrequent association rules, as well as two

multi-objective approaches that optimize two different quality measures at time.

Additionally, two novel algorithms that self-adapt their parameters are considered.

In this sense, a previous tuning of the parameters would not be required, as they are

adjusted depending on the data under study. Finally, the developed methodologies

have been applied to the educational field to discover interesting information that

could be used to improve the courses.

All the algorithms proposed in this Doctoral Thesis have been evaluated in a proper

experimental framework, using different types of datasets and comparing their per-

formance against other published methods of proved quality. Results have been

verified by applying non-parametric statistical tests, demonstrating the many ben-

efits of using a grammar-based methodology to address the association rule mining

problem.
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1
Introduction

Generally, data stored in different areas lacks of interest, and an in-depth analy-

sis and study is required to extract knowledge that was hidden in the raw data.

Currently, many research studies have been focused on the extraction of useful

knowledge, giving rise to the field known as knowledge discovery in databases

(KDD).

KDD is concerned with the development of methods and techniques for making

sense of data [1], and this process comprises a set of steps like data selection,

data cleaning and preprocessing, data transformation, data mining (DM), and

interpretation of the extracted knowledge. DM is one of the most important steps

in the KDD process, being responsible for mining non-trivial information hidden

in data. W. J. Frawley et al. [2] described the DM task as follows:

DM is a non-trivial extraction of implicit, previously unknown, and potentially

useful information from data. Given a set of facts, a pattern is defined as a

statement in a specific language that describes, in a simple way, relationships

among the existing facts with a certainty. A pattern that is interesting and

certain enough (according to the users’ criteria) is called knowledge.
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DM refers to a multidisciplinary learning task where many ideas from varied disci-

plines converge, and this task could be classified into two main learning methods:

unsupervised [3] and supervised [4]. The former includes approaches for descriptive

mining tasks, which characterize the data properties. The latter comprises models

for predictive mining tasks that categorize the space in a determined number of

regions with respect to a target variable, and perform inference on the current data

in order to make predictions.

Association rule mining (ARM), an important technique in the DM field, has re-

ceived enormous attention since its introduction by Agrawal et al. [5] in the early

90s. This descriptive mining task searches for strong relationships among patterns,

also known as items, that are usually hidden in data. An association rule (AR) is

defined as an implication of the form Antecedent→ Consequent, both Antecedent

and Consequent being disjoint item-sets. If the antecedent of an AR is satisfied,

then it means that it is highly probable that the consequent will be also satisfied.

The ARM task was originally designed for market basket analysis to obtain rela-

tions between products, like diapers→ beer, which describes the high probability

of someone acquiring diapers also buying beer. It would allow shop-keepers to

exploit this specific relationship by moving their products closer together on the

shelves.

The initial proposals for the extraction of ARs follow an exhaustive search method-

ology based on the algorithm proposed by R. Agrawal and R. Srikant in 1994 [6].

This algorithm, known as Apriori, divides the ARM problem into two sub-problems:

(1) obtaining all the existing frequent item-sets in the data and (2) extracting all

the ARs from the item-sets obtained in the previous step. For a better under-

standing of the computational and memory requirements, let us consider a dataset

containing k items. In such a dataset, 2k−1 item-sets and 3k−2k+1 +1 rules could

be generated, so the use of huge datasets implies a prohibitively hard process of

mining. An improved version of Apriori, called FP-Growth, was proposed later by

J. Han [7]. This approach stores the frequent-patterns into a tree structure, which

is used as a compressed database. Nevertheless, these approaches suffer from the

data size and the number of extracted rules. Note that, despite the fact that many

authors have considered the ARM problem from an exhaustive search point of

view, both the memory requirements and the computational time required still are
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an important handicap. It must also be noted that exhaustive search algorithms

could be hardly applied on raw data, which usually consist of numerical values.

Therefore, the search space is often so large that this sort of algorithms are unable

to be properly executed.

For the sake of addressing the optimization problem, evolutionary computation

has been widely used in DM tasks, and specifically, in ARM in order to address

this optimization problem. Actually, most of the existing evolutionary approaches

are based on genetic algorithms (GA) [8, 9], having a fixed-length linear genotype,

which lacks of flexibility. For instance, GAs do not usually move the location of the

gene within the genotype, so the representation is quite restrictive in this sense.

Besides, changes in the desired rules imply different genotype representations and

substantial changes in the whole algorithm.

The use of evolutionary algorithms (EA) [10] have opened the way for mining

not only ARs that comprise positive and categorical conditions but also quantita-

tive and negative conditions. ARs that comprise this sort of attributes have been

named by some authors as quantitative [11] and negative association rules [12],

respectively. EAs are highly recommended under many situations, especially when

they are used by qualified data miners. Nevertheless, the chances of ARs to be

mined by high-performance algorithms without the need to specify a large number

of parameters is a common requirement for non-expert users.

Additionally, only a few authors have explored the issue of mining reliable ARs

that do not frequently occur in data, namely rare association rules (RAR) [13],

in order to differentiate them from ARs that appear more frequently. RARs are

of great interest in many different areas and algorithms in this context require a

higher computational time, being the number of rules to be mined extremely large.

Finally, it should be noted that not only the high-performance and the type of

rules to be mined is of interest in the ARM field, but also the right choice of the

quality evaluation measures [14] is a major concern. Most of the approaches were

based on the extraction of frequent and reliable rules, but it does not imply at all

that the rules discovered are interesting. That brings up the idea of proposing new

quality measures [15] that determine the real interest of the knowledge discovered

to the data miner , and many of these metrics are based on the correlation between

the antecedent and consequent of the rule.
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1.1 Objectives

The ultimate aim of this PhD Thesis is to provide a new paradigm to deal with

ARM, facing up to existing problems in the field, some of which have been addressed

by researchers in different ways. Firstly, we conduct a detailed bibliographic re-

view of ARM, including the existing algorithms and discussing about their major

drawbacks. This study will help the reader to better understand the real problems

and difficulties found in the field, and providing a general overview of the solution

proposed to overcome them.

One of the main issues in ARM, specially in those algorithms based on an exhaus-

tive search methodology, are the computational and memory requirements. The

computational complexity is a major handicap in the mining of ARs, since the

search space could be so large that it might be hardly maintainable. This prob-

lem, together with the memory requirements, makes exhaustive search approaches

to become useless mainly due to the growing interest in storage where data are

continuously increasing in the number of both records and attributes. Thereby, it

is presented a series of evolutionary approaches for mining ARs that make use of

a context-free grammar (CFG) that characterizes the type of rules to be mined.

It also enables the search space to be reduced as the flexibility of the extracted

knowledge increases.

We propose different approaches to deal with different types of attributes. Raw

data are used without requiring any previous preprocessing step to transform them

into a specific representation (as determined by other algorithms). For instance,

numerical attributes are not required to be discretized as exhaustive search al-

gorithms do. Additionally, the proposed approaches are able to deal with both

negative attributes and RARs.

The task of looking for rules of interest should not be reduced to a search for

frequent and reliable rules, since these two metrics do not always imply that the

rule is of interest. Thus, we include not only metrics for determining the reliability

and frequency of occurrence of the rules, but also to measure their interest. For

this purpose, we also propose multi-objective models that optimize two measures

at time.
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In addition, the use of EAs means optimizing a huge number of parameters. That

becomes uninteresting for non-expert users, who would require some prior knowl-

edge about evolutionary computation. The idea consists in proposing models that

provide the possibility of mining ARs in a simple and highly efficient way. There-

fore, the proposed evolutionary models should automatically adjust their own pa-

rameters to the specific data under study.

Finally, we apply the proposed models to the educational field. Thus, we propose a

set of models to overcome the existing drawbacks, and we also apply these models

to discover interesting knowledge that is of interest in a specific field.

To sum up, the objectives to be reached in this PhD Thesis are the followings:

� To analyse the state of the art in ARM, including the most representative

algorithms in the area, and their major advantages and drawbacks.

� To provide solutions that overcome the computational and memory require-

ments. The goal is to develop new algorithms that mine ARs in only one

step, achieving a highly efficient solution.

� To use a CFG that increases the flexibility of the solutions. The grammar

enables ARs that comprises positive, quantitative and negative conditions to

be mined.

� To deal with ARs that do not frequently appear in data, known as RARs,

which can be of high interest in many different fields.

� To address the ARM problem under a multi-objective perspective, optimizing

different quality measures at time.

� To propose new evolutionary models that do not require as many parameters

as existing EAs do, self-adapting their parameters to the data under study.

� To apply the aforementioned concept and models to the educational field.
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1.2 Organization and Document Structure

The rest of this document is organized as follows. Chapter 2 provides the formal

conceptual framework of ARs, as well as a description of the ARM task. Further-

more, an interesting analysis of different quality measures is carried out. In such an

analysis, the relation between the most representative metrics in the ARM field is

depicted. Additionally, the historical background of ARM is presented, considering

both deterministic and stochastic methodologies.

Chapter 3 describes the use of G3P in ARM. In this chapter, a first approach for

mining ARs using G3P is proposed, named G3PARM. Here, a proper description

and experimental study is carried out, pointing out the excellent performance of

G3PARM with regard to existing ARM algorithms.

Additionally, a detailed description about the extraction of RARs by using G3P is

given in Chapter 4. In this chapter, four fitness functions to avoid noisy rules are

proposed, giving rise to an interesting evolutionary algorithm for mining ARs that

do not frequently occur in data.

Chapters 5 and 6 present two multi-objective models and two parameter-free algo-

rithms for mining ARs, respectively. In some situations, it is of interest to optimize

not only one measure but more than one at time. Thus, Chapter 5 proposes two

multi-objective algorithms for mining ARs by means of G3P. These algorithms

are based on two well-known models in the multi-objective field, which provide

promising results when optimizing two quality AR measure at time. Additionally,

in Chapter 6, two novel self-adaptive algorithms for mining ARs are presented.

Chapter 7 presents the application of the proposed approaches to the educational

field, which allow the instructors to improve their courses. Finally, in Chapter 8,

some concluding remarks and future work drawn from our experiments are dis-

cussed.
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Background

In this chapter, the formal conceptual framework used in this PhD Thesis is prop-

erly described. It also includes the description of the most interesting quality

measures to evaluate the extracted ARs, and the relationships among them. Ad-

ditionally, a number of cases where the use of ARM is highly applicable are pre-

sented. Then, the historical background of ARM is explored in depth, from those

approaches based on exhaustive search methodologies to those proposals that use

evolutionary computation to solve the exhaustive search problems. Also, we de-

scribe the genetic programming methodology and how it could serve to solve many

of the existing problems in the ARM field. Finally, we present the use of multi-

objective methodologies for mining ARs, achieving a trade-off between more than

one quality measure at time.

2.1 Association Rule Mining

2.1.1 Knowledge Representation and Extraction

ARM is considered an important technique in the DM field, and it has received

enormous attention since its introduction by Agrawal et al. [5] in the early 90s.
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ARM is considered as a descriptive mining task that seeks for frequent, interest-

ing and strong relationships among patterns that are usually hidden in data. In

its definition, an AR is an implication of the form Antecedent → Consequent,

both Antecedent and Consequent being sets with no items in common. An AR

determines that it is highly probable to satisfy the consequent of the rule once the

antecedent was previously satisfied. Formally speaking, the AR concept could be

defined as follows:

Let I = {i1, i2, ..., in} be a set of items, and let A and C be item-sets, that

is, A = {i1, ..., ij} ⊂ I and C = {i1, ..., ik} ⊂ I. An association rule is an

implication of the type A→ C where A ⊂ I, C ⊂ I, and A ∩ C = ∅.

ARM was originally designed for market basket analysis, describing high correla-

tions between products, so it allows shop-keepers to exploit the discovered relation-

ships in order to increase the sales. Thus, ARM was considered as an important

task to describe the customers’ behavior.

Quantitative association rules. Real-world data usually comprise quantita-

tive attributes (e.g. age, size, etc). Therefore, the need for mining this kind of

attributes gave rise to a new concept of ARs, known as quantitative association

rules (QARs) [11, 16]. A major issue of this task is that numerical attributes are

usually defined on a wide range of values, and it is useless to work on all possible

values as done for categorical values. The mining of QARs could not be considered

as an extension of discovering nominal ARs, so the goal is to dynamically divide

their domains into intervals during the mining process so as to satisfy some quality

criteria [17]. Let I = {ii, i2, ..., in} be the set of items, and R be the set of real

numbers, then IR = {(x, l, r)|x ∈ I, l ∈ R, u ∈ R, l ≤ x ≤ r}. A triple (x, l, r) ∈ IR
denotes either a quantitative attribute x with a value interval [l, r], or a categorical

attribute with a value l (l = r). A QAR is an AR, that is, an implication of the

form A→ C, with the peculiarity that A ⊂ IR, C ⊂ IR, and A ∩ C = ∅.

Negative association rules. Sometimes, it is of interest to discover items that are

not positively associated, that is, the presence of a set of items implies that other

set of items is highly unlikely to be present [18]. This sort of ARs is considered
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as negative association rules (NARs), which are rules that appear in the form

¬A → C, A → ¬C or ¬A → ¬C. Thus, the entire antecedent or consequent

appears as a conjunction of negated and non-negated attributes.

Class association rules. Additionally, notice that ARM does not constraint

the target attribute. Instead, the process finds any relationship that appears in

the data regardless of which items are used as conditions in the antecedent or

consequent. However, in some application domains, the use of targets could be

of great interest. For instance, suppose that a company requires the analysis of

text documents where the extraction of relations between topics is a challenge. In

such a situation, the goal is to find out the words that are associated with specific

topics in order to be able to group topics by words. This sort of ARs is known as

class association rules (CAR), and they are considered as subsets of ARs with the

specified targets (also known as classes) as their consequents.

Rare association rules. Finally, the looking for rules that do not frequently ap-

pear in a dataset have given rise to the concept of RARs. The process of generating

RARs generates two types of rules as described in [19]: perfectly rare association

rule (PRAR) and imperfectly rare association rule (IRAR). Both kind of rules are

considered as RARs since they are satisfied by less than a maximum number of

times (support quality measure). A rule is considered as PRAR if the frequency of

occurrence is greater than the frequency of occurrence of each item within the rule,

that is, ∀x : x ∈ (A ∪ C), frequency(x) < maximum frequency. On the other

hand, a rule is considered as IRAR if the frequency of occurrence of the complete

rule is less than a maximum predefined threshold, and there is at least one pattern

in the rule that appears with a frequency greater than or equal to a maximum pre-

defined threshold, that is, ∃x : x ∈ (A∪C), frequency(x) ≥ maximum frequency.

2.1.2 Interestingness Measures

In ARM, there are many interestingness measures that could be divided into two

main categories: subjective and objective measures. The former takes into account

both the data and the user who requires the data. Thus, the user’s background

about the data is usually considered in this type of measures. As for the objective

measures, they are based on only the raw data. Therefore, this document only
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deals with objective measures, which do not require any user’s background that

could be hardly quantified.

As previously stated, the cornerstone of ARM is the search for item-sets that are

satisfied at least a certain minimum number of times. This frequency of occurrence

is widely known as the support of the item, being one of the major quality measures

used in this field. The support measure represents the probability of occurrence of

an item in in a database D, i.e., it is formally defined as support(in) = |in|/|D|.
Similarly, the support of a rule A→ C is calculated as the support of the item-set

formed by A ∪ C, so support(A→ C) ≡ support(A ∪ C).

In 1991, Piatetsky-Shapiro [20] suggested that any accuracy measure M should

verify three specific properties in order to separate strong and weak rules (in the

sense of assigning them high and low values, respectively). The properties are the

following:

� Property 1: M(A → C) = 0 when support(A → C) = support(A) ×
support(C). This property claims that any accuracy measure M must test

the independence (though values other than 0 could be used, depending on

the range of the measure).

� Property 2: M(A→ C) monotonically increases with support(A→ C) when

other parameters remain the same.

� Property 3: M(A → C) monotonically decreases with support(A) or with

support(C) when other parameters remain the same.

As well as support, confidence is a quality measure that appears in any problem

where ARM is applied. This second quality measure determines the reliability or

strength of implication of the rule, so the higher its value, the more accurate the

rule is. In a formal way, the confidence measure (see Equation 2.1) is defined based

on support by calculating the proportion of transactions included in A∪C among

those transactions that contain A.

confidence(A→ C) =
support(A ∪ C)

support(A)
(2.1)
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Support and confidence are broadly conceived as the finest quality measures in

ARM and, consequently, a great variety of proposals make use of them. These

proposals attempt to discover rules whose support and confidence values are greater

than certain thresholds. Nevertheless, many authors have considered that the mere

fact of exceeding these quality thresholds does not guarantee that the rules are

interesting at all [15]. For instance, the support-confidence framework does not

provide a test for capturing the correlation of two item-sets.

Lift is defined in Equation 2.2 as the relation between the confidence of the rule

and the expected confidence or support of the consequent. More specifically, if

lift(A → C) = 1, then support(A → C) = support(A) × support(C) so

A and C are independent (Property 1 of Piatetsky-Shapiro); if lift(A → C) > 1,

then C is positively dependent on A (Property 2 of Piatetsky-Shapiro); finally, if

lift(A → C) < 1, then C is negatively dependent on A (Property 3 of Piatetsky-

Shapiro). Thus, most authors look for a positive correlation among A and C, in

such a way that only values greater than 1 are desired, that is, the confidence of

the rule is greater than the support of the consequent.

lift(A→ C) =
support(A→ C)

support(A)× support(C)
=
confidence(A→ C)

support(C)
(2.2)

Similarly to the lift or interest measure, the leverage measure (see Equation 2.3)

proposed by Piatetsky-Shapiro (also called novelty in [21]) calculates how different

is the co-occurrence of the antecedent and consequent from expected, that is, from

independence. Leverage takes values in the range [-0.25, 0.25], and its value is zero

in those cases where the antecedent and consequent are statistically independent,

so values close to zero imply uninteresting rules.

leverage(A→ C) = support(A→ C)− (support(A)× support(C)) (2.3)

Many other quality measures [22] have been proposed to deal with some of the

weaknesses of the support-confidence framework, and conviction (see Equation 2.4)

is one of these measures. Conviction represents the degree of implication of a rule,

and values far from the unity indicate interesting rules. This quality measure

is infinite for logical implications, that is, for ARs with a maximum confidence
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value. Similarly to the lift measure, a conviction value of 1 implies an independence

between A and C.

conviction(A→ C) =
1− support(C)

1− confidence(A→ C)
(2.4)

In ARM, the right choice of quality measures that properly deal with the data

under study is a major issue. Many research studies are focused on the different

metrics to determine the interest of the rules mined. Thereby, the knowledge about

the relationship among the quality measures (see Figure 2.1) is of great interest to

select the most appropriate for each situation.

From this study, it can be deduced that the confidence value is always greater or

equal to the support value. Hardly an AR could be discovered with a confidence

lower than its probability of occurrence. Furthermore, it could be stated that the

higher the support of a rule, the more probable is that this rule is not of interest

according to lift, leverage and conviction. Thus, maximum support values, that

is, support(A → C) = 1, implies maximum confidence values, and therefore, lift

Figure 2.1: Relationship between different quality measures



2.1. Association Rule Mining 13

and conviction values equal to the unity, and leverage values equal to zero. All

these relationships, among others, are properly depicted in the chart. It is of high

interest for the expert, providing a previous knowledge about the behavior of the

quality measures, and how they relate in order to select the most appropriate set

of measures.

Finally, once a set of ARs is discovered (R1, R2, ...Rn), it is of interest to evaluate

the quality of the set, calculating the percentage of instances covered by this set.

This measure, known as coverage, evaluates the whole set of rules instead of a

specific rule (see Equation 2.5).

coverage(R1, R2, ...Rn) =
|{R1, R2, ...Rn ⊆ T, T ∈ D}|

|D|
(2.5)

2.1.3 Applications of ARM

Since ARM reveals relations among patterns, this task has been broadly used in

the business field, where the discovery of strong and interesting relations helps

in effective decision making. However, business is not the only area where this

challenging DM task has been applied, including medical diagnosis, census data,

web fraud detection, credit car business, etc.

In market basket analysis, databases comprise large number of transactions that

list all items bought by a specific customer. In this situation, it is of interest the

discovery of items that are related and usually purchased together. It allows shop-

keepers to move the products closer together on the shelves in order to exploit this

specific relationship, or even bring out promotions of these specific products.

Medical diagnosis is another interesting area of knowledge where ARM has been

successfully applied. This application field is not as easy as it seems, since diagnosis

involves unreliable tests and the presence of noise in many examples. This issue

may result in unsatisfactory predictions that hamper the medical process. ARM

has been also applied to identify the probability of illness in a certain disease by

defining relations between symptoms. Additionally, the recognition of patients who

suffer a particular disease that does not occur frequently [23] has been of interest.

Here, the extraction of RARs plays an important role.
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Census analysis is a very interesting application of ARM [24]. This analysis could

bring out interesting relations among education, health, transportation, shopping

in malls or street-markets, etc. The use of ARM in this kind of data can help in

supporting good public policies.

There exist many other application domains for which the identification of rare

patterns is an important issue. Communication failure detection [25], analysis of

interesting rare patterns in telecommunication networks [26], or credit card fraud

detection [27] are some of the applications where it is interesting to use ARs and,

particularly, RARs.

The educational field [28] requires a special interest from the knowledge extraction

point of view. Many applications have been proposed by discovering frequent rela-

tions in the students’ behavior [29]. Additionally, the use of infrequent associations

can also be of great interest, since they are related to rare but crucial cases. For

instance, they might allow the instructor to verify a set of rules concerning certain

abnormal learning problems that should be taken into account when dealing with

students with special needs. Thus, this information could help the instructor to

discover a minority of students who may need specific support with their learning

process.

Association rules can reveal interesting information in web-based educational sys-

tems, discovering which contents students tend to access, or which combination of

tools they usually use. Many authors have focused their studies on the application

of ARM to online educational systems. In [30], Ha et al. performed an analysis

of the existing associations in virtual knowledge structures, which were formed by

learners in their navigation on the web pages. Li et al. [31] also proposed recom-

mender agents for e-learning systems. They proposed the use of ARM to discover

associations between user actions and visited URLs. The goal was to recommend

online learning activities in a course web site based on the learner’s access history.

ARM has also been used to confront the problem of continuous feedback in the

educational process [32]. They proposed an approach to analyze the learners’ be-

havior in learning management systems in order to offer a learning environment

capable of increasing the learning effectiveness of the new mode of learning as well

as the efficient organization of the institutional resources. Normally, ARM has been

applied to many different situations in the educational field: to study learning data
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Figure 2.2: Categorization of existing proposals in ARM

in order to figure out the impact of the provided resources on the final marks [33];

to find hidden information that provides teachers a further analysis, refinement

and reorganization of their teaching materials [34]; to reinforce the content of the

e-learning web platform [35]; etc.

2.2 State-of-Art in Association Rule Mining

In this section, existing proposals for mining ARs are described in depth. These

approaches are categorized as depicted in Figure 2.2. Proposals have been grouped

into to main categories: exhaustive search and evolutionary algorithms. Both

groups are described in the following two subsections. Finally, the use of grammars

to represents rules and the mining of ARs by using multi-objective approaches are

addressed.

2.2.1 Exhaustive Search Proposals

Frequent association rules. At the beginning of the 90s, a first approach for

mining ARs was proposed by R. Agrawal and R. Srikant [6], which was based on an

exhaustive search methodology. This algorithm, named Apriori, uses prior knowl-

edge of frequent item-set properties to extract ARs. For the sake of determining the
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frequent item-sets, this algorithm makes multiple passes over the data. In each it-

eration, the support for certain item-sets is measured, and they are associated with

a counter that stores the sum of transactions in which the corresponding item-set

has appeared. This counter is initialized to zero when an item-set is created, and

it determines the frequency of occurrence of each item-set. The Apriori algorithm

determines that if a length-k item-set is not frequent in data, none of its length-

(k + 1) super item-sets can be frequent. An item-set becomes a candidate if every

one of its subsets is frequent. This property, known as anti-monotone property,

determines that every frequent item-set needs to be a candidate too, hence only

candidates’ frequency is calculated.

Apriori divides the ARM problem into two sub-problems: (1) obtaining all the

frequent item-sets in data and (2) extracting all the ARs — according to prede-

fined minimum confidence thresholds — starting from the results obtained in the

previous step. This methodology achieves good performance by reducing the size

of candidate sets by the anti-monotone property. However, in huge datasets or

those with a large number of frequent patterns caused by quite low minimum fre-

quency thresholds, an Apriori-like algorithm may suffer from two non-trivial costs.

Firstly, a huge number of candidate item-sets could be generated. Secondly, it is

computationally expensive to repeatedly scan the database and check a large set

of candidates by pattern matching.

Due to the candidate generation problems, some researchers have focused their

studies on a method that mines the complete set of frequent item-sets without a

candidate generation step. Thereby, the frequent-pattern growth algorithm is pro-

posed, or simply FP-Growth [7], which is based on a divide-and-conquer strategy.

This algorithm firstly compresses the data into a frequent-pattern tree structure,

which stores information about frequent patterns. Subsequent frequent-pattern

mining will only need to work on the resulting tree instead of the whole data. Addi-

tionally, the search technique employed in frequent-pattern mining is a partitioning-

based, divide-and-conquer method rather than an Apriori-like level-wise generation

of combinations of frequent item-sets. Nevertheless, this approach is not free of dif-

ficulties: the memory requirements are significantly increased with the growth of

the data size; like the Apriori algorithm, very low minimum support thresholds

may cause the discovery of huge numbers of ARs.
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Zhenguo et al. [36] have presented an approach that improves FP-Growth both in

runtime and the memory consumption. This algorithm is based on a compound

single linked list, which is used to improve the structure of the FP-tree. In its

mining procedure, the improved version of FP-Growth first scans the data to obtain

the set of frequent items and their support counts. This set of frequent items is

sorted in descending support count order and determines the header of the single

link list. In a second scan of the data, the algorithm processes the items of each

transaction and insert the items into the single link list.

Quantitative association rules. Early studies involving exhaustive search al-

gorithms [37] for mining ARs focused on data with categorical items. However,

the data in real-world applications usually consist of numerical values (real and

integer values), containing many distinct values, so exhaustive search algorithms

for ARM cannot be used directly. Because each numerical attribute might have a

large amount of values, the ARM problem from numerical data has a much bigger

search space than the problem of categorical mining. A well-known solution to deal

with numerical values is the data discretization, that is, the division of their do-

mains into intervals followed by applying categorical values to the intervals. One of

the shortcomings of using discretization is to choose the correct interval numbers.

In [38], R. Agrawal and R. Srikant presented the problem of mining QARs, and

they pointed out that choosing intervals for numerical attributes is quite sensitive

to the support measure and, in consequence, to the confidence measure. If the

number of intervals of a numerical attribute is large (intervals with small width),

the support of any single interval can be low and rules involving this attribute may

not be found.

Class association rules. Some authors [39, 40] have considered the ARM problem

under the CARs perspective. Li et al. [39] proposed an efficient algorithm for

mining the optimal CARs. They proposed an upward closure property of prunning

weak ARs before they are generated. This closure property determines that all

super-sets of an infrequent item-set must be infrequent. The goal is to discard

rules from the resulting set of CARs to obtain a more interpretable set and being

as accurate as the original one.

Association rules without thresholds. Some authors [41] have studied the

ARM field from the perspective of removing the support and confidence thresholds.
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Instead, they have proposed the discovery of the n best rules, so no fixed threshold

is previously required. Notice that a knowledge discovery system has to evaluate

the relevance of the extracted knowledge so the interest of the n obtained rules

should be as high as possible. This algorithm, named Predictive Apriori, presents

a trade-off between confidence and support. An important feature of this algorithm

is its ability to remove redundant rules. Authors stated that an AR r1 subsumes

another AR r2 if and only if the antecedent of r1 is a subset of the antecedent of r2,

and the consequent of r1 is a superset of r2, that is, r1 predicts more attribute values

than r2. The algorithm guarantees that the n rules provided are not redundant.

Similarly to Predictive Apriori, Lin et al. [42] proposed an approach for mining

ARs particularly well-suited to be used in collaborative recommender systems.

Actually, notict that most of the existing ARM algorithms are not suitable for the

recommendation domain, since they extract many rules that are not relevant to

a given user, and also requiring a minimum support value that often leads to a

huge number of rules. The algorithm proposed by Lin et al. adjusts the minimum

support so that the number of rules discovered is within a previously fixed range.

This algorithm avoids excessive computation time and guarantees that enough rules

are provided.

Infrequent/rare association rules. Despite the fact that mining frequent pat-

terns is a major task in ARM, currently there has been increasing interest in the

extraction of unusual or infrequent patterns. In early studies, the problem of find-

ing infrequent patterns was originally addressed by using algorithms for mining

frequent patterns. An algorithm for discovering PRAR, called Apriori-Inverse, was

proposed by Koh and Rountree [19]. During the search process, Apriori-Inverse

keeps those items with a support value greater than a minimum support threshold

but less than a maximum value. Then, similarly to Apriori, a set of ARs is ob-

tained by using a confidence threshold over all the possible combinations of items

previously obtained. Consequently, this algorithm mines a lot of RARs since the

support of each one is less than or equal to that of the item with minimum support.

Notice that this algorithm does not find any IRAR, since it would never consider

item-sets that have a support value greater than the maximum threshold.

Another RARM algorithm, called ARIMA, was first proposed by Szathmary et

al. [43] as a näıve approach. Unlike the Apriori-Inverse algorithm, ARIMA is not
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limited to calculating PRAR. This algorithm firstly mines the minimal rare item-

sets, i.e., those rare item-sets whose proper subsets are frequent. Thus, whenever

a candidate k-item-set survives the frequent k − 1 subset test, but proves to be

rare, it is kept as a minimal rare item-set. Then, the algorithm finds their proper

supersets, avoiding zero item-sets, i.e., those having a support of zero. Similarly to

Apriori, RARs are generated using the set of rare item-sets mined. For this final

process, it is necessary to satisfy a minimum confidence threshold.

Authors of the ARIMA algorithm proposed two different ways of mining rare item-

sets [43]. A first version, called Apriori-Rare, is a slightly modified version of

Apriori, finding all frequent item-sets and storing the minimal rare item-sets dis-

covered. Szathmary et al. [44] also proposed a much more efficient proposal, the

MRG-Exp algorithm, which reduces the search space by avoiding exploring all fre-

quent item-sets. Instead, it is sufficient to search for frequent generators only. An

item-set X is a generator if it has no proper subset with the same support, i.e.,

∀Y ⊂ X, support(X) < support(Y ). The Apriori-Rare requires a higher compu-

tational time since it lists all frequent item-sets before reaching the minimal rare

item-sets whereas MRG-Exp explores only the frequent generators. Both versions

obtain association rules from the set of minimal rare item-sets, the number of rules

discovered being smaller than the näıve approach.

Although it is more efficient to obtain rare association rules by applying specific

algorithms for the extraction of infrequent patterns, it is also possible to follow

the classic Apriori proposal to obtain rare association rules from the set of infre-

quent items. An example is Apriori-Infrequent, which has been used for intrusion

detection [25]. During the candidate generation phase, an infrequent item-set is

considered as a candidate if it comprises only frequent elements or items so this

algorithm seeks for IRARs. Finally, the resulting set of candidate elements is used

to obtain rules that exceed a minimum confidence threshold.

2.2.2 Evolutionary Algorithms

EAs have been widely used in DM tasks, where the process of searching for solu-

tions requires some optimization. Many researchers have focused their solutions to
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the ARM problems from an evolutionary perspective [16, 45], facing up to the ex-

haustive search approaches’ computational and memory requirements. Most of the

existing evolutionary approaches are based on GAs [8, 12], having a fixed-length

chromosome, which is not as flexible as expected.

Categorical association rules. Olmo et al. proposed in [46] the first approxi-

mation to the extraction of ARs by employing ant programming, a nature-inspired

optimization meta-heuristic based on the behavior and organization of ant colonies.

This algorithm, named GBAP-ARM (Grammar-Based Ant Programming for As-

sociation Rule Mining), measures the quality of the rules discovered by using the

weighted average between support and confidence. This measure represents the

harmonic mean of support and confidence. The goal is to maximize this average

value, which is contained into the interval [0,1]. Despite the excellent results, an

important drawback of GBAP-ARM is that it can not be applied on numerical

data, so this kind of attributes still require to be discretized.

In ARM, most research studies have focused on improving computational efficiency,

but it is also of interest the determination of threshold values for support and

confidence. For this purpose, a particle swarm optimization algorithm [47] was

proposed by Kuo et al., which searches for corresponding support and confidence

values as minimal thresholds. This algorithm works on binary data so transactional

data have to be transformed into binary data type, and each chromosome includes

the number of the item comprised in the rule. Finally, after finding the best particle,

its support and confidence are recommended as the value of minimal support and

minimal confidence. These optimal values are employed in ARM to extract valuable

information.

Quantitative and Negative association rules. The use of EAs has given rise

to different kind of algorithms for mining both QARs and NARs. An example of

mining QARs by means of GAs is QuantMiner [11], which uses a genetic algorithm

to learn appropriate intervals on a set of rules previously computed and searches

for the optimization of a given quality criteria. Individuals are represented as sets

of items of the form attributei ∈ [li, ri], where li and ri state for the minimum and

maximum selected bounds of the i-th attribute, respectively. The evolutionary pro-

cess modifies the interval amplitudes and evaluate the solutions by the confidence

measure. If the predefined minimum confidence threshold is exceeded, then the
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interval amplitudes are considered in favour of those with small amplitudes. Addi-

tionally, those rules that infrequently occur are penalized by decreasing drastically

their fitness values.

QARGA [45] (Quantitative Association Rules by Genetic Algorithm) is other evo-

lutionary approach that finds existing relationships among numerical attributes.

This algorithm is a real-coded GA that does not perform previous attribute dis-

cretization, that is, it handles numerical data during the whole mining process. In

QARGA, each individual is represented by an array of fixed length n (the number

of available continuous attributes in data). Each gene represents the upper and

lower limit of the interval of each continuous attribute. Additionally, each gene

comprises a value that represents the type of attribute. Thus, each attribute could

not belong to the individual, belong to the antecedent, or belong to the consequent.

QARGA is based on the iterative rule learning process, so the EA is applied in each

iteration obtaining one rule per iteration (the best individual discovered).

The mining of ARs with quantitative conditions has been the cornerstone of many

GAs. Alcalá et al. [9] studied the effectiveness of GAs for mining QARs. In this

study, they present an experimental study of two real-world datasets to show the

behaviour of three GAs for mining QARs: ARMGA (Association Rule Mining Ge-

netic Algorithm) [8], GENAR (GENetic Association Rules) [48] and GAR (Genetic

Association Rules) [16]. ARMGA [8] is an interesting GA for mining ARs. This

algorithm encodes each rule in a single chromosome, where the first gene of each

individual chromosome is an indicator that separates the antecedent from the con-

sequent of the rule, and the following genes of the chromosome are each of the

items — a length-k rule is represented by k + 1 positive integers. Notice that

quantitative attributes are divided into intervals according to a level of granularity

predefined by the user. The ARMGA algorithm uses mutation (it changes genes

with a certain probability) and crossover (following a two-point strategy) as genetic

operators to obtain new individuals in a given generation. Finally, each individual

is evaluated according to the relative confidence, which is defined as the degree of

relationship between the antecedent and consequent.

As for the GENAR and GAR algorithms, they are very similar approaches for min-

ing ARs. In fact, GAR is an extension of the GENAR algorithm presented in [48].

In both algorithms, individuals are represented as a list of genes grouped in threes.
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In each group, the first gene represents the attribute, whereas the remaining genes

indicate the minimum and maximum limits of the interval. An important drawback

of GENAR is that it is necessary to prepare the data to indicate which attributes

form part of the antecedent and which ones are included in the consequent. Nev-

ertheless, this process is not necessary in the GAR algorithm because it seeks for

the frequent item-sets and the rules are built from them.

Sometimes, it is useful to mine not only positive ARs but also negative ARs. These

ARs include conditions within the antecedent or the consequent being negated.

Alatas et al. [12] proposed a GA for mining both negative and positive quantitative

rules, the rules considered including, at least, one negative condition. Thus, the

rules discovered by this algorithm could be of the form ¬[a1, a2]→ [b1, b2], [a1, a2]∧
[b1, b2] → ¬[c1, c2], [a1, a2] ∧ ¬[b1, b2] → [c1, c2], etc. A negative condition, for

instance, ¬[a1, a2], determines that the attribute is not in the range [a1, a2] and,

a1 and a2 show the lower and upper bound of the interval. In this GA, each

chromosome consists of genes that represent the attributes and intervals. Thus, the

i-th gene encodes the i-th attribute. Each gene has a value to determine whether

the attribute will be in the antecedent, in the consequent or not be involved in

the rule. Moreover, each gene has a value to determine whether the attribute will

be positive or negative, and two values to indicate the lower and upper bounds of

the interval. In this algorithm, the chromosome length will be m× 4, m being the

number of attributes to be mined.

Fuzzy association rules. In the last years, the ARM problem has been addressed

by means of the fuzzy set theory. The use of fuzzy sets to describe associations [49]

improves the interpretation of the knowledge represented by the rules. Herrera

et al. [50] proposed a fuzzy algorithm for extracting both ARs and membership

functions from quantitative data by means of an evolutionary methodology. This

algorithm is based on the well-known CHC evolutionary model [51], which presents

a good trade-off between exploration and exploitation.

2.2.3 Grammar-Guided Genetic Programming

Genetic programming (GP) [52] is an evolutionary and very flexible heuristic tech-

nique that enables complex pattern representations to be used. GP represents the
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solutions to the problem by means of trees, enabling any kind of function and do-

main knowledge to be considered. Solutions represented as trees include two kind

of symbols. Leave nodes correspond to variables and constants, whereas internal

nodes correspond to operators and functions.

GP [53] was proposed as an extension of GAs to build computer programs by

means of a complex representation language. The original goal of GP was to

find an optimized solution from a search space composed by all possible computer

programs. Nevertheless, GP is currently used to evolve other types of knowledge,

like rule-based systems [54].

Recently, a new extension of GP was established for the sake of formally define the

problem constraints [55]. This new methodology, named grammar-guided genetic

programming (GGGP or G3P) [56], employs a context-free grammar (CFG) that

generates any feasible solution to the problem under study. In this way, the gram-

mar constrains the search space and solutions are constructed by applying a set of

productions rules. The grammar is defined based on the problem under study or

the kind of solutions to be obtained.

A CFG could be formally defined as a four-tuple (ΣN , ΣT , P , S), in which ΣN is the

non-terminal symbol alphabet, ΣT denotes the terminal symbol alphabet, P stands

for the set of production rules, S for the start symbol, and ΣN and ΣT are disjoint

sets, i.e., ΣN ∩ ΣT = ∅. Any production rule follows the format α → β where

α ∈ ΣN , and β ∈ {ΣT ∪ΣN}∗. Beginning from the start symbol S, each individual

is represented in a derivation syntax-tree as a sentence conformant to the gram-

mar. The benefits of using grammars are the ability to define syntax constraints,

providing expressiveness, flexibility, and the ability to restrict the search space. To

obtain individuals, a number of production rules are applied from the set P . This

process begins from the start symbol S. The maximum number of production rules

is properly predefined to control bloat, so there is a maximum tree size enforced.

Finally, it should be noted that, in G3P trees, leave nodes correspond to terminal

symbols and internal nodes correspond to non-terminal symbols.

Grammars bring a number of benefits to GP [57], one of the most important is

the flexibility and ability to restrict the search space. Grammars are mainly used

to overcome the problem of generating valid programs and preserving its correct-

ness. There are many fields where grammars could be used to encode reasonably
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complex prior knowledge. This prior knowledge is highly important since it pro-

vides dimensional consistency and it drastically reduces the number of admissible

solutions.

Generally, the functions and operators used in G3P are quite similar to those used

in GP. However, there are some differences between both techniques. Firstly, indi-

viduals in the initial population should be valid solutions according to the context-

free grammar defined by G3P. On the contrary, GP enables invalid individuals to

be generated, so it hampers the convergence to the optimal solution. Secondly,

the genetic operators should consider the production rules of the grammar. Thus,

the crossover operator only swaps compatible sub-trees. Similarly, the mutation

genetic operator is required to produce only feasible individuals.

As McKay et al. described in [58], the first use of grammars in GP systems were

independently implemented at about the same time by three different researchers.

Whigham [59] proposed the CFG-GP system, in which a CFG was used to gener-

ate derivation trees. GeyerSchulz [60] derived his very similar G3P approach for

learning rules for expert systems. Wong and Leung [61] proposed an approach that

uses PROLOG to generate programs to learn first order relations.

In the context of DM, G3P has been largely used in supervised learning [62–64],

whereas its use in unsupervised learning, like ARM, is still unexplored. Regarding

the supervised learning task, Zafra et al. proposed the use of grammars to enforce

constraint in the GP trees in the field of multiple instance classification [62, 63].

The authors proposed an algorithm that expresses the information in the form of

IF-THEN classification rules. An important advantage of this approach, called

G3P-MI (Grammar-Guided Genetic Programming algorithm for Multiple Instance

learning), is its ability to represent the knowledge discovered in a comprehensible

way. Thus, the data miner can understand the results, being able to make a well-

informed decision.

G3P has been also applied to multi-label classification [64] obtaining interesting

results. The classifier provided by this algorithm is a rule-based that consists of

several IF-THEN classification rules obtained from the evolutionary process. In

order to obtain the labels for each example, the algorithm uses the aggregation of

the consequents from the rules whose antecedent satisfies the example.
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To sum up, solutions in G3P are expressed in a tree shape structure conformant

to a context-free grammar. This grammar enables solutions to be represented for

any domain, and the shape, size and structural complexity to be constrained by

that grammar. Indeed, a grammar could be easily adapted to different problems,

producing rules with varied structures. The use of G3P in ARM is therefore justi-

fied, as the number of different rules could be high enough to be computationally

intractable by means of an exhaustive search methodology.

2.2.4 Multi-Objective Proposals

Generally, there are often problems that require simultaneously optimize more than

one objective. Under these circumstances, it is not possible to determine only one

single best solution to them but a satisfactory trade-off [65]. A sample application

domain where multi-objective optimization could be applied is the development of

a new vehicle by a company. In this context, there are many issues that should

be bore in mind, like the optimal combination of vehicle weight and engine power

to efficient driving; that is, it is required to reduce the fuel consumption as much

as possible. Additionally, the cost of the development of such a vehicle has to be

minimized, whereas maximum performance and comfort are desired.

In multi-objective optimization [66], the goal is to obtain a set of solutions that all

equally fit for the optimum, and this set of solutions is known as Pareto Optimal

Front (POF). None of the solutions included in the POF is better than the other

solutions for all the objectives, so all of them are fairly acceptable.

In the multi-objective field, when a solution is better than any other for each

objective, then it is said that such a solution dominates the others. In a formal way,

given a set of objective functions F = {f1, f2, f3, ..., fn}, a solution s belongs to the

POF if there is no other solution s′ that dominates it. A solution s′ dominates s if

and only if fi(s
′) ≥ fi(s)∀f ∈ F and fi(s

′)>fi(s) for at least one f ∈ F . However,

there are problems where it is necessary to minimize the objectives instead of

maximizing them. In such problems, a solution s belongs to the POF if there

is no other solution s′, where fi(s
′) ≤ fi(s)∀f ∈ F and fi(s

′)<fi(s) for at least

one f ∈ F .
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Figure 2.3: Sample Pareto optimal front comprising two solutions from a set of five
solutions

For a better understanding, consider five solutions (s1, s2, s3, s4 and s5) to a specific

problem, where two objectives (f1 and f2) are considered to be minimized, as

properly depicted in Figure 2.3. Analysing these five solutions, it can be determined

that s1 is not dominated by any other solution because f1(s1) is the best value.

None of the remaining solutions obtains a lower value for the objective f1. Similarly,

s2 is not dominated by any other because f2(s2) is the best value for the objective f2.

On the other hand, s3 is dominated by s1 because f1(s1)<f1(s3) and f2(s1)<f2(s3).

Note that s4 is dominated by s2 because f1(s2)<f1(s4) and f2(s2)<f2(s4). Finally,

s5 is dominated by both s1 and s2. Therefore, the set of solutions that comprises

the POF is formed by s1 and s2, i.e. solutions that are equally acceptable because

neither of them is better than the other for all the objectives. On the contrary, s3,

s4 and s5 could be simply removed, since they are sub-optimal solutions.

Additionally, the nature itself of the multi-objective optimization problems, which

could be complex and very time-consuming, has given rise to the use of new dis-

ciplines to deal with this kind of problems. In this situation, the use of EAs to

solve multi-objective problems has received increasing attention mainly motivated

by the population-based nature of EAs, which enables a set of solutions to be ob-

tained in a single execution. This synergy is known as evolutionary multi-objective

optimization (EMO) [66].
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In ARM problems, it is often of interest to simultaneously optimize more than one

quality measure. Thus, not only a frequent rule is of interest, but its reliability or

even the high correlation between its antecedent and consequent are also desired.

Despite the fact that most existing proposals for mining ARs are designed as a

single-objective problem [6, 7, 11], many researchers have focused their studies on

the extraction of interesting ARs by means of a EMO methodology [67, 68].

Ghosh et al. [69] proposed a multi-objective algorithm for mining useful and in-

teresting rules from market-basket data. The authors presented a GA to simul-

taneously optimize comprehensibility, interestingness, and confidence as measures.

The proposed GA associates two genes to each attribute. If these two genes are 00

then the attribute is considered for its addition to the antecedent part of the rule,

whereas the values 11 indicate that the attribute only appears in the consequent

part. Finally, the other two combinations (01 and 10) will indicate the absence of

the attribute in either of these parts, antecedent or consequent.

Another relevant approach in multi-objective optimization is called MODENAR [67]

(Multi-Objective Differential Evolution algorithm for mining Numeric Association

Rules), which extracts numeric association rules. In this approach, a search strat-

egy for mining accurate and comprehensible rules is carried out by applying a

multi-objective differential evolution method [70]. During the mining process, four

objectives are considered. For each association rule, the support, confidence and

comprehensibility need to be maximized, whereas the amplitude of the intervals

within each rule is minimized. MODENAR represents individuals by means of

decision variables that represent the items and intervals, where the i-th item is

encoded in the i-th decision variable. Each decision variable includes three parts:

(1) a value that determine whether the item is included in the antecedent, in the

consequent, or not considered; (2) the lower bound of the item interval; and (3)

the upper bound of the interval.

Kumar et al. [71] proposed an approach for mining association rules by using the

well-known multi-objective evolutionary algorithm NSGA-2 [72]. During the eval-

uation stage, different measures were used, such as interestingness, comprehensi-

bility, support, confidence, etc. Finally, a series of experiments were carried out

by taking three different measures each time and making a comparison with the
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traditional Apriori algorithm. Authors stated that some of the rules obtained us-

ing NSGA-2 cannot be obtained using traditional methods like Apriori because

support for such rules is very low.

Similarly to the algorithm proposed by Kumar et al., a multi-objective ant pro-

gramming algorithm based on NSGA-2 for mining ARs was proposed by Olmo

et al. [46]. This algorithm, named MOGBAP-ARM (Multi-Objective Grammar-

Based Ant Programming for Association Rule Mining), looks for simultaneous ac-

quisition of very frequent and reliable rules. MOGBAP-ARM uses an auxiliary

population to keep the POF discovered in a given generation. The individuals of

this auxiliary population are merged with those created at the next generation, so

a ranking of this population will determine the non-dominated solutions. The al-

gorithm returns the set of non-dominated solutions from this auxiliary population.



3
Grammar-Guided Genetic

Programming for Mining Association

Rules

In this chapter, we present a proposal based on G3P for mining association rules,

called the G3PARM (Grammar-Guided Genetic Programming for Association Rule

Mining) algorithm. This proposal is the first approach using G3P in the ARM field.

It uses a CFG that allows defining syntax constraints in the programs that represent

the ARs and may be used in both numerical and categorical domains. G3PARM

makes use of an auxiliary population of individuals (each individual represents

an AR) that exceeds certain support and confidence thresholds. This auxiliary

population has a fixed size and keeps the best individuals obtained with the passing

of generations. The G3PARM algorithm obtains solutions without needing the

large amounts of memory normally used by exhaustive search algorithms, and

within specified time limits.
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To analyse the effectiveness of our proposal, we compare it versus exhaustive

search [7] and genetic [8, 73] algorithms for mining ARs by using different real-

world datasets. The results of empirical comparison demonstrate that our pro-

posal obtains rules with high support, high confidence and high coverage of data

instances. Moreover, the scalability of these algorithms is compared. Finally, their

behaviour by increasing the number of attributes and the number of instances in

the datasets is studied.

3.1 The G3PARM Algorithm

G3PARM is an approach that serves to obtain ARs for any domain or problem.

This algorithm makes use of G3P to define expressive and understandable indi-

viduals. This section presents our model with its major characteristics: the repre-

sentation of individuals using a CFG, the treatment of categorical and numerical

attributes, genetic operators, the evaluation process, and the evolutionary algo-

rithm.

3.1.1 Encoding

In G3P, each problem solution is composed of two distinct components: (a) a geno-

type, represented by a derivation syntax-tree, and (b) a phenotype, that represents

the rule. The phenotype represents the complete rule consisting of an antecedent

and a consequent. Both the antecedent and consequent of each rule are formed by

a series of conditions that contains the values of certain attributes that must all be

satisfied.

Figure 3.1 shows the CFG through which the population individuals are encoded

in the proposed algorithm. As stated in Chapter 2, a CFG is formally defined

as a four-tuple (ΣN , ΣT , P , S) where ΣN ∩ ΣT = ∅, ΣN is the alphabet of non-

terminal symbols, ΣT is the alphabet of terminal symbols or tokens, P is the set of

production rules and S stands for the start symbol. Productions have the format

α→ β where α ∈ ΣN , and β ∈ {ΣT ∪ΣN}∗. Individuals are defined as a derivation

syntax-tree where the root is the symbol S, the internal nodes contain only non-

terminal symbols and the leaf nodes contain only tokens. Each individual is a
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G = (ΣN , ΣT , P , S) with:

S = {Rule}
ΣN = {Rule, Antecedent, Consequent, Comparison, Categorical Comparator,

Categorical Attribute Comparison, Numerical Comparator,

Numerical Attribute Comparison}
ΣT = {‘AND’, ‘! =’, ‘=’, ‘<=’, ‘<’, ‘>=’, ‘>’, ‘name’, ‘value’}
P = {Rule = Antecedent, Consequent ;

Antecedent = Comparison | ‘AND’, Comparison, Antecedent ;

Consequent = Comparison | ‘AND’, Comparison, Consequent ;

Comparison = Categorical Comparator, Categorical Attribute Comparison |
Numerical Comparator, Numerical Attribute Comparison;

Categorical Comparator = ‘! =’ | ‘=’ ;

Numerical Comparator = ‘<=’ | ‘<’ | ‘>=’ | ‘>’ ;

Categorical Attribute Comparison = ‘name’, ‘value’ ;

Numerical Attribute Comparison = ‘name’, ‘value’ ;}

Figure 3.1: Context-free grammar expressed in extended BNF notation

sentence generated by the grammar and represented by a derivation syntax-tree.

To generate the sentence, the derivation syntax-tree is obtained by applying a series

of derivation steps.

Grammars can be used either to define the valid expressions of a computer language,

to impose restrictions, or to describe constraints on interactions within systems.

In particular, the use of a CFG allows individuals to be obtained for each specific

problem or domain [58]. Validating the CFG proposed (see Figure 3.1) requires the

analysis of the language denoted by the grammar. Thus, consider the following lan-

guage definition L(G3PARM) = {(AND comp)n comp → (AND comp)m comp :

n >= 0,m >= 0}, where the symbol “→” is depicted to represent the existing

separation between the antecedent and consequent in the derivation syntax tree,

and comp states for a comparison expression comprised by the AR. Notice that n is

greater than 0 if the rule has more than one condition in the antecedent. Similarly,

if the consequent contained more than one condition, then m would be greater

than 0. In short, any string resulting from this expression belongs to the context

free language denoted by the grammar, which represents a rule (i.e. individual)
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Table 3.1: Metadata defined in the weather dataset.

Attributes Values

outlook sunny, overcast, rainy

temperature hot, mild, cool

humidity high, normal

wind true, false

play yes, no

containing at least one condition in the antecedent and at least one condition in

the consequent (the clause AND is used to connect a sequence of conditions).

The chromosome encodes its expression using a pre-order traversal of the parse

tree. It should be noted that the terminal grammar symbol ‘name’ is determined

in the feasible attributes. For each one, the assigned value is determined among

their available values. For example, using the well-known weather 1 dataset, a set

of feasible values is obtained for each attribute as shown in Table 3.1.

Figure 3.2 shows a sample representation of an individual in the G3PARM algo-

rithm using the aforementioned wheather dataset (see Table 3.1). The syntax-

tree structure is obtained according to the previously defined grammar. As men-

tioned above, the phenotype represents the rule and is obtained by eliminating

non-terminal genotype symbols: (outlook ! = sunny AND windy ! = false) →
(play = no).

The generation of an individual is carried out from the start symbol of the grammar.

From this symbol, the algorithm searches for a feasible solution through the random

application of production rules belonging to set P , until a valid derivation chain is

reached. The maximum number of derivations is determined by a value provided

in the algorithm configuration parameters.

To carry out the derivation of the non-terminal symbols that appear in the gram-

mar, we use the cardinality concept which is defined as the number of derivation

steps necessary for creating only terminal symbols. If a non-terminal symbol can

be derived in several ways, the cardinality of this non-terminal symbol will be

1This dataset is included in the Weka dataset collection, which can be obtained from the Weka
machine learning project. http://www.cs.waikato.ac.nz/~ml/index.html.

http://www.cs.waikato.ac.nz/~ml/index.html.
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Figure 3.2: Sample individual genotype represented in a syntax-tree structure

determined by the sum of the cardinalities of each of the possible derivations of

this symbol. In the derivation process, a production between the minimum and

maximum number of derivation steps is randomly selected. Once a production is

chosen, the maximum number of derivation steps is decreased by one. The higher

the cardinality of a symbol, the higher the probability of choosing this symbol as

a production, taking into account the maximum number of derivations.

3.1.2 Dealing with Categorical Attributes

Categorical attributes are commonly used in most algorithms for mining ARs. A

categorical attribute Att of an AR is an attribute that has a discrete unordered

domain D. In our proposal, an expression of the form Att = u or Att 6= u is

allowed, where Att is a categorical attribute and u is a value in the domain D of

Att. The expression Att 6= u indicates that Att takes any value in D\{u}.

For a domain D of a categorical attribute, the support of any value u in this domain

might be very low. Using the operator 6= it is possible to obtain a higher support.

For example, using the attribute Att in a domain D = {a, b, c, d}, the support of

Att = a is 0.14, whereas the support of Att 6= a will be 0.86.
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3.1.3 Dealing with Numerical Attributes

Numerical attributes are usually defined within a wide range of numerical values. It

is useless to work on all possible numerical values, as done with categorical values,

because in most cases, a given numerical value will not appear frequently and each

numerical attribute might have an enormous number of values appearing in the

dataset. A classical way to deal with numerical attributes is to divide their domains

into different intervals by the discretization pre-processing operation. This process

may create new problems, e.g., the greater the number of intervals, the greater the

execution time since the number of items per record soars. There is a trade-off

between faster execution time with fewer intervals and reducing information loss

with more intervals.

The algorithm proposed uses a new alternative to deal with numerical attributes

using different equal-width points in the range of values and using these points as

the value of the numerical attribute. The upper and lower bounds of the range

of values will not be taken into account to avoid rules that always occur, which

will therefore be uninteresting rules since they do not provide new information.

For example, having the numerical attribute Att, if we obtain five points from the

range of values [1000, 2000], then we will have as possible values: 1250, 1500 and

1750. Thus, following expressions could be obtained: Att >= 1250, Att < 1250,

Att > 1250, etc. A rule always occurs if we take the uppermost (value 2000) or

lowest (value 1000) bounds of the range (e.g., Att >= 1000).

One of the main problems when dividing the range of values into intervals is the

correct definition of the width of each interval. Small intervals could imply that the

support for any single interval might be low and rules involving this attribute may

not be found. On the other hand, big intervals could imply uninteresting rules. Our

proposal avoids this problem since it allows interval rules to be obtained by defining

a different interval width in one same attribute. For example, using the attribute

Att mentioned above, we can obtain the interval Att > 1250 AND Att < 1500 for

(1250, 1500) or Att > 1250 AND Att <= 1500 for (1250, 1500].

Unlike the discretization method, our proposal deals directly with numerical at-

tributes and does not divide the numerical attributes into intervals by assigning a

categorical value to each interval. It avoids the problem of obtaining small intervals
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with possibly low support and where rules involving this attribute might be not

found. Therefore, for any distance between points in the range of an attribute’s

values, it is possible to obtain support that exceeds the minimum support thresh-

old. In addition, it is not necessary to perform a previous discretization step (data

preprocessing), which is another advantage of our proposal.

3.1.4 Genetic Operators

In this section, two new genetic operators, developed to generate new individuals in

a given generation of the EA process, are presented. With these genetic operators,

we try to obtain rules with higher support than the original ones. The support of

an AR depends on the frequency of its attributes, so the greater the frequency of

occurrence of rule attributes, the greater the probability of increasing the support

of the entire rule. However, increasing the frequency of occurrence of an attribute

does not always imply an increase in the support of the entire rule.

Crossover. The pseudo-code of this genetic operator is shown in Algorithm 1,

and Figure 3.3 shows this process graphically. Like crossover operators in most GP

approaches [58], the main idea of this operator is to obtain two new individuals

Algorithm 1 G3PARM crossover
Require: parents
Ensure: offspring

1: offspring ← ∅
2: for all individuals in parents do
3: parent1, parent2← getIndividuals(parents)
4: if random() < crossoverProbability then
5: attribute1← getAttributeMaximumSupport(parent1)
6: attribute2← getAttributeMinimumSupport(parent2)
7: if attribute2 is not contained in parent1 then
8: offspring ← offspring ∪ exchange(parent1,attribute1, attribute2)
9: else

10: offspring ← offspring ∪ parent1
11: end if
12: if attribute1 is not contained in parent2 then
13: offspring ← offspring ∪ exchange(parent2,attribute2, attribute1)
14: else
15: offspring ← offspring ∪ parent2
16: end if
17: end if
18: end for
19: return offspring
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Figure 3.3: Example of crossover operation
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from two different parents. In this proposal, the attribute with the lowest frequency

of occurrence in one parent is swapped with the highest one in the other parent.

This enables us to obtain at least one individual whose attributes appear more

frequently than at least one of the parents.

The operator creates new individuals by exchanging the derivation sub-trees of

two parents (Parent1 and Parent2) from two selected nodes with the same non-

terminal symbol in each of them. To select a node from Parent1, the attribute

of the rule with the highest support is chosen for exchange and then we take the

non-terminal symbol Comparison from which this attribute is derived. To select a

node from Parent2, the attribute of the rule with lowest support is chosen to be

exchanged and the non-terminal symbol Comparison is taken. In this example, we

consider the frequency of occurrence of the attributes are: 25 for ‘att1 != value1’,

53 for ‘att2 ≥ value2’, 51 for ‘att3 > value3’, 27 for ‘att4 < value4’, and 17 for

‘att5 = value5’.

Mutation. The mutator operator process is shown graphically in Figure 3.4 and

the pseudo-code is shown in Algorithm 2. The main idea of this genetic operator is

an attempt to obtain an individual with greater support. In this way, the attribute

with the lowest frequency of occurrence is mutated to try to obtain an attribute

with a higher frequency. Based on this attribute, a node from this sub-tree is

selected randomly and the next action is based on the symbol type. There are

two possibilities: if the node is a non-terminal symbol (e.g. Comparison), a new

derivation is performed from this symbol (see Figure 3.4(a)). On the other hand, if

the node selected is a terminal symbol, it changes the value of the terminal symbol

Algorithm 2 G3PARM mutation
Require: parents
Ensure: offspring

1: offspring ← ∅
2: for all individuals in parents do
3: parent← getIndividual(parents)
4: if random() < mutatorProbability then
5: attribute← getAttributeMinimumSupport(parent)
6: offspring ← offspring ∪ getNewDerivation(attribute)
7: end if
8: end for
9: return offspring
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(a) Example of mutation operator selecting a non-terminal symbol

(b) Example of mutation operator selecting a terminal symbol

Figure 3.4: Examples of mutation operation
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at random (Figure 3.4(b)). In this example, we consider that the frequency of the

attribute occurrence is 53 for ‘att1 != value1’ and 25 for ‘att2 = value2’.

3.1.5 Evaluation

One of the main processes in any evolutionary model is the evaluation procedure

(see Algorithm 3), which determines how promising a certain individual is, that

is, how close a given solution comes to achieving the aim. The evaluation process

is therefore responsible for assigning a fitness function to each feasible solution,

and this procedure is executed in each generation of the evolutionary model. The

first step in the evaluation of an association rule is to check whether the discovered

expression is consistent with a valid AR, that is, if there is no coincidence between

features in the antecedent and consequent of the rule (A ∩ C = ∅). If there is a

Algorithm 3 Evaluation process
Require: dataset, individual genotype

1: count← 0
2: instances number ← 0
3: satisfy ← TRUE
4: if antecedent and consequent in individual genotype are disjoint sets then
5: for all instances in dataset do
6: instances number + +
7: satisfy ← TRUE
8: for all elements in individual genotype do
9: if element is a terminal symbol then

10: if element is a logic operator then
11: attribute operator ←getOperator(element)
12: else
13: attribute name←getName(element)
14: attribute value←getValue(element)
15: if element does not satisfy the instance then
16: satisfy ← FALSE
17: end if
18: end if
19: end if
20: end for
21: if satisfy = TRUE then
22: count+ +
23: end if
24: end for
25: fitness← count/instances number
26: else
27: fitness← 0
28: end if
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match, then the antecedent and consequent of an individual are not disjoint item-

sets and the individual is discarded. Following this, the aptitude of the individual

is measured. In this proposal, we determine that the higher the fitness value, the

better the rule discovered. In order to discard an individual, a zero fitness value is

assigned.

The evaluation process of each individual is performed by obtaining the fitness

function value. It will be the support, which was properly defined in Section 2.1.

Another heuristic that we will use is the confidence of the rule (see Equation 2.1

in Section 2.1).

3.1.6 Algorithm

G3PARM follows a classical generational scheme. It uses two populations with a

fixed size, one for the individuals obtained throughout generations and the other

one (the auxiliary population) for the individuals that exceed a certain minimum

quality threshold. This auxiliary population is updated in each generation keeping

the best individuals throughout the evolutionary process. The pseudo-code of the

algorithm is shown in Algorithm 4.

The algorithm starts producing the population by randomly generating individuals

from the CFG defined in Figure 3.1 and not exceeding the maximum number of

derivations. In the initial generation, the auxiliary population is empty. Then,

a set of individuals is selected via a binary tournament from the merging of the

current population and the auxiliary population. This selector works by selecting

two individuals at random from the current population and after comparing them,

it keeps the best of both. Individuals are selected to act as parents with a certain

probability of crossover and a new set of individuals is obtained. The next step is

to perform the mutation of the resulting set of individuals obtained in the previous

crossover step, with a certain probability as the crossover operator. Once we have

obtained the new population by crossover and mutation, the auxiliary population is

updated by merging the previous auxiliary population and the current population.

Then, individuals are ranked according to their support. In a filtering step, those

individuals that are equal are eliminated. The G3PARM algorithm considers that
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Algorithm 4 G3PARM algorithm
Require: max generations,N
Ensure: A
1: P ←generateIndividuals(N)
2: A← ∅
3: C ← ∅
4: M ← ∅
5: while num generations < max generations do
6: P ← Select parents (P ∪A)
7: C ← Crossover (P )
8: M ← Mutation (C)
9: Evaluate (M)

10: P ←M
11: C ← ∅
12: M ← ∅
13: A← Update auxiliary population (A ∪ P , maxAuxPopSize)
14: num generations+ +
15: end while
16: return A

procedure Update auxiliary population

Require: A, maxAuxPopulationSize
Ensure: A′

1: A′ ← ∅
2: A← Order (A)
3: i← 0
4: for all individuals in A do
5: if individualAi is not in A′ then
6: A′ ← (A′ ∪ individualAi )
7: else
8: j ← 0
9: fitnessA ← getFitness(individualAi )

10: for all individuals in A′ do
11: fitnessA′ ← getFitness(individualA

′

j )
12: if fitnessA is equal to fitnessA′ then
13: if individualAi is more restrictive than individualA

′

j then

14: A′ ← eliminate(individualA
′

j )

15: A′ ← (A′ ∪ individualAi )
16: break;
17: end if
18: else
19: if fitnessA is greater than fitnessA′ then
20: A′ ← eliminate(individualA

′

j )

21: A′ ← (A′ ∪ individualAi )
22: break;
23: end if
24: end if
25: j + +
26: end for
27: end if
28: i+ +
29: end for
30: A′ ← getIndividuals(A′,maxAuxPopulationSize)
31: return A′

end procedure
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Table 3.2: Sample execution of G3PARM over the Automobile dataset
Rule Support Confidence

IF (origin <= 2 AND mpg < 39.08) 0.7857 1.0000

THEN (cylinders >= 4)

IF (displacement <= 300.20 AND weight <= 4433)
THEN (horsepower <= 190)

0.7500 1.0000

IF (weight < 3728) THEN (horsepower <= 190) 0.7755 0.9967

IF (model year <= 78) THEN (mpg < 39.08) 0.7041 0.9928

two individuals are equal if, despite having different genotypes, they are composed

of the same attributes.

For example, rules (Condition1 AND Condition2)→ Condition3 and (Condition2

AND Condition1)→ Condition3 are considered the same. If two individuals have

the same attributes, the one with the lowest fitness is removed. If these individuals

have the same attributes and the same fitness, the the least restrictive one is

removed, e.g., the rule A ≥ 3→ B < 4 is removed because the rule A > 3→ B < 4

is more restrictive but both have the same fitness. Comparing two conditions, it is

considered that the most restrictive one represents the smallest number of values.

Using the rules mentioned above, an attribute A having the [Ainitial, Afinal] range of

values, the condition A ≥ 3 represents the interval [3, Afinal], whereas the condition

A > 3 states for (3, Afinal], so the latter represents the smallest interval and, in

consequence, it is the most restrictive. From the resulting set, the individuals that

exceed a certain threshold of support and confidence are selected. The algorithm

terminates once it reaches a certain number of generations, returning auxiliary

population individuals.

Finally, some sample ARs obtained by executing G3PARM over the Automobile

Performance and Zoo datasets2 are illustrated in Tables 3.2 and 3.3. As shown,

using G3PARM it is possible to obtain either numerical or categorical rules having

a highest confidence value. Additionally, the rules mined are interesting since their

lift value is greater than the unity. A further experimental study is carried out in

the following section.

2These datasets are publicly available for download from the UCI (University of California,
Irvine) machine learning repository (http://archive.ics.uci.edu/ml/datasets/).

http://archive.ics.uci.edu/ml/datasets/
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Table 3.3: Sample execution of G3PARM over the Zoo dataset
Rule Support Confidence

IF (backbone != f) THEN (legs != 8) 0.8218 1.0000

IF (venomous = f) THEN (legs != 8) 0.9109 0.9892

IF (airborne = f) THEN (venomous = f) 0.7029 0.9221

IF (fins != t) THEN (venomous = f) 0.7623 0.9166

3.2 Experimental Study

Several experiments have been carried out in order to compare our proposal to

some exhaustive search algorithms for ARM like Apriori3 [6], FP-Growth4 [7] and

GAs such as ARMGA [8, 73] and QuantMiner [11] using six real-world datasets.

All the experiments were performed on an Intel Core i7 machine with 12GB main

memory, running CentOS 5.4 and were written in Java. The G3PARM algorithm

was written by using JCLEC5 [74], a Java library for evolutionary computation.

In the following subsections, first the different real-world datasets and the exper-

imental set-up are described. The results obtained in different experiments are

shown next and, finally, we present an analysis of the scalability of the algorithms.

3.2.1 Datasets

In order to analyse the performance of our proposal, a set of executions were

performed using the following datasets, which are summarized in Table 3.4.

� House 16H. This concerns a study on the prediction of average house prices

of houses in a region by considering both the demographic composition and

the state of the housing market. For the purpose of this dataset, only a level

State-Place was used and data from all states were obtained. This dataset

contains 22,784 transactions and 17 continuous attributes.

3Weka machine learning project. http://www.cs.waikato.ac.nz/~ml/index.html.
4F. Coenen (2003), The LUCS-KDD FP-growth Association Rule Mining Algorithm, Depart-

ment of Computer Science, University of Liverpool, UK. http://www.cxc.liv.ac.uk/~frans/
KDD/Software/FPgrowth/fpGrowth.html.

5JCLEC software and documentation is available for download from http://jclec.sf.net

http://www.cs.waikato.ac.nz/~ml/index.html.
http://www.cxc.liv.ac.uk/~frans/KDD/Software/FPgrowth/fpGrowth.html
http://www.cxc.liv.ac.uk/~frans/KDD/Software/FPgrowth/fpGrowth.html
http://jclec.sf.net
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Table 3.4: Datasets and their main characteristics

Dataset Abbreviation #Inst. #Attr. Attr. Type

House 16 HH 22784 17 Num.

CPU activity CPU 8192 22 Num.

Wisconsin Breast Cancer W 683 11 Categ., Num.

Wisconsin Diagnostic Breast Cancer WDBC 569 32 Categ., Num.

Automobile Performance MPG 392 8 Num.

German Credit Cr 1000 21 Categ., Num.

� Cpu act. The computer activity dataset is a collection of computer system

activity measures. The data was collected from a Sun Sparc-station 20/712

with 128 MB of memory running in a multi-user environment in a univer-

sity department. This dataset contains 8,192 transactions and 22 continuous

attributes.

� Wisconsin. This breast cancer dataset was obtained from the University

of Wisconsin Hospitals, Madison from Dr William H. Wolberg. These are

the patients seen by Dr. Wolberg since 1984. This dataset contains 683

transactions and 11 attributes.

� Wisconsin Diagnostic. This dataset was obtained from a digitized image of

a fine needle aspirate of a breast mass. It describes characteristics of the cell

nuclei present in the image. This dataset contains 569 transactions and 32

attributes.

� Automobile Performance. This dataset was taken from the StatLib library

which is maintained at Carnegie Mellon University. The dataset was used in

the 1983 American Statistical Association Exposition. This dataset contains

398 transactions and 9 attributes.

� Credit. For business credit, banks are interested in knowing whether prospec-

tive consumers will pay back their loan or not. This dataset contains 1000

transactions, 7 integer attributes and 14 categorical attributes.
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3.2.2 Experimental Set-up

In order to obtain the optimal parameters (see Table 3.5) that allow us to reach the

best results using the evolutionary proposals, a series of experiments were carried

out. For the G3PARM algorithm, the best results were obtained with a population

size of 50 individuals, 100 generations, 70% crossover probability, 14% mutation

probability, a maximum derivation number of 24, an external population of size

20, a 90% external confidence threshold and a 70% external support threshold.

Because most of the algorithms for mining ARs have only one attribute in the

consequent, we restrict the G3PARM algorithm in order to obtain rules with only

one consequent.

For the ARMGA algorithm, the optimal parameters were: a population size of 50

individuals, 100 generations, 100% selection probability, a 90% crossover probabil-

ity, 1% mutation probability, a maximum rule length of 4 attributes and a 90%

confidence threshold. ARMGA does not use a support threshold.

Finally, the optimal parameters of the QuantMiner algorithm were: a popula-

tion size of 250 individuals, 100 generations, 40% mutation probability and 50%

crossover probability. Like G3PARM and ARMGA, this algorithm uses a 90% con-

fidence threshold and a 70% support threshold. For the sake of a fair comparison

with G3PARM, QuantMiner has been configured to return 20 rules at most, those

with the best fitness from the final population.

Table 3.5: Parameters established for each algorithm

Dataset Apriori FP-Growth QuantMiner ARMGA G3PARM

Pop. size - - 250 50 50

Pool size - - 20 - 20

# Generations - - 100 100 100

Max. derivations - - - - 24

Crossover prob. - - 0.50 0.90 0.70

Mutation prob. - - 0.40 0.01 0.14

Max. lenght - - - 4 -

Min. support 0.70 0.70 0.70 - 0.70

Min. confidence 0.90 0.90 0.90 0.90 0.90
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For the Apriori and FP-Growth algorithms, the same support threshold is used as

in G3PARM and QuantMiner (70%), and the same confidence threshold as in the

aforementioned evolutionary algorithms (90%).

The results obtained by each evolutionary algorithm are the average results ob-

tained running each one ten times using different seeds each time for the EAs.

3.2.3 Analysis of Nominal Datasets

As mentioned above, algorithms like Apriori or FP-Growth are based on categori-

cal attributes, so numerical data must be previously discretized. Equal-width and

equal-frequency methods are two well-known unsupervised discretization meth-

ods [75]. Equal-frequency discretization requires some previous information about

the data distribution, so in this analysis, only the equal-width method is used. It

determines the minimum and maximum values of each attribute and then divides

the range into a number of discrete equal width intervals.

Several experiments were carried out with 4, 5, 6, 7 and 8 intervals per numerical

attribute. Tables 3.6 and 3.7 show the results obtained by four algorithms (Apriori,

FP-Growth, ARMGA and G3PARM) with these intervals, where Average supp is

the average support of the rule set; Average conf refers to the average confidence

of the rule set; %Instances states the percentage of instances covered by the rules

in all the instances in the dataset (expressed on a per unit basis); Average Nrule

is the average number of rules in the rule set; HH-N is the House 16H dataset

discretized in N intervals; CPU -N is the Cpu act dataset discretized in N intervals;

W -N is the Wisconsin dataset discretized in N intervals; and Cr-N is the Credit

dataset discretized in N intervals.

Analyzing the results presented in Tables 3.6 and 3.7 (the best results for each

measure are set in bold typeface), notice that the G3PARM algorithm obtains

rules with better support than the others; and better confidence than Apriori and

FP-Growth. The use of the operator ‘!=’ allows higher support to be obtained in

datasets with infrequent attributes as mentioned in Section 3.1.2. The ARMGA

algorithm obtains rules with high confidence since it tries to maximize the relative

confidence regardless of the support. Notice that the relative confidence was defined

in [8] as shown in Equation 3.1.
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Table 3.6: Results obtained by the algorithms by discretizing the datasets
Average support Average confidence

Dataset Apriori FP-Gr. ARMGA G3PARM Apriori FP-Gr. ARMGA G3PARM

HH4 0.769 0.769 0.025 0.983 0.943 0.943 1.000 0.999

HH5 0.765 0.765 0.014 0.983 0.955 0.955 1.000 0.999

HH6 0.781 0.781 0.015 0.992 0.962 0.962 1.000 0.999

HH7 0.792 0.792 0.025 0.993 0.960 0.960 1.000 0.999

HH8 0.770 0.770 0.036 0.999 0.949 0.949 1.000 1.000

CPU4 0.850 0.904 0.694 0.999 0.945 0.959 1.000 1.000

CPU5 0.855 0.870 0.823 0.999 0.940 0.951 1.000 1.000

CPU6 0.831 0.830 0.577 0.999 0.963 0.945 1.000 1.000

CPU7 0.755 0.787 0.539 0.999 0.973 0.943 1.000 1.000

CPU8 0.751 0.751 0.397 0.999 0.945 0.945 1.000 1.000

W4 0.744 0.744 0.030 0.908 0.980 0.980 1.000 0.998

W5 0.872 0.872 0.029 0.926 0.996 0.996 1.000 0.991

W6 0.872 0.872 0.024 0.951 0.996 0.996 1.000 0.999

W7 0.872 0.872 0.022 0.961 0.996 0.996 1.000 0.999

W8 0.872 0.872 0.018 0.970 0.996 0.996 1.000 0.999

Cr4 0.765 0.765 0.024 0.944 0.939 0.939 1.000 0.999

Cr5 0.773 0.773 0.020 0.986 0.942 0.942 1.000 1.000

Cr6 0.780 0.780 0.023 0.995 0.941 0.941 1.000 1.000

Cr7 0.780 0.780 0.018 0.997 0.941 0.941 1.000 1.000

Cr8 0.780 0.780 0.014 0.997 0.941 0.941 1.000 1.000

Ranking 2.500 2.500 4.000 1.000 3.475 3.425 1.250 1.850

relative confidence(A ∪ C) =
support(A ∪ C)− (support(A)× support(C)

support(A)× (1− support(C))
(3.1)

The G3PARM algorithm gets rules with confidence close to that obtained. For

example, notice that using Cpu act and Credit datasets, G3PARM gets rules with

maximum confidence. Furthermore, G3PARM obtains rules that cover 100% of the

dataset instances with few rules (a maximum of 20 given by the maximum auxil-

iary population size). Only using the Wisconsin dataset discretized in 8 intervals,

G3PARM obtains a set of rules without completing the auxiliary population. Using

this dataset, G3PARM obtains an average number of rules of 19.8. It should be

noted that the results that are shown are the average results obtained running each

algorithm ten times using different seeds each time. Moreover, it should be noted
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Table 3.7: Results obtained by the algorithms by discretizing the datasets
% Instances covered (on a per unit basis) Average number of rules

Dataset Apriori FP-Gr. ARMGA G3PARM Apriori FP-Gr. ARMGA G3PARM

HH4 1.000 1.000 0.492 1.000 1.34E5 1.34E5 50.0 20.0

HH5 1.000 1.000 0.412 1.000 1.92E4 1.92E4 50.0 20.0

HH6 1.000 1.000 0.390 1.000 7.05E3 7.05E3 50.0 20.0

HH7 1.000 1.000 0.494 1.000 1.86E3 1.86E3 50.0 20.0

HH8 1.000 1.000 0.555 1.000 3.11E3 3.11E3 50.0 20.0

CPU4 1.000 1.000 0.803 1.000 2.00E6 2.00E6 50.0 20.0

CPU5 1.000 1.000 0.935 1.000 2.00E6 2.00E6 50.0 20.0

CPU6 1.000 1.000 0.616 1.000 2.00E6 2.00E6 50.0 20.0

CPU7 1.000 1.000 0.639 1.000 2.00E6 2.00E6 50.0 20.0

CPU8 1.000 1.000 0.549 1.000 1.77E6 1.77E6 50.0 20.0

W4 0.954 0.954 0.362 1.000 17.0 17.0 50.0 20.0

W5 0.872 0.872 0.488 1.000 1.0 1.0 50.0 20.0

W6 0.872 0.872 0.369 1.000 1.0 1.0 50.0 20.0

W7 0.872 0.872 0.356 1.000 1.0 1.0 50.0 20.0

W8 0.872 0.872 0.335 1.000 1.0 1.0 50.0 19.8

Cr4 0.989 0.989 0.399 1.000 14.0 14.0 50.0 20.0

Cr5 0.989 0.989 0.335 1.000 11.0 11.0 50.0 20.0

Cr6 0.987 0.987 0.378 1.000 10.0 10.0 50.0 20.0

Cr7 0.987 0.987 0.305 1.000 10.0 10.0 50.0 20.0

Cr8 0.987 0.987 0.279 1.000 10.0 10.0 50.0 20.0

Ranking 2.250 2.250 4.000 1.500 - - - -

that ARMGA returns, from the regular population, those rules that satisfy a 90%

confidence threshold (not requiring any support threshold). In every dataset, this

algorithm returns the complete regular population (i.e., 50 individuals previously

established in the configuration parameter stage) because all of them satisfy the

confidence threshold. Finally, notice that ARMGA does not make a comparison

between rules to determine the most restrictive one as G3PARM does. As shown

in Table 3.7, in the Wisconsin and Credit datasets, Apriori and FP-Growth get

fewer rules than the others because there are few rules that exceed the support

threshold. However, with the same support threshold, the G3PARM algorithm

obtains more rules by using the operator ‘!=’. The ARMGA algorithm does not

have any support threshold, so it gets rules with a very low support. Only in the

Cpu act dataset does the ARMGA algorithm get rules with high support. This is

because this dataset has a lot of frequent attributes.
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In order to analyse the results obtained, a series of statistical tests [76, 77] were

carried out. The Friedman test is used to compare the results obtained and to

be able to precisely analyse whether there are significant differences among the

three algorithms. This test first ranks the j-th of k algorithms on the i-th of

N datasets, and then calculates the average rank according to the F-distribution

(FF ) throughout all the datasets (see average rankings in Tables 3.6 and 3.7), and

calculates the Friedman statistics. If the Friedman test rejects the null-hypothesis

indicating that there are significative differences, then a Bonferroni–Dunn test is

performed to reveal these differences. The performance of G3PARM is evaluated

by comparing it to the other algorithms in terms of their average support, average

confidence and the percentage of instances covered by each algorithm.

The Friedman average ranking statistics for average support measures distributed

according to FF with k − 1 and (k − 1)(N − 1) degrees of freedom is 171.000;

59.593 for an average confidence measure; and 39.461 for a coverage (percent-

age of instances covered) measure. None of them belong to the critical interval

[0, (FF )0.05,3,57 = 2.766]. Thus, we reject the null-hypothesis that all algorithms

perform equally well for these three measures. In order to analyse if there are sig-

nificant differences among the three algorithms, the Bonferroni–Dunn test is used

to reveal the difference in performance, 1.198 being the critical difference (CD)

value for p = 0.01.

The results indicate that for the support measure (see Figure 3.5), at a significance

level of p = 0.01 (i.e., with a probability of 99%), there are significant differences

Figure 3.5: Critical difference obtained with the Bonferroni-Dunn test for the sup-
port measure
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Figure 3.6: Critical difference obtained with the Bonferroni-Dunn test for the con-
fidence measure

Figure 3.7: Critical difference obtained with the Bonferroni-Dunn test for the cov-
erage measure

between G3PARM and the other algorithms, the performance of G3PARM being

statistically better. Focusing on the confidence measure (see Figure 3.6), at a sig-

nificance level of p = 0.01, there are significant differences between G3PARM and

the Apriori and FP-Growth algorithms. On the other hand, there are no significant

differences between G3PARM and ARMGA for the confidence measure. Finally, if

we focus on the coverage measure (see Figure 3.7), at a significance level of p = 0.01

there are significant differences between G3PARM and ARMGA. Concerning ex-

haustive search algorithms for ARM (Apriori and FP-Growth), G3PARM remains

as the control algorithm and is also competitive, obtaining the best ranking.
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3.2.4 Analysis of Numerical Datasets

As mentioned above, an advantage of our proposal is that it provides understand-

able rules and allows a context-free grammar to be adapted and applied to each

specific problem or domain and eliminates the problems raised by discretization.

Since exhaustive search algorithms for ARM like FP-Growth or Apriori are based

on categorical attributes, they cannot be used with the original dataset (if the

dataset has numerical attributes). Therefore, we compare ARMGA, QuantMiner

and G3PARM using real-world datasets without any previous pre-processing step

to demonstrate that our proposal performs very well when it is applied directly to

the original datasets. In this case, Table 3.8 shows the results obtained in terms of

average support, average confidence, percentage of instances covered by the rules

of total instances in the dataset using different algorithms (ARMGA, QuantMiner

and G3PARM), and the average number of rules obtained. HH is the House 16H

dataset; CPU is the Cpu act dataset; W is the Wisconsin dataset; Cr is the

Credit dataset; MPG is the Automobile Performance dataset; and WDiag is the

Wisconsin Diagnostic dataset.

Table 3.8: Results obtained by the algorithms with the original datasets
Average support Average confidence

Dataset ARMGA QuantMiner G3PARM ARMGA QuantMiner G3PARM

HH 0.009 0.712 0.971 1.000 0.970 0.999

CPU 0.823 0.707 0.976 1.000 0.958 0.999

W 0.069 0.753 0.905 1.000 0.966 0.996

Cr 0.034 0.882 0.972 1.000 0.963 0.995

MPG 0.020 0.729 0.895 1.000 0.977 0.997

WDiag 0.065 0.702 0.986 1.000 0.954 0.999

Ranking 2.833 2.166 1.000 1.000 3.000 2.000

% Instances covered (on a per unit basis) Average number of rules

Dataset ARMGA QuantMiner G3PARM ARMGA QuantMiner G3PARM

HH 0.327 0.999 0.999 50.0 20.0 19.8

CPU 1.000 0.958 0.999 50.0 20.0 18.9

W 1.000 0.966 0.996 50.0 20.0 19.2

Cr 1.000 0.963 0.995 50.0 20.0 19.2

MPG 0.223 1.000 0.998 50.0 20.0 19.7

WDiag 0.525 0.986 0.997 50.0 20.0 19.4

Ranking 2.000 2.250 1.750 - - -
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On analysing the results presented, note that the G3PARM algorithm obtains rules

with better support than QuantMiner or the ARMGA algorithm. The ARMGA

algorithm does not have a support threshold, so it gets rules with a very low support

but a higher confidence. As previously commented, only in dataset Cpu act does

the ARMGA algorithm get rules with high support because this dataset has a lot of

frequent attributes. Furthermore, in most cases, ARMGA obtains rules that cover

100% of the dataset instances while G3PARM obtains close results. Focusing on

the number of rules mined, the three algorithms obtain a homogeneous set of rules.

Only when applying G3PARM to the Cpu act dataset does the resultant set of rules

comprise less than 19 rules. Moreover, note that ARMGA returns the complete

regular population (50 rules), because all of them satisfy the confidence threshold.

It should be noted that this population size was previously established during the

set-up. On the other hand, QuantMiner returns the best 20 rules from the final

population, i.e., those with the highest fitness value. However, if this algorithm is

not constrained to obtain the best rules, it may return a huge set of rules based on

the number of individuals. Finally, neither ARMGA nor QuantMiner compare the

rules to determine the most restrictive one as G3PARM does.

Then, the Friedman rank test [78] is used to analyse and compare the results

obtained, and the Bonferroni–Dunn test is performed to reveal the differences that

exist when the Friedman rank test rejects the null-hypothesis. By using numerical

attrributes, G3PARM and the other algorithms are compared in terms of average

support, average confidence and the percentage of instances covered. The average

ranking for each algorithm is also shown in Table 3.8.

The Friedman average ranking statistic for average support measures distributed

according to FF with k− 1 and (k− 1)(N − 1) degrees of freedom is 31.000; ∞ for

the average confidence measure; and 0.333 for the coverage measure. The Friedman

rank test shows that for k = 3 algorithms and N = 6 datasets, the function has

a value of 9.000 with alpha 0.01. Support and confidence measures have a higher

value so we reject the null-hypothesis that all algorithms perform equally well for

these two measures. The Bonferroni–Dunn test is used to reveal the difference in

performance: the CD value is 1.293 with p = 0.05. Finally, when focusing on the

coverage measure, there are no significant differences between the three algorithms.
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The results indicate that for support measures (see Figure 3.8), at a significance

level of p = 0.05 (i.e., with a probability of 95%), there are significant differences

between G3PARM and the other algorithms, the performance of G3PARM being

statistically better. Then, if focusing on the confidence measure (see Figure 3.9),

Figure 3.8: Critical difference obtained with the Bonferroni-Dunn test for the sup-
port measure

Figure 3.9: Critical difference obtained with the Bonferroni-Dunn test for the con-
fidence measure

Figure 3.10: Critical difference obtained with the Bonferroni-Dunn test for the
coverage measure
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there are significant differences between QuantMiner and the ARMGA algorithm

at a significance level of p = 0.05, ARMGA being statistically better than Quant-

Miner. On the other hand, ARMGA is better than the other algorithms although

G3PARM obtains values close to ARMGA for the confidence measure. Finally,

there are no significant differences for the coverage measure (see Figure 3.10).

3.2.5 Analysis of Scalability

A set of different experiments were also carried out to analyse the computation

time of the algorithms using the House 16H dataset discretized in four intervals.

Figure 3.11 shows the relation between the runtime and the number of instances.

The Y axis represents time in milliseconds, whereas the X axis stands for the

percentage of instances using all attributes. In the same way, Figure 3.12 shows the

relation between the runtime and the number of attributes. The Y axis represents

time in milliseconds and the X axis, the number of attributes using 100% of the

instances.

Figure 3.11 clearly shows how the runtime of the exhaustive search algorithms for

ARM increases as the size of the dataset increases compared to the runtime of the

GAs. In other EA-based proposals, the execution time remains almost constant.

Figure 3.11: Relation between the runtime and the percentage of instances over
the discretized House 16H dataset
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Figure 3.12: Relation between the runtime and the number of attributes over the
discretized House 16H dataset

Figure 3.12 shows how the exhaustive search algorithms for ARM expend a large

amount of time mining ARs when the number of attributes is high. By contrast,

the results plotted in these figures show that GAs scale quite linearly for the dataset

used in the experiment. G3PARM and ARMGA scale better than the larger num-

ber of attributes in comparison with FP-Growth and Apriori because the greater

the number of attributes, the greater the combinatorial explosion caused to obtain

frequent itemsets. GAs are not influenced by this combinatorial explosion as are

the exhaustive search algorithms for ARM. The computation time in GAs increases

with the number of evaluations for each individual independently of the number of

attributes.

Several experiments were also carried out to analyse the computation time of the

algorithms using the House 16H dataset without any pre-processing step. Like

above mentioned figures, Figures 3.13 and 3.14 show the relation between the run-

time and the number of instances and attributes. Examining these figures, we can

see how the runtime scales quite linearly when using EAs over numerical attributes.

The results plotted in this figure show that QuantMiner and the G3PARM algo-

rithm scale better than ARMGA. However, EA proposals with numerical attributes

have a computation time higher than those obtained with categorical attributes.



56 3. Grammar-Guided Genetic Programming for Mining Association Rules

Figure 3.13: Relation between the runtime and the percentage of instances over
the original House 16H dataset

Figure 3.14: Relation between the runtime and the number of attributes over the
original House 16H dataset

Concluding this analysis, G3PARM behaves quite linear when increasing both the

number of attributes and instances. Regardless the type of dataset, that is, having

numerical or discrete attributes, the proposed algorithm behaves quite similar.

Only QuantMiner similarly behaves to G3PARM.
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3.3 Conclusions

In this chapter, the first algorithm for mining ARs by using G3P has been described

in depth. The use of G3P enables both categorical and numerical attributes to

be defined without a previous preprocessing process. Additionally, the proposed

algorithm, called G3PARM, extracts frequent and highly reliable ARs in only one

step, not requiring a previous mining of the frequent pattern. The experimental

analysis have demonstrated its high performance when increasing the number of

both attributes and instances.
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4
G3PARM for Mining Rare

Association Rules

Motivated by the promising performance of G3PARM, a full study of its adaptabil-

ity to RARM, named Rare-G3PARM, is presented in this chapter. Particularly,

we study how effective different fitness functions are for ARs identification and

separating them from noise, and how a new genetic operator performs in guiding

the search process. In this proposal, the resulting set only comprises the best rules

discovered along the execution, and the number of rules to be discovered tends to

be the number previously specified by the data miner. In addition, this proposal

considers the lift measure together with support and confidence to overcome the

problems of most algorithms [6, 7, 37] and also G3PARM, where only the support–

confidence framework is followed [15]. For the sake of analysing the effectiveness

of Rare-G3PARM, we compare our proposal to some existing algorithms in the

RARM field. Results show that this proposal obtains rare and reliable relations

between patterns, avoiding the discovery of noisy ones, in an efficient way.
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4.1 The Rare-G3PARM Algorithm

This section introduces the mechanisms employed for adjusting G3PARM for the

extraction of RARs and the new features required to make this algorithm an inter-

esting RARM approach are described in depth. In this work, support, confidence

and lift measures avoid obtaining misleading rules, playing an important role in

the mining process. Furthermore, a new genetic operator serves to guide the search

process in an effective way. It should be noted that Rare-G3PARM uses the same

CFG as G3PARM, which was properly represented in Figure 3.1. In order to

make G3PARM suitable for finding RARs, the following sections describe its new

features.

4.1.1 Evaluation

The process of evaluating ARs in a specific problem is not an elementary issue since

ARM algorithms base their extraction process on the quality of the rules. Some

objective measures for evaluating the interest of these rules have been proposed by

different researchers [22]. Two of the most important and widely used measures in

this field are support and confidence (see Section 2.1).

Despite the fact that most proposals in ARM are based on a support–confidence

framework, e.g. G3PARM, these measures are not sufficient to select interest-

ing associations between patterns [15] in some application domains. For exam-

ple, let us assume that 75% of the customers in a market bought onions (i.e.,

customer → onions with a confidence value of 75%), and 70% of the customers

that bought tomatoes also bought onions (i.e., tomatoes → onions with a con-

fidence value of 70%). In this situation, the fact of buying tomatoes does not

provide an increment on buying onions so the rule is misleading. In other words,

the occurrence of the antecedent does not imply an increment in the occurrence

of the consequent. The measure ‘lift’ was defined to solve this problem (see Equa-

tion 2.2 in Section 2.1). It establishes how many times the antecedent and the

consequent occur together more often than would be expected if they were statisti-

cally independent. An association rule is interesting if its confidence is higher than

the support of its consequent. On the other hand, if the confidence of the rule is
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equal to the support of its consequent, then both antecedent and consequent are

independent.

The lift measure verifies three properties proposed by Piatetsky-Shapiro [20] and de-

scribed in Section 2.1.2. Furthermore, the lift measure is symmetric (i.e., lift(A→
C) = lift(C → A)). Sometimes, association rules require to measure the strength

of implication in both directions, not only the degree of dependence. Nevertheless,

lift is not free of problems either. The main drawback of this measure is that its

range is not bounded [15], i.e., its domain is [0,∞), and it is not easy to compare

the values of several rules because differences between them are not meaningful.

However, in RARM, the necessity of discovering interesting rules makes the use of

the lift measure specially appropriate in order to weight up the real interest of each

rule mined. The goal of RARM is to obtain interesting rules with low support and

which comprise patterns that are associated together.

In some application domains, the existing RARM approaches discover rules that

comprise extremely infrequent patterns, so these rules actually cause noisy asso-

ciation rules instead of rare ones. In such situations, it is essential to correctly

establish a boundary that allows of separating rare from noisy rules. But not only

the distinction between rare and noisy rules can be complex. In some situations,

depending on the application domain, it is really difficult to properly distinguish

between frequent and rare rules. All these situations should be taken into account

to find a solution to these problems, so it is necessary to be especially careful in the

choice of a proper evaluation function that guides the search process. Therefore, in

subsequent sections, a number of fitness functions, conceived especially for RARM,

will be described in depth.

4.1.2 Genetic Operator

In any EA, genetic operators play an important role in the evolutionary process.

These operators allow to maintain the genetic diversity along the search for the

optimal solutions. In RARM, these operators are especially important as they

serve to guide the search process, and to mine rules having lower support values

than the original one. In this proposal, a new genetic operator, which modifies

the highest support condition of a rule to obtain a new condition having a lower



62 4. G3PARM for Mining Rare Association Rules

Figure 4.1: Example of the genetic operation

support value, has been implemented. Notice that the lower the support value of

the conditions, the lower the support value of the entire rule.

With this purpose, the operator mutates the condition with the highest frequency

of occurrence to obtain a new individual with a lower support (see Figure 4.1 for

a real example1). The genetic operator provides two possibilities of changing a

condition: (1) to obtain a new complete condition or (2) to obtain a new value for

a terminal symbol.

To study the convergence of the genetic operator, a number of different experiments

were carried out using diverse datasets2. Figure 4.2 depicts the average support

value of both the elite population (also known as auxiliary or external population in

this document) and the best individuals obtained for every generation. The Y -axis

represents the support, whereas the X-axis stands for the number of generations.

Regardless of the dataset used, notice that the lowest support value is obtained

1The dataset used in this example is a real dataset (http://archive.ics.uci.edu/ml/
datasets/Zoo) that will be used later in the experimental study.

2Ankara weather, mushroom, soybean and vote datasets are available for download from the
UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets).

http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets
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(a) Convergence of the genetic operator using
the Ankara Weather dataset

(b) Convergence of the genetic operator using
the Mushroom dataset

(c) Convergence of the genetic operator using
the Soybean dataset

(d) Convergence of the genetic operator using
the Vote dataset

Figure 4.2: Average auxiliary population support and best individual support ob-
tained in each generation by using the genetic operator over a set of datasets

before the generation 60. Focusing on the best individual, it is discovered in early

generations, i.e. between the generation 5 and 15, in most datasets.

Finally, an analysis of the behaviour of this operator is performed as its probability

is increased. Figure 4.3 depicts the average support values calculated for the elite

population using the four sample datasets. There, the Y -axis represents the average

support, and the X-axis stands for the probability of the genetic operator. As

shown, there is no significant difference among the average support values obtained

using the different probabilities, the probability value of 0.80 approaching to the

optimal one.
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Figure 4.3: Average elite population support by using the genetic operator with
different probabilities

4.1.3 Algorithm

The algorithm proposed (see Figure 4.4 for a general sketch and Algorithm 5 for

the pseudocode) for the extraction of RARs follows a generational schema. Rare-

G3PARM starts by generating a set of new individuals conformant to the specified

grammar (see line 1 in the pseudocode). Each individual is encoded in a tree

shape through the application of production rules. Notice that each terminal sym-

bol adopts the name and value of any of the dataset attributes. Once a set of

individuals is generated compiling the general population for the algorithm, the

generational schema is executed. Several steps are performed for each generation:

(1) in order to obtain new individuals, the algorithm selects individuals from the

general population and the pool to act as parents (line 6) and a genetic operator is

applied over them immediately afterwards with a certain probability (see line 7).

Next, (2) these new individuals are evaluated (line 8). In the following step, (3)

the elite population or pool – only for the first generation the elite population is

empty–, which comprises the n most reliable individuals obtained along the evo-

lutionary process, and the population are combined to form a new set. Then, this

new set is ranked by their fitness, so only the best ones are selected until the new

population is completed (see lines 9 and 10). Following, (4) the update procedure

is carried out (line 13), ranking by confidence the new set of individuals (see line 2

in the procedure), this ranking serving to select the best n individuals from the new

set for the updating process. Only those individuals having a fitness value greater
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Figure 4.4: The flowchart for the Rare-G3PARM algorithm

than zero, a confidence value greater than the minimum confidence threshold, and

a lift value greater than unity are considered prompting the discovery of infrequent,

reliable and interesting association rules (see lines 6 to 8).

An important feature of Rare-G3PARM is the use of the lift measure, which rep-

resents the interest of a given AR. Traditionally, ARM proposals make use of a

support-confidence framework, including G3PARM, attempting to discover rules

whose support and confidence values are greater than certain thresholds. However,

the mere fact of having rules that exceed these thresholds does not guarantee that

the rules are interesting at all [15]. Even when the support and confidence thresh-

olds are satisfied by a rule, this rule could be misleading if it acquires a confidence

value less than its consequent support. In such a situation, the occurrence of the
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Algorithm 5 Rare-G3PARM algorithm
Require: max generations, num individuals,max Pool size, confidenceTreshold
Ensure: A
1: P ←generateIndividuals(num individuals)
2: A← ∅
3: M ← ∅
4: num generations← 0
5: while num generations < max generations do
6: P ← selectParents (P ∪A)
7: M ← geneticOperator (P )
8: Evaluate (M)
9: P ← rankIndividualFitness (M ∪A)

10: P ← getBestIndividual (P , num individuals)
11: M ← ∅
12: A← ∅
13: A← updateAuxiliaryPopulation (P , max Pool size, confidenceTreshold)
14: num generations+ +
15: end while
16: return A

procedure updateAuxiliaryPopulation

Require: A, max Pool size, confidenceTreshold
Ensure: A′

1: A′ ← ∅
2: A← rankiIndividualConfidence (A)
3: i← 0
4: for all individuals ∈ A do
5: if individualAi is not in A′ then
6: if getFitness(individualAi ) > 0 then
7: if getConfidence(individualAi ) > confidenceTreshold then
8: if getLift(individualAi ) > 1 then
9: A′ ← (A′ ∪ individualAi )

10: end if
11: end if
12: end if
13: end if
14: i+ +
15: if getSize(A′) = max Pool size then
16: return A′

17: end if
18: end for
19: return A′ end procedure

antecedent does not imply an increment in the occurrence of the consequent. For

a better understanding, it is shown two sample rules obtained when running the
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algorithm using the Zoo dataset3. The rule ( breathes = f ) → ( legs != 8 ) is

obtained as a RARs, having a support value of 0.198 and a confidence value of

0952. Despite the fact that this rule could be extracted as a reliable RAR, it is

discarded since the lift value is 0.972, i.e., the occurrence of the antecedent does

not imply and increment in the consequent. The same occur with the rule ( legs

= 4 ) → ( type != 3 ), having a support of 0.356, a confidence of 0.947, but a lift

value of 0.996, so the rule is misleading and it is uninteresting.

Similarly to G3PARM, in Rare-G3PARM, the mining process only requires one

step for obtaining association rules through the use of a grammar, not requiring a

previous step for mining rare patterns. Other interesting feature of Rare-G3PARM

is its ability for discarding rules having the same meaning. This is not an easy task

because individuals having different genotypes may represent the same rule – two

rules could represent the same semantic concepts although they represent different

syntactic concepts. Therefore, individuals are compared based on their conditions

and those with the same conditions are not kept in the pool. A simple example is

shown using a real individual obtained from the Zoo dataset, e.g., the individual

( toothed != t AND legs != 5 ) → ( airborne = f ), which has a support value of

0.168. This individual, and this other individual ( legs != 5 AND toothed != t) →
( airborne = f ) represent the same rule, so only one of them is kept in the pool.

More complex examples can be produced, depending on the individuals generated,

and are equally detected and removed.

Finally, some sample ARs obtained by executing Rare-G3PARM over the Auto-

mobile Performance4 and Zoo datasets are illustrated in Tables 4.1 and 4.2. As

shown, using Rare-G3PARM it is possible to obtain either numerical or categorical

rules having a highest confidence value. Additionally, the rules mined are interest-

ing since their lift value is greater than the unity. A further experimental study is

carried out in the following section.

3The Zoo dataset comprises 102 instances and 17 categorical attributes, and it is publicly
available for download from the UCI machine learning repository (http://archive.ics.uci.
edu/ml/datasets/Zoo).

4The Automobile Performance dataset comprises 392 instances and 8 numerical attributes,
and it is publicly available for download from the UCI machine learning repository (http://
archive.ics.uci.edu/ml/datasets/Automobile).

http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets/Automobile
http://archive.ics.uci.edu/ml/datasets/Automobile
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Table 4.1: Sample execution of Rare-G3PARM over the Automobile Performance
dataset.

Rule Support Confidence Lift

IF (displacement >= 222.8 AND displacement <= 300.2
AND cylinders > 4) THEN (weight > 2318)

0.1531 1.0000 1.4359

IF (horsepower<= 118 AND displacement>= 222.8 AND
cylinders > 4) THEN (weight > 2318)

0.1479 1.0000 1.4358

IF (displacement <= 300.2 AND displacement >= 222.8
AND horsepower > 82 AND origin < 2) THEN (cylinders
> 4)

0.1454 1.0000 2.0741

IF (model year > 72 AND horsepower >= 118) THEN
(cylinders >= 6)

0.734 1.0000 2.1075

IF (origin > 2) THEN (acceleration <= 21.44) 0.2015 1.0000 1.0288

Table 4.2: Sample execution of Rare-G3PARM over the Zoo dataset.

Rule Support Confidence Lift

IF (backbone != f AND aquatic = f AND toothed != t
AND fins = f) THEN (milk != t)

0.1485 1.0000 1.6833

IF (hair = f AND tail != t) THEN (feathers != t) 0.1584 1.0000 1.2469

IF (tail != t AND toothed != t) THEN (backbone != t) 0.1683 1.0000 5.6111

IF (catsize = t AND predator = t AND toothed = t AND
fins = f) THEN (airborne = f)

0.1485 1.0000 1.3117

IF (catsize = t AND predator = t AND fins = f AND hair
!= f) THEN (legs != 6)

0.1584 1.0000 1.1099

4.2 Experimental Study

Selecting a good fitness function is an important task in RARM, as previously

mentioned. In this Section, four different fitness functions are described and an
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Table 4.3: Datasets and their main characteristics

Dataset Abbreviation #Inst. #Attr. Attr. Type

Automobile Performance Autom 392 8 Num.

Ankara Weather Ankara 1608 10 Num.

German Credit Credit 1000 21 Categ., Num.

Mushroom Mush 8124 23 Categ.

Primary Tumour Prim 339 18 Categ.

Soybean Soyb 683 36 Categ.

Vote V ote 435 17 Categ.

Wisconsin Breast Cancer WBC 683 11 Categ., Num.

Wisconsin Diagnostic Breast Cancer WDatBC 569 31 Categ., Num.

Wisconsin Prognostic Breast Cancer WPBC 194 34 Categ., Num.

Zoo Zoo 102 17 Categ.

analysis of their behaviour is carried out. Finally, a complete study of the effec-

tiveness of the proposed algorithm compared to existing proposals in RARM, e.g.,

Apriori-Infrequent [25], Apriori-Inverse [19] and ARIMA [43], is accomplished.

4.2.1 Datasets

To analyse the performance of this proposal, a number of executions were performed

over diverse datasets5; see Table 4.3), which provide different sizes and number of

attributes. As mentioned above in previous sections, the existing RARM algorithms

are brute-force algorithms, performing an exhaustive search process, so this kind

of algorithm can hardly be executed with huge datasets composed of large number

of attributes. However, our proposal does not have this limitation and it could be

executed over any dataset with different sizes and number of attributes.

4.2.2 Experimental Set-up

Any evolutionary proposal should be configured with a set of adjustable param-

eters. All these parameters require previous study to determine those considered

5All these datasets are publicly available for download from the UCI machine learning repos-
itory (http://archive.ics.uci.edu/ml/datasets).

http://archive.ics.uci.edu/ml/datasets
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Table 4.4: Parameters established for each algorithm

Dataset Apriori-Inv. ARIMA MRG-Exp Apriori-Inf. Rare-G3PARM

Pop. size - - - - 50

Pool size - - - - 20

# Generations - - - - 75

Max. derivations - - - - 24

Genetic prob. - - - - 0.80

Min. support - - - - 0.10

Max. support 0.40 0.40 0.40 0.40 0.40

Min. confidence 0.90 0.90 0.90 0.90 0.90

optimal, i.e., those that allow us to obtain the best global results. The final config-

uration was adopted after performing several tests using different rank values for

each parameter, using several representative datasets, and then analysing which

specific set-up globally yielded the best results. It is worth mentioning that no sin-

gle combination of parameter values performed better for all datasets. Notice that

these parameters are not particularized for each dataset. As is shown in Table 4.4,

the best results for our approach were obtained with a population size of 50 indi-

viduals obtained using a CFG with a maximum derivation size of 24. An in depth

analysis of the final configuration revealed that solutions are hardly improved after

75 generations—Figures 4.2(a), 4.2(b), 4.2(c) and 4.2(d) show some experiments

carried out by using a subset of the whole experimental collection of datasets—so

the evolutionary process should be carried out using this value for the number of

generations. In this process, new individuals are obtained with a probability of

0.80 for the genetic operator, as previously discussed. The best individuals, i.e.,

those that exceed certain quality thresholds, are kept in the external population,

whose size is prefixed and determining the maximum number of rules to be dis-

covered by the algorithm. Notice that this pool size could be changed as the data

miner’s requirements vary. Anyhow, a pool size of 20 rules is established in this

experiment. The remaining values of the quality thresholds are set as follows: 0.90

for the confidence, 0.10 and 0.40 for the minimum and maximum support thresh-

olds, respectively, and a lift value greater than one. In order to carry out a fair

comparison, the algorithms used in the experimental stage are executed using the
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same confidence threshold (i.e., 0.90) and the same maximum support threshold of

0.40.

Notice that existing algorithms do not provide any minimum threshold, and exhaus-

tive RARM algorithms only require two parameters: the support and confidence

thresholds. This might be considered either a drawback or an advantage at the

same time. On the one hand, requiring only two parameters to execute these algo-

rithms seems to be an advantage for the final user, since no additional knowledge

is required. On the other hand, this type of algorithms is normally used by data

mining experts, who often require the ability to finely configure and tune the algo-

rithm execution. Hence, only Rare-G3PARM provides the ability to fine-tune the

length of the rules by setting the total number of rules to be mined and restricting

the search space by means of the CFG.

All the experiments were performed on an Intel Core i7 machine with 12GB main

memory and running CentOS 5.4. In addition, all the RARM proposals were

written in Java. Other exhaustive RARM algorithms were obtained using RM-

Tool [3], a data mining tool that accurately permits to perform the association rule

mining task. Finally, similarly to G3PARM, the proposal presented in this work

was coded using JCLEC [74].

4.2.3 Study of the Fitness Functions

It is very important to properly differentiate between rare and noisy association

rules in the process of mining them. In this section, four novel fitness functions that

correctly separate rare from noisy rules are presented. To analyse the performance

of these fitness functions, a number of experiments were carried out and then,

the four fitness functions are compared based on confidence, lift, and the number

of rules discovered. Notice that support values are analysed but not compared

since the four fitness functions have different goals, also depending on the expert

expectations.

The first fitness function (see Figure 4.5(a)) provides a maximum fitness value in the

middle of a certain interval provided by a minimum and a maximum support value.

The closer the support of a rule is to the interval limits, the lower its fitness value

is. Out of this interval, a zero value is assigned. For a better understanding, it is



72 4. G3PARM for Mining Rare Association Rules

(a) First fitness function

F1 =


support(rule)−Min

(Max−Min)/2
if Min ≤ support(rule) ≤ (Max+Min)/2

Max− support(rule)

(Max−Min)/2
if (Max+Min)/2 ≤ support(rule) ≤Max

0 otherwise

(b) Second fitness function

F2 =

{
1 if Min ≤ support(rule) ≤Max

0 otherwise

(c) Third fitness function

F3 =

 1 +
Min− support(rule)

Max−Min
if Min ≤ support(rule) ≤Max

0 otherwise

(d) Fourth fitness function

F4 =


support(rule)−Min

Max−Min
if Min ≤ support(rule) ≤Max

0 otherwise

Figure 4.5: Different fitness functions for the RARM process
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shown some sample rules obtained by using the Zoo dataset and the configuration

parameters (see Table 4.4) previously described. The rule ( breathes = f AND

backbone = f AND eggs != f ) → ( tail != t ) satisfies only 7 instances of the

complete dataset, so this rule is considered as noisy according to the parameters

fixed in Table 4.4, having a support value of 0.068. Therefore, a zero fitness value is

assigned to this solution. On the contrary, the rule ( fins != f ) → ( backbone = t )

satisfies 17 instances, having a support value of 0.166, so a 0.455 fitness value is

assigned to this rule. The farther a solution is to the interval limits, the higher its

fitness value is. For example, the rule ( legs = 4 )→ ( catsize = t ) obtains a support

value of 0.255, satisfying 26 instances, so a fitness value of 0.950 is assigned to this

solution. As shown, this first fitness function is specific for application domains

with a large number of both noisy association rules and rules that are close to

being considered as rare. In this way, a progressive fitness function is applied, since

there is not a clear difference between noisy, rare, and frequent association rules.

Therefore, the more distant the support value is from the predefined thresholds,

the better is the rule.

The second fitness function, which is defined in Figure 4.5(b), is the most similar

one to that previously used in existing RARM proposals. The reason is that the

current algorithms do not differentiate among rules based on their support values.

A clear difference is the use of a minimum support to determine which rules are

noisy and which are RARs. Apart from the support, since rules belonging to the

interval are equally promising, it is essential to establish a mechanism to properly

differentiate among rules, bringing the confidence and lift measures into play. For

example, using the aforementioned dataset, the rule ( feathers != f) → ( hair != t)

is obtained, having a support value of 0.196, a confidence of 1.000 and a lift value of

1.741. This rule provides the same support, and therefore, the same fitness function

value to the rule ( feathers != f ) → ( type != 6 ). Therefore, if it is required to

select which one is better, the confidence and the lift values are analysed, the last

rule having a confidence value of 1.000 and a lift value of 1.086. Therefore, the rule

( feathers != f) → ( hair != t) is more interesting since its lift value is higher, the

antecedent implying an increment in the occurrence of the consequent. It should

be noted that the main application domains of this fitness function are those where

there is a clear difference between noisy and RARs.
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Finally, two other fitness functions that respectively minimize and maximize the

support within a given interval are presented. The former (see Figure 4.5(c)) assigns

a fitness value based on the proximity of the support to the lower limit. This fitness

function is specific for domains where there is a clear difference between noisy and

RARs but the difference between rare and frequent rules is not that clear. The

rule ( catsize != f ) → ( aquatic = t ) presents a fitness value of 0.904, having a

support value of 0.128. Therefore, since the support is closer to the lower limit, the

fitness function is closer to the maximum. The latter function, which is defined in

Figure 4.5(d), maximizes the fitness value when the support of the rule is closer

to the upper limit of the interval. This fitness function allows of differentiating

between frequent and RARs in situations where there is a clear limit between both

types. On the other hand, it is also useful where there is not a clear differentiation

between noisy and rare rules. For a better understanding, the rule ( legs = 4 ) →
( fins = f ) obtains a fitness function value of 0.921, and a support value of 0.374.

Similarly to the fitness functions described above, these two functions provide a

zero fitness value if the support value is outside the desired interval.

Following these fitness functions and since no restriction is applied to the support

of each condition, both perfectly and imperfectly RARs could be discovered. These

two types of rare rules have the maximum support restriction in common, as the

approaches described in Section 2.2 do. Therefore, it represents an important

advantage over currently existing proposals, where the process of extracting rules is

limited to discover only perfectly or imperfectly RARs. Finally, it should be noted

that no condition of any rule mined will have less support than the minimum

threshold fixed since the support of an association rule allows of identifying the

minimum value of any condition within the entire rule.

According to Table 4.5(a), which shows the average support values obtained by

different algorithms using these four fitness functions, we can observe that they all

behave as previously discussed. F1 and F2 discover rules that tend to be located in

the middle of the valid interval. However, F3 mines rules that can be found closer

to the lowest bound of the interval and F4 extracts rules closer to the highest limit.

In this experimental stage, it is analysed which fitness function behaves better in

terms of average confidence, average lift and average number of rules. Focusing

on the confidence and lift measures, a fitness function is better than another if
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Table 4.5: Results obtained (presented in a per unit basis) by different algorithms
using support and confidence as objectives to be maximized

(a) Average support values obtained with
different datasets

Average support

Dataset F1 F2 F3 F4

Ankara 0.202 0.141 0.114 0.251

Autom 0.230 0.189 0.141 0.292

Credit 0.245 0.208 0.209 0.239

Mush 0.231 0.185 0.149 0.257

Prim 0.198 0.193 0.177 0.212

Soyb 0.235 0.159 1.133 0.265

V ote 0.249 0.234 0.182 0.254

WBC 0.234 0.207 0.142 0.316

WDatBC 0.221 0.196 0.155 0.259

WPBC 0.238 0.166 0.115 0.296

Zoo 0.215 0.183 0.136 0.269

(b) Average confidence values obtained with
different datasets

Average confidence

Dataset F1 F2 F3 F4

Ankara 0.999 0.999 1.000 0.999

Autom 0.997 0.998 0.995 0.999

Credit 0.976 0.980 0.968 0.985

Mush 0.996 1.000 1.000 0.998

Prim 0.972 0.972 0.959 0.976

Soyb 1.000 0.999 0.996 1.000

V ote 0.970 0.971 0.968 0.974

WBC 0.999 0.998 0.998 0.998

WDatBC 0.995 0.998 0.997 0.996

WPBC 1.000 1.000 1.000 1.000

Zoo 1.000 1.000 1.000 1.000

Ranking 2.727 2.727 2.954 2.045

(c) Average lift values obtained with different
datasets

Average lift

Dataset F1 F2 F3 F4

Ankara 1.311 1.539 1.475 1.225

Autom 1.754 1.843 1.935 1.590

Credit 1.026 1.033 1.036 1.018

Mush 1.161 1.307 1.231 1.213

Prim 1.054 1.060 1.074 1.047

Soyb 1.222 1.953 1.958 1.573

V ote 1.956 1.950 2.082 1.934

WBC 1.213 1.904 1.345 1.161

WDatBC 1.471 1.452 1.589 1.444

WPBC 1.388 1.279 1.242 1.198

Zoo 2.007 2.883 2.873 1.981

Ranking 2.818 1.818 1.545 3.818

(d) Average number of rules obtained with
different datasets

Average # rules

Dataset F1 F2 F3 F4

Ankara 20.0 19.7 20.0 19.9

Autom 19.7 19.9 18.1 20.0

Credit 19.1 18.6 19.4 20.0

Mush 20.0 20.0 20.0 19.9

Prim 16.9 15.0 13.6 18.5

Soyb 20.0 20.0 20.0 20.0

V ote 18.0 18.7 18.7 20.0

WBC 19.8 20.0 20.0 20.0

WDatBC 20.0 20.0 20.0 20.0

WPBC 20.0 20.0 20.0 20.0

Zoo 20.0 20.0 20.0 20.0

Ranking 2.682 2.682 2.545 2.091

it obtains higher values for these measures. As for the average number of rules

discovered, the best fitness function will be the one that obtains a number of rules

closer to the maximum previously established by the data miner. In such a way,

and in order to determine whether there exist significant differences among these

four functions, a series of statistical tests [76, 77] were carried out.
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The Friedman statistical test is used to compare the results obtained and to be

able to precisely analyze whether there are significant differences among the four

fitness functions. If the Friedman test rejects the null-hypothesis indicating that

there are significant differences, then a Bonferroni-Dunn test is performed to reveal

these differences.

The Friedman average ranking statistics for the average confidence measure (see

Table 4.5(b)), distributed according to FF with k−1 and (k−1)(N −1) degrees of

freedom, is 1.152; 18.009 for the average lift measure (see Table 4.5(c)); and 0.494

for the number of rules mined (see Table 4.5(d)). The results reveal that both the

confidence and the number of rules belong to the critical interval [0, (FF )0.01,3,27 =

4.510], so the null-hypothesis that all the fitness functions perform equally well for

these measures is not rejected using α = 0.01. In consequence, focusing on the

confidence and the average number of rules mined, it should be noted that the

four fitness functions described in this work are equally valid for mining RARs.

Nevertheless, F4 provides the best ranking for both measures. Concerning the lift

measure, F3 obtains the best ranking since this function was conceived to obtain

those rules that are close to the minimum support threshold. Notice that the

lift measure tend to be higher as the support value decreases (see Equation 2.2).

Besides, F4 provides the worst ranking for the lift measure. This fitness function

searches for rules close to the maximum support threshold.

The Friedman average ranking statistics for the average lift measure, distributed

according to FF , is equal to 18.009, which does not belong to the critical interval

[0, (FF )0.01,3,27 = 4.510]. Thus, we reject the null-hypothesis that all these fitness

functions perform equally well for this measure. In order to determine whether

there are significant differences among these fitness functions, the Bonferroni-Dunn

test is used to reveal the difference in performance, 1.171 being the critical difference

(CD) value for p = 0.1; 1.318 for p = 0.05; and 1.616 for p = 0.01. The results

indicate that for the lift measure (see Figure 4.6), at a significance level of p = 0.01

(i.e., with a probability of 99%), there are significant differences between F3 and F4,

the performance of F3 being statistically better. Additionally, using a significance

level of p = 0.10 (i.e., with a probability of 90%), there are significant differences

between F1 and F3, the performance of F3 being statistically better. Finally, it is
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Figure 4.6: Critical difference obtained with the Bonferroni-Dunn test for the lift
measure

not possible to assert that there are significant differences between F2 and F3, even

when the latter obtains a better ranking.

Concluding the analysis, it is possible to state that despite the fact F4 provides

the best ranking for two out of three measures, it also enables rules of interest to

be discovered. Furthermore, using the Friedman test is not possible to reject the

null-hypothesis that all fitness functions perform equally well for confidence and

average number of rules mined. Therefore, when the domains under application do

not provide a clear difference between noisy, rare, and frequent rules, F3 is the best

fitness function to be used, discovering rules that are interesting and very reliable,

and providing confidence values close to the maximum.

4.2.4 Comparing Different Algorithms

In this section, a comparison between other relevant RARM algorithms and our

proposal, using the aforementioned F3 fitness function, is performed. It is impor-

tant to notice that the algorithm here presented does not require any previous step

for discretizing numerical attributes, in contrast to the other proposals.

For the evaluation of each algorithm, a number of experiments were performed.

Since the existing RARM algorithms use an exhaustive search methodology and

to make a fair comparison, only a subgroup of the datasets could be selected:

one had to avoid those that would discover a huge number of rules in exceeding

any acceptable computation time. Table 4.6 shows the results obtained with the

different algorithms. The datasets with numerical attributes were discretized using
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Table 4.6: Results obtained by different algorithms
Average support

Dataset Apriori-Inv ARIMA Apriori-Inf MRG-Exp Rare-G3PARM

Automobile5 0.013 0.013 0.015 0.114 0.141

Automobile10 0.007 0.007 0.008 0.052 0.131

Automobile15 0.006 0.006 0.007 0.044 0.133

V ote 0.032 0.043 0.036 0.277 0.182

Wisconsin5 0.004 0.004 0.004 0.118 0.184

Wisconsin10 0.004 0.004 0.004 0.114 0.175

Wisconsin15 0.004 0.004 0.004 0.301 0.217

Zoo 0.051 0.056 0.062 0.234 0.136

Average confidence

Automobile5 0.997 0.996 0.997 1.000 0.993

Automobile10 0.999 0.999 0.999 1.000 0.975

Automobile15 0.999 0.999 0.999 1.000 0.972

V ote 0.988 0.978 0.988 1.000 0.968

Wisconsin5 0.999 0.999 0.999 1.000 0.974

Wisconsin10 0.999 0.999 0.999 1.000 0.972

Wisconsin15 0.999 0.999 0.999 1.000 0.976

Zoo 0.998 0.996 0.996 1.000 1.000

Average number of rules

Automobile5 2925.0 8519.0 1206.0 12.0 19.5

Automobile10 7836.0 15505.0 3300.0 24.0 18.4

Automobile15 6021.0 12248.0 2837.0 38.0 19.6

V ote 32.0 63253.0 24.0 6.0 18.7

Wisconsin5 20378.0 61436.0 6199.0 40.0 15.2

Wisconsin10 16851.0 47855.0 6365.0 97.0 15.4

Wisconsin15 21489.0 49881.0 8410.0 24.0 11.3

Zoo 815.0 159598.0 368.0 54.0 20.0

Time (sec)

Automobile5 60.350 293.208 1.240 0.561 1.417

Automobile10 350.179 2505.419 6.894 0.735 0.983

Automobile15 207.264 2270.975 8.559 1.143 0.942

V ote 0.293 11113.984 0.166 0.202 1.343

Wisconsin5 1821.290 2966.342 14.611 1.337 1.726

Wisconsin10 865.962 8398.223 20.829 1.607 1.583

Wisconsin15 1257.343 7127.010 28.627 1.278 1.709

Zoo 0.629 8669.034 0.304 0.788 0.606
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equal-width discretization techniques in order to be able to make a comparison

between the existing RARM algorithms. The results show the average support,

the average confidence, the number of rules mined, and the average runtime for

each algorithm. Here, D − N signifies that the dataset D was discretized into

N intervals. Finally, it should be noted that the lift has been omitted in the

comparison, since current exhaustive search algorithms in the RARM field do not

consider this lift measure. Therefore, including the lift would lead to an unfair

comparison.

Analysing the results, notice that the existing RARM proposals obtain rules with

very low support, which could be considered as noise, not considering the interest of

the rules mined by using the lift measure. On the other hand, our proposal obtains

a set of RARs with support values in the range [0.1, 0.4], which is the interval used

to determine whether a rule is rare. This interval could vary, based on the specific

domain under application and the data miner’s needs. In addition, the algorithm

here presented provides interesting rare rules since the lift measure has made its

appearance on the scene. Only those rules providing antecedents with a positive

influence on their consequent are considered interesting.

An important issue is that Apriori-Infrequent obtains an average support greater

than Apriori-Inverse. As mentioned in previous sections, Apriori-Infrequent obtains

rules from the infrequent item-sets mined in the classical Apriori algorithm. There-

fore, the rules obtained have at least one condition with a support value greater

than the threshold. Notice that no superset is mined from the infrequent item-sets

obtained. On the other hand, Apriori-Inverse discovers only perfectly RARs so

their support values are very low. Studying the performance of the ARIMA algo-

rithm, it should be noticed that its results are very similar to those obtained with

Apriori-Inverse since their difference is only in the minimal item-sets. As for MRG-

Exp, it obtains higher support values than the other exhaustive search algorithms,

since it uses minimal item-sets to discover RARs. However, MRG-Exp does not

overcome the problem of discovery noisy patterns. For instance, it discover the

rule IF cylinders (4.66− 5] THEN origin (1.93− 2.07], which has a support value

of 0.01. Focusing on the average confidence, notice that all the proposals used in

the analysis obtain reliable rules, with an average confidence above 0.975.
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According to the average number of RARs mined, our proposal obtains a uniform

set of rules (between 15 and 20 rules) that is close to the number of rules previously

specified by the data miner (20 in this experimental stage). On the other hand, the

exhaustive search algorithms obtain a heterogeneous set of rules, depending on the

datasets used. For example, the Apriori-Inverse algorithm obtains 32 RARs using

the Vote dataset and 21489 rules using the Wisconsin dataset. Anyhow, none of

these algorithms can ensure that the rules discovered are interesting. Therefore,

using some datasets, these algorithms obtain a large number of association rules,

which is hardly manageable. Apriori-Infrequent only mines rules from the infre-

quent patterns discovered using the regular Apriori algorithm. Thus, the number

of rules discovered using this algorithm is lower than others. Using the Apriori-

Inverse provides a higher number of rules, since it mines infrequent patterns and

PRARs. ARIMA is the algorithm that discovers the highest number of association

rules, since it mines not only PRARs but also IRARs. Finally, MRG-Exp discovers

the lower number of rules, since it only uses minimal item-sets. Concluding the

analysis of Table 4.6, it should be noted the strength of the proposed algorithm,

which is able to obtain up to a predefined maximum number of rules, even in those

cases when this number would become unmanageable.

Focusing on the runtime for each algorithm, notice that MRG-Exp and Rare-

G3PARM have an average execution time lower than those obtained by the other

algorithms. In exhaustive search algorithms, the execution time is not uniform, but

depends directly on the dataset used. For instance, using ARIMA, the execution

time may vary from 293 to 11,113 seconds. However, the proposal presented in this

work obtains rules in a uniformly short time, around one second, independently of

the used datasets. This is a very important advantage of our approach.

Finally, Figure 4.7 lists a few RARs extracted from the execution of the Rare-

G3PARM algorithm over the original Automobile Performance dataset. As shown,

the rules discovered are very reliable, exceeding the minimum support threshold (set

to 0.100 using a per unit base) to avoid the extraction of noisy rules. Finally, notice

that using numerical values and operators, also allows obtaining intervals over

certain attributes. For example, rule 1 determines that the horsepower attribute

has a value in the range (82, 118]. This property is an important advantage of the

algorithm here proposed over the currently existing proposals in this field.
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Table 4.7: Examples of RARs over a numerical dataset
#Rule RARs over numerical attributes Support Confidence Lift

(1) IF (origin < 2) 0.184 1.000 1.960

AND (cylinders >= 5)

AND (horsepower <= 118)

AND (horsepower > 82)

THEN (displacement > 145.4)

(2) IF (model year <= 76) 0.179 1.000 2.074

AND (horsepower >= 82)

AND (weight >= 3728)

THEN (cylinders >= 5)

(3) IF (origin > 2) 0.138 1.000 1.675

AND (model year <= 76)

THEN (displacement < 222.8)

4.3 Conclusions

Current algorithms for mining RARs mainly use exhaustive search methods. There-

fore, these algorithms cannot be successfully used with huge datasets comprising a

large number of attributes because of the large search space generated. Moreover,

these algorithms only obtain RARs over categorical domains. Additionally, exist-

ing algorithms in this field obtain very infrequent rules that may be considered

as noise. In this sense, we have presented a grammar-based algorithm for mining

interesting and reliable RARs. Four fitness functions were presented and properly

studied, allowing of establishing the boundary between rare and noisy ARs. The

experimental analysis of these fitness functions showed that the most interesting

and reliable ARs were obtained by means of a fitness function that was specifically

designed for domains where there is a clear difference between noisy and RARs but

the difference between rare and frequent is not clear.
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5
Multi-Objective G3P for Mining

Association Rules

In this chapter, we present two new G3P proposals for mining ARs following a

multi-objective strategy. These proposals benefit from the advantages of both

G3P [58] and consequently EA [10], and combine them with those of multi-objective

models [65]. More specifically, the proposals presented here are based on two well-

known multi-objective algorithms: the Non dominated Sort Genetic Algorithm

(NSGA-2) [72] and the Strength Pareto Evolutionary Algorithm (SPEA-2) [83].

Because of the specific grammar definition, these G3P proposals enable the ex-

traction of rules from both numerical and categorical domains. Finally, in order

to demonstrate the usefulness of the proposed algorithms, different measures are

considered as objectives to obtain a set of optimal solutions. More specifically,

the experiments performed combine both the support-confidence and support-lift

measures. The ARs obtained have shown to be very frequent (with support values

above 95% in most cases) and reliable (with confidence values close to 100%). Fur-

thermore, for the trade-off between support and lift, the multi-objective proposals

also produce very interesting and representative rules.
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5.1 The G3PARM Multi-Objective Algorithms

In this section, we propose two multi-objective G3P proposals for extracting ARs

from different domains and types of datasets. Both approaches are founded on

two well-known multi-objective algorithms: NSGA-2 [72] and SPEA-2 [83]. The

use of G3P allows us to define expressive and understandable individuals in both

numerical and categorical domains. Both proposals have several characteristics in

common, such as the encoding criterion or the genetic operators used throughout

the evolutionary process. In this section, the main characteristics of both proposals

are outlined.

5.1.1 Encoding

As mentioned in the G3PARM algorithm (see Chapter 3), a CFG is defined as a

four-tuple (ΣN , ΣT , P , S) where ΣT represents the alphabet of terminal symbols,

ΣN the alphabet of non-terminal symbols, and ΣN ∩ ΣT = ∅.

Figure 5.1 shows the grammar used to represent each individual, which briefly

differ to the one proposed by G3PARM. Now, the consequent comprises only one

condition, so the rules discovered are more understandable for the user. Notice that

the terminal symbol “name” adopts the name of any of the attributes, randomly

selected from the set of available attributes. For example, using the sample meta-

data from Table 5.1, the terminal symbol “name” may adopt any value, such as

colour, size, shape, area or perimeter. Once the attribute for this terminal symbol

is assigned, a random value is then selected. For instance, the attribute colour may

be assigned to different values such as red, green, blue and black.

One of the most important features of these proposals is that they permit us to

represent individuals in both numerical and categorical domains. Similarly to the

proposals presented in Chapters 3 and 4, the process of producing an individual

begins from the start symbol Rule and continues by randomly applying produc-

tion rules belonging to the set P until a valid derivation sequence is successfully

completed.
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G = (ΣN , ΣT , P , S) with:

S = Rule

ΣN = {Rule, Antecedent, Consequent, Comparison, Categorical Comparator,

Categorical Attribute Comparison, Numerical Comparator,

Numerical Attribute Comparison}
ΣT = {‘AND’, ‘! =’, ‘=’, ‘<=’, ‘<’, ‘>=’, ‘>’, ‘name’, ‘value’}
P = {Rule = Antecedent, Consequent ;

Antecedent = Comparison | ‘AND’, Comparison, Antecedent ;

Consequent = Comparison ;

Comparison = Categorical Comparator, Categorical Attribute Comparison |
Numerical Comparator, Numerical Attribute Comparison;

Categorical Comparator = ‘! =’ | ‘=’ ;

Numerical Comparator = ‘<=’ | ‘<’ | ‘>=’ | ‘>’ ;

Categorical Attribute Comparison = ‘name’, ‘value’ ;

Numerical Attribute Comparison = ‘name’, ‘value’ ;}

Figure 5.1: Context-free grammar expressed in extended BNF notation

Table 5.1: Meta-data of a sample dataset showing the attributes and their available
values

Attributes Values

colour red, green, blue, black

size small, normal, big

shape circle, square, triangle

area [0, 100]

perimeter [0, 10]

5.1.2 Genetic Operators

In order to generate new individuals in a given generation of the evolutionary algo-

rithm process, two genetic operators are presented: crossover and mutation. These

genetic operators (similarly to the operators of G3PARM) search for individuals

with a support value greater than the original ones. To this end, these genetic op-

erators work on the lowest support condition within each rule and obtain another

one with a higher support.
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Crossover. To facilitate the discovery of new individuals with a higher support,

this genetic operator swaps the condition with the lowest frequency of occurrence

within a parent with the one that has the greatest frequency of occurrence in

another parent.

Mutation. Like the crossover genetic operator, this operator tries to generate a

new individual with a higher support than the original one. This operator obtains

a new individual from only one parent by working on the lowest frequency of

occurrence condition.

5.1.3 The NSGA-G3PARM Algorithm

The proposal called NSGA-G3PARM is founded on the NSGA-2 [72] multi-objective

algorithm, which is adapted to the characteristics of G3P. The pseudocode of the

NSGA-G3PARM algorithm is shown in Algorithm 6. In this proposal, different

measures, which serve to determine the quality of the rules mined, are used as ob-

jective functions. Since this algorithm follows an evolutionary strategy, it obtains

the subset parents of individuals to be crossed and mutated (lines 9 to 10). Also,

notice that any repetition will be removed from the population resulting from join-

ing the current population with the recently created set, mutatedPopulation (line

11). New individuals are evaluated to determine the values of the quality measures

(line12). Since the ultimate goal is to return a pre-defined number of optimal solu-

tions, solutions have to be organized in fronts (line 13). Therefore, the algorithm

continues to identify those solutions from the entire set that belong to the POF, i.e.,

those solutions that are not dominated by any other. After obtaining a first front,

the process is repeated on the remaining solutions, so new fronts are calculated.

Ascertaining the density of the solutions surrounding a particular solution serves

to determine which solution is best in each front. To this end, the average distance

to each solution around each of its objectives is calculated (line 14). Those solu-

tions having the highest and lowest values of each objective are assigned an infinite

distance value. On the other hand, intermediate solutions are assigned a distance

value equal to the absolute normalized difference in the objective function values

of two adjacent solutions. Finally, the overall distance value for each solution is

calculated as the sum of the distance values for each objective function. In the final

step of each generation, the algorithm keeps a number of the best solutions, i.e.,



5.1. The G3PARM Multi-Objective Algorithms 87

Algorithm 6 NSGA-G3PARM algorithm
Require: max generations, population size
Ensure: paretoOptimalFront
1: population← generatePopulation(population size)
2: parents← ∅
3: crossedPopulation← ∅
4: mutatedPopulation← ∅
5: paretoOptimalFront← ∅
6: num generations← 0
7: while num generations < max generations do
8: parents← obtainParents(population)
9: crossedPopulation← crossover(parents)

10: mutatedPopulation← mutation(crossedPopulation)
11: population← duplicateRemoved(population ∪ mutatedPopulation)
12: evaluate(population)
13: listOfFronts← obtainFronts(population)
14: densityOfSolutions(listOfFronts)
15: i← 2
16: population← F1

17: paretoOptimalFront← F1

18: while |population|+ |Fi| ≤ population size do
19: population← population ∪ Fi

20: i++
21: end while
22: population← population ∪

getIndividualsSortingByDistance(population size− |population|, Fi)
23: num generations+ +
24: end while
25: return paretoOptimalFront

those having a higher distance, starting from the first front and continuing with

the rest of fronts, if necessary (lines 18 to 22). Once the algorithm reaches a certain

number of generations max generations, the resulting set paretoOptimalFront is

returned (line 25).

5.1.4 The SPEA-G3PARM Algorithm

In this case, the SPEA-G3PARM algorithm has been adapted to conform to the

SPEA-2 [83] algorithm and the characteristics of G3P. The pseudocode of this

algorithm is shown in Algorithm 7. The algorithm starts by obtaining the set

population of individuals (line 6). Since this algorithm follows an evolutionary
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Algorithm 7 SPEA-G3PARM algorithm
Require: max generations, population size, paretoSize
Ensure: paretoOptimalFront
1: num generations← 0
2: parents← ∅
3: paretoOptimalFront← ∅
4: crossedPopulation← ∅
5: mutatedPopulation← ∅
6: population← generatePopulation(population size)
7: evaluate(population)
8: while num generations < max generations do
9: paretoOptimalFront←

obtainParetoFront(population ∪ paretoOptimalFront)
10: if size(paretoOptimalFront) > paretoSize then
11: paretoOptimalFront← reduceSize(paretoOptimalFront)
12: else
13: if size(paretoOptimalFront) < paretoSize then
14: paretoOptimalFront←

incrementSize(paretoOptimalFront, population)
15: end if
16: end if
17: parents← obtainParents(paretoOptimalFront ∪ population)
18: crossedPopulation← crossover(parents)
19: mutatedPopulation← mutation(crossedPopulation)
20: population← mutatedPopulation
21: evaluate(population)
22: num generations+ +
23: end while
24: return paretoOptimalFront

strategy, the set population evolves through the generations (lines 8 to 23), creat-

ing new individuals by means of genetic operators. The main characteristic of this

algorithm is that each individual is evaluated according to the Cartesian distance

with its k-th nearest neighbours in the population and the number of individuals

that dominate each individual (raw value). If the individuals establish few dom-

inance relationships among each other (e.g., they all lie in the POF), then large

groups of solutions with the same fitness may be obtained, so it is necessary to

compute a nearest neighbour density estimation. Thus, given an individual i, the

higher the number of individuals dominated by i and the higher the Cartesian

distance with its neighbours, the lower the fitness function value reached. It is

important to note that the goal of this algorithm is to minimize the fitness value

(see Equation 5.1).
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fitness(i) =
1

Cartesian distance(i, kth nearest neighbour) + 2
+ raw(i) (5.1)

In each generation, the algorithm generates the POF, which is stored in the set

paretoOptimalFront, from the set that results from merging the current population

and the old POF (line 9). If the size of this POF is greater than paretoSize, then

the POF has to be downsized by choosing the best individuals ranked according to

the fitness function (lines 10 to 11). On the other hand, if the size of the POF is less

than a pre-defined size, then it is necessary to fill the POF with the best solutions

from the second front (lines 13 to 14). Once the POF is generated, a set of parents

is chosen by merging the current population and the new POF (line 17), and new

solutions are obtained with the genetic operators (lines 18 to 20). Finally, after

completing a given number of generations, the resulting set paretoOptimalFront

is returned (line 24).

5.2 Experimental Study

Different experiments were carried out, the results of which are presented in this

section. Firstly, the datasets used and the experimental set-up are explained.

Thereafter, a series of analyses are performed to determine the quality of each

POF mined and the behaviour of the different quality measures in the proposed

G3P multi-objective optimization algorithms.

5.2.1 Datasets

The results 1 shown in this experimental section correspond with the average values

calculated after running each algorithm 30 times with different seeds. Ten datasets

with different numbers of instances and attributes were used (see Table 5.2). All

the experiments were performed on a 12Gb main memory Intel Core i7 machine,

1A detailed description of the results can be found at http://www.uco.es/grupos/kdis/

kdiswiki/MO-G3P_ARM

http://www.uco.es/grupos/kdis/kdiswiki/MO-G3P_ARM
http://www.uco.es/grupos/kdis/kdiswiki/MO-G3P_ARM
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Table 5.2: Datasets used in the experimental stage
Dataset Abbreviation #Inst. #Attr. Attr. Type

Automobile Autom 392 8 Num.

Credit German Credit 1000 21 Categ., Num.

House 16H HH 22784 17 Num.

Minorities at Risk MAR 852 22 Categ., Num.

Minorities at Risk Organ. Behaviour MAROB 1789 50 Categ., Num.

Mushroom Mush 8124 23 Categ.

Soybean Soyb 683 36 Categ.

Wisconsin Breast Cancer WBC 683 11 Categ., Num.

Wisconsin Diagnostic Breast Cancer WDatBC 569 31 Categ., Num.

Wisconsin Prognostic Breast Cancer WPBC 194 34 Categ., Num.

running CentOS 5.4. Similarly to algorithms presented in previous chapters, these

algorithms were written in Java using JCLEC [74].

5.2.2 Experimental Set-up

In Chapter 3, the best found combination of parameters was described for the

G3PARM algorithm. Thus, the same combination of parameters is used in this

experimental stage. Also, since both multi-objective algorithms are based on

G3PARM, and in order to make a fair comparison, the same parameters set-up

is used for the three algorithms.

Table 5.3: Best combination of parameters found by the authors
Parameter G3PARM NSGA-G3PARM SPEA-G3PARM

Population size 50 50 50

External population 20 - -

Pareto front size - - 20

# Generations 100 100 100

Max. derivations 24 24 24

Nearest neighbour - - 5

Crossover prob. 70% 70% 70%

Mutation prob. 14% 14% 14%

Confidence threshold 90% - -

Support threshold 70% - -
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Table 5.3 shows the best found combination of parameters. The best results were

obtained using a population size of 50 individuals, 100 generations, 70% crossover

probability, 14% mutation probability, and a maximum derivation size of 24. For

the G3PARM algorithm, the external or elite population size is 20 and the thresh-

olds of support and confidence are set to 70% and 90%, respectively. For the SPEA-

G3PARM, the Cartesian distance was calculated with the fifth nearest neighbour

and the maximum Pareto front size was fixed to 20 to perform a fair comparison

against G3PARM.

5.2.3 Analysis of the Experiments

In this section, a comparative study between both multi-objective proposals is

performed. Firstly, an study of different statistical tests used in this experimental

study is carried out. Secondly, an analysis of the POF obtained by each proposal

is presented, and finally, the quality of the extracted rules is evaluated.

Analysis of the POF Quality. Many performance measures, which evaluate

different POF characteristics, have been proposed in the literature [66]. Three

of the most widely used — spacing, hyper-volume and coverage of sets — are

analysed. The average results from the datasets mentioned above and using a

support-confidence framework are shown in Table 5.4. The spacing measure nu-

merically describes the spread of the solutions in the POF. Analysing the results

obtained, the POF of the NSGA-G3PARM algorithm provides a set of solutions

more equally spaced than SPEA-G3PARM, the spacing value being the lowest one.

Using the hyper-volume, which is defined as the area of the POF coverage with

respect to the objective space, the NSGA-G3PARM algorithm obtains the highest

value, therefore, its POF covers a higher area than the POF of SPEA-G3PARM.

Table 5.4: Average results obtained for different quality measures of the POF using
a support-confidence framework

Algorithm Spacing Hyper-volume Two set coverage

NSGA-G3PARM 0.012 0.987 CS(NSGA-G3PARM,SPEA-G3PARM) = 0.3

SPEA-G3PARM 0.015 0.986 CS(SPEA-G3PARM,NSGA-G3PARM) = 0.1
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Finally, the coverage of the two sets is evaluated. This measure determines the rel-

ative coverage comparison of the POF from two different algorithms. The results

show that NSGA-G3PARM produces the highest value, dominating the outcomes

of SPEA-G3PARM. Taking all these measures into account, it could be said that

NSGA-G3PARM obtains a higher quality POF when support and confidence mea-

sures are used.

Since this analysis is based on the average values of several measures across datasets

that have different characteristics, it is not particularly meaningful. Therefore, we

performed the Wilcoxon signed rank test [76], obtaining a 0.17 p-value for the

spacing, 0.08 for the hyper-volume, and 0.02 for the two set coverage measure. So,

at a significance level of α = 0.01, there are no significant differences between the

two multi-objective approaches.

Studying the POF quality with a support-lift framework (see Table 5.5), it is possi-

ble to determine that NSGA-G3PARM provides more equally spaced solutions than

SPEA-G3PARM. Focusing on the hyper-volume measure, SPEA-G3PARM pro-

duces the greatest value, so its POF covers a greater area. Finally, focusing on the

dominance of each POF, NSGA-G3PARM is seen to achieve a greater value than

SPEA-G3PARM, so NSGA-G3PARM dominates the outcomes of SPEA-G3PARM.

Taking all these results into account, it can be stated that NSGA-G3PARM obtains

a higher quality POF than SPEA-G3PARM.

Table 5.5: Average results obtained for different quality measures of the POF using
a support-lift framework

Algorithm Spacing Hyper-volume Two set coverage

NSGA-G3PARM 3.6 1.9 CS(NSGA-G3PARM,SPEA-G3PARM) = 0.4

SPEA-G3PARM 24.3 2.1 CS(SPEA-G3PARM,NSGA-G3PARM) = 0.2

Since the results obtained from this analysis are not sufficiently meaningful, the

Wilcoxon signed rank test should be performed. The test shows a 0.002 p-value for

spacing, 0.037 for hyper-volume, and 0.006 for the two set coverage measure. At

a significance level of α = 0.01, there are significant differences between the two

multi-objective versions for the spacing measure and the NSGA-G3PARM version
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is statistically better. On the contrary, at the same significance level, the SPEA-

G3PARM version is statistically better for the two set coverage measure. Finally,

at a significance level of α = 0.01, there are no significant differences between the

two multi-objective versions for the hyper-volume measure. Therefore, regardless

of whether a support-confidence framework or a support-lift framework is used, no

significant differences are seen to exist between the two multi-objective proposals.

In consequence, both approaches should be compared with the original G3PARM

(see Chapter 3). The results are shown in Tables 5.6 and 5.8 (the best results for

each measure are highlighted in bold).

Analysis of the Rules Mined. In this study, we evaluate the performance of

the G3P proposals by comparing them in terms of their average support, average

confidence, and the coverage (i.e., the percentage of instances covered) for each

algorithm (see Table 5.6). The average ranking for each algorithm is shown in

Table 5.7. Finally, Figure 5.2 depicts the difference of the corresponding average of

rankings for each quality measure, showing the critical difference (CD) for different

p values. In such a way, it is easy to determine whether significant differences exist

between the algorithms.

Focusing on the results presented in Table 5.6(a), the three algorithms mine highly

representative rules, with a support value above 0.95 in most cases. NSGA-

G3PARM achieves the highest support values for most datasets. All algorithms

obtain very reliable association rules (see Table 5.6(b)) and there are no apparent

differences between them. Analysing the coverage measure (see Table 5.6(c)), the

SPEA-G3PARM algorithm produces the best results, covering all the instances in

most datasets. An analysis of the G3PARM and NSGA-G3PARM algorithms shows

that they cover a large amount of instances (above 0.97) and, in some datasets, they

manage to cover all the instances, e.g., in the MAROB and Mush datasets. Finally,

the number of rules mined is homogeneous for G3PARM and SPEA-G3PARM. Due

to the nature of the SPEA algorithm described in Section 3.4, it discovers a set of

rules equal to the size of its POF (20 rules). On the other hand, the G3PARM

algorithm also obtains 20 rules at most, constrained by its external population

size. However, using some datasets, the latter does not reach its population size

limit (e.g., HH and WDatBC datasets). On the other hand, the NSGA-G3PARM

algorithm discovers a heterogeneous set of between 1 and 60 rules, depending on
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Table 5.6: Results obtained (presented per unit) by different algorithms using
support and confidence as objectives to be maximized

(a) Average support values obtained with different
datasets

Average support

Dataset G3PARM NSGA- SPEA-

G3PARM G3PARM

Autom 0.819 0.876 0.854

Credit 0.913 0.994 0.972

HH 0.922 0.998 0.977

MAR 0.999 1.000 0.999

MAROB 1.000 1.000 1.000

Mush 0.998 1.000 0.999

Soyb 0.883 0.983 0.924

WBC 0.991 0.997 0.994

WDatBC 0.783 0.876 0.790

WPBC 0.963 0.989 0.968

(b) Average confidence values obtained
with different datasets

Average confidence

G3PARM NSGA- SPEA-

G3PARM G3PARM

0.991 0.993 0.991

0.999 1.000 0.997

0.999 0.999 0.999

1.000 1.000 0.999

1.000 1.000 1.000

1.000 1.000 0.999

0.997 0.998 0.991

0.999 1.000 0.999

0.978 0.994 0.987

0.999 1.000 0.996

(c) Average instances covered with different datasets

Instances covered (per unit basis)

Dataset G3PARM NSGA- SPEA-

G3PARM G3PARM

Autom 0.979 0.988 1.000

Credit 1.000 0.998 1.000

HH 0.999 0.999 1.000

MAR 1.000 1.000 1.000

MAROB 1.000 1.000 1.000

Mush 1.000 1.000 1.000

Soyb 1.000 0.993 1.000

WBC 0.998 0.997 0.999

WDatBC 0.998 0.991 0.997

WPBC 0.999 0.995 1.000

(d) Average number of rules obtained with
different datasets

Average Average number of rules

G3PARM NSGA- SPEA-

G3PARM G3PARM

19.8 18.5 20.0

19.9 3.9 20.0

19.3 17.5 20.0

20.0 34.4 20.0

20.0 49.9 20.0

20.0 31.9 20.0

20.0 2.3 20.0

19.0 12.7 20.0

19.4 4.8 20.0

20.0 8.5 20.0

Table 5.7: Average ranking of each algorithm for each measure
Measure G3PARM NSGA-G3PARM SPEA-G3PARM

Support 2.8 1.1 2.1

Confidence 2.0 1.3 2.7

Coverage 1.9 2.5 1.5
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(a) Critical difference obtained with the Bonferroni-Dunn test for the support measure

(b) Critical difference obtained with the Bonferroni-Dunn test for the confidence measure

(c) Critical difference obtained with the Bonferroni-Dunn test for the coverage measure

Figure 5.2: Critical differences obtained with the Bonferroni-Dunn test for different
measures when using support and confidence as objectives to be optimized

the dataset. As mentioned above, this algorithm does not have a maximum POF

size, so the number of rules mined may vary greatly.

The Friedman average ranking statistics for average support measure distributed

according to FF with k − 1 and (k − 1)(N − 1) degrees of freedom is 24.3; 8.6 for

the average confidence measure; and 3.4 for the coverage measure. The support

does not belong to the critical interval [0, (FF )0.01,2,18 = 6.0]. Thus, we reject the

null-hypothesis that all algorithms perform equally well for the support measure
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using α = 0.01. Using the same critical interval [0, (FF )0.01,2,18 = 6.0], the Fried-

man test rejects the null-hypothesis that all algorithms perform equally well for

the confidence measure. Finally, using the critical interval [0, (FF )0.1,2,18 = 2.6],

with α = 0.1, the Friedman test rejects the null-hypothesis for the coverage mea-

sure. In order to analyse whether there are significant differences among the three

algorithms using all the measures, the Bonferroni-Dunn test is used to reveal the

difference in performance (See Figure 5.2), 0.8 being the critical difference (CD)

value for a significance level of p = 0.1; 1.0 for p = 0.05; and 1.2 for p = 0.01.

With regard to the support measure (see Figure 5.2(a)), the results indicate that

at a significance level of p = 0.01 (i.e., with a probability of 99%), there are

significant differences between NSGA-G3PARM and G3PARM, the performance of

the former being statistically better. Using a significance level of p = 0.1 (i.e., with

a probability of 90%), there are significant differences between SPEA-G3PARM and

NSGA-G3PARM, the performance of the latter being statistically better. Finally,

it is not possible to assert that there are significant differences between G3PARM

and SPEA-G3PARM, despite the fact that SPEA-G3PARM produces the best

ranking.

If we focus on the confidence measure, as shown in Figure 5.2(b), with a probability

of 99%, it is possible to state that there are significant differences between NSGA-

G3PARM and SPEA-G3PARM, the former being statistically better. However, it

is not possible to state that there are significant differences between G3PARM and

both multi-objective proposals, NSGA-G3PARM being statistically better.

Finally, the coverage measure shown in Figure 5.2(c) establishes that when a sig-

nificance level of p = 0.1 is used, there are significant differences between both

multi-objective proposals, the performance of SPEA-G3PARM being statistically

better. Moreover, it is not possible to state that, with a probability of 90%, there

are significant differences between SPEA-G3PARM and G3PARM, but the former

obtains the best ranking. Analysing NSGA-G3PARM and G3PARM, it is not pos-

sible to assert that, with a significance level of p = 0.1, there are any significant

differences between the two algorithms but the latter obtains the best ranking.

To conclude this analysis, the G3P-based multi-objective proposals perform very

well when using support and confidence as objectives to be maximized. In such
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a situation, they offer a good alternative to G3PARM by mining more represen-

tative and reliable rules, especially the NSGA-G3PARM proposal. However, some

situations require discovering rules with the lowest support but of high interest, as

mentioned in Section 2.1. An example can be found when analysing the average

results obtained using the MAROB dataset. Regardless of the algorithm used, the

results obtained with this dataset is always equal to 1.0 for both measures, support

and confidence. Therefore, all rules discovered using this dataset have a lift value

of 1.0, i.e., the antecedent and consequent are statistically independent. Thus, it

is valuable to perform a new analysis for discovering interesting rules, so lift and

support measures are used as objectives to be maximized. In order to make a fair

comparison, G3PARM was modified for mining only rules with a lift value greater

than one, i.e., rules with interest.

The results presented in Table 5.8 show that multi-objective proposals discover

rules with a high interest at the expense of a decrease in frequency (see Ta-

ble 5.8(a)), as is to be expected. Focusing on the lift measure shown in Table 5.8(b),

the best results are obtained with the SPEA-G3PARM algorithm, while G3PARM

discovers more reliable rules (see Table 5.8(c)). It is worth mentioning that the con-

fidence of the rules mined with the multi-objective G3P proposals decreases more

than with G3PARM. Studying the number of rules discovered (see Table 5.8(e)),

it is seen that the G3PARM and the SPEA-G3PARM algorithms mine a small,

homogeneous set of rules. The latter obtains a set of rules equal to the size of its

POF, while the former discovers a maximum of 20 rules, constrained by its external

population size. If we focus on the NSGA-G3PARM algorithm, it obtains a large

set of rules (between 32 and 49 rules depending on the dataset used). Finally, when

analysing the coverage measure (see Table 5.8(d)), the NSGA-G3PARM algorithm

is seen to mine the best results, covering all the instances in many datasets thanks

to the high number of rules mined.

Different statistical tests [76, 77] were carried out based on the average ranking

for each algorithm (see Table 5.9). The Friedman average ranking statistics for

average support measure distributed according to FF with k−1 and (k−1)(N−1)

degrees of freedom is 5.1E15, 90.9 for average lift, 5.1E15 for average confidence,

and 8.1 for coverage (percentage of instances covered). None of them belong to

the critical interval [0, (FF )0.01,2,18 = 3.5]. Thus, we reject the null-hypothesis
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Table 5.8: Results obtained (presented in a per unit basis) by different algorithms
using support and lift as objectives to be maximized

(a) Average support values obtained with different
datasets

Average support

Dataset G3PARM NSGA- SPEA-

G3PARM G3PARM

Autom 0.79 0.53 0.39

Credit 0.87 0.46 0.39

HH 0.98 0.44 0.30

MAR 0.89 0.50 0.42

MAROB 0.93 0.76 0.54

Mush 0.97 0.48 0.41

Soyb 0.87 0.45 0.40

WDBC 0.99 0.53 0.34

WDatBC 0.75 0.42 0.34

WPBC 0.96 0.36 0.35

(b) Average lift values obtained with dif-
ferent datasets

Average confidence

G3PARM NSGA- SPEA-

G3PARM G3PARM

1.04 2.11 3.91

1.00 2.09 3.65

1.00 94.08 80.39

1.00 6.65 11.37

1.01 1.99 20.69

1.00 15.37 26.95

1.02 3.59 4.95

1.00 11.32 49.38

1.05 2.30 2.70

1.01 7.08 12.08

(c) Average confidence values obtained with differ-
ent datasets

Average confidence

Dataset G3PARM NSGA- SPEA-

G3PARM G3PARM

Autom 0.99 0.89 0.85

Credit 0.99 0.77 0.74

HH 0.99 0.80 0.75

MAR 0.99 0.82 0.74

MAROB 0.99 0.92 0.87

Mush 0.99 0.90 0.80

Soyb 0.99 0.91 0.90

WDBC 1.00 0.88 0.82

WDatBC 0.96 0.89 0.84

WPBC 0.99 0.84 0.82

(d) Average instances covered in different
datasets

Average Instances covered

G3PARM NSGA- SPEA-

G3PARM G3PARM

0.899 1.000 0.999

0.980 0.998 0.985

0.999 0.999 0.997

0.986 1.000 0.999

0.970 1.000 1.000

0.995 0.999 0.997

0.992 0.997 0.999

0.998 1.000 0.996

0.978 1.000 0.995

0.999 0.998 0.997

(e) Average number of rules obtained with different datasets

Average number of rules

Dataset G3PARM NSGA-G3PARM SPEA-G3PARM

Autom 19.2 46.2 20.0

Credit 19.5 44.9 20.0

HH 19.9 48.9 20.0

MAR 15.6 42.8 20.0

MAROB 13.7 49.6 20.0

Mush 20.0 43.3 20.0

Soyb 20.0 32.2 20.0

WDBC 18.9 49.2 20.0

WDatBC 15.7 49.2 20.0

WPBC 19.8 46.2 20.0
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Table 5.9: Average ranking for each algorithm and each measure
Measure G3PARM NSGA-G3PARM SPEA-G3PARM

Support 1.0 2.0 3.0

Lift 3.0 1.9 1.1

Confidence 1.0 2.0 3.0

Coverage 2.6 1.2 2.1

that all algorithms perform equally well for these measures using α = 0.01. In

order to analyse whether there are any significant differences between the three

algorithms, the Bonferroni-Dunn test is used to reveal the difference in performance

(see Figure 5.3), where the critical difference (CD) value is 0.9 for p = 0.1; 1.0 for

p = 0.05; and 1.2 for p = 0.01.

The results indicate that for support (see Figure 5.3(a)), at a probability of 99%,

there are significant differences between G3PARM and SPEA-G3PARM, the per-

formance of G3PARM being statistically better. On the other hand, at a signif-

icance level of p = 0.05, it is not possible to state that there are any significant

differences between G3PARM and NSGA-G3PARM. However, there are significant

differences between them at a probability of 90%, when the performance of the for-

mer is statistically better. Similarly, at a probability of 90%, there are significant

differences between both multi-objective proposals and SPEA-G3PARM is found

to be statistically better.

Focusing on lift (see Figure 5.3(b)), at a probability of 99%, there are significant

differences between G3PARM and SPEA-G3PARM, the performance of the latter

being statistically better. At a probability of 95%, there are significant differences

between G3PARM and NSGA-G3PARM, the latter performing better in statistical

terms. Finally, it is not possible to state that, at a significance level of p = 0.1, there

are any significant differences between NSGA-G3PARM and SPEA-G3PARM, al-

though the latter obtains the best ranking.

With regard to confidence (see Figure 5.3(c)), at a probability of 99%, there are

significant differences between G3PARM and SPEA-G3PARM, the former perform-

ing statistically better. At a probability of 90%, there are significant differences

between G3PARM and NSGA-G3PARM, and G3PARM continues to perform sta-

tistically better. Similarly, at a probability of 90%, there are significant differences
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(a) Critical difference obtained with the Bonferroni-Dunn test for the support measure

(b) Critical difference obtained with the Bonferroni-Dunn test for the lift measure

(c) Critical difference obtained with the Bonferroni-Dunn test for the confidence measure

(d) Critical difference obtained with the Bonferroni-Dunn test for the coverage measure

Figure 5.3: Critical differences obtained with the Bonferroni-Dunn test for different
measures when using support and lift as objectives to be optimized
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between both multi-objective proposals but now NSGA-G3PARM performs better

in statistical terms.

Finally, as shown in Figure 5.3(d) for the coverage measure, at a probability of

99%, there are significant differences between G3PARM and NSGA-G3PARM, the

performance of the latter being statistically better. At a probability of 90%, there

are significant differences between SPEA-G3PARM and NSGA-G3PARM and the

latter continues to perform statistically better. However, it is not possible to state

that, at a significance level of p = 0.1, there are any significant differences between

G3PARM and SPEA-G3PARM, although the latter obtains the best ranking.

Concluding the analysis of using support–lift as objectives, multi-objective propos-

als are seen to perform very well for discovering rules of high interest. The discovery

of interesting rules implies a decrease in the average support so G3PARM obtains

a higher average support than multi-objective proposals when support and lift are

used as objectives to be maximized. Despite the fact that the G3PARM algorithm

generates very frequent and reliable rules, these rules are of slight interest.

In summary, the synergy of connecting G3P and multi-objective models for mining

association rules provides important characteristics. The proposed multi-objective

algorithms have demonstrate themselves to perform better than G3PARM when

support and confidence measures are used together as the objectives to be opti-

mized. For these two measures, the NSGA-G3PARM algorithm performs better

than the others. As far as the coverage measure is concerned, SPEA-G3PARM

obtains better results. On the contrary, if support and lift are jointly used as

the objectives to be optimized, both multi-objective proposals behave better than

G3PARM for the lift measure, although G3PARM obtains better results for both

support and confidence. Finally, the NSGA-G3PARM algorithm always performs

better than the others with regard to the coverage measure.

5.3 Conclusions

In this chapter, we have presented two novel G3P multi-objective approaches for

mining ARs. These two models are based on two well-known multi-objective

proposals: NSGA-2 and SPEA-2. The approaches have been properly analysed
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and studied, optimizing both support-confidence and support-lift quality measures.

These algorithms combine the strength of using G3P with the ability to search for

good trade-offs between quality measures. The experimental study have demon-

strated that the algorithm based on NSGA obtain better POFs than the one based

on SPEA.
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6
Parameter-Free G3P Algorithms in

Association Rule Mining

In this chapter, we present two parameter-free algorithms in the ARM field. First,

a G3P algorithm that self-adapts its parameters along the generations is properly

described. This algorithm adjusts its parameter values depending on the dataset

under study, discovering not only frequent and strong ARs but also rules of interest

based on the lift measure. Finally, an improved version that reduces the number

of parameters and highly optimizes the numerical attributes is presented. This

algorithm searches for rules whose instances distribution does not comprise blank

spaces, since it is more interesting an AR having optimized quantitative attributes

than an AR with a higher support value.

6.1 The G3PARM+ Algorithm

In this section, the G3PARM+ algorithm, a self-adaptive G3P algorithm, is pro-

posed for mining ARs. This proposal also uses a CFG to define syntax constraints

and extract rules in both numerical and categorical domains. During its evolu-

tionary process, the proposal discovers ARs by applying two genetic operators over
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those rules selected as parents by means of a niche-crowding [86, 87] model. Both

genetic operators adjust their probabilities along the mining process. The pro-

posed algorithm allows of obtaining ARs without any previous knowledge about

the dataset, and does not require support or confidence thresholds. Moreover, a

support–confidence framework is not purely accomplished, bringing the lift mea-

sure into play in order to extract frequent, reliable, and also interesting rules. The

resulting set of rules comprises dissimilar rules, covering a high percentage of the

dataset instances, which is measured by the coverage. It is noteworthy that for the

sake of avoiding mismatched rules, the instances covered by each rule are analysed.

The results clarify the good behaviour and efficiency of this proposal compared

to G3PARM, which was previously contrasted to other exhaustive and genetic al-

gorithms in Chapter 3. More specifically, the empirical comparison demonstrates

that the new proposal obtains interesting rules with high support, high confidence,

and high coverage of dataset instances.

In this way, this proposal mines ARs requiring only a few parameters and defines

ARs by using derivation trees. Each derivation tree is evaluated by applying two

criteria. One guides the search for solutions along the mining process. The other

one allows of selecting the best solutions found. To mine new individuals in the

evolutionary process, a parent selector using a niche-crowding methodology and

two new genetic operators are presented.

6.1.1 Encoding

Similarly to any G3P proposal, each individual is defined by a genotype and a

phenotype. The former is defined by means of a tree structure with different shapes

and sizes. The latter represents the AR defined by the tree structure. This tree

structure is obtained according to the definition of a grammar G, which is defined

as shown in Figure 6.1.

The proposal here presented allows the use of both categorical and numerical at-

tributes. Unlike previous proposals, which use <, <=, > and >= as logic opera-

tor for numerical attributes, this proposal applies the operators IN or OUT and

randomly selecting two feasible values. For the sake of clarifying the individual

representation, it is interesting to show a sample individual generated through the
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G = (ΣN , ΣT , P , S) with:

S = {Rule}
ΣN = {Rule, Antecedent, Consequent, Condition, Categorical Operator,

Categorical Values, Numerical Values}
ΣT = {‘AND’, ‘! =’, ‘=’, ‘IN’, ‘OUT’, ‘CategoricalAttribute’, ‘CategoricalValue’,

‘NumericalAttribute’, ‘NumericalValue’ }
P = {Rule = Antecedent, Consequent ;

Antecedent = Condition | ‘AND’, Condition, Antecedent ;

Consequent = Condition | ‘AND’, Condition, Consequent;

Condition = Categorical Operator, Categorical Value |
Numerical Operator, Numerical Value ;

Categorical Operator = ‘! =’ | ‘=’ ;

Numerical Operator = ‘IN’ | ‘OUT’ ;

Categorical Value = ‘CategoricalAttribute’ ‘CategoricalValue’;

Numerical Value = ‘NumericalAttribute’ ‘NumericalValue’ ‘NumericalValue’; }

Figure 6.1: Context-free grammar expressed in extended BNF notation

Table 6.1: A sample metadata
Attributes Values

toy ball, teddy, doll

toy’s price [10, 50]

sex male, female

sample meta-data (see Table 6.1) and the application of a sequence of production

rules from P , which would represent the following rule:

IF toy′sprice IN [25, 43] ∧ toy = ball THEN sex = male

Notice that two random values are selected for the numerical conditions though the

entire range of values could also be valid, e.g., the condition ‘toy’s price IN [10, 50]’.

Anyhow, this is not a problem since any individual having the antecedent or conse-

quent with a maximum support produces a misleading rule, i.e., a lift value equal

to unity, as explained in Section 2.1.
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6.1.2 Evaluation

In this proposal, each individual I is evaluated according to two bounded range

functions. The function Fpool uses a specific criterion to determine which individuals

represent the best ARs. The other function, F , selects individuals whose structure

is interesting for subsequent generations.

Notice that in the process of searching for the best rules, it is necessary to maximize

the support, confidence, and lift. However, as shown in Figure 2.1 in Section 2.1.2,

the confidence measure is maximized with the support measure, so we only need

to maximize support and lift. Therefore, we propose a fitness function Fpool (see

Equation 6.1) that maximizes support and lift and, in consequence, the three mea-

sures at once. Fpool is defined within the domain [0, 1] and serves to determine the

quality of the individuals in order to keep the best ones.

Fpool(I) =

 support(I)× lift(I) if lift(I) > 1

0 otherwise
(6.1)

On the other hand, it is essential to maintain the most promising rules in subsequent

generations, so a different criterion is used for this. Firstly, it is interesting to

obtain reliable rules, so those with high confidence values are desired. Secondly, it

should be noted that very reliable rules could have low support values. Therefore,

a function F to obtain reliable rules that do not appear infrequently is required

(see Equation 6.2), allowing of evolving individuals during the mining process. The

range of values of this new function is [0, 1].

F (I) = confidence(I)× Fpool(I) (6.2)

6.1.3 Major Procedures

In this proposal, a new parent selector based on a niche-crowding method has

been constructed. Moreover, two genetic operators that follow a new interesting

methodology in ARM are detailed in depth.
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Parents selector. The responsibility for obtaining a subset of individuals that

act as parents in a given generation of the evolutionary process belongs to the

selection operator, which is carried out in this proposal by implementing a niche-

crowding [86, 87] model. This new model behaves like a clustering algorithm [88,

89], where individuals that satisfy similar instances belong to the same cluster.

Thus, to determine the niche that each individual belongs to, the distance be-

tween two individuals (see Equation 6.3) is measured by comparing their instances

covered, R1 and R2 being vectors having the instances covered by two rules, re-

spectively.

distance(R1, R2) = 1− R1 R2

||R1|| ||R2||
(6.3)

For a better understanding, consider the sample dataset shown in Table 6.2 and

the instances covered by two sample rules, as depicted in Figure 6.2. In such

a situation, the value of R1 R2 is 2, whereas the values of ||R1|| and ||R2|| are
√

2 and
√

3, respectively. Once these values are obtained, the distance between

these two individuals is defined by distance(R1, R2) = 1 − (2/(
√

2
√

3)) = 0.194.

In consequence, since the range of the values is [0, 1], both individuals tend to

be closer. In such a way, the closer are two individuals, the more similar these

individuals are.

In an iterative way, this parent selector aims to form niches comprising those indi-

viduals that cover similar instances. In an initial step, a number of individuals are

selected to act as centroids for each niche. Then, each of the remaining individuals

Table 6.2: Sample market customers
Customer Bread Milk Coffee

Id-1 1 1 1

Id-2 0 1 0

Id-3 1 0 0

Id-4 1 0 0

Id-5 0 1 0

Id-6 1 1 1

Id-7 0 1 0

Id-8 1 0 0

Id-9 0 1 1

Id-10 0 0 1



110 6. Parameter-Free G3P Algorithms in Association Rule Mining

Instance in the dataset: 1 2 3 4 5 6 7 8 9 10

R1) Bread → Milk: 1 0 0 0 0 1 0 0 0 0

R2) Milk → Coffee: 1 0 0 0 0 1 0 0 1 0

Figure 6.2: Sample association rules

is assigned to the niche whose centroid is closer. Once every individual is assigned

to a specific niche, the sum of distances of every individual to its centroid within a

niche is obtained (Dist). The goal is to minimize the Dist value.

For each iteration, the first step consists in choosing new centroids that allow of

obtaining the best results. The individual with the highest distance to its centroid

is used as a new centroid, replacing the closer centroid. The process is carried out

in an iterative way until the Dist value can not be improved any more.

Once the iterations are finished, the parent selector operator randomly selects in-

dividuals from random niches each time. Thus, the aim is to cross individuals from

different niches, which represent dissimilar rules.

Crossover operator. The crossover procedure requires a set of individuals to act

as parents, returning a set of new individuals. During this procedure, this genetic

operator gets iteratively two individuals and then, according to an initial crossover

probability, a random value will determine if the operation will be executed or

not. In G3PARM+, the crossover probability is updated in each generation. If

the average lift obtained in the pool of individuals is greater than that calculated

in the previous generation, then the crossover probability will be increased since a

depth search or exploitation is required. On the other hand, if the average lift is

less than or equal to that obtained in the previous generation, then the crossover

probability should be decreased.

This operator obtains new individuals from parents previously selected by the par-

ent selector. In this work, the crossover operator acts by swapping the most promis-

ing condition from each individual, i.e., the condition that allows further improve-

ment of the support of the entire rule. Thereby, two offspring are obtained having

the most promising conditions swapped. If two conditions are equally promising,

the one with the lowest absolute support will be selected. Additionally, if two



6.1. The G3PARM+ Algorithm 111

conditions have the same absolute support, then one of them will be randomly

selected.

For a better understanding, assume the rule (Bread ∧ Milk) → Coffee il-

lustrated in Figure 6.3(a), which is based on the sample dataset depicted in Ta-

ble 6.2. Once each condition is analysed, if the condition Bread is changed (see

Figure 6.3(b)), it would possible to obtain a new condition that allows of cover-

ing one more instance. On the other hand, no instance might be affected if Milk

(see Figure 6.3(c)) or Coffee (see Figure 6.3(d)) are selected. Replacing one of

these two conditions, the maximum support that it would possible to obtain is the

same that the support obtained using the original conditions. Therefore, the most

promising condition to be changed is Bread since an absolute support of three

could be obtained.

G3PARM addresses the issue of obtaining new individuals by changing the con-

dition with the lowest support value within a rule. Sometimes, this methodology

is not the best choice, as depicted in Figure 6.3. If the condition with the lowest

support of the sample rule is changed, i.e., the condition Coffee, which has a

support value of 0.4, then the entire rule could not be improved. Changing this

condition, the support of the rule remains the same or even lower. However, using

the crossover operator presented in this work, the best condition to be replaced is

Bread, which is not the lowest support condition, but the most promising condi-

tion. If this condition is altered, the support of the rule could be improved in one

instance, so a support value of 0.3 could be obtained at most.

Mutation operator. The mutation genetic operator is responsible for obtaining

a new individual from another one previously selected. This operator also requires

an initial mutation probability, which is responsible for determining if certain indi-

vidual will be mutated or not. This genetic operator modifies the most promising

condition from a parent to obtain a better one. Similarly to the crossover proba-

bility, the mutation probability is updated in each generation. If the average lift

obtained in the pool of individuals is greater than that calculated in the previous

generation, then the mutation probability decreases. On the other hand, if the av-

erage lift is less than or equal to that obtained in the previous generation, then the

mutation probability increases since a breadth search or exploration is required.
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Instances in the dataset: 1 2 3 4 5 6 7 8 9 10

Bread: 1 0 1 1 0 1 0 1 0 0

Milk: 1 1 0 0 1 1 1 0 1 0

Coffee: 1 0 0 0 0 1 0 0 1 1

(Bread ∧ Milk) → Coffee: 1 0 0 0 0 1 0 0 0 0

(a) Instances covered by a sample rule

Instances in the dataset: 1 2 3 4 5 6 7 8 9 10

Bread: 1 0 1 1 0 1 0 1 0 0

Milk: 1 1 0 0 1 1 1 0 1 0

Coffee: 1 0 0 0 0 1 0 0 1 1

Bread: 0 0 0 0 0 0 0 0 1 0

(b) ConditionBread could improve the rule at most
in one instance

Instances in the dataset: 1 2 3 4 5 6 7 8 9 10

Bread: 1 0 1 1 0 1 0 1 0 0

Milk: 1 1 0 0 1 1 1 0 1 0

Coffee: 1 0 0 0 0 1 0 0 1 1

Milk: 0 0 0 0 0 0 0 0 0 0

(c) Condition Milk could not improve the rule

Instances in the dataset: 1 2 3 4 5 6 7 8 9 10

Bread: 1 0 1 1 0 1 0 1 0 0

Milk: 1 1 0 0 1 1 1 0 1 0

Coffee: 1 0 0 0 0 1 0 0 1 1

Coffee: 0 0 0 0 0 0 0 0 0 0

(d) Condition Coffee could not improve the rule

Figure 6.3: Instances covered by each condition

Additionally, a procedure to improve the reliability of the rules is also implemented

in this operator. As mentioned in Section 2.1, the confidence of an AR is maximum

if and only if the set of instances covered by the antecedent of a rule is a subset

of that covered by the consequent. Bearing in mind this, and considering that
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the support and the lift measures are symmetrical, then the procedure here imple-

mented swaps the antecedent and consequent of a rule if its consequent support

value is lower than its antecedent support value. In such a way, both the support

and the lift remain the same, while the confidence will improve.

Update process. G3PARM+ keeps the best individuals in a pool, i.e., those with

a high quality, maintaining a good spread of solutions. An updating of this pool is

required in each generation, adding those new individuals that exceed a quality level

—using the fitness Fpool— and removing the worst ones. Individuals are ranked in

a list and then, the pool is filled with the best ones using an iteratively procedure.

This procedure avoids to keep individuals that cover the same instances, so no

equivalent individuals are mined.

The pseudo-code of the complete updating process is shown in Algorithm 8. In

this procedure, the set auxSet is initialized to the set currentPopulation, which

comprises the individuals of the current population. Then, this set is filled with

those new individuals within the sets newPopulation and pool (line 1). While the

former is obtained using the crossover and mutation operators, the latter represents

the pool of individuals belonging to the last generation. It should be noted that no

repeated individual is added to the set auxSet. Finally, this set is ranked according

to the function Fpool (line 2).

Once the set of individuals is obtained and ranked, the update of the new pool of

individuals is carried out (lines 5 to 33). At the beginning, the best individual from

the ranked set auxSet is added to the pool newPool, which serves as the starting

individual when the pool is empty. Then, for every individual individualAux in the

set auxSet, the algorithm checks whether there exists any rule in the set newPool

that already covers the same instances (line 10). If there is such an individual and,

furthermore, their lift values are equal, then the one with the higher confidence

value is kept in this pool (lines 11 to 15). However, if both have the same confidence

value, the one with the lowest number of conditions is added for comprehensibility

purposes (lines 17 to 20). In this way, the proposal searches for small rules with a

high confidence. Finally, the set of individuals newPool is returned.

It should be noted that, since G3PARM+ updates the pool of individuals by

analysing the instances covered by each new rule, the resulting set of rules will
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be very representative of the domain under study and, therefore, the resulting set

obtains a high coverage value.

Algorithm 8 Update process
Require: pool, currentPopulation, newPopulation, poolSize
Ensure: newPool
1: auxSet← auxSet ∪ obtainNotRepeatedIndividuals(
currentPopulation, newPopulation, pool)

2: auxSet← rankIndividuals(auxSet,Fpool)
3: i← 0
4: newPool← ∅
5: for all individualAux ∈ auxSet do
6: if getSize(newPool) = 0 then
7: newPool← individualAux
8: else
9: for all individualPool ∈ newPool do

10: if instancesCovered(individualAux) =
instancesCovered(individualPool) then

11: if calculateLift(individualAux) =
calculateLift(individualPool) then

12: if calculateConfidence(individualAux) >
calculateConfidence(individualPool) then

13: newPool← newPool\{individualPool}
14: newPool← newPool ∪ individualAux
15: break
16: else
17: if calculateConfidence(individualAux) =

calculateConfidence(individualPool) AND
calculateConditions(individualAux) <
calculateConditions(individualPool) then

18: newPool← newPool\{individualPool}
19: newPool← newPool ∪ individualAux
20: break
21: end if
22: end if
23: end if
24: else
25: newPool← newPool ∪ individualAux
26: break
27: end if
28: end for
29: end if
30: if getSize(newPool) = poolSize then
31: break
32: end if
33: end for
34: return newPool
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6.1.4 Algorithm

The algorithm proposed (see Figure 6.4 for a general sketch) uses two populations

with a prefixed size: one to maintain the most promising individuals obtained

throughout the generations, and the other to keep those individuals that should

not be lost because of their high-quality. The algorithm starts by randomly gener-

ating individuals conformant to the CFG defined in Figure 6.1. Those individuals

that cover at least one instance are added to the population, so it comprises only

rules with a support greater than zero. It is an iteratively process, adding individ-

uals until the pool size is reached. On the other hand, and in order to obtain new

individuals in each generation, a set of parents is chosen from the current popu-

lation and the pool of individuals. Since the pool of individuals is empty in the

first generation, parents are chosen only from the current population. The parent

selector procedure allows of selecting individuals from different niches, providing a

set of individuals from the application of the mutation and crossover operators.

After applying these operators, a new set of individuals is obtained and added to a

new population, also comprising the current population and the pool of individuals.

It is worth mentioning that this approach avoids the repetition of individuals in

this new population. At this point, the algorithm is divided into two paths, none

being dependent on the other. The easiest path is responsible for updating the next

population of the evolutionary process. With this purpose, the algorithm ranks the

individuals within the new population previously obtained. This ranking procedure

is carried out by using the F function described above, so the best individuals are

selected to be part of the new population. On the contrary, the second path is

responsible for updating the pool of individuals by running the procedure described

in Listing 8. In this case, the procedure ranks the individuals according to the

Fpool function, being selected the best ones as described in Section 3.4. Once this

procedure is completed, the pool of individuals is checked. If the average lift of

this set of individuals is greater than that calculated in the previous generation,

it means that the population is improving, so a lower diversity is required. In

such a situation, the crossover probability increases and the mutation probability

decreases. On the other hand, if the average lift is less than or equal to that

obtained in the previous generation, a higher diversity is necessary, so the crossover

probability decreases and the mutation probability increases.
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Figure 6.4: The flowchart for the proposed algorithm
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Finally, unlike other existing evolutionary ARM algorithms, an important feature

of this algorithm is that the number of parameters required is low. Specifically,

the continuous updating of the crossover and mutation probabilities mitigates the

difficulty of using this algorithm by non-expert users. Additionally, G3PARM+

does not require establishing minimum thresholds, hence it does not require a

previous knowledge of the domain under application.

6.1.5 Datasets

In this work, several experiments were carried out, using a variety of 17 datasets,

which were obtained from the UCI machine learning repository with different num-

bers of instances and attributes (see Table 6.3), to demonstrate the effectiveness

of the proposal presented. G3PARM was originally compared with other exhaus-

tive search (Apriori and FP-Growth) and evolutionary algorithms (ARMGA and

QuantMiner) in Chapter 3, providing great results. At a significance level of

p = 0.05, G3PARM was significantly different from exhaustive search algorithms

in support and confidence measures. Focusing on evolutionary algorithms and the

Table 6.3: Datasets
Dataset Abbreviation #Instances #Attributes Type

Automobile Autom 392 8 Num.

Ankara Weather Ankara 1608 10 Num.

Chess Chess 3196 37 Categ.

Connect-4 Con4 7557 43 Categ.

Credit German Credit 1000 21 Categ., Num.

House 16H HH 22784 17 Num.

Izmir Weather Izmir 1461 10 Num.

Low Birth Weight LBW 189 10 Categ., Num.

Mushroom Mush 8124 23 Categ.

Nursery Nurs 12960 9 Categ.

Primary Tumor Prim 339 18 Categ.

Soybean Soyb 683 36 Categ.

Splice Splice 3190 61 Categ.

Treasury Treas 1049 16 Categ.

Wisc. Diagn. Cancer WDBC 569 31 Categ., Num.

Wisc. Progn. Cancer WPBC 194 34 Categ., Num.

Zoo Zoo 102 17 Categ.
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support measure, at a significance level of p = 0.05, G3PARM was significantly

different from the other algorithms. On the other hand, studying the confidence

measure, G3PARM was significantly different from QuantMiner, but not from AR-

MGA. Thus, a comparison of the new proposal versus G3PARM is made in this

experimental stage. To make a fair comparison the lift measure is not considered

as measure to be compared since G3PARM does not optimize this measure.

All the experiments carried out were performed on an Intel Core i7 machine with

12GB main memory and running CentOS 5.4. Moreover, the proposal here pre-

sented was written by using JCLEC [74].

In the following subsections, first the experimental set-up is presented. Then, a

study of the adaptiveness of the crossover and mutation probabilities is examined,

and the results obtained are discussed. Next, an analysis of the influence of varying

the number of generations is presented. Finally, a series of experiments serve to

contrast the scalability of the algorithms as well as how they behave on increasing

the number of attributes and the number of instances in the dataset.

6.1.6 Experimental set-up

The evolutionary proposal here presented only requires four parameters to be de-

termined by the expert: the population size, the maximum number of generations,

the maximum derivation size, and the pool size. To achieve a fair comparison with

the G3PARM algorithm, their values remain the same as those provided in Chap-

ter 3. These optimal parameters are shown in Table 6.4, where the best results for

G3PARM were obtained using a population size of 50 individuals, 100 generations,

70% crossover probability, 14% mutation probability, and a maximum derivation

size of 24.

The results shown for each algorithm in the following experimental study are the

average values calculated running each one 30 times with different seeds.

6.1.7 Analysis of Genetic Operator Probabilities

A major feature of G3PARM+ is its ability to update both genetic operator proba-

bilities. To show this, Figure 6.5 lists the crossover and mutation probability values
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Table 6.4: Optimal parameters
Parameter G3PARM+ G3PARM

Population size 50 50

Pool 20 20

Number of generations 100 100

Maximum derivation size 24 24

Crossover probability - 70%

Mutation probability - 14%

Confidence threshold - 90%

Support threshold - 70%

in each generation for a sample execution. Notice that in the first generation both

measures have the initial value 0.5.

In subsequent generations, these probabilities are updated. It is interesting to note

that in the earliest generations, both probabilities increase and decrease while the

optimal average lift value is not found. Then, the mutation probability begins to

increase whereas the crossover probability decreases. This means that the average

lift is not improving and, therefore, the optimal value is obtained. Nevertheless,

despite the average lift value not being improved, it is possible to obtain other

Figure 6.5: Crossover and mutation probabilities along the generations
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Table 6.5: Average results obtained for mushroom and nursery datasets
Mushroom dataset Nursery dataset

Measures G3PARM+ G3PARM G3PARM+ G3PARM

Support 0.991 1.000 0.663 0.759

Confidence 0.999 1.000 0.971 0.990

Lift 1.005 1.000 1.105 1.003

#Rules 20.000 20.000 20.000 2.967

different and interesting rules, so the evolutionary process must go on, at least for

a certain number of generations.

6.1.8 Analysis of the Experiments

As discussed in Section 2.1, the use of a support–confidence framework could cause

unexpected values in some domains, so different measures are required to mine

interesting rules. To clarify this assertion, the mushroom and nursery datasets

were used and the average results obtained are shown in Table 6.5, including the

lift measure to demonstrate that other measures are required. Using the mushroom

dataset, G3PARM mined a set of 20 rules and every rule had a maximal support

value. As expected, its confidence value is maximal too. Furthermore, maximal

support values provide misleading rules, so their lift values are equal to unity. This

clarifies that the goal of ARM is not only the extraction of frequent and reliable

rules, but interesting rules are required too.

On the other hand, attending to the nursery dataset, the average number of rules

mined by executing the G3PARM algorithm 30 times is 2.967. Every execution

was performed while setting the thresholds to 70% and 90% for the support and

confidence measures, respectively. Moreover, the size of the population to be re-

turned was set to 20. As mentioned above, the use of these thresholds requires an

exhaustive knowledge of the dataset used, and the results obtained for the nursery

dataset is a clear example.

Globally, the average results of the experiments performed over different datasets

are shown in Table 6.6, where the best results for each measure are written in bold

typeface. To make a fair comparison the lift measure is not considered as measure

to be compared since G3PARM does not optimize this measure. Notice that the two
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Table 6.6: Average results obtained for different datasets

(a) Average support values obtained with
different datasets

Dataset G3PARM+ G3PARM

Ankara 0.987 0.940

Autom 0.958 0.862

Chess 0.947 0.898

Con4 0.952 0.946

Credit 0.966 0.925

HH 0.969 0.958

Izmir 0.989 0.958

LBW 0.929 0.944

Prim 0.917 0.836

Soyb 0.901 0.925

Splice 0.984 0.999

Treas 0.944 0.894

WDBC 0.983 0.982

WPBC 0.980 0.952

Zoo 0.667 0.780

(b) Average confidence values obtained with
different datasets

Dataset G3PARM+ G3PARM

Ankara 0.995 0.999

Autom 0.988 0.988

Chess 0.993 1.000

Con4 0.998 1.000

Credit 0.987 0.999

HH 1.000 1.000

Izmir 0.996 0.999

LBW 0.981 0.997

Prim 0.976 0.994

Soyb 0.995 0.999

Splice 1.000 1.000

Treas 0.990 1.000

WDBC 0.997 1.000

WPBC 0.995 1.000

Zoo 0.976 0.973

(c) Average coverage values obtained with
different datasets

Dataset G3PARM+ G3PARM

Ankara 1.000 1.000

Autom 1.000 0.989

Chess 1.000 0.999

Con4 1.000 1.000

Credit 1.000 1.000

HH 1.000 1.000

Izmir 1.000 1.000

LBW 0.998 1.000

Prim 0.999 1.000

Soyb 1.000 0.999

Splice 1.000 1.000

Treas 0.993 0.961

WDBC 1.000 0.999

WPBC 0.998 1.000

Zoo 1.000 0.995

datasets mentioned above were not considered, due to their problems. Studying the

support measure values, which are shown in Table 6.6(a), it is worth mentioning
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that the new proposal mines more frequent rules than G3PARM, obtaining an

average difference value of 0.023.

Focusing on the confidence measure (see Table 6.6(b)), the results show that using

G3PARM, the average confidence values obtained for each dataset are greater than

those acquired using the new proposal. Although G3PARM+ does not provide the

best confidence values, the average difference between both algorithms is very low,

just a value of 0.005, discovering very reliable rules too.

Finally, Table 6.6(c) shows the average coverage measure for each dataset and

algorithm. This measure represents the percentage (in a per unit basis) of instances

covered by the resulting set of rules. Focusing on this measure, note that while the

new proposal wins in 12 out of 15 datasets, the G3PARM algorithm wins in 9 out

of 15 datasets. The average results of all the datasets demonstrate that using this

measure, G3PARM+ obtains better results than G3PARM, calculating a difference

value of 0.003.

Table 6.7 shows the average number of attributes per rule for the resulting set

and the average amplitude of the numerical attributes for this set, respectively.

Table 6.7: Average number of attributes and amplitude obtained for different
datasets

(a) Average number of attributes

Dataset G3PARM G3PARM+

Ankara 2.82 2.91

Autom 2.78 2.49

Chess 2.99 3.01

Con4 3.63 3.05

Credit 2.59 2.81

HH 2.80 3.16

Izmir 2.81 3.14

LBW 2.60 3.01

Prim 2.75 2.26

Soyb 3.05 2.65

Splice 3.14 2.42

Treas 2.83 2.72

WDBC 2.95 2.80

WPBC 2.87 2.88

Zoo 3.07 3.11

(b) Average amplitude (in percentage)

Dataset G3PARM+ G3PARM

Ankara 81.56 76.06

Autom 84.98 75.26

Chess - -

Con4 - -

Credit 77.95 78.15

HH 81.48 70.73

Izmir 89.71 73.19

LBW 79.15 79.83

Prim - -

Soyb - -

Splice - -

Treas - -

WDBC 79.11 59.27

WPBC 84.55 75.26

Zoo - -
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For the second value, only numerical datasets have been considered. Notice that

there is no difference in the average number of attributes for both algorithms. This

number of attributes is not constrained a priori. As for the amplitude, G3PARM

divides the range of values into a number of equal-width points and uses these

cut-points as values for the numerical attributes. On the contrary, G3PARM+

does not require any number of equal-width cut-points, so ranges of any amplitude

could be obtained. For example, using 5 equal-width cut-points, G3PARM could

obtain an amplitude of value 80% at most, whereas G3PARM+ is not restricted in

this sense.

Although this analysis is based on the average values of several measures over

datasets that have different features, a more accurate statistical analysis is required.

With this purpose, the Wilcoxon signed rank test [76] (see Table 6.8 where the

sum of all positive ranks (W+) and all negative ranks (W-) are depicted) has been

performed, obtaining a p-value of 0.041 for the support measure, so it is possible

to assert that there are significant differences between G3PARM and G3PARM+

using a significance level of α = 0.05, the latter being statistically better. Obtaining

the sum of all ranks, it is stated that the sum of all positive ranks is 96, whereas

the sum of all negative ranks is 24. Continuing with the analysis, a p-value of 0.002

is calculated for the confidence measure. Here, the sum of all positive ranks is 3,

whereas the sum of all negative ranks is 75. Using a significance level of α = 0.05,

we can state that G3PARM is statistically better for the confidence measure with

significant differences.

Focusing on the coverage measure, it is not possible to assert that there are signif-

icant differences between both algorithms using this measure, obtaining a p-value

of 0.301. Under these circumstances, it is necessary to determine which one is sta-

tistically better, so the sum of all positive and negative ranks are calculated. The

Table 6.8: Wilcoxon signed rank test results obtained for different measures
Measure p-value W+ W-

Support 0.041 96 24

Confidence 0.002 3 75

Coverage 0.301 31.5 13.5

#Attributes 0.248 72 48

Amplitude 0.018 3 33
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results show that the positive ranks sum to 31.5 whereas the negative ranks sum

to 13.5. In consequence, it is possible to assert that, despite the fact that there are

no significant differences between the proposals, G3PARM+ is statistically better.

As for the number of attributes obtained, this test reveals a p-value of 0.248, so

it is not possible to assert that there are significant differences between both al-

gorithms, even when G3PARM+ behaves better considering that the sum of all

positive ranks is 72. Finally, regarding the amplitude of the numerical intervals,

a p-value of 0.018 is obtained, stating that there are significant differences when a

significance level of α = 0.05 is calculated, G3PARM being statistically better.

This statistical analysis shows that G3PARM+ behaves better in four out of six

measures, obtaining differences in support value for a significance level of α = 0.05.

As for the coverage measure, G3PARM+ behaves better than G3PARM. Finally,

G3PARM obtains the best confidence values. Noted that, unlike G3PARM+,

G3PARM mines rules with only one attribute in the consequent, limiting the type

of rules which can be discovered. Since the consequent is composed of only one

condition, the support of the consequent can be higher easily and, therefore, the

confidence values are likely to be higher. Finally, it is interesting to point out

that the number of attributes obtained by G3PARM+ is slightly lower than by

G3PARM, as expected after the analysis of the support values obtained. Notice

that the higher is the support value of a rule, the lower is its number of attributes.

To sum up, the results demonstrate that the new proposal does not behave sta-

tistically worse than G3PARM, obtaining better results in some quality measures.

Additionally, G3PARM+ does not require a previous step to determine the opti-

mal parameter, so it is a high advantage for non-expert users. Finally, G3PARM+

considers the lift measure, only obtaining interesting rules unlike G3PARM, which

maximizes support and confidence without consider the interest of the rules mined.

6.1.9 Analysis of the Number of Generations

In order to observe the effect of varying the number of generations on the proposed

algorithm, a number of experiments were carried out over the Primary Tumor

dataset. Here, the behaviour of G3PARM and G3PARM+ are described for sup-

port, confidence, lift and coverage measures (see Figure 6.6).
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(a) Support vs number of generations (b) Confidence vs number of generations

(c) Lift vs number of generations (d) Coverage vs number of generations

Figure 6.6: Influence of the variation of the number of generations in different
measures

Focusing on the support measure, whereas G3PARM+ increases its values when the

number of generations grows, G3PARM comes to a standstill in early generations,

as shown in Figure 6.6(a). In such a situation, the support can not be improved

anymore, so the average confidence grows, as depicted in Figure 6.6(b). On the

other hand, G3PARM+ allows of increasing the average support in every genera-

tion. Focusing on the average confidence value, the new model allows of obtaining

almost the same average values as those obtained with G3PARM. Therefore, a

global analysis of the average support and confidence measures reveals that the

behaviour of the new model is better.

Figure 6.6(c) shows the average lift values obtained in different generations. Whereas

G3PARM+ obtains the best average lift values, G3PARM discovers rules whose
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lift values are close to unity. Finally, analysing the coverage measure (see Fig-

ure 6.6(d)), both G3PARM and the new algorithm obtained values close to 100%

in terms of the percentage of instances covered by the resulting set.

6.1.10 Analysis of Scalability

Since G3PARM+ uses two different functions to evaluate each measure and a

specific analysis to group the individuals in niches, it is possible to think that the

computation time has increased significantly in comparison to G3PARM. However,

this situation does not occurr as shown in the following analysis.

A number of experiments were also carried out to analyse the computation time of

G3PARM and G3PARM+ over two different datasets, as depicted in Figure 6.7.

The Y -axis represents the time in milliseconds, whereas the X-axis stands for

the percentage of instances (% Instances) using all attributes or the number of

attributes (# Attributes) using all the instances.

Figures 6.7(a) and 6.7(b) show the runtimes for the Splice dataset, all its attributes

being categorical. Focusing on Figure 6.7(a), it should be noted that G3PARM+

scales better than G3PARM, which seems to increase exponentially. On the other

hand, analysing the results plotted in Figure 6.7(b), note that both algorithms

behave similarly, G3PARM+ expending a lower computational time in this case.

However, studying the behaviour of a different dataset, i.e., Ankara, which defines

all of its attributes in a numerical domain, it is seen that G3PARM+ scales worse

than G3PARM, as shown in Figures 6.7(c) and 6.7(d).

Apparently, G3PARM+ scales better over categorical than over numerical at-

tributes, as expected. Nevertheless, the use of the operators IN and OUT requires

a more complex evaluation since they require analysing whether a value is within

a range or not. On the other hand, note that in G3PARM these operators are not

defined and the evaluation process only requires checking whether a value is less

than or greater than the other. An important advantage of the operators IN and

OUT is their interpretability by the data miner, giving intervals that are difficult

to be obtained using traditional numerical operators.
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(a) Runtime vs percentage of instances over
the Splice dataset

(b) Runtime vs number of attributes over the
Splice dataset

(c) Runtime vs percentage of instances over the
Ankara dataset

(d) Runtime vs number of attributes over the
Ankara dataset

Figure 6.7: Relation between the runtime and the dataset size

6.2 Mining Highly Optimized Quantitative At-

tributes

In addition to the task of searching for the optimal parameter values, which could

be a handicap for non-expert users in evolutionary computation and unsuccess-

ful results could be obtained, there is a problem related to the continuous values

themselves. Existing algorithms do not carry out an accurate optimisation of such

values, meaning that some of the discovered quantitative association rules are lack-

ing in interest. Without the optimisation of the continuous values, a huge number

of extracted rules could comprise an unnecessary range of values. The discovery



128 6. Parameter-Free G3P Algorithms in Association Rule Mining

of rules comprising patterns with a highly representative range of values is of high

interest, despite the fact that the quality measures of these rules decrease slightly.

In this section, we propose a solution to this problem. To do so, we suggest a free-

parameter algorithm that self-adapts to the required parameters (only requiring

the number of rules to be extracted), meaning that it is highly useful for users with

no experience in evolutionary computation. We also propose a heuristic approach

to search for highly representative numerical patterns. Even when the problem

could be tackled in many different ways, we suggest the use of a grammar-guided

genetic programming (G3P) model [58], which has achieved excellent results in

unsupervised learning tasks [53].

Finally, in order to demonstrate the performance and usefulness of the proposed

model, a series of experiments were carried out, which are fully described in the

experimental section. Both categorical and continuous domains were therefore

used, demonstrating that the proposed model discovers highly representative rules.

6.2.1 Main idea behind the proposal

The aim of the proposed approach is twofold. First, the mining of optimised

quantitative association rules in an efficient way. Second, designing a proposal

which does not require as many parameters as other existing evolutionary proposals,

and also presenting the advantages, both of using evolutionary methodology and

having a grammar to represent solutions to the problem under study.

The proposed approach includes a process which accordingly evaluates the rules

discovered by considering the optimisation of the continuous patterns. The support

and confidence of each rule is not therefore the only point of interest, but also the

distribution of instances satisfied by the rule. The aim of mining highly optimised

quantitative association rules is to select the right amount of values to contain as

few gaps as possible. We consider gaps to be spaces that do not comprise any

instance. Let us take by way of an example the range [A,B] of values for a sample

numerical feature (see Figure 6.8) that comprises 15 instances distributed within

this range of values. Two sample intervals could be obtained, for example, X and

Y , comprising 10 and 13 instances, respectively. Analysing the support of each

interval, Y seems to be more interesting than X. However, when analysing the
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Figure 6.8: Sample range of values

distribution of instances within the interval, X is of high interest as its instances

are uniformly distributed. On the contrary, Y comprises a gap Z, so its instances

are not as well distributed, as in X.

This specific process, together with other processes that form the whole algorithm,

starts by generating an initial set of individuals which conform to a context-free

grammar. This initial set of individuals, or population, depends on the number of

rules to be mined.

The aim of the proposed algorithm is to obtain the best n rules according to a

number of quality measures. Therefore, a pool of individuals with a predefined

size of n is used, this pool working as an elitist population to maintain the best n

rules across the generations. In each generation, this elitist population is updated

with the best individuals. This means that individuals included in the population

are ranked according to their fitness function values, and the best individuals are

kept for new generations. This fitness value determines how close a given solution

comes to meeting the aim.

For the sake of generating new individuals in each generation of the evolutionary

process, a genetic operator, described in subsequent sections, is applied. This ge-

netic operator is used based on a probability. Most evolutionary algorithms require

fixed values, meaning that the optimal probability values are determined by the

data miner, which in turn in based on the dataset used. A major feature of the G3P

free-parameter algorithm presented in this work is its ability to update the genetic

operator probability, not requiring any previous study of the parameters to obtain

optimal results, as most evolutionary algorithms do. In the first generation, the ge-

netic operator is applied using an initial value, whereas in subsequent generations,

this probability is updated according to the average fitness value obtained in the

aforementioned elite population. The proposed algorithm continues its iterative
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process without requiring a maximum number of generations. On the contrary,

the evolutionary process is carried out while the elite population improves with the

passing of the generations. This improvement is measured using the average fitness

function values of the n best rules.

Finally, if the quality of the rules mined does not improve with the passing of the

generations and the maximum genetic probability is reached, then the algorithm

finishes and the best rules discovered in the evolutionary process are returned to

the data miner.

6.2.2 Encoding

Similarly to the models described in previous chapters, the proposed model is

based on the use of a CFG, which defines all of the possible solutions that could

be obtained.

The properties of a CFG has been properly described in Chapters 2 and 3, where

a grammar was formally defined as G = (ΣN , ΣT , P , S). Once the grammar is de-

fined (see Figure 6.9), either to describe valid expressions or to impose restrictions

to the search space, it is necessary to validate it. Therefore, considering the gram-

mar G defined in this problem and depicted in Figure 6.9, the following language is

obtained: L(G) = {(AND Comparison)n Comparison → (AND Comparison)m

Comparison : n >= 0,m >= 0}. The grammar is therefore well-defined and

structured, as any rule with at least one condition in the antecedent and consequent

is obtained. Notice that the antecedent and consequent are disjoints sets, meaning

G = (ΣN , ΣT , P , S) with:

S = {Rule}
ΣN = {Rule, Antecedent, Consequent, Comparison}
ΣT = {‘AND’, ‘! =’, ‘=’, ‘IN’, attr1, ..., attrn, value1, ..., valuen }
P = {Rule = Antecedent, Consequent ;

Antecedent = Comparison ;

Consequent = Comparison ;

Comparison = ‘AND’, Comparison, Comparison | ‘! =’ attr, value |
‘=’ attr, value | ‘IN’ attr, value, value ; }

Figure 6.9: Context-free grammar used in the proposed algorithm
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that they have no items in common. Using this grammar, it is possible to mine

any association rule containing either numerical or nominal features. Numerical

attributes are used applying the operator IN and randomly selecting two feasible

values within the feasible range of values imposed by the metadata. As for cate-

gorical attributes, they could be considered as expressions in both of the following

ways: X = u or X! = u, where X is a categorical attribute and u is a value in the

domain D of X.

6.2.3 Genetic operator

In order to obtain new individuals in each generation of the evolutionary process,

the proposal described in this work uses a genetic operator to introduce diversity

to the population, avoiding entrapment in non-optimal solutions.

It randomly chooses a sub-tree from the tree structure of one individual, generating

a new sub-tree. A major restriction of the application of a random genetic operator

to tree structures is preservation of the grammar. Therefore, the selection of the

sub-tree is carefully supervised by this operator, avoiding the construction of in-

valid individuals that do not satisfy the language derived from the grammar. The

proposed genetic operator (see Algorithm 9) restricts sub-tree selection to those

sub-trees that form a condition of the resulting association rule. This means that

only sub-trees that start from the Comparison non-terminal symbol could be se-

lected to be replaced. This operator selects an individual from a set of parents (line

Algorithm 9 Genetic operator
Require: parents
Ensure: offspring

1: offspring ← ∅
2: for all individuals in parents do
3: individual← getIndividual(parents)
4: if random() < operatorProbability then
5: condition← getRandomCondition(individual)
6: newCondition← generateNewCondition()
7: newIndividual← exchange(individual, condition, newCondition)
8: offspring ← offspring ∪ newIndividual
9: end if

10: end for
11: return offspring
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3), and modifies the individual, based on a probability (line 4). If the probability

value is satisfied, then the process of replacing a sub-tree from the individualâÄôs

tree structure is carried out (lines 5 to 7), and the new individual obtained from

this process is included in the set of offspring (line 8).

A major feature of this G3P algorithm is its ability to autonomously update the

genetic operator probability. This updating process is based on the fact that a

higher exploration is required in situations where the average fitness value is not

improving along the generations. In this process, the proposed algorithm calcu-

lates the average fitness value from the elite population in each generation of the

evolutionary process. The resulting average fitness value is compared to the prior

value, that is, the average fitness value obtained in the last generation. In situa-

tions where the evolutionary process is behaving well and the average fitness value

obtained is improving, modification of the parameter values would not be required.

On the other hand, a higher genetic probability value is of interest if no better

solutions are being found.

For a better understanding, Figure 6.10 illustrates a synthetic updating process,

demonstrating how genetic probability (dashed line) changes in relation to the

fitness function (solid line). In the initial generation of this example, the algorithm

generates new individuals based on a specific starting probability, improving the

average fitness value so that the genetic operator probability remains the same. In

early generations, the average fitness value comes to a standstill, but after some

generations, the genetic probability begins to increase, and while this occurs, the

Figure 6.10: Updating process sample based on the fitness value
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fitness value does not improve. At the instant in which the fitness value begins to

improve, the algorithm puts a halt to the probability increment.

The updating process continues until the genetic probability value reaches the

maximum value allowed and the average fitness value does not improve any more.

The algorithm then finishes, and the best solutions are returned to the data mining

expert. In this situation, there would be no sense in continuing the evolutionary

process, as no higher probability to generate new individuals could be reached.

6.2.4 Evaluation

As mentioned in previous sections, a major feature of the proposed algorithm is its

ability to optimise quantitative association rules. To this end, the search process is

guided to look for the right width of values, that is, values containing as few spaces

which do not comprise any instances as possible. This procedure seeks the biggest

gap within each rule condition, so the size of this gap plays an important role in

determining the quality of the.

In order to better understand this process, let us consider a synthetic association

rule which comprises two quantitative features (features 1 and 2), whose instance

distribution is depicted in Figure 6.11. In situations where the algorithm is de-

signed to discover as many frequent rules as possible, a sample rule could comprise

the instances within the dashed line rectangle (Figure 6.11(a)). In analysing the

(a) Instances covered by maximis-
ing the support

(b) Instances covered by minimis-
ing the gaps

Figure 6.11: Instances covered by sample association rules
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rectangle formed by this association rule, we discover that there are two main gaps,

represented by A and B. Therefore, despite the fact that this association rule covers

a high percentage of instances, huge gaps are also comprised by this rule, meaning

it would not be as promising as it seemed to be initially. This means that it is not

only the discovery of frequent instances that is of interest, but the distribution of

these instances also plays an important role.

On the other hand, in analysing Figure 6.11(b), two different synthetic association

rules could be determined to satisfy the same set of instances as the rule depicted

in Figure 6.11(a). However, the gaps included in these rules are smaller, so these

rules are of high interest to the user. Discovering these gaps is not a trivial issue,

especially for rules whose instances are not accordingly distributed or even for rules

with a high number of features. Notice that the search space is smaller for minimum

rules, that is, rules that comprise only two features (one in the antecedent and one

in the consequent), as shown in Figure 6.11(b).

To address the problem of searching for the biggest gap, we propose the use of a

real-coded genetic algorithm in the evaluation process. This way, the genotype of

each individual within this algorithm is represented by 2 × n genes, n being the

number of features comprised by the rule to be analysed. The goal of this genetic

algorithm is to discover the best combination of values for each feature in such a

way that they represent the biggest gap. In this sense, we are reducing the problem

to optimise the biggest blank space.

Let us consider that the evaluation process evaluates the rule Feature1[2.5, 3.7]→
Feature2[5.7, 8.1]. In this way, the real-coded genetic algorithm included in the

evaluation process searches for sub-ranges with a maximum blank space, a sample

individual of which is [2.7, 3.10, 5.73, 6.02]. The individual comprises 4 genes, as

two features are to be optimised in this example. The first two genes represent

Feature1, whereas the last two genes represent Feature2. None of the individuals

could discover a range of values not comprised within the range determined by the

rule.

The genetic algorithm included into the evaluation procedure follows an elitist

methodology and uses two well-known genetic operators, the BLX-Alpha crossover

and a random mutation. In each generation, the best individual is kept, and

this individual is returned if the best result does not improve after 50 generations
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(this number has been experimentally obtained). The specific number of genera-

tions, was obtained in a study, determines that a higher value does not provide

better results. Once the best gap is found, the fitness function for the specific

association rule is calculated. This fitness function comprises three functions (see

Equation 6.4), which are described in detail below.

fitness(A→ C) = F3 + F2 × F1 (6.4)

F1 is responsible for searching for a set of instances with small gaps (see Equa-

tion 6.5). Therefore, the biggest blank space discovered using the real-coded ge-

netic algorithm is used to determine the interest of the rule, considering its interval

width to this end.

F1 = x2 =

(
1−

n∏
i=1

BlankWidthi
IntervalWidthi

)2

(6.5)

It should also be noted that this function is applied in a quadratic way within the

fitness function (see Figure 6.12), meaning that the smaller the gap within a rule,

the better the rule is.

As the goal of any algorithm for mining association rules is the discovery of frequent

and reliable association rules, the support and confidence measures must also be

considered. Regarding the support measure, it is of interest to discover the most

Figure 6.12: Representation of the F1 function
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frequent rules possible. However, the higher the support of a rule, the lower is

the degree of interest for the user (see Section 2.1.1). For instance, maximum

support values imply misleading rules as stated by the lift, leverage and conviction

measures.

Additionally, since the aim of the proposed model is to discover frequent association

rules, rules having low support values are not appealing, so a value of zero is

assigned to rules that satisfy a low set of instances. In most of the proposals for

mining association rules, support values lower than 50% are not of interest, and

the higher the value, the better it is. We have therefore considered a function (see

Figure 6.13) that reaches the maximum function value with a support close to 50%

and decreases the function value when the support is close to the maximum.

Figure 6.13: Representation of the F2 function

The mathematical expression of function depicted in Figure 6.13 is proposed in

Equation 6.6, “x” stating for the support value in this function. Notice that this

function was properly obtained according to desired behaviour, that is, rules with

a support value between 50% and 90% are desired. Values above 90% could imply

misleading rules, and rules with a support value lower than 50% could not be

considered as frequent.

F2 =
x(130− 100x)− 30

x(130− 100x)− 29
(6.6)

Finally, the third function included in the fitness function is related to the confi-

dence measure, an important quality measure in determining the reliability of the
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rules. Therefore, the higher the confidence value of the rule, the most accurate the

rule is. Generally speaking, rules with low confidence values are not of interest to

the user. This issue is reinforced by the fact that ARM algorithms usually seek

frequent rules, and the confidence value is always greater than the support value,

as depicted in Section 2.1.1.

F3 = x2 (6.7)

In this sense, we have defined the F3 function (see Equation 6.7), which states

that the higher the confidence of a specific rule, the higher the F3 value (“x”

representing confidence values). Low confidence values imply low function rates,

and these values get higher and higher with the increment of confidence values (see

Figure 6.14).

As mentioned above, the goal is to maximise the resulting fitness function (Equa-

tion 6.4), which determines values within the range [0, 2]. In situations where rules

comprising only discrete features are discovered, this fitness function discards the

F1 function by using its unity value. Consequently, the evaluation process should

be designed with this issue in mind, as no searching for gaps is required. Therefore,

the real-coded genetic algorithm is simply carried out in such situations where at

least one numerical feature is considered within the rule.

Figure 6.14: Representation of the F3 function
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6.2.5 Datasets

To analyse the effectiveness of the proposed algorithm, a varied set of data from the

well-known UCI machine learning repository were considered. The main features

of this dataset are depicted in Table 6.9, where data are arranged from the lowest

to highest number of instances. Despite the fact that some of the datasets are

widely used for supervised learning and a class attribute is therefore considered,

we can use these data in unsupervised learning by considering the class attribute

in the same way as any other.

6.2.6 Experimental Set-up

For a fair comparison to be drawn, the experiments were split into two separate

parts, depending on whether the algorithms worked on discrete features or any

type of feature. The algorithms that worked on any type of feature were G3PARM

(properly described in Chapter 3) and QuantMiner [11]. As for nominal features,

exhaustive search algorithms such as Apriori [5] and FP-Growth [7], together with

the evolutionary algorithm GBAP-ARM [90] were considered in the experimental

Table 6.9: Dataset characteristics

Type of Attributes

Dataset #Inst. #Attr. Continuous #Attr. Nominales

Lymphography 148 3 16

Sonar 208 60 1

Primary-tumor 339 0 18

Automobile 392 8 0

Soybean 683 0 36

Australian 690 6 10

Vowel 990 10 4

Credit-g 100 6 15

Contraceptive 1473 2 8

Segment 2310 19 1

Chess 3196 0 37

Connect-4 67557 0 43
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stage. The algorithms used in this experimental stage are the original algorithms

provided by the authors. Finally, it is worth noting that we have considered the

optimal parameter provided by the authors (see Table 6.10).

For the G3PARM algorithm, the optimal values were used (see Chapter 3): a

population of 50 individuals, a maximum number of 100 generations, probabilities

of 70% and 14% for the crossover and mutation operators respectively, a maxi-

mum derivation number of 24, an external population size of 20, a 90% confidence

threshold, and a 70% support threshold.

The optimal parameters of the QuantMiner algorithm are a population size of

250 individuals, 100 generations, 40% mutation probability, and 50% crossover

probability. The support and confidence thresholds considered in this algorithm

are 90% and 70%, for confidence and support, respectively.

For the GBAP-ARM algorithm, the parameter configuration corresponds to a

population size of 20 ants, 100 generations, a maximum number of 10 deriva-

tions, an initial and maximum amount of pheromone of 1.0, a minimum amount of

Table 6.10: Parameters established for each algorithm

FP- GBAP-

Dataset Apriori Growth QuantMiner ARM G3PARM Proposal

Pop. size - - 250 20 50 -

Pool size - - 20 20 20 20

# Generations - - 100 100 100 -

Max. derivations - - - 10 24 -

Crossover prob. - - 0.50 - 0.70 -

Mutation prob. - - 0.40 - 0.14 -

Max. pheromone - - - 1.00 - -

Min. pheromone - - - 0.10 - -

Evaporation rate - - - 0.05 - -

α exponent - - - 1.00 - -

Max. rules 2E6 2E6 - - - -

Min. support 0.70 0.70 0.70 0.70 0.70 -

Min. confidence 0.90 0.90 0.90 0.90 0.90 -
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pheromone equal to 0.1, an evaporation rate of 0.05, a value of 1.0 for the α expo-

nent, a 70% support threshold, and a maximum size for the set of rules returned by

20. It is worth noting that this algorithm does not require a confidence threshold.

Apriori and FP-Growth used the same support and confidence thresholds as the

other algorithms so that a fair comparison could be drawn. Moreover, since both

algorithms are exhaustive search methods, they discover any rule that satisfies the

aforementioned thresholds. We have therefore determined the maximum number

of rules they can extract, limiting this number to 2,000,000, so it is large enough

to analyse how these algorithms behave.

The proposed G3P algorithm reduces the number of parameters significantly (see

Table 6.10), especially in relation to evolutionary algorithms. The algorithm here

proposed only requires the number of rules to be mined. In order to make a fair

comparison, this number of rules is set to 20 as the other algorithms. The remaining

parameters self-adapt along the evolutionary process.

6.2.7 Analysis of the Updating Process

In Section 6.2.3, the process for updating the genetic operator probability was

described in detail, denoting that this probability is related to the average fitness

function value.

The aim of this section is to demonstrate how the algorithm behaves when the

process is applied to real data, paying special attention to the probability updat-

ing process. In this sense, a number of experiments are carried out with different

probability values and different numbers of rules to be discovered. The aforemen-

tioned probability value denotes the starting value for the genetic operator, which

self-adapts this value based on the algorithm’s behaviour.

Figure 6.15 relates the average fitness value (solid line) and the probability value

of the genetic operator (dashed line). As shown, the increment in the number of

rules to be discovered softens the trend of the fitness value along the generations,

meaning that a lower number of rules gives rise to a sharp increase regardless of

the starting probability value. This behaviour makes sense, as improvements in the

fitness value of one rule in a set of 5 gives rise to a higher average fitness value than

that obtained in a set of 20 rules. Also, an increment in the number of rules to
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Figure 6.15: Probability updating process for different number of rules and starting
probability values

be discovered requires a higher number of generations to reach the optimum value.

The most interesting part of this study is the analysis of the algorithm’s behaviour

for different starting probability values. As shown in Figure 6.15, there was no

particular improvement. The algorithm automatically adapts its probability value

along the generations, obtaining similar fitness values regardless of the starting

probability value. However, it is worth noting that despite the resulting average

fitness value remaining the same, the number of generations required to achieve

this value increases while the starting probability decreases.

This study explains how the algorithm behaves similarly, regardless of the used

parameter value, meaning that its self-adaptation is excellent, providing the same
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results for different starting probability values. Therefore, it could state that any

starting probability value could be suitable for obtaining the optimal solutions, but

a probability of 0.5 enables both the number of generations and, consequently, the

execution time required by the algorithm to be reduced. However, this value is not

mandatory, as the algorithm behaves similarly when other values are used.

6.2.8 Analysis of the Interval Optimisation

This algorithm, together with QuantMiner and G3PARM, is executed on data with

continuous attributes and the resulting association rules are analysed in order to

demonstrate the ability of the proposed algorithm to mine optimised quantitative

association rules. In order to draw a fair comparison between the three algorithms,

only those association rules that comprise the same two features (horsepower and

mpg) from the Automobile dataset are considered.

The G3PARM algorithm discovers quantitative association rules using the following

four logic operators: <,<=, > and >=. It aims to maximise the support quality

measure, so that analysis of the distribution of the instances is not carried out

in the mining process. Once this algorithm is applied to the Automobile dataset,

the following rule is obtained: IF (horsepower <= 190) THEN (mpg < 39.08).

As for the quality measures, the support value is 0.939, the confidence measure

determines a value of 0.973, a 0.999 value is obtained for lift and, finally, both

conviction and leverage obtain a value of 0. Following the analysis of the quality

measures described in Section 2.1.1, it could be stated that this rule is not of

interest, obtaining a lift value close to the unity, implying independence between

the antecedent and consequent. Also, a value of zero for conviction and leverage

determine a misleading rule. Finally, the distribution of the instances satisfied

by this rule is depicted in Figure 6.16. As we can see, the resulting rule satisfies

oversized gaps, meaning that it does not accurately represent the covered instances.

As for the QuantMiner algorithm, two quantitative rules that comprise the afore-

mentioned attributes are considered. First, the rule IF horsepower IN [49.0; 125.0]

THEN mpg IN [16.0; 41.5] is analysed and depicted in Figure 6.17. This association

rule satisfies 71.7% of the instances, with a confidence value of 0.972, a lift value of

1.221, a leverage value of 0.130, and a value of 10.216 for the conviction measure.
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Figure 6.16: Representation of the instances covered by the rule IF
(horsepower <= 190) THEN (mpg < 39.08)

Figure 6.17: Representation of the instances covered by the rules IF horsepower IN
[49.0; 125.0] THEN mpg IN [16.0; 41.5] and IF horsepower IN [65.0; 145.0] THEN
mpg IN [15.0; 37.3]

Secondly, the rule IF horsepower IN [65.0; 145.0] THEN mpg IN [15.0; 37.3] is also

obtained. This rule produces a support value of 0.714, a confidence value of 0.948,

a lift value of 1.155, and the values of 0.095 and 5.586 for leverage and conviction,

respectively.
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Figure 6.18: Representation of the instances covered by the rules IF horsepower
IN [71.8; 136.5] THEN mpg IN [12.6; 40.8] and IF mpg IN [18.5; 40.9] THEN
horsepower IN [46.2; 150.9]

Finally, the proposed model discovers two association rules comprising both the

horsepower and the mpg attributes (see Figure 6.18). The first rule, IF horsepower

IN [71.8; 136.5] THEN mpg IN [12.6; 40.8], calculates a support value of 0.579, a

confidence of 0.996, a lift of 1.719, a leverage of 0.242 and a conviction value of

105.25. In a similar way, the second rule obtained with the proposed algorithm

is analysed. This rule is defined as IF mpg IN [18.5; 40.9] THEN horsepower IN

[46.2; 150.9], obtaining a support value of 0.645, a confidence value of 0.992, and

the values 1.531, 0.224 and 44.38 for lift, leverage and conviction, respectively.

In comparing the resulting values of the quality measures for the proposed model

to the values obtained with G3PARM and QuantMiner, we can see that the rules

mined with the proposed model are of higher interest, obtaining better values for

measures of confidence, lift, leverage, and conviction.

As for the space optimisation for the instances, QuantMiner and the proposed

model are the algorithms that best optimise these spaces. These two algorithms

obtain numerical intervals that properly represent the set of instances and their

rules are of higher interest, as illustrated by analysis of the quality measure val-

ues. Regarding the proposed algorithm, the mined rules have better values for

the confidence, lift, leverage and conviction measures, obtaining values close to the
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maximum for these quality measures. To clarify this issue, a larger study was car-

ried out, considering 12 datasets and comparing the resulting average values (see

Table 6.11) for the five quality measures described in Section 2.1.1.

Note that, first, the average results per dataset are computed, and the last row of

each table is the ranking obtained by each algorithm. Bold type values indicate

the algorithm that attains the best result for a specific dataset. Results marked

with “—” point out that no rules were obtained. For instance, QuantMiner is

not able to discover any rule situations where no numerical attribute is considered.

However, this algorithm does enable nominal features to be discovered in situations

where at least one numerical attribute is considered. Table 6.11 shows that the

proposed model discovers highly frequent association rules for nominal datasets,

that is, those datasets that do not comprise any numerical feature. This issue was

aforementioned described in detail, where the fitness function was defined. The

results demonstrate, then, that the algorithm here proposed behaves well in both

numerical and categorical domains.

In order to analyse these results statistically, the Iman-Davenport test was per-

formed, considering all problems to be equal in terms of importance. The com-

puted value for the Iman-Davenport statistic for the average support distributed

according to a F distribution is equal to 3.666, for the confidence measure, its value

is equal to 21.162, 5.673 for the lift measure, 2.118 for leverage, and 3.498 for the

conviction measure. Except for the leverage measure, none of the values fall within

the critical interval at the α = 0.05 significance level, which is 3.443. Therefore,

the null-hypothesis set out by the Iman-Davenport test that all algorithms perform

equally well is rejected for four out of the five measures considered. The rejection

of this hypothesis implies the existence of differences between the performances of

all of the algorithms studied.

Following this, a post-hoc test could be used in order to find out whether the

control or proposed algorithm presents statistical differences with regard to the

remaining methods in the comparison. In this study, we therefore proceed with

the Bonferroni-Dunn test. This method assumes that the performance of two

algorithms is significantly different if their average ranks differ by at least the CD.

The Bonferroni-Dunn CD considering the level of significance α = 0.05 is 0.915.

At this level of significance, there is no difference for the support measure (see
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Table 6.11: Results obtained (presented in a per unit basis)
Support Confidence

Dataset G3PARM QuantMiner Proposal G3PARM QuantMiner Proposal

Lymphography 0.961 0.818 0.605 1.000 0.954 0.973

Sonar 1.000 0.712 0.618 1.000 0.931 0.949

Primary-tumor 0.872 — 0.980 0.993 — 0.989

Automobile 0.858 0.703 0.594 0.993 0.982 0.993

Soybean 0.934 — 0.974 0.987 — 0.993

Australian 0.984 0.809 0.653 0.998 0.960 0.997

Vowel 0.944 0.700 0.713 0.981 0.949 0.994

Credit-g 0.923 0.740 0.999 0.995 0.982 0.999

Contraceptive 0.889 0.921 0.657 0.991 0.979 0.928

Segment 0.998 0.700 0.734 1.000 0.975 1.000

Chess 0.919 — 0.993 0.998 — 0.998

Connect-4 0.926 — 0.999 1.000 — 0.999

Ranking 1.500 2.500 2.000 1.375 2.917 1.708

Lift Leverage

Dataset G3PARM QuantMiner Proposal G3PARM QuantMiner Proposal

Lymphography 1.020 1.121 1.751 0.012 0.104 0.189

Sonar 1.000 1.753 2.079 0.000 0.103 0.234

Primary-tumor 1.008 — 1.009 0.012 — 0.009

Automobile 1.013 1.568 1.766 0.015 0.183 0.219

Soybean 1.005 — 1.019 0.007 — 0.018

Australian 1.001 1.252 1.677 0.002 0.121 0.181

Vowel 1.002 1.587 1.517 0.008 0.189 0.162

Credit-g 1.001 1.487 1.001 0.001 0.162 0.001

Contraceptive 1.002 1.001 1.497 0.005 0.003 0.166

Segment 1.000 1.473 1.399 0.000 0.201 0.181

Chess 1.001 — 1.005 0.026 — 0.005

Connect-4 1.001 — 1.001 0.013 — 0.001

Ranking 2.417 2.250 1.333 2.291 2.167 1.541

Conviction

Dataset G3PARM QuantMiner Proposal

Lymphography Infinity 5.278 20.994

Sonar Infinity 6.874 10.852

Primary-tumor 20.455 — 2.140

Automobile 33.811 37.771 45.542

Soybean 4.991 — 5.209

Australian 1.102 65.110 79.639

Vowel 2.313 66.442 65.460

Credit-g 3.982 18.942 4.107

Contraceptive 1.374 1.199 5.083

Segment Infinity 32.653 Infinity

Chess 29.661 — 8.699

Connect-4 Infinity — 4.107

Ranking 2.417 2.125 1.458
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Figure 6.19: Critical difference obtained with the Bonferroni-Dunn test for the
support measure

Figure 6.20: Critical difference obtained with the Bonferroni-Dunn test for the
confidence measure

Figure 6.19), meaning our proposal does not behave better for this quality mea-

sure. As for the confidence measure (see Figure 6.20), there is no difference be-

tween G3PARM and the proposed algorithm. However, the proposal presented

here behaves statistically better than QuantMiner for this measure at this level of

significance.

Regarding the lift, leverage and conviction quality measures, the proposed algo-

rithm obtains the best rankings. Analysing the CDs, and beginning with the lift

measure (see Figure 6.21), the proposed algorithm behaves statistically better than

G3PARM, and there is no difference with QuantMiner. As for the leverage value

(see Figure 6.22), no statistical difference is obtained, but our proposal obtains

the best ranking. Finally, the Bonferroni-Dunn test reveals that the proposed

algorithm and QuantMiner behave statistically better than G3PARM for the con-

viction measure (see Figure 6.23).
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Figure 6.21: Critical difference obtained with the Bonferroni-Dunn test for the lift
measure

Figure 6.22: Critical difference obtained with the Bonferroni-Dunn test for the
leverage measure

Figure 6.23: Critical difference obtained with the Bonferroni-Dunn test for the
conviction measure

6.2.9 Analysis of the Nominal Datasets

In order to compare the behaviour of the proposed algorithm with respect to algo-

rithms that only discover rules in discrete domains, a study over the four nominal
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Table 6.12: Average values obtained for the support and confidence quality mea-
sures

Support

Dataset FP-Growth Apriori GBAP-ARM Proposal

Primary-tumor 0.757 0.757 0.973 0.980

Soybean 0.730 0.730 0.968 0.974

Chess 0.759 0.759 0.988 0.933

Connect-4 0.917 0.917 0.988 0.999

Confidence

Dataset FP-Growth Apriori GBAP-ARM Proposal

Primary-tumor 0.942 0.942 0.989 0.989

Soybean 0.886 0.886 0.989 0.993

Chess 0.939 0.939 0.995 0.998

Connect-4 0.976 0.976 0.999 0.999

datasets is carried out (see Table 6.12). Since FP-Growth and Apriori are exhaus-

tive search approaches, a statistical test here is meaningless, and only the average

results have sufficient levels of significance.

The results of FP-Growth are the average values from 209, 112,650, 2,000,000 and

2,000,000 rules that correspond to the datasets Primary-tumour, Soybean, Chess

and Connect-4 respectively. As for the Apriori algorithm, the results are the average

values from 209, 47,304, 2,000,000 and 2,000,000 rules for the same datasets. It is

also worth noting that only the support and confidence measures are considered in

this study. These algorithms do not take additional quality measures into account.

6.3 Conclusions

We have proposed two approaches for mining ARs without requiring a high number

of parameters as evolutionary proposals do. Both approaches self-adapt their pa-

rameter values along the generations and depending on the dataset features. One of

the proposed approaches was mainly designed for optimizing numerical conditions.

The experimental stage has revealed that the rules mined comprise conditions with
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a high density of transactions, minimizing the blank spaces and avoiding mislead-

ing rules. Additionally, a series of quality measures have been analysed, the rules

mined being of great interest according to five different quality measures.
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7
Applications of G3P and ARM in

Educational Environments

In this chapter, we present two sample applications of G3P and ARM to the educa-

tional field. First, we apply the G3PARM algorithm to obtain relations of interest

in quiz data. The quiz’s answers are used to discover interesting relationships that

enable the instructors to improve future courses. Finally, we propose the use of a

modified version of Rare-G3PARM to discover students with specific needs. To do

so, we use Moodle data and discover relations between the use of resources provided

by the instructors and the final mark.

7.1 Providing Feedback to Instructors from Quiz

Data

Computer-based testing, also known as quiz systems, is one of the most widely

used and well-developed tools in education [92]. They allows to administer tests

in which the responses are electronically recorded, assessed, or both. Among the
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existing types of quiz systems, multiple-choice questions is one of the most pop-

ular, where students are required to select the best answer or group of answers

from a set of choices provided on a list. This kind of systems have the follow-

ing advantages: rapid feedback, automatic evaluation, perceived objectivity, reuse

of questions as required, easily computed statistical analysis of test results, and

the possibility of generating data that can provide a better understanding of their

learning process [93].

The goal of chapter is the discovery of relations of interest to aid the instructor in

decision making about how to improve both the quizzes and the courses that contain

the concepts evaluated by the quizzes. Thereby, the ARM concepts provided in

previous chapters are used to discover specific ARs that are of interest for the

instructor.

The objective is not only to show a set of discovered rules but it also goes one

step further in that the results obtained are applied in a real course where the

improvements achieved are evaluated. Thus, the discovered information is firstly

applied to introduce a list of updates in a specific quiz and course. Then, the

proposed changes are properly evaluated in order to determine whether they really

improve the results achieved by the students.

7.1.1 Proposed Process for Providing Feedback

The task of designing, developing, and evaluating a quiz could be arduous and labo-

rious, and instructors or authors usually have to take important decisions such as:

how many questions must a quiz contains? What are the most appropriate ques-

tions for evaluating each concept of the course? How much time should students

be allowed in order to do the quiz? What are the most discriminatory questions?

What behaviour may explain failing or passing the quiz? Are the current contents

properly evaluated by the questions? Owing to all these issues, it is quite difficult

to determine the most suitable quiz for evaluating a specific course. In fact, it

is very likely that different authors would propose different quizzes for the same

course.
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Figure 7.1: Data mining process for providing feedback

We propose the use of ARM to provide feedback to instructors and educational

designers. The proposed process could be considered as a quiz and course eval-

uation cycle (see Figure 7.1) in which the quiz’s answers are used for discovering

subsequent updates in the quiz and also in the course. In this process, there are two

main actors or users: students and instructors. Students use courses for learning

concepts and then they do quizzes to evaluate their knowledge about the concepts.

Instructors pre-process the quiz data and they run an ARM algorithm to discover

ARs of interest. The rules mined are then post-processed in order to detect the

most interesting rules for helping in decision making about how to update and

improve subsequent quizzes and courses.

Quiz Data. Quiz data can be gathered from different sources, so different data

type could be obtained: a score matrix provided directly by the used quiz system, a

relationships matrix provided by instructors, and a knowledge matrix automatically

generated from the two previous matrices.

� Score matrix. This is a traditional student-rating matrix in which each row

represents a student and each column represents an item or question (see top

left of Figure 7.2). Aij represents the score of Itemj obtained by Studenti.

Additionally, two columns determine the time used (Ti) and the final score

(Si) of each student. First, the answer or score of one particular item can be

CORRECT or INCORRECT. Second, the total time taken by each student

is determined by the ALL label if the value is higher than or equal to 34

minutes, and by the NOT-ALL label if the value is lower than 34 minutes.

Finally, the final score obtained by each student is automatically calculated

by adding all the individual answers for each question. The FAIL label is

used if the number of CORRECT answers is lower than 5, PASS determines

that the number of CORRECT answers is higher than or equal to 5 and lower

than 7, and the EXCELLENT label if the number of CORRECT answers is

higher than 7. This specific cut-off is based on the Spanish grading scale.
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Figure 7.2: Score, relationship, and knowledge matrices

� Relationships matrix. This matrix shows the degree of association between

the questions or items, and the concepts evaluated by the quiz whereby one

item could be related to one or several concepts (see the top of the right-hand-

side of Figure 7.2). Rkj represents the probability that Itemi is related to

Conceptk. This matrix is designed by hand by the instructor, specifying the

list of concepts that compose the domain taught by the course and that are

evaluated by the quiz. Each question and concept is marked as 0 to identify

no relation, 1 to show full relation, and 0.5 to state for half relation between

question and concept.

� Knowledge matrix. This matrix shows the level of knowledge that stu-

dents have about each concept evaluated by the quiz. It has been created

automatically from the two previous matrices (see bottom of Figure 7.2).

Kik represents the addition of the answers to each one of the items related to

Conceptk by each Studenti, that is, Kik = ΣjAiij × Rk,j. Finally, a column

with the final score obtained by each student (Si) is also included. Each

value is an integer value between 0 and 5, since in our case each concept

has a maximum of five full related questions. Then, these values have been

normalized to a real value between 0 and 10. The LOW label is set if the

value is lower than 5, the NORMAL label if the value is higher than or equal
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to 5 and less than or equal to 7, and the HIGH label if the value is higher

than 7.

Data has been gathered from a Moodle quiz. All the concepts evaluated by the

quiz were explained in an artificial intelligence course during the second year of

the Computer Science degree at the University of Córdoba in Spain. This course

had traditional in-class lectures and also used Moodle to provide learning content,

additional resources, and online activities such as a multiple-choice quiz. 104 stu-

dents took the quiz at the end of the course, consisting of 40 questions with three

possible answers, only one of which was correct. The maximum total time for doing

the test was set to 35 minutes, although students could finish their quiz ahead of

time.

Algorithm to be Used. To solve the aforementioned problem, we apply the

G3PARM algorithm (see Chapter 3), where each individual is evaluated by a fitness

function based on the support measure. Nevertheless, a new fitness function is

applied in order to maximize both support and confidence measures in a different

grade: F = w1 × support+ w2 × confidence , where w1 and w2 are parameters to

weight the support and confidence metrics, respectively. Notice that w1 + w2 = 1,

and both parameters should be established based on the importance of support and

confidence in the resultant rule. A high value of w1 allows to discover rules having

high support and, therefore, having high confidence. On the other hand, a high

value of w2 allows to discover rules having high confidence. However, the mere fact

of having a high confidence does not guarantee a high support (see Section 2.1.1).

To study the behaviour of these parameters, a series of experiments was carried out

by using values from 0.1 to 0.9 because values 0 and 1 are meaningless. Since our

goal is the discovery of both frequent and reliable association rules, the expert in the

field (according to the results obtained during the experimental stage) determined

that support and confidence must be equally weighted so w1 = w2 = 0.5.

7.1.2 Experiments and Results

The objective of the result interpretation is to analyse the set of discovered rules

in order to provide feedback for improving quiz and course. ARM algorithms

normally discover a huge number of rules but not all are interesting for the user.
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End users have a crucial role since they should guide the search for the best set

of rules. In our case, three experts in the domain have identified general patterns

and types of interesting relations. This post-mining procedure has been carried out

as described: (a) three experts identified the types of general patterns considering

the information provided by the matrices; (b) they selected the types of interesting

relations analysing all the rules discovered by the G3PARM algorithm; (c) they

chose the best obtained rules for each type of relation.

Next, some examples of the rules previously discovered by G3PARM are classi-

fied by type of pattern and relation together with information about the feedback

provided by each one. Rules obtained by means of the score matrix show relation-

ships between items, times, and scores, so three types of patterns of rules can be

distinguished.

Item-item pattern. This pattern shows relationships between several items or

questions. Experts have distinguished the following two types of relations:

� Relations between to get several right questions. They show that if students

get one right item then they also get another one or more right items. An

example of an obtained rule of this type is:

IF Item-Num.12 = CORRECT AND Item-Num.29 = CORRECT

THEN Item-Num.38 = CORRECT

(Support = 0.631, Confidence = 0.902, Lift = 1.177)

� Relations between to get several wrong questions. They show that if students

get one wrong item then they also get another one or more wrong items. An

example of an obtained rule of this type is:

IF Item-Num.24 = INCORRECT AND Item-Num.35 = INCORRECT

THEN Item-Num.8 = INCORRECT

(Support = 0.640, Confidence = 0.985, Lift = 1.193)

In general, these two types of relationship show questions that could evaluate the

same or closely related concepts. The first rule could identify easy questions, so

the instructor should check the content of these questions in order to increase their

level of difficulty, if necessary. In a similar way, the second rule could identify

questions that could be quite difficult or could contain any typo. In this sense,
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the instructor should check the content of these questions to decrease their level of

difficulty if necessary or to correct the possible error.

Item-score pattern. This pattern shows relationships between items and scores.

The experts have distinguished two very interesting subtypes:

� Relations between to get wrong questions and fail the exam. For example,

the next rule shows that if students make a mistake in questions 1 and 29,

then they obtain a FAIL score.

IF Item-Num.1 = INCORRECT AND Item-Num.29 = INCORRECT

THEN Score = FAIL

(Support = 0.631, Confidence = 0.984, Lift = 1.102)

� Relations between to get right questions and pass the exam with a high score.

For example, the next rule shows the opposite relation to the previous one,

showing that getting correct answers is related to an EXCELLENT score.

IF Item-Num.23 = CORRECT AND Item-Num.31 = CORRECT

THEN Score = EXCELLENT

(Support = 0.621, Confidence = 0.941, Lift = 1.227)

The instructor could select the specific questions that appear in these rules as good

discriminatory items of FAIL and EXCELLENT scores, respectively. For example,

the instructor could create a new and shorter version of the quiz made up of only

this type of items because they are the most discriminatory ones.

Item-time-score pattern. The following type of relations have been selected by

the experts:

� Relation between wrong questions, the score obtained, and the time spent

to do the quiz. For instance, the following rule shows that students who get

wrong the question number 40 and also obtain a FAIL score, then they use

ALL the time provided.

IF Item-Num.40 = INCORRECT AND Score = FAIL

THEN Time = ALL

(Support = 0.611, Confidence = 0.926, Lift = 1.084)
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� Relation between right questions, the score obtained, and the time used to do

the quiz. For example, the following rule shows that students who get right

the item number 26 and do not use all the time provided, then they obtain a

GOOD score.

IF Item-Num.26 = CORRECT AND Time = LESS

THEN Score = GOOD

(Support = 0.660, Confidence = 1.0, Lift = 1.051)

Again, the instructor could use questions that appear in these rules as good dis-

criminatory items of the final score obtained. The instructor could also consider

providing less or more time to execute the quiz because of the relationships between

to use (or not) all the time provided and the score obtained.

With respect to rules obtained using the knowledge matrix, they show relationships

between concepts and scores, so two different types of patterns can be distinguished.

Concept-concept pattern. It shows relationships between different concepts,

and two types of relations have been distinguished by experts:

� Relations that include low levels of knowledge in several concepts. For exam-

ple, the following rule shows that if students have a LOW knowledge level in

the Rules Definition and Rule Conditional Element concepts, then they also

have a LOW knowledge level in the Rules Execution concept:

IF Rules-Definition = LOW AND Rule-Conditional Element = LOW

THEN Rules Execution = LOW

(Support = 0.466, Confidence = 0.960, Lift = 1.177)

� Relations between to obtain a high level of knowledge in several concepts. For

example, the following rule shows that students who obtain a HIGH knowl-

edge level in Initial Facts, Rule Conditional Element, and Rules Execution

concepts also obtain a HIGH knowledge level in the Functions and Actions

concept.

IF Initial-Facts = HIGH AND Rule-Conditional-Element = HIGH

AND Rules-Execution = HIGH THEN Functions-And-Actions = HIGH

(Support = 0.388, Confidence = 0.952, Lift = 1.167)
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These two relations show two concepts that are closely related. The first relation,

however, can be used to detect concepts that could have brief or unsuitable contents

in the course. The instructor should check the contents of these chapters in the

course in order to decide if they should be modified or extended for improvement.

The second relation can be used to detect good concepts that are related. The

instructor must check if these chapters are located together in the course in order

to decide if they could be placed closer together or even combine in only one

concept.

Concept-score pattern. It includes relations between concepts and scores, and

the following relations of interest have been selected by experts:

� Relations between to obtain a high level of knowledge in one or several con-

cepts and a high score in the exam. For example, the following rule shows

that if students have a HIGH knowledge level in Rule Conditional Element

and Rules Execution concepts, then they obtain an EXCELLENT score.

IF Rule-Conditional-Element = HIGH AND Rules-Execution = HIGH

THEN Score = EXCELLENT

(Support = 0.320, Confidence = 1.0, Lift = 1.907)

� Relations between to obtain a low level of knowledge in one or several concepts

and to obtain a LOW score in the exam. For example, the following rule

shows that students who have a LOW knowledge level in Initial Facts and

Variables and Wildcard concepts also obtain a FAIL score.

IF Initial-Facts = LOW AND Variables-And-Wildcards = LOW

THEN Score = FAIL

(Support = 0.310, Confidence = 1.0, Lift = 1.226)

These relations show the instructor the most influential concepts for obtaining a

good or a bad score. The instructor should check the content of these chapters in

order to decide if they should be modified or extended for improvement.
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7.1.3 Evaluating Updates done in Quiz and Course

A pilot experiment was conducted to evaluate the effect of applying updates in the

aforementioned quiz and course starting with the feedback provided by the rules

previously discovered.

The hypothesis was that the updated quiz and course would have a beneficial effect

on student performance. The list of specific updates in both the quiz and course

is as follows:

� The contents of some questions have been modified starting with information

provided by mined relations. The instructor checked and realized that two

questions (numbers 24 and 35) were really very difficult questions and four

questions (numbers 12, 14, 17, and 38) were really very easy questions. The

instructor therefore decided to modify these questions briefly in order to

decrease or increase their level of difficulty. The instructor also checked and

realized that question number 9 had an error in the answer and so it was

modified to correct it.

� Some questions have been removed from the quiz starting with the informa-

tion provided by some relations. In fact, some questions did not appear in

any of the rules obtained and it could indicate that they did not affect signif-

icantly to the final score. The instructor decided, after reviewing the content

of these questions, to remove five of these questions since they were not of

interest.

� The time available to respond to each question has been increased from the

information discovered. Although the maximum total time provided to stu-

dents was the same (35 min), the average time to respond to each question

was increased (from 52.5 to 60 s) because the number of questions was re-

duced (from 40 to 35).

� The contents of some concepts in the course have been improved. The in-

structor decided, after reviewing the content of concepts referenced by the

discovered rules that the following concepts should be extended: Variables

and Wildcards, Rules Definition, Rules Execution, and Rule Conditional El-

ement.
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It is interesting to notice that the post-mining procedure used to select the best

rules is quite subjective since it is based on three experts. Thus, the list of updates

in the quiz and in the course could also be modified depending upon the experts.

After the application of all these specific updates, two new groups of students took

the updated course and quiz. The effectiveness of these updates was evaluated

in the light of the performance by the students, that is, by comparing the score

obtained with this updated quiz and course versus the original quiz and course.

Therefore, there were three groups of students: one control and two experimental

groups. On the one hand, a total of 104 students (control group) took the original

Moodle course and quiz during the 2008–2009 academic year. On the other hand,

98 students (experimental group one) and 102 students (experimental group two)

took the updated course and quiz during the 2009–2011 academic years. All these

groups of students had similar features (age, previous experience, and knowledge in

Computer Science, etc.), and all of them were students on the same course (second

year) of the Computer Science degree at the University of Córdoba in Spain.

Two experimental studies were carried out to analyse whether there are differences

between the scores obtained by the different groups of students. On the one hand,

the first study evaluates both the changes on the quiz and the course. On the

other hand, the second study evaluates only the changes on the course. For both

studies a statistical analysis was considered. First of all, it was checked that the

values of the obtained scores in all the groups were normally distributed in order

to decrease the risk of error. Histograms of the scores obtained showed a bell-

shaped curve for all the groups. Then, descriptive and comparative statistics were

calculated (see Table 7.1) such as: the number of questions in each quiz (Q), the

number of students in each group (N), the score average value (Mean), the mean

difference between two groups (Mean Differences), the standard deviation (SD)

that quantifies score variability, standard error of the mean (SEM) that gives an

idea of the accuracy of the mean, and the Student t-Test p value (p) that compares

the means of two groups.

In the first study (see comparison 1 and 2 in Table 7.1), the three groups were

compared in pairs (control versus experimental), that is, the scores obtained in

one year were compared versus the scores obtained in the other years. As we have

commented, the objective was to test whether the updates done in both the quiz
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Table 7.1: Descriptive statistics of each group and pairwise comparison between
control and experimental groups (* only the common items in both quizzes are
used)

Number Mean

Comp. Group Q N Mean difference SD SEM p

1 2008–2009 40 104 5.9469 0.6844 1.8074 0.1772 0.0060

2009–2010 35 98 6.6313 1.6758 0.1702

2 2008–2009 40 104 5.9469 0.7113 1.8074 0.1772 0.0041

2010–2011 35 102 6.6583 1.7093 0.1692

3 2008–2009* 29 104 5.9904 0.6502 1.8607 0.1825 0.0109

2009–2010* 29 98 6.6406 1.7156 0.1742

4 2008–2009* 29 104 5.9904 0.6804 1.8607 0.1825 0.0103

2010–2011* 29 102 6.6708 1.9112 0.1892

and course had an effect (positive or negative) on the student scores. Table 7.1

shows that the differences between the control group and the two experimental

groups can be considered statistically significant with a confidence level of 99%

(p < 0.01). In fact, there is a mean difference of 0.68 points (in a scale from 0 to 10

points), with 2009–2010 students scoring better than 2008–2009 students, and 0.71

points with 2010–2011 students scoring better than 2008–2009. Thereby, updates

done in the quiz and the course can be considered as very positive to obtain better

scores.

In the second study (see comparison 3 and 4 in Table 7.1), the three groups were

compared in pairs (control versus experimental), that is, the student scores were

obtained starting on only the common 29 items in both quizzes. In this case, the

six modified questions and the five deleted questions were not used to obtain the

student scores. The objective was to test whether the updates done only in the

course had an effect (positive or negative) on the student scores. Table 7.1 shows

that the differences can be considered statistically significant with a confidence

level of 95% (p < 0.05). Again, 2009–2010 and 2010–2011 students scoring better

than 2008–2009 students, with a similar but less mean difference of 0.65 and 0.68

points, respectively. Thus, updates done only in the course can also be considered

as positive on the performance of the students.
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7.2 Discovering Rare Association Rules in Learn-

ing Management Systems

In previous sections, we have described ARM problems and the importance of ap-

plying it for mining not only frequent ARs but also rare or infrequent ARs. More

specifically, this type of relation could be very appropriate in e-learning domains

due to its intrinsic imbalanced nature. In educational problems, the aim is to dis-

cover a small but interesting and useful set of rules, discovering useful information

about students’ unusual behavior regarding the achievement of bad or good marks.

In this work, we propose to use the Rare-G3PARM algorithm, which was properly

described in Chapter 4. This interesting algorithm for mining ARs that do not

frequently occur in data has been briefly modified to the problem under study.

Thus, the CFG has been modified for the sake of mining only ARs having the

final mark of the course in the consequent, and not requiring numerical attributes

to be handled. Finally, an analysis of the rules mined is presented, analysing

the importance of these rules to understand or discover unusual behavior in the

students’ learning process.

7.2.1 Adjusting Rare-G3PARM

Rare-G3PARM enables different types of data to be handled without producing

invalid individuals by using a grammar. As mentioned in its encoding criterion

definition (see Chapter 4), Rare-G3PARM uses a CFG defined as a four-tuple

(ΣN , ΣT , P , S) where ΣT represents the alphabet of terminal symbols and ΣN the

alphabet of non-terminal symbols. Notice that they have no common elements,

i.e., ΣN ∩ ΣT = ∅.

We propose a modification of the aforementioned grammar to the problem under

study. In this new grammar (see Figure 7.3), no numerical attributes are required

since data were categorized by the instructors according to their own criterion.

Additionally, the experts in the domain under study determined that no negative

attribute or condition is required. They established that this kind of attribute

could be hardly understandable and it is of interest to remove them. Finally,
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G = (ΣN , ΣT , P , S) with:

S = {Rule}
ΣN = {Rule, Antecedent, Consequent, Comparison }
ΣT = {‘AND’, ‘=’, ‘name’, ‘mark’, ‘value’}
P = {Rule = Antecedent, Consequent ;

Antecedent = Comparison | ‘AND’, Comparison, Antecedent ;

Consequent = ‘=’, ‘mark’, ‘value’ ;

Comparison = ‘=’, ‘name’, ‘value’ ;}

Figure 7.3: Context-free grammar expressed in extended BNF notation

the proposed study is related to the students’ final mark, so the consequent only

comprises this kind of attribute.

As for the genetic operator proposed in the Rare-G3PARM algorithm, it was briefly

modified in order to not change the consequent of the rule. Thus, it remains the

same and only conditions within the antecedent could be considered to be changed.

7.2.2 Experiments and Results

Dataset. The experiments were performed using data collected from 230 stu-

dents on 5 Moodle courses on Computer Science at the University of Córdoba.

Moodle keeps detailed logs of all the activities performed by these students (e.g.,

assignments, forums, or quizzes). All this information was properly preprocessed,

including the transformation of every continuous attribute into a discrete domain,

so they can be treated as categorical attributes.

The following list of attributes summarises the most important information about

the activities monitored by Moodle from students during the life of the course:

� course: identifies the course. Its available values are: C218, C94, C110, C111

and C46.

� n assigment : determines the number of assignments done. Its available values

are: ZERO, LOW, MEDIUM, HIGH.

� n quiz : establishes the number of quizzes taken. Its available values are:

ZERO, LOW, MEDIUM, HIGH.
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� n quiz pass : determines the number of quizzes passed. Its available values

are: ZERO, LOW, MEDIUM, HIGH.

� n quiz fail : identifies the number of quizzes failed. Its available values are:

ZERO, LOW, MEDIUM, HIGH.

� n posts : determines the number of messages sent to the forum. Its available

values are: ZERO, LOW, MEDIUM, HIGH.

� n read : identifies the number of messages read on the forum. Its available

values are: ZERO, LOW, MEDIUM, HIGH.

� total time assignment : establishes the total time spent on assignments. Its

available values are: ZERO, LOW, MEDIUM, HIGH.

� total time quiz : determines the total time spent on quizzes. Its available

values are: ZERO, LOW, MEDIUM, HIGH.

� total time forum: determines the total time spent on the forum. Its available

values are: ZERO, LOW, MEDIUM, HIGH.

� mark : establishes the final mark obtained by the student on the course. Its

available values are: ZERO, LOW, MEDIUM, HIGH.

It is worth mentioning that the values of two of these attributes (course and mark)

are clearly distributed in an imbalanced way. So, from 230 students, 116 stu-

dents obtained a PASS in the final exam with a normal/medium score, 87 students

obtained a FAIL in the exam, 15 students obtained an EXCELLENT or a very

good/high score in the exam and 12 students were ABSENT from the exam. Thus,

there are two predominant marks (PASS and FAIL) and two minority marks (EX-

CELLENT and ABSENT).

On the other hand, concerning the course attribute, from a total of 230 students, 80

took course 218, 66 students did course 94, 62 students did course 110, 13 students

took course 111 and 9 students took course 46. Thus, there are three predominant

courses (C218, C94 and C110) and two minority courses (C111 and C46).

Experimental results. Next, we illustrate how the information is provided to

the instructor after the mining task execution. Some rules discovered by Rare-

G3PARM are shown and described. This analysis allows a demonstration of their
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Table 7.2: Descriptive statistics of each group and pairwise comparison between
control and experimental groups (only the common items in both quizzes are used)

Consequent

#Rule Antecedent (Mark) Support Confidence

1 total time quiz=ZERO AND FAIL 0.021 1.00

n assignment=LOW

2 n quiz fail = ZERO AND FAIL 0.021 1.00

n assignment=LOW

3 n read=HIGH AND PASS 0.039 1.00

total time quiz=LOW

4 n quiz fail=LOW AND PASS 0.052 1.00

n read=HIGH

5 total time forum=ZERO AND ABSENT 0.047 1.00

n quiz pass=ZERO

6 total time assignment=ZERO ABSENT 0.047 1.00

AND n assignment=ZERO

7 total time assignment=HIGH EXCELLENT 0.017 1.00

AND n assignment=HIGH

8 course=94 AND EXCELLENT 0.013 1.00

total time assignment=HIGH

usefulness in making decisions about how to detect in time successful and failed

students starting on their activities in the Moodle environment. For every rule, the

antecedent and the consequent, as well as their support and confidence values are

shown.

Focusing on Table 7.2, the algorithm proposed in this chapter discovers rules with

any type of mark and course, that is, it discovers infrequent rules that contain not

only infrequent but also frequent patterns, favouring the diversity of study cases.

Rule #1 shows that if students do not spend any time on quizzes and the number

of assignments is low, then they fail the final exam. So, it is an expected rule that

shows the instructor the importance of using quizzes and assignments to pass the

exam. Rule #2 is a very similar rule. This rule states that if students do not fail

any quizzes but their number of assignments is low, then these students also fail the

final exam. This rule is very interesting because it shows how the fact of passing

the quizzes may not be condition enough for passing the final exam. Rule #3 is an
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interesting rule, since it shows that students that only spend a short time on quizzes

could also pass the exam if they read a lot in the forum. So, this rule states that

reading messages in the forum could significantly help student pass the exam. Rule

#4 is very similar to Rule #3. Here, students that fail very few quizzes and read a

lot in the forum pass the exam. Rule #5 shows an interesting rule. It states that

students that do not spend any time on the forum and do not take any quizzes do

not take the final exam. Similarly to Rule #5, Rule #6 shows that if the students

do not do assignments, then they will be absent from the exam. Finally, Rules

#7 and #8 identify students with an excellent mark. More specifically, these rules

show that if students have a high number of assignments and spend a lot of time

on them, or they submit a large number of assignments and they are subscribed to

course 94, then these students obtain an excellent mark. Observe that this kind of

rules help the instructor predicts the final performance of the students (both pass,

fail, absent or excellent) before the exam.

The application of this approach has shown to be an interesting research line in

the context of educational DM, where most real-world data are usually imbalanced.

Infrequent ARs are more difficult to be mined by using traditional ARM algorithms

since they do not usually consider class-imbalance and tend to be overwhelmed by

the major class, whilst ignoring the minor class.

7.3 Conclusions

In this chapter, we have presented the application of the proposed models for min-

ing ARs to the educational field. First, G3PARM has been applied to quiz data,

discovering interesting relationships among answers of the quiz. These relation-

ships are of great interest since they help instructors to improve future courses.

Additionally, we have dealt with the mining of RARs in the educational field, dis-

covering reliable relations that do not frequently occur. This is highly interesting

since it allows to discover students with specific needs that are hardly discover by

searching for frequent relations.
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8
Conclusions and Future Work

The work developed along the execution of this Doctoral Thesis cannot be thought

of as concluded but the starting point to a more extensive research in the field.

Therefore, although a brief summary of the results obtained and the main con-

clusions around the work done are presented in this chapter, a series of research

lines are also described, which could be built up taking the present work as a basis.

Finally, any of the scientific publications associated to this Thesis are enumerated.

8.1 Concluding Remarks

In this PhD Thesis we have explored the use of G3P in mining ARs. The results

obtained are highly promising and show that G3P is an appropriate technique to

undertake the ARM task.

A number of G3P-based algorithms for mining ARs from real-world and large

data sources are presented. The proposed algorithms use a CFG that allows both

categorical and numerical attributes to be defined. The use of any type of dataset

without the need of a pre-processing step is one of the main advantages of using

G3P. One of the most remarkable features of these algorithms that differentiates
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them from other existing algorithms in this field is the use of some logical operators

that can be changed beforehand according to the expert’s needs.

The use of G3P for the discovery of ARs allows us to obtain understandable and

closer relations between items. Moreover, according to the definition of an individ-

ual prescribed by the grammar, the proposed algorithms may produce any kind of

ARs, that is, rules that comprise not only positive and categorical attributes but

also quantitative and negative attributes.

An additional feature of the algorithms proposed is the low number of rules dis-

covered. Since the number of rules is restricted by the population size and guided

by the fitness function, the proposed algorithms always obtain a reduced set of

ARs but covering a high percentage of instances in the dataset used. Hence, the

proposed algorithms do not provide a huge set of rules hardly understandable as

exhaustive search algorithms mostly do. On the contrary, they only provide the

best rules discovered along the evolutionary process.

The results obtained during the experimentation phase outline some conclusions

concerning the effectiveness of our proposals. The scalability of G3P for the ex-

traction of ARs is quite linear when the dataset size or the number of attributes

are increased. Moreover, G3P for mining ARs requires low computational time for

both numerical and categorical attributes.

The following points summarize the most relevant results presented in the different

chapters of this PhD Thesis and the conclusions obtained.

� A thorough bibliographical revision covering the topics treated in this Thesis

has been discussed. As main topics it includes a study of the proposals by

using both exhaustive search and evolutionary methodologies that exist in

literature. Notice that G3P has not been previously used in ARM.

� Computational and memory requirements of ARM have been overcome. All

the proposed algorithms follow an evolutionary methodology and do not re-

quire the same two steps for mining ARs as exhaustive search algorithms

do. Hence, the proposed G3P algorithms are able to discover frequent and

also infrequent ARs without requiring the previous discovery of frequent or

infrequent patterns.
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� All the proposed algorithms are based on a CFG that increases the flexi-

bility and interpretability of the extracted knowledge. This grammar also

enables ARs that comprise positive, quantitative and negative conditions to

be mined, and the logical operators used to mine this kind of attributes could

be predefined or modified depending on the domain under study.

� The mining of reliable and infrequent ARs is an easy task, requiring a higher

computational time because of the high number of rules that could appear

from data. We present the Rare-G3PARM algorithm, which was specifically

designed to mine this sort of infrequent ARs, and it has provided pretty

promising results.

� The ARM problem could be considered as a multi-objective problem when

optimizing more than one measure at time is required. For this purpose, we

have presented two multi-objective approaches for mining ARs by means of

G3P. The results have revealed that both algorithms behave very well for

optimizing both support–confidence and support–lift at time.

� An important drawback in evolutionary computation is the high number of

parameters required to execute algorithms. Besides, they are often required

to be previously optimized to obtain the best results. Sometimes, the number

of parameters is too high to be accordingly optimized in a reasonable time. To

address this issue, we have proposed two new G3P models that do not require

as many parameters as existing EAs do, self-adapting their parameters to the

data under study as the evolutionary process evolves.

� Finally, as a real case study, some of the proposed algorithms in PhD Thesis

has been applied to the educational field, discovering interesting relations

that are highly interesting for instructors in order to improve their teaching

work.

8.2 Future Research

In the following sections, some possible paths of extensions and future research

lines, which are based on this PhD Thesis, are presented.
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8.2.1 Multi-Relational ARM

With the growing interest in the storage of information, databases have become

essential [96]. Whereas the extraction of association rules in a single relation or

dataset is a well–studied topic, only a few proposals have been made for mining as-

sociation rules mined from relational databases [97–99]. Relational databases have

a more complex structure and store more information than raw datasets. However,

the existing ARM proposals for mining rules in single relations cannot be directly

applied. Instead, data have to be transformed by joining all the relations into a

single relation [100]. Then, classical ARM algorithms could be successfully applied

to this relation. Nevertheless, this transformation technique suffers from serious

disadvantages: (1) a high computational time, and (2) a total lack of preservation

of the support.

We plan to explore the problems of mining ARs in relational databases by means of

G3P, where each individual could be encoded in the form of a tree through the use

of a CFG. By using trees, each node could represent a relation and the edges might

represent relationships between keys in two relations. In such a way, it may not

required to join relations into a single table and a direct mining could be carried

out over the original database.

8.2.2 Context-Aware Association Rules

In some learning processes, contextual features are explicitly provided by the prob-

lem under study, and these features could be used as a preprocessing step of classifi-

cation algorithms in order to achieve more specialized and accurate classifiers [101].

Contextual features are those whose behavior depends on contextual information

without interfering in a problem explicitly. Contextual features could be consid-

ered as adjustable filters for giving the right meaning in the current context, for

instance, the concept of water for a thirsty person is completely different to this

concept for a plumber, a builder or even a weather forecaster. However, a person

could be any of these at different times

Unfortunately, contextual information is often omitted and efficient algorithms are

required to detect hidden contexts [102] or even switch from context to context

without being explicitly informed about it. The problem of mining hidden contexts
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is still under study. Existing proposals require a fixed number of contexts and

features to be mined and thus some previous knowledge of the dataset is required.

We plan to propose a G3P approach for mining contextual features. The algo-

rithm should provide the possibility of satisfying the context mining requirements

(discovering hidden contexts and irrelevant features) with the features of G3P.

8.2.3 Subgroup Discovery

In this PhD Thesis we have proposed G3P models for mining ARs, which is a

descriptive task. Nowadays, there are also tasks that lie in the intersection between

predictive and descriptive models, such as the so-called subgroup discovery (SD).

The SD task was originally proposed by Wrobel et al. [103], who defined it as: “given

a population of individuals (customers, objects, etc.) and a property of those indi-

viduals that we are interested in, the task of subgroup discovery is to find population

subgroups that are statistically most interesting for the user, e.g., subgroups that

are as large as possible and have the most unusual statistical characteristics with

respect to a target attribute of interest”.

Since its definition, many researchers have studied the SD task and they have pre-

sented several algorithms [104–107]. Some of these algorithms were designed as

adaptations of existing ARM algorithms, being comprehensibility a major require-

ment for this type of algorithms. Thus, the use of grammars to represents solutions

could be a good starting point for SD. Therefore, we find it interesting to develop

a G3P-based algorithm for SD that could be able to discover interesting subgroups

for the user. The result would consist of comprehensible rules in a similar way that

we have done in this PhD Thesis for mining ARs.

8.2.4 Exceptional Models in ARM

Sometimes, it is interesting to discover small subsets of data, also including those

subsets whose distribution is exceptionally different from that of the entire data.

Hence, the concept of exceptional model mining (EMM) was introduced by Leman

et al. [108] as a framework for the SD task.
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EMM enables the extraction of exceptional behaviour in data by identifying sub-

groups where a model fitted to a subgroup is somehow exceptional. Actually,

this technique is mainly considered as a supervised learning task, ascertaining ex-

ceptional subgroups within predefined models but not providing any descriptive

information. Nevertheless, the description of the discovered knowledge is a duty,

specially for the analysis of quality measures. At this point, we consider to deal

with the EMM problem under an unsupervised learning task, not requiring labeled

data to induce exceptional subgroups and enabling the discovery of reliable, abnor-

mal and exceptional relations between item-sets. Thus, the applicability of EMM

to the ARM field could give rise to a new way of considering relations between

items, specially in RAR mining where the searching for the abnormality is a dare.

We propose to deal RAR and EMM as a whole by means of G3P. To do so, we

suggest the discovery of unusual and reliable ARs whose distribution is exceptional.

This synergy brings about an interesting way of dealing with exceptional and rare

relations, considering EMM as an unsupervised learning task.

8.3 Related Publications

In this section, a compilation of the most relevant publications obtained during the

execution of this PhD Thesis are listed next.
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1. J. M. Luna, J. R. Romero and S. Ventura. Design and Behaviour Study of

a Grammar Guided Genetic Programming Algorithm for Mining Association

Rules. Knowledge and Information Systems, Vol. 32, Issue 1 (2012), pp.
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