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Resumen 

 En la actual era de la información es cada vez más común que las personas estén 

expuestas a información sobre riesgos médicos y de salud a través de diversas fuentes. 

Los pacientes cuentan con un acceso cada vez más directo a la información a través de 

distintos medios de comunicación. Para comprender adecuadamente esta información, las 

personas frecuentemente necesitan entender conceptos numéricos como porcentajes y 

probabilidades. Sin embargo, la investigación en toma de decisiones sobre la salud ha 

mostrado que los médicos y sus pacientes muestran serias limitaciones al razonar con 

distintos conceptos numéricos (Gardner, McMillan, Raynor, Woolf, & Knapp, 2011; 

Lipkus, Samsa, & Rimer, 2001; Peters et al., 2006; Peters, 2012; Schwartz, Woloshin, 

Black, & Welch, 1997). Estas limitaciones pueden desencadenar en una capacidad 

mermada en los pacientes para participar en la toma de decisiones sobre su salud y 

desenvolverse en el sistema sanitario (Galesic & Garcia-Retamero, 2011a; Gigerenzer, 

Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 2007). 

 Las representaciones gráficas de la información (p ej., gráficas de iconos o de barras) 

pueden mejorar sustancialmente la comunicación y la comprensión de los riesgos 

(Ancker, Senathirajah, Kukafka, & Starren, 2006; Fuller, Dudley, & Blacktop, 2002; 

Lipkus & Hollands, 1999; Lipkus, 2007). No obstante, algunas personas pueden mostrar 

dificultades para comprender incluso gráficos relativamente sencillos. Asimismo, los 

gráficos utilizados para comunicar información sobre riesgos médicos no siempre 

presentan los datos de un modo transparente. Ello puede sesgar los juicios sobre la 

información representada, alterando así las preferencias y los procesos de toma de 

decisiones sobre la salud. 

 El objetivo global de la tesis doctoral fue investigar el efecto de la manipulación 

sistemática de distintas características de diversos tipos de gráficos (gráficas de iconos, 

barras, y de líneas), con el fin de distinguir aquéllas que facilitan la comprensión de la 

información de aquéllas que la dificultan. Asimismo, se pretendió investigar el impacto 

de las habilidades de comprensión de información gráfica de las personas (Freedman & 

Shah, 2002; Galesic & Garcia-Retamero, 2011b; Shah & Freedman, 2011) en los 

procesos involucrados en la comprensión de los distintos gráficos. Estas cuestiones se 

abordaron desde un enfoque integrador, considerando diversos marcos conceptuales que 

permiten establecer predicciones sobre la comprensión de información presentada 

gráficamente. En concreto, se consideraron (1) modelos de los procesos cognitivos 

involucrados en la comprensión gráfica (Carpenter & Shah, 1998; Pinker, 1990), (2) 
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enfoques corpóreos de la cognición (embodied cognition) que resaltan el uso del 

conocimiento adquirido en interacciones con el entorno para interpretar información 

abstracta (Tversky, 2009; Wilson, 2002), y (3) teorías sobre la adquisición de habilidades 

y el conocimiento experto (Cokely & Kelly, 2009; Ericsson, Prietula, & Cokely, 2007; 

Haider & Frensch, 1996, 1999). 

El proyecto de la tesis 

 En primer lugar se llevó a cabo una revisión exhaustiva de la literatura (Capítulo I), 

y posteriormente se llevaron a cabo seis experimentos diseñados con el fin de investigar 

las cuestiones mencionadas anteriormente. En todos los experimentos se evaluaron las 

habilidades gráficas de los participantes mediante la escala desarrollada por Galesic y 

Garcia-Retamero (2011b). Los dos primeros experimentos investigaron el efecto de la 

representación de la información mediante gráficas de iconos en la comprensión de la 

reducción del riesgo de morir asociada a la ingesta de distintos fármacos (Capítulos II y 

III). Ambos experimentos se llevaron a cabo en condiciones controladas de laboratorio, y 

recogieron medidas conductuales. Los resultados del primer experimento (Capítulo II) 

mostraron que las gráficas de iconos facilitan la comprensión de la información, 

reduciendo sesgos en la comprensión de información numérica. Sin embargo, la mejora 

en la comprensión fue significativamente mayor en participantes con altas habilidades 

gráficas, resaltando el papel moderador de las habilidades gráficas en la efectividad de 

este tipo de apoyo visual. Los participantes con altas habilidades gráficas mostraron 

también un mayor grado de confianza en sus estimaciones sobre la información de riesgo 

cuando recibieron gráficas de iconos. En cambio, la confianza de los participantes con 

bajas habilidades gráficas no se vio afectada por la presencia de gráficas. 

 En el Capítulo III se investigó el efecto de la manipulación de distintos aspectos 

dinámicos de las gráficas de iconos, con el fin de determinar cómo potenciar el efecto de 

las mismas en personas con bajas habilidades gráficas. Las distintas manipulaciones de 

las gráficas se diseñaron con el objetivo de fomentar distintos procesos involucrados en la 

comprensión gráfica (atención y codificación de los patrones visuales vs. identificación 

de los referentes de los distintos elementos), según el marco conceptual de Carpenter y 

Shah (1998). Se observó una mejora significativa en la comprensión de la información a 

través una manipulación diseñada para fomentar el procesamiento activo de la 

información representada en los iconos, incluso en participantes con bajas habilidades 

gráficas. Sin embargo, los otros tipos de iconos dinámicos no llevaron consigo mejoras en 

la comprensión. Los resultados pusieron también de manifiesto la ausencia de una 
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relación directa entre el grado en que las distintas gráficas mejoran la comprensión y el 

grado en que se perciben como útiles. 

 Los siguientes cuatro experimentos investigaron la comprensión de gráficos de barras 

y de líneas. El primero (Capítulo IV) se llevó a cabo en una plataforma online, mientras 

que los dos siguientes (Capítulo V) utilizaron registro de movimientos oculares, con el 

fin de analizar diferencias en los procesos de comprensión gráfica en participantes con 

altas y bajas habilidades gráficas. La mayor parte de los gráficos investigados en los 

experimentos de esta serie se diseñaron de modo que el mensaje transmitido por 

elementos visuoespaciales (p ej., la altura de las barras) entraba en conflicto con el 

mensaje transmitido por elementos ligados a convenciones arbitrarias (e.j., los números 

de las escalas y las etiquetas de los ejes). De este modo, se pretendió determinar el efecto 

de las habilidades gráficas en la tendencia de las personas a basar sus interpretaciones en 

un tipo de información frente a otra. Se investigaron gráficos con dos tipos de conflictos: 

(1) aquéllos que involucran las escalas numéricas, y (2) aquéllos que involucran 

elementos textuales (títulos y etiquetas de los ejes). En el estudio incluído en el Capítulo 

IV se manipuló también la orientación de los gráficos (i.e., horizontal vs. vertical). 

 Los resultados mostraron que los participantes con bajas habilidades gráficas basaron 

sus interpretaciones con mayor frecuencia en elementos visuoespaciales, mostrando por 

tanto interpretaciones erróneas de la información. Estos resultados apoyan la hipótesis de 

que las personas con bajas habilidades gráficas se guían en mayor medida por el 

conocimiento adquirido en interacciones con el entorno para interpretar información en 

gráficos (p ej., asociaciones entre altura y cantidad; Tversky, 2009; Wilson, 2002). Se 

observó también que los participantes con altas habilidades gráficas mostraron un menor 

número de errores de interpretación en la condición de orientación horizontal que en la 

vertical, para aquellos gráficos que contenían información esencial en las escalas. No 

obstante, la metodología empleada no permitió determinar hasta qué punto los resultados 

observados se podían explicar en base a diferencias atencionales a los distintos elementos 

de los gráficos, o a diferencias en el conocimiento conceptual necesario para interpretar la 

información y llevar a cabo las inferencias apropiadas.  

 Esta cuestión se abordó en los experimentos incluídos en el Capítulo V, los cuales 

mostraron que el tiempo de fijación visual en las escalas numéricas tuvo un papel 

mediador entre las habilidades gráficas y la ejecución. Los participantes con bajas 

habilidades gráficas dedicaron un menor tiempo a inspeccionar las escalas, indicando que 

las diferencias en la comprensión entre personas con altas y bajas habilidades gráficas se 
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deben, al menos parcialmente, a diferencias atencionales. Sin embargo, el tiempo de 

fijación en elementos textuales no mostró un papel mediador. Ello indica que las personas 

con bajas habilidades gráficas se podrían beneficiar de intervenciones orientadas a dirigir 

la atención hacia las escalas, mientras que la mejora de la comprensión de los gráficos 

con información esencial en elementos textuales podría requerir de un entrenamiento a 

nivel más conceptual.  

 Por último, el Capítulo VI incluye un experimento en el que se investigó un sesgo 

derivado de características específicas del procesamiento perceptual de las gráficas de 

barras. Este experimento se planteó en base a un estudio reciente que demostró la 

existencia de una tendencia a asumir que los datos localizados gráficamente dentro de las 

barras tienen una mayor probabilidad de formar parte de la distribución que aquéllos que 

se encuentran fuera de las barras (within-the-bar bias; Newman & Scholl, 2012). Los 

resultados mostraron que este sesgo puede alterar las preferencias de las personas por 

distintos tratamientos médicos, llevando a los participantes a querer modificar sus niveles 

de glucosa en sangre aún sin existir razones para ello. Los participantes con altas 

habilidades gráficas mostraron este tipo de sesgo con mayor frecuencia que aquéllos con 

bajas habilidades gráficas, indicando posibles diferencias en la atención dirigida a la 

información textual frente a la gráfica. No obstante, los participantes con altas habilidades 

gráficas mostraron una reducción en el sesgo cuando los gráficos contenían barras de 

error bidireccionales. Estos resultados amplían el conocimiento de los factores que 

pueden dificultar la comprensión de información médica presentada gráficamente, 

mostrando el impacto de los sesgos ocasionados por principios básicos de procesamiento 

perceptual. 

 La discusión general de la tesis (Capítulo VII) gira en torno a las implicaciones 

teóricas y prácticas de los resultados. Entre las aportaciones teóricas destaca el avance en 

la comprensión de los procesos involucrados en la comprensión de distintos tipos de 

gráficos, así como del papel de las habilidades gráficas. Se discuten también los 

resultados en relación a teorías predominantes en la literatura de juicios probabilísticos y 

toma de decisiones (teoría de la representación borrosa; Brainerd & Reyna, 1990; Reyna 

& Brainerd, 1995; Reyna, Nelson, Han, & Dieckmann, 2009). Entre las implicaciones 

prácticas destaca la necesidad de tener en cuenta el nivel de habilidades gráficas de las 

personas a la hora de evaluar la eficacia de distintos tipos de apoyos visuales. De cara al 

diseño de gráficas de iconos, se resalta la importancia de fomentar un procesamiento de 

tipo activo y elaborativo, que permita generalizar la información proporcionada sobre los 
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riesgos. En cuanto al diseño de gráficos de barras y de líneas, se plantea como principio 

fundamental la necesidad de preservar la compatibilidad entre los elementos 

visuoespaciales, los elementos ligados a convenciones arbitrarias, y las preguntas que las 

personas deberán responder en base a los gráficos. Por último, se exponen limitaciones 

del presente trabajo y se plantean cuestiones a abordar en investigaciones futuras. 
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Introduction 

In today’s information age people need to understand health-relevant information 

in day-to-day medical results (growing charts, cholesterol level, etc.), commercial 

advertisements, and in the news (Glazer, 2011). People increasingly look online for health 

information, including search for weight loss diets, vaccination, and immunization 

(Lewandowsky, Ecker, Seifert, Schwarz, & Cook, 2012). Doctors’ offices are full of 

brochures with information about ways to control risks, and many widespread campaigns 

have been launched by the authorities to inform the public about risks relating to drugs or 

diseases such as AIDS (Morgan, Fischhoff, Bostrom, & Atman, 2002). Effective risk 

communication should involve sharing of information that improves risk understanding 

and allows shared decision making (Ahmed, Naik, Willoughby, & Edwards, 2012; 

Edwards, Elwyn, & Mulley, 2002). However, research on health literacy and medical 

decision making has shown that doctors and patients have severe problems grasping a 

host of numerical concepts that are prerequisites for understanding health-relevant 

statistical information (Garcia-Retamero & Galesic, 2009, 2013; Gardner, McMillan, 

Raynor, Woolf, & Knapp, 2011; Lipkus, Samsa, & Rimer, 2001; Peters, 2012; Peters 

et al., 2006; Schwartz, Woloshin, Black, & Welch, 1997). Gigerenzer, Gaissmaier, Kurz-

Milcke, Schwartz, and Woloshin (2007) provided evidence that “collective statistical 

illiteracy” is widespread and can have serious consequences for health. Such 

consequences include an increase in patients’ susceptibility to emotional manipulation 

and the inability to effectively participate in decision making (Galesic & Garcia-

Retamero, 2011a; Gigerenzer et al., 2007). 

Fortunately, pictures and graphical displays can facilitate the communication and 

comprehension of information concerning risks, benefits, and harms of different 

treatments. Tools such as visual displays—including line plots, bar charts or icon 

arrays—can represent information in accessible ways, helping to reduce the errors made 

by professionals and the public alike (Ancker, Senathirajah, Kukafka, & Starren, 2006; 

Fuller, Dudley, & Blacktop, 2002; Lipkus & Hollands, 1999; Lipkus, 2007). Accordingly, 

graphical displays are increasingly being used and recommended for the communication 

of medical risks to the public (Ancker et al., 2006; Fuller et al., 2002; Lipkus, 2007), on 

the basis of the assumption that they are transparent to the viewer (Glazer, 2011). 

However, graph comprehension is not always intuitive, and some individuals can have 

problems understanding even simple graphs. To illustrate, one third of the population in 

Germany and in the United States have both low numeracy (i.e., the ability to use basic 
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probability and numerical concepts; Lipkus & Peters, 2009; Peters, Hibbard, Slovic, & 

Dieckmann, 2007; Reyna, Nelson, Han, & Dieckmann, 2009) and low graph literacy (i.e., 

the ability to understand graphically presented information; Galesic & Garcia-Retamero, 

2011b; Garcia-Retamero & Galesic, 2010b). These troubling findings indicate that 

inadequately designed graphical displays may not only be unhelpful for many patients, 

but that such formats could even deceive them. 

At the same time, data is not always presented clearly in graphs used to 

communicate medical information. Graphs containing misleading features such as 

improperly scaled or split axes can alter peoples’ preferences and decisions in substantial 

ways, leading to biases in judgment and decision making (Arunachalam, Pei, & Steinbart, 

2002; Cooper, Schriger, Wallace, Mikulich, & Wilkes, 2003; Kosslyn, 2006; Tufte, 

2001). This entails that patients may often need to make potentially life changing 

decisions using information depicted in graphical displays that can lead to important 

errors in the comprehension. 

The overarching goal of the present dissertation was to achieve a better 

understanding of the design features in graphs that can either enhance or hinder the 

comprehension of health-related statistics, and of the different factors that moderate the 

effect of such features. Special emphasis was placed on the impact of individual 

differences in graph literacy—an often neglected skill that can influence people’s 

susceptibility to misinterpreting graphically presented data. An essential step towards 

accomplishing this global aim is to achieve a precise understanding of the difficulties and 

errors that are more prominent among less graph literate individuals, and of the cognitive 

processes underlying such difficulties. Six experiments are reported which sought to 

address these questions using different methodologies (e.g., behavioral data collected 

through surveys, eye-tracking) and different types of graphs. 

Different theoretical frameworks are relevant to anticipate if and how people 

understand quantitative information presented in graphs, including (1) models of the 

cognitive processes involved in graph comprehension and usability of graph designs (e.g., 

Carpenter & Shah, 1998; Kosslyn, 2006; Pinker, 1990; Tufte, 2001), (2) perspectives on 

embodied cognition and the use of knowledge acquired in the environment to interpret 

abstract information (Tversky, 2009; Wilson, 2002) and (3) theories on skill acquisition 

and expert performance (Cokely & Kelley, 2009; Ericsson, Prietula, & Cokely, 2007; 

Haider & Frensch, 1996, 1999). Here, I sought to bridge relevant notions borrowed from 
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these frameworks, aiming to achieve a novel and comprehensive understanding of how 

various kinds of displays are processed by different viewers. 

In what follows, I will review key milestones in the development and use of 

different types of graphs to communicate statistical information. Next, I will review 

recent research investigating the efficacy of graphs to communicate medical risks, as well 

as work examining different design features that can mislead viewers. I will then discuss 

prominent models of the processes involved in graph comprehension, and how eye-

tracking methodologies have been used to test predictions derived from such models. 

Lastly, I will discuss the top-down influence of different types of prior knowledge in 

graph comprehension, focusing on the impact of graph literacy. I will conclude providing 

an overview of the detailed goals of the experiments reported in this dissertation, as well 

as highlighting how they contribute to expand previous research. 

 

A brief history of statistical graphs 

 One of the earliest graphical representations of quantitative information is a graph 

depicting the changing positions of the seven most prominent planets over space and 

time, which dates back to the 10
th
 century (Friendly, 2008; Tufte, 2001). However, it was 

not until the 17
th

 century that the first representation of statistical data was produced, 

which showed different estimates of the difference in longitude between two cities 

(Friendly, 2008; Tufte, 2001). In the 18
th
 century numerous forms of data representation 

were invented and abstract graphs became more widespread, coupled with an increasing 

interest in the systematic collection of demographic and economic data (Friendly, 2008). 

The Scottish economist William Playfair played a crucial role in the development of the 

mostly widely used graphs at present, creating the line graph and the bar chart towards the 

end of the 18
th
 century. He then developed the pie chart at the beginning of the 19

th
 

century, which first appeared in The Statistical Breviary, along with other charts depicting 

statistical data for European countries (e.g., areas of the countries, populations and 

revenues; Friendly, 2008; Spence, 2005). 

An exponential growth in the development of different kinds of statistical graphs 

and their use followed during the first half of the 19
th
 century, including histograms, time-

series plots, and scatterplots (Friendly, 2008; Wainer & Velleman, 2001). Interestingly, 

English statisticians did not become interested in the use of graphs until late 19
th
 century 

and early 20
th

 century, and it was Karl Pearson who was responsible for making graphs 

respectable among statisticians (Spence, 2005). Furthermore, the term graph only started 
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to be used in its modern sense about 1910–1920 (Friendly & Denis, 2005). Later, John W. 

Tukey (1977) proposed various innovations for exploratory data analysis, including stem-

leaf plots and box-and-whisker plots. 

 Another kind of graphical display that gained momentum in the 20
th

 century is the 

pictograph. Although iconic representations have been used since ancient times, it was 

not until the early 20
th

 century that the philosopher and economist Otto Neurath 

considered employing pictographs (“isotypes”) as a means to describe statistics such as 

the employment of women (Kurz-Milcke, Gigerenzer, & Martignon, 2008; Spiegelhalter, 

Pearson, & Short, 2011). Although the pictographs developed by Neurath have not yet 

been adapted to represent health statistics (Gigerenzer et al., 2007), they served as an 

inspiration for many different forms of icon arrays (i.e., matrices of stick figures, faces, 

circles, squares), which have been used to communicate different kinds of statistical 

information, with a predominant role in the communication of medical risks. Icon arrays 

enable to symbolize an at-risk population, and simultaneously display the individuals who 

are affected and not affected by the risk (Bodemer & Gaissmaier, 2012; Galesic, Garcia-

Retamero, & Gigerenzer, 2009; Zikmund-Fisher et al., 2008). As noted by Hess, 

Visschers, and Siegrist (2011), icon arrays are a special type of graph in the sense that 

they show frequency information and at the same time convey numbers in a graphical 

way, enabling a one-to-one match between the individuals represented and the icons. 

Kurz-Milcke et al. (2008) contend that the fact that icon arrays represent frequency in an 

analog fashion prompts an identification of the viewer with the individuals represented. 

In sum, the history of statistical graphs highlights that such displays were not 

invented and used commonly until relatively recently. It follows that there is no clear 

reason for which understanding of such graphs should be intuitive or ingrained in 

people’s minds (Galesic & Garcia-Retamero, 2011b). This emphasizes the need to 

achieve a better understanding of the comparative efficacy of different kinds of graphs, as 

well as of the factors affecting such efficacy. In the next section I will discuss relevant 

findings from recent studies that have examined this issue in the context of the 

communication of health-related statistics. 

 

Statistical graphs in medicine: Evaluating the effectiveness of graphs to 

communicate medical risks 

Graphical displays that have been used to communicate health-related statistics 

include pie charts, bar graphs, line graphs (e.g., survival and mortality curves), tree 
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diagrams, risk ladders and scales, and icon arrays (Ancker et al., 2006; Fortin, Hirota, 

Bond, O’Connor, & Col, 2001; Kurz-Milcke et al., 2008; Lipkus & Hollands, 1999; for a 

review, see Mt-Isa et al., 2013). A number of such graphs have been used both in paper-

based formats and in websites to educate patients, communicate risks, and for decision 

support (e.g., online decision aids developed by health authorities; Ahmed et al., 2012; 

Ancker et al., 2006; Edwards et al., 2002; Edwards, Elwyn, & Gwyn, 1999; Lipkus & 

Hollands, 1999; Lipkus, 2007). However, research on the effectiveness of different 

graphs to convey benefits and risks is relatively new in the medical literature (Mt-Isa 

et al., 2013). 

Graphs have been proposed to be well-suited to communicate health-related 

statistics due to a number of reasons, including their capacity to reveal data patterns that 

may otherwise go undetected, to evoke specific mathematical operations, and to attract 

and hold people’s attention to a larger extent than textual formats (Lipkus & Hollands, 

1999; Tversky, Morrison, & Betrancourt, 2002; Tversky, 2001). By using space to 

organize information, memory and inferences can be facilitated, as the burden on 

viewers’ memory can be reduced (Tversky et al., 2002; Tversky, 2009). Additionally, 

graphs allow saving time in general practice consultations and can avoid the need to 

explain the range of different potential options available (Edwards et al., 1999). 

Two types of graphs that have received special attention in empirical studies on 

the communication of medical risks are icon arrays and bar graphs (McCaffery et al., 

2012; Timmermans, Molewijk, Stiggelbout, & Kievit, 2004). Icon arrays have been found 

to improve risk understanding by eliminating errors induced by anecdotal narratives 

(Fagerlin, Wang, & Ubel, 2005), reducing aversion to side effects which can lead to 

refuse beneficial therapies (Waters, Weinstein, Colditz, & Emmons, 2007), reducing 

common judgment biases (e.g., denominator neglect; Garcia-Retamero, Galesic, & 

Gigerenzer, 2010; Garcia-Retamero & Galesic, 2009), and facilitating the comprehension 

of complex concepts such as incremental risk of side effects (Zikmund-Fisher et al., 

2008). Icon arrays can also enhance gist and verbatim understanding of risk information 

among parents of children scheduled to undergo elective surgical procedure (Tait, 

Voepel-Lewis, Zikmund-Fisher, & Fagerlin, 2010). 

Bar graphs have also been found to improve the communication of medical risks, 

for instance, by enhancing the accuracy of evaluations of risk trade offs (Waters, 

Weinstein, Colditz, & Emmons, 2006). Bar graphs are well-suited for depicting 

proportions (Lipkus & Hollands, 1999) and for making comparisons between risks by 
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using height to depict quantities (Lipkus, 2007). Moreover, bar graphs in some occasions 

are preferred over other types of graphs such as line graphs, survival curves, or icon 

arrays (Fortin et al., 2001). 

However, results of studies comparing the efficacy of icon arrays and bar graphs, 

as well as other kinds of graphs, have often been mixed. For instance, Feldman-Stewart, 

Kocovski, McConnell, Brundage, and Mackillop (2000) compared accuracy for vertical 

bar graphs, horizontal bar graphs, icon arrays including either systematically or randomly 

arranged ovals, and pie charts. They found that vertical bar graphs were the best graphical 

format for making choices (e.g., selecting the treatment with larger chances of survival or 

smaller chances of side effects), followed by icon arrays with systematic ovals (see also 

Feldman-Stewart, Brundage, & Zotov, 2007). The latter format led to the best 

performance for more specific tasks such as estimating the magnitude of a difference. In 

contrast, other studies found bar graphs to be most effective for conveying verbatim 

knowledge (i.e., specific numerical estimations), while pie charts were associated with 

better gist knowledge (i.e., general impression; Hawley et al., 2008). Other studies have 

found a superiority of icon arrays over stacked bar graphs to improve people’s ability to 

evaluate risk tradeoffs (Waters et al., 2007) and to improve decision making concerning 

clinical trials among physicians (Elting, Martin, Cantor, & Rubenstein, 1999). 

Finally, other studies have found that risk comprehension does not vary 

significantly as a function of the specific kind of graph, or even that graphs are of little 

help to improve accuracy. For instance, Garcia-Retamero and Galesic (2010b) found 

similar increases in accuracy of treatment risk reduction when either icon arrays or bar 

graphs were added to numerical information. Tait, Voepel-Lewis, Brennan-Martinez, 

McGonegal and Levine (2012) reported that people’s understanding and perceptions of 

risks and benefits of treatments was similar for text-based formats and for different types 

of animated graphs, including pie charts, bar graphs, and icon arrays with human figures. 

Other authors have also found that different types of graphs including Euler circles, icon 

arrays, and hybrid graphs combining both formats did not improve accuracy of Bayesian 

reasoning, as compared to numerical information alone (Micallef, Dragicevic, & Fekete, 

2012; Ottley, Metevier, Han, & Chang, 2012). 

In sum, previous research has not identified one single type of graph that is 

consistently superior to communicate medical risks. This is partly due to the variety 

existing in previous research in the kind of information depicted, display characteristics, 

tasks types and complexity (Feldman-Stewart et al., 2000; Lipkus, 2007; Mt-Isa et al., 
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2013; Schonlau & Peters, 2008, 2012). For instance, icon arrays can be more effective 

than bar graphs when numerators are small (McCaffery et al., 2012) and when outcome 

probabilities range between 1% and 50% (Dolan, Qian, & Veazie, 2012). Additionally, as 

noted by Lipkus (2007), research on the graphical communication of medical risks has 

often been atheoretical. This hinders efforts to explain and integrate mixed findings. 

Moreover, people’s preferences for different types of graphs or the extent to 

which they are perceived as helpful can also vary contingent on display and task 

characteristics. To illustrate, Timmermans et al. (2004) found that icon arrays were 

perceived to be more helpful than bar graphs or numbers for decisions concerning a 

surgical treatment, while bar graphs were evaluated as the most complex format to 

comprehend. Similar results were obtained by Schapira, Nattinger, and McHorney (2001) 

in a qualitative study using focus groups. However, Timmermans, Ockhuysen-Vermey, 

and Henneman (2008) found that icon arrays were not evaluated as easier to understand 

than numerical formats, and Schapira, Nattinger and McAuliffe (2006) showed that icon 

arrays were preferred to bar graphs only when presenting single risks. Moreover, 

physicians have been shown to prefer tables, bar graphs, or pie charts over icon arrays, 

even though icon arrays are often preferred by nurses and students (Elting et al., 1999). 

Taken together, these findings highlight the importance of examining how preferences of 

different populations relate to their risk understanding with different graphical displays, 

as well as the effect of specific task characteristics on both outcomes. 

Finally, it should be noted that improving accuracy of risk understanding 

constitutes only one communication goal among others such as affecting risk perceptions 

and risk aversion, or increasing acceptance of interventions. As emphasized by Lipkus 

(2007), graphical displays that promote accuracy will not necessarily be those that affect 

risk perceptions or lead to changes in behavior. For instance, when risks are presented in 

graphs (bar graphs or icons arrays) which do not display the number of people at risk (i.e., 

background information), people are more risk averse than when risks are presented in 

numerical formats (Stone et al., 2003; Stone, Yates, & Parker, 1997). While displaying 

only the number of people harmed graphically (i.e., foreground information) might be 

most effective to induce people to take actions that protect them from harm and to reduce 

people’s tendency to reduce low-probability events to zero, this can be at cost of a less 

complete understanding of risk information (Stone et al., 2003). Thus, important 

questions concerning the legitimacy and ethical desirability of employing such design 
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features arise (Kurz-Milcke et al., 2008). Some of these issues will be discussed in the 

next section. 

 

Misleading features in graphs. Towards the development of a set of unified 

standards of effective design 

Graphs can be a double edged sword. While the reviewed evidence suggests that well 

designed graphs can often support informed decision making in medicine, there is 

increasing evidence indicating that graphs can also mislead viewers and lead to important 

judgment errors. Tufte (1997) referred to the graph used by engineers involved in the 

Space Shuttle Challenger disaster as an unfortunate example of a poorly designed display 

that led to dramatic consequences. Although poorly designed graphs fortunately do not 

always lead to such striking consequences, they can alter preferences and decisions in 

important, and often undesired, ways. 

Comprehensive lists of design features in graphs that can distort the data depicted or 

mislead viewers have been documented by several authors (Arunachalam et al., 2002; 

Penrose, 2008). A paradigmatic example is Wainer’s (1984) sarcastically dubbed “the 

dirty dozen”, which includes 12 techniques to display data badly such as minimizing the 

data density, graphing data out of context (i.e., choosing to depict specific time intervals), 

and changing scales in mid-axis (e.g., to make large differences look small). As Penrose 

(2008) notes, Tufte’s (2001) term lie factor includes the connotation that the graph 

designer had a deliberate intention to mislead the viewer. Such intentions seem to be 

particularly prevalent in financial contexts, as graphs in accounting may often be used 

with manipulative purposes, in order to create favorable impressions (Beattie & Jones, 

1992). To illustrate, Johnson, Rice and Roemmich (1980) noted that, from a sample of 

Fortune 500 companies, almost half of the annual reports contained at least one 

misleading graph (e.g., distortions of recent trends), while Beattie and Jones (1992) found 

that 30 percent of 240 annual reports of UK companies contained distorted graphs. 

It could be argued that in medical contexts such distortions may be less prevalent, as 

motivations to create favorable impressions may not be as widespread as in the financial 

domain. However, graphs in pharmaceutical advertisements in medical journals do not 

always reach satisfactory levels of quality, and often include improperly scaled or 

improperly split axes and improper baselines (Cooper et al., 2003). Misleading graphs can 

also be found in pharmaceutical marketing campaigns accessible via the Internet (Woller-

Carter, Okan, Cokely, & Garcia-Retamero, 2012). In some cases, graphs may not include 
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clearly distinguishable misleading features, but may still alter viewers’ preferences and 

decisions. For instance, if a graph representing incidences of a disease fails to show the 

number of people at risk (i.e., the reference class), this can give the impression that 

differences in incidences between groups with and without a treatment are larger than 

they really are (Kurz-Milcke et al., 2008). Calling attention to certain elements away from 

others can impact judgments and decisions and result in lower accuracy of risk 

understanding (Lipkus, 2007).  

Distinguishing the instances in which misleading graphs reflect conflicts of interest 

(Gigerenzer et al., 2007) from the instances in which they merely reflect a lack of 

sufficient knowledge of effective graph design or of procedures to adjust default outputs 

provided by statistical software, is not a straightforward endeavor. This task can become 

particularly challenging if one takes into account that a consensus regarding the adequacy 

or effective implementation of published graph design guidelines does not always exist 

(e.g., Gillan, Wickens, Hollands, & Carswell, 1998; Kosslyn, 2006; Shah & Hoeffner, 

2002; Tufte, 2001). For instance, Cleveland (1994) argues that the scale in the y-axis of 

bar charts should start at zero, in order for the proportion between the lengths of the bars 

to reflect the proportion between the quantitative data. In contrast, Kosslyn (2006) 

contends that it is adequate not to do so, provided there are marks to indicate 

discontinuities. Concerning the amount of information to be included in graphs, Tufte 

(2001) strongly recommends that all elements that fail to communicate anything new to 

the viewer should be removed, in order to maximize the data:ink ratio (i.e., the proportion 

of a graphic’s ink devoted to the non-redundant display of data information). In contrast, 

Kosslyn (2006) argues that designers should not always insist on bars that minimize ink, 

as research indicates that the data:ink ratio has different effects for different displays and 

tasks. 

In sum, the reviewed evidence emphasizes that the assumption that graphs will 

generally facilitate risk understanding is a naïve one, and that it is not always clear which 

design features will enhance or hinder understanding. Thus, it is imperative to achieve a 

precise understanding of the impact of different graph design features on medical 

judgments and decisions in viewers with varying skill levels. Efforts to develop a 

systematic and theoretically-grounded conceptualization of different sources of graphic-

related biases would significantly contribute to achieve such understanding. Such efforts 

can be informed by theories and models of graph comprehension developed within the 

frameworks of cognitive psychology and human–computer interaction. Such models 
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serve as a benchmark for most of the studies reported in the present dissertation, and are 

discussed next. 

 

Cognitive processes involved in graph comprehension. Testing and refining graph 

comprehension models using eye-tracking data 

Shah, Freedman, and Vekiri (2005) distinguished between two broad classes of 

models of graph comprehension. The first group of models has focused on providing 

descriptions of simple graph interpretation tasks or subtasks. These models have 

emphasized perceptual processes, and are oriented to yielding precise predictions 

concerning the time required to retrieve specific facts from different types of graphs. In 

their seminal work, Cleveland and McGill (1984, 1986) developed an empirically-based 

hierarchy of different perceptual judgments, ranging from the ones that people performed 

more accurately (i.e., judging position along a common scale), to those that people 

performed less accurately (i.e., area judgments). Shortly after, Simkin and Hastie (1987) 

put forward an information-processing analysis of graph perception based on this 

taxonomy, emphasizing that the accuracy of different perceptual judgments can be linked 

to the task to be conducted (e.g., comparison judgments vs. estimates of the proportion of 

the whole). They proposed a series of elementary processes that are thought to operate on 

mental representations of graphs, enabling people to perform perceptual inferences. The 

proposed processes received empirical support in some subsequent studies (e.g., Spence 

& Lewandowsky, 1990; but see also Carswell, 1992). Also focusing on simple graph 

interpretation tasks, Lohse (1993) developed a model to simulate graphical perception, 

which predicted response time for fact-retrieval questions about line graphs. However, the 

model included only a limited range of tasks and types of graphs. 

 A second class of models has addressed general processes involved in graph 

comprehension more broadly, beyond the specific perceptual processes or sub-processes 

involved in decoding visuospatial information. These models have placed more emphasis 

on the interpretations that people form of the data depicted, and the interactions between 

features of the graphs (e.g., their content), the viewers’ prior knowledge, and different 

task requirements. A key source of inspiration for such models was Bertin’s (1983) work, 

in which he established a distinction between three major component processes involved 

in graph comprehension, namely (1) encoding the visual pattern and identifying the 

principal features (e.g., lines with different slopes), (2) translating the identified features 

into conceptual relations, including quantitative relations between variables, and (3) 
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determining the referents of the concepts identified by associating them with the specific 

variables depicted and their numerical values. This characterization of graph 

comprehension processes was borrowed by Pinker (1990) and by Carpenter and Shah 

(1998), who articulated further the different aspects of each of the three types of 

component processes. Importantly, Carpenter and Shah (1998) demonstrated that such 

processes are performed in a cyclic manner. That is, the processes occur serially and 

incrementally, although some visual features can also be encoded in parallel. 

Carpenter and Shah’s (1998) model of graph comprehension has been highly 

influential until present, and will serve as a framework for most of the experiments 

reported in this dissertation. The model will be discussed in detail in the coming chapters, 

in connection with accounts of spatial cognition based on embodied cognition 

perspectives (Tversky et al., 2002; Tversky, 2009). Carpenter and Shah’s model has 

received empirical support from studies using eye-tracking methodologies, and related 

graph comprehension processes have also been examined via the analyses of eye tracking 

metrics, for different kinds of displays (Burns, Elzer, & Carberry, 2008; Carpenter & 

Shah, 1998; Elzer, Green, Carberry, & Hoffman, 2006; Huestegge & Philipp, 2011; 

Peebles & Cheng, 2001, 2003; Trafton, Marshall, Mintz, & Trickett, 2002). Relatedly, 

studies on human-computer interaction have also employed eye-tracking to examine how 

graph usability is affected by compliance with existing principles of effective design (e.g., 

Renshaw, Finlay, Tyfa, & Ward, 2003, 2004). 

In the present work, two experiments were conducted in which people’s eye 

movements were recorded while they interpreted graphs presenting health-related 

information. The aim of these experiments was to investigate if and how graph literacy 

affects the processes underlying comprehension for such kind of graphs. Graphs were 

designed in such a way that identifying the specific variables depicted and their numerical 

values was crucial for accurate interpretations, while direct translations of visual features 

into conceptual relations led to erroneous interpretations. As will be described below, this 

enabled to investigate the impact of the inclusion of misleading features in graphs, and at 

the same time pinpoint differences in graph comprehension processes linked to graph 

literacy. 
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Top-down influences of prior knowledge on graph comprehension: The impact of 

graph literacy 

Graph literacy refers to one’s ability to obtain meaning from graphically presented 

information, and includes general knowledge about making inferences from different 

graphic formats (Freedman & Shah, 2002; Galesic & Garcia-Retamero, 2011b; Glazer, 

2011; Shah & Freedman, 2011). Graph literacy can include mental representations stored 

in long-term memory that contain knowledge about the properties of different kinds of 

displays and procedures for interpreting them (i.e., graph schemas; Maichle, 1994; 

Peebles & Cheng, 2001, 2003; Pinker, 1990; Ratwani & Trafton, 2008; Simkin & Hastie, 

1987). Individuals with higher graph literacy can have more complete schemas, which 

contribute to recognizing specific types of graphs, identifying the most relevant features 

in each graph, and making accurate interpretations of the information depicted. 

 Although assessing viewers’ level of graph literacy is paramount to anticipate 

potential difficulties in graph comprehension and to tailor displays to the needs of 

different viewers, efforts to develop scales addressing this construct have been scarce in 

the context of health risk communication. As pointed out by Galesic and Garcia-

Retamero (2011b), only a few document literacy questions have investigated specific 

aspects of graph comprehension, but most of the items included are relatively complex 

(e.g., Kutner, Greenberg, Jin, & Paulsen, 2006; Tuijnman, 2000). Some tests have also 

been developed in the context of the literature concerned with the effect of different 

instructional methods on the acquisition of graphical skills in students, including the 36-

item Graph Interpretation Test developed by Kramarski and Mevarech (2003) and the 26-

item Test of Graphing in Science (TOGS; McKenzie & Padilla, 1986). However, both 

tests include questions that require relatively advanced skills, focus mainly on line graphs, 

and are too long to be used in clinical settings. In contrast, efforts to develop instruments 

to measure health numeracy have been widespread, including both subjective measures 

(Fagerlin, Ubel, Smith, & Zikmund-Fisher, 2007) and objective measures (Cokely, 

Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012; Lipkus et al., 2001; Peters et al., 

2006; Schapira et al., 2012; Schwartz et al., 1997; Weller et al., 2013), varying in length 

and difficulty. Of note, items evaluating graph comprehension have in some cases been 

included in numeracy scales (Schapira et al., 2012). 

Galesic and Garcia-Retamero (2011b) recently developed a scale which assesses both 

basic and more advanced graph comprehension, includes examples of different types of 
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graphs, and is embedded in the health domain. This scale was pretested in the laboratory 

and evaluated on nationally representative samples in the United States and Germany. 

The construction of the scale was grounded on the division of graph comprehension skills 

in three levels proposed by Friel, Curcio and Bright (2001), namely (1) the ability to read 

the data, that is, to find specific information in the graph, which corresponds to the more 

elementary level, (2) the ability to read between the data, that is, to find relationships in 

the data as shown on the graph, which corresponds to an intermediate level, and (3) the 

ability to read beyond the data, or make inferences and predictions from the data, which 

corresponds to an advanced level. On the basis of pretest results, 13 items were selected 

to be included in the refined version of the scale. The scale showed satisfactory levels of 

reliability (Cronbach’s alpha was .74 in Germany and .79 in the United States). Average 

correlations of the total score with education levels were .29 in Germany and .54 in the 

United States. Correlations with graph comprehension items from existing literacy 

questionnaires were .32 in Germany and .50 in the United States, indicating satisfactory 

convergent validity. This scale was administered in all experiments reported in the 

present work, and a copy of the full scale can be found in the Appendix. 

It is important to note that graph literacy constitutes only one of the different types of 

prior knowledge that can affect graph comprehension. In addition to data interpretation 

and graph literacy skills, Shah et al. (2005) highlighted the role of viewers’ knowledge 

about content (i.e., the availability of mental representations of the specific content 

depicted), and individual differences in visuospatial abilities and working memory 

(Hegarty & Waller, 2005). Concerning the former type, Carpenter and Shah (1998; see 

also Freedman & Shah, 2002) noted that less experienced graph viewers can be more 

likely to rely on prior knowledge concerning typical relations among variables to interpret 

graphs. Other authors have also noted that familiarity with the content can affect the ease 

with which different individuals make inferences, even among expert scientists (Roth & 

Bowen, 2003). Expertise in specific domains (e.g., economics) can also contribute to 

establish more direct associations between different visual patterns and concepts 

(Tabachneck-Schijf, Leonardo, & Simon, 1997). As content knowledge can affect graph 

interpretations independently of graph literacy (Freedman & Shah, 2002; Shah et al., 

2005; Shah & Freedman, 2011), participants’ level of knowledge concerning relevant 

clinical conditions was also evaluated in one of the experiments that will be reported. 

Finally, the relations between visuospatial abilities, working memory and graph 

interpretations have received less attention in past work, and will not be directly 
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addressed here. Interested readers are referred to work by Feeney, Adams, Webber, and 

Ewbank (2004), Garcia-Rodríguez, Summers, and Duxbury (2011), Kellen, Chan, and 

Fang (2013), and Penna, Agus, Peró-Cebollero, Guàrdia-Olmos, and Pessa (2012). 

 

Overview of the Doctoral Thesis 

As advanced above, the overarching goal of the present dissertation was to 

achieve a theoretically-grounded understanding of how the manipulation of different 

design features of graphs affect the comprehension of health-related statistics in 

individuals with low and high graph literacy. Six experiments are reported which examine 

the difficulties and errors that are more prominent among individuals with varying levels 

of graph literacy, as well as the underlying cognitive processes.  

The first two experiments were conducted in a laboratory setting, and focused on 

examining the efficacy of icon arrays to improve understanding of treatment risk 

reduction in individuals with low and high graph literacy. In particular, Chapter II 

describes an experiment investigating the effect of icon arrays to reduce denominator 

neglect, a common judgment bias (Denes-Raj, Epstein, & Cole, 1995; Reyna & Brainerd, 

2008). Additionally, the experiment examined whether framing risk information in 

positive vs. negative terms (i.e., chances of surviving vs. chances of dying, respectively; 

see e.g., McNeil, Pauker, Sox, & Tversky, 1982) could affect the magnitude of 

denominator neglect, as previous studies investigating the effect of this bias on 

understanding of treatment risk reduction had always presented information framed in 

negative terms (Garcia-Retamero et al., 2010; Garcia-Retamero & Galesic, 2009). We 

reasoned that an attentional bias for negative information (see, e.g., Baumeister, 

Bratslavsky, Finkenauer, & Vohs, 2001) could have amplified the effect of denominator 

neglect observed in previous research. Results revealed that participants showed 

denominator neglect when only numerical information was provided, and that 

denominator neglect held consistently, independently of whether risk information was 

presented in positive or negative terms. In line with previous research, icon arrays helped 

people to take into account denominators in their estimates of treatment risk reduction, 

increasing accuracy of risk understanding. However, the effectiveness of icon arrays was 

moderated by individual differences in graph literacy. Additionally, the provision of icon 

arrays resulted in a significant increase in subjective confidence only for participants with 

high graph literacy, indicating that greater confidence was matched by higher accuracy of 

risk understanding. In sum, the findings of this experiment highlighted that, even though 
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icon arrays may improve understanding by disentangling nested or overlapping classes 

(Reyna & Brainerd, 2008; Reyna et al., 2009) and by bringing attention to the number of 

people at risk (Ancker et al., 2006; Stone et al., 2003), a certain level of graph literacy can 

be necessary to fully benefit from such visual displays. 

Chapter III sought to examine the effectiveness of icon arrays including different 

types of dynamic features. The aim of this experiment was to determine how to enhance 

risk comprehension among less graph literate individuals, and at the same time to better 

understand the cognitive processes underlying superior performance. Performance with 

five different types of dynamic icon arrays was compared to that with a static set of icon 

arrays. The dynamic icon arrays were designed to promote specific graph comprehension 

processes (i.e., attention and encoding of the visual pattern; identification of the referents 

of the different regions of icon arrays; Carpenter & Shah, 1998), as well as a more active 

processing of the information (e.g., Natter & Berry, 2005) to encourage the generalization 

of the risk information depicted. In addition to accuracy and confidence, we measured 

participants’ evaluations of the different types of displays. Results showed that the only 

manipulation that contributed to significantly improve risk understanding was the 

inclusion of a reflective question (i.e., an estimate concerning the number of people 

harmed after taking a drug), followed by visual feedback provided interactively through 

icon arrays. This suggested that viewers may benefit from icon arrays to a larger extent 

when encouraged to engage in a more active, elaborative, processing of information, 

leading to richer, better integrated representations which better support subsequent task 

performance (Cokely & Kelley, 2009). Additionally, most of the dynamic icon arrays 

were associated with increases in graph evaluation ratings, both for participants with low 

and high graph literacy. This finding provided new evidence for the lack of 

correspondence existing between people’s subjective evaluations and their performance. 

Chapter IV turned to examine how graph literacy affects interpretations and 

decisions made on the basis of a different type of graph, namely bar graphs. The study 

was conducted online using Amazon’s Mechanical Turk, which provides access to more 

diverse samples than laboratory-based experiments. Notably, graphs were designed to 

contain conflicts between information conveyed by spatial features (e.g., heights of bars) 

and information conveyed by features linked to arbitrary conventions (e.g., axes labels or 

scale values). This enabled to examine the extent to which graph literacy affects the use 

of mappings grounded in people’s real world experience to interpret graphs (i.e., 

assuming that a higher bars represents larger quantities), within the framework of 
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Carpenter and Shah’s (1998) model of graph comprehension. Two distinct types of 

conflicts were distinguished, namely (1) scale-spatial conflicts (i.e., involving numerical 

scales), and (2) textual-spatial conflicts (i.e., involving titles and axes labels). While the 

impact of manipulations linked to scales has often been emphasized in the literature 

(Gillan et al., 1998; Kosslyn, 2006), the influence of the message conveyed in textual 

elements has received less attention. However, viewers who fail to incorporate 

information in titles and labels clarifying the type and nature of the information depicted, 

will likely misinterpret some types of graphs (e.g., those representing information about 

percentage change rates or people with negative diagnoses). This experiment also 

investigated the effect of the orientation of graphs (i.e., vertical vs. horizontal). While 

some studies have examined how the orientation of icon arrays (McCaffery et al., 2012; 

Price, Cameron, & Butow, 2007) and of bar graphs (Feldman-Stewart et al., 2007, 2000) 

affects interpretations and preferences (Schapira et al., 2001), such efforts have rarely 

been theoretically driven. In the present work, two alternative predictions concerning the 

effect of orientation on interpretations were proposed and tested.  

Results revealed that individuals with low graph literacy more often relied on spatial-

to-conceptual mappings and neglected important information in conventional features. 

Additionally, manipulating the orientation of graphs only affected performance for 

individuals with high graph literacy, when graphs contained essential information in 

scales. However, the methodology employed did not enable to determine whether the 

observed differences in performance were driven by differences in the allocation of 

attention to different conventional features, or instead by differences in conceptual 

understanding and mental operations on elements of graphs. This question was addressed 

in the next chapter. 

The next two experiments (Chapter V) were conducted in the laboratory in Germany, 

and involved recording participants’ eye movements while they processed graphs. The 

experimental design was similar to that employed in the previous chapter, but focused on 

vertically oriented graphs. Line graphs were also included as stimuli to increase the 

generalizability of our findings, as such kind of graphs are also used to communicate 

health-relevant information, including changes in the number of patients surviving after 

different treatments over time (Armstrong, FitzGerald, Schwartz, & Ubel, 2001; 

Armstrong, Schwartz, FitzGerald, Putt, & Ubel, 2002; Lipkus & Hollands, 1999; Mazur 

& Hickam, 1990, 1993; Mazur & Merz, 1993). As participants were relatively well 

educated, four more difficult graph literacy items were included to achieve a better 
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discrimination (see Appendix). Additionally, the second experiment reported in this 

chapter measured participants’ domain-specific knowledge using a computerized version 

of the Minimum Medical Knowledge questionnaire (Bachmann et al., 2007), as well as 

other variables that could constitute potential confounding factors of the effect of graph 

literacy (e.g., knowledge that graphs can be misleading and careless responding). 

Results revealed that lower graph literacy was associated with less time spent viewing 

numerical scales on x or y axes. Differences in viewing times, in turn, mediated the link 

between graph literacy and interpretations. In contrast, time spent viewing relevant 

conventional features in graphs involving textual conflicts did not predict accuracy of 

understanding and was not related to graph literacy. These findings suggested that graph 

literacy affects people’s tendency to strategically direct attention to and encode some 

conventional features, thus expanding previous research on perceptual and cognitive 

processes in graph comprehension (Carpenter & Shah, 1998; Kosslyn, 1989; Lohse, 1993; 

Pinker, 1990; Shah & Carpenter, 1995; Simkin & Hastie, 1987). Skilled individuals were 

more able to recognize and focus on task-relevant information (see also Haider & 

Frensch, 1996, 1999), suggesting that graph literacy can affect which information is 

processed, and not only how the information is processed. At the same time, these 

findings indicated that methods to direct attention to essential information in conventional 

features could enhance performance for graphs containing essential information in scales, 

while specific training might be required at a conceptual level for graphs containing 

essential information in textual elements. 

Finally, Chapter VI turned to examine the impact of more basic pattern perception 

processes specific to bar graphs, which can also have important consequences for the 

graphical communication of health-related information. Recent research has revealed that 

when people are shown a bar graph representing a mean, they often believe that data 

points located within bars are more likely to be part of the underlying distribution than 

equidistant points outside bars (Newman & Scholl, 2012). An experiment was conducted 

to examine the generalizability of the within-the-bar bias in the medical domain, as well 

as the moderating effect of graph literacy. Results revealed that this bias led participants 

to prefer to modify their blood glucose levels, even when the information provided gave 

them no justifiable reason to do so. Interestingly, individuals with higher levels of graph 

literacy showed the largest biases. These findings were interpreted in terms of differences 

in the extent to which participants with low and high graph literacy focused on textual-

based information vs. on graphs. Graph literate individuals were also found to benefit 
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more from the inclusion of bidirectional error bars in graphs, suggesting that the success 

of debiasing efforts may be contingent on the viewer’s level of graph literacy. In sum, this 

experiment revealed that ensuring that bar graphs comply with principles of good graph 

design is most likely necessary, but not sufficient, to promote accurate comprehension 

and informed decision making. 

The dissertation concludes with Chapter VII, which reviews and integrates all 

reported findings, discusses theoretical and practical implications, and provides general 

conclusions, along with a series of recommendations for avenues for future research. 
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Individual Differences in Graph Literacy: 

Overcoming Denominator Neglect in Risk Comprehension 

 

Abstract 

 

Graph literacy is an often neglected skill that influences decision-making performance. 

We conducted an experiment to investigate whether individual differences in graph 

literacy affect the extent to which people benefit from visual aids (icon arrays) designed 

to reduce a common judgment bias (i.e., denominator neglect—a  focus on numerators in 

ratios while neglecting denominators). Results indicated that icon arrays more often 

increased risk comprehension accuracy and confidence among participants with high 

graph literacy as compared to those with low graph literacy. Results held regardless of 

how the health message was framed (chances of dying vs. chances of surviving). Findings 

contribute to our understanding of the ways in which individual differences in cognitive 

abilities interact with the comprehension of different risk representation formats. 

Theoretical, methodological, and prescriptive implications of the results are discussed 

(e.g., the effective communication of quantitative medical data). 
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Introduction 

The popular saying “a picture is worth a thousand words” reflects the widespread 

belief that pictures and graphical displays can facilitate the communication and 

comprehension of complicated information. In modern societies there is a growing need 

for such simplification. For instance, research has documented many ways in which 

doctors and patients struggle to grasp numerical concepts that are prerequisites for the 

accurate evaluation and communication of risks (Gigerenzer, Gaissmaier, Kurz-Milcke, 

Schwartz, & Woloshin, 2007; Peters et al., 2006; Schwartz, Woloshin, Black, & Welch, 

1997). Fortunately, tools such as visual displays—including line plots or bar charts—can 

help overcome some of these difficulties in professionals and the public alike (Ancker, 

Senathirajah, Kukafka, & Starren, 2006; Fuller, Dudley, & Blacktop, 2002; Lipkus, 2007; 

Lipkus & Hollands, 1999). However, graphs are not equally useful for all individuals 

(Ancker et al., 2006; Garcia-Retamero & Galesic, 2010b; Lipkus, 2007). Recent research 

has shown that people differ substantially in their ability to understand graphically 

presented information, or graph literacy (Galesic & Garcia-Retamero, 2011b). In this 

paper we address the question of how individual differences in graph literacy influence 

the efficacy of visual displays. 

Individuals with high graph literacy have been found to make more elaborate 

inferences when viewing graphical displays as compared to less graph-literate 

individuals. For instance, highly graph-literate individuals extract information of a higher 

level of complexity when viewing line graphs than do individuals with low graph literacy. 

They are also more likely to direct their attention to typical line graph information (e.g., 

quantitative trend information; Maichle, 1994). When viewing bar graphs, individuals 

with high graph literacy are more capable of making main effect inferences on the basis 

of the data represented than are less graph-literate individuals (Shah & Freedman, 2011). 

Moreover, novice graph viewers often neglect the relevance of important elements of 

graphs (Mazur & Hickam, 1993) and interpret graphs incorrectly as compared to 

experienced graph viewers (Shah & Hoeffner, 2002). Differences in individual-level 

skills such as numeracy (i.e., the ability to process basic probability and numerical 

concepts; Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012; Galesic & Garcia-

Retamero, 2010; Peters et al., 2006; Reyna, Nelson, Han, & Dieckmann, 2009) also affect 

people’s reactions to different graphic representation formats (Wright, Whitwell, 

Takeichi, Hankins, & Marteau, 2009), the extent to which visual aids are useful in the 

assessment of treatment risk reduction (Galesic, Garcia-Retamero & Gigerenzer, 2009; 
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Garcia-Retamero & Galesic, 2010b), and recall of numerical information (Garcia-

Retamero & Galesic, 2011). Other studies have documented a range of other factors, such 

as age (Garcia-Retamero, Galesic, & Gigerenzer, 2010), or people’s familiarity with the 

specific content depicted (Shah, 2001; Shah & Hoeffner, 2002), that tend to be related to 

graph literacy. For example, familiarity can affect the ease with which different 

individuals make inferences based on graphs, even amongst expert scientists (Roth & 

Bowen, 2003).  

Although a growing body of evidence has documented differences in people’s 

ability to understand graphs, relatively less research has examined how graph literacy 

influences the efficacy of risk communication interventions. . Visual displays such as line 

plots or bar charts facilitate the communication of information by enabling the 

representation of quantitative information in spatial locations. Thus, visual displays 

facilitate inferences about conceptual relations in the data to be made on the basis of 

spatial relations (Gattis, 2002, 2004; Gattis & Holyoak, 1996; Kosslyn, 2006; Tversky, 

2001). However, it is unclear how, when, and why differences in graph literacy affect the 

efficacy of risk communication tools such as visual aids When people are faced with such 

tools, graph literacy could interact with fundamental skills needed for competent decision 

making and reasoning (e.g., consistency in risk perception; Bruine de Bruin, Parker, & 

Fischhoff, 2007; Parker & Fischhoff, 2005).   Here, we report on an investigation of the 

extent to which individual differences in graph literacy influence the effectiveness of 

graphs designed to reduce a common bias in judgment and decision making, namely 

denominator neglect. 

Denominator neglect refers to people’s tendency to pay too much attention to 

numerators in ratios (i.e., the number of times a target event has happened) and 

insufficient attention to denominators (i.e., the overall opportunities for it to happen; 

Denes-Raj, Epstein, & Cole, 1995; Reyna, 2004; Reyna & Brainerd, 2008). This tendency 

has been observed in the health domain in numerous studies, leading people, for example, 

to judge cancer as riskier when it is described as killing 1,286 out of 10,000 people than 

as killing 24.14 out of 100 people (Yamagishi, 1997), or to judge 36,500 people dying of 

cancer every year as riskier than 100 dying every day (Bonner & Newell, 2008). An 

example of denominator neglect in a medical context would be focusing on the number of 

treated and non-treated patients who die, without considering the overall number of 

treated and non-treated patients, in judging whether a treatment was effective. 
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Consequently, people often assess treatment risk reduction inaccurately (Garcia-Retamero 

& Galesic, 2009).  

Denominator neglect can be particularly problematic when people are required to 

judge the effectiveness of a treatment using information from unequally sized groups of 

treated and non-treated patients, which is a common situation in medical practice (e.g., 

Grossarth-Maticek & Ziegler, 2008; Lichtenberg, Levinson, Sharshevsky, Feldman, & 

Lachman, 2008). In particular, in a loss frame (i.e., number  of patients who died), when 

the overall number of patients who receive a treatment is smaller than the number of 

those who do not receive it (e.g., 100 and 800, respectively), people tend to overestimate 

risk reduction (Garcia-Retamero & Dhami, 2011; Garcia-Retamero & Galesic, 2009; 

Garcia-Retamero et al., 2010). In this situation, people would overestimate treatment risk 

reduction because they would take into account the absolute numbers of treated  and non-

treated patients who die (e.g., 2 and 80, respectively) rather than the proportion of treated 

and non-treated patients who die (e.g., 2 out of 100 and 80 out of 800, respectively). 

Icon arrays (i.e., graphical representations consisting of a number of circles or 

other icons symbolizing individuals who are affected by some risk; Ancker et al., 2006; 

Edwards, Elwyn, & Mulley, 2002; Paling, 2003) are an effective method for eliminating 

denominator neglect and increasing the accuracy of people’s risk estimates (Garcia-

Retamero & Galesic, 2009; Garcia-Retamero et al., 2010).It has been suggested that icon 

arrays improve the accuracy of quantitative reasoning by disentangling classes which are 

overlapping in ratios, making part-to-whole relations visually available (e.g., Reyna, 

1991; Reyna & Brainerd, 2008; see also Ancker et al., 2006). However, in line with the 

literature reviewed examining the comprehension of visual displays such as line plots or 

bar charts (e.g., Maichle, 1994; Shah & Freedman, 2011), it is possible that a certain level 

of graph literacy is required to associate the visual patterns contained in icon arrays with 

meaningful interpretations of the data represented (i.e., risk reduction information). This 

would imply that individual differences in graph literacy could affect the effectiveness of 

icon arrays in improving the accuracy of quantitative reasoning. Investigating this issue 

was the main aim of this paper. 

We tested the hypothesis (H1) that the effectiveness of icon arrays in reducing 

denominator neglect would be larger for individuals with high graph literacy than for 

individuals with low graph literacy. We further hypothesized (H2) that highly graph-

literate participants would report more confidence in their estimates when icon arrays are 

provided as compared to less graph-literate participants. We measured individual 
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differences in graph literacy using a scale developed by Galesic and Garcia-Retamero 

(2011b). This scale covers four frequently used graph typesi.e., line plots, bar charts, 

pies and icon arraysand has been designed to measure graph comprehension in the 

medical domain.  

Another factor that plays an important role in risk comprehension is the structure 

and the content of the message (i.e., message framing). Previous research has 

demonstrated that the presentation of information in a negative vs. a positive frame can 

have a large impact on judgment and decision making (Edwards, Elwyn, Covey, 

Matthews, & Pill, 2001; Garcia-Retamero & Cokely, 2011; Garcia-Retamero & Galesic, 

2010a; Levin, Schneider, & Gaeth, 1998; Rothman & Salovey, 1997). For instance, 

studies in medical contexts have shown that the likelihood for people to engage in illness-

detecting behaviors is larger when messages are framed in terms of potential losses, while 

gain-framed messages are more likely to lead to prevention behaviors (Banks et al., 1995; 

Gerend & Shepherd, 2007; Rivers, Salovey, Pizarro, Pizarro, & Schneider, 2005; 

Rothman, Martino, Bedell, Detweiler, & Salovey, 1999; Toll et al., 2010). Other studies 

have documented how manipulating the way in which risks associated with different 

treatments are framed (i.e. chances of surviving vs. chances of dying) affects evaluations 

and preferences for these treatments (Haward, Murphy, & Lorenz, 2008; Marteau, 1989; 

McNeil, Pauker, Sox, & Tversky, 1982; Wilson, Kaplan, & Schneiderman, 1987). 

In studies investigating the effect of denominator neglect on perceptions of 

treatment risk reduction, information has always been framed in negative terms (Garcia-

Retamero & Galesic, 2009; Garcia-Retamero et al., 2010). To the best of our knowledge, 

no study has yet analyzed whether denominator neglect equally affects the accuracy of 

people’s estimates of risk reduction when information is presented in either negative or 

positive terms (i.e., chances of dying and surviving, respectively). This issue is of interest 

as research has demonstrated the generalized existence of an attentional bias toward 

negative information (Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001). This bias has 

been documented in studies analyzing people’s visual search of faces (Hansen & Hansen, 

1988; Öhman, Lundqvist, & Esteves, 2001), color-naming latencies in the emotional 

Stroop task (Pratto & John, 1991), and event-related brain potentials associated to 

negative vs. positive stimuli (Smith, Cacioppo, Larsen, & Chartrand, 2003). A common 

finding in these studies is that negative stimuli elicit attention more automatically than 

positive stimuli. Therefore, in tasks investigating understanding of treatment risk 



 Chapter II 

50 

 

reduction, the presentation of information in negative terms (i.e., chances of dying), rather 

than positive terms (i.e., chances of surviving) could exacerbate the effect of denominator 

neglect. The attentional bias for negative information might lead people to focus on the 

absolute numbers in the numerators (i.e., the number of people that die) and overlook the 

denominator. Investigating this issue was an additional aim of this paper. In particular, we 

aimed to determine whether an attentional bias for negative information could amplify the 

effect of denominator neglect. If this is the case, denominator neglect should be larger 

when information is presented in terms of chances of dying, as compared to when it is 

presented in terms of chances of surviving. 

To test the hypotheses stated so far, we conducted a study where we analyzed 

participants’ understanding of medical risk reductions after treatment. Participants with 

different levels of graph literacy were presented with scenarios involving equally 

effective treatments but differing in the overall number of treated and non-treated 

patients. In some conditions, the number of patients who did receive a treatment was 

equal to those who did not; in other conditions, it was smaller or larger. Some participants 

were provided with icon arrays alongside numerical information about risk reduction, 

whereas others received numerical information only. To test the hypotheses that 

differences in graph comprehension skills affect both the effectiveness of icon arrays in 

reducing denominator neglect (H1) and people’s confidence in their estimates (H2), we 

compared the accuracy of risk reduction estimates and the self-reported confidence in 

these estimates in participants with high vs. low graph literacy scores. Additionally, to 

analyze whether message framing could affect risk understanding we provided half of the 

participants with the information for the medical scenarios in terms of chances of dying, 

while the other half received the information in terms of chances of surviving.  

 

Method 

 

Participants 

Participants were 168 undergraduate students from the University of Granada, 

Spain (16% women, median age of 20 years, range 1828). They were recruited through 

the University’s online recruitment pool and through advertisements made during 

lectures, and participated in exchange of course credit. A paper-and-pencil questionnaire 

was completed by participants in group sessions ranging from two to twelve participants. 

The sessions were always conducted under the supervision of one of the researchers, in 
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order to ensure that questionnaires were completed individually. The tasks relevant for 

the present study took between 1520 minutes to complete. Afterwards, participants 

completed other unrelated tasks for an additional 40 minutes. Participants were randomly 

assigned to the different experimental groups. 

 

Stimuli and Procedure 

Participants were presented with four medical scenarios describing the usefulness 

of hypothetical new drugs for reducing cholesterol that also decreased the risk of dying 

from a heart attack. The order of the four scenarios was randomized. Participants read and 

evaluated information about the risks and subsequently completed a graph literacy scale. 

Measurement of graph literacy: Graph literacy scores were collected using the 

instrument developed by Galesic and Garcia-Retamero (2011b). This scale consists of 13 

items and includes items reflecting three levels  of graphical comprehension traditionally 

outlined in the literature (see Friel, Curcio, & Bright, 2001): (1) the ability to read the 

data, that is, to find specific information in the graph, which corresponds to the  more 

elementary level (for instance, the ability to read off the height of a particular bar within a 

bar chart, or the number of icons of a particular type in an icon array); (2) the ability to 

read between the data, that is, to find relationships in the data as shown on the graph, 

which corresponds to an intermediate level (for instance, the ability to read off the 

difference between two bars or sets of icons); and (3) the ability to read beyond the data, 

or make inferences and predictions from the data, which corresponds to an advanced level 

(for example, the ability to project a future trend from a line chart, or to understand the 

importance of attending to scale ranges and scale labels when comparing two charts). The 

scale contains four items assessing the ability to read the data, four items assessing the 

ability to read between the data, and five items assessing the ability to read beyond the 

data. For examples of items, see Figure 1.  

Additionally, the scale is designed to cover four frequently used graph typesline 

plots, bar charts, pies, and icon arraysand includes items dealing with the 

communication of medical risks, treatment efficiency, and prevalence of diseases. In sum, 

the scale measures both basic graph-reading skills and more advanced graph 

comprehension, for different types of graphs. The psychometric properties of this scale 

have been assessed in a survey conducted on probabilistically representative national 

samples of people from Germany and the United States, demonstrating satisfactory levels 
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of internal consistency (Cronbach alpha of .74 in Germany and .79 in the United States; 

.70 in the sample of the current study) and convergent validity (the average correlation of 

the total score with graph comprehension items from existing literacy questionnaires was 

.44; for further details on the psychometric properties of the scale see Galesic & Garcia-

Retamero, 2011b).  

We split participants into two groups according to the median graph literacy score 

for the total sample (i.e., 10). The group of participants with low graph literacy included 

those who obtained nine or fewer correct responses (n = 68), while the group of 

participants with high graph literacy included those who obtained 10 or more correct 

responses (n = 100). Participants with low graph literacy answered on average 7.8 items 

correctly (SD = 2.0), while participants with high graph literacy answered on average 10.9 

items correctly (SD = .8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Examples of items measuring the three abilities of graph comprehension. M. Galesic & R. 

Garcia-Retamero, Medical Decision Making, 31, 444–457, Copyright © 2011 by Society for Medical 

Decision Making. Reprinted by Permission of SAGE Publications 
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Information about medical risks: An example of the information presented in the 

medical scenarios for the negative framed message condition is as follows (the original 

material was in Spanish):  

“A new drug that reduces cholesterol, Benofreno, decreases the chances of dying 

after a heart attack for people with high cholesterol. Here are the results of a study of 900 

people with high cholesterol: 80 out of 800 people who did not take the drug died after a 

heart attack, compared to 2 out of 100 people who took the drug.”  

In the positive framed message condition, the information was presented as 

follows: 

“A new drug that reduces cholesterol, Benofreno, increases the chances of 

surviving after a heart attack for people with high cholesterol. Here are the results of a 

study of 900 people with high cholesterol: 10 out of 100 people who took the drug 

survived after a heart attack, compared to 16 out of 800 people who did not take the 

drug.”  

The rest of the drugs were named Cenofreno, Denofreno and Genofreno, 

respectively. 

 

Design 

Three independent variables were manipulated in the study. First, message frame 

was manipulated between-subjects by providing half of the participants with the 

information for all medical scenarios in terms of chances of dying, while the other half 

received the information in terms of chances of surviving. Second, the overall numbers of 

treated and non-treated patients (i.e., the sizes of the denominators) were manipulated 

within-subjects, and were set to be either 800-800, 100-800, 800-100, 100-100, where the 

first and second quantities reflect the overall number of patients who did and did not take 

the drug, respectively. The sizes of the numeratorsi.e., the number of treated and non-

treated patients who died (survived) in the negative (positive) framed message 

conditionvaried within conditions depending on the size of the denominator. In 

particular, the treatment always had an 80% relative risk reduction or increase in survival 

rate (i.e., from 10% to 2% in terms of chances of dying, or from 2% to 10% in terms of 

chances of surviving; see Table 1) 
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Table 1. Number of treated and non-treated patients who die (negative framing; top panel) or survive 

(positive framing; bottom panel) after a heart attack for all denominator sizes. 

 

  Treated patients  Non-treated patients 

Denominator 

Sizes 

 Patients 

who  

died 

Population 

size 

 Patients 

who  

died 

Population 

size 

800-800  16 800  80 800 

800-100  16 800  10 100 

100-800  2 100  80 800 

100-100  2 100  10 100 

 

  Treated patients  Non-treated patients 

Denominator 

Sizes 

 Patients 

who 

survived 

Population 

size 

 Patients 

who 

survived 

Population 

size 

800-800  80 800  16 800 

800-100  80 800  2 100 

100-800  10 100  16 800 

100-100  10 100  2 100 

Note: Risk reduction/ increase in survival rate is 80% in all conditions 

 

Finally, the presentation of visual aids was manipulated between-subjects by 

providing half of the participants with two icon arrays in addition to the numerical 

information for each medical scenario. These icon arrays presented the risk of dying of a 

heart attack/surviving after a heart attack when the drug was and was not taken. All icon 

arrays contained either 800 or 100 circles depending on the overall number of patients 

who did and did not take the drug. The patients who died (in the negative framed message 

condition) or survived (in the positive framed message condition) were represented with 

black circles at the end of the array (see Figure 2 for an example, original material was in 

Spanish).  
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Figure 2. Numerical information about risk reduction and icon arrays that participants received. This 

example presents the information provided in the negative framing, 800-100 condition 

 

As dependent variables we measured participants’ accuracy of risk understanding 

after they read the information provided for each medical scenario, as well as their 

subjective confidence in the estimates given. In order to measure accuracy of risk 

understanding, we followed the procedure used by Schwartz, Woloshin, Black, and 

Welch (1997). First, participants were asked how many of 1,000 patients with high 

cholesterol might die of/survive after a heart attack (for negative and positive message 

frame, respectively) if they do not take the drug. Second, they were asked how many of 

1,000 patients with high cholesterol might die of/survive after a heart attack if they did 

take the drug (for negative and positive message frame, respectively). By subtracting the 

second from the first answer and dividing it by the first, we calculated the estimated 

relative risk reduction for the negative message frame. For the positive message frame, 

we subtracted the first from the second answer and then divided it by the second, in order 

to calculate the estimated increase in survival rate. Participants were then classified 

depending on whether their estimates were accurate, lower, or higher than the exact value 

(i.e., 80%). Estimates were treated as correct only when they were exactly right. 
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Participants’ degree of confidence in their estimates was measured on a scale of 1 to 10, 

were 1 represented “not at all confident” and 10 represented “very confident.” 

In sum, our experimental design can be summarized as a 2 (high- vs. low-graph 

literacy; between-subjects) × 2 (positive vs. negative message frame; between-subjects) × 

4 (size of denominators 800-800, 100-800, 800-100, 100-100; within-subjects) × 2 

(absence vs. presence of icon arrays; between-subjects) factorial design. To assess the 

effect of these factors on risk perceptions and confidence we conducted analyses of 

variance (ANOVAs). Note that for the ANOVAs on risk perceptions that will be 

described below we only considered whether scores were accurate (1) or inaccurate (0). 

Thus, the dependent variable accuracy of risk understanding is dichotomous .We used the 

Bonferroni correction for post hoc analyses. 

 

Results 

First, we aimed to determine whether participants showed denominator neglect in 

their estimates of treatment risk reduction, and to analyze differences in denominator 

neglect as a function of message frame. To this end, we conducted a 2  4 ANOVA with 

message frame as between-subjects factor and sizes of denominators as a within-subjects 

factor on the percentage of participants whose estimates of risk reduction were accurate in 

the numerical condition only (i.e., when participants did not receive icon arrays). We 

followed Lunney (1970; see also Cleary & Angel, 1984), who showed that ANOVAs can 

be used to obtain conservative results for large samples of a dichotomous dependent 

variable. The analysis only revealed a main effect of sizes of the denominators, F(3, 216) 

= 6.45, p = .001, p
2
 = .082. Thus, consistent with previous research, when no icons were 

provided and the sizes of the denominators were equal (i.e., in the 800-800 and 100-100 

conditions), participants’ estimates were significantly more accurate than when the 

denominators were different (i.e., 800-100 and 100-800 conditions). The ANOVA did not 

reveal a main effect of message frame, or an interaction involving message frame 

implying that the percentage of accurate estimates did not reliably vary as a function of 

this variable (F < 1). Thus, we did not find support for the notion that an attentional bias 

might exacerbate the effect of denominator neglect when information is framed 

negatively.
1

 

                                                
1 An anonymous reviewer suggested the possibility of treating sizes of denominators as a factor with two 

levels (i.e., same denominators: 800-800 and 100-100 conditions vs. different denominators: 800-100 and 

100-800 conditions), instead of as a factor with four levels. Two additional ANOVAs conducted following 
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These results suggest that participants tended to pay too much attention to 

numerators and insufficient attention to denominators in both message framing conditions 

(see Figure 3). Accordingly, in the negative framed message condition, when the number 

of treated patients was lower than the number of those who did not receive the treatment 

(i.e., in the 100-800 condition), 52% of participants’ estimates were higher than the exact 

value compared to 13% and 35% that were lower and accurate, respectively. Denominator 

neglect accounts for this result, given that the absolute number of patients who received 

the treatment and died is much lower than the absolute number of patients who did not 

receive the treatment and died (e.g., 2 and 80, respectively). Focusing on the absolute 

numbers in the numerators would lead participants to believe that the treatment had a 

larger effect than it actually did. Instead, in the positive framed message condition there 

was a tendency to underestimate risk reduction: 48% of participants’ estimates were 

lower than the exact value, compared to 9% and 43% that were higher and accurate, 

respectively. Here, focusing on the absolute numbers in the numerators would lead 

participants to believe that the treatment had a smaller effect than it actually did.  

Instead, when the number of treated patients was higher than the number of 

patients who did not receive the treatment (i.e., in the 800-100 condition), there was a 

tendency to underestimate risk reduction in the negative framed message condition: 61% 

of participants’ estimates were lower than the exact value, compared to 3% and 36% that 

were higher and accurate, respectively. Instead, in the positive framed message condition, 

67% of the estimates were higher than the exact value, compared to 5% and 28% that 

were lower and accurate, respectively.  

For the 100-800 condition, participants in the negative message framed condition 

were significantly more likely to overestimate risk reduction, while participants in the 

positive message framed condition were more likely to underestimate risk reduction, X 
2 

(1, N = 51) = 21.40, p = .001. Instead, for the 800-100 condition participants in the 

negative message framed condition were more likely to underestimate risk reduction, 

while participants in the positive message framed condition were more likely to 

overestimate risk reduction, X 
2 
(1, N = 54) = 42.55, p = .001. 

                                                                                                                                            
this approach yielded converging results. Specifically, two 2 × 2 × 2 ANOVAs with message frame as a 

between-subjects factor, and sizes of denominators (same vs. different) and either sizes of non-treated 

patients (800 vs. 100; first ANOVA) or sizes of treated patients (800 vs. 100; second ANOVA) as within-

subjects factors revealed only a significant main effect of sizes of denominators (p < .001) and no main 

effect or interaction involving message frame or the sizes of non-treated or of treated patients (Fs < 1). 
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Figure 3. Percentage of participants whose estimates of risk reduction were accurate, lower, or higher than 

the exact value in the numerical condition only, as a function of the sizes of the denominators and message 

framing 

 

Next we tested whether icon arrays were more effective in reducing denominator 

neglect in participants with high graph literacy than in those with low graph literacy (H1). 

To this end, we conducted a 2  2  4 ANOVA with icon arrays and graph literacy as 

between-subjects factors and sizes of denominators as a within-subjects factor on the 

percentage of participants whose estimates of risk reduction were accurate. Note that in 

contrast to the first ANOVA reported above, the current analysis included data for 

participants who did and did not receive icon arrays. Additionally, we excluded message 

framing as a factor, given the absence of any previous significant effect on denominator 

neglect.
 
 This analysis revealed a main effect of sizes of denominators, F(3, 411) = 2.85, 

p = .037, p
2
 = .020, a main effect of icon arrays, F(1, 137) = 26.62, p = .001, p

2
 = .163, 

and an interaction between icon arrays and sizes of denominators, F(3, 411) = 5.74, p = 

.001, p
2
 = .040. These results indicate that icon arrays helped people to take into account 

both the overall number of treated and non-treated patients in their estimations of 

treatment risk reduction. When the sizes of the denominators were different and icon 

arrays were presented alongside numerical information, the percentage of correct 

estimates increased from 42% to 73%, and from 34% to 81%, for the 100-800 and 800-

100 conditions, respectively (p < .001). Instead, when the sizes of denominators were 
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equal, the increase in accuracy when icon arrays were provided was not significant (p > 

.1). 

The ANOVA also revealed a significant main effect of graph literacy, F(1, 137) = 

6.40, p = .013, p
2
 = .045, and an interaction between icon arrays and graph literacy, F(1, 

137) = 4.81, p = .030, p
2
 = .034.

2
 When icon arrays were not provided, 48 % of the 

participants with low graph literacy provided correct estimates, compared to 64 % when 

icon arrays were provided. For participants with high graph literacy, the percentage of 

correct estimates instead raised from 51 % to 87 %. In sum, icon arrays helped all 

participants (i.e., with high and low graph literacy) to take into account the overall 

number of treated and non-treated patients, thus reducing denominator neglect. However, 

in line with H1, the overall increase in accuracy of risk understanding when icon arrays 

were provided was significantly larger for participants with high graph literacy that for 

those with low graph literacy (see Figure 4).
3
 

Finally, to test whether differences in graph literacy affected participants’ 

confidence in their estimates of treatment risk reduction (H2), we conducted a 2  2  4 

ANOVA with icon arrays and graph literacy as between-subjects factors and sizes of 

denominators as a within-subjects factor on participants’ confidence ratings. This analysis 

revealed a significant main effect of graph literacy, F(1, 164) = 7.61, p = .006, p
2
 = .044, 

and icon arrays, F(1, 164) = 6.67, p = .011, p
2
 = .039, and an interaction between graph 

literacy and icon arrays, F(1, 164) = 5.59, p = .019, p
2
 = .033. As Figure 5 shows, the 

provision of icon arrays alongside the numerical information resulted in a significant 

increase in confidence for participants with high graph literacy, but not for those with low 

graph literacy, supporting H2. The mean confidence reported by participants with high 

                                                
2 The results of an ANOVA including all factors manipulated yielded converging results. Specifically, a 2  

2  2  4 ANOVA with icon arrays, graph literacy, and message frame as between-subjects factors, and 

sizes of denominators as a within-subjects factor revealed a main effect of icon arrays (p = .001) and of 

graph literacy (p = .014), a marginally significant effect of sizes of denominators (p = .062), and 

interactions between icon arrays and sizes of denominators (p = .001) and between icon arrays and graph 

literacy (p = .040). The analysis did not yield a main effect of message frame or any interaction involving 

this factor. 

 
3 The dichotomization of a continuous measure by median split can have negative consequences such as the 

loss of statistical power. Therefore, we also performed logistic regressions using the full range of graph 

literacy scores as a predictor and accuracy as a dependent variable, for each of the four sizes of 

denominators conditions. In all cases a test of the model versus a model with intercept only was statistically 

significant when icon arrays were provided (X 2 = 3.91 – 12.53, df = 1, p = .001 –.048, OR = 1.26 – 1.59) 

but not when only numerical information was provided (p > .20 for all tests). These results are in line with 

those obtained in the ANOVA reported, where graph literacy was dichotomized via a median split. 
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graph literacy when only numerical information was provided was 6.9 (SE = .3), while it 

increased to 8.4 (SE = .3) when icon arrays were also presented. Instead, the mean 

confidence reported by participants with low graph literacy when only numerical 

information was provided was 6.8 (SE = .3), and 6.8 when icon arrays were provided (SE 

= .3). 

 

 
Figure 4. Percentage of participants whose estimates of risk reduction were accurate, as a function of graph 

literacy, icon arrays and sizes of the denominators. Error bars represent one standard error 

 

 

 

Figure 5. Mean confidence in risk reduction estimates, as a function of graph literacy and icon arrays. Error 

bars represent one standard error of the mean 
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Discussion 

A precise understanding of numerical information is essential to accurate 

judgment and decision-making in many contexts. However, numerical concepts can be 

subject to biases and errors that undermine judgment and decision making. In this paper, 

we sought to document some of the ways that individual differences in graph literacy can 

affect the extent to which people benefit from visual aids designed to overcome a 

common judgment bias (denominator neglect). 

 Consistent with previous research (e.g., Garcia-Retamero & Galesic, 2009; 

Garcia-Retamero et al., 2010), we demonstrated that people show denominator neglect 

when judging the effectiveness of a treatment using information from unequally sized 

groups of treated and non-treated patients. These results support the idea that ratio 

concepts are particularly hard to understand (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Ni 

& Zhou, 2005), and that people tend to behave as if they only compare magnitudes across 

numerators, thereby neglecting the denominators (Denes-Raj et al., 1995; Reyna, 2004; 

Reyna & Brainerd, 2008). We also found that icon arrays can help to reduce the effect of 

denominator neglect. This finding supports the idea that graphical displays are an 

effective method to reduce judgment biases that can help people to make decisions based 

on an accurate understanding of risk information. Thus, we support and extend our own 

and others’ previous findings indicating that visual aids often facilitate risk 

communication in the health domain. Specifically, icon arrays symbolizing individuals 

who are affected by some risk using circles (Galesic, Garcia-Retamero, & Gigerenzer, 

2009; Garcia-Retamero et al., 2010), squares (Zikmund-Fisher et al., 2008) or human 

figures (Paling, 2003) have been shown to make medical risks easier to interpret. Grids 

with squares representing visually the specificity or sensitivity of a medical test can also 

help people to correctly update posttest probabilities (Lloyd & Reyna, 2001). Visual aids 

can also improve understanding of risks associated with different medical treatments, 

screenings, and life-styles (Ancker et al., 2006; Galesic et al., 2009; Garcia-Retamero & 

Galesic, 2010b; Lipkus, 2007), promote consideration of beneficial treatments that have 

side effects (Waters, Weinstein, Colditz, & Emmons, 2007) and eliminate errors induced 

by anecdotal narratives (Fagerlin, Wang, & Ubel, 2005). 

Additionally, we found that the increase in the percentage of participants 

providing accurate estimates when icon arrays were provided was larger when the sizes of 

the denominators were different, than when they were equal. Considering the information 

in the denominators is crucial to calculate risk reduction accurately when the sizes of 
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denominators differ (Garcia-Retamero & Galesic, 2009; Garcia-Retamero et al., 2010). 

Thus, interventions such as icon arrays that help people to take denominators into account 

can be particularly effective in such cases.  

Our results extended previous research in at least two other notable ways. First, 

we demonstrated that individual differences in graph literacy can moderate the 

effectiveness of icon arrays in increasing accuracy of risk understanding. Icon arrays 

helped to reduce denominator neglect both for participants with high and low graph 

literacy. However, the increase in risk comprehension was larger for highly graph-literate 

participants than for less graph-literate participants. Second, we established that 

individual differences in graph literacy can affect people’s confidence in their estimates 

of risk reduction. The provision of icon arrays resulted in a significant increase in highly 

graph-literate participants’ self-reported confidence in their own estimates, while less 

graph-literate participants’ confidence was not reliably affected. Finally, our results also 

provided evidence inconsistent with the suggestion that an attentional bias might 

exacerbate the effect of denominator neglect when information is framed negatively, 

given that the percentage of accurate responses did not vary as a function of the type of 

framing provided. These results suggest that denominator neglect can hold consistently, 

independent of whether risk information is presented in positive or negative terms. 

 

Why do visual aids improve accuracy in risk understanding? Potential explanatory 

mechanisms and open questions for future research 

Theoretical frameworks such as the Fuzzy Trace Theory (e.g., Brainerd & Reyna, 

1990; Reyna & Brainerd, 1995; Reyna, et al., 2009) have been used to provide an 

explanation of the potential mechanisms underlying the effects of icon arrays on 

denominator neglect. According to previous data, the problems that people face to 

understand ratio concepts stem from the fact that the references of classes overlap, which 

leads to class-inclusion errors (Brainerd & Reyna, 1990; Reyna, 1991). Thus, 

denominator neglect would be produced by people’s tendency to focus on the target 

classes in numerators, thereby neglecting classes in denominators. Previous research 

suggests that manipulations that contribute to disentangle classes (e.g., icon arrays) can 

help to reduce biases such as denominator neglect as a function of shifting processing 

from more verbatim based to gist based representation of set structures (Brainerd & 

Reyna, 1990; Reyna et al., 2009).  



Overcoming denominator neglect 

 

63 

 

A related explanation of the power of icon arrays to reduce denominator neglect 

was put forward by Stone et al. (2003; see also Ancker et al., 2006). Stone and colleagues 

suggested that Yamagishi’s (1997) findings illustrating denominator neglect can be 

explained in terms of the saliency of foreground information (e.g., number of people 

harmed, or subset) vs. background information (e.g., the number of people at risk, or 

superordinate set). Thus, according to Stone et al., the numerical presentation of 

information can lead to a focus on foreground information, while graphical formats 

displaying both foreground and background information—pie charts and stacked bar 

graphs—contribute to bringing people’s attention to the background too.  

Our findings are compatible with the hypotheses that (1) icon arrays contribute to 

disentangle classes and (2) icon arrays bring people’s attention to background 

information. As a consequence these kinds of displays are likely to help people to 

overcome denominator neglect in a variety of common situations. The mechanisms 

outlined by Brainerd and Reyna (1990; see also Reyna et al., 2009) and by Stone et al. 

(2003) anticipate the effectiveness of icon arrays in reducing denominator neglect 

observed in our study. However, the interactions between icon arrays and graph literacy 

obtained here (for both accuracy and confidence) suggest that (i) the power of icon arrays 

to increase the accuracy of risk reduction estimates is larger for highly graph-literate 

individuals than for less graph-literate ones, and that (ii) the subjective perceptions of 

individuals with low graph literacy (i.e., confidence ratings) are not necessarily 

influenced by the presence of icon arrays. These findings are compatible with our 

hypothesis that a certain level of graph literacy can be necessary in order to associate the 

visual patterns contained in icon arrays with meaningful interpretations of the data 

represented (i.e., risk reduction information). 

Future work should directly aim to trace attentional and cognitive processes 

underlying the effect of icon arrays in individuals with different levels of graph literacy. 

The use of process tracing methodologies such as eye-tracking or verbal protocol analysis 

would provide a more nuanced understanding of the time course and operations involved 

for participants of varying skill levels. For example, the analysis of eye movement data 

would assess the proportional fixation times on the circles in the icon arrays representing 

number of patients who died (foreground information) vs. on circles representing number 

of people at risk (background information). This data might reveal differences in the 

saliency of foreground vs. background information in icon arrays for different viewers. 

Additionally, process tracing would enable the testing and refining of higher fidelity 
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cognitive process theories that explain or, more importantly, predict how various kinds of 

displays are processed by different viewers. This would expand previous research that has 

documented graph comprehension processes (e.g., encoding of the visual pattern, 

translation of visual features into conceptual relations) mainly in homogeneous viewers, 

focusing on displays which include features such as axes or scales (e.g. line plots or bar 

charts; Carpenter & Shah, 1998; Lohse, 1993, Pinker, 1990).  

From a translational or applied standpoint, process tracing is an essential step in 

efforts to facilitate the development of training methods for individuals with low graph 

literacy. These methods could be based in part on the processes that highly graph-literate 

individuals follow to understand these kinds of displays. That is, process-tracing studies 

allow for ‘reverse engineering’ of superior performance by revealing encoding or search 

strategies of successful individuals that may confer benefits to those participants who do 

not yet use such strategies (Cokely, Kelley, & Gilchrist, 2006; Cokely & Kelley, 2009). 

Moreover, an understanding of the encoding and search processes of low performing 

individuals may also provide clues for the design of environments that facilitate more 

appropriate search and representation. Nevertheless, many open questions remain 

concerning when and for whom simple differences in encoding or representational 

strategies (e.g., gist based representation) would be sufficient for improved performance. 

Ongoing research is investigating these issues (Okan, Galesic, & Garcia-Retamero, 2010). 

 

Theoretical and practical implications  

Taken together, our findings show that visual aids do not necessarily facilitate risk 

comprehension to the same extent for everyone. Our results emphasize the importance of 

considering the fit between (i) persons, (ii) cognitive processes, and (iii) task 

environments when designing interventions such as visual aids. Individual differences in 

graph literacy moderate the effect of such visual aids, affecting the accuracy of risk 

judgments. Similarly, Parker and Fischhoff (2005) identified a set of tasks that capture 

four basic skills required by competent decision makers. One of these skills (belief 

assessment) refers to people’s ability to judge the probability of occurrence of events. Our 

data indicate that the accurateness of this kind of judgment may be affected by variations 

in graph literacy, suggesting that graph literacy is usefully characterized as a cognitive 

skill that influences competent decision making.  

A growing body of research has documented a variety of individual differences 

that influence decision making performance. These include domain general decision 
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making skills such as those identified by Parker and Fischhoff (see also Bruine de Bruin 

et al.,2007; Finucane, Mertz, Slovic, & Schmidt, 2005) or skills such as numeracy (Peters 

& Levin, 2008; Peters et al., 2006). Other individual differences that can have an effect 

on the quality of risky judgment  and decision making include decision making styles 

(Baron, 2000; Campitelli & Labollita, 2010; Frederick, 2005; Shiloh, Salton, & Sharabi, 

2002), specific expertise (Ericsson, Prietula, & Cokely, 2007; Garcia-Retamero & Dhami, 

2009; Shanteau, 1992), and domain general cognitive abilities (Cokely & Kelley, 2009; 

Del Missier, Mäntylä, & Bruine de Bruin, 2010, 2012; Stanovich & West, 2000, 2008). 

Research indicates that general decision-making skills have significant relations amongst 

them and with other measures of cognitive abilities and styles (Bruine de Bruin et al., 

2007; Del Missier et al., 2010; Parker & Fischhoff, 2005). Future research should aim to 

achieve a more precise specification of the relations between graph literacy, the set of 

individual differences outlined above, and the cognitive processes that mediate 

differences. 

The current findings also provide additional support for the predictive validity of 

the scale developed by Galesic and Garcia-Retamero (2011b; see also Garcia-Retamero & 

Galesic, 2010b). The evidence obtained so far suggests that this scale can be useful to 

predict performance in tasks involving not only icon arrays, but also other kinds of 

graphs. Future work should examine the extent to which graph literacy moderates 

performance in tasks involving displays such as pie charts or line plots. 

Future research should aim to enhance (1) the generalizability, and (2) the 

ecological validity of the present study. Concerning the first point, it should be noted that 

the instrument and the materials used focused on the medical domain. Thus, the extent to 

which graph literacy can influence risky decision-making performance in other important 

domains, such as finance or politics, is not yet well documented or understood.  However, 

ongoing studies do seem to suggest that graph literacy will have some predictive validity 

across diverse domains. Concerning ecological validity, the fact that our experiments 

were not conducted in a clinical setting prompts us to suggest some caution regarding 

immediate prescriptive applications of our findings for medical practice. Research has 

shown that the effect of manipulations observed in the lab, such as framing of information 

in the context of risk communication, may not be generalizable to clinical practice 

(Edwards et al., 2001). Thus, future research should aim to provide more converging 

evidence on the effect of graph literacy in the ecology of interest (e.g., in the clinic). 
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Conclusion 

In the present article we have demonstrated that individual differences in graph 

literacy can moderate the magnitude of the effect of visual risk communication 

interventions (i.e., icon arrays). This finding is relevant to modern societies, where 

graphical displays are increasingly being used and recommended for the communication 

of risks to the public (Ancker et al., 2006; Fuller et al., 2002; Lipkus, 2007). However, 

these graphs are rarely designed on the basis of a systematic set of principles of good 

graph construction. As a consequence, data represented in graphs is frequently 

misinterpreted by viewers (Beattie & Jones, 2002; Cooper, Schriger, Wallace, Mikulich, 

& Wilkes, 2003). This can lead to substantial alterations in viewers’ preferences and 

decisions (Arunachalam, Pei, & Steinbart, 2002). Principles of good graph design have 

been put forward in some cases (Cleveland, 1994; Cleveland & McGill, 1984; Kosslyn, 

2006; Tufte, 2001), but a consensus does not always exist regarding the adequacy or 

effective implementation of these principles. For instance, Kosslyn (2006) argues that it is 

adequate to use bar charts in which part of the y axis has been removed, provided that 

marcs are used to indicate discontinuities. In contrast, other authors suggest that the scale 

in the y axis of bar charts should start at 0, in order for the proportion between the lengths 

of the bars to reflect the proportion between the quantitative data (e.g., Cleveland, 1994). 

There is a need for a unified and usable set of standards for guiding graph 

designers’ work.  We suspect the timing is right to work toward refining the available 

guidelines that have been developed across several fields (e.g., cognitive psychology, 

mathematics, human factors). Resulting standards could play an important role in 

inoculating professionals, policy makers, and the general public against potentially 

distorted and misleading communications. As highlighted by the current data, graph 

design standards should allow for custom-tailored designs that are sensitive to the various 

needs and abilities of diverse individuals. Additionally, the scope of the effect of graph 

literacy on a range of different judgment and decision making tasks should be 

investigated, along with relations to other decision making competences. To an important 

extent, such goals hinge on our ability to achieve a more unified understanding of the 

theoretical and practical relevance of the construct of graph literacy, including 

documentation of both construct and predictive validity of the instruments used to 

measure it. This work holds the promise of important theoretical and translational benefits 

such as improved decision making in medicine, business, and potentially many other 

domains involving the communication of risk. 
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Enhancing Accuracy of Risk Comprehension Using Dynamic Icon Arrays 

 

Abstract 

 

Icon arrays have been found to improve risk understanding and reduce biases in risk 

perception across a wide range of studies. However, recent research has shown that 

individuals with low graph literacy benefit from icon arrays to a lesser extent than those 

with high graph literacy. In an experiment, we examined the effectiveness of five 

different types of dynamic icon arrays designed to improve understanding of treatment 

risk reduction. The different types of displays were designed to promote specific 

cognitive processes involved in the comprehension of icon arrays. Results showed that, 

compared to a set of static icon arrays, performance improved only for a display including 

a reflective question (i.e., an estimate about the information displayed), followed by 

accuracy feedback provided visually. This improvement in performance was achieved 

even among less graph literate individuals. This suggests that encouraging more active, 

elaborative processing of information may be essential for enhancing the beneficial 

effects of icon arrays. Findings contribute to our understanding of the processes 

underlying superior performance and have prescriptive implications for graphical 

communication of medical information. 
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Introduction 

Informed medical decision making requires understanding information about risks, 

benefits, and drawbacks of different treatments. However, patients often struggle with 

numerical concepts that are prerequisites for the accurate evaluation and communication 

of risks (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 2007; Lipkus, 

Samsa, & Rimer, 2001; Peters et al., 2006; Schwartz, Woloshin, Black, & Welch, 1997). 

Research indicates that visual aids can be highly effective decision support tools that can 

reach vulnerable populations (Garcia-Retamero & Cokely, in press). In particular, icon 

arrays (i.e., graphical representations consisting of a number of circles or other icons 

symbolizing individuals who are affected by some risk; Ancker, Senathirajah, Kukafka, & 

Starren, 2006; Edwards, Elwyn, Covey, Matthews, & Pill, 2001; Paling, 2003) have been 

found to improve risk understanding and reduce biases in risk perception across a wide 

range of studies (Galesic, Garcia-Retamero, & Gigerenzer, 2009; Garcia-Retamero & 

Galesic, 2009; Lloyd & Reyna, 2001; Zikmund-Fisher et al., 2008). In some cases, icon 

arrays enhance risk comprehension to a larger extent than other visual displays, including 

bar graphs and pie charts (Hawley et al., 2008; Waters, Weinstein, Colditz, & Emmons, 

2007). Moreover, according to theories on elemental perceptual tasks in graph 

comprehension, the perceptual features involved in processing icon arrays are among 

those that are easiest to process (Price, Cameron, & Butow, 2007). 

Unfortunately, icon arrays are not equally beneficial for everyone. People in the 

general population differ substantially in their graph literacythe ability to understand 

graphically presented information (Freedman & Shah, 2002; Galesic & Garcia-Retamero, 

2011b; Kutner, Greenberg, Jin, & Paulsen, 2006), and individuals with low graph literacy 

have been found to profit from icon arrays to a lesser extent than more graph literate 

individuals (Garcia-Retamero & Galesic, 2010; Okan, Garcia-Retamero, Cokely, & 

Maldonado, 2012). Recent studies have started to shed some light on the underlying 

cognitive processes that account for differences in performance with bar graphs and line 

graphs (Okan, Galesic, & Garcia-Retamero, 2013; Woller-Carter, Okan, Cokely, & 

Garcia-Retamero, 2012). However, the reasons underlying the reduced efficacy of icon 

arrays among individuals with low graph literacy are not well understood. It is also 

unclear if and how the manipulation of specific design features of icon arrays can 

improve risk comprehension among such individuals. Accordingly, in this paper we 

sought to examine the effectiveness of icon arrays including different types of dynamic 
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features, designed to promote specific processes involved in the comprehension of icon 

arrays. Our aim was to determine how to enhance risk comprehension among less graph 

literate individuals, and at the same time to better understand the cognitive processes 

underlying superior performance. 

Prominent graph-comprehension models have identified three global processes 

involved in making inferences from graphical displays, such as line or bar graphs (e.g., 

Carpenter & Shah, 1998; Kosslyn, 1989; Lohse, 1993; Pinker, 1990; Shah & Carpenter, 

1995; Simkin & Hastie, 1987). The first is encoding the visual pattern to identify the 

principal features in graphs. Encoding the visual pattern involves making different visual 

judgments of the elements (e.g., judgments of position along a scale, length, or angle; 

Cleveland & McGill, 1986). The second process is the translation of the identified visual 

features into conceptual relations. For example, variations in the size of spatial features 

(e.g., bars of different heights) can be used to indicate variations in the quantity of the 

variables represented. The third process involves determining the referents of the 

concepts identified by associating them with the specific variables shown in the graph and 

their numerical values (Carpenter & Shah, 1998; Shah & Carpenter, 1995). To the best of 

our knowledge, such processes have not yet been studied in the context of the 

comprehension of icon arrays. We believe they provide a useful framework for 

investigating the cognitive dynamics that may be at play when individuals with varying 

levels of graph literacy view icon arrays. 

Theoretically, the limited ability of less graph literate individuals to benefit from icon 

arrays could arise from at least three different mechanisms. One possibility is that 

differences in performance between individuals with low and high graph literacy arise 

primarily from differences in attention and encoding of the visual pattern (i.e., first 

process involved in graph comprehension). Individuals with low graph literacy may be 

less comfortable with graphs and so they may be less likely to attend to the icon arrays, as 

compared to highly graph literate individuals. This effect may be magnified when 

relevant information can be extracted both from the text and from graphs, as less graph 

literate individuals may spend more time focusing on the numerical and text-based 

information, largely avoiding the icon arrays and their benefits (see also Gaissmaier et al., 

2012). Additionally, even when such individuals attend to the icon arrays, they may 

allocate insufficient attention to some regions of the arrays (see Keller & Siegrist, 2009, 

for a discussion concerning the saliency of different regions). If less graph literate 

individuals do not allocate sufficient attention to icon arrays or to parts of them, this could 
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reduce the potential of such displays to enhance quantitative reasoning among these 

individuals. Accordingly, a display that directs viewers’ attention to the different regions 

of the arrays should enhance comprehension. 

A second possibility is that impaired performance among less graph literate 

individuals reflects difficulties with identifying the referents in icon arrays (i.e., third 

process involved in graph comprehension; Carpenter & Shah, 1998).
4
 For line graphs and 

bar charts, this process involves identifying and inferring information from elements 

determined by arbitrary graph conventions, including titles of graphs, axis labels, legends, 

and numerical values on the scales, and integrating this information with that extracted in 

the first two processes. For icon arrays, the identification of the referents in some cases 

will also involve integrating information in accompanying numerical scales or labels 

(e.g., Feldman-Stewart, Brundage, & Zotov, 2007; Zikmund-Fisher et al., 2008). 

However, as specific quantities in icon arrays can also be inferred by counting individual 

icons (Hess, Visschers, & Siegrist, 2011), such displays are often presented without 

accompanying scales or labels. In such cases, identifying the referents may require 

integrating information contained in accompanying numerical and text-based information. 

If individuals with low graph literacy have difficulties engaging in such integration 

processes, then the addition of descriptive labels accompanying each region of the array 

could improve performance. This addition may be particularly useful if labels are 

presented in a sequential manner, following the presentation of each region of the array. 

Such presentation format should contribute to direct attention to the elements that enable 

participants to identify the referents in icon arrays, and at the same time promote the 

integration of information in such elements with the information represented in the 

different regions of the arrays. 

A third possibility is that less graph literate individuals benefit less from static icon 

arrays because they fail to engage in an active processing of the information depicted. 

That is, even if they engage successfully in all the graph comprehension processes 

outlined above, they may process the information in a more passive fashion, engaging to a 

lesser extent in relational and elaborative processing. Research indicates that the link 

                                                
4 Translations of visual features into conceptual relations (i.e., second process) are often nonarbitrary and 

cognitively constrained, as certain associations (e.g., “higher equals more”) emerge consistently in adults 

and children with no graphing experience (Gattis, 2002, 2004). This entails that spatial features often can 

convey meaning independent of viewers’ level of graph literacy (Gattis, 2002, Okan, Garcia-Retamero, 

Galesic, & Cokely, 2012; Tversky, 2001). In contrast, identifying the specific variables and numerical 

values associated (i.e., third process) can require specific graph-related knowledge (Okan et al., 2013a). 
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between domain-general cognitive abilities and superior risky decision making can be 

fully mediated by differences in meaning-based elaborative processing (Cokely & Kelley, 

2009). Individuals with low graph literacy may be less likely to engage in this kind of 

active processing, and as a consequence may have more surface-level representations of 

the problem (see Kintsch, 1988, 2004, for related arguments). Such representations would 

make it difficult to generalize the risk information, beyond the specific task or set of icon 

arrays (e.g., understanding that the relative risk reduction associated with a treatment is 

80%). In contrast, more graph literate individuals may be more likely to engage in an 

elaborative processing of icon arrays, leading to richer, better integrated representations 

in long-term memory, which better support subsequent task performance (Cokely, Kelley, 

& Gilchrist, 2006; Cokely & Kelley, 2009; Ericsson & Kintsch, 1995; Mitchum & 

Kelley, 2010; Vigneau, Caissie, & Bors, 2005). 

If individuals with low graph literacy are less likely to engage in an active processing 

of the information depicted, then their performance could be enhanced by the use of 

displays that promote such kind of processing. One means to do so is to encourage people 

to construct their own representations, instead of having them interpret presented 

representations (Cox, 1999; Stern, Aprea, & Ebner, 2003). For instance, requiring 

participants to fill in or to circle the appropriate number of squares in an array (Cosmides 

& Tooby, 1996), or to portray the size of a risk on a bar chart (Natter & Berry, 2005) has 

been shown to significantly improve understanding. However, active constructions of 

icon arrays may sometimes not be correctly completed (Brase, 2009), or may lead people 

to devote a large amount of attention and resources on understanding what the task 

requires (Zikmund-Fisher, Dickson, & Witteman, 2011). To have a beneficial effect, 

displays should be constructed correctly (Cox, 1999). 

An alternative means to promote an active processing is to require people to answer a 

reflective question concerning the information depicted (e.g., ‘How many out of 100 

people who take this medication will experience one or more side effects?’), prior to the 

completion of the task (Natter & Berry, 2005). Reflective questions require the generation 

of a solution that is not explicitly represented in the display. Hence, such questions can 

encourage a more elaborative processing which may induce the steps required to solve the 

task at hand, and to apply that knowledge to new tasks (Lee & Hutchison, 1998; see 

Jacoby, 1978, for related arguments concerning the effect on retention of constructing vs. 

remembering a solution). In the context of the present research, this may be accomplished 

by presenting a second set of icon arrays, and posing a reflective question concerning this 
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set of arrays, to be answered on the basis of the information depicted in the first set. This 

could stimulate an active processing, while avoiding the potentially confusing 

requirement of portraying a given risk on the icon array itself (see, e.g., Zikmund-Fisher 

et al., 2011). 

Two additional aims of the present work were to examine the effect of the different 

types of dynamic icon arrays on subjective confidence, as well as on subjective 

preferences (e.g., perceived usefulness of the displays; Zikmund-Fisher et al., 2012). 

Concerning confidence, previous research has shown that static icon arrays were 

associated with higher levels of confidence in risk reduction estimates among participants 

with high graph literacy, but not among those with low graph literacy (Okan et al., 

2012a). This indicates that greater confidence was matched by higher accuracy of risk 

understanding, consistent with findings indicating that effective representations can 

enable effective monitoring even among participants with considerable differences in 

cognitive abilities (Mitchum & Kelley, 2010; see also Garcia-Retamero & Dhami, 2011). 

Of note, however, knowledge and confidence judgments are not necessarily linked as 

correlations are often only modest (e.g., Parker, Bruine de Bruin, Yoong, & Willis, 2012). 

Poor correspondence between confidence and knowledge can lead to worse real-world 

decision outcomes, including inappropriate risky behavior (Bruine de Bruin, Parker, & 

Fischhoff, 2007; Parker et al., 2012). Therefore, we sought to examine whether any 

variations in accuracy of risk understanding linked to individual differences in graph 

literacy or to the type of display, are also reflected in variations in confidence. 

Finally, concerning subjective preferences, a number of studies have shown that graph 

evaluations are not always aligned with performance (Feldman-Stewart, Kocovski, 

McConnell, Brundage, & Mackillop, 2000; McCaffery et al., 2012; Micallef, Dragicevic, 

& Fekete, 2012; Waters, Weinstein, Colditz, & Emmons, 2006). To illustrate, shaded 

icons can be preferred to unshaded ones, even though shading can in some cases be 

detrimental for response times (Price et al., 2007). Thus, we also sought to examine how 

individuals with low and high graph literacy evaluate different types of dynamic icon 

arrays, and whether variations in evaluations are matched with variations in performance. 

 

Experiment 

We conducted an experiment including different medical scenarios depicting the 

usefulness of different treatments (i.e., hypothetical drugs). Past research examining 

people’s understanding of risk reduction after treatment has often used samples of treated 
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and non-treated patients of the same size (Fagerlin, Ubel, Smith, & Zikmund-Fisher, 

2007; Galesic et al., 2009). However, this is not representative of the type of information 

that people normally encounter, as groups of treated and non treated patients are often 

unequally sized in medical practice (e.g., Grossarth-Maticek & Ziegler, 2008; 

Lichtenberg, Levinson, Sharshevsky, Feldman, & Lachman, 2008). In such cases, 

understanding treatment risk reduction can become particularly challenging, given that 

people often pay too much attention to numerators in ratios (i.e., the number of times a 

target event has happened) and insufficient attention to denominators (i.e., the overall 

number of opportunities for it to happen; Denes-Raj, Epstein, & Cole, 1995; Reyna, 2004; 

Reyna & Brainerd, 2008). In the current study we investigated how the different design 

features of icon arrays outlined above affect people’s risk understanding both in medical 

scenarios involving unequal and equal denominators (see also Garcia-Retamero and 

Galesic, 2009; Okan et al., 2012a). We manipulated the type of icon arrays between-

subjects, and compared performance with different types of dynamic icon arrays to that 

with a static set of icon arrays. 

 

Method 

 

Participants. 

Participants were 458 undergraduate students recruited from the University of Granada 

(307 female), with a mean age of 20.9 years (SD = 4.7, range 17–60 years). All 

participants signed an informed consent form to participate in the experiment, and 

received course credit. 

 

Materials and design. 

Medical risk scenarios. Participants were presented with four medical scenarios 

describing the usefulness of hypothetical new drugs for reducing cholesterol that also 

decreased the risk of dying from a heart attack. The scenarios involved equally effective 

treatments but differed in the overall number of treated and non-treated patients (i.e., sizes 

of denominators). These were set to be either, 800–800, 100–800, 800–100, or 100–100, 

where the first and second quantities reflected the overall number of patients who did and 
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did not take the drug, respectively.
5
 The sizes of the numerators (i.e., the number of 

treated and non-treated patients who died) varied depending on the size of the 

denominator. The treatment always had an 80% relative risk reduction (i.e., from 10% to 

2%). Appendix A shows the combinations of numerators for all denominator sizes. An 

example of the information presented in the medical scenarios is as follows (the original 

material was in Spanish): “A new drug that reduces cholesterol, Benofreno, decreases the 

chances of dying after a heart attack for people with high cholesterol. Here are the results 

of a study of 900 people with high cholesterol: 80 out of 800 people who did not take the 

drug died after a heart attack, compared to 2 out of 100 people who took the drug.” The 

rest of the drugs were named Denofreno, Cenofreno, and Fenofreno, respectively. This 

information was always presented on the top part of the screen. 

Icon arrays. We generated one static and five types of dynamic icon arrays. The 

icon arrays were presented below the text including numerical information for each 

medical scenario, and depicted the risk of dying of a heart attack when the drug was and 

was not taken. For each set of icon arrays, the proportion of non-treated people who died 

was depicted in one array (top icon array), and the proportion of treated people who died 

was depicted in another array presented immediately below (bottom icon array). The 

group of icons representing the overall number of people at risk (i.e., background of the 

array) was represented with white circles, and the group of icons representing the people 

who died (i.e., foreground of the array) was represented with black circles at the end of 

the array (see Figure 1d). 

Participants in the control (static) condition viewed all the information 

simultaneously (i.e., numerical information and the two icon arrays). In all dynamic 

conditions, the numerical information was presented first, and different elements were 

incorporated one at a time. The top icon array appeared before the bottom icon array, and 

the background of each array appeared before the foreground. The elements of icon arrays 

appeared following user clicks on Continue. In the first type of dynamic icon array (the 

sequential condition), the background and the foreground were displayed in a sequential 

manner, following user clicks. This type of display was developed to encourage the 

allocation of attention and encoding of all regions of icon arrays (i.e., first process 

involved in graph comprehension). The second type of icon array (the labeling condition) 

was equivalent to the previous one, with the exception that an explanatory label appeared  

                                                
5 Participants in some conditions viewed one set of icon arrays corresponding to each scenario, while others 

viewed two sets of arrays for each scenario, as will be described below. 
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next to each region indicating what it represented. Labels appeared on the right side of 

each part of the array, one second after that part was displayed (see Figure 1). This type 

of display was developed to encourage the allocation of attention to elements that enable 

one to identify referents of icon arrays, as well as to promote the integration of such 

information with that depicted in icon arrays (i.e., third process involved in graph 

comprehension). 

The third type of display (the transfer estimate condition) included two sets of icon 

arrays for each medical scenario, resulting in a total of eight sets of arrays. For each 

scenario, the second set was displayed following the first one, and showed the results of a 

second study conducted with the same drug. Treatment risk reduction was also 80%, but 

both denominators and numerators were halved (see Appendix A). For both the top and 

the bottom icon array of the second set, participants were required to answer a reflective 

question concerning the number of people who died before this information was 

presented visually. In particular, participants were told: ‘please estimate the number of 

people who would die in the group of people who did not take/took the drug.’ As 

advanced above, this display was constructed to promote an active processing of the risk 

information, leading to a generalization of the risk information depicted. 

Two more types of icon arrays were developed to exclude potential confounds of any 

effect observed for the transfer estimate condition. In particular, one display (the labeling 

reproduce condition) was identical to the labeling condition, with the exception that 

participants did not only view the labels but were also required to restate the information 

shown (e.g., ‘How many people died in the group of people who did not take the drug?). 

This question differs from that included in the transfer estimate condition in that it does 

not require participants to estimate information which has not yet been displayed. If 

transfer estimate affects performance merely because it requires participants to answer a 

question concerning the information depicted (and not because it requires them to provide 

a reflective question involving an active estimate), a similar effect should be observed for 

labeling reproduce and transfer estimate. Finally, the transfer reproduce condition was 

equal to transfer estimate, with the exception that participants were not required to answer 

questions concerning the second set of icon arrays. If transfer estimate affects 

performance because it includes two sets of icon arrays instead of one, then a similar 

effect should be observed for transfer reproduce. Figure 2 shows a schematic summary of 

all the types of dynamic icon arrays. 
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Figure 2. Schematic summary of the different types of dynamic icon arrays. 
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In the conditions requiring that participants answer questions concerning the 

information depicted in the icon arrays (i.e., labeling reproduce, transfer reproduce, and 

transfer estimate), questions were presented on the bottom part of the screen while the 

icon array was visible, and participants were instructed to type in a response. Following a 

participant’s response, the text of the question was replaced by feedback indicating 

whether the response was correct or incorrect. Additionally, the correct value was 

highlighted in red on the label which contained the information enquired about.
6 

Appendix B includes the full instructions provided to participants, the text of explanatory 

labels presented alongside icon arrays, of the questions asked in each case, and of the 

feedback provided. 

Outcome measures. As dependent variables, we measured (1) accuracy of risk 

understanding after reading the information provided for each medical scenario, (2) 

subjective confidence in estimates, and (3) evaluations of the icon arrays. In order to 

measure accuracy of risk understanding, we followed the procedure used by Schwartz, 

Woloshin, Black and Welch (1997). First, participants were asked how many of 1000 

patients with high cholesterol might die of a heart attack if they do not take the drug. 

Second, they were asked how many of 1000 patients with high cholesterol might die of a 

heart attack if they did take the drug. By subtracting the second from the first answer and 

dividing it by the first, we calculated the estimated relative risk reduction. Estimates were 

treated as correct only when they were exactly right (i.e., 80%; see, e.g., Garcia-Retamero 

& Dhami, 2011; Garcia-Retamero, Galesic, & Gigerenzer, 2010 for a similar procedure). 

Participants were then classified depending on whether their estimates were correct in 

both scenarios with different denominators (100–800 and 800–100), and in both scenarios 

with the same denominators (100–100 and 800–800). 

Participants’ degree of confidence in their estimates was measured on a scale from 

1 to 10, were 1 represented “not at all confident” and 10 represented “very confident.” 

For each participant, confidence ratings were averaged across scenarios with different 

denominators and with the same denominators. Finally, icon array evaluations were 

measured using the procedure reported by Zikmund-Fischer et al. (2012). Specifically, 

following the presentation of all medical scenarios, three items were included asking 

participants to rate how well the graphs described the risk of dying of a heart attack, how 

helpful the graphs were, and whether the participant would like to seek information in this 

                                                
6 In the transfer estimate condition, the foreground and accompanying label appeared prior to the feedback 

for the reflective question, as these elements had not been presented previously (see Figure 2). 
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type of graph. All items included a response scale of 1–10. These three ratings were 

combined based on the average rating, following Zikmund-Fischer et al. (2012). 

Cronbach’s alpha for the 3 graph evaluation items was .78. 

Measurement of graph literacy. Graph literacy was measured using the scale 

developed by Galesic and Garcia-Retamero (2011b). This scale consists of 13 items 

dealing with the communication of medical risks, treatment efficiency, and prevalence of 

diseases, and covers four frequently used graph typesline plots, bar charts, pies, and 

icon arrays. We split participants into two groups according to the median graph literacy 

score for the total sample (i.e., 10 of the total 13). This enabled us to examine the effect of 

the different types of icon arrays, separately for individuals with low and high graph 

literacy (see Zikmund-Fisher et al., 2012, for a similar procedure). The group of 

participants with low graph literacy included those who obtained 10 or fewer correct 

responses (n = 285, mean score 8.5, SD = 1.5), while the group of participants with high 

graph literacy included those who obtained 11 or more (n = 173, mean score 11.5, SD = 

.6). 

Measurement of numeracy. As understanding treatment risk reduction involves 

comparing and transforming different proportions, we controlled for the effect of 

numeracy (i.e., the ability to understand and manipulate different numerical expressions 

of probability; Lipkus et al., 2001; Peters, 2012). To this end, we used the 11 items 

included in the general and expanded numeracy scales developed by Lipkus et al. (2001), 

as well as the Berlin Numeracy Test (Cokely, Galesic, Schulz, Ghazal, & Garcia-

Retamero, 2012). 

 

Procedure. 

The questionnaire was administered in the laboratory of the University of 

Granada, and all materials were implemented as an electronic survey in Unipark 

(www.unipark.de). In addition to the experiment presented here, the session included 

other unrelated tasks concerning medical risks, and took approximately 50 minutes to 

complete. The tasks relevant for the present study took between 25 and 30 minutes. First, 

participants signed a consent form and the instructions were presented on the screen. 

They were then presented with the medical scenarios. Time to read the scenarios and to 

answer the questions was unlimited. Finally, they completed: (1) the Graph Literacy 

Scale, (2) the Berlin Numeracy Test, (3) the Lipkus numeracy test, and (4) some 

http://www.unipark.de/
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demographic questions. Participants were assigned randomly to the different experimental 

conditions. 

 

Results 

Do graph literacy and type of icon arrays affect risk understanding, for 

scenarios with equal and different denominators? To answer this question we 

conducted two logistic regressions predicting accuracy of risk understanding. Graph 

literacy and type of icon arrays were entered as predictors. The models were a strong 

predictor of accuracy, both for scenarios with equal, X 
2 

(6) = 45.85, p = .001, Nagelkerke 

R
2
 = .13, and different denominators, X 

2 
(6) = 46.77, p = .001, Nagelkerke R

2
 = .13. As 

expected, people with high graph literacy were significantly more likely than those with 

low graph literacy to provide correct responses (OR = 1.34, p = .001, for equal 

denominators, and OR = 1.36, p = .001, for different denominators), and type of icon 

arrays significantly predicted performance (p = .028 and p = .020 for equal and different 

denominators, respectively).
 
Including the interaction term of graph literacy and type of 

icon array in a separate step did not improve predictions of accuracy either for scenarios 

with equal denominators, X 
2 

(5) = .92, p = .969, Nagelkerke R
2
 change = .04, or different 

denominators, X 
2 

(5) = 4.29, p = .508, Nagelkerke R
2
 change = .003. Additionally, 

McNemar’s test of paired proportions revealed that the percentage of participants who 

provided correct estimates in scenarios with equal denominators was larger than the 

percentage of those who provided correct estimates in scenarios with different 

denominators, for all icon array conditions (ps < .002).
7
 

How does type of icon array affect risk understanding, for individuals with 

low vs. high graph literacy? Table 1 shows the percentage of participants with low and 

high graph literacy who provided correct responses for the different types of icon arrays, 

as well as results of logistic regressions predicting accuracy in both groups of 

participants. In all cases, the static condition served as the reference category to evaluate 

the effect of type of icon array. The transfer estimate condition resulted in a large increase  

                                                
7 Consistent with these analyses, a 2 × 2 × 6 mixed ANOVA with size of denominator (equal vs. different) 

as within-subjects factor and graph literacy and type of icon array as between-subjects factors revealed a 

main effect of size of denominator, F(1, 446) = 66.85, p = .001, ηp
2 = .13, of graph literacy, F(1, 446) = 

31.91, p = .001, ηp
2 = .07, and of type of icon array, F(5, 446) = 3.13, p = .009, ηp

2 = .03. Interactions 

between these factors were not significant. Additionally, in a hierarchical logistic regression, graph literacy 

continued to account for unique variance after controlling for numeracy, both for scenarios with equal 

denominators, X 2 (2) = 14.02, p = .001, Nagelkerke R2 change = .04, and with different denominators, X 2 

(2) = 20.95, p = .001, Nagelkerke R2 change = .06. 
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Table 1. Percentage of correct responses in scenarios with equal and different denominators as a function of 

type of icon array, for participants with low graph literacy (top panel) and high graph literacy (bottom 

panel). 

 

Low graph literacy 

 Equal denominators 

(R
2
 = .08) 

 Different denominators 

(R
2
 = .08) 

% correct OR  

(95% CI) 
P 

 % correct OR  

(95% CI) 
P 

Static 41.5 — —  24.5 — — 

Sequential 34.6 
.72 

(.32, 1.61) 
.42  19.2 

.71 

(.28, 1.83) 
.48 

Labeling 50.0 
1.73 

(.74, 4.06) 
.20  32.5 

1.8 

(.71, 4.58) 
.22 

Labeling reproduce 40.0 
1.06 

(.44, 2.58) 
.90  28.6 

1.39 

(.52, 3.70) 
.52 

Transfer reproduce 45.1 
1.23 

(.56, 2.73) 
.61  27.5 

1.24 

(.51, 3.02) 
.64 

Transfer estimate 59.3 
2.21 

(1.00, 4.87) 
.05  44.4 

2.64 

(1.14, 6.13) 
.023 

 

High graph literacy 

 Equal denominators 

(R
2
 = .22) 

 Different denominators 

(R
2
 = .26) 

% correct OR  

(95% CI) 
P 

 % correct OR  

(95% CI) 
P 

Static 54.8 — —  45.2 — — 

Sequential 70.0 
2.56 

(.81, 8.07) 
.11  60.0 

2.6 

(.83, 8.13) 
.10 

Labeling 76.0 
2.67 

(.77, 9.20) 
.12  52.0 

1.3 

(.41, 4.16) 
.65 

Labeling reproduce 56.7 
1.41 

(.46, 4.32) 
.55  40.0 

1.04 

(.33, 3.27) 
.95 

Transfer reproduce 64.5 
1.73 

(.57, 5.22) 
.33  58.1 

2.1 

(.69, 6.41) 
.19 

Transfer estimate 84.6 
6.49 

(1.67, 25.23) 
.007  76.9 

6.49 

(1.83, 23.06) 
.004 

Note: Nagelkerke R
2
 is reported. Results are reported for logistic regression models controlling 

for numeracy. 
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in performance relative to the static condition, both for scenarios with equal denominators 

(OR = 2.21 and OR = 6.49, for participants with low and high graph literacy, 

respectively) and with different denominators (OR = 2.64 and OR = 6.49, for participants 

with low and high graph literacy). This indicates that the requirement to engage in an 

active processing of information was beneficial in all cases, even though the increase in 

odds was larger among more graph literate participants. The labeling condition was also 

associated overall with an increase in performance relative to the static condition; 

however this increase did not reach conventional levels of significance (see Table 1). 

Importantly, the labeling reproduce and transfer reproduce conditions did not result in a 

significant increase in performance. It is also worth noting that trends for the sequential 

condition were in opposite directions for participants with low vs. high graph literacy 

(i.e., a reduction in correct responses for the former, and an increase for the latter), even 

though differences were not statistically significant. 

Do graph literacy and type of icon arrays affect subjective confidence, for 

scenarios with equal and different denominators? We conducted two linear 

regressions predicting confidence ratings, for scenarios with equal and with different 

denominators. As with accuracy, graph literacy, and type of icon arrays were entered as 

predictors. The full model predicted confidence for equal, R
2 

= .15, F (6, 451) = 12.71, p 

= .001, and for different denominators, R
2 

= .16, F (6, 451) = 14.60, p = .001. In line with 

the results for accuracy, higher graph literacy was associated with higher levels of 

subjective confidence (t = 6.87, p = .001, β = .30 for equal denominators, and t = 7.44, p 

= .001, β = .32, for different denominators), and type of icon arrays significantly 

predicted confidence (ps < .001). Including the interaction term of graph literacy and type 

of icon array in a separate step did not improve predictions of accuracy (R
2
 change = .002, 

p > .9, and R
2
 change = .003, p > .8 for equal vs. different denominators, respectively).

8
 

 

                                                
8 In line with these analyses, a 2 × 2 × 6 mixed ANOVA with size of denominator (equal vs. different) as 

within-subjects factor and graph literacy and type of icon array as between- subjects factors on confidence 

ratings revealed a main effect of size of denominator, F(1, 446) = 30.11, p = .001, ηp
2 = .06, of graph 

literacy, F(1, 446) = 51.20, p = .001, ηp
2 = .10, and of type of icon array, F(5, 446) = 6.25, p = .001, ηp

2 = 

.07. Additionally, an interaction between size of denominator and graph literacy was observed, F(1, 446) = 

5.41, p = .020, ηp
2 = .01. The differences in confidence as a function of denominator size were larger for 

participants with low graph literacy than for those with high graph literacy; however they reached statistical 

significance for both groups of participants (p < .001 and p = .045, respectively). 
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Table 2. Mean subjective confidence in scenarios with equal and different denominators as a function of 

type of icon array, for participants with low graph literacy (top panel) and high graph literacy (bottom 

panel). 

Low graph literacy 

 
Equal denominators 

(R
2
 = .11) 

 
Different denominators 

(R
2
 = .11) 

 M (SEM) β P  M (SEM) β P 

Static 5.95 (.34) — —  5.47 (.33) — — 

Sequential 6.59 (.26) .10 .16  5.92 (.27) .07 .35 

Labeling 6.56 (.38) .12 .08  5.79 (.38) .08 .27 

Labeling reproduce 6.13 (.38) .04 .53  5.80 (.40) .06 .36 

Transfer reproduce 6.89 (.33) .17 .02  6.20 (.34) .13 .08 

Transfer estimate 7.78 (.26) .32 .001  7.45 (.30) .33 .001 

 

High graph literacy 

 
Equal denominators 

(R
2
 = .14) 

 
Different denominators 

(R
2
 = .18) 

 M (SEM) β P  M (SEM) β P 

Static 7.11 (.43) — —  6.85 (.44) — — 

Sequential 7.78 (.36) .16 .09  7.38 (.42) .13 .16 

Labeling 8.46 (.29) .24 .009  7.92 (.41) .17 .06 

Labeling reproduce 7.60 (.32) .12 .18  7.48 (.30) .15 .10 

Transfer reproduce 7.95 (.38) .18 .056  7.79 (.43) .18 .04 

Transfer estimate 8.60 (.30) .30 .001  8.75 (.29) .35 .001 

Note: Results are reported for regression models controlling for numeracy. 

 

How does type of icon array affect subjective confidence, for individuals with 

low vs. high graph literacy? Table 2 shows mean confidence ratings among participants 

with low and high graph literacy for the different types of icon arrays, and results of 

linear regressions predicting confidence ratings. As can be seen in Table 2, subjective 

confidence was in most cases significantly higher in the transfer reproduce and transfer 
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estimate conditions. For participants with high graph literacy, this was also the case for 

the labeling condition. These results indicate that some types of dynamic icon arrays that 

were not associated with a significant increase in accuracy were nevertheless associated 

with an increase in confidence. 

How are graph evaluations affected by graph literacy and type of icon 

arrays? As planned, the three graph evaluation ratings were averaged to obtain mean 

ratings for each type of icon array. As participants evaluated graphs after they had viewed 

all medical scenarios, mean evaluations reflected both scenarios with equal and with 

different denominators. A linear regression model predicting mean evaluations was built, 

including graph literacy and type of icon arrays as predictors. The full model predicted 

evaluations, R
2 

= .08, F (6, 451) = 6.14, p = .001. Interestingly, graph literacy was not a 

significant predictor (t = 1.53, p = .13, β = .07); however, including the interaction term 

of graph literacy and type of icon array in a separate step improved predictions of 

accuracy (R
2
 change = .05, p < .01).

 

 

Table 3. Mean graph evaluation ratings as a function of type of icon array, for participants with low graph 

literacy and high graph literacy. 

 
Low graph literacy 

(R
2
 = .06) 

 
High graph literacy 

(R
2
 = .24) 

 M (SEM) β P  M (SEM) β P 

Static 5.48 (.30) — —  4.94 (.43) — — 

Sequential 6.29 (.25) .16 .04  5.36 (.42) .07 .41 

Labeling 5.93 (.32) .10 .17  8.05 (.26) .50 .001 

Labeling reproduce 6.51 (.30) .19 .009  6.76 (.33) .31 .001 

Transfer reproduce 6.29 (.26) .17 .026  7.35 (.36) .42 .001 

Transfer estimate 6.65 (.27) .24 .001  6.55 (.32) .26 .003 

Note: Results are reported for regression models controlling for numeracy. 

 

How does type of icon array affect graph evaluations, for individuals with low 

vs. high graph literacy? Table 3 shows mean graph evaluation ratings among 

participants with low and high graph literacy for the different types of icon arrays, and 

results of linear regressions predicting evaluations. Among participants with low graph 

literacy, ratings were significantly higher in all conditions except the labeling condition, 
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as compared to the static condition (see Table 3). Among participants with high graph 

literacy, ratings were significantly higher in all conditions except the sequential condition. 

These results indicate that increases in graph evaluations did not reflect increases in 

accuracy. 

 

Discussion 

In this paper, we sought to examine the effectiveness of the manipulation of 

different types of dynamic features in icon arrays designed to improve understanding of 

treatment risk reduction. Building on previous research (Garcia-Retamero & Cokely, 

2011; Garcia-Retamero & Galesic, 2010; Okan et al., 2012a), we also sought to document 

the influence of individual differences in graph literacy on the efficacy of the different 

types of dynamic displays. Our results revealed that the only type of dynamic display that 

contributed to significantly increase accuracy of risk understanding over and above a set 

of static icon arrays was one including a reflective question (i.e., an estimate concerning 

the number of people harmed after taking a drug), followed by feedback provided 

visually. This display was associated with improved performance both among individuals 

with low and with high graph literacy, across medical scenarios including equally and 

unequally sized groups of treated and non-treated patients. Additionally, graph literacy 

predicted accuracy of risk understanding with the different types of icon arrays, as well as 

people’s self-reported confidence in their risk estimates. However, increases in 

confidence and in perceived usefulness of the displays were observed for some types of 

dynamic icon arrays that did not improve performance. 

 The present findings shed light on the processes that give rise to some of the 

cognitive performance benefits associated with icon arrays. In particular, they suggest 

that it is unlikely that the limited ability of less graph literate individuals to benefit from 

static icon arrays is attributable solely to insufficient attention and encoding of the visual 

pattern in icon arrays (i.e., first process involved in graph comprehension; Carpenter & 

Shah, 1998) or to a failure to identify the referents in icon arrays (i.e., third process 

involved in graph comprehension). Dynamic icon arrays designed to support the first 

process (by directing viewers’ attention to the different regions of the arrays in a 

sequential manner) or the third process (by including explanatory labels appearing 

sequentially next to each region indicating what it represented) did not result in a 

significant increase in performance, as compared to static arrays. These findings do not 

rule out the possibility that individuals with low graph literacy engage to a lesser extent in 
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these processes when viewing static icon arrays, as compared to more graph literate ones 

(see Okan et al., 2013a, for evidence of differences in the processes underlying the 

comprehension of bar graphs and line graphs). However, they suggest that such processes 

may be contributing to, but cannot fully account for, the impaired performance exhibited 

by less graph literate individuals when presented with icon arrays. 

The increase in accuracy of risk understanding observed in the condition involving a 

reflective question (transfer estimate condition) suggests that more active, elaborative 

processing of the risk information is an essential component of the beneficial effects of 

icon arrays (c.f., Natter & Berry, 2005). These findings accord with results showing that 

elaborative processing is strongly related to superior risky decision making (Cokely & 

Kelley, 2009). In our study, active processing was encouraged by the inclusion of a 

reflective question that required the generation of a solution not yet displayed. In contrast, 

displays which required people to restate the information depicted or which included a 

second set of arrays (but not a reflective question), did not contribute to significantly 

improve performance. This suggests that it is unlikely that the beneficial effect of the 

transfer estimate condition was merely due to the fact that people were instructed to 

answer a question concerning the information depicted (and not necessarily a reflective 

question), or to the fact that they viewed two sets of icon arrays instead of one. 

Additionally, the current results show that displays that encourage active processing of 

the information can improve performance not only among less graph literate individuals, 

but also among those who are more graph literate.
9
 

Our findings also have implications for the graphical communication of medical 

information, as they suggest ways to enhance risk comprehension even among less graph 

literate individuals. The needs of such individuals should be taken into account not only 

by doctors communicating information to patients, but also by scientific experts who are 

responsible for developing communication materials for the general public (Bruine de 

Bruin & Bostrom, 2013). At the same time, the current results converge with recent 

studies showing that interactive and animated design features in graphical displays do not 

necessarily contribute to improve risk comprehension (Zikmund-Fisher et al., 2012, 2011; 

                                                
9 The need for viewers to generate information to comprehend graphs has also been discussed by Trickett 

and Trafton (2006), who showed that this is often achieved by means of mental spatial transformations on 

the information explicitly represented in the graphs. Although it seems unlikely that the types of displays 

and tasks employed in our study involved the need to perform spatial transformations, our results converge 

to highlight that, for some types of displays, an active generation of information may be required to fully 

comprehend the information depicted. 
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but see also Ancker, Weber, & Kukafka, 2011b). The novelty of some displays or their 

potential to divide people’s attention reinforces the notion that sometimes less can be 

more when presenting information (Peters, Hibbard, Slovic, & Dieckmann, 2007; 

Zikmund-Fisher et al., 2012, 2011). For instance, Zikmund-Fischer et al. (2011) recently 

showed that providing people with numerical information and requiring them to depict 

this information interactively in icon arrays did not have a beneficial effect. Similarly, our 

results suggest that asking people to restate or reproduce information already provided in 

icon arrays or in accompanying labels is not likely to help them understand the 

information about risk. 

Our results also revealed that many of the dynamic icon arrays were evaluated more 

positively than the static ones both by participants with low and high graph literacy, even 

though only one of them (i.e., transfer estimate) resulted in a reliable increase in 

performance. Additionally, participants with high graph literacy did not evaluate icon 

arrays more positively overall than those with low graph literacy. These findings are in 

line with research showing that the design features that viewers like or find most useful 

are not necessarily those that contribute to enhance performance (e.g., Feldman-Stewart 

et al., 2000; McCaffery et al., 2012; Micallef et al., 2012; but see also Zikmund-Fisher 

et al., 2012). In addition, we found that some dynamic displays that were not associated 

with significant increases in accuracy of risk understanding were nevertheless associated 

with increases in self-reported confidence. Thus, our results suggest that it is not 

advisable to rely solely on patients’ subjective confidence or perceptions of the extent to 

which different types of icon arrays are useful (see Ancker et al., 2006, for a discussion). 

Finally, our finding that both accuracy and confidence were higher when medical 

scenarios included groups of treated and non-treated patients of the same size suggests 

that communicating risk information with unequally sized groups should be avoided 

where possible, even if information is provided both numerically and using visual aids 

(see also Ancker et al., 2006; Garcia-Retamero & Dhami, 2011; Garcia-Retamero & 

Galesic, 2009; Paling, 2003). 

As with most studies, our study has some limitations and our results point to a number 

of key questions for future research. First, future research should seek to isolate the effect 

of each of the different design features manipulated in the present study. Here, the 

different types of icon arrays were constructed by introducing new design features (e.g., 

the addition of explanatory labels) built on top of previously introduced ones (e.g., the 

sequential presentation of the different regions of the arrays). This design was chosen in 
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order to maximize the potential effect of our manipulations; however, it does not enable 

us to estimate the specific effect of the different design features employed in isolation. 

Accordingly, it is hard to determine the degree to which encouraging the allocation of 

attention to different regions of the arrays is a necessary prerequisite for increasing 

accuracy of risk understanding. The pattern of results observed for the labeling condition 

(i.e., an increase in performance, albeit not statistically significant) may be interpreted as 

evidence that the beneficial effect of the transfer estimate condition was not due 

exclusively to the inclusion of a reflective question, but to some extent also to the 

presence of explanatory labels supporting the identification of the referents in icon arrays. 

Future research should explore this issue, in order to determine whether the effects of the 

different design features can indeed be additive. 

Second, future research could examine the effectiveness of simpler icon arrays that 

may also encourage a more active, elaborative processing of risk information. A 

promising means might be to remove numerical information from the text (see Micallef et 

al., 2012), as forcing people to explore the icon arrays might prompt them to process the 

depicted information in a more active fashion. Studies examining text comprehension 

have shown that placing some impediments in a text (e.g., deleting propositions that mark 

the role of each paragraph) can in some cases enhance learning by encouraging a deeper, 

more active processing of the text (McNamara, E. Kintsch, Songer, & W. Kintsch, 1996; 

see Kintsch 2004, for a review). Finally, future research could aim to enhance the 

ecological validity of the present study. Because our experiments were not conducted 

with patients in a clinical setting our participants might have been less motivated to think 

about the risk information provided than would patients trying to understand the risk 

reduction of a treatment. To the extent that this is correct, our results suggest that the 

estimated benefits might be relatively lower bound estimates of the potential benefits of 

well-designed dynamic icon arrays. 

In sum, the present work reveals that the power of icon arrays to enhance the 

comprehension of quantitative information can be supplemented by including carefully 

designed features encouraging an active processing of the information. In our study this 

was achieved though self-administered reflective questions, followed by visual feedback. 

This kind of dynamic display could be included in regulated websites providing medical 

and health statistics tutorials, serving not only to improve the communication of risk 

among patients, but also for educational and training purposes. Such internet-based tools 

could contribute to empower consumers, equipping them with the knowledge and skills to 
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make informed decisions. Future research could seek to examine whether such active 

processing can also be encouraged through simpler and quicker means (e.g., reflective 

questions posed by the doctor in the clinic). Our results also suggest that future research is 

needed on additional aids that may contribute to further enhance performance among less 

graph literate individuals. 
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Appendix A 

Number of treated and non-treated patients who die after a heart attack for all denominator sizes. 

Note: Values in brackets were only presented in the transfer reproduce and transfer estimate 

conditions, for the second set of icons included in these conditions. Risk reduction is 80% in all 

conditions. 

 

  Treated patients  Non-treated patients 

Denominator 

Sizes 

 Patients 

who  

died 

Population 

size 

 Patients 

who  

died 

Population 

size 

800–800 

(400–400) 

 16 

(8) 

800 

(400) 

 80 

(40) 

800 

(400) 

800–100 

(400–50) 

 16 

(8) 

800 

(400) 

 10 

(5) 

100 

(50) 

100–800 

(50–400) 

 2 

(1) 

100 

(50) 

 80 

(40) 

800 

(400) 

100–100 

(50–50) 

 2 

(1) 

100 

(50) 

 10 

(5) 

100 

(50) 
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Appendix B 

Task/ 

Instructions 

Text 

Background label These white points represent a (another) group of XXX people. This is 

the total number of people who did not (did) take Benofreno in this study. 

Foreground label These black points represent XXX people. These people are part of the 

group of XXX people who did not (did) take Benofreno. These XXX 

people have died. 

 

Restate background  Now please indicate the total number of people who did not take(took) 

Benofreno. 

 

Restate foreground Now please indicate the total number of people who died, in the group of 

people who did not take (took) Benofreno. 

Introduction to 

second set of icon 

arrays 

(only in Transfer 

Reproduce and 

Transfer Estimate) 

You will now see the results of a study conducted with Benofreno. This 

study was conducted with a group of people who had the same 

characteristics as the group of people who took part in the previous study, 

and was conducted in the same situation or context (same conditions). It 

is therefore expected that results will be along the lines of those shown 

for the first study. 

Estimate foreground 

(only in Transfer 

Estimate) 

Now please estimate the number of people who would die in the group of 

people who did not take (took) Benofreno in this second study. Note: 

Recall that this second study was conducted with a group of people that 

had the same characteristics as the group of people who took part in the 

previous study, and was conducted in the same situation or context (same 

conditions). 

Feedback Correct/Incorrect. You can see the correct response highlighted in red 

above. 

 

Note: Text with italics indicates alternation in wording for the top vs. bottom icon arrays. XX 

indicates the total numbers of treated and non-treated patients and of those who died, and varied 

for the different medical scenarios (see Appendix A). For Transfer Reproduce and Transfer 

Estimate, the Foreground label for the second set of icon arrays stated only: “In this group XX 

people died,” to avoid repetition.  
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CHAPTER IV.  

 

WHEN HIGHER BARS ARE NOT LARGER QUANTITIES: 

ON INDIVIDUAL DIFFERENCES IN THE USE OF SPATIAL 

INFORMATION IN GRAPH COMPREHENSION 
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When Higher Bars Are Not Larger Quantities: On Individual Differences in the Use 

of Spatial Information in Graph Comprehension 

 

Abstract 

 

Graphical displays use spatial relations to convey meaning, facilitating the 

communication of quantitative information. However, information conveyed by spatial 

features can conflict with that conveyed by features linked to arbitrary conventions (e.g., 

axes labels or scales), leading to misinterpretations. Here, we investigated the role of 

individual differences in graph literacy on the interpretation of health-related bar graphs 

containing such conflicts. Individuals with low graph literacy were more often biased by 

spatial-to-conceptual mappings grounded in their real world experience, neglecting 

information in titles of graphs, axes labels and scales. Implications for perspectives on 

embodied cognition and effective graphical design are discussed. 
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Okan, Y., Garcia-Retamero, R., Galesic, M., & Cokely, E. T. (2012). When higher bars are not larger 

quantities: On individual differences in the use of spatial-to-conceptual mappings in graph comprehension. 

Spatial Cognition and Computation, 12, 195–218. 
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Introduction 

Graphical displays represent quantitative information in spatial locations, often 

enabling better and faster comprehension as compared to numerical or text-based formats 

(Munzner et al., 2006; Tversky, 2001). The translation of spatial information into 

conceptual information in graphsthe spatial-to-conceptual mappingis frequently 

rooted in our experience with the physical environment (Tversky, 2001, 2009). For 

example, if the content of a container reaches a higher level than the content of another, 

this typically means that the first one contains more substance. In graphs, the knowledge 

acquired in the physical world can serve as a basis to map spatial information onto 

information about more abstract quantities (Gattis, 2002) such as profits, people, and 

utilities (e.g., higher bars can reflect larger profits). Thus, graphs constitute external 

spatial representations that we can use to reason about non-spatial concepts, on the basis 

of knowledge acquired in interactions with our environment (Tversky, 2009; Wilson, 

2002). 

However, in some cases information conveyed by spatial features in graphs may 

conflict with information conveyed by features linked to arbitrary conventions such as 

axes labels and the range of scale values (e.g., the numerical values on the scale can be 

reversed so that higher bars mean less profit). In such cases, an overreliance on spatial-to-

conceptual mappings can lead to misinterpretations of the data depicted. A correct 

interpretation would require considering information from conventional features such as 

the axes labels or the scale values, and overriding direct spatial-to-conceptual mappings 

(e.g., recognizing that a higher bar does not necessarily imply more profit). 

In this paper, we address the issue of individual differences in graph literacy (i.e., 

the ability to understand graphically presented information; Galesic & Garcia-Retamero, 

2011b), and its relation to one’s reliance on spatial-to-conceptual mappings in graph 

comprehension. Specifically, we examine the extent to which graph literacy affects 

people’s use of mappings grounded in their real world experience to interpret graphs 

presenting quantitative medical information (i.e., prevalence of different diseases or 

effects linked to different treatments). Additionally, we examine the effect of the 

orientation of such graphs (i.e., vertical vs. horizontal) on comprehension. Graphical 

displays containing health-related information have been shown to help people to 

overcome difficulties in the comprehension of risks and benefits of different medical 

treatments, screenings, and health behaviors (Ancker, Senathirajah, Kukafka, & Starren, 
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2006; Garcia-Retamero & Cokely, 2011; Garcia-Retamero & Galesic, 2010a; Lipkus, 

2007). The investigation of individual differences in graph comprehension plays a key 

role in the development and customization of health-related decision-support systems and 

risk communication (Okan, Garcia-Retamero, Cokely, & Maldonado, 2012; see also 

Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012). 

 

Processes involved in graph comprehension 

Graph comprehension models have identified three types of processes that viewers 

must follow to extract information from graphical displays such as line or bar graphs 

(Carpenter & Shah, 1998; Lohse, 1993; Pinker, 1990). These processes are iterative and 

incremental (i.e., viewers must repeat the cycle of processes to comprehend the 

information represented; Carpenter & Shah, 1998). 

The first process is encoding the visual pattern and identifying the principal 

features in the graphs. This involves making different visual judgments of the elements 

(e.g., judgments of position along a scale, slope, length, or angle; Cleveland & McGill, 

1986; Simkin & Hastie, 1987). For instance, for the graph shown in Figure 1a the viewer 

should encode the different bars and make visual judgments concerning their height.  

The second process is the translation of the identified visual features into 

conceptual relations (Carpenter & Shah, 1998; Kosslyn, 1989; Pinker, 1990). Visual 

features of graphical displays can convey meaning in a number of ways. For example, 

variations in the saliency of features in terms of size, color, or highlighting can be used to 

indicate variations in the quantity of the variables represented. Similarly, the spatial 

arrangement of different elements can be used to indicate relationships between the 

variables depicted (e.g., proximity in space of the elements frequently indicates proximity 

on properties such as time or value; Kosslyn, 2006; Tufte, 2001; Tversky, 2001). As 

noted, a crucial characteristic of the mappings that graph viewers establish between 

spatial features and conceptual relations is that these mappings are frequently grounded in 

their experience with the physical world (Tversky, 2001, 2009). For the graph shown in 

Figure 1a, the second process involved in graph comprehension would entail the mapping 

of spatial features (bars of different heights) onto the concept of quantity. 

The third process outlined in graph comprehension models involves determining 

the referents of the concepts identified by associating them with the specific variables and 

their numerical values (Carpenter & Shah, 1998; Shah & Carpenter, 1995; see also 

Huestegge & Philipp, 2011 Ratwani, Trafton, & Boehm-Davis, 2008). This process 
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entails identifying and inferring information from conventional features in graphs, 

including the title of the graph, axes labels, legends or numerical values on the scales. For 

instance, in line plots or bar graphs it is necessary to identify the variables represented on 

the x and the y axes and which are the values that these variables take.  For the graph 

shown in Figure 1a, this third process would involve inferring information from the title, 

axes labels, and numerical scale. Crucially, this process would entail attending to textual 

information in the title and label for the dependent variable (i.e., “percentage of people 

without different allergies”), and deducing that in this graph higher bars represent lower 

quantities. 

 

Individual differences in graph comprehension 

Although a large body of research has investigated graph comprehension 

processes in the general population (Cleveland & McGill, 1986; Lohse, 1993; Simkin & 

Hastie, 1987), relatively less research has examined the factors that can moderate the 

extent to which different viewers engage in such processes. To illustrate, some authors 

have analyzed the impact of viewers’ graph-related knowledge (e.g., Shah & Carpenter, 

1995; Shah & Freedman, 2011) and models of graph comprehension have been developed 

incorporating different aspects of viewers’ prior knowledge (e.g., Freedman & Shah, 

2002). However, it is yet unclear how and when different kinds of prior knowledge affect 

the graph comprehension processes outlined above. The first aim of this investigation was 

to examine how graph literacy affects the extent to which viewers engage in these 

processes. 

 Graph literacy is a skill typically acquired through formal education, which can 

affect the comprehension of graphical representations of numerical information in 

important ways. For instance, individual differences in graph literacy can moderate the 

effectiveness of visual aids (Gaissmaier et al., 2012; Garcia-Retamero & Galesic, 2010b), 

affecting people’s decision-making performance, as well as subjective perceptions of this 

performance (Okan et al., 2012a). Graph literacy has also been shown to affect the 

likelihood that viewers generate different inferences from data in graphical displays. 

When viewing bar graphs, individuals with high graph literacy are more capable of 

providing descriptions of main effects than are less graph-literate individuals (Shah & 

Freedman, 2011). When viewing more complex displays such as weather maps, expert 

viewers spend more time exploring task-relevant information than novice viewers, and 



 Individual differences in the use of spatial information 

103 

 

show superior performance in making inferences from such displays (Canham & Hegarty, 

2010).  

Here we examined the influence of graph literacy on people’s tendency to 

interpret graphs on the basis of mappings between spatial features and conceptual 

relations (i.e., the second process involved in graph comprehension). When spatial 

features do not readily evoke a conceptual relation, viewers lacking specific graph-related 

knowledge can have difficulties interpreting graphs accurately (Shah, Freedman, & 

Veriki, 2005; Shah & Hoeffner, 2002). However, as noted above spatial-to-conceptual 

mappings in graphs are often rooted in one’s experiences with the physical world. In such 

cases, viewers with low graph literacy can apply the knowledge acquired in their 

environment to translate spatial features to concepts in graphs. Instead, the identification 

of referents of concepts (i.e., third process involved in graph comprehension) is guided by 

specific graph-related knowledge and experience. This knowledge could affect viewers’ 

ability to integrate information from axes labels or the numerical scale with the 

corresponding lines or bars in the chart. Additionally, graph-related knowledge could 

direct subsequent cycles of encoding and interpretation (Carpenter & Shah, 1998; Pinker, 

1990), directing attention to labels or scales which contain information required to answer 

questions about the data.  

Taking the roles of experience into account we predicted that individuals with low 

graph literacy would be more likely than those with high graph literacy to rely primarily 

on spatial-to-conceptual mappings grounded in their experience with the environment to 

interpret graphs, often failing to incorporate information from the title, axes labels, or 

numerical scales. We further predicted that differences between individuals with low and 

high graph literacy would be clear in graphs containing a conflict between information 

conveyed by spatial features (e.g., bar heights) and information conveyed by 

conventional features. Therefore, we hypothesized that low graph literacy would be 

related to an overreliance on spatial-to-conceptual mappings when interpreting graphs 

containing such conflicts. As a consequence, participants with low graph literacy would 

more frequently misinterpret the data depicted than highly graph literate participants (H1). 

We further hypothesized that the overreliance on spatial-to-conceptual mappings would 

more often lead individuals with low graph literacy to make non-normative decisions as 

compared to highly graph literate individuals (H2). 
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Properties of graphical displays: The effect of orientation on comprehension 

Other important factors that can affect graph comprehension processes are the 

properties of the graphical displays.  For instance, variations in the perspective of bar 

graphs (i.e., two-dimensional vs. three-dimensional) can impact accuracy in the judgment 

of bar heights (Fischer, 2000; Zacks, Levy, Tversky, & Schiano, 1998). Bar graphs can 

also vary in their orientation (i.e., vertical vs. horizontal) and this can affect viewers’ 

speed in judging the quantities represented (Fischer, Dewulf, & Hill, 2005). However, it 

is currently unknown which orientation is best suited to enhance comprehension when a 

conflict exists between information conveyed by spatial features and by conventional 

features. 

The second aim of this paper was to assess how the comprehension of data in bar 

graphs is affected by their orientation: vertical or horizontal. There are at least two ways 

in which a change in the orientation of a bar graph can affect comprehension processes. 

First, changes in comprehension processes can be triggered by a change in the orientation 

of bars. When bars are oriented vertically viewers may be more likely to rely primarily on 

spatial-to-conceptual mappings than when bars are oriented horizontally. The rationale is 

that the association between the spatial position of a substance and its quantity in the 

physical world is more robust along the vertical dimension than along the horizontal 

dimension (Tversky, 2001, 2009). Indeed, people associate spatial position along the 

horizontal dimension with numerical magnitudes (Dehaene, Bossini, & Giraux, 1993) or 

temporal sequences (Gevers, Reynvoet, & Fias, 2003; Tversky, Kugelmass, & Winter, 

1991). However, the directionality of this representation seems to be rooted in reading 

habits for words and numbers, rather than to rest on a natural correspondence (Shaki, 

Fischer, & Petrusic, 2009; Tversky et al., 1991). 

In contrast, a universal correspondence exists along the vertical dimension 

between upward positions with larger quantities, and lower positions with smaller 

quantities (Lakoff & Johnson, 1980; Tversky et al., 1991). This correspondence is 

grounded in the physical environment, where increasing the quantity of any substance 

typically increases its vertical extent. Thus, when trying to understand graphs viewers 

may be more likely to establish the mapping “higher bars = more” as compared to the 

mapping “horizontally longer bars= more. As a consequence, when bars are vertical 

viewers may rely to a larger extent on spatial-to-conceptual mappings grounded in their 

real world experience to interpret graphs. 
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A second way in which a change in the orientation of a bar graph can affect 

comprehension processes is linked to the change in the orientation of conventional 

features. When a graph is rotated the numerical scale necessarily varies its orientation 

(instead, the orientation of axes labels can be kept constant). When the scale is oriented 

horizontally viewers may be more likely to incorporate the information it contains in their 

interpretation of the graph, as compared to when it is oriented vertically. The rationale is 

that such information may be easier to read and integrate if it is displayed horizontally 

(i.e., matching Westeners’ reading habits) than vertically.  

 

Graph orientation and types of conflict between spatial and conventional features 

As mentioned above, in the present research we examined how people interpret 

graphs containing a conflict between information conveyed by spatial features (i.e., bar 

heights) and information conveyed by conventional features. Such a conflict can occur 

when spatial features of the graph convey different meaning than (1) textual information 

in the title and axes labels (textual-spatial conflict) or (2) numerical values on the scale 

(scale-spatial conflict). The effect of a change in the orientation of a bar graph on 

comprehension can be linked to the type of conflict existing in the graph. Taking this into 

account, we generated two alternative hypotheses.  

If comprehension is affected by the change in the orientation of bars, the stronger 

reliance on spatial-to-conceptual mappings in vertical than in horizontal bar graphs 

should occur for both (1) graphs containing a textual-spatial conflict and for (2) graphs 

containing a scale-spatial conflict. That is, no matter what type of conflict a graph 

contains viewers should be more likely to rely primarily on spatial-to-conceptual 

mappings and thus to misinterpret information more often when graphs are oriented 

vertically than when they are oriented horizontally (H3a). Additionally, for both types of 

conflict the overreliance on spatial-to-conceptual mappings should lead viewers to make 

non-normative decisions more often when graphs are oriented vertically than when they 

are oriented horizontally (H4a). 

Alternatively, comprehension may not be affected by the change in the orientation 

of bars, and may be affected instead by the change in the orientation of conventional 

features (i.e., the scale). In such case, performance on graphs containing a textual-spatial 

conflict should not be affected significantly by orientation. The rationale is that in such 

graphs essential information can be extracted from the title (which does not change its 

orientation when the graph is rotated) and from the axes labels (which can be displayed in 
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the same orientation even if the graph is rotated). Therefore, a larger tendency to rely 

primarily on spatial-to-conceptual mappings for vertical than for horizontal bar graphs 

should be observed only when a scale-spatial conflict exists (H3b). Additionally, for 

graphs containing such conflict viewers should make non-normative decisions more often 

when graphs are oriented vertically than when they are oriented horizontally (H4b). 

To test our hypotheses, we conducted an experiment in which participants with 

different levels of graph literacy were presented with bar graphs displaying quantitative 

medical information. .These graphs were constructed in such a way that following spatial-

to-conceptual mappingsaccording to which higher or longer bars imply more quantity 

and lower or shorter bars imply less quantitywould lead to erroneous interpretations of 

the data and to non-normative decisions. Half of the graphs contained essential 

information in the title and axes labels (i.e., a textual-spatial conflict), while the other half 

contained essential information in numerical values on the scale (i.e., a scale-spatial 

conflict). Some participants were provided with vertically oriented bar graphs, while 

others received horizontally oriented graphs. For each graph, participants answered a 

question designed to evaluate their interpretation of the information represented and made 

a decision on the basis of this information. 

 

Method 

 

Participants 

Participants were recruited via Amazon’s Mechanical Turk. Mechanical Turk 

provides access to a paid internet participant panel that can be used for conducting 

behavioral research. The magnitude of effects obtained using this platform have been 

found to be equivalent to those obtained using traditional subject pools in laboratory-

based experiments (Paolacci, Chandler, & Ipeirotis, 2010; Sprouse, 2011; see also Cokely 

et al., 2012; Cokely, Ghazal, Galesic, Garcia-Retamero, & Schulz, 2013; Feltz & Cokely, 

2011). 

The online study was hosted on the web survey platform Unipark 

(www.unipark.de) and participants were redirected to this website after clicking on a link 

provided in the Human Intelligence Task (HIT) forum on Mechanical Turk 

(www.mturk.com). Upon completion of the study participants were required to enter a 

self-generated user code both in Unipark and in the Mechanical Turk HIT, in order to 



 Individual differences in the use of spatial information 

107 

 

verify participation. A total of 251 residents of the United States completed the study. Of 

those, 68 participants were randomly assigned to a control condition where the question 

used to evaluate the interpretation of the graphs was modified, as will be described below. 

Results did not vary as a function of this modification in the question and so for 

simplicity these data are not reported. The final sample included 182 participants (54% 

women, median age of 34 years, range 1868).  

The mean completion time was 15.6 minutes (SD = 5.6). Most  participants (98%) 

completed the study in 30 minutes or less. Duration was correlated with age [r(180) = 

.297, p = .001]. We excluded a young participant who took 44 minutes to complete the 

study, as we suspected that he or she was not focused on the tasks. Participants were 

randomly assigned to the different experimental conditions through a random trigger with 

a uniform distribution generated in Unipark (n = 63 on average). All participants 

consented to participation through an online consent form at the beginning of the study. 

 

Design and Materials 

 Participants were presented with four bar graphs depicting quantitative medical 

information (i.e., prevalence of different diseases or effects linked to different 

treatments). Each graph contained five data points, a title, and the corresponding labels 

for both axes. We manipulated the type of conflict in the graphs within-subjects and the 

orientation of graphs between-subjects.  

To manipulate the type of conflict we constructed two different sets of bar graphs. 

In Graphs A and B, essential information was included in the title and in the textual label 

for the dependent variable. Therefore these graphs contained a textual-spatial conflict. 

Specifically, Graph A presented data about percentages of people without different types 

of allergy (see Figure 1a). Participants were asked about the type of allergy affecting the 

largest percentage of people. To answer this question correctly, participants had to attend 

to the title and the label for the dependent variable in order to infer that the usual spatial-

to-conceptual mapping was reversed (i.e., they had to infer that higher bars represented 

lower values). Graph B presented data about the change in the percentage of people with 

different types of cancer during the previous year (see Figure 1b). Participants were asked 

about the type of cancer that affected the smallest percentage of people during the 

previous year. To answer this question correctly, participants had to attend to the title and 

the label for the dependent variable in order to infer that the height of bars did not 
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correspond to quantities in terms of absolute percentages (i.e., they had to infer that the 

required information was not reported).  

For Graphs C and D essential information was provided in the numerical scale for 

the dependent variable. Therefore these graphs contained a scale-spatial conflict. Graph C 

presented data about the percentage of people with different types of influenza and the 

numerical scale was reversed (i.e., values increased from top to bottom for vertically 

oriented graphs, and from right to left for horizontally oriented graphs; see Figure 1c). 

Participants were asked about the type of influenza affecting the largest percentage of 

people. To answer this question correctly participants had to attend to the scale in order to 

infer that the usual spatial-to-conceptual correspondence between height and quantity was 

reversed. Finally, Graph D presented data about the percentage change in patients’ body 

weight associated with different treatments. This final graph contained both positive and 

negative values; however, the zero baseline was not indicated and positive (negative) 

values were not represented by bars above (below) the baseline (see Figure 1d; see also 

Kosslyn, 2006). Participants were asked about the treatment that resulted in the smallest 

change in the patients’ body weight. To answer this question correctly, participants had to 

attend to the scale in order to infer that the height of bars did not correspond to the 

magnitude in percentage change.  

To analyze the effect of the orientation, we constructed three different versions of 

each graph: (1) a vertical graph where the bars and the label for the y axis were oriented 

vertically (see Figure 1d); (2) a vertical graph where the bars were oriented vertically and 

the label on the y axis was oriented horizontally (see Figure 1e); and (3) a horizontal 

graph where the pattern in the vertical graphs was rotated 90 degrees clockwise (see 

Figure 1f). We will refer to these graphs as vertical standard, vertical with horizontal 

text, and horizontal graphs, respectively. The second vertical condition was included to 

control for the potential effect of the change in the orientation of the label for the 

dependent variable when the graph is rotated. This control is relevant for graphs 

containing a textual-spatial conflict, where essential information is provided both in this 

label and in the title. In the vertical standard condition this label is displayed vertically, 

while the title is displayed horizontally. In contrast, in the horizontal condition both 

elements are displayed horizontally, and this may increase the likelihood that information 

contained in them is integrated. In the vertical with horizontal text condition, both 

elements are also displayed horizontally. Thus, for graphs containing a textual-spatial 
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conflict, any differences in performance between the horizontal and the vertical with 

horizontal text conditions can be attributed to the change in the orientation of bars. 
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In summary, we constructed two sets of bar graphs that differed in the type of conflict 

they contained. We further constructed three orientations for each bar graph. Each participant 

was presented with two graphs containing a textual-spatial conflict (Graphs A and B) and two 

graphs containing a scale-spatial conflict (Graphs C and D) in one of the three possible 

orientations.
10

 Vertically (horizontally) oriented graphs were constructed to ensure that an 

exclusive reliance on the mappings high = more and low = less (horizontally longer = more 

and horizontally shorter = less) would lead to an incorrect interpretation of the data presented. 

Thus, for all graphs a correct interpretation required the integration of essential information 

presented in conventional features.  

As dependent variables we measured participants’ (1) interpretation of the 

information presented and (2) decisions made on the basis of the information presented in 

each graph. Both interpretations and decisions were measured using a multiple-choice item 

for each graph. For both dependent variables, the options provided for this item included (i) 

the correct response; (ii) an incorrect response corresponding to the mappings described 

above; and (iii) three other incorrect responses.  

For the dependent variable interpretation, the item was designed to evaluate accuracy 

in understanding the data. For instance, for the graph providing information about the 

percentage of people without different types of allergies (Graph A, see Figure 1a) the 

question was “What type of allergy affected the largest percentage of people?” The correct 

response was “Allergy C,” which was represented by the lowest bar (vertical orientation) or 

horizontally shorter bar (horizontal orientation). The incorrect response corresponding to the 

spatial mapping would be “Allergy B,” which was represented by the highest bar (vertical 

orientation) or horizontally longer bar (horizontal orientation). The other three options (i.e., 

Allergy A, D, and E) were coded as other type of incorrect responses.  

The multiple-choice item for the dependent variable decision was designed to assess 

participants’ preference among different hypothetical treatments on the basis of the data (e.g., 

“There are different treatments to prevent each allergy. If you had to take one treatment, 

which one would you prefer?”). For graphs presenting information related with the 

                                                
10 As an additional control we included a condition in which participants were presented with the vertical 

standard graphs, but the question used to evaluate their interpretation of the graphs was phrased differently. 

Instead of being asked about types of disease affecting the largest/smallest percentage of people, participants in 

this condition were asked about the most/least frequent type of disease. This condition was included with the 

aim of determining whether a similar tendency to misinterpret graphs would be observed when the spatial-to-

conceptual mapping entails a more abstract concept. Results in this condition did not differ from those in those 

in the vertical standard graph condition with the question phrased in terms of largest/smallest percentage. For 

simplicity, we do not report these results. 
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prevalence of different types of disease, the correct option was considered to be choosing the 

treatment that prevents the most frequent disease (Graphs A and C), or not having a 

preference when information about prevalence was not provided (Graph B). For the graph 

presenting effects linked to different treatments (Graph D) the correct option was considered 

to be choosing the treatment leading to the particular goal indicated in the question (i.e., the 

smallest possible change in body weight).  

As our hypotheses were concerned with people’s tendency to rely on mappings from 

spatial features of bars onto quantities of variables, for the analyses reported below we 

focused on the mean number of items where the incorrect response corresponding to the 

mapping was provided, both for interpretations and decisions. For each individual we 

computed the total number of incorrect responses corresponding to the mapping for graphs 

containing a spatial-scale conflict and for graphs containing a spatial-textual conflict. Thus, in 

each case the range of possible scores was 0 to 2, where 0 indicated that the participant had 

not given the response corresponding to the mapping in any graph of the group, and 2 

indicated that he or she had given this response in all graphs of the group. 

 

Procedure 

Participants were presented with four bar graphs. The order of the graphs was 

randomized. For each graph, participants answered a question designed to evaluate their 

interpretation of the information represented and made a decision on the basis of this 

information. Subsequently they completed a graph literacy scale and a numeracy scale. 

Finally, participants completed a series of demographic questions and were debriefed. 

Measurement of graph literacy: Graph literacy was measured using the instrument 

developed by Galesic and Garcia-Retamero (2011b; see also Garcia-Retamero & Galesic, 

2010b). This scale consists of 13 items and measures three levels of graphical comprehension 

(Friel, Curcio, & Bright, 2001): (1) the ability to read the data, that is, to find specific 

information in the graph, which corresponds to the more elementary level (for instance, the 

ability to read off the height of a particular bar within a bar chart); (2) the ability to read 

between the data, that is, to find relationships in the data as shown on the graph, which 

corresponds to an intermediate level (for instance, the ability to read off the difference 

between two bars); and (3) the ability to read beyond the data, or make inferences and 

predictions from the data, which corresponds to an advanced level of graph comprehension 

(for example, the ability to project a future trend from a line chart). 
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Additionally, the scale is designed to cover four frequently used graph typesline 

plots, bar charts, pies, and icon arraysand includes items dealing with the communication 

of medical risks, treatment efficiency, and prevalence of diseases. In sum, the scale measures 

both basic graph-reading skills and more advanced graph comprehension, for different types 

of graphs. The psychometric properties of this scale have been assessed in a survey 

conducted on probabilistically representative national samples of people from Germany and 

the United States, demonstrating satisfactory levels of internal consistency (Cronbach alpha 

of .74 in Germany and .79 in the United States) and convergent validity (the average 

correlation of the total score with graph comprehension items from existing literacy 

questionnaires was .44; for further details on the psychometric properties of the scale see 

Galesic & Garcia-Retamero, 2011b). 

We split participants into two groups according to the median graph literacy score for 

the total sample (i.e., 11). Thus, the group of participants with low graph literacy included 

those who obtained 11 or fewer correct responses (n = 104), whereas the group of participants 

with high graph literacy included those who obtained 12 or more correct responses (n =78). 

Participants with low graph literacy answered on average 9.6 items correctly (SD =1.7), while 

participants with high graph literacy answered on average 12.5 items correctly (SD = .5).  

Measurement of numeracy: In the experiment, we also assessed participants’ 

numerical skills (i.e., the ability to use basic probability and numerical concepts; Lipkus, 

Samsa, & Rimer, 2001; see also Cokely et al., 2012). Participants’ numeracy was measured 

using the three items in the general numeracy scale  by Lipkus et al. (2001), based on the 

items developed by Schwartz, Woloshin, Black, and Welch (1997). Thus, the range of 

possible scores was from 0 to 3. An example of an item is “Imagine that we rolled a fair, six-

sided die 1,000 times. Out of 1,000 rolls, how many times do you think the die would come 

up even (2, 4, or 6)?”  

 

Results 

First, we examined proportions of correct and incorrect responses for all graphs. The 

average proportion of correct responses for interpretations was 38.3% (SE = 6.7), while the 

average proportion of incorrect responses corresponding to the spatial-to-conceptual mapping 

(mapping responses) was 58.8% (SE = 6.2). As expected, proportions of incorrect responses 

not corresponding to the mapping were low (2.9% on average; SE = 1.7), indicating that the 

majority of participants who misinterpreted the graphs did so on the basis of direct spatial-to-
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conceptual mappings. Similarly, for decisions the average proportion of correct responses 

was 41.0% (SE = 7.6), while average proportions of incorrect responses corresponding and 

not corresponding to the mapping were 53.7% (SE = 4.9) and 5.3% (SE = 3.0), respectively. 

As proportions of incorrect responses not corresponding to the mapping were low, 

subsequent analyses focus on the total number of mapping responses computed for each 

participant, as planned. 

 We next conducted 3 × 2 × 2 analyses of variance (ANOVAs) with orientation 

(vertical standard vs. vertical with horizontal text vs. horizontal) and graph literacy (high vs. 

low) as between-subjects factors, and type of conflict (scale-spatial conflict vs. textual-spatial 

conflict) as within-subjects factor, on the total number of mapping responses for 

interpretations and decisions. We used the Bonferroni correction for post hoc analyses. The 

analyses revealed a significant main effect of graph literacy for interpretations, F (1, 176) = 

31.26, p = .001, p
2
 = .151, and decisions, F (1, 176) = 10.31, p = .002, p

2
 = .055. These 

main effects were qualified by a reliable interaction between type of conflict and orientation, 

F (2, 176) = 6.12, p = .003, p
2
 = .065 for interpretations, and, F (2, 176) = 6.30, p = .002, p

2
 

= .067 for decisions, and between graph literacy, type of conflict, and orientation for 

interpretations, F (2, 176) = 5.13, p = .007, p
2
 = .055 (see Figure 2).

11
 

Overall, the mean number of items in which a mapping response was provided was 

higher for participants with low graph literacy than for participants with high graph literacy, 

both for interpretations (M = 1.38, SE = .06 vs. M = .89, SE = .07, respectively) and decisions 

(M = 1.19, SE = .06 vs. M = .91, SE = .07, respectively).
12

 These results are in line with our 

hypotheses suggesting that individuals with low graph literacy would be more likely than 

those with high graph literacy to rely primarily on spatial-to-conceptual mappings when 

interpreting graphs (H1) and making decisions (H2), often neglecting information in 

conventional features. However, the interaction obtained for interpretations between graph 

literacy, type of conflict, and orientation indicates that this tendency did not hold in all cases. 

No reliable differences were found between participants with high and low graph literacy for 

vertical graphs containing a scale-spatial conflict (p > .1 for pairwise comparisons). 

                                                
11 The inclusion of numeracy scores as a covariate did not influence the pattern of results. Additionally, analyses 

including graph literacy as a covariate instead of as a factor yielded converging results. 
12 In linear regressions, graph literacy scores were found to significantly predict the total number of mapping 

responses both for interpretations, β = -.24, t = 5.64, p = .001, R2 = .15, and for decisions, β = -.16, t  = 3.63, p = 

.001, R2 = .07. Additionally, a hierarchical regression model predicting the total number of mapping responses 

was constructed, including numeracy and graph literacy scores. After controlling for the effect of numeracy, 

graph literacy continued to account for unique variance both for interpretations, F (1, 179) = 11.3, p = .001, R2 

change = .050, and for decisions, F (1, 179) = 6.3, p = .013, R2 change = .032. 
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Figure 2. Mean number of mapping responses, as a function of graph literacy and orientation (A) for graphs 

containing a scale-spatial conflict, for interpretations; (B) for graphs containing a textual-spatial conflict, for 

interpretations; (C) for graphs containing a scale-spatial conflict, for decisions; (D) for graphs containing a 

textual-spatial conflict, for decisions. Error bars represent one standard error of the mean. 

 

Concerning the effect of orientation, results indicated that the number of mapping 

responses varied as a function of orientation only for graphs containing a scale-spatial 

conflict.  For graphs containing a textual-spatial conflict, the mean number of mapping 

responses for interpretations or decisions did not vary as a function of orientation (p > .1 for 

all pairwise comparisons). In contrast, for graphs containing a scale-spatial conflict the mean 

number of mapping responses was lower for the horizontal condition than for the vertical 

conditions, both for interpretations and for decisions (ps < .05). This result is inconsistent 

with the hypotheses that graphs containing vertical bars would lead to a larger reliance on 

spatial-to-conceptual mappings to interpret graphs (H3a) and to make decisions (H4a) than 

graphs containing horizontal bars, regardless of the type of conflict. Instead, results accord 

with the alternative hypotheses that viewers would be less likely to rely primarily on spatial-

to-conceptual mappings to interpret graphs (H3b) and to make decisions (H4b) when the scale 



 Individual differences in the use of spatial information 

115 

 

is displayed horizontally than when it is displayed vertically. Interestingly, the interaction 

observed for interpretations between graph literacy, type of conflict, and orientation suggests 

that graph literacy moderated the effect of the change in orientation of the scale. For graphs 

containing a scale-spatial conflict the difference in the number of mapping responses between 

the horizontal and the vertical orientations was significant for individuals with high graph 

literacy (ps < .01), but not for those with low graph literacy (ps > .1). A similar tendency was 

observed for decisions, but it was not significant.  

 

Discussion 

Graphical displays are powerful tools that can facilitate the communication and 

comprehension of quantitative information. A key to the success of graphs is that they exploit 

the human ability to think about abstract concepts in spatial terms. Through our direct 

experience with the physical world we acquire associations between spatial and conceptual 

aspects (e.g., the higher a pile of elements, the larger its quantity), which we frequently use as 

a basis to infer meaning from graphs (Tversky, 2001, 2009). However, on some occasions 

information conveyed by spatial features in graphs can conflict with information conveyed by 

conventional features such as the axes labels or the range of scale values. In such cases an 

overreliance on spatial-to-conceptual mappings grounded in the physical world can lead 

people to misinterpret the data depicted. In this study, we demonstrated that people’s reliance 

on direct spatial-to-conceptual mappings varied as a function of graph literacy. 

Our results revealed the existence of a strong tendency for people to make erroneous 

inferences about data presented in bar graphs containing a conflict between information 

conveyed by spatial features and information conveyed by conventional features. For a graph 

presenting the percentage of people without different types of allergy more than 40% of the 

participants incorrectly inferred that the most prevalent allergy was the one represented by 

the largest bar. For other graphs the tendency was even more dramatic with over 70% of the 

participants misinterpreting the data depicted. These findings support the notion that people 

frequently rely on spatial-to-conceptual mappings grounded in their real-world experience to 

interpret graphs (Tversky, 2001, 2009). Notably, our results suggest that people may 

frequently rely on these mappings even when this leads to erroneous inferences and non-

normative decisions.  

Crucially, our results also demonstrated that the tendency to rely primarily on spatial-

to-conceptual mappings to interpret graphs and make decisions was stronger among less 

graph-literate individuals than among highly graph-literate individuals. Individuals with low 
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graph literacy more often neglected important information in the title of the graphs, axes 

labels, and the numerical scales. These findings contribute to our understanding of some of 

the ways in which viewers’ graph-related knowledge interacts with the characteristics of 

displays in graph comprehension.  In particular, our data indicate that individuals with limited 

graph-related knowledge may often interpret graphs on the basis of direct translations of 

visuospatial features into conceptual information, grounded in their real world experience. As 

a consequence of their limited knowledge concerning graphic conventions, these individuals 

can be less likely to incorporate information from conventional features such as the axes 

labels or numerical values on the scales in their interpretation of graphs. Interestingly, our 

data also revealed that highly graph literate individuals may in some instances be as likely as 

less graph literate individuals to show errors linked to an overreliance on spatial-to-

conceptual mappings. This was the case for vertical graphs containing essential information 

in the scale. One possible explanation of this finding is that participants did not engage in a 

thorough encoding of all elements in the graphs. This might have led even highly graph 

literate participants to fail to identify information in the scales. Whether this is in fact the case 

should be investigated in future research.   

Our results also revealed that manipulating the orientation of bar graphs affected 

participants’ tendency to show incorrect responses corresponding to direct spatial-to-

conceptual mappings. However, this was only the case for graphs containing essential 

information in the scale and this effect of orientation was moderated by graph literacy. In 

particular, when such graphs were oriented horizontally highly graph literate participants 

were less likely to show incorrect responses corresponding to mappings than when they were 

oriented vertically. Instead, among less graph literate participants, the number of incorrect 

responses corresponding to mappings did not reliably vary as a function of orientation. This 

result is inconsistent with the hypothesis that viewers would be more likely to rely on spatial-

to-conceptual mappings for graphs containing vertical bars than for graphs containing 

horizontal bars. This prediction was based on the assumption of a strong association existing 

in the physical world between quantity and position along the vertical dimension (Lakoff & 

Johnson, 1980; Tversky et al., 1991). If vertical bars prompted to a larger extent an 

association between height and quantity, a larger number of responses corresponding to 

spatial-to-conceptual mappings should have been observed for all kinds of vertical graphs, as 

compared to horizontal graphs.  

Instead, the interaction observed between orientation and type of conflict is consistent 

with the hypothesis that the orientation of conventional features (i.e., the scale) affects the 
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likelihood that such features will be incorporated in viewers’ interpretations. In horizontal 

graphs numbers in the scale are oriented in a way that matches Westeners’ reading habits 

(i.e., along the horizontal dimension), and this might facilitate the task of reading and 

integrating the values shown. Additionally, horizontal graphs are less prevalent than vertical 

graphs (Kosslyn, 2006; Tversky, 2001). Thus, the horizontal orientation might also motivate 

viewers to engage in a more thorough exploration of graphs. The finding that the change in 

orientation only reliably affected performance of highly graph literate individuals further 

supports the notion that higher levels of knowledge of graphic conventions help override the 

reliance on spatial-to-conceptual mappings grounded in the physical world. When provided 

with a format that may encourage a more thorough exploration of graphs and that can 

facilitate reading values on the scale, highly graph literate individuals showed a larger 

tendency to incorporate this information in their interpretations, while the performance of less 

graph literate individuals remained unaffected.  

Taken together, our findings show that individual differences in graph literacy can be 

linked to differences in the likelihood to engage in the general processes outlined in 

theoretical graph comprehension models (i.e., encoding of the visual pattern, translating 

visual features into conceptual relations, and determining the referents of the concepts; 

Carpenter & Shah, 1998; Lohse, 1993; Pinker, 1990). When spatial features can be readily 

translated into information about quantities through knowledge acquired in the environment, 

less graph literate individuals show a bias toward basing their interpretations of graphs 

primarily on such translations (i.e., to rely to a larger extent on the second process involved in 

graph comprehension). It is not clear whether the larger tendency of less graph literate 

individuals to neglect information in conventional features is driven mainly by difficulties to 

integrate information contained in such features with the corresponding bars on the chart (i.e., 

third process involved in graph comprehension) or if this mainly reflects a failure to 

sufficiently encode and elaborate on the relevant features. In any case, these processes are 

interrelated, as integration processes entail subsequent cycles of encoding of conventional 

features and data points (Carpenter & Shah, 1998; Huestegge & Philipp, 2011; Shah & 

Carpenter, 1995). A more precise account of the differences in the time course of underlying 

cognitive dynamics is beyond the scope of the current investigation and methods. Ongoing 

research using cognitive process tracing methodologies (i.e., eye tracking; reaction time 

analysis) is investigating these issues (Okan, Galesic, & Garcia-Retamero, 2013; Woller-

Carter, Okan, Cokely, & Garcia-Retamero, 2011). 
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Notably, our results highlight that associations acquired through experience with the 

physical world can constitute a basis for the translation of spatial information onto 

information about more abstract quantities in graphs. This is consistent with the theory that 

off-line cognition is affected by our interactions with the physical world (Fischer & Zwaan, 

2008; Zwaan & Taylor, 2006). That is, our findings converge with the perspective on 

embodied cognition suggesting that off-line cognitive activity—activity that is detached from 

direct physical inputs and outputs and that entails manipulating elements that are not directly 

present—is often rooted in knowledge acquired via interactions with our environment 

(Wilson, 2002; but for related arguments concerning the ecological grounding of cognition 

see Gigerenzer, Todd, & the ABC research group, 1999; Simon, 1996). Our interactions with 

the physical world shape the way in which we construct and infer information from external 

spatial representations such as graphs (Tversky, 2009). Notably, our findings point to 

individual differences in skill as a moderator of the extent to which people use embodied 

processes to interpret abstract information (see Madden & Zwaan, 2006; for related 

differences in elaborative encoding and abilities see Cokely & Kelley, 2009; Cokely, Kelley, 

& Gilchrist, 2006).  

Our findings also contribute to our theoretical understanding of the mechanisms 

underlying graph comprehension in individuals of varying skill levels. However, it is 

important to acknowledge that the graph comprehension mechanisms outlined in the present 

paper may not generalize to different kinds of visual displays. Future research should aim to 

identify the mechanisms underlying comprehension for displays of varying complexity (see 

e.g., Canham & Hegarty, 2010; Trickett & Trafton, 2006) as well as to pinpoint the 

commonalities and differences in such mechanisms across displays.  

The current investigation also has practical implications. First, it highlights common 

means by which graphical communication can be distorted, capitalizing on biases and 

causing judgment errors. Graphical displays are increasingly being used and recommended 

for the communication of medical risks to the public (Ancker et al., 2006; Lipkus, 2007). Our 

results suggest that caution should be taken to ensure that viewers of varying skill levels infer 

the correct meaning from graphs. Furthermore, they provide converging evidence on the 

effect of manipulations of values on the scales (e.g., variations in the range of values along 

the y axis) on viewers’ judgments and decisions, which have been studied extensively in the 

literature of impression management with graphs (Arunachalam, Pei, & Steinbart, 2002; 

Pennington & Tuttle, 2009). 
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 Second, our results suggest that some formats may be more prone to mislead viewers 

than others. We documented that participants more often made erroneous inferences when 

graphs containing a conflict between spatial features and values on the scale were oriented 

vertically. Vertical formats are more prevalent than horizontal formats (Kosslyn, 2006; 

Tversky, 2001) and experimental studies have demonstrated that vertical bar graphs can favor 

faster decision times concerning the quantities represented (Fischer et al., 2005). However, 

our findings suggest that horizontally oriented graphs can, in some cases, encourage the 

integration of important information contained in elements such as numerical scales, leading 

to an enhanced comprehension for some viewers. 

As with all studies, the current work has a number of limitations. First, specific 

dispositions of the elements of the stimulus materials were created to foster high internal 

validity and allow clear theory evaluation. Accordingly, it is difficult to precisely estimate the 

ecological validity of these materials or the frequency with which related design features are 

present in medical or other graph-based communication. Nevertheless, research indicates that 

many graphs that are available to the public often do include misleading characteristics 

similar to those manipulated in the present study, such as improperly scaled axes (Beattie & 

Jones, 2002; Cooper, Schriger, Wallace, Mikulich, & Wilkes, 2003) or longer bars 

representing lower values (Kosslyn, 2006). It should also be noted that only four different 

sets of bar graphs were used as stimuli in the current study. As well, both the materials and 

the graph literacy instrument used focused on judgment and decision making in the medical 

domain. Thus, more research is needed before offering public policy implications. Future 

research should include more diverse and ecological materials along with a higher-fidelity 

examination of associated cognitive dynamics. Relevant research projects are currently 

underway in our laboratories with emphasis on comprehension processes in graphs used to 

communicate with the public and with professionals across a variety of domains (e.g., actual 

political, medical, and consumer communication; Woller-Carter et al., 2011).  

 In conclusion, we have demonstrated that associations acquired through experience 

with the physical world can constitute a robust basis for the translation of spatial information 

onto information about quantities depicted in graphs. Moreover, we have documented a link 

between embodiment and judgment bias.  In the current experiment this bias led to robust 

medical judgment and decision making errors.  However, it is important to note that in other 

environments such biases can also be adaptive and lead to superior performance (Gigerenzer 

& Brighton, 2009). Of note, the current study also showed that the observed judgment biases 

were moderated by individual differences. Individuals who were higher in graph literacy 
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showed more flexible interpretations of graphs and were less likely to show judgment and 

decision errors. Ultimately, a precise theoretical understanding of the nature and causes of 

our judgment biases allows the anticipation of potential errors and development of improved 

educational interventions. Accordingly, the current findings provide theoretical links to 

fundamental embodied and ecological mechanisms that give rise to more and less effective 

graphical comprehension. Such findings can play a central role in the development of 

custom-tailored decision support systems built to inoculate professionals, policy makers, and 

the general public against potentially distorted and misleading communication. 
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How People with Low and High Graph Literacy Process Health Graphs: Evidence from 

Eye-Tracking 

 

Abstract 

 

Graphs facilitate the communication of important quantitative information needed to 

understand and manage risks. Yet people differ substantially in their graph literacythe 

ability to understand graphically presented information. Although some features of graphs 

can be interpreted using spatial-to-conceptual mappings that are non-arbitrary and can be 

established by adults and children with no graphing experience (e.g., “higher bars equal 

larger quantities”), other features are linked to arbitrary graph conventions (e.g., axis labels 

and scales). In two experiments, we examined differences in the processes underlying the 

comprehension of graphs presenting medical information in individuals with low and high 

graph literacy. Participants’ eye movements were recorded while they interpreted graphs in 

which information in conventional features (e.g., axis labels, values on scales) was 

incongruent with that conveyed by spatial features (e.g., heights of bars). Results revealed 

that participants with low graph literacy more often relied on misleading spatial-to-

conceptual mappings and misinterpreted the data depicted. When graphs contained essential 

information in y and x axis scales, participants with low graph literacy spent less time 

viewing those regions compared to participants with high graph literacy. Differences in 

viewing times mediated the effect of graph literacy on accuracy of graph comprehension. 

These findings suggest that graph literacy affects people’s tendency to direct attention to and 

encode some conventional features. This tendency, in turn, affects performance. Theoretical, 

methodological, and prescriptive implications for customization of decision-support systems 

are discussed. 
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Introduction 

Graphical displays such as line plots, bar charts, and icon arrays can serve as highly 

valuable tools for overcoming difficulties in the comprehension of numerical concepts, 

enhancing accuracy in evaluation of risks (Ancker, Senathirajah, Kukafka, & Starren, 2006; 

Garcia-Retamero & Cokely, 2011; Lipkus, 2007). Unfortunately, graphs are not equally 

useful for all individuals, as people in the general population differ substantially in their 

ability to understand graphically presented information (Galesic & Garcia-Retamero, 2011b; 

Kutner, Greenberg, Jin, & Paulsen, 2006). These differences can affect the extent to which 

individuals benefit from visual displays (Gaissmaier et al., 2012; Garcia-Retamero & Galesic, 

2010; Okan, Garcia-Retamero, Cokely, & Maldonado, 2012). Yet the processes underlying 

the effect of different displays in individuals with varying levels of graph literacy are not well 

understood. We used eye-tracking methodology to investigate how differences in graph 

literacy affect the processes underlying graph comprehension. 

 Graph literacy refers to one’s ability to understand graphically presented information 

and includes general knowledge about making inferences from different graphic formats 

(Freedman & Shah, 2002; Shah & Freedman, 2011). That is, graph literacy constitutes one of 

the top-down influences that can affect graph interpretations, which can act in conjunction 

with other top-down influences such as the viewer’s knowledge of the content being depicted 

and expectations about the data (Freedman & Shah, 2002; Novick, 2006; Shah, Freedman, & 

Vekiri, 2005). Like other types of literacy (e.g., prose and document literacy; Kutner et al., 

2006), higher graph literacy has been found to be associated with higher educational levels 

(Galesic & Garcia-Retamero, 2011b), highlighting that developing this skill requires 

knowledge acquired through formal education and experience with graphs. 

 Graph literacy can include mental representations stored in long-term memory that 

contain knowledge about the properties of different kinds of displays and procedures for 

interpreting them (i.e., graph schemas; Maichle, 1994; Peebles & Cheng, 2001, 2003; Pinker, 

1990; Ratwani & Trafton, 2008). Individuals with higher graph literacy may have more 

complete schemas, which can contribute to recognizing specific types of graphs, identifying 

the most relevant features in each graph, and making accurate interpretations of the 

information depicted. In line with this idea, individuals with high graph literacy have been 

found to direct their attention to the information that is most typical for the specific kind of 

graph viewed (e.g., quantitative trend for line graphs; Maichle, 1994) and to generate the 

relevant inferences that are supported by the type of graph (Shah & Freedman, 2011). It is not 
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clear, however, how individual differences in graph literacy affect the processes involved in 

graph comprehension. 

Prominent graph-comprehension models have identified three types of processes in 

which viewers engage when making inferences from graphical displays, such as line or bar 

graphs (e.g., Carpenter & Shah, 1998; Kosslyn, 1989; Lohse, 1993; Pinker, 1990; Simkin & 

Hastie, 1987). The first is encoding the visual pattern to identify the principal features in 

graphs (e.g., lines with different slopes), and it involves making different visual judgments of 

the elements (e.g., judgments of position along a scale, slope, length, or angle; Cleveland & 

McGill, 1986).  

The second process is the translation of the identified visual features into conceptual 

relations. For example, variations in the size of spatial features (e.g., bars of different 

heights) can be used to indicate variations in the quantity of the variables represented. Spatial 

features are those contained in the pattern, including bars of different heights, or lines 

following an increasing or decreasing trend. There is evidence suggesting that these 

translations of spatial into conceptual information—spatial-to-conceptual mappings—are 

non-arbitrary and governed by general cognitive constraints, as certain mappings (e.g., “high 

equals more,” “steeper equals faster”) emerge consistently in adults and children with no 

graphing experience (Gattis, 2002, 2004). As shown by Gattis (2002, 2004) one of these 

constraints stems from the sensitivity to similarities of relational structure, which leads 

people to pair spatial elements with conceptual elements, (e.g., quantity and height), and 

spatial relations with conceptual relations (e.g., rate and slope). Another important constraint 

comes from viewers’ experience with their physical environment (Tversky, 2001, 2009). To 

illustrate, in the physical world, larger quantities of substances typically reach higher 

positions along the vertical dimension (Lakoff & Johnson, 1980; Tversky, Kugelmass, & 

Winter, 1991). By applying this real-world experience to graphs, viewers can infer that higher 

data points represent larger values. Hence, often spatial features (e.g., bars of different 

heights) can convey meaning independent of viewers’ level of graph literacy. 

The third process involves determining the referents of the concepts identified by 

associating them with the specific variables shown in the graph and their numerical values 

(Carpenter & Shah, 1998; Shah & Carpenter, 1995). This process entails identifying and 

inferring information from conventional features in graphs, including the title of the graph, 

axis labels, legends, and numerical values on the scales, and integrating this information with 

that extracted in the first two processes. Conventional features are determined by arbitrary 

graph conventions and typically do not map onto viewers’ experience with their environment 
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(Okan, Garcia-Retamero, Galesic, & Cokely, 2012). Viewers with low graph literacy may be 

less likely to have schemas incorporating arbitrary graph conventions and thus can be less 

prone to identify the relevant conventional features and to incorporate this information in 

their interpretations. In contrast, high graph literacy may help viewers to more readily 

identify and incorporate relevant conventional features in graphs. Additionally, graph-related 

knowledge could direct subsequent cycles of encoding and interpretation (Carpenter & Shah, 

1998; Pinker, 1990), directing attention to labels or scales that contain information required 

to answer questions about the data. 

The relevance of identifying and inferring information from conventional features can 

vary depending on specific properties of the graphical displays. If information conveyed by 

spatial features (e.g., bar heights) is congruent with that conveyed by conventional features, 

viewers could neglect conventional features and nevertheless reach correct interpretations by 

relying on spatial-to-conceptual mappings. However, if such congruency does not exist, 

identifying and inferring information from conventional features becomes critical to reach a 

correct interpretation. This can occur when spatial features of the graph convey a different 

meaning from textual information in the title and axis labels (textual conflicts) or numerical 

values on the scale (scale conflicts). For instance, a graph with a textual conflict might 

present the percentage of people without different types of allergy (as indicated in the title 

and axis label), implying that higher bars do not represent more prevalent allergies. In such 

cases, taking into account information in conventional features is crucial to override spatial-

to-conceptual mappings and avoid misinterpretations (e.g., recognizing that higher bars do 

not necessarily imply larger quantities). 

Differences in the tendency to neglect information in conventional features could arise 

from at least two mechanisms, which are linked to the third process outlined above. One 

possibility is that people with low and high graph literacy differ in the extent to which they 

attend to the relevant conventional features (i.e., less graph literate individuals might attend to 

such features to a lesser extent). This is in line with the information reduction framework 

proposed by Haider and Frensch (1996, 1999). This framework suggests that more skilled 

individuals acquire the ability to distinguish between task-relevant and task-redundant 

information and focus on the former, whereas less skilled individuals are not able to make 

such distinctions. This framework emphasizes the notion that skill acquisition leads to 

differences in attention allocation (i.e., differences in terms of which information is processed 

and not only how the information is processed; for related arguments concerning the effect of 
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expertise on the use of relevant cues in judgment and decision making tasks, see Shanteau, 

1992).  

Consistent with the information reduction framework, eye-tracking studies 

investigating the effect of expertise and instruction in different domains, including 

meteorology (Canham & Hegarty, 2010), biological classification (Jarodzka, Scheiter, 

Gerjets, & van Gog, 2010), and driving (Di Stasi, Contreras, Cándido, Cañas, & Catena, 

2011), have revealed that experts fixate to a larger extent on areas that are relevant for the 

task at hand. Additionally, research on problem solving and risky decision making has 

revealed that individuals who score high on cognitive-ability measures spend more time 

encoding the elements that are required to reach a solution (Sternberg, 1977) and engage to a 

larger extent in elaborative heuristic search (i.e., a more thorough exploration of the problem 

space), pointing to strategic differences in elaboration during encoding (Cokely & Kelley, 

2009; Cokely, Kelley, & Gilchrist, 2006; see also Woller-Carter, Okan, Cokely, & Garcia-

Retamero, 2012). This line of research also suggests the existence of a link between superior 

performance and knowledge-driven differences in attention allocation and encoding. 

Accordingly we expected that, for graphs containing the kinds of conflicts described above, 

differences should exist in the viewing time of the relevant conventional features between 

individuals with low and high graph literacy.
13

 

 An alternative possibility is that graph literacy may not affect attention allocation or 

encoding, and differences in interpretation could result primarily from differences in 

conceptual understanding about the meanings of elements of graphs, and mental operations 

on elements of graphs. That is, less graph literate individuals might attend to the relevant 

conventional features to the same extent as individuals with high graph literacy but may fail 

to incorporate this information at a conceptual level in their interpretations (for a related 

distinction in terms of perceptual and conceptual stages, see Haider & Frensch, 1999). If this 

is the case, no differences should be observed in the viewing time of relevant conventional 

features between people with high and low graph literacy. 

To determine if and how graph literacy affects allocation of attention to conventional 

features, we conducted two experiments in which we recorded the eye movements of 

                                                
13 It should be noted that another prediction that derives from the information reduction framework is that higher 

skill will lead to an increase in the speed with which tasks are processed, as a consequence of the acquired 

ability to ignore task-redundant information. However, we do not expect this to be applicable to the tasks used 

in the current research, as none of the information depicted in the graphs can be considered redundant in this 

sense. 
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participants with low and high graph literacy while they interpreted line graphs and bar 

graphs displaying quantitative medical information (i.e., prevalence of different diseases or 

effects linked to different treatments). In both experiments we included a set of graphs 

constructed in such a way that following spatial-to-conceptual mappings grounded in 

experience with the environment would lead to erroneous interpretations. Additionally, in 

Experiment 2 we also included a set of graphs where following spatial-to-conceptual 

mappings would lead to correct interpretations. 

 

Experiment 1 

Experiment 1 included four graphs containing conflicts between spatial and 

conventional features. In two of the graphs essential information was included in the title and 

in the textual label for the y axis (textual conflict); the other two contained essential 

information in the numerical scale for the y axis (y-axis-scale conflict). Taking into account 

the roles of prior knowledge outlined above, we proposed three hypotheses. First, in line with 

recent findings reported by Okan et al. (2012b), we predicted that low graph literacy would 

be associated with a larger tendency to interpret graphs on the basis of spatial-to-conceptual 

mappings. For graphs containing conflicts, this should be reflected in a larger proportion of 

incorrect responses corresponding to mappings among participants with low graph literacy 

(e.g., they might often assume that the highest bar represents the highest value) (Hypothesis 

H1). 

Second, in line with the information reduction framework proposed by Haider and 

Frensch (1996, 1999), we expected that individuals with low graph literacy would be less 

likely to recognize and attend to the conventional features that are essential to reach a correct 

interpretation, according to the conflict present in the graph. This should be reflected in 

relatively longer times spent viewing such features for participants with high graph literacy, 

as compared to those with low graph literacy (H2). Third, we expected that the longer 

viewing time of the relevant conventional features would mediate the relationship between 

graph literacy and the proportion of incorrect responses corresponding to mappings (H3).  

 

Method 

Participants. 

A total of 52 participants were recruited from the respondent pool of the Max Planck 

Institute for Human Development in Berlin. Technical problems prevented recording the eye 

movements of 4 participants. Thus, the final sample consisted of 48 participants (50% 
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female), mean age of 25.7 years (SD = 3.3, range 19–34 years), 52% with up to high school 

education and 48% with at least some college. Participants were paid 10 euros for taking part 

in the study. 

 

Materials. 

Eye-tracking equipment. Participants’ eye movements were recorded by a Tobii T120 

Eye Tracker. In this system the eye-tracking cameras are integrated into a 17-in. thin film 

transistor monitor, allowing for unobtrusive recording of respondents’ eye movements. The 

documentation of the T120 describes its accuracy to be within 0.5° with less than 0.3° drift 

over time and less than 1° as a result of head motion. It allows for head movement within a 

volume of 30  22  30 cm centered 70 cm from the camera. The sampling rate is 120 Hz. To 

define fixations we used the built-in fixation filter available in Tobii Studio (v. 2.0.3) with a 

fixation radius of 30 pixels on a screen with a resolution of 1,280  1,024 pixels. For all 

analyses we took into account fixations that lasted at least 100 ms, as this decreases noise in 

the data (Peebles & Cheng, 2003). 

Stimuli. We constructed four graphs presenting medical information, such as 

prevalence of different diseases and effects linked to different treatments. In two of the 

graphs, essential information was included in the numerical scale for the y axis (graphs with 

y-axis-scale conflicts; see graphs G1 and G2 in Appendix A); the other two contained 

essential information in the title and in the textual label for the y axis (graphs with textual 

conflicts; see graphs G11 and G12 in Appendix A). To illustrate, one of the graphs involving 

a scale conflict was a line graph presenting data about the percentage of people with a 

fictitious disease. The numerical scale on the y axis was inverted (i.e., values increased from 

top to bottom; see graph G1 in Appendix A). Participants were asked to find the year in 

which the percentage of people with the disease was highest. To answer this question 

correctly, participants had to attend to the scale to infer that the usual spatial-to-conceptual 

correspondence between height and quantity was reversed. An example of the graphs 

involving textual conflicts is a bar graph presenting data about percentages of people without 

a fictitious disease in different clinics (see graph G11 in Appendix A). Participants were 

asked to identify the clinic in which the percentage of people with the disease was highest. To 

answer this question correctly, participants had to attend to the title and the label for the y 

axis to infer that the usual spatial-to-conceptual mapping was reversed (i.e., they had to infer 
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that higher bars represented lower values). All materials were implemented as a Web survey 

using the platform Unipark (www.unipark.de). 

Coding of eye fixations. For each graph we defined a set of areas of interest (AOIs) 

corresponding to the conventional features containing essential information to answer the 

question, according to the types of conflicts present (i.e., titles, labels for the y axes, and 

scales on the y axes). For each participant, we computed the total time spent viewing each of 

the AOIs, which constituted the sum of the duration of all fixations on the AOI. The number 

of fixations and the total time spent viewing each AOI were highly correlated (mean 

correlation = .95 across all variables computed). For the sake of simplicity we report only the 

results for total viewing times. 

Measurement of graph literacy. Graph literacy was measured using the scale 

developed by Galesic and Garcia-Retamero (2011b; see also Garcia-Retamero & Galesic, 

2010). This scale consists of 13 items dealing with the communication of medical risks, 

treatment efficiency, and prevalence of diseases, and covers four frequently used graph 

typesline plots, bar charts, pies, and icon arrays. Because the scale was designed for the 

general population, to achieve better differentiation of graph literacy in our somewhat better 

educated sample, we also included four more difficult items from other scales. In particular, 

we included one item from the Kramarski and Mevarech Graph Interpretation Test 

(Kramarski & Mevarech, 2003), two items assessing graph comprehension from the 

International Adult Literacy Survey (Tuijnman, 2000), and one item from the National 

Assessment of Adult Literacy (Kutner et al., 2006). The total score for each participant was 

computed by adding the score for these four items to the score obtained in the scale 

developed by Galesic and Garcia-Retamero (2011b). 

For some analyses, we split participants into two groups according to the median 

graph literacy score for the total sample (i.e., 14.5 of the total 17). Thus, the group of 

participants with low graph literacy included those who obtained 14 or fewer correct 

responses (n = 24), while the group of participants with high graph literacy included those 

who obtained 15 or more correct responses (n =24). Participants with low graph literacy 

answered on average 12.5 (SD =1.6) items correctly, while participants with high graph 

literacy answered on average 16.2 (SD = 0.8) items correctly. 

Measurement of numeracy. We also assessed participants’ numeracy skills (i.e., the 

ability to understand and manipulate different numerical expressions of probability; Lipkus, 

Samsa, & Rimer, 2001; Peters, 2012). Participants’ numeracy was measured using the 11 
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items included in the general and expanded numeracy scales developed by Lipkus et al. 

(2001). 

 

Procedure. 

The experiment took on average 23.2 min (SD = 5.7) to complete and included three 

sections. In the first section, participants signed a consent form that described the eye-

tracking procedure and successfully completed a standardized calibration exercise. They were 

then presented with the four graphs depicting medical information. In the second section, 

participants completed Galesic and Garcia-Retamero’s (2011b) graph literacy scale. In the 

third section, participants completed the four more difficult items measuring graph literacy 

described above and the numeracy scale, and they answered some demographic questions. As 

calibration can decrease in accuracy over time, respondents were recalibrated at the 

beginning of each new section. The study was approved by the Ethics Committee of the Max 

Planck Institute for Human Development. 

 

Results 

Does Graph Literacy Affect Interpretations of Graphs With Conflicts? The average 

proportion of correct responses to the questions across graphs was 56% (SE = 10.6), while the 

average proportion of incorrect responses corresponding to spatial-to-conceptual mappings 

(mapping responses, e.g., assuming that the highest value is the one represented by the 

highest bar) was 37% (SE = 9.5). As expected, the average proportion of incorrect responses 

that were not related to the mapping was low (7%; SE = 1.9), indicating that the majority of 

participants who misinterpreted the graphs did so on the basis of direct spatial-to-conceptual 

mappings. Thus, for the analyses presented below we computed for each participant the 

percentage of items in which she or he had provided the incorrect response corresponding to 

the spatial-to-conceptual mapping (mapping response), for each type of conflict (i.e., textual 

vs. y-axis-scale conflicts). 

The average percentage of mapping responses among participants with low graph literacy 

was 42% (SE = 7.2) for y-axis-conflict graphs and 56% (SE = 6.9) for textual-conflict graphs. 

In contrast, participants with high graph literacy showed on average 27% (SE = 5.1) mapping 

responses for y-axis-conflict graphs and 23% (SE = 6.0) for textual-conflict graphs. A 2 × 3 

analysis of variance (ANOVA) with graph literacy as between-subjects factor and type of 

conflict as within-subject factor on the average percentage of mapping responses revealed a 

main effect of graph literacy, F(1,46) = 15.38, p = .001, ηp
2 

= .25, supporting H1. All other 
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effects were not reliable (Fs < 2, ps > .1). The average percentage of mapping responses did 

not reliably vary as a function of numeracy. The correlation of graph literacy with numeracy 

was .38. 

Does Graph Literacy Affect the Viewing Time of Relevant Conventional Features? To 

answer this question we examined the distributions of time spent viewing the different AOIs. 

As distributions were skewed right, the analyses that will be presented below were conducted 

using log-transformed values. Table 1 shows raw and log-transformed mean viewing times 

for the different areas of the graph. 

 

Table 1. Raw and log-Transformed Mean Times Spent Viewing the Relevant Areas of the Graphs and Total 

Viewing Times in Experiment 1, as a Function of Type of Conflict and Graph Literacy (SEM in Parentheses) 

 

 Area of graph 

Graphs with y-axis-scale 

conflict 

Graphs with textual  

conflict 

Low graph 

literacy 

High graph 

literacy 

Low graph 

literacy 

High graph 

literacy 

y-axis scale 

      Time 2.59 3.10 1.15 1.47 

 

(0.49) (0.46) (0.17) (0.24) 

  Log time 0.29 0.69 -0.21 0.00 

 

(0.21) (0.19) (0.15) (0.16) 

Title & y-axis 

label 

      Time 4.34 5.24 4.96 6.44 

 

(0.67) (0.63) (0.65) (0.64) 

  Log time 1.10 1.38 1.31 1.68 

 

(0.15) (0.12) (0.16) (0.10) 

Graph total 

      Time 14.98 15.43 12.97 15.49 

 

(1.46) (1.39) (1.05) (1.39) 

  Log time 2.58 2.59 2.47 2.62 

  (0.09) (0.09) (0.08) (0.09) 

Note: Relevant conventional features for each type of conflict are marked in bold. 

 

As our hypothesis was concerned with the time spent viewing the relevant 

conventional features in each case, we performed a 2 × 3 ANOVA with graph literacy as 

between-subjects factor and type of conflict as within-subject factor on the mean log-

transformed time spent viewing the relevant conventional features. This analysis revealed a 
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main effect of graph literacy, F(1,46) = 4.11 p = .048, ηp
2 

= .08, indicating that participants 

with high graph literacy spent more time fixating on the areas containing essential 

information in each graph, in line with H2. The analysis also revealed a main effect of type of 

conflict, F(1,46) = 47.61, p = .001, ηp
2 

= .51, as the mean viewing time was higher for the 

textual elements (i.e., y-axis label and title) than for the y-axis scale. 

In contrast, the total time that participants spent viewing the graphs did not vary as a 

function of graph literacy (F < 1, ps > .3). No significant differences were observed as a 

function of numeracy in the time spent viewing the relevant conventional features or in the 

total viewing time. 

Is the Effect of Graph Literacy on Accuracy Mediated by Differences in the Viewing 

Time of Conventional Features? We conducted mediational analyses to determine if the 

influence of graph literacy on the tendency to show incorrect mapping responses was 

mediated by the time viewing spent conventional features, for graphs with y-axis and textual 

conflicts. In a regression equation, graph literacy scores significantly predicted the percentage 

of incorrect mapping responses for both y-axis-conflict graphs, β= .29, t = 2.03, p = .049, 

and textual-conflict graphs, β= .48 t = 3.7, p = .001, with higher graph literacy associated 

with fewer incorrect responses. Furthermore, graph literacy scores significantly predicted the 

mean log-transformed times spent viewing the relevant conventional features for y-axis-

conflict graphs, β= .30, t = 2.1, p = .042, and for textual-conflict graphs, β= .31, t = 2.2, p = 

.033. Participants with higher graph literacy spent more time fixating on the relevant 

conventional features. When the mean log-transformed time spent viewing the conventional 

features was included in the regression equation for y-axis-conflict graphs, viewing time 

predicted the number of incorrect mapping responses, β= .41, t = 2.97, p = .005, whereas 

the direct effect of graph literacy on mapping responses was no longer significant, β = .17, t 

= 1.21, p = .230 (see Figure 1a). In contrast, for textual-conflict graphs when the mean log-

transformed time spent viewing the conventional features was included in the regression 

equation, viewing time did not predict the number of incorrect mapping responses, β = .14, t 

= 1.06, p = .294, whereas the direct effect of graph literacy on mapping responses remained 

significant, β= .44, t = 3.2, p = .002.
14

 

                                                
14 Results remained unchanged when either the time spent viewing the y-axis label or the title were included in 

regression equations, instead of the sum of the time spent viewing both areas. 
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Figure 1. Mediational analyses of the effect of graph literacy on the percentage of incorrect mapping responses, 

and the mediational effect of viewing time of relevant conventional features. The value in parentheses shows the 

relationship between graph literacy and incorrect mapping responses after controlling for viewing time of 

conventional features. (a) Results for Experiment 1, for graphs with y axis-scale conflicts; (b) Results for 

Experiment 2, for graphs with y-axis-scale conflicts (top panel) and x-axis-scale conflicts (bottom panel). 

Note: Standardized coefficients are shown. *p < .05, **p < .01. 
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To test the mediation effect for y-axis-conflict graphs we performed a bootstrap 

analysis with 1,000 resamples using the PROCESS procedure developed by Hayes (2013). 

The analysis provided evidence of a significant indirect effect of time spent viewing the y-

axis scale: The mean estimate was 1.66, within the 95% confidence interval [3.76, 0.36]. 

This supports H3. Finally, to further explore more general patterns of eye fixations, we 

performed additional analyses examining the different types of transitions between different 

regions, following Carpenter and Shah (1998). Results of these further analyses can be found 

in Appendix B. 

 

Discussion 

The results of Experiment 1 show that people tend to make erroneous inferences 

indicating an overreliance on spatial-to-conceptual mappings. Crucially, the tendency to rely 

primarily on such mappings was larger for less graph literate individuals, in line with our 

predictions. This tendency held both when the essential information to override the mappings 

was conveyed in textual information in the title and y-axis label (i.e., textual conflicts) and 

when it was included in numerical values on the y-axis scale (i.e., y-axis-scale conflicts). Of 

note, Okan et al. (2012b) found a similar pattern of findings for graphs that were oriented 

horizontally. However, when graphs were oriented vertically (as in the present study), the 

larger tendency to misinterpret graphs among less graph literate individuals was reliable only 

for graphs with textual conflicts and not for graphs with y-axis-scale conflicts. However, the 

study reported by Okan et al. (2012b) was conducted online and the stimulus set employed in 

that study was related but not equivalent to that used in the present study. The inclusion of a 

larger set of stimulus materials for each type of conflict in Experiment 2 enabled us to 

determine the extent to which the pattern of findings observed in Experiment 1 generalizes to 

a more diverse set of graphs. 

In line with our predictions, analyses of participants’ eye movements in Experiment 1 

revealed that less graph literate participants spent less time fixating on the relevant 

conventional features containing essential information in each case, as compared to highly 

graph literate participants. These findings are in line with the information reduction 

framework proposed by Haider and Frensch (1996, 1999), according to which skill 

acquisition leads to differences in attention allocation, with more skilled individuals focusing 

more on task-relevant information. Although in the task of graph comprehension all regions 

of a graph are arguably relevant to reach an accurate interpretation, those determined by 
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arbitrary graph conventions (e.g., axis labels, values on scales) become particularly relevant 

when graphs contain the conflicts described above. Viewers with low graph literacy can be 

less likely to have stored graph schemas (Maichle, 1994; Pinker, 1990) that would direct their 

attention to conventional features. This might lead them to spend less time viewing these 

features. That is, the findings of Experiment 1 support the notion that lower levels of graph 

literacy are associated not just with a failure to understand and integrate information in 

conventional features at a conceptual level, but also with a tendency to spend less time 

encoding them. 

Importantly, the total time spent viewing the graphs did not vary reliably as a function 

of graph literacy. This finding indicates that individuals with high graph literacy do not just 

engage in a more thorough exploration of all regions of the graphs but instead allocate more 

attention to those regions containing the most relevant information for the task at hand. 

Finally, in line with our hypotheses we also found that the influence of graph literacy 

on the tendency to show incorrect responses could be accounted for by the time spent 

viewing numerical scales on the y axis. However, this was not the case for the time spent 

viewing textual elements (i.e., title and y-axis labels). For y-axis-conflict graphs, the full 

mediation observed suggests that the shorter times spent viewing scales among individuals 

with low graph literacy satisfactorily accounted for their performance. In contrast, for graphs 

with textual conflicts, the absence of a significant indirect effect of the time spent viewing 

textual elements suggests that the effect of graph literacy on performance is mediated by a 

factor other than viewing times (for a discussion concerning different types of mediation, see 

Zhao, Lynch, & Chen, 2010). However, the small number of graphs employed in Experiment 

1 prompts us to suggest caution in our interpretations, as the observed pattern of findings may 

not generalize to a more diverse set of graphs. 

 

Experiment 2 

 Experiment 2 was designed to address four new questions. First, as noted above, we 

sought to determine whether the findings observed in Experiment 1 would generalize to a 

more diverse set of graphs and types of conflict. To this end, we expanded our set of stimuli 

to include four additional graphs with textual conflicts and four additional graphs with y-axis-

scale conflicts, as well as four graphs containing essential information in the x-axis scale (i.e., 

x-axis-scale conflicts; see graphs G7 to 10 in Appendix A). Second, as Experiment 1 included 

only graphs containing conflicts, it was not possible to determine to what extent such 
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conflicts affected interpretations and viewing times, as compared to graphs without conflicts. 

Therefore, in Experiment 2 for each of the graphs with conflicts we constructed an equivalent 

graph without conflict. This enabled us to determine the extent to which the inclusion of 

conflicts affected interpretations and viewing times. In addition, these nonconflict graphs 

enabled us to determine individual baseline viewing times and to control for them when 

analyzing viewing times in conflict graphs, as will be described below. 

 Third, in Experiment 2, we sought to examine the effect of content knowledge in 

graph comprehension processes. Knowledge of the content being depicted can affect graph 

interpretations independently of graph literacy (Freedman & Shah, 2002; Shah & Freedman, 

2011; Shah et al., 2005). For instance, viewers with some content knowledge can rely on 

expected relationships in the data to interpret graphs and to avoid potential errors that could 

occur by relying solely on spatial relations (Shah & Freedman, 2011). The graphs used in the 

present studies included relatively abstract information in most cases, even if embedded in 

the medical context (e.g., “Treatments A, B, C”), and therefore we did not expect that 

medical knowledge would be associated with strong expectations concerning the trends 

depicted. However, prior medical knowledge could potentially aid in the comprehension of 

the information conveyed in conventional features, thus helping to avoid wrong 

interpretations. Therefore, in Experiment 2 we also measured participants’ level of 

knowledge concerning relevant clinical conditions (e.g., myocardial infarction and stroke). 

Finally, in Experiment 2 we also aimed to examine if the differences observed between 

participants with low and high graph literacy in Experiment 1 were driven by other 

confounding factors. To illustrate, participants with low graph literacy may merely be more 

careless in interpreting the information, thus making more errors both while completing the 

graph literacy scale and while processing the graphs presented in the experiment. 

Alternatively, less graph literate individuals may simply be less knowledgeable about the fact 

that data can be represented misleadingly in graphs, and this may affect the way they explore 

graphs. Additionally, we also measured numeracy using a recently developed scale (the 

Berlin Numeracy Test; Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012) that has 

better psychometric properties than the numeracy scale used in Experiment 1. 

We hypothesized that the effect of graph literacy on accuracy of understanding would 

be smaller for graphs without conflicts than for graphs with conflicts (H1a). The reason is 

that in the former type of graphs, conventional features and spatial features point to the same 

(correct) interpretation. In contrast, and in line with Experiment 1, for graphs with conflicts 

we expected that participants with low graph literacy would more often make erroneous 
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interpretations corresponding to spatial-to-conceptual mappings (H1b). We also hypothesized 

that graph literacy would not affect times spent viewing conventional features in graphs 

without conflicts, as they did not contain essential information for accurate interpretations 

(H2a). In contrast, for graphs with conflicts we expected that participants with high graph 

literacy would spend a longer time than those with low graph literacy viewing the relevant 

conventional features in each case (H2b). Finally, we expected that the longer time spent 

viewing y- and x-axis scales would mediate the relationship between graph literacy and the 

proportion of incorrect responses (H3a). In line with Experiment 1 we expected that this 

would not be the case for the time spent viewing textual elements (H3b).  

 

Method 

Participants. 

Ninety-one participants from the database of the Max Planck Institute for Human 

Development in Berlin were prescreened with the graph literacy scale used in Experiment 1 

(13 items from Galesic & Garcia-Retamero, 2011b, plus 4 more difficult items). Their graph 

literacy scores ranged from 10 to 17, with a mean of 14.5 (SD = 1.6). We invited 38 

participants in the top and bottom quartiles (i.e., with scores ranging from 10 to 13, and from 

16 to 17). Additionally, given the limited availability of participants to take part in the 

laboratory experiment, we invited another 13 participants with scores from 14 to 15. Thus, 

the final sample included 51 participants (61% female), with a mean age of 25.3 years (SD = 

4.7, range 18–38 years), 49% with up to high school education and 51% with at least some 

college. The group of participants with low graph literacy included those who obtained 14 or 

fewer correct responses (n = 24, mean score 12.7, SD = .9); the group of participants with 

high graph literacy included those who obtained 15 or more correct responses (n = 29, mean 

score 16.0, SD = .8). Participants were paid 10 euros for taking part in the study. 

 

Materials. 

Eye-tracking equipment. The eye-tracking equipment was identical to that used in 

Experiment 1, and fixations were determined using the same procedure. 

Stimuli. In addition to the 4 graphs constructed in Experiment 1, we constructed 12 

new graphs presenting medical information that contained conflicts. In 6 of the graphs 

essential information was included in the numerical scale for the y-axis (Graphs G1 to G6). In 

4 graphs essential information was included in the numerical scale for the x-axis (Graphs G7 

to G10). Finally, 6 graphs contained essential information in the title and in the textual label 
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for the y-axis (Graphs G11 to G16). Description of all items is given in Table 2, and all 

graphs can be seen in Appendix A.  

Coding of eye fixations. The same AOIs as in Experiment 1 were defined (i.e., titles, 

labels for the y axes, and scales on the y axes). Additionally, we defined an AOI 

corresponding to the scales on the x axes. All AOIs were defined for graphs with and without 

conflicts. The inclusion of graphs without conflicts enabled us to control for baseline 

individual variability in viewing times in analysis of graphs with conflicts, as will be 

described below. As in Experiment 1, the number of fixations and the total viewing times on 

each AOI were highly correlated (mean correlation = .94 across all variables computed for 

graphs with conflicts, and .93 for graphs without conflicts).  

Measurement of graph literacy. Graph literacy was measured using the same items as 

in Experiment 1, for a total score of 17.  

Measurement of numeracy. In addition to the numeracy scale used in Experiment 1, 

we administered the Berlin Numeracy Test—an adaptive measure of numeracy that was 

designed for more educated samples (Cokely et al., 2012). 

Measurement of knowledge that graphs can be misleading and careless responses. 

To measure participants’ knowledge that graphs can be misleading, we included six items 

developed by the current authors. Three items concerned graphs in general and three items 

focused on the medical domain (see Appendix C). Cronbach’s alpha for the six items was .81. 

To identify careless responses, we administered the self-report participant engagement items 

developed by Meade and Craig (2012). Specifically, we used eight items selected from the 

Diligence subscale and the six items in the Interest subscale.
15

 We included a response scale 

ranging from 1 (Completely disagree) to 4 (Completely agree). Additionally, we included the 

three single-item measures developed by Meade and Craig evaluating effort expended on the 

study (Effort), attention to the study (Attention), and whether the respondent felt his or her 

data should be used for analysis (Use Me), all adapted for the context of our study. All items 

were translated into German by a native German speaker with excellent knowledge of 

English and were reviewed by two of the authors.  

  

                                                
15 Item 7 from the Diligence subscale was excluded as it was not applicable to the context of the current study. 
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Table 2. Summary of the experimental materials 

Item Task 

y-axis-scale conflict 

  G1. Line graph with inverted scale (values 

increase from top to bottom), x axis below 

Find the year in which the percentage of people 

with a disease was highest 

  G2. Bar graph with scale with negative values 
Identify the therapy that resulted in the lowest 

change in the percentage of people with the disease 

  G3. Stacked bar graph with excised scale 

Identify the ethnic group for which the proportion 

of people with one type of flu was larger than the 

proportion of people with another kind of flu 

  G4. Bar graph with scale with both positive 

and negative values and bars rising from lower 

x axis. Zero baseline not indicated. 

Identify the treatment that resulted in the smallest 

change in patients’ body weight 

  G5. Line graph with logarithmic scale 

Find the year in which the difference between the 

number of men and women dying after suffering an 

infection was larger 

  G6. Line graph with inverted scale (values 

increase from top to bottom), x axis above 

Find the age at which the recovery time from a 

disease was lowest 

x-axis-scale conflict  

  G7. Bar graph with inverted scale (values 

increasing from right to left)  

Identify the pill that resulted in an increase in the 

values of a hormone over time 

  G8. Line graph with inverted scale (values 

increasing from right to left) 

Identify the disease for which the number of 

affected people increased over time 

  G9. Bar graph with values not placed at 

proportional distances 

Find the month after which patients’ blood iron 

levels started to increase more slowly 

  G10. Line graph with values not placed at 

proportional distances 

Find the week after which pain scores started to 

decrease more slowly 

Textual conflict  

  G11. Bar graph showing percentages of 

people without a disease  

Identify the clinic in which the percentage of people 

with the disease was highest 

  G12. Bar graph showing the change in the 

percentage of people with different types of 

cancer during the previous year 

Identify the type of cancer that affected the smallest 

percentage of people during the previous year 

  G13. Bar graph showing the number of 

patients per doctor in different countries  

Identify the country that had the highest number of 

doctors per patient 

  G14. Line graph showing the percentage of 

people testing negative for a disease at 

different ages 

Identify the age at which the percentage of people 

diagnosed with the disease was highest 

  G15. Line graph showing the number of 

patients per nurse in different years 

Find the year in which the number of nurses per 

patient was lowest 

  G16. Line graph showing the percentage of 

people who died after different weeks of 

having been exposed to a virus 

Find the week in which the percentage of people 

who survived after being expose to the virus was 

lowest 

Note: Graphs G1, G2, G11, and G12 with conflicts were used in Experiment 1. All graphs were used 

in Experiment 2. 
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Procedure. 

The experiment took on average 42 min (SD = 7.2) to complete and included three 

sections. In the first section participants signed a consent form and successfully completed a 

standardized calibration exercise. They were then presented with the 16 graphs without 

conflicts. In the second section, participants were presented with the 16 graphs with conflicts. 

In the third section, participants completed (1) the Berlin Numeracy Test, (2) the items 

assessing knowledge that graphs can be misleading, (3) the MMK questionnaire (Bachmann 

et al., 2007), (4) demographic questions, and (5) the items to identify careless responses 

(Meade & Craig, 2012). All remaining aspects of the procedure were identical to that of 

Experiment 1. The study was approved by the ethics committee of the Max Planck Institute 

for Human Development. 

 

Results 

Are Effects of Graph Literacy Confounded by Other Skills, Knowledge, and 

Motivational Factors? The correlation of graph literacy with numeracy measured with the 

Berlin Numeracy Test (Cokely et al., 2012) was .33, while it was .32 with the Lipkus et al. 

(2001) numeracy scale. This indicates that even though some of the same abilities might 

contribute to both graph literacy and numeracy, the amount of shared variance is relatively 

small. The correlation of graph literacy with MMK was .09, indicating that no linear 

relationship existed between these variables. Finally, the correlations of graph literacy with 

knowledge that graphs can be misleading and with scales measuring careless responding 

developed by Meade and Craig (2012; Diligence, Interest, Effort, and Attention) ranged from 

.10 to .09, suggesting that the effects of graph literacy are unlikely to be confounded with 

these factors.  The item Use Me from this scale was not included in analyses, as all 

participants provided the same response (i.e., “yes”). Of note, the time that participants spent 

viewing the interpretation questions for the graphs did not differ reliably as a function of 

graph literacy (ps > .5), also suggesting that careless responding is unlikely to constitute a 

confounding factor for the effect of graph literacy. When numeracy, knowledge that graphs 

can be misleading, and careless responding were included as covariates in the analyses 

reported below, results remained unchanged in all cases.  

Does Graph Literacy Affect Interpretations of Graphs With and Without Conflicts? 

Table 3 shows the percentage of respondents who gave correct responses to the graphs, as a 

function of graph literacy. First, we sought to examine differences in accuracy of 
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interpretations of graphs with and without conflicts, for participants with high and low graph 

literacy. To this end, we conducted a 2 × 2 ANOVA with graph literacy as between-subjects 

factor and the presence of conflict as within-subject factor, on the average percentage of 

correct responses. This analysis revealed a main effect of graph literacy, F(1,49) = 11.22, p = 

.002, ηp
2 

= .19, a main effect of the presence of conflict, F(1,49) = 256.25, p = .001, ηp
2 

= .84, 

and an interaction between graph literacy and presence of conflict, F(1,49) = 4.23, p = .045, 

ηp
2 

= .08. As can be seen in Table 3, graphs with conflicts had significantly lower rates of 

correct responses, as compared to their equivalent versions without conflicts. Overall, the 

percentage of correct responses was higher for participants with high graph literacy. 

Additionally, Bonferroni-corrected pairwise comparisons revealed that the difference in 

accuracy between participants with high and low graph literacy was larger for graphs with 

conflicts, p = .008, d = .80, than for graphs without conflicts, p = .034, d = .59, supporting 

H1a. 

Table 3. Percentage of Respondents Who Gave Correct Responses to the Graphs in Experiment 2, as a Function 

of Whether They Contained Conflicts or Not, and Graph Literacy 

Item 
Low graph literacy High graph literacy 

Nonconflict  Conflict Nonconflict  Conflict 

y-axis-scale conflict     
  G1. Inverted scale, x axis below 100% 27% 100% 45% 
  G2. Scale with negative values 86% 64% 97% 83% 
  G3. Excised scale 100% 5% 100% 21% 
  G4. Scale not indicating zero baseline 95% 14% 100% 45% 
  G5. Logarithmic scale 100% 0% 100% 28% 
  G6. Inverted scale, x axis above 100% 50% 100% 52% 

x-axis-scale conflict     
  G7. Inverted scale (bar) 91% 27% 97% 38% 
  G8. Inverted scale (line) 100% 18% 97% 38% 
  G9. Values not placed at proportional 
distances (bar) 

95% 14% 97% 48% 

  G10. Values not placed at proportional 

distances (line) 
100% 9% 100% 34% 

Textual conflict     
  G11. People without disease 100% 45% 100% 55% 
  G12. Change in the percentage of people 
with different types of cancer 

82% 32% 100% 59% 

  G13. Number of patients per doctor 100% 50% 100% 59% 
  G14. People testing negative  95% 45% 100% 66% 

  G15. Number of patients per nurse 91% 36% 93% 48% 

  G16. People who died after virus 

exposure 
73% 68% 90% 76% 

Average overall 94% 32% 98% 50% 
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Next, we examined the different types of responses provided for graphs with conflicts. 

The average proportion of correct responses to the questions across graphs was 42% (SE = 

4.5), while the average proportion of incorrect responses corresponding to direct spatial-to-

conceptual mappings (mapping responses) was 55% (SE = 4.7). As in Experiment 1, the 

average proportion of incorrect responses that were not related to the mapping was low (4%; 

SE = 0.9), indicating that the majority of participants who misinterpreted the graphs did so on 

the basis of direct spatial-to-conceptual mappings. Therefore, in the following analyses we 

focus on the percentage of mapping responses.  

The average percentage of mapping responses among participants with low graph 

literacy was 70% (SE = 4.7) for graphs with y-axis-scale conflict, 48% (SE = 7.0) for graphs 

with textual conflict, and 80% (SE = 5.2) for graphs with x-axis-scale conflict. In contrast, 

participants with high graph literacy showed on average 55% (SE = 5.4) mapping responses 

for graphs with y-axis-scale conflict, 35% (SE = 5.8) for graphs with textual conflict, and 

57% (SE = 6.8) for graphs with x-axis-scale conflict. A 2 × 3 ANOVA with graph literacy as 

between-subjects factor and type of conflict as within-subject factor on the average 

percentage of mapping responses revealed a main effect of graph literacy, F(1,49) = 6.35, p = 

.015, ηp
2 

= .12, supporting H1b. This analysis also revealed a main effect of type of conflict, 

F(2,98) = 20.74, p = .001, ηp 
2 

= .30, indicating that the percentage of mapping responses was 

significantly lower for textual-conflict graphs, as compared to y-axis-conflict (p = .001) and 

x-axis-conflict (p = .001) graphs. All other effects were not reliable (F < 1, p > .4). These 

results remained unchanged when MMK was also included as a factor in the ANOVA. 

Additionally, a main effect of MMK was observed, F(1,48) = 4.00, p = .051, ηp
2 

= .08, 

indicating that mapping responses were more likely among participants with low content 

knowledge than for those with high content knowledge. Specifically, for participants with 

low MMK the percentage of mapping responses was 60% (SE = 4.5), while it was 49% (SE = 

5.2) for participants with high MMK. 

Does Graph Literacy Affect the Viewing Time of Relevant Conventional Features? As in 

Experiment 1 distributions were skewed right, and therefore viewing times were log-

transformed to reduce skew. Table 4 shows the mean viewing times for the different areas of 

interest for graphs with and without conflicts, as a function of the type of conflict and graph 

literacy. 

First, to examine differences in viewing times for graphs with and without conflicts, 

we conducted a 2 × 3 ANOVA with graph literacy as between-subjects factor and presence of 

conflict as within-subject factor on the mean log-transformed time spent viewing the 
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conventional features. This analysis revealed a main effect of the presence of conflict, 

F(1,49) = 28.20, p = .001, ηp
2 

= .37, indicating that conventional features were overall viewed 

longer when graphs contained conflicts. The analysis also revealed a marginally significant 

interaction between graph literacy and presence of conflict, F(1,49) = 3.64, p = .06, ηp
2 

= .07. 

Bonferroni-corrected pairwise comparisons revealed no reliable differences in viewing times 

as a function of graph literacy in graphs without conflicts (M = 1.4, SE = 0.1 for participants 

with high graph literacy vs. M = 1.6, SE = 0.2 for those with low graph literacy), supporting 

H2a. Although this was also the case for graphs with conflicts, for this kind of graph the 

pattern of results at the descriptive level was in the expected direction. That is, we found 

longer viewing times for participants with high graph literacy (M = 3.4 s, SE = 0.3) than for 

those with low graph literacy (M = 2.9 s, SE = 0.3). The latter result provides some support 

for H2b. Viewing times for graphs with conflicts are explored in more detail in the next 

section. As in Experiment 1, the total time that participants spent viewing the graphs did not 

vary as a function of graph literacy (F < 3, ps > .1). However, as can be seen in Table 4, 

participants with high graph literacy spent significantly longer overall viewing graphs with 

conflicts (M = 11.1, SE = 0.9) than graphs without conflicts (M = 8.6, SE = 0.5; p = .001). 

Next, we performed analyses only for graphs with conflicts, controlling for baseline 

individual variability in viewing times. To do so, for each conflict type we deducted the mean 

time spent viewing the relevant conventional features in graphs without conflicts from the 

mean time spent viewing the relevant conventional features in graphs with conflicts and 

divided the resulting value by the mean viewing time for graphs without conflicts. A 2 × 3 

ANOVA with graph literacy as between-subjects factor and type of conflict as within-subject 

factor on the baseline-adjusted times spent viewing the relevant conventional features 

revealed a main effect of graph literacy, F(1,49) = 8.19, p = .006, ηp
2 

= .14. Viewing times 

overall were higher for individuals with high graph literacy, providing additional support for 

H2b. This analysis also yielded a main effect of type of conflict, F(2,98) = 7.24, p= .001, ηp
2 

= .13, reflecting that baseline-adjusted viewing times were higher for graphs with y-axis-scale 

conflict than for those with x-axis (p = .010) and textual (p = .001) conflict. All results 

remained unchanged when MMK was also included as a factor in the ANOVA. This analysis 

did not reveal a main effect of MMK or an interaction involving MMK, implying that this 

factor did not affect times spent viewing the relevant conventional features. 
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Is the Effect of Graph Literacy on Accuracy Mediated by Differences in the Viewing 

Time of Conventional Features? Individual correlation coefficients for mapping responses 

in all items with graph literacy ranged from .02 to .38. As our question concerned whether 

viewing time mediated the effect of graph literacy on accuracy of comprehension, for the 

mediational analyses we selected items with a correlation of at least .2 between graph literacy 

and mapping responses. This resulted in a total of three graphs per type of conflict: Graphs 

G3, G4, and G5 for y-axis-conflict graphs; Graphs G8, G9 and G10 for x-axis-conflict graphs, 

and Graphs G11, G12, and G14 for textual-conflict graphs. The average correlation with 

graph literacy for the remaining items was .076. Thus, for the analyses that will be presented 

below, mean times spent viewing the relevant conventional features were calculated for the 

three selected graphs for each type of conflict. We controlled for baseline individual 

variability in viewing times following the same method outlined above. 

In a regression equation, as expected, graph literacy significantly predicted the 

percentage of mapping responses for y-axis-conflict graphs, β= .34, t = 2.51, p = .015, and 

x-axis-conflict graphs, β= .42, t = 3.25, p = .002, and marginally for textual-conflict 

graphs, β= .26, t = 1.9, p = .06, with higher graph literacy associated with fewer incorrect 

responses. Furthermore, graph literacy significantly predicted the baseline-adjusted viewing 

times on the relevant conventional features for y-axis-conflict graphs, β= .30, t = 2.2, p = 

.034, and x-axis-conflict graphs, β= .31, t = 2.3, p = .027 (see Figure 1b), but not for textual-

conflict graphs, β= .12, t = .85, p = .39. 

When baseline-adjusted times spent viewing the conventional features were included 

in the regression equations, this factor predicted the percentage of mapping responses for y-

axis-conflict graphs, β= .28, t = 2.03, p = .047, and x-axis-conflict graphs, β= .56, t = 

5.06, p = .001, whereas the direct effect of graph literacy on mapping responses was 

reduced both for y-axis-scale conflict graphs, β = .26, t = 1.87, p = .068, and x-axis-conflict 

graphs, β = .25, t = 2.22, p = .031. In contrast, for textual-conflict graphs when the 

baseline-adjusted times spent viewing the conventional features were included in the 

regression equation, this factor did not predict the percentage of mapping responses, β = .06, 

t = .44, p = .659, while the direct effect of graph literacy on mapping responses remained 

marginally significant, β= .26, t = 1.9, p = .065. 

To test the mediation effect for graphs with y-axis and x-axis-scale conflicts, we 

performed two bootstrap analyses with 1,000 resamples using the PROCESS procedure 

developed by Hayes (2013). The analyses provided evidence of a significant indirect effect of 
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baseline-adjusted times spent viewing y-axis and x-axis scales, as the mean estimate was 

5.36, (within the 95% confidence interval [15.83, 1.30]) for the former and 12.25 

(within the 95% confidence interval [20.80, 4.09]) for the latter. This supports H3a, while 

the lack of relationship between viewing times, incorrect responses, and graph literacy for 

graphs with textual conflicts supports H3b. As in Experiment 1, we also performed additional 

analyses examining the different types of transitions between different global regions. Results 

can be found in Appendix B. 

 

Discussion 

In Experiment 2 we replicated and extended the findings of Experiment 1. Using a 

more diverse set of graphs containing different types of conflicts, we found that people with 

lower graph literacy often relied on spatial-to-conceptual mappings in their interpretations. In 

contrast, people with higher graph literacy were more likely to use information from 

conventional features to override the mappings leading to erroneous conclusions. 

Eye-tracking recordings showed that participants with higher graph literacy spent 

more time viewing conventional features in graphs involving scale conflicts. Longer times 

spent viewing scales, in turn, were associated with fewer errors in interpretations. In contrast, 

time spent viewing relevant conventional features in graphs involving textual conflicts did 

not predict accuracy of understanding (in line with Experiment 1) and was not related to 

graph literacy. A possible explanation for these differences between graphs involving scale 

and textual conflicts is that longer viewing times of textual elements might not necessarily 

lead to a correct interpretation, as this may require not only attending to these elements but 

also making appropriate inferences. For instance, in two graphs with textual conflicts, the 

questions asked about a certain ratio (e.g., doctors per patient) but the graphs showed the 

inverse of that ratio (e.g., patients per doctor). The correct interpretation of these graphs 

might require a stronger engagement in mental operations that are not necessarily reflected in 

longer viewing times, as well as the integration of information in conventional features with 

other types of conceptual understanding and literacy not measured here (such as the broader 

concepts of prose and document literacy, e.g., Kutner et al., 2006). In contrast, attending to 

numerical scales might be sufficient to avoid misinterpretations in graphs with scale conflicts, 

as such conflicts originate from relatively simple manipulations of numerical values (e.g., 

inverting their order of changing the intervals between them). 
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Experiment 2 also included graphs that did not contain any conflicts. These graphs 

were designed to be equivalent in every way to the graphs involving conflicts (same graph 

type, type of question, number of data points and variables) except that spatial-to-conceptual 

mappings corresponded to the information conveyed by conventional features. For those 

graphs, we found high rates of correct answers for participants with both high and low graph 

literacy. In line with our predictions, graph literacy did not affect times spent viewing 

conventional features in graphs without conflicts. This can be accounted for by the fact that 

for such graphs, attending to these features is not crucial to reach a correct interpretation. 

Independently of graph literacy, we found that content knowledge about medical domain 

improved understanding of the graphs. This finding supports the idea that knowledge of the 

content being depicted can also aid in graph interpretations (Freedman & Shah, 2002; Shah & 

Freedman, 2011; Shah et al., 2005; see also Novick, 2006). Because the graphs in this study 

involved information related to health and medicine, acquaintance with this area might have 

helped participants to more easily understand the concepts included in conventional features 

(e.g., prevalence of diseases, effects of cancer treatments, hormones, and vitamins), 

particularly for graphs with textual conflicts. Content knowledge did not affect viewing 

times, suggesting that it does not affect allocation of attention to specific graph elements. 

Finally, in Experiment 2 we excluded a number of possible confounds of the 

relationship of graph literacy and graph processing. Participants with low graph literacy were 

not merely more careless, as suggested by the lack of differences linked to graph literacy in 

items measuring participant engagement (Meade & Craig, 2012) and by the fact that no 

reliable differences existed in the overall time spent exploring graphs or viewing the 

questions assessing interpretations. Additionally, participants with low graph literacy knew as 

well as those with high graph literacy that graphs can be plotted misleadingly. 

 

General Discussion 

In two experiments, we found that lower graph literacy was associated with a stronger 

tendency to rely on spatial features of graphs (such as slope of a line or height of bars) rather 

than on conventional features (such as axis labels and scales). When information conveyed by 

spatial features was incongruent with that included in conventional features, participants with 

lower graph literacy misinterpreted the graphs more frequently than those with higher graph 

literacy. Analyses of participants’ eye movements revealed that lower graph literacy was 

associated with less time spent viewing the conventional features containing essential 

information for detecting conflicts. These differences in viewing times mediated the link 
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between graph literacy and interpretations of graphs that involved a conflict between spatial 

features and information conveyed in numerical scales on x or y axes. 

 

Theoretical Implications 

The present findings expand previous research on perceptual and cognitive processes 

in graph comprehension (Carpenter & Shah, 1998; Kosslyn, 1989; Lohse, 1993; Pinker, 

1990; Simkin & Hastie, 1987), documenting the existence of differences in these processes 

that are linked to individual differences in graph literacy. Eye-fixation patterns in our study 

suggest that higher graph literacy is associated with a larger tendency to direct attention to 

conventional features containing essential information. This finding is in accord with the 

information reduction framework proposed by Haider and Frensch (1996, 1999), which 

suggests that skilled individuals are more able to recognize and focus on task-relevant 

information. 

Our finding that graph literacy did not affect time spent viewing conventional features 

in graphs without conflicts is also in line with the information reduction framework, because 

in such graphs, attending to conventional features is not crucial to reach a correct 

interpretation. That is, our findings indicate that graph literacy is associated with strategic 

differences in allocation of attention and encoding. In Experiment 2 we also found that 

people with high graph literacy spent more time overall viewing graphs with conflicts than 

graphs without conflicts.
16 

This finding also supports the notion that highly skilled individuals 

adjust their encoding strategies more adaptively, as compared to less skilled individuals 

(Cokely & Kelley, 2009; Cokely et al., 2006). As noted by Cokely and Kelley (2009), highly 

skilled individuals might rely more on elaborative search when this is necessary for 

comprehension (here, when graphs contain conflicts) but less when this can be advantageous 

(when graphs do not contain conflicts, and therefore a thorough search is not necessary).  

Our results are also in line with studies documenting a widespread tendency to 

interpret graphs on the basis of non-arbitrary spatial-to-conceptual mappings that emerge 

                                                
16 Unreported analyses on the mean duration of fixations on conventional features also revealed that for 

individuals with high graph literacy, the mean duration was longer when graphs contained conflicts, while the 

presence of conflicts did not affect the mean duration for individuals with low graph literacy. Additionally, no 

reliable differences were observed in the mean duration of fixations between individuals with low and high 

graph literacy for graphs with or without conflicts. This result contrasts with studies that have revealed that 

experts can have shorter fixation durations in processing visual displays, owing to extended capacities that allow 

for more rapid encoding of information (for a review, see Gegenfurtner, Lehtinen, & Säljö, 2011). 
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consistently in adults and children with no graphing experience (e.g., “higher equals more”; 

Gattis, 2002, 2004). When spatial features are incongruent with the relationships that the 

graph is supposed to show (e.g., when higher bars do not indicate larger quantity), relying on 

such mappings can lead to errors in interpretation. Crucially, our findings demonstrate that 

less graph literate individuals show a bias toward basing their interpretations of graphs 

primarily on such translations. Such mappings can be grounded on associations acquired 

through experience with the environment (Tversky, 2001, 2009), as well as on other types of 

general cognitive constraints or sources of similarity (Gattis, 2002, 2004). Future research 

could seek to determine how graph literacy affects overreliance on different kinds of 

mappings when they come into conflict (e.g., “steeper equals faster” vs. “higher equals 

more”; Gattis & Holyoak, 1996). 

Taken together, our findings provide converging evidence that graph literacy can exert 

a top-down influence on the interpretations that viewers give to graphs, in conjunction with 

other types of prior knowledge, such as specific content knowledge (Freedman & Shah, 2002; 

Shah & Freedman, 2011; Shah & Hoeffner, 2002). The examination of the constituting 

features of graph schemas in viewers with low and high graph literacy was beyond the scope 

of the current investigation and methods. However, it is plausible that such mental 

representations may have contributed to direct allocation of attention to the relevant 

conventional features (Maichle, 1994; Pinker, 1990). 

 

Implications for Graph Design and Visual Communication of Medical Information 

Research indicates that graphs that are available to the public often include misleading 

characteristics similar to those manipulated in the present study, such as improperly scaled 

axes (Beattie & Jones, 2002; Cooper, Schriger, Wallace, Mikulich, & Wilkes, 2003) or longer 

bars representing lower values (Kosslyn, 2006), and that such manipulations can substantially 

affect viewers’ judgments and decisions (Arunachalam, Pei, & Steinbart, 2002; Pennington & 

Tuttle, 2009). In line with Okan et al.’s (2012b) findings, our results suggest that such graphs 

are likely to be misinterpreted by people lacking graph literacy skills and point to an 

important principle for designing graphs that are suitable even for people with low graph 

literacy: Spatial and conventional features should convey the same meaning. For some 

graphs, this could help less graph literate people reach the correct interpretation even without 

attending to the conventional features.  

In addition, methods could be developed to direct attention to essential information in 

conventional features, to increase the likelihood that this information will be encoded and 
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integrated. For instance, people could be presented with interactive displays that require using 

mouse clicks to uncover the different regions. Forcing people to uncover conventional 

features in a first step could help them identify referents of the concepts that will be depicted 

before they make direct spatial-to-conceptual mappings. The current results suggest that this 

method might be more effective for graphs containing essential information in scales. For 

graphs containing essential information in textual elements, specific training might be 

required at a conceptual level (e.g., understanding the difference between rates of change and 

event rates). 

 

Open Questions for Future Research 

 The current work leaves a number of questions open for future research. First, both 

the materials and the graph literacy instrument focused on the medical domain. In some 

instances, embedding graphs in a particular context may hinder performance, as context 

information might activate different knowledge structures than graphs presented abstractly 

(Mevarech & Stern, 1977). Future research should include more diverse materials varying in 

complexity and involving different tasks (see, e.g., Ratwani, Trafton, & Boehm-Davis, 2008; 

Trickett & Trafton, 2006). Second, our participants were relatively well educated. It is 

possible that the differences in the graph comprehension processes outlined above will 

become more salient with a more diverse, less educated group of participants. Finally, future 

research should aim to achieve a more precise specification of how graph comprehension is 

affected by interactions between graph literacy and other individual differences, such as 

domain-general cognitive abilities (Stanovich & West, 2000, 2008), decision making-skills 

(Bruine de Bruin, Parker, & Fischhoff, 2007), working memory limitations (Huestegge & 

Philipp, 2011; Peebles & Cheng, 2001, 2003), and spatial abilities (Feeney, Adams, Webber, 

& Ewbank, 2004). 

In sum, we have demonstrated that graph comprehension processes can be affected by 

individual differences in graph literacy. A lack of experience with arbitrary graphic 

conventions can limit the attention directed to some features that do not map onto viewers’ 

experience with their physical environment. Less graph literate individuals can be less likely 

to engage in integration processes that involve incorporating essential information in such 

features and combining this information with that in other elements. In contrast, these 

individuals seem to rely to a larger extent on their real-world knowledge to interpret graphs 

and thus more often misinterpret data. A precise theoretical understanding of the nature and 

causes of our judgment biases allows the anticipation of potential errors and development of 
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improved educational interventions. The current findings can play a central role in the 

development of custom-tailored decision support systems built to inoculate professionals, 

policy makers, and the general public against potentially distorted and misleading 

communication. 
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Appendix A 

 

Graphs used in Experiments 1 and 2. Note: Graphs G1, G2, G11, and G12 with conflicts 

were used in Experiment 1. All graphs were used in Experiment 2. In Experiment 1, response 

options for graphs G1 and G2 did not include “I can’t say.” 
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Appendix B 

 

Further analyses: Transitions between global areas. 

 

To broaden our exploration of the patterns of eye fixations in the current study, we further 

defined a set of areas of interest (AOIs) for all graphs that corresponded to the global 

elements of bar charts and line plots outlined in previous research (see, e.g., Carpenter & 

Shah, 1998; Kosslyn, 2006). Specifically, we divided the graphs into four global parts: the 

pattern, the x axis, the y axis, and the title. For this division, the x axis and y axis included the 

respective x-axis and y-axis values and labels. Following Carpenter and Shah (1998; see also 

Huestegge & Philipp, 2011), we then computed the number of transitions between these 

global areas. A transition was counted each time the participant broke a sequence of 

consecutive fixations on a given AOI to fixate on a different AOI. The question was also 

included as an AOI. Figure B1 shows the types of transitions made between the different 

global areas and how often each type occurred across graphs. In Experiment 1, the mean 

number of transitions across graphs was 18.3 (SE = 0.9), while in Experiment 2 it was 20.6 

(SE = 1.1) for graphs with conflicts and 18.5 (SE = 0.8), for graphs without conflicts. In all 

cases, the most frequent types of transition across graphs were those between the pattern and 

the question, and between the pattern and the x axis (Figure B1). These results are in line with 

Carpenter and Shah’s integrative model (1998), which predicts that a large proportion of 

transitions occur between the pattern and regions used to determine referents (e.g., x and y 

axes), as consequence of viewers’ need to integrate information across these regions. 
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Figure B1. (a) The proportions of transitions made by participants between different global areas in Experiment 

1; (b) The proportions of transitions made by participants between different global areas for graphs with 

conflicts in Experiment 2; (c) The proportions of transitions made by participants between different global areas 

for graphs without conflicts in Experiment 2. 
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Appendix C 

 

Items measuring knowledge that graphs can be misleading. Note: The response options 

provided were “Yes” and “No.” Yes responses were coded with 1 and No responses with 0, 

for a total possible score of 6. 

 

Thinking about graphs that you might have seen in different contexts, such as graphs 

presenting data for different financial, nutritional, or political options and trends … 

Do you think they are sometimes designed in a way that…  

Makes some options look better or worse than they really are (e.g., by making differences in 

the data presented look larger or smaller)?  

Directs attention to a particular option or aspects of that option (e.g., by directing attention to 

specific values in the data)? 

Makes trends look more positive or negative than they really are (e.g., by distorting or 

misrepresenting the trends in the data)? 

 

Thinking about graphs that you might have seen presenting medical information, such as data 

for different treatments and screenings (e.g., results of medical trials and pharmaceutical 

advertisements)… 

Do you think they are sometimes designed in a way that…  

Makes some options look better or worse than they really are (e.g., by making differences in 

the data presented look larger or smaller)?  

Directs attention to a particular option or aspects of that option (e.g., by directing attention to 

specific values in the data)? 

Makes trends look more positive or negative than they really are (e.g., by distorting or 

misrepresenting the trends in the data)?
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Biasing and Debiasing Health Decisions with Bar Graphs: 

Costs and Benefits of Graph Literacy 

 

Abstract 

 

Bar graphs are often recommended to improve risk communication in medicine and health. 

Unfortunately, when people view a bar graph depicting a mean they tend to believe that data 

points located within bars are more likely to be part of the underlying distribution than 

equidistant points outside bars. Here, we investigate potential consequences, key 

mechanisms, and generalizability of the within-the-bar bias in the medical domain. Results 

revealed a within-the-bar bias that led participants to prefer to modify their blood glucose 

levels, even when the information provided gave them no justifiable reason to do so. 

Interestingly, individuals with higher levels of graph literacy showed the largest biases. 

Graph literate individuals also benefited from the inclusion of bidirectional error bars in 

graphs, suggesting that debiasing efforts may be more beneficial for relatively high-skilled 

individuals. Theoretical mechanisms and prescriptive implications for graph design are 

discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

_______________________ 

Submitted as:  

Okan, Y., Garcia-Retamero, R., Cokely, E. T., & Maldonado, A. (submitted). Biasing and debiasing health 

decisions with bar graphs: Costs and benefits of graph literacy. Quarterly Journal of Experimental Psychology. 



Chapter VI 

168 

 

Introduction 

Visual displays play an increasingly important role in modern societies, facilitating 

the communication of complicated information in medicine, economics, sport, weather, 

climate, and politics (Garcia-Retamero & Cokely, in press; Spiegelhalter, Pearson, & Short, 

2011). Unfortunately, graphical communication can also cause judgment and decision 

making errors. For example, when people are shown a bar graph representing a mean and are 

asked to judge the likelihood that a data point is part of its underlying distribution, they often 

believe that the likelihood is larger for points located within the bars than for equidistant 

points located outside the bar. This tendency, called the “within-the-bar bias” (Newman & 

Scholl, 2012), is thought to occur because bars are unique visual objects defined by the 

closure of their boundaries, which originate from one particular axis. Consequently, people’s 

attention is drawn to the region within the bar, such that it takes precedence over regions 

outside the bar.  

Newman and Scholl (2012) demonstrated that the within-the-bar bias affects not only 

judgments concerning the likelihood of different data points, but also decisions made on the 

basis of bar graphs. They asked participants to imagine they were the CEO of a large car tire 

manufacturer, and presented them with information concerning the tensile strength of tires. 

Participants were told that the mean tensile strength of tested tires was zero, and that zero was 

the ideal value for safety. No objective reasons were provided to either increase or decrease 

the tensile strength of the tires. However, participants who viewed the value of zero 

represented in a graph where the bar originated from a lower x axis (i.e., situated below the 

mean) often preferred to increase the tensile strength. In contrast, those who viewed this 

value in a graph where the bar originated from an upper x axis (i.e., situated above the mean) 

often preferred to decrease the tensile strength. 

Here, we report a study on the generalizability and mechanisms of the within-the-bar 

bias. Our aim in the present paper was threefold. First, we sought to investigate whether the 

within-the-bar bias extends to more common health and medical treatment decisions. 

Specifically, we examined the effect of this bias on people’s preferences for treatments to 

alter blood glucose levels. If such preferences are affected by the within-the-bar bias, people 

who receive their blood test results in a graph with a bar originating from a lower x axis may 

seek to increase their blood glucose levels, even if the information provided gives them no 

reasons to do so. In contrast, those presented with a graph containing a bar descending from 

an upper x axis may prefer a treatment that decreases their blood glucose levels. 
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Second, we aimed to investigate the relations between the within-the-bar bias and 

graph literacy (Galesic & Garcia-Retamero, 2011b). Graph literacy refers to the ability to 

understand graphically presented information, and includes general knowledge about making 

inferences from different graphic formats (Freedman & Shah, 2002). Individuals with high 

graph literacy have been found to extract knowledge of a high level of complexity when 

viewing line graphs (Maichle, 1994) and to be more likely to make relevant inferences when 

viewing bar graphs depicting interactions (Shah & Freedman, 2011). Graph literacy is also 

associated with a larger likelihood to incorporate important information in titles of graphs, 

axes labels, and scales, and with a lower reliance on salient spatial features to interpret graphs 

(e.g., heights of bars; Okan, Garcia-Retamero, Galesic, & Cokely, 2012). Accordingly, graph 

literacy might moderate the within-the-bar bias. 

 Finally, we investigated the effectiveness of an intervention that could reduce the 

effect of the within-the-bar bias—i.e., error bars—that might help emphasize that values can 

come from both below and above the mean. Previous research suggests that the bias can 

persist even in graphs with error bars (Newman & Scholl, 2012). However, in previous 

experiments the error bars were not visible during the test phase. If graphs containing error 

bars are available at the time of judgment, as is common in medical decision making, graph 

literate viewers might be more prone to take into account the information conveyed by the 

error bars in their decisions. 

 

Method 

Participants 

Participants were 458 undergraduate students from the University of Granada (307 

female), aged 17–60 years (M = 21, SD = 4.7). 

Materials & Procedure 

The questionnaire was administered in the laboratory of the University of Granada, 

and all materials were implemented as an electronic survey in Unipark (www.unipark.de). 

Besides the experiment presented here, it included other unrelated tasks concerning medical 

risks, and took approximately 50 minutes to complete. The tasks relevant for the present 

study took between 15 and 20 minutes. All participants were presented with a hypothetical 

scenario in which they received their blood glucose levels from the previous week, with 

information structured in a manner similar to Newman and Scholl’s vignettes (2012; see 

Appendix). Materials stated that a previous measurement of the participants’ blood glucose 

(at the start of the week) had been ideal (120 mg/dL); however, since the start of the week, 

http://www.unipark.de/
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the last 30 blood tests performed showed that their blood glucose levels had varied between 

20 and +20 in percentage change. Participants were then reminded that deviation from ideal 

levels could lead to a high risk of severe health consequences, and that blood glucose levels 

can vary throughout the day (e.g., dependent on one’s last meal). Participants were then 

informed that their average percentage change throughout the week was zero.  

Participants were randomly assigned into one of five experimental conditions. In the 

numerical (control) condition, participants were presented only with a text containing the 

numerical information (see Appendix). In the remaining conditions, participants were 

presented both with the numerical information in text and with a bar graph depicting this 

information, which appeared immediately below the text. Bar graphs were constructed 

following Newman and Scholl (2012). Specifically, in the rising condition, participants were 

presented with a bar graph showing the average percentage change where the bar was rising 

from a lower x axis (see Figure 1a). In the falling condition, participants saw the bar 

descending from an upper x axis (see Figure 1b). In the rising with error bar and falling with 

error bar conditions (Figures 1c and 1d, respectively), participants viewed the same graphs 

as in the first two conditions, with the exception that the graphs included bidirectional error 

bars. In all cases the y axis scale in the graph ranged from 20 to +20. 

Participants were then instructed that, based on the information provided, they could 

choose to follow a treatment that would either slightly increase their blood glucose levels or 

take a treatment that would slightly decrease their blood glucose levels. They responded 

using a slider ranging from “slightly decrease my blood glucose levels” to “slightly increase 

my blood glucose levels”, with a mid-point indicating “neither increase nor decrease my 

blood glucose levels.” The numeric slider values ranged from 50 to 50. Following Newman 

and Scholl (2012), the participants did not see the numerical values. Time to read the scenario 

and to answer the decision question was unlimited. 

Next, graph literacy was measured using the scale developed by Galesic and Garcia-

Retamero (2011b). We also measured participants’ numeracy (i.e., the ability to understand 

and manipulate different numerical expressions of probability; Lipkus, Samsa, & Rimer, 

2001) using the Berlin Numeracy Test (Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 

2012) and the 11 items included in the general and expanded numeracy scales developed by 

Lipkus et al. (2001). The experiment ended following basic demographic questions and 

debriefing. 
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Figure 1. Graphs viewed by participants in the A. rising condition, B. falling condition, C. rising with error bar 

condition, and D. falling with error bar condition. 

 

Results 

First, we sought to examine whether the within-the-bar bias affected medical 

treatment decisions. Mean preference ratings were not normally distributed and showed 

homogeneous variances even after log-transformation. Therefore, we conducted a non-

parametric Kruskall-Wallis test to compare ratings in all conditions. Mann-Whitney tests 

(one-tailed) were used for planned comparisons between the conditions. Results revealed that 

preference ratings varied significantly across conditions, H(4), = 34.13, p = .001. These 

variations were in the anticipated directions, suggesting the presence of a within-the-bars 

bias. As can be seen in Figure 2, the presence of a rising bar led participants overall to show a 

preference to increase their glucose levels relative to the numerical condition, both for graphs 

without error bars (U = 3062.00, r = −.23, p = .001) and with error bars (U = 3235.00, r = 

−.23, p = .002). In contrast, the presence of a falling bar led participants overall to show a 

preference to decrease their levels relative to the numerical condition, for graphs without 
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error bars (U = 3442.00, r = −.13, p = .045), and with error bars (U = 3906.50, r = −.14, p = 

.027).
17

 

 

 

Figure 2. Mean preference rating, by format and graph literacy. Note: A mean rating of 0 indicates a preference 

for maintaining current glucose levels, while ratings over and below 0 indicate preference to increase and 

decrease levels, respectively. Error bars represent one standard error of the mean. 

 

Second, we sought to examine relations between the within-the-bar bias and graph 

literacy, and the effectiveness of error bars to reduce the bias. To this end, we split 

participants into two groups according to the median graph literacy score for the total sample 

(i.e., 10 of a possible maximum of 13). The group of participants with low graph literacy 

included those who obtained 10 or fewer correct responses (n = 285, mean score 8.5, SD = 

1.5), while the group of participants with high graph literacy included those who obtained 11 

                                                
17 In line with this analysis, a one-way ANOVA on the mean preference ratings for all conditions revealed a 

main effect of condition in the anticipated directions, F(4, 453) = 8.80, p = .001, ηp
2 = .07. When graph literacy 

was also included as a between-subjects factor, a main effect of condition was also observed, F(4, 448) = 9.57, p 

= .001, ηp
2 = .08. The interaction between condition and graph literacy did not reach statistical significance, F(4, 

448) = 1.61, p = .17, ηp
2 = .01. However, simple effects contrasts to answer the specific questions of interest are 

justified when a priori expectations exist (Tybout et al., 2001). All results remained unchanged after controlling 

for numeracy and for the presence of a chronic disease (e.g., diabetes, thyroid disease). 
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or more (n = 173, mean score 11.5, SD = .6). Kruskall-Wallis tests revealed that preference 

ratings varied significantly across conditions both for individuals with low graph literacy, 

H(4), = 19.06, p = .001, and for those with high graph literacy, H(4), = 19.15, p = .001. To 

examine differences in the tendency to be affected by the bias in both groups of individuals, 

we compared ratings for the rising and falling conditions without error bars with ratings for 

the numerical condition. For participants with low graph literacy, differences were in the 

anticipated directions but only reached significance for the rising condition (U = 1455.00, r = 

−.17, p = .030 for rising vs. numerical, and U = 1522.50, r = −.08, p = .18 for falling vs. 

numerical).
 
In contrast, highly graph literate participants in the rising condition showed a 

marked preference to increase their glucose levels, relative to the numerical condition, (U = 

279.00, r = −.39, p = .001), while those in the falling condition showed a preference to 

decrease their levels, (U = 388.00, r = −.20,  p = .05). 

Finally, to test the effect of the intervention for participants with low and high graph 

literacy, we compared ratings in conditions without error bars to ratings in conditions with 

error bars. For participants with low graph literacy, no reliable differences were observed 

between rising and rising with error bars conditions (U = 1537.50, r = −.003, p = .49) or 

between falling and falling with error bars conditions (U = 1527.50, r = −.08, p = .19). This 

suggests that the presence of error bars in graphs did not affect preferences among less graph 

literate individuals. In contrast, error bars significantly reduced the bias among participants 

with high graph literacy, for graphs with rising bars (U = 487.00, r = −.19, p = .05). The 

difference between falling and falling with error bars also showed a trend in the anticipated 

direction (see Figure 2), but did not reach conventional levels of significance (U = 485.00, r = 

−.13, p = .14). This indicates that error bars may be an effective means to reduce the within-

the-bar bias among individuals with sufficient levels of graph literacy, in some conditions. 

 

Discussion 

 The current study extends prior research showing that participants tend to believe that 

data points located within bars are more likely to be part of the underlying distribution than 

equidistant points outside bars (Newman & Scholl, 2012). Here, the within-the-bar bias led 

participants to show a preference to modify their blood glucose levels, even when the 

information provided gave them no justifiable reason to do so. The bias affected participants 

who were more graph literate to a larger extent than those who were less skilled with graphs. 

However, the more graph literate participants were able to benefit from the inclusion of error 

bars in graphs, which attenuated the within-the-bar bias.  
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In previous research, graph literacy has been found to protect participants against 

biases and errors. For example, individuals with high graph literacy tend to rely less on 

spatial features such as the heights of bars, when such features are non-diagnostic (e.g., when 

information conveyed by spatial features is in conflict with that conveyed by axes labels or 

scales; Okan et al., 2012b). Eye-tracking and memory assessments show that superior 

performance among more graph literate individuals is often driven by strategic allocation of 

attention and elaborative encoding of task-relevant elements (e.g., values on scales; Okan, 

Galesic, & Garcia-Retamero, 2013; Woller-Carter, Okan, Cokely, & Garcia-Retamero, 2012; 

see also Cokely & Kelley, 2009). Interestingly, here we found that higher graph literacy was 

associated with a marked bias, while less skilled individuals more often avoided the bias. 

Theoretically, this difference partially reflects individual differences in the extent to which 

people encoded and attended to the graphs. In the present work, relevant information could be 

extracted both from the text and from graphs. Less graph literate individuals can be less 

comfortable with graphs, and thus it seems likely that they spent more time focusing instead 

on the numerical and text-based information, largely avoiding the graph and the associated 

bias (for converging evidence, see also Gaissmaier et al., 2012). In contrast, individuals with 

high graph literacy might have focused more on the graphs, resulting in a detailed 

representation of the bar graph which would likely be highly accessible and available to bias 

decision making. 

Our finding that error bars reduced the within-the-bars bias differs from results found 

by Newman and Scholl (2012). The difference in results likely reflects at least two key 

features of our study. First, our graphs were available during decision making while Newman 

and Scholl’s participants had to rely on memory of their graphs. Second, we measured 

individual differences in graph literacy and found that the benefits of the error bars were 

primarily concentrated in highly graph literate individuals. For participants who had some 

familiarity with error bars and who were more likely to either infer or recognize their 

meaning (i.e., those with high graph literacy), the inclusion of error bars reduced the within-

the-bar bias. Of note, although error bars reduced the bias among highly graph literate 

individuals, the reduction was only reliable when bars were rising from a lower x axis, with a 

marginal trend when bars were falling from an upper x axis. We suspect this may be linked to 

the specific context of our task, as hyperglycemia might be perceived as having more severe 

health consequences than hypoglycemia. This may be associated with a general preference to 

decrease glucose levels, which could magnify the effect of the within-the-bar bias for graphs 

with falling bars. More research is needed to investigate this issue, as well as the 
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generalizability of the phenomenon, with emphasis on studies that are representative of actual 

medical or health risk communication practices. 

Concerning the perceptual mechanisms that give rise to the within-the-bar bias, 

Newman and Scholl (2012) argued that the bias occurs because bars are unique visual objects 

defined by the closure of their boundaries, which originate from one particular axis. 

Relatedly, Peebles (2008) demonstrated that people presented with bar graphs underestimated 

the distance of target values to the average (represented by a horizontal line parallel to the x 

axis). Theoretically, visual attention is drawn to the length of bars, which are identified as 

objects attached to the x axis. These accounts converge to indicate that the within-the-bar bias 

is likely triggered by basic principles of object perception. Bottom-up factors such as the 

format of graphs can influence the visual chunks that are created, often driven by Gestalt 

principles including proximity, similarity, and connectedness (Ali & Peebles, 2013; Pinker, 

1990). While the visual chunks formed by bars can facilitate tasks such as making discrete 

comparisons between individual data points (Pinker, 1990) or interpreting interaction data 

(Ali & Peebles, 2013), they can also lead to systematic misinterpretations of bar graphs, at 

least among those who encode and represent these features (e.g., graph literate participants).  

Cognitive process tracing methodologies such as eye-tracking and verbal protocol analysis 

could shed further light on the role of perceptual and attentional processes in the within-the-

bar bias, as well as on their relation with conceptual processes that can also affect the 

interpretation of bar graphs (e.g., different mappings that viewers establish between spatial 

features and conceptual relations; Okan et al., 2012b). 

 

Conclusions. Graphical displays are increasingly being used and recommended for 

the communication of medical risks to the public, and advantages of bar graphs over other 

kinds of displays (e.g., pie charts) have been documented (e.g., Feldman-Stewart, Brundage, 

& Zotov, 2007). Unfortunately, the present work accords with previous research showing that 

bar graphs can lead to judgment and decision making errors (Okan et al., 2012b). This is 

often the case when graphs are poorly designed, or contain distortions that can mislead graph 

viewers (e.g., improperly scaled or split axes; Cooper, Schriger, Wallace, Mikulich & Wilkes, 

2003; Woller-Carter et al., 2012). Here we demonstrated that bar graphs can also be 

associated with systematic biases likely caused by basic principles of object perception. We 

also found that graph literacy does not necessarily protect individuals from this bias, although 

more graph literate individuals can in some conditions show debiasing when error bars are 

included in graphs. 
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Taken together, our findings emphasize that recommendations to use bar graphs to 

communicate health-related statistics may not always be warranted. Designers and policy 

makers should proceed with caution, and consider the inclusion of error bars, or the use of 

alternative graphical formats (e.g., points or depictions of the distributions, as suggested by 

Newman & Scholl, 2012), where applicable. Ensuring that bar graphs comply with principles 

of good graph design is most likely necessary, but not sufficient, to promote accurate 

comprehension and informed decision making. 
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Appendix 

 

Scenario presented. Note: The text viewed by participants was in Spanish. 

 

Imagine that you receive the results of your blood glucose levels from the past week. 

Results are presented using a measurement taken at the start of the week as a reference point. 

That day, your measurement was ideal (120 mg/dL). Since the start of the week, your blood 

glucose levels have varied between 20 and +20 in percentage change. If your blood glucose 

levels are too high (above the measurement taken at the start of the week), or too low (below 

the measurement taken at the start of the week), you could have a high risk of severe health 

consequences. Your blood glucose levels were measured several times last week, as levels 

can vary throughout the day, and can depend on the time passed since the last meal. Your 

average percentage change throughout the week was zero. However, in some measurements 

the percentage change was above zero, while in others it was below zero. 

Based on this information, you can choose to follow a treatment that will slightly increase 

your blood glucose levels, or a treatment that slightly decrease your blood glucose levels. 

 

In this case, I would prefer to follow a treatment that… 
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Introduction 

Well designed graphical displays are often considered to be an effective, transparent, 

and ethically desirable option to present medical information and improve the communication 

of risks (Garcia-Retamero & Cokely, in press). However, graphs can readily be employed to 

obscure information or create favorable impressions of different medical treatments or 

products (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 2007; Kurz-Milcke, 

Gigerenzer, & Martignon, 2008; Tufte, 2001; Wainer, 1984; Woller-Carter, Okan, Cokely, & 

Garcia-Retamero, 2012), and individuals with low graph literacy can be at a higher risk of 

misinterpreting information. The experiments reported in this dissertation sought to 

investigate different design features that can either aid or mislead viewers with varying levels 

of graph literacy from a theoretically grounded perspective, integrating notions from theories 

of graph comprehension (Carpenter & Shah, 1998), embodied cognition (Tversky, 2009; 

Wilson, 2002), skill acquisition and expert performance (Cokely & Kelley, 2009; Haider & 

Frensch, 1996, 1999). In what follows, I will outline theoretical and practical implications of 

the reported findings, as well as limitations of the work and promising avenues for future 

research. 

 

Processes involved in the comprehension of icon arrays 

The literature concerned with the graphical communication of health-related statistics 

has established some links with classic work on perceptual and cognitive judgments involved 

in graph comprehension (e.g., Ancker, Weber, & Kukafka, 2011a; Price, Cameron, & Butow, 

2007; Waters, Weinstein, Colditz, & Emmons, 2006, 2007). However, experiments 

evaluating the effectiveness of different graphical formats have seldom been grounded on 

theories of graph comprehension. As noted by Cheng (2001), this may be at least partially 

due to the fact that research in the cognitive science of graphs has often focused on highly 

specific aspects of cognition that are hard to scale up to real-world contexts. Accordingly, it 

is not easy to anticipate how the processes necessary to achieve accurate and meaningful 

interpretations will be influenced by different design features in graphs. This holds 

particularly true for icon arrays, as this type of display has received little attention in 

prominent theories of graph comprehension (e.g., Carpenter & Shah, 1998; Kosslyn, 2006; 

Pinker, 1990). 

Chapters II and III attempted to achieve a better understanding of key mechanisms 

underlying the efficacy of icon arrays in individuals with varying levels of graph literacy. In 

particular, the experiment reported in Chapter II showed that static icon arrays increased 
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accuracy of risk understanding to a larger extent among individuals with high graph literacy. 

This finding highlighted that the mechanisms thought to underlie the effect of icon arrays 

(i.e., disentangling overlapping classes; Brainerd & Reyna, 1990; Reyna, 2009; and bringing 

attention to background information; Stone et al., 2003) might not be sufficient to enhance 

performance to the same extent for everyone, pointing to differences in processing of icon 

arrays linked to graph literacy.  

The findings reported in Chapter III contributed to shed some light on the processes 

underlying superior performance, demonstrating that risk understanding can be improved 

when icon arrays are designed to elicit a more active, elaborative, processing of information 

(c.f., Cokely & Kelley, 2009; Natter & Berry, 2005). Displays that promoted such kind of 

processing contributed to increase accuracy of risk understanding even among less graph 

literate individuals. In contrast, encouraging the allocation of attention and encoding of all 

regions of icon arrays (i.e., first process involved in graph comprehension; Carpenter & Shah, 

1998) or facilitating the identification and integration of referents of icon arrays via the 

inclusion of explanatory labels (i.e., third process involved in graph comprehension; 

Carpenter & Shah, 1998) was not sufficient to enhance performance. These findings did not 

enable to determine whether elaborative processing of icon arrays is necessary or sufficient 

for improved comprehension (see Woller-Carter et al., 2012, for related arguments). 

However, they stressed that achieving a comprehensive understanding of the mechanisms 

underlying the efficacy of icon arrays for viewers with varying skills requires considering 

global graph comprehension processes, as well as the extent to which the displays promote 

the generalization of risk information. Such considerations will likely help to explain and 

predict effects of the manipulations of design features of icon arrays such as grouping vs. 

random arrangement of icons (Ancker et al., 2011a; Feldman-Stewart, Brundage, & Zotov, 

2007; Feldman-Stewart, Kocovski, McConnell, Brundage, & Mackillop, 2000; Han et al., 

2012; Schapira, Nattinger, & McHorney, 2001; Wright, Whitwell, Takeichi, Hankins, & 

Marteau, 2009). 

 

Processes involved in the comprehension of bar graphs and line graphs 

Processes underlying the comprehension of bar graphs and line graphs have been 

documented more extensively than those underlying the comprehension of icon arrays. 

However, the effect of graph literacy on such processes is not well understood. Chapters IV 

and V addressed this issue, and showed that graph literacy was associated with a larger 

likelihood to identify and integrate referents of the variables depicted in bar graphs and line 
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graphs (i.e., third process involved in graph comprehension). This tendency can help viewers 

to avoid misinterpretations, when the message conveyed by spatial features is in conflict with 

that conveyed by features linked to arbitrary conventions. These findings expand previous 

research on perceptual and cognitive processes in graph comprehension (Carpenter & Shah, 

1998; Kosslyn, 1989; Lohse, 1993; Pinker, 1990; Shah & Carpenter, 1995; Simkin & Hastie, 

1987), documenting the existence of differences in these processes that are linked to 

individual differences in graph literacy. Additionally, they emphasize that the process of 

translating visual features into conceptual relations (i.e., second process involved in graph 

comprehension) can be better understood by taking into account the influence of the 

associations that viewers may have acquired through their experience with the environment 

(see also Tversky, 2001, 2009). Further analyses examining transitions between fixations on 

the different regions of the display revealed that a large proportion of transitions occurred 

between the areas used to determine referents (e.g., x and y axes) and the pattern, also in line 

with Carpenter and Shah’s (1998) model. 

The finding that the link between graph literacy and performance was mediated by the 

viewing time of numerical scales (but not of titles and axes labels; Chapter V) also stresses 

the theoretical relevance of establishing a conceptual distinction between different types of 

sources of graph-related errors. For graphs including essential information in scales, 

differences in allocation of attention can, at least partially, account for differences in 

performance. However, overcoming errors related to textual elements likely hinges to a larger 

extent on a certain level of conceptual understanding that supports appropriate inferences. A 

promising approach that could help to further delineate different theoretically relevant 

sources of error could involve distinguishing features in graphs that are task-relevant from 

those that are task-redundant (Haider & Frensch, 1996, 1999). Future research could also 

examine whether comprehension can be enhanced by manipulations that elicit a more active, 

elaborative processing of information in textual elements, akin to the manipulations 

employed in Chapter III for icon arrays. 

Finally, the study reported in Chapter VI contributed to outline some conditions under 

which higher graph literacy can be associated with larger biases. Results suggest that this can 

be the case for biases which are triggered by basic principles of object perception, driven by 

the creation of particular visual chunks (e.g., bars defined by the closure of their boundaries, 

originating from a particular axis; Newman & Scholl, 2012; Peebles, 2008). This finding was 

interpreted in terms of a larger tendency among less graph literate individuals to avoid graphs 

altogether (and therefore the associated biases), when relevant information is also available in 
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text. It is unclear whether individuals with higher levels of graph expertise than those of our 

more graph literate subjects will show a qualitatively different pattern of results. We suspect 

that the relationship between graph literacy and the bias might be a curvilinear one, such that 

highest graph literacy will be associated with lower bias. 

 

Theoretical implications 

Differences in people’s tendency to rely on information conveyed by spatial features 

(e.g., bars) vs. on numerical elements in scales to interpret graphs have also been discussed 

within the framework of a prominent theory in judgment and decision making and 

probabilistic reasoning, namely fuzzy trace theory (e.g., Brainerd & Reyna, 1990; Reyna & 

Brainerd, 1995; Reyna et al., 2009). This theory posits that people encode both gist and 

verbatim representations in parallel, and tend to rely on the former. According to Reyna 

(2008), in bar graphs the salient gist would be the heights of bars, while verbatim 

representations would be concrete numbers in scales. Fuzzy trace theory predicts that people 

will tend to neglect specific numbers, showing an overreliance on the information conveyed 

by heights of bars. This prediction is in accord with the results reported in Chapters IV and 

V. 

However, while fuzzy trace theory predicts that increasing expertise will be associated 

with an increasing preference to operate on crude gist, the present results can be interpreted 

as evidence that higher levels of graph literacy can in some cases be associated with a larger 

tendency to operate on verbatim information in graphs. This idea is also supported by 

evidence from recent studies showing that more graph literate individuals had better memory 

for verbatim details (e.g., specific numerical information) of graphs used by advertisers and 

news organizations to communicate risks (Woller-Carter et al., 2012). In contrast, a large 

body of evidence has showed that expertise in many domains is associated with an increased 

reliance on semantic gist (Reyna & Brainerd, 2011; Reyna, Chick, Corbi, & Hsia, in press). 

Thus, the conclusion that this relation is reversed in the domain of graph comprehension in 

particular (i.e., that experts rely more on verbatim representations) seems hard to substantiate. 

Instead, the current findings may be interpreted as evidence that, for specific types of 

tasks and graphs (i.e., those containing incongruencies between the message conveyed by 

spatial features and numerical scales), operating on verbatim information becomes essential 

for accurate interpretations, and graph literacy can be associated with a larger likelihood to 

incorporate such information. It is plausible that the existence of conflicts in graphs prompts 

an adaptive adjustment of encoding strategies among more graph literate individuals (c.f., 
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Cokely, Kelley, & Gilchrist, 2006; Cokely & Kelley, 2009), who might strategically shift to a 

larger reliance on a verbatim-based processing. 

Summing up, the experiments reported provide new evidence on the theoretical and 

practical relevance of the construct of graph literacy, which plays an important role in 

achieving a unified understanding of graphical communication of medical risks. Future 

research should seek to determine the exact nature of the representations that individuals with 

varying levels of graph literacy store and operate on (i.e., Marr’s second level of analysis of 

information-processing systems; 1982), including the extent to which they incorporate 

propositional elements (Pinker, 1990) vs. analogical or spatial ones (Trafton & Trickett, 

2001; Trafton, Marshall, Mintz, & Trickett, 2002). There is some evidence suggesting that 

higher spatial abilities can be linked to the use of analogical representations for graphical 

reasoning (Feeney, Adams, Webber, & Ewbank, 2004), suggesting that different types of 

representations may also be used by individuals with different levels of graph literacy. 

Addressing these questions would enable to achieve a better cognitive fit (Shaft & Vessey, 

2006; Vessey, 1991) between people’s problem representations and the tasks required to 

extract information from graphs. 

 

Practical implications 

 The reported experiments have a number of practical implications for the graphical 

communication of health-related statistics. First, the results reported in Chapters II and III 

suggest that, while icon arrays can constitute a highly efficient means to reduce biases such as 

denominator neglect, it cannot be assumed that such displays will be beneficial for everyone. 

The advantages of icon arrays documented in past research (e.g., their capacity to display 

part-to-whole relations and to represent risks as frequencies; Brase, 2009; Kurz-Milcke et al., 

2008) do not guarantee an accurate understanding of risk information for all individuals (see 

Garcia-Retamero & Galesic, 2010, for converging evidence) and in some cases may even 

hinder performance (e.g., Ruiz et al., 2013). Taking this into account, strong 

recommendations concerning the use of icon arrays to communicate medical risks (e.g., 

Burkell, 2004; Fagerlin & Peters, 2011; Fagerlin, Zikmund-Fisher, & Ubel, 2011) might need 

to be qualified. 

Promoting an active engagement in the information depicted in icon arrays seems to be a 

promising means to enhance comprehension (Chapter III). However, often less can be more 

(Zikmund-Fisher, 2013; Zikmund-Fisher et al., 2012; Zikmund-Fisher, Dickson, & 

Witteman, 2011), and therefore icon arrays including dynamic or interactive components 
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should be designed carefully to avoid an increase in cognitive burden. Caution should be 

taken to avoid overwhelming people’s working memory, causing interference, or directing 

people’s attention away from relevant information. 

Second, the results reported in Chapters IV and V highlight the negative impact of 

designing graphs in which information in conventional features is incongruent with that 

conveyed by spatial features (see Sun, Li, & Bonini, 2011, for related arguments on the effect 

of manipulations in physical sizes of numerical scales). Moreover, they indicate that visual 

aids incorporating logarithmic scales (e.g., Paling perspective scales) may in some cases be 

misunderstood by less graph literate viewers. Accordingly, it may be advisable to bring 

attention to the scales included in such visual aids, either through features implemented in the 

displays themselves, or through instructions provided by those administering the visual aids. 

Additionally, graph designers should seek to preserve the compatibility between the message 

conveyed by spatial features, textual elements, and the question to be answered. That is, our 

results converge to suggest that designers of graphs should decide which are the questions 

that viewers may need to address, and aim to organize data in a way that facilitates those 

questions to be answered (Kosslyn, 2006). 

The results reported in Chapter IV also show that horizontally oriented bar graphs can 

increase the likelihood that highly graph literate viewers incorporate essential elements in 

scales in their interpretations. However, given that this interaction between graph literacy, 

orientation, and type of conflict was found unexpectedly, replications of this effect would be 

desirable before clear prescriptive implications can be derived. The need to interpret the 

current findings with caution is further emphasized by previous results showing that 

horizontal bars graphs can in some cases lead to lower accuracy (e.g., for gist judgments 

concerning treatment decisions; Feldman-Stewart et al., 2007). The effect of orientation could 

not be examined further in the eye tracking studies reported in Chapter V due to limitations 

in the sample size and to the increased complexity of the experimental design employed. 

However, future work examining how the allocation of attention to scales is affected by their 

orientation would yield insights with important implications for guidelines of effective graph 

design. Analyses of reaction times could also contribute to this end, as graph orientation may 

affect response latencies to a larger extent than accuracy. 

Finally, the results reported in Chapter VI demonstrate that preferences for medical 

treatments represented in bar graphs can be biased in systematic ways due to principles of 

object perception. This expands previous research showing that specific features of bar 

graphs can be associated with misinterpretations (e.g., for stacked bars, people may often 
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read off the top of bars instead of calculating the difference with the bar below; Mt-Isa et al., 

2013). A promising means of reducing the within-the-bar bias was also identified, namely the 

inclusion of error bars. However, given that less educated people may perceive graphs 

including representations of uncertainty to be vague and less trustworthy (Schapira et al., 

2001), future work should examine alternative debiasing means. 

 

Limitations 

One limitation of the reported studies is that, in most cases, participants were 

relatively well educated. In contrast, the instrument used to evaluate graph literacy (Galesic 

& Garcia-Retamero, 2011b) was designed to be used with the general public, and validated in 

nationally representative samples. Accordingly, the distribution of graph literacy scores was 

often negatively skewed. Thus, future studies should examine whether the observed patterns 

of results do indeed hold with more diverse samples. Moreover, the quasi-experimental 

design employed does not allow complete control of extraneous variables. Although some 

threats to internal validity were reduced by measuring and controlling for the effects of 

potential confounding factors (e.g., numeracy, motivational factors or carelessness), more 

research is needed to establish clear causal links between graph literacy, processing 

differences, and performance. 

Another limitation is linked to the use of eye tracking as a means to track cognitive 

processes, as the interpretation of the specific metrics used is debatable. According to the 

“eye-mind” hypothesis (Just & Carpenter, 1976) the eye fixates on referents of symbols being 

processed mentally, implying that eye movements can indicate where a person’s attention is 

being directed in a visual display. However, eye fixations can only be used as indirect 

indication of cognitive processes, as mental computations do not necessarily produce eye 

movements, and people do not always see what they fixate on (Wickens & Hollands, 2000). 

Moreover, interpretations for different eye tracking metrics including fixation frequency, 

duration of fixations, as well as saccade-derived metrics can vary from task to task and from 

study to study (Ehmke & Wilson, 2007; Jacob & Karn, 2003; Poole & Ball, 2006; Renshaw, 

Finlay, Tyfa, & Ward, 2004). Eye movements show researchers where participants looked, 

but not why (Eger, Ball, Stevens, & Dodd, 2007). 

The adequacy of the metrics analyzed in Chapter V and of the ways in which metrics 

were interpreted is supported by a recent meta-analysis of eye tracking research on 

differences in the comprehension of visualization liked to expertise (Gegenfurtner, Lehtinen, 

& Säljö, 2011). However, a more comprehensive understanding of the steps involved in 
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graph comprehension could be achieved by complimenting oculomotor measures with other 

process tracing techniques such as concurrent think aloud reports (Ericsson & Simon, 1980) 

or potentially less reactive methods such as retrospective reports cued by eye-movement 

replay (e.g., Post-Experience Eye-Tracked Protocols; Ball, Eger, Stevens, & Dodd, 2006; 

Eger et al., 2007) and sequential qualitative interviews (e.g., Nicolson, Knapp, Gardner, & 

Raynor, 2011). Recent examples of the use of such techniques in graph comprehension 

research (both in isolation and in conjunction with eye tracking) can be found in Ali and 

Peebles (2011), Peebles and Ali (2009), Ratwani, Trafton, and Boehm-Davis (2008) and 

Trafton et al. (2000). 

Finally, the dependent variables measured in the current studies and the question 

formats selected to assess such variables were in some cases limited. For instance, to evaluate 

understanding of treatment risk reduction, Chapters II and III employed the procedure 

reported by Schwartz et al. (1997), which had also been employed in numerous other studies 

(e.g., Galesic, Garcia-Retamero, & Gigerenzer, 2009). However, different question forms can 

prompt different kinds of computations and reasoning mechanisms, enhancing the salience of 

different elements of problems, and thus significantly affecting performance (Girotto & 

Gonzalez, 2001; Perales & Shanks, 2008). Similarly, Chapters IV and V examined 

understanding of information in bar graphs and line graphs using specific information 

extraction questions. As noted by Ratwani et al. (2008), more complex integration questions 

might prompt different kinds of graph comprehension processes. Therefore, it would be 

desirable to determine whether varying the specific format and complexity of the questions 

used affects results in significant ways. Additionally, other relevant variables, including risk 

perceptions and perceived threat (see e.g., Keller & Siegrist, 2009; Schapira, Nattinger, & 

McAuliffe, 2006; Schapira et al., 2001; Siegrist, Orlow, & Keller, 2008; Stone et al., 2003; 

Stone, Yates, & Parker, 1997; Timmermans, Molewijk, Stiggelbout, & Kievit, 2004), could 

be examined. The links between accuracy of understanding, treatment decisions (e.g., 

willingness to take a drug), and behavioral change are not straightforward (Ahmed, Naik, 

Willoughby, & Edwards, 2012; Waters, Weinstein, Colditz, & Emmons, 2007). Thus, it is 

necessary to determine the extent to which different design features in graphs can affect real-

life decisions and actual behavior. 

 

Open questions for future research 

Taken together, the current work leaves a number of questions open for future research. 

First, it is necessary to achieve a more fine-grained specification of the processes underlying 



General Discussion 

 

189 

 

graph comprehension in different viewers (Carpenter & Shah, 1998). For instance, authors 

investigating the comprehension of choropleth graphs (Ratwani et al., 2008) have suggested 

that cognitive integration (i.e., the comparison and contrast of aggregate visual clusters) 

should be distinguished from visual integration (i.e., the integration of individual data 

components into clusters of information and relation to the referents), and that both types of 

integration are part of the process of identifying referents contemplated in Carpenter and 

Shah’s (1998) work. Future research could examine whether such distinction can also 

contribute to outline with more precision the processes underlying the comprehension of 

graphs depicting health-related data. 

Concerning the process of translating visual features into conceptual relations, Chapters 

IV and V focused on situations in which mappings could be readily established through 

information acquired in the environment. However, when visual chunks cannot readily be 

associated with conceptual relations or viewers lack knowledge to establish the associations, 

the process of translating visual features into conceptual relations will involve complex 

inferential processes (Shah, Mayer, & Hegarty, 1999). Thus, future research could also 

examine how graph literacy affects processing of graphs in such cases. Open questions also 

remain concerning the interpretation of more complex visual displays. Studies have indicated 

that the interpretation of some types of complex visualizations (i.e., weather maps) involves 

the allocation of attention to information in a goal-driven manner and the construction of 

qualitative mental models from which quantitative information is abstracted (Trafton et al., 

2000), as well as spatial transformations and visual imagery  (Trafton et al., 2002). The need 

to engage in such processes and subprocesses for more complex graphs communicating 

health-relevant information could also be examined. 

Future research should also seek to determine the specific factors that give rise to graph 

literacy, as well as how this skill relates to other types of prior knowledge. Training in 

statistics acquired through formal education is likely to be a crucial factor affecting graph 

literacy, as evidenced by the moderate correlations existing between graph literacy scores and 

educational level (Galesic & Garcia-Retamerob, 2011; Ruiz et al., 2013). However, 

longitudinal studies are needed to establish the effect of change in graph-related skills as a 

result of interventions (i.e., explicit instructions; Glazer, 2011). Additionally, links between 

graph literacy and specific content knowledge should be examined further, as some studies 

have suggested that novice viewers may in some cases be more likely than experts to rely on 

knowledge about typical relations to interpret graphs (e.g., accidents and drunk driving; 

Freedman & Shah, 2002). Another fruitful avenue of research would be the investigation of 
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links between graph literacy and spatial abilities (Kellen, Chan, & Fang, 2013) or object vs. 

spatial visualization preferences (Blazhenkova & Kozhevnikov, 2008; Garcia-Rodriguez, 

Summers, & Duxbury, 2011). Further empirical studies are also needed to shed further light 

on the nature and constituting features of graph schemas, as this widely accepted construct 

has seldom been examined empirically (see Ratwani & Trafton, 2008, for an exception). 

Importantly, future research efforts should include carefully designed graphs, for which 

interdisciplinary collaborations including researchers in computer science and human 

computer interaction would be highly beneficial. This could help to overcome flaws of graphs 

tested in past research, including the failure to preserve proportionality between areas of the 

different regions and the quantities displayed (see Micallef, Dragicevic, & Fekete, 2012; 

Ottley, Metevier, Han, & Chang, 2012, for a discussion). This could help to avoid confounds 

in stimuli used in experiments and maximize the potential of the tested graphs to improve the 

comprehension of medical risks. 

Finally, it would also be interesting to determine the actual use of graphs in clinical 

settings. The few studies that have examined this issue have revealed that the use of graphs to 

communicate risks is limited (Neuner-Jehle, Senn, Wegwarth, Rosemann, & Steurer, 2011), 

pointing to an important gap between recommendations for communicating risk and the 

reality. It is possible that physicians are aware of the potency of graphs to mislead viewers, 

thus resorting to employ other formats that may be less suited to improve understanding, but 

that may seem less potentially troublesome. Moreover, the informational needs of some 

patients will not always include quantitative information, implying that qualitative risk 

communications might be sufficient in some cases (Zikmund-Fisher, 2013). Future research 

examining the questions raised above holds the promise of exploiting the potential of graphs 

in the contexts in which they may be more needed. 

 

Conclusions 

 In 1999, Lipkus and Hollands made a call for theoretically driven research examining 

which graphs are better suited to particular risk communication tasks. Fourteen years later, 

we are still far from a unified framework that enables to explain and, more importantly, 

predict, how the use of different types of graphs and the manipulation of different design 

features in graphs will affect the comprehension of health and medical statistics. The work 

reported in this dissertation aimed to take some steps toward this goal. Several graph design 

features that can hinder the comprehension of information were outlined, and mechanisms 

underlying graph comprehension in individuals of varying skills levels were uncovered. 
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Graph literacy was identified as a key moderator of the effectiveness of visual aids, as 

well as a skill that can protect people from biases linked to an overreliance on spatial-to-

conceptual mappings, but not necessarily from more basic perceptual biases. Some debiasing 

methods were identified (e.g., the inclusion of error bars in bar graphs), and key principles for 

designing graphs that are suitable even for people with low graph literacy were proposed, 

namely ensuring that spatial and conventional features in graphs convey the same meaning. I 

hope that this work has contributed to the essential goal of increasing our understanding of 

the defining features, moderating factors, and mechanisms that give rise to transparent and 

nontransparent graphical displays in health. 
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Graph literacy scale  

(Galesic & Garcia-Retamero, 2011b) 

Here is some information about cancer therapies. 

 
 

Q1. What percentage of patients recovered after chemotherapy? 

 

% 

 

Q2. What is the difference between the percentage of patients who recovered after a surgery and the 

percentage of patients who recovered after radiation therapy?  

 

  % 
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Here is some information about different forms of cancer. 

 

 
 

Q3. Of all the people who die from cancer, approximately what percentage dies from lung cancer? 

 

% 

 

 

Q4. Approximately what percentage of people who die from cancer die from colon cancer, breast cancer, 

and prostate cancer taken together?  

 

% 
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Here is some information about an imaginary disease called Adeolitis. 

 

Percentage of people with Adeolitis 

 
Q5. Approximately what percentage of people had Adeolitis in the year 2000?  

 

        % 

 

 

Q6. When was the increase in the percentage of people with Adeolitis higher? 

From 1975 to 1980………………………………………..1 

From 2000 to 2005………………………………………..2 

Increase was the same in both intervals…………………...3 

Don’t know………………………………………………..4 

 

Q7. According to your best guess, what will the percentage of people with Adeolitis be in the year 2010?   

       

       % 

 

 

 

 

 

The following figure shows the number of men and women among patients with disease X. The total 

number of circles is 100. 

 
 

Q8. Of 100 patients with disease X, how many are women?  

 

 

Q9. How many more men than women are there among 100 patients with disease X? 

         

     men 
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Q10. In a magazine you see two advertisements, one on page 5 and another on page 12.  Each is for a 

different drug for treating heart disease, and each includes a graph showing the effectiveness of the drug 

compared to a placebo (sugar pill). 

 

 

 
 

 

Compared to the placebo, which treatment leads to a larger decrease in the percentage of patients who die?  

 

Crosicol………………………..1  

Hertinol………………………..2 

They are equal…………………3 

Can’t say………………………4 

 

 

Q11. In the newspaper you see two advertisements, one on page 15 and another on page 17.  Each is for a 

different treatment of psoriasis, and each includes a graph showing the effectiveness of the treatment over 

time.  

 

 
 

 
Which of the treatments contributes to a larger decrease in the percentage of sick patients? 

Apsoriatin………………….1 

Nopsorian………………….2 

They are equal……………..3 

Can’t say…………………...4 
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Q12. Here is some information about the imaginary diseases Coliosis and Tiosis.  

 
Between 1980 and 1990, which disease had a higher increase in the percentage of people affected?  

Coliosis……………………………1 

Tiosis……………………………...2 

The increase was equal……………3 

Can’t say…………………………..4 

 

 

Q13. Here is some information about cancer therapies. 

 
What is the percentage of cancer patients who die after chemotherapy?  

      % 
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Additional items to measure graph literacy 
 

1. Below you can see information about Fireworks in the Netherlands.  

How many more people were injured in 1989 than in 1988?      People 

 

 
(Source: International Adult Literacy Survey, Document literacy) 

 

 

 

 

2. Below you can see information concerning the World's major producers and consumers of primary 

energy  

 

How much more energy is produced than consumed in Canada?      Quadrillion BTU 

 

 
 

(Source: International Adult Literacy Survey, Mathematical literacy) 
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3. The graph below shows predictions of United States energy consumption through the year 2010. Use the 

graph to answer the question that follows.  

In the year 2010, which energy source is predicted to supply a larger percentage of the total power than it 

did in 1990? 

 

A. Coal 

B. Petroleum 

C. Natural gas 

D. Nuclear power 

E. Hydropower 

F. I don´t know 

 
 

 

(Source: National Assesment of Adult Literacy) 
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4. The graph below represents the income of two companies between the years 1990 and 2000.  

 
Until the year 1994, the change rate in the income of Company B was...  

 
A. Greater than the change rate in the income of Company A 

B. Smaller than the change rate in the income of Company A 

C. Equal to the change rate in the income of Company A 

 

 
 

(Source: Kramarski & Meravech, 2003) 


