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Resumen y Conclusiones en Espanol

En este apartado se incluye el resumen en castellano de la tesis, para cumplir con
los requisitos necesarios para poder acceder al titulo de doctor en Tecnologias de la
Informacién y la Comunicacién de la Universidad de Granada.

Introduccion

El objetivo primario de esta memoria es el estudio del equilibrio entre precisién y com-
plejidad en Sistemas Basados en Reglas Difusas (SBRDs) para el caso de problemas
de alta dimensionalidad y/o con un gran nimero de ejemplos. Para ello, se proponen
el uso de Algoritmos Evolutivos Multi-Objetivos (AEMOs), que permiten generar un
conjunto de soluciones no-dominadas con distintos equilibrios para ambos objetivos.
El contenido de este apartado estd organizado en cinco secciones principales:

e En la primera seccion se presenta el planteamiento del problema, introduciendo
este con detalle y describiendo las técnicas utilizadas para resolverlo.

e A continuacién, en la segunda seccién, definimos algunos de los problemas
abiertos en este marco de trabajo que justifican la realizacion de esta tesis.

e En la tercera seccion se describe el objetivo general y se desglosa en objetivos
especificos que constituyen el tema de cada propuesta presentada en la memoria.

e La cuarta seccién incluye un resumen de las propuestas y de los resultados
obtenidos en las distintas partes en que se divide el estudio.

e Finalmente, la dltima seccién presenta algunos comentarios finales junto con
algunas conclusiones sobre los resultados obtenidos y se comentan algunos as-
pectos sobre trabajos futuros que quedan abiertos.
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Planteamiento

En las dltimas décadas los sistemas basados en l6gica difusa han tenido una gran di-
fusion, debido a su flexibilidad para su aplicacion en distintos problemas. En particular,
los sistemas difusos mds estudiados y utilizados son los SBRDs (130), que han sido
aplicados con éxito a diferentes campos, como el control, el modelado, la clasificacion,
la prediccion de datos, etc.

Los SBRDs estan constituidos por un conjunto de reglas que permiten representar
conceptos imprecisos e incluir conocimiento previo. Tradicionalmente, el disefio de
un SBRD considera como principal objetivo la mejora de la precision del modelo.

En los dltimos afios, la investigacion en este campo ha evolucionado integrando
los sistemas difusos con otras técnicas tales como los algoritmos evolutivos (AEs).
La hibridacion de ambos sistemas da origen a los sistemas difusos evolutivos (SDEs),
y en particular a los sistemas basados en reglas difusas evolutivos (SBRDEs), donde
el proceso de disefio del SBRD se considera como un problema de optimizacién o
busqueda y el AE es utilizado para resolver este problema.

En el marco de los AEs, los algoritmos genéticos (AGs) se consideran actualmente
como una de las técnicas de busqueda global més conocida y empleada, siendo proced-
imientos adaptativos para buscar soluciones en espacios complejos. Los AGs ofrecen
soluciones aproximadas vélidas a problemas donde las técnicas cldsicas de busqueda
no resultan eficientes. La principal ventaja del uso de los AGs es su capacidad para ex-
plotar la informacién acumulada sobre un espacio de bisqueda y dirigir las siguientes
busquedas hacia los mejores sub-espacios.

Por esta razén, numerosos autores han trabajado en el desarrollo de AGs para el
aprendizaje automdtico de SBRDs. En particular, en las tltimas décadas, el enfoque
se ha centrado en los modelos que permiten manejar multiples objetivos, dando lugar
a los Sistemas Difusos Evolutivos Multi-Objetivos (SDEMOs). Este tipo de sistemas
permite obtener un conjunto de soluciones no dominadas, es decir que no existe una
solucién 6ptima con respecto a todos los objetivos, sino que cada solucién del conjunto
representa un equilibrio entre los objetivos considerados.

Uno de los objetivos adicionales comtinmente usados es la interpretabilidad del
SBRD (40), es decir la posibilidad de entender facilmente el modelo. El problema esta
en la definicion de indices universalmente aceptados para evaluar dicha propiedad.

Actualmente los investigadores concuerdan en distinguir dos formas de manejar la
interpretabilidad:

e Controlar la complejidad del modelo por medio de medidas como el nimero de
reglas, de variables, de etiquetas por regla, etc.

VIII



Resumen y Conclusiones en Espaiiol

e Medir la interpretabilidad de las particiones difusas usando medidas de inter-
pretabilidad seméntica (cobertura, distinguibilidad, consistencia, etc).

Con respecto a la interpretabilidad semdntica, no existen todavia medidas univer-
salmente aceptadas por los investigadores, por lo tanto en la memoria nos hemos cen-
trado en la complejidad de los modelos.

Justificacion

Después de introducir brevemente los principales conceptos a los que se refiere la
memoria, nos planteamos una serie de problemas abiertos que justifican el desarrollo
del proyecto de tesis.

Actualmente el drea de investigacion sobre SDEMOs se puede considerar madura.
Sin embargo, ain quedan muchos problemas sin resolver cuando se utilizan dichos
sistemas en aplicaciones especificas, por ejemplo cuando nos encontramos en pres-
encia de problemas de alta dimensionalidad (118). Este tipo de problemas se da con
muchas frecuencia en aplicaciones reales hoy en dia debido a la facilidad para realizar
mediciones, recuperar informacion y coleccionar grandes cantidades de datos.

En estos casos, el proceso de aprendizaje de un SBRD se enfrenta a un espacio de
busqueda que se incrementa al aumentarse el nimero de variables y de ejemplos del
conjunto de datos. sto dificulta el proceso de aprendizaje y, en la mayoria de los casos,
lleva a la generacion de un SBRD con un gran nimero de reglas, lo que reduce el nivel
de interpretabilidad del sistema.

Por otro lado, cuando se tratan problemas de alta dimensionalidad, el tiempo de
ejecucion de los algoritmos estdndar aumenta tanto que a veces no es posible utilizarlos
en estas aplicaciones. Por lo tanto, se necesita el disefio de algoritmos especificos
a partir de las versiones estindar para manejar el complejo espacio de busqueda de
manera adecuada.

Una forma de afrontar ambos problemas, mejorar el equilibrio entre interpretabil-
idad y precision y abordar problemas de alta dimensionalidad es mediante el apren-
dizaje de la granularidad (numero de etiquetas lingiiisticas asociadas a cada variable)
(39). A lo largo de los afos, se han formulado varias propuestas en la literatura. La
estrategia mas simple consiste en fijar previamente una unica granularidad y generar
particiones difusas uniformes para todas las variables (105, 113). A pesar de su simpli-
cidad, esta estrategia en algunos casos no resulta adecuada, porqué no considera en ab-
soluto la informacién sobre un determinado problema incluida en los datos disponibles
y normalmente conlleva la generacion de un gran nimero de reglas. Otras estrategias
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intentan determinar automaticamente granularidades adecuadas a partir de un conjunto
de datos. Sin embargo los métodos propuestos (13, [115) presentan algunas limita-
ciones cuando se aplican a problemas de alta dimensionalidad o con un gran nimero
de ejemplos, debido al incremento de la dimension del espacio de busqueda y al au-
mento del tiempo necesario por la evaluacion de la funcién de fitness en el MOEA.

Objetivos

Para dar solucion a los distintos problemas que se acaban de mencionar en la seccion
anterior, la memoria de tesis se desarrolla entorno a los siguientes objetivos, que im-
plican el estudio del comportamiento de los SDEMOs considerando el equilibrio entre
precisiéon y complejidad de los SBRDs en presencia de problemas de alta dimension-
alidad. En concreto, los objetivos que proponemos son:

1. Realizar un estudio sobre los SDEMOs existentes en la literatura. Proponer
una taxonomia que permita organizar las contribuciones en distintas categorias
para conocer cuales son los problemas abiertos relacionados con el disefio de los
SDEMOs.

2. Realizar igualmente un estudio sobre las propuestas que hayan tratado el tema
del equilibrio entre interpretabilidad y precision en los SDEMOs, centrandonos
en aquellos algoritmos que alcanzan los mejores resultados.

3. Realizar un estudio sobre la influencia del aprendizaje de la granularidad de la
base de datos de los SBRDs, desarrollando distintos algoritmos con el objetivo
de mejorar el balance entre precision y complejidad mediante el aprendizaje del
numero adecuado de funciones de pertenencias (es decir la granularidad) de cada
variable. Para ello, se pretenden desarrollar varios SDEMOs considerando dos
objetivos contradictorios: minimizar el error del modelo (precisién) y minimizar
el numero de reglas (complejidad).

4. Estudiar la combinacién de las técnicas de pre-procesamiento de seleccion de in-
stancias con los SDEs. Combinar ambas técnicas con el objetivo de determinar
si la reduccién del nimero de ejemplos es efectiva para reducir también la com-
plejidad de los SBRDs y el tiempo de calculo requerido para manejar grandes
cantidades de datos, manteniendo una precision aceptable.

5. Validar los resultados obtenidos mediante una comparacion con los métodos ex-
istentes, mediante el uso de técnicas estadisticas.
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Desarrollo de la tesis

A continuacién se describen brevemente los capitulos de la tesis, resumiendo las prop-
uestas incluidas en la memoria y presentando para cada una de ellas una breve dis-
cusion sobre los resultados obtenidos.

Resumen del capitulo 1: Estudio sobre las aplicaciones de SDEMOs:
estado-del-arte y problemas abiertos

En esta seccidn presentamos un resumen del primer capitulo de la tesis, donde se pro-
pone una taxonomia en dos niveles para clasificar las contribuciones més importantes
sobre el tema de los SDEMOs. EIl primer nivel estd basado en el tipo de problema
multi-objetivos abordado, mientras que en el segundo nivel se organizan las propues-
tas basandose en el tipo de componentes del SBRD que se optimizan durante el proceso
evolutivo. En el primer nivel se han identificado tres distintas categorias:

1. SDEMGOs disefiados para problemas que consideran la interpretabilidad en los
SBRDs: el primer objetivo es la precision, los demds objetivos estdn relaciona-
dos con el tema de la interpretabilidad.

2. SDEMGOs disefiados para problemas de control: los objetivos considerados de-
penden del problema de control que se aborda.

3. SDEMOs disefiados para extraccion de reglas de asociacion difusas: se consid-
eran objetivos que describen la calidad de las reglas extraidas.

SDEMOs diseiiados para mejorar el equilibrio entre precision e interpretabilidad

La primera categoria retine contribuciones en las cuales los SDEMOs se han disefiado
para generar modelos difusos que presentan un buen equilibrio entre precision e in-
terpretabilidad. En estos casos, por 1o menos uno de los objetivos estd siempre rela-
cionado con la interpretabilidad del modelo obtenido. La mayoria de todos los trabajos
que pertenecen al ambito de los SDEMOs se ocupan de este problema, ya que la inter-
pretabilidad es uno de los aspectos més importantes de los SBRDs.

El problema de la mejora de la precisién, manteniendo o mejorando la interpretabil-
idad de un modelo difuso, se abord6 por primera vez a mediados de 1990 (1035), in-
tegrando la interpretabilidad en el proceso de optimizacion, gracias a la aplicacion de
los AEMOs a sistemas difusos. Desde entonces, la interpretabilidad ha adquirido una
importancia creciente.
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Debido a su subjetividad, el problema principal es encontrar una definicién univer-
salmente reconocida y una manera objetiva de medir esta caracteristica. En la dltima
década, varios trabajos han analizado el problema de la interpretabilidad en los SBRDs
(54), en busca de medidas que podrian ser universalmente aceptadas por la comunidad
cientifica (61, 95, [151) y este esfuerzo ha continuado en los tltimos afios, como de-
muestran los numerosos trabajos de revision publicados (21} 184, 138} [168)). Actual-
mente los investigadores concuerdan en considerar dos tipos de medidas:

e Medidas basadas en complejidad: se utilizan para disminuir la complejidad del
modelo difuso (nimero de reglas, nimero de antecedentes en una regla, etc).

e Medidas de interpretabilidad semdntica: se utilizan para preservar la semantica
asociada con las funciones de pertenencia (distinguibilidad, cobertura, etc) y
reglas (consistencia, etc.)

Generalmente al evaluar la interpretabilidad de un modelo difuso, los indices se cen-
tran en el primer tipo de medidas, mientras que la definiciéon de buenas medidas de
interpretabilidad semdntica es todavia un problema abierto (21 25, 83). Por lo tanto,
en esta tesis nos centraremos en las medidas de complejidad.

Considerando la importancia del equilibrio entre precision e interpretabilidad, en
esta primera categoria se incluyen las contribuciones en las que los SDEMOs estan
disefiados para manejar estos objetivos. Debido al gran nimero de trabajos existentes,
se propone también un segundo nivel de clasificacion, segin la taxonomia de SDEs
presentada en (97)), teniendo en cuenta los componentes del SBRD gestionados por el
proceso de optimizacion:

e Ajuste de componentes del SBRD, combinado o no con un proceso de seleccion
de reglas: el proceso de optimizacién ajusta una base de conocimiento pre-
definida, es decir, los pardmetros del sistema se modifican para obtener sistemas
mads precisos. Con el fin de mantener el sistema simple y de reducir la compleji-
dad, en algunos casos, un proceso de seleccion de la reglas se puede integrar en
la optimizacién. Las contribuciones que pertenecen a esta categoria se dividen
en dos sub-categorias, nombradas ajuste de las funciones de pertenencia 'y ajuste
de los parametros de inferencia.

e Aprendizaje de la base de conocimiento: los trabajos que pertenecen a esta cat-
egoria consideran el aprendizaje de la base de datos y/o de reglas. Este grupo se
divide en tres sub-categorias: aprendizaje por seleccion de reglas (en este caso
el proceso de seleccion de reglas se utiliza para llevar a cabo un aprendizaje de
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la base de reglas), aprendizaje de la base de reglas y aprendizaje simultdneo de
los componentes de la base de conocimiento.

La mayoria de las contribuciones utilizan un modelo difuso lingistico, ya que es el
tipo mas interpretable de SBRD. Sin embargo, hay un niimero limitado de trabajos
que consideran el tema de la interpretabilidad incluso en los SBRDs de tipo Takagi-
Sugeno-Kang (TSK).

SDEMOs disefiados para problemas de control

Tradicionalmente la calidad de un sistema de control esta relacionada con la precision
en el modelado de la dindmica del sistema. En el disefio de un sistema de control un
primer problema surge cuando falta un completo conocimiento de los procesos fisicos
involucrados y los procesos se describen de manera imprecisa. Otro problema consiste
en disenar modelos adaptables, es decir sistemas inteligentes que sean capaces de ac-
tuar un proceso de aprendizaje y adaptaciéon cuando los pardmetros del sistema real
cambian. Por lo tanto, puede resultar dificil identificar un modelo dindmico preciso
para disefiar un controlador tradicional.

En estos casos, la 16gica difusa representa una herramienta para afrontar el prob-
lema de la representacion del conocimiento en un entorno de incertidumbre e impre-
cision. Ademas, en el disefno del sistema de control, frecuentemente es necesario con-
siderar multiples objetivos que pueden estar en conflicto entre ellos. Por lo tanto no
existe una unica solucion de disefio que se pueda considerar como la mejor con re-
specto a todos los objetivos. Estas consideraciones han conducido a la aplicacion de
los AEMOs para el disefio de Controladores Basados en Logica Difusa (CBLDs).

El disefio de un CBLD presupone determinar tanto la estructura del controlador
como los pardmetros numéricos correspondientes. Los AEMOs pueden tratar los dos
problemas mediante la codificacion de la estructura y de los pardmetros en un cromo-
soma que representa el CBLD. Por lo tanto, esta segunda categoria retine los trabajos
que aplican los AEMOs a los CBLDs, considerando las siguientes sub-categorias (79):

e identificacion de los pardmetros del controlador y/o de las reglas (por ejemplo el
ajuste de los parametros de la funcién de pertenencia);

e aprendizaje de la estructura del controlador (por ejemplo el aprendizaje de la
base de reglas).

En esta categoria se han incluido también algunos trabajos que describen una hibri-
dacion entre AEMOs, 16gica difusa y redes neuronales.
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SDEMOs disefiados para la extraccion de reglas de asociacion difusas

Los SDEMOs se pueden utilizar para la extraccion automatica de conocimiento a partir
de datos, por lo tanto los problemas de mineria de datos son uno de los dominios
de aplicacién mas importantes para los SDEMOs. La mineria de datos se ha tratado
como un sinénimo de Knowledge Discovery in Databases (KDD) (75,1146), aunque en
realidad es la etapa de andlisis de KDD. El objetivo general de un proceso de mineria
de datos consiste en extraer informacion de un conjunto de datos y transformarla en
una estructura comprensible para su uso posterior.

Generalmente las técnicas de mineria de datos se dividen en dos categorias: pre-
dictivas o descriptivas. Un enfoque predictivo se centra en la capacidad de prediccion
y genera modelos que se pueden utilizar para predecir valores, basdndose en patrones
determinados a partir de datos conocidos. Uno de los métodos utilizados en los mod-
elos predictivos es el aprendizaje supervisado, que determina una funcién a partir de
los datos de entrenamiento. Consiguientemente, dicha funcion se utiliza para predecir
el valor de salida por cualquier dato de entrada vélido. La técnicas predictivas se apli-
can en problemas de clasificacion, de regresion y en algunos casos también se pueden
utilizar en problemas de control.

Por otro lado, el enfoque descriptivo se centra en la comprension del proceso de
generacion de datos, buscando de patrones interesantes en los datos existentes, sin
tener ninguin objetivo predefinido. El método utilizado en este modelo es normalmente
el aprendizaje no supervisado, que difiere del aprendizaje supervisado en el hecho de
que no se conoce la salida de los datos de entrenamiento. Esta estrategia se aplica
principalmente a modelos que funcionan con reglas asociativas.

Por ultimo, existen también aplicaciones de mineria de datos que requieren un
cierto grado de prediccion como de descripcion. Un método que combina el enfoque
predictivo con el descriptivo es el Descubrimiento se Subgrupos (DS) (128)).

En mineria de datos, una forma de representar el conocimiento extraido desde una
base de datos es por medio de reglas de asociacién (167), cuyo concepto bésico es de-
scubrir asociaciones significativas entre los valores de pares de atributos, por ejemplo,
si la presencia de un valor para un determinado atributo implica la presencia de otro
valor para otro atributo. Como los sistemas difusos pueden tratar con conocimiento
impreciso, se pueden aplicar con éxito también para la representacion de este tipo
conocimiento, extendiendo las reglas de asociacion a reglas de asociacion difusas (63).

En la mineria de reglas de asociacion difusas, los objetivos se basan en la calidad
de las reglas extraidas: estas reglas deben ser precisas, generales o suficientemente
especificas, interesantes, etc. Debido a la gran cantidad de objetivos, los AEMOs se
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han utilizado con éxito para extraer reglas de asociacion difusas. Los trabajos incluidos
en este grupo utilizan principalmente un enfoque descriptivo, es decir, se centran en
producir modelos de los datos comprensibles e interpretables. Ademads, pertenecen a
esta categoria algunos trabajos que utilizan el enfoque de descubrimiento de subgrupos.

Problemas abiertos

A continuacién se presentan algunas tendencias actuales en el campo de los SDEMOs
y se plantean algunas cuestiones para dirigir la atencion de los investigadores hacia
nuevos problemas que surgen cuando se utilizan dichos sistemas en aplicaciones reales.

Una cuestién importante estd relacionada con el hecho de que los AEMOs no estan
especificamente disefiados para ser integrados en los SDEMOs, donde un cromosoma
representa partes de un SBRD y consecuentemente asume una estructura compleja que
puede comprender distintas codificas.

Ademads, los SDEMOs deben tener en cuenta el error sobre los datos de test, que
normalmente no se considera en los problemas estdndar de la optimizacion evolutiva
multi-objetivo. Debido a ésto, es posible que los AEMOs existentes no sean adecuados
para optimizar la estructura de los SBRDs, generando asi soluciones sub-6ptimas.

Considerando estos asuntos y el estado-del-arte, hemos evidenciado los siguientes
temas relacionados con los SDEMOs en los cuales todavia se puede investigar.

e Evaluacion de la calidad de los SDEMOs para que se puedan comparar.
e Medidas de interpretabilidad fiables.

e Dimensionalidad de los objetivos.

e Problemas de escalabilidad.

e Aplicacion a conjuntos de datos imbalanceados.

e Seleccion automadtica de la solucién mas adecuada entre las soluciones que pertenecen

al frente de Pareto.
e Integracion de preferencias en el proceso evolutivo.

e Disefio de SDEMOs que incluyen sistemas difusos de tipo 2.
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Conclusiones

El estudio presentado en el primer capitulo de la memoria ha evidenciado claramente
que el interés de la comunidad cientifica se centra en el equilibrio entre interpretabil-
idad y precision, de hecho la primera categoria de la taxonomia incluye la mayoria
de los trabajos existentes. Sin embargo, quedan adin algunos problemas abiertos que
ofrecen nuevas Ifneas de investigacion en este campo.

Considerando que los problemas reales se vuelven més complejos, implicando
problemas de escalabilidad para los algoritmos que los tratan, en el desarrollo de la
tesis decidimos centrarnos en el estudio de nuevos SDEMOs para mejorar el equilib-
rio entre interpretabilidad y precision en este tipo de problemas, que requieren de un
disefio especifico de los algoritmos propuestos.

Resumen del capitulo 2: Mejora del equilibrio entre precision y
complejidad de SDEMOs por medio de un aprendizaje de la granu-
laridad basado en medidas heuristicas sobre granularidad multiple:
MO-FARCG

Una manera de mejorar el equilibrio entre precisiéon y complejidad es por medio de
la aplicacion de un proceso evolutivo de seleccion de reglas junto con un proceso de
ajuste. En este caso, no se conoce con antelacion la granularidad, es decir el nimero
apropiado de funciones de pertenencia para cada variable.

Para enfrentarse al problema existen dos posibilidades: fijar previamente una gran-
ularidad (105, 113)) o adoptar multiples granularidades (115). La primera estrategia es
mads simple, aunque la eleccién de la granularidad se realiza a menudo a mano, y por lo
tanto no es optimizada e induce la generacion de un elevado nimero de reglas difusas.
Por otro lado, el enfoque de multiple granularidades es util para reducir el nimero de
reglas, pero se critico por la pérdida de interpretabilidad de los modelos obtenidos.

En la memoria asociada a este resumen se han presentado dos propuesta para abor-
dar el problema de como determinar la granularidad, puesto que granularidades ade-
cuadas contribuyen a la mejora del equilibrio entre precision y complejidad.

La primera propuesta se ha descrito en el segundo capitulo y utiliza algunos con-
ceptos presentados en (13)), donde los autores han propuesto un mecanismo para identi-
ficar granularidades individuales apropiadas durante un proceso evolutivo multi-objetivo
de seleccion de reglas difusas, basado en la propuesta presentada en (115). Dicho
mecanismo incluye cuatro pasos: a) se utiliza un procedimiento heuristico para generar
un nimero pre-determinado de reglas difusas prometedoras con granularidades multiples,
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b) para cada variable se asigna una sola granularidad, teniendo en cuenta la frecuencia
de las particiones usadas y la importancia de las reglas extraidas en el paso anterior;
c) las granularidades individuales determinadas en el paso previo se utilizan para ex-
traer otra vez un numero pre-determinado de reglas difusas; d) por ultimo se utiliza un
AEMO para realizar un proceso de seleccion de reglas.

El método propuesto (MO-FARCG) combina el mecanismo de especificacion de
granularidades individuales descrito anteriormente con una nueva version multi-objetivo
de un algoritmo de clasificacion basado en reglas de asociacion difusas para problemas
de alta dimensionalidad, llamado FARC-HD y propuesto en (15). El objetivo es evi-
tar el uso de multiples granularidades, proporcionando aun asi una reduccién de la
complejidad de los clasificadores obtenidos y manteniendo al mismo tiempo una alta
capacidad de generalizacion, considerando los dos objetivos en un marco evolutivo
multi-objetivo.

El método consta de tres etapas:

1. Fase de configuracion: aprendizaje de las granularidades adecuadas. El fin
de un problema de clasificacién es determinar para cada ejemplo de ingreso
una clase de salida. En esta etapa, para cada clase se genera un nimero pre-
determinado de reglas con multiples granularidades, evaluando las reglas segun
medidas cominmente reconocidas en el campo de la mineria de datos (1). De-
spués se elige un sola granularidad para cada variable, segtin la frecuencia de las
reglas extraidas y segin unas medidas de calidad.

2. Fase de aprendizaje: extraccion de reglas de asociacion difusas candidatas. To-
dos los posibles conjuntos de items frecuentes se enumeran en un drbol de
busqueda que se utiliza para generar reglas de asociacion difusas. Por tltimo,
las reglas son evaluadas y ordenadas segtin un criterio y sélo las mejores reglas
se mantienen, con el fin de reducir el nimero de reglas candidatas.

3. Fase de post-procesamiento: aplicacién del proceso evolutivo multi-objetivo
para seleccion de reglas y ajuste de las funciones de pertenencia. Se seleccio-
nan las reglas mejores y se ajustan las funciones de pertenencia, utilizando un
AEMO basado en el Strength Pareto Evolutionary Algorithm (SPEA2) (169),
aprovechando la sinergia positiva de ambas técnicas en el mismo proceso.

Resultados y conclusiones

El método se ha comparado con el FARC-HD original (15), considerando 24 proble-
mas reales con distintos tamanos. El método propuesto se ha evaluado comparando

XVII



Resumen y Conclusiones en Espaiiol

sus resultados con los resultados obtenidos por FARC-HD. Este algoritmo pertenece
actualmente al estado del arte de los algoritmos de clasificacion, y se ha demostrado
que supera en precision algunos de los algoritmos de clasificacién mas conocidos.

Se han considerado dos versiones de MO-FARCG, utilizando dos criterios difer-
entes para la seleccion de la granularidad individual: el producto (MO-FARCG-prod)
y la confianza (MO-FARCG-conf), respectivamente. Debido al enfoque multi-objetivo
del algoritmo SPEA?2 incluido en MO-FARCG, para la comparacion se ha considerado
el promedio de la soluciéon mas precisa de todos los frentes de Pareto. Para investi-
gar la presencia de diferencias estadisticas entre los métodos, se ha aplicado el test no
paramétrico de Rangos y Signos de Wilcoxon (153} /162) con un nivel de confianza del
95% (a= 0.05).

Una primera comparacion se ha realizado entre las dos versiones diferentes de MO-
FARCG aplicando el test de Wilcoxon sobre los porcentajes medios de clasificacion
obtenidos en test. Los resultados han mostrado que los dos métodos no son equiva-
lentes y la version MO-FARCG-conf resulta mejor. Por lo tanto, esta version de MO-
FARCG se ha elegido para la comparacién con FARC-HD y se ha aplicado otra vez el
test de Wilcoxon sobre los porcentajes medios de clasificacion obtenidos en test por las
soluciones mas precisas. Los resultados evidencian que los dos métodos no son equiv-
alente y que FARC-HD consigue obtener soluciones mas precisas. Una comparacion
adicional se ha realizado con respecto al nimero medio de reglas que constituyen las
soluciones més precisas. En este caso el método propuesto MO-FARCG-conf resulta
mejor que FARC-HD.

Observando las conclusiones de los test estadisticos y los resultados medios obtenidos
por los algoritmos, se puede concluir que MO-FARCG-conf es superado por el FARC-
HD con respecto a la precision en el test, mientras que se verifica lo contrario cuando se
considera la complejidad de los sistemas obtenidos. Sin embargo, frente a una pérdida
de menos del 3% en precision del test, la complejidad se reduce en mas de un 50%.
Por lo tanto, el aprendizaje de las granularidades combinado con MO-FARCG-conf
produce modelos con una precision ligeramente disminuida, lo que se compensa con
una reduccién muy considerable de la complejidad.

Resumen del capitulo 3: Mejora del equilibrio entre precision y
complejidad de SDEMOs por medio de un aprendizaje de la granu-
laridad basado en discretizacion difusa: D-MOFARC

Como se ha afirmado en la seccion anterior, la precision y la complejidad de los SBRDs
dependen de la definicién de la base de datos asociada con la base de reglas, por lo
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tanto el diseflo de una base de datos adecuada es una tarea crucial, particularmente
la definicion de la granularidad. El método presentado en la seccidn anterior incluye
un aprendizaje de la granularidad y consigue generar modelos significativamente mas
simples a costa de una ligera perdida de precision.

En esta seccion se resume el tercer capitulo de la memoria, donde se propone un
nuevo método con el fin de mejorar al mismo tiempo los dos objetivos. El método se
basa en un algoritmo de discretizacion difusa que extrae granularidades adecuadas a
partir de los datos, para generar una base de datos inicial. Este mecanismo se ha inte-
grado dentro de un SDEMO que evoluciona la base de conocimiento inicial. Aunque
el objetivo principal es la precision y el AEMO se ha disefiado como una herramienta
para mejorarla, al mismo tiempo ayuda a reducir la complejidad de los modelos (82).
Este método, llamado D-MOFARC, comprende los siguientes pasos:

e Un algoritmo de discretizacion difusa se ha disefiado para aprender automaticamente
granularidades adecuadas para cada variable y para generar las correspondientes
particiones difusas. Este algoritmo se basa en el concepto de discretizacion
(44, 176)), que es el proceso de transformacion del conjunto de valores continuos
de un atributo en un conjunto de intervalos y la asignacién de un valor discreto
a cada intervalo. Este concepto se ha extendido al caso de particiones difusas,
teniendo en cuenta las interdependencias entre las variables. El algoritmo resul-
tante determina un conjunto de intervalos para cada variable y después asigna
un conjunto difuso a cada intervalo obtenido, en lugar de un valor discreto. De
esta manera se determinan las etiquetas difusas asociadas a cada variable. Este
proceso se ha integrado en un mecanismo de generacién basado en arboles que
considera las interdependencias entre las variables.

e Se genera una base de reglas inicial asociada a las particiones difusas generadas
en la etapa anterior. La base de reglas se genera extrayendo reglas de asociacion
difusas que constituyen las reglas candidatas. Para ello, se han utilizado los dos
primeros pasos del modelo FARC-HD presentado en (15). Las reglas extraidas
no utilizan todas las etiquetas generadas en el paso inicial, por lo tanto las par-
ticiones difusas iniciales se ajustan mediante la eliminacion de las etiquetas no
utilizadas.

e Un nuevo AEMO especifico se ha disefiado para realizar al mismo tiempo un
proceso de ajuste de las funciones de pertenencia en la base de datos y un proceso
de seleccion de reglas en la base de reglas. Este algoritmo representa una version
modificada del algoritmo SPEA2 (169)), y tiene como propdsito la mejora de la
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precision, reduciendo la complejidad del modelo inicial siempre que no vaya en
detrimento de la precision. Se ha preferido un enfoque multi-objetivo respecto a
uno mono-objetivo porqué se ha demostrado ser util en la generacién de modelos
mas precisos, mientras que el uso del nimero de reglas como segundo objetivo
ayuda en la limitacion de la complejidad (82).

Resultados y conclusiones

El método propuesto se ha evaluado comparando sus resultados con los resultados
obtenidos por FARC-HD (15). Como se ha comentado en la seccién anterior, este
algoritmo pertenece actualmente al estado del arte de los algoritmos de clasificacion,
y se ha demostrado que supera en precision algunos de los algoritmos de clasificacion
mads conocidos. Los experimentos se han realizado considerando 35 problemas reales
y los dos métodos se han comparado mediante la aplicacion del test no paramétrico de
Rangos y Signos de Wilcoxon con un nivel de confianza del 95% (a = 0.05). El test se
ha aplicado considerando el porcentaje medio de acierto sobre los datos de test para la
precisiéon y considerando el nimero medio de reglas obtenidas para la complejidad.

Los resultados muestran que el método propuesto genera soluciones mas precisas
respecto FARC-HD. Por otro lado, comparando los dos métodos con respecto al nimero
medio de reglas de las soluciones mads precisas, se nota que la diferencia estadistica en-
tre los dos no es tan evidente. Sin embargo, al observar los valores medios obtenidos
por los dos métodos, se puede ver que el nimero medio de reglas generado aplicando
el método D-MOFARC es ligeramente menor que el valor obtenido aplicando el algo-
ritmo FARC-HD.

Por lo tanto se puede concluir que el D-MOFARC supera claramente a FARC-
HD considerando los resultados en la precision del test, mientras que se observa una
diferencia estadistica menos significativa cuando se considera la complejidad. Aun asi,
el numero de reglas se reduce en media aplicando el D-MOFARC.

Resumen del capitulo 4: Estudio sobre la aplicacion de técnicas
de seleccion de instancias en los sistemas de clasificacion evolutivos
basados en reglas difusas para mejorar el equilibrio entre precision
y complejidad

El proceso de aprendizaje de un SDE se ve afectado negativamente cuando crece el
nuimero de instancias utilizado para generar los SBRDs. Un primer problema esta rela-
cionado con el tiempo de calculo necesario para la evaluacion de la funcion de fitness
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durante el proceso evolutivo, ya que es directamente proporcional a la cantidad de in-
stancias. Un segundo problema esta relacionado con la complejidad de los modelos
obtenidos: con el fin de cubrir lo mas posible las instancias del conjunto de datos, el
proceso de aprendizaje suele generar un alto nimero de reglas.

Para enfrentarse al problema se pueden aplicar técnicas de pre-procesamiento sobre
los conjuntos de datos. El objetivo perseguido por el pre-procesamiento es obtener
conjuntos de datos tales que al aplicar técnicas de aprendizaje automatico sobre ellos
se generan modelos representativos con mejores prestaciones.

Con este objetivo, en la literatura se han propuesto varios métodos de reduccién
de datos. En particular, cuando se consideran problemas de alta dimensionalidad se
pueden aplicar técnicas de Seleccidon de Instancias (SIs) (68,186, 1133, 163)), que tienen
como objetivo extraer desde el conjunto inicial un pequefio subconjunto que sea repre-
sentativo del conjunto original.

Disminuyendo el conjunto inicial de datos se consigue reducir tanto el tiempo de
célculo, como la complejidad de los modelos obtenidos. La eliminacién de instancias
no tiene porqué producir una degradacion de los resultados, ya que se pueden estar
eliminando ejemplos repetidos, datos inconsistentes, redundantes, etc. Es interesante
notar que reduciendo el nimero de ejemplos se puede en algunos casos superar situa-
ciones de sobre-aprendizaje.

Las técnicas de Sls se pueden agrupar en dos categorias, en funcién del objetivo
perseguido después de obtener el conjunto reducido:

e Seleccion de prototipos (SP) (145): el conjunto reducido viene utilizado por
clasificadores basados en prototipos (por ejemplo, K-NN) para clasificar nuevas
instancias. Estos tipos de clasificadores asumen que las instancias no etiquetadas
se puedan clasificar basandose en las instancias etiquetadas, de acuerdo con una
cierta similitud o funcién de distancia. En este caso el subconjunto seleccionado
debe proporcionar el mejor compromiso entre la precision de la clasificacion y
la reduccidn del nimero de instancias.

e Seleccion de conjuntos de entrenamiento (SCE): (27, 37): el subconjunto de
instancias viene utilizado por un algoritmo de aprendizaje automatico para con-
struir un modelo de prediccidn (por ejemplo, redes neuronales, SBRDs, arboles
de decision, etc.)

En esta seccion se resume el cuarto capitulo de la memoria, donde nos centramos en el
uso de técnicas de SCE como método de pre-procesamiento antes de aplicar un SDE
para la generacién de SBRDs. Nuestro objetivo es investigar si las técnicas de SCE
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ayudan a reducir la complejidad de los SBRDs generados, preservando o incluso au-
mentando su precision. Para ello, hemos presentado un primer estudio en (91)), donde
se han considerado una serie de 20 conjuntos de datos de tamafio pequefio. Este estu-
dio ha evidenciado como una familia especifica de métodos de SCE permite obtener
modelos menos complejos manteniendo sustancialmente la precision. Dicho estudio
se ha extendido considerando también conjuntos de datos de tamafio medio-grande,
que aparecen con frecuencia en los problemas del mundo real. Cuando se consideran
estos conjuntos, el numero de reglas de los SBRDs generados puede ser muy grande y
por lo tanto su interpretabilidad puede ser muy baja.

Resultados y conclusiones

Para el estudio completo se han considerado 36 técnicas de SCE, 20 conjuntos de datos
pequefios y 17 conjuntos de datos adicionales de tamafio medio-grande. Las técnicas
de SCE se han aplicado a cada conjunto de datos y se han obtenido los conjuntos
reducidos. Después, los conjuntos de datos reducidos se han utilizado para generar
SBRDs mediante el uso del algoritmo FARC-HD (15), que se ha demostrado ser eficaz
cuando se manejan conjuntos de datos de alta dimensionalidad.

El objetivo es investigar si las técnicas de SCE son capaces de disminuir el nimero
de instancias de un conjunto de datos sin perder la informacion necesaria para permitir
que FARC-HD genere SBRDs con alto porcentaje de clasificaciéon y una complejidad
reducida, con un tiempo de computaciéon minimo. El estudio se ha realizado teniendo
en cuenta la combinacion de los conjuntos de datos de tamafio pequefio y medio-grande
para obtener resultados mas fiables cuando se aplican los tests estadisticos y para inves-
tigar si existen técnicas de SIs que pueden ser utilizadas eficazmente con conjuntos de
datos de cualquier tamafio. El andlisis ha evidenciado que se deben utilizar diferentes
técnicas en funcion de la dimension del conjunto de datos considerado. Combinando
distintas técnicas para conjuntos pequefios y medio-grandes se obtiene un buen equi-
librio entre la reduccion de la complejidad y la precision de los SBRDs generados,
con una reduccién media del nimero de reglas del 38% y una reducciéon media de la
precision del 2%.

Por dltimo, se ha realizado un anélisis del tiempo de calculo requerido para la apli-
cacion de técnicas de SCE y para la ejecucion del SED en los conjuntos de datos reduci-
dos, con el fin de evaluar si los subconjuntos seleccionados conducen a una reduccioén
en el tiempo empleado por el SED para generar modelos de clasificacion. Sin embargo,
los tiempos de célculo totales requeridos para ejecutar tanto el pre-procesamiento como
el algoritmo FARC-HD son mds largos que el tiempo necesario para la ejecucion de
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FARC-HD sobre el conjunto de entrenamiento inicial. Por lo tanto, el objetivo de uti-
lizar una técnica de SCE no es reducir el tiempo de calculo en general, sino mas bien
mejorar el equilibrio entre la precision y la complejidad, al reducir el nimero de reglas,
preservando al mismo tiempo la mayor parte de la precision.

Comentarios finales

A continuacién se presentan unas conclusiones globales sobre el trabajo desarrollado
durante el proyecto de tesis y algunas lineas de investigacion futuras relacionadas con
los SDEMOs.

Conclusiones

En la memoria asociada a este resumen se ha tratado el tema de la mejora del equi-
librio entre precisiéon y complejidad en SDEMOs para clasificacion, centrandonos en
problemas de alta dimensionalidad. Se han presentado dos estrategias para abordar el
problema:

1. La primera estrategia se centra en el aprendizaje de la granularidad de las vari-
ables involucradas en el problema, como manera de obtener una base de datos
mads adecuada y por lo tanto de mejorar el equilibrio entre precision y compleji-
dad. Se han presentado dos propuestas con los relativos estudios. En la primera
propuesta se ha presentado un SDEMO que aprende granularidades adecuadas
y consigue una reduccién de la complejidad, prejuzgando ligeramente la pre-
cision. En la segunda propuesta se ha presentado un SDEMO que aprende las
granularidades por medio de un algoritmo de discretizacion difusa. En este caso
el método logra una mejora de la precision del modelo manteniendo la comple-
jidad al mismo nivel o en algunos casos reduciéndola ligeramente.

2. La segunda estrategia aborda el problema por medio de un pre-procesa-miento
de los datos de ingreso, mediante la aplicaciéon de técnicas de seleccién de in-
stancias y la aplicacion sucesiva de un SDE. El estudio que se ha realizado ha
evidenciado como los modelos obtenidos presentan una complejidad reducida
sin afectar demasiado a la precision. Por otro lado, el andlisis de los tiempos de
computacion ha evidenciado como las técnicas de SCE no resultan utiles desde
el punto de vista de la reduccién del tiempo de computacion si se considera el
conjunto de pre-procesamiento y aplicacion del método de clasificacion, ya que
el tiempo total aumenta considerablemente.
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Lineas de investigacion futuras

Las conclusiones presentadas en las distintas secciones nos indican que el aprendizaje
de la granularidad y la seleccion de instancias representan herramientas validas para
la mejora del equilibrio entre precision y complejidad. De todos modos, existen otras
problemas a tener en cuenta para mejorar el equilibrio entre interpretabilidad y pre-
cision.

e Una posible linea de investigacion se podria desarrollar considerando en los
SDEMOs no s6lo medidas de complejidad, sino también medidas de interpretabil-
idad semadntica. Sin embargo, debemos recordar que todavia no hay medidas
comunmente aceptadas por la comunidad cientifica. Algunos trabajos recientes
han propuesto nuevas medidas para describir la interpretabilidad semantica (235,
83) aplicando dichas medidas en problemas de regresion. Una posible linea de
investigacion futura podria aplicar estas medidas al caso de los SDEMOs para
clasificacion, con el objetivo de obtener bases de datos més interpretables bajo
la perspectiva de la seméantica.

e Por lo que concierne la seleccion de instancias, el estudio efectuado evidencia
que en presencia de problemas de alta dimensionalidad las técnicas de SCE no
consiguen reducir el tiempo de cdlculo total, sino més bien mejorar el equilibrio
entre la precision y la complejidad, por medio de una reduccion de las reglas
y sin afectar demasiado a la precision. Por lo tanto, en este dmbito un posible
campo de investigacion seria el disefio de SCE especificos para ser utilizados
en combinacion con los SDEs, con el fin de mejorar ambos objetivos al mismo
tiempo.

e A partir de los estudios presentados en la memoria es evidente la importancia de
aprender las granularidades adecuadas para obtener modelos precisos. Una posi-
ble linea de investigacion futura podria contemplar el desarrollo de un SDEMO
de envoltura (wrapper), donde la granularidad y las funciones de pertenencia
asociadas se aprenden dentro del proceso evolutivo, basdndose en la ejecucion
de un método rapido de induccion de reglas para evaluar cada nueva base de
datos. Adicionalmente, se podria utilizar un algoritmo de discretizacion difusa
para inicializar el cromosoma que seré evolucionado por el AEMO.

e Una alternativa al uso de los métodos de selecciéon de instancias como pre-
procesamiento es el uso de mecanismos de reduccion de ejemplos integrados
en el AEMO. Un enfoque de este tipo se ha utilizado en problemas de regresion
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en (27). Su ventaja es que la eleccion del conjunto reducido se adapta durante
el proceso evolutivo, proporcionando modelos con precision parecida y permi-
tiendo una reduccién drastica del tiempo de calculo.

XXV






List of Figures

1.1

1.2

2.1

3.1
3.2

33

3.4

3.5

4.1
4.2
4.3

4.4
4.5
4.6

A two-level taxonomy based on the type of the objectives optimized
(1st level) and on the type of GFS used (2nd level). . . . .. ... ..
Accuracy-interpretability trade-off. . . . . . . ... ... L.

The fourteen antecedent fuzzy sets considered for each variable.

An example of generated tree for an attribute. . . . . . ... ... ..
Fuzzification of a discretization according to the extended fuzzy CAIM
CHETION. . . . . o v v v e vt e it e e e e e
Example rule sets obtained by the D-MOFARC(a) and the FARC-
HD(b) approaches, respectively, when considering the third fold of the
bupadataset. . . . . .. . ...
Example rule sets obtained by the D-MOFARC(a) and the FARC-
HD(b) approaches, respectively, when considering the third fold of the
newthyroid dataset. . . . . . . .. .. .. ... ... ...
Pareto solutions obtained by the D-MOFARC method when consid-
ering representative folds of four datasets, namely heart(a), pima(b),
bupa(c) and segment(d). . . . .. .. ..o

Instance Selection algorithm. . . . . . . ... ... ... .......
Taxonomy of Instance Selection methods. . . . . .. ... ... ...
Application of IS methods to obtain a reduced set S; that is conse-
quently used to build a classifier. . . . ... ... ... ........
Using the original TR; to construct a classifier. . . . . . .. ... ...
TSS methods in the accuracy-complexity plane . . . . . .. ... ..
Time required by the FARC-HD algorithm to be performed for each
small size dataset, without applying any TSS technique and after ap-
plying TSS techniques. . . . . . . . ... ... ... ... ... .

XXVII

106



LIST OF FIGURES

4.7 Time required by the FARC-HD algorithm to be performed for each
medium-large size dataset, without applying any TSS technique and
after applying TSS techniques. . . . . . . ... ... ... ......

XXVIII



List of Tables

1.1

1.2

1.3

2.1

22

2.3

2.4

2.5

3.1
32
33

34

4.1
4.2

4.3

Summary of the proposals on MOEFSs designed to generate FRBSs
with good Accuracy-Interpretability trade-offs. . . . . .. ... ...
Summary of the proposals on MOEFSs for multi-objective fuzzy con-
trol problems. . . . . .. ... 31l
Summary of the proposals on MOEFSs for mining fuzzy association
rules. . ..o 34
Datasets considered inthe study. . . . . .. ... ... ... ..... 60]
Parameters of the methods considered for comparison. . . . . . . .. 61}

Results referred to the most accurate solutions obtained by applying
MO-FARC-prod and MO-FARC-conf, respectively, and to the solution

obtained by applying FARC-HD. . . . . .. ... ... ........
Comparison on test accuracy between MO-FARCG-prod and MO-FARCG-
conf . . . 62
Comparison on test accuracy and complexity between FARC-HD and
MO-FARCG-conf . . . . . . . .. .. . . 62}
Quanta Matrix for attribute A and discretization scheme D . . . . . . 68
List of the datasets used inthe study. . . . . . . . ... .. ... ...
Comparison of the average results obtained by applying the D-MOFARC
method and the FARC-HD algorithm. . . . ... ........... 31
Wilcoxon’s statistic on test accuracy and number of rules for D-MOFARC
(R*) vs FARC-HD (R™), considering 37 datasets (10 folds). . . . . . . 82
Instance Selection methods used in the current study. . . . . . . . .. 93]
List of the datasets used in the study, divided according to their number
ofinstances. . . . . . . .. L L 96|
Average results obtained by applying 36 TSS techniques to 20 small
sizedatasets. . . . . ... L. 98]

XXIX



LIST OF TABLES

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Average results obtained by applying 36 TSS techniques to 17 medium-
large size datasets. . . . . . . .. ... ...
Wilcoxon’s statistics on the accuracy achieved on the test set obtained
by comparing FARC-HD with the four most accurate non-dominated
methods, considering 17 medium-large size datasets. . . . .. .. ..
Wilcoxon’s statistics on number of rules obtained by comparing FARC-
HD with the four most accurate non-dominated methods, considering
17 medium-large size datasets. . . . . . . ... .. ... ... .. ..
Differences in percentage between the average values of accuracy on
the test set (TstAccDiff) and of the number of rules (RulesDiff), ob-
tained by the four most accurate non-dominated models and by FARC-
HD, respectively, considering the 17 medium-large size datasets. . . .
Average accuracy on the test set (TstAcc), average number of rules
(#Rules) and difference in percentage of the average values of accuracy
on the test set (TstAccDiff) and of the number of rules (RulesDiff)
obtained by three models including edition decremental methods and
by FARC-HD, respectively, considering 20 small size datasets. . . . .
Wilcoxon’s statistics on the accuracy achieved on the test set obtained
by comparing FARC-HD with the selected methods, considering 37
datasets. . . . . . ...
Wilcoxon’s statistics on the number of rules obtained by comparing
FARC-HD with the selected methods, considering 37 datasets. . . . .
Average accuracy on the test set (TstAcc), average number of rules
(#Rules) and difference in percentage of the average accuracy on the
test set (TstAccDiff) and of the average number of rules (RulesDiff),
with respect to FARC-HD, considering 37 datasets. . . . . . ... ..
Average accuracy on the test set (TstAcc), average number of rules
(#Rules) and difference in percentage of the average accuracy on the
test set (TstAccDiff) and of the average number of rules (RulesDiff),
with respect to FARC-HD, considering 37 datasets. . . . . . ... ..
Execution times averaged over 37 datasets, for the TSS pre-processing
and FARC-HD post-processing, respectively, overall execution times
and instance reduction rate achieved by each TSS technique. . . . . .

XXX

(102

(104!



Introduction

A Proposal

Nowadays, the development of mathematical models is one of the most relevant top-
ics, since models help in better understanding a system through the simplification of
reality. Modeling approaches are used to solve several problems, such as the analysis
of systems behaviour, the design of control processes, the prediction of trends, etc.

The scientific and technological development of the last decades brought to the
identification of more and more complex problems in several fields, such as engineer-
ing, biochemical applications, social science, economic-financial environments, etc.
The recurring characteristics that make these systems difficult to be modeled usually
deal with high-dimensionality, non-linear behaviors, dynamic components, uncertainty
and ambiguity.

To this end, fuzzy systems received a growing attention by the scientific community
since their first introduction in 1965 (165)). In fact, this kinds of systems present high
generalization abilities, robustness with respect to imprecision and vagueness, high
expressive power. In particular, the most popular types of fuzzy systems are those
based on fuzzy rules, namely, Fuzzy Rule-Based Systems (FRBSs).

The design of FRBSs is usually performed by an expert, by defining the linguis-
tic variables associated to the problem, the set of fuzzy rules and the fuzzy inference
system. Nevertheless, to ease this task, several methods have been proposed to auto-
matically design fuzzy systems that match a given set of input-output data. Among
them, Evolutionary and in particular Genetic Algorithms (EAs/GAs) has been suc-
cessfully applied, exploiting their ability in finding near optimal solutions in complex
search spaces and their capability to incorporate a priori knowledge. The hybridiza-
tion between FRBSs and GAs is currently known as Genetic Fuzzy System (GFSs)
(58, 197).

In order to consider more than one objective during the design or optimization pro-
cess, GFSs have been extended to a multi-objective approach: Multi-Objective Evo-
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lutionary Algorithms (MOEASs) have been used to design FRBSs with different trade-
offs between two or more objectives. In fact, MOEASs represent an effective tool due to
their ability in finding a set of compromise solutions when dealing with multi-criteria
optimization problems (53} 62). Nowadays, the hybridization between MOEAs and
FRBSs is often referred to as Multi-Objective Evolutionary Fuzzy Systems (MOEFSs)
(78).

One of the main advantage of FRBSs with respect to other non-linear models is
their intrinsic interpretability, that is the possibility to understand the model description
to a certain extent (40). For this reason, FRBSs are commonly indicated as gray-box
models. Nevertheless, the interpretability usually conflicts with the model precision,
thus the use of MOEAs for the design is particularly suitable, in order to consider both
measures at the same time.

FRBSs can be broadly divided into two main categories. The first one includes
linguistic fuzzy models (also known as Mamdani FRBSs (134)), which attempt to de-
scribe phenomena in a more human-like way, by using the concept of linguistic vari-
able. These kinds of models can be clearly understood by human beings, but some-
times suffer from lack of precision when modeling very complex systems, since the
linguistic variables impose strong constraints on the rule structure. In addiction, when
dealing with multi-dimensional problems with a non-linear relationship between input
and output, the set of rules that describe the system can include redundant, inconsistent
and contradictory rules, which decrease both the model precision and interpretability.
The second category comprehends precise fuzzy models, which include approximative
FRBSs (39, 157) and Takagi-Sugeno-Kang (TSK) (157) models. In these kinds of sys-
tems the rules’ structure allows the models to achieve more precision, but on the other
hand the interpretability is heavily affected since the rules are semantic free.

The trade-off between interpretability and accuracy was pointed out for the first
time in the mid 1990s (105) and it has acquired more an more importance in the last
decades, as demonstrated by the considerable number of studies carried out on this
topic.

In the field of linguistic FRBSs, two kinds of approaches are used to describe the
interpretability: complexity-based interpretability approaches, which aim to decrease
the complexity of the obtained models (usually expressed by the number rules, vari-
ables, antecedents per rules, etc.) and semantic-based approaches, which aim to main-
tain the semantics associated with the membership functions of each variable (usually
expressed by the distinguishability, coverage, etc.) (84).

With respect to semantic interpretability, there still not exists commonly accepted
measures, therefore in this thesis we will focus on complexity measures, in particular
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taking into account the accuracy-complexity trade-off when dealing with large and
high dimensional problems. This kind of problems involves datasets that present a
large number of variables (high dimensional problems) and/or example patterns (large
scale problems), as they are increasingly appearing in real world.

Nevertheless, when dealing with large and high dimensional datasets, some prob-
lems arise: the large number of patterns cause an increase in the computational time
needed to perform the evolutionary learning process, due to the time necessary to eval-
uate the fitness function. Moreover, when the number of variables increases, the search
space grow, inducing in most of the cases the generation of more rules. Resulting mod-
els can be very complex and the interpretability extremely reduced.

The aim of this thesis is to investigate new methods which can help in improving
the accuracy while maintaining or even reducing the complexity of FRBSs, especially
when dealing with the high-dimensional and large scale datasets.

B  Objectives

As stated above, the main objective of this thesis is to improve the balance between
accuracy and complexity in MOEFSs, when considering problems that involve high
dimensional and/or large scale problems. In order to solve the problems previously
stated, the following specific objectives have been identified:

e Performing a study of the proposals dealing with MOEFSs, in order to define the
state-of-the-art. To this end, we should propose a taxonomy to focus on a certain
branch and easily find the related works. This would help to identify the current
trends and the problems that are still open and should be addressed in this field.

e Performing a study of the current techniques that cope with the interpretability-
accuracy trade-off in linguistic fuzzy models, focusing on the analysis of exis-
tent algorithms that obtain the best performance in terms of accuracy and inter-
pretability.

e Taking into account the influence of granularity learning as a way to improve the
accuracy-interpretability trade-off when dealing with high dimensional or large
scale problems, by developing different algorithms with the aim to improve the
linguistic variables’ representation. Usually, a standard set of linguistic variables
is used by the associated fuzzy rules to describe the behavior of a system. This
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approach is simple and straightforward, but the linguistic variables are gener-
ated without considering the knowledge we have about a problem. As a con-
sequence, sub-optimal fuzzy partitions for each variable are created, provoking
in some cases a reduction of the accuracy. Moreover, the generated models can
be so complex that sometimes it is impossible to apply the algorithms. A better
approach would be to identify suitable fuzzy partitions for the variables stating
from the knowledge we have about a problem, i.e, from the datasets. To this end,
two methods have been proposed, which consider two contradictory objectives:
to minimize the models’ error (precision) and to minimize the number of rules
(complexity).

Performing a study of the combination of instance selection preprocessing with
GFSs, in order to study how it affects the trade-off between accuracy and com-
plexity in linguistic FRBSs. The aim is to reduce the number of patterns in-
cluded in the dataset, by removing all unnecessary data so that two aims can be
achieves: 1) obtaining a reduced dataset, thus decreasing the time required by
the MOEFS in large scale problems to generate a model, by processing a reduced
number of data; 2) obtaining a dataset that better describe a certain phenomenon
by removing confusing or noisy or useless data. This approach, when used as
a preprocessing method to further apply an algorithm is commonly known as
Training Set Selection (TSS).

Validating the obtained results by comparing the proposed methods towards the
existing ones, by using reliable statistic techniques.

Summary

To develop the topics proposed, this thesis has been organized into four chapters plus

a section containing final conclusions. In the following, the structure and a brief de-

scription for each chapter are presented.

In chapter|1{a review of the application of MOEEFS is presented. The main contri-

butions on the topic are grouped according to their application and sorted chronolog-

ically. A brief description of each proposal is given and finally some open problem
related with the topic are discussed. A special attention is paid to the branch of the
application of MOEFSs to improve the accuracy-interpretability trade-off.

The remaining part of the thesis is divided into two parts: in the first part two meth-

ods to improve the accuracy-complexity trade-off are proposed, based on the learning
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of suitable granularities. The first method, presented in chapter 2] aims to learn sin-
gle granularities by using heuristic measures over multiple granularities. The second
method, described in chapter [3] is designed to learn granularities by using a fuzzy
discretization algorithm.

In the second part of the thesis, we present a study on the application of instance
selection techniques when used in combination with Genetic Fuzzy Rule-Based Clas-
sification Systems, with the aim of investigating if they are useful to improve the
accuracy-complexity trade-off (chapter ).

Finally, in chapter [5] some final remarks are pointed out and some future works in
this topic are proposed.






Chapter 1

A Review of the Application of
Multi-Objective Evolutionary Fuzzy
Systems: Current Status and Further
Directions

1.1 Introduction

As briefly introduced, MOEFSs have been proposed to generate automatically fuzzy
systems that adapt to a given set of data, by exploiting the search ability of MOEAs.

An evolutionary algorithm is basically an algorithm which considers a structure
which is codified into an individual called chromosome. This individual is associated
to one or more fitness functions and evolved by using concepts inspired to the genetic,
such as mutation and crossover. The new individuals that are obtained at each step are
evaluated with respect to the fitness functions and the best individuals are promoted.
Therefore, evolutionary algorithms perform an exploration and an exploitation of a
certain search space, related with the structure codified into the individual. It has been
demonstrated that this approach is useful to solve search or optimization problems.
This property has been exploited to automatically generate FRBSs, by codifying the
FRBS or parts of it into an individual and then associating one or more fitness functions
to it.

In the last decades several contributions have been published, proposing the use of
MOEAs to generate FRBSs for several applications. In this chapter, the most important
of these contributions are gathered and classified by means of a two-level taxonomy.
In the first level, the proposals are grouped according to the multi-objective nature
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of the problem faced, i.e the type of objectives used by the evolutionary process to
promote the best individuals, whereas the second level is based on the type of FRBS
components optimized during the evolutionary process.

This taxonomy is useful to easily find existing proposals related to a particular
branch and to focus on significant further developments. In the final part of the chapter,
some of the problems related to the application of MOEFSs are described, focusing in
particular on the ones that represent current trends in the field.

1.2 A taxonomy based on the application of MOEFSs

In this section we describe a two-level taxonomy, proposed to organize the most im-
portant contributions that deal with MOEFSs (Figure [I.1). In the first level the con-
tributions are grouped according to the multi-objective nature of the handled problem,
i.e. the type of the objectives optimized. The second level groups papers according to
the type of FRBS components optimized during the evolutionary process. Both criteria
affect the type and the complexity of the search space, and therefore the way in which
MOEFSs are applied.

Categories by ——
objective type s
or nature //N
Designed to generate Designed for Multi-objective Designed for Fuzzy
FRBSs with different A-I Control Problems Association Rule Mining
trade-offs
Performance vs Inter pretability Performance vs Performance Rules Quality vs Description
Identification of Learring of FLC
Tunmg‘odf FRBSs KB learning FLC parameters Structure
(ncluding (tuning) (learning of KB
rule set tuning) components)
/\ N Categories by
Simultaneous type Of FRBS
MeFmebersh\p Inference Learning by Learning of t
unctions Parameters Rl stlecton: RB learning KB componen S
Tuning Tuning components optimized

Figure 1.1: A two-level taxonomy based on the type of the objectives optimized (1st level)
and on the type of GFS used (2nd level).

In the first level, three main categories have been identified. The first one includes
contributions in which MOEFSs are designed to generate FRBSs with different trade-
offs between accuracy and interpretability. In this case, at least one of the objectives
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is always related to the interpretability of the obtained model, regardless of the prob-
lem considered. A considerable number of papers can be found in this group, since
interpretability is one of the most important aspects of FRBSs. While the accuracy is
difficult to improve, interpretability is easy to obtain, since interpretable models can
even be provided by hand. These differences between both types of objectives influ-
ence the optimization process.

The second main category gathers contributions in which MOEFSs are applied to
multi-objective control problems. The considered objectives strictly depend on the
particular kind of problem that is taken into account and usually all of them are related
to performance issues of the control system. Therefore, the trade-off and the search
space will be different for each problem and dependent on the problem itself.

The third main category groups contributions in which MOEFSs are applied to
fuzzy association rule mining. The aim of rule mining is to find a set of fuzzy associa-
tion rules that reliably represents the knowledge hidden in a data base. In this case, the
objectives are used to describe the quality of the obtained rules, i.e. their accuracy and
interestingness. To this end, support and confidence are the major factors in measuring
the quality of an association rule, although other metrics exist. The aim of the opti-
mization process is not only to improve the general trade-off between objectives for the
whole set of rules, but also to obtain a large number of rules, each of them satisfying
the objectives to different degrees.

This section illustrates the proposed taxonomy and includes the description of sub-
categories for each main category.

1.2.1 MOEFSs designed to generate FRBSs with different accuracy-
interpretability trade-offs

One of the main uses of FRBSs is in the approximation of a real system with a fuzzy
model, which can be used to explain, simulate or predict the behavior of the original
system. Of course, the higher the accuracy is, the more reliable the model will be.

Initially, the interpretability of the obtained models was neglected, since single-
objective EAs permit the optimization of only a single metric. The problem of improv-
ing accuracy while maintaining or even improving the interpretability of a fuzzy model
was first faced in the mid 1990s by Ishibuchi and his group (105)) and the comprehen-
sibility of fuzzy models began to be integrated into the optimization process, thanks to
the application of MOEAs to fuzzy systems.

Ever since, interpretability has acquired an increasing importance in the field of
MOEFSs. Because of its subjectivity, the main problem is to find a shared definition of
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interpretability and to measure this characteristic in the obtained models, since several
issues need to be taken into account to obtain a human-interpretable model.

Over the course of the last decade, several works have analyzed the interpretability
problem in FRBSs (54)), looking for interpretability measures that could be universally
accepted by the research community (61,95, [151). This effort has continued in recent
years, as demonstrated by the review papers presented in (21,84} 138},1168)), which aim
to propose a well-established framework to characterize and classify these measures.

Despite this, there are still no commonly accepted measures, and even the terms
used in the area (comprehensibility, readability, completeness, consistency, etc.) are
confusing and used as synonyms, even if they refer to different concepts. Nowadays,
researchers agree on the need to consider two groups of interpretability measures:

e Complexity-based interpretability measures, which are used to decrease the com-
plexity of the fuzzy model (number of rules, number of antecedents in a rule,
etc).

e Semantic-based interpretability measures, which are used to preserve the seman-
tics associated with membership functions (distinguishability, coverage, etc) and
rules (consistency, etc).

Classically, interpretability indexes have only focused on the former group, when
evaluating the overall interpretability of a fuzzy model. On the other hand, the defi-
nition of good semantic interpretability measures is still an open problem, since they
are strongly affected by subjectivity. To this end, several indexes have been proposed
recently (21} 25} 83)).

Considering the importance of the Accuracy-Interpretability trade-oft for the re-
search community, this first category includes contributions in which MOEFSs are
designed to handle this trade-off. that deal with this concept. Due to the huge num-
ber of existent works, we organized them into a second-level grouping, according to
the taxonomy of GFSs presented in (97) (see Figure [I.1), and thus considering the
components of the FRBS that are managed by the optimization process (for further
information on the types of FRBSs and KB components see the associated web page
http://sci2s.ugr.es/moefs-review/):

e Tuning of FRBS components, combined or not with a rule set tuning process: a
predefined KB is tuned by the optimization process, i.e. the parameters of the
system (shape of membership functions in the Data Base (DB), inference pa-
rameters, etc) are modified to obtain more accurate systems. In order to keep the
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system simple or to reduce complexity, in some cases a rule selection process,
used as a post-processing method, can be integrated in the optimization: from
the initial RB only necessary rules are selected. This approach can be considered
a rule set tuning process. The contributions belonging to this category are fur-
ther divided into two subcategories, named Membership Functions Tuning and
Inference Parameters Tuning.

e KB learning: papers belonging to this category consider the learning of the DB
and/or Rule Base (RB). This group is further divided into three subcategories:
learning by rule selection, RB learning and simultaneous learning of KB com-
ponents. In this case the rule selection process is used to perform a learning of
the RB.

The majority of works use a linguistic fuzzy model, since it is the most interpretable
type of FRBS. However, there are a small number of works in which interpretability is
considered even in a TSK-type FRBS. Because of their particularities, these contribu-
tions will be described at the end of this section.

1.2.2 MOEFSs designed for multi-objective control problems

The performance of traditional controllers depends on their accuracy in modeling the
system’s dynamics. When designing a controller, a first problem appears if the pro-
cesses are imprecisely described or are controlled by humans, without recourse to
mathematical models, algorithms or a deep understanding of the physical processes
involved. A further problem concerns how to design adaptive models, i.e. intelligent
control systems that involve a learning or adaptation process when system parameters
change.

Thus, it can be difficult to identify an accurate dynamic model to design a tradi-
tional controller. In these cases fuzzy logic represents a powerful tool to deal with the
problem of knowledge representation in an environment of uncertainty and impreci-
sion. Furthermore, in control system design, there are often multiple objectives to be
considered. These objectives are sometimes conflicting, causing an inevitable trade-
off among them and no single design solution emerges as the best with respect to all
objectives. These considerations have led to the application of MOEAs in the design
of Fuzzy Logic Controllers (FLCs).

The design of an FLC includes obtaining a structure for the controller and the
corresponding numerical parameters. MOEAs can manage these problems by encod-
ing both structure and parameters in one chromosome that represents the whole FLC.

11
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Therefor, in this second group, works will be explained considering the following two
categories (79):

a) identification of controller parameters and/or rules (e.g. tuning of membership
function parameters, rule selection as a post-processing method);

b) learning of controller structure (e.g. learning of the RB).

At the end of the corresponding section, some works are described that represent a
hybridization of MOEAs, fuzzy logic and neural networks.

1.2.3 MOEFSs designed for fuzzy association rule mining

The hybridization of MOEAs and fuzzy systems permits automatic knowledge extrac-
tion from data, therefore data mining problems are one of the most important applica-
tion domains for MOEFSs. Data mining has been treated as a synonym of Knowledge
Discovery in Databases (KDD) (75, [146), although it is a step of KDD. Data mining
techniques usually fall into two categories: predictive or descriptive.

A predictive approach focuses on accuracy in predictive ability and generates mod-
els that can be used to predict explicit values, based on patterns determined from known
results. In prediction, a user may not care whether the model reflects reality as long
as it has predictive power. One of the methods used in predictive models is supervised
learning, which can create a function from training data, used to predict the output
value for any valid input object. The predictive approach is applied in classification
and regression and in some cases it can also be used in control problems.

On the other hand, the descriptive approach focuses on understanding the implicit
data-generating process, searching for interesting patterns in existing data, without
having any predefined target. The method used in this model is usually unsupervised
learning, which differs from supervised learning in that there is no a priori output to
train the model. This method is mainly applied to models that work with associative
rules.

Finally, in some cases there are data mining applications demanding some degree
of both predictive and descriptive approaches. A method which combines the mixed
approach between descriptive and predictive is Subgroup Discovery (128)).

A possibility to represent knowledge extracted with data mining techniques is by
means of association rules (167)), whose basic concept is to discover meaningful asso-
ciations between different pairs of sets of attribute values. For example, the presence
of a value of some set in a database element implies the presence of another value in

12
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another set. Since fuzzy systems can deal with imprecise knowledge, they can be suc-
cessfully applied in the representation of this knowledge using fuzzy association rules
(65).

In mining fuzzy association rules, the objectives are based on the quality of the
extracted rules: these rules should be precise, general or specific enough, interesting,
etc. Due to the large amount of metrics, MOEAs have been used successfully to mine
fuzzy association rules.

The works included in this group mainly use a descriptive approach, i.e. description
sets focused on making the data comprehensible and interpretable. Additionally, some
works using the Subgroup Discovery approach will be described.

1.3 MOEFSs designed to generate FRBSs with differ-
ent accuracy-interpretability trade-offs

The problem of improving accuracy while maintaining or even improving the inter-
pretability of a fuzzy system is widely acknowledged in the community of MOEFSs,
its presence noted in the mid 1990s (105). It is known that there is a point at which
it is not possible to improve both the accuracy and interpretability of a fuzzy system
at the same time. Therefore, in this framework an MOEA aims to find a set of feasi-
ble fuzzy systems with different trade-offs between accuracy and interpretability (see
Figure[1.2).

Hereinafter, we describe contributions in which MOEFSs are designed to gener-
ate FRBSs with a good trade-off between Accuracy and Interpretability, and we group
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Figure 1.2: Accuracy-interpretability trade-off.
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them by following the second level of the taxonomy presented in section [I.2] and ex-
plained in section[I.2.1]

1.3.1 Approaches to performing tuning

MOEAs can be used to perform the genetic tuning of FRBS components. Genetic
tuning is applied as a post processing method, once the RB has been obtained, to
refine the KB parameters (8} 57, 98, [121)) or to adapt the parameters of the inference
engine (17)), therefore the works belonging to this category have been divided into
two subcategories: Membership Functions Tuning and Inference Parameters Tuning.
Moreover, in some cases the tuning process can be combined with a rule selection
process, to improve the interpretability of the obtained model by removing unnecessary
rules. This approach can be seen as a rule set tuning process, since it is applied to a
previously defined RB.

1.3.1.1 Tuning of membership functions

An example of membership functions tuning process combined with a rule selection
process can be found in (11), in which the authors present a post-processing algorithm
to improve the performance of linguistic FRBSs for regression problems. A specific
MOEA is used to achieve a good balance between accuracy and complexity, improving
accuracy by the tuning of membership functions, while reducing complexity by remov-
ing unnecessary rules. The proposed algorithm, called Accuracy-Oriented Strength
Pareto Evolutionary Algorithm 2 (S PEA24¢¢), is based on a particular modification of
SPEA?2 (169) and takes into account two objectives: accuracy, expressed by computing
the Mean Squared Error (MSE) and complexity, expressed as the number of selected
rules. Rule selection and the tuning of membership functions are performed together,
by coding both of them in the same chromosome. The S PEA2,c¢c concentrates the
search on the Pareto zone that have the most accurate solutions with the least number
of possible rules.

The same algorithm is extended in (82), in which six algorithms are considered
to perform a rule selection from a given fuzzy rule set along with the tuning of the
membership function parameters applied to regression problems. The Nondominated
Sorting Genetic Algorithm II (NSGA-II) (64) and SPEA?2 are used, along with two
versions of NSGA-II proposed for general use, which concentrate the search on the
Pareto knees. Two MOEAs for specific application to this concrete problem are ap-
plied. The first one is the S PEA2,¢¢ proposed in (11)), the second one is its extension,
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SPEA2,cc2. All these algorithms improve two objectives: MSE and the number of
rules.

In (148)) a hybrid method for the identification of a Pareto-optimal Fuzzy Rule-
Based Classifier (FRBC) is presented. The initial population is created in two steps:
firstly a decision tree, generated through the classical C4.5 algorithm, is transformed
into an FRBC. In this way, relevant variables are selected and an initial partition of
the input space is performed. Afterwards, the remaining population is created by ran-
domly replacing some parameters of the initial FRBC. The tuning process is performed
by applying the well-known NSGA-II, with polynomial mutation and simulated binary
cross-over (SBX) (63) as genetic operators. Three objectives are minimized: the num-
ber of misclassified patterns, the number of rules and the total number of conditions in
the rules. Each chromosome codifies an FRBC, including antecedents of the rules and
parameters of the fuzzy sets.

An adaptation of the previous framework can be found in (147)), in which the au-
thors use FRBCs to model a bioareosol detector. As the metrics of accuracy, true
positive (TP) and false positive (FP) rates were used instead of the commonly used
misclassification rate, because of the uneven misclassification costs and class distribu-
tions of the collected data. Interpretability of the model is also a requirement, since
it allows the bioareosol detector to be subsequently adjusted. Therefore, NSGA-II is
applied to find FRBCs with a good trade-off between objectives. The FP rate and the
complement of the TP rate measure the accuracy, whereas transparency of fuzzy par-
titions is used for interpretability. The latter objective is expressed by the sum of three
interpretability measures, the length of overlap and the length of discontinuity between
fuzzy sets, proposed by Kim (126)), and the middle value penalty.

Another contribution to the tuning of DB parameters of FRBSs for regression prob-
lems can be found in (32)). In this work the concept of context adaptation is used: con-
text adaptation is a tuning process that exploits context-specific information to adapt a
context-free model to a context-adapted FRBS. NSGA-II has been applied to the tun-
ing of DB parameters, to maximize both the accuracy and interpretability of a linguistic
FRBS. A novel index is therefore proposed, to provide a measure of interpretability,
considering ordering, coverage and distinguishability. The proposed index and the
MSE are used as objectives of the EA.

The tuning of membership function parameters is tackled again in (83), in the
framework of linguistic fuzzy models for regression problems. A novel relative index
is proposed to help preserve the semantic interpretability of FRBSs while the tuning
of membership functions is performed. The index, called GM3M, is the aggregation
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of three metrics that aim to maintain the original meanings of the membership func-
tions as much as possible. In this work a tuning of membership function parameters
is combined with a rule-selection mechanism, in order to also reduce the complex-
ity of the fuzzy models. Therefore, an improved specific version of the well-known
SPEA2, namely SPEA2-SI, including incest prevention and restarting, is proposed
and three objectives are considered: accuracy maximization, semantic interpretability

maximization and complexity reduction.

1.3.1.2 Tuning of inference parameters

Few works have taken into account the tuning of the inference engine (17). In (135) a
method is presented to concurrently learn the fuzzy inference operators and the RB of
linguistic FRBSs, in order to obtain simpler, more compact yet still accurate linguistic
fuzzy models. To this end, two MOEAs were used and adapted, SPEA2 and NSGA-
II. The proposed MOEAs generate a set of FRBSs with different trade-offs between
interpretability and accuracy: the two objectives are expressed by the number of rules
and the MSE, respectively.

In (136) an approach is proposed to tackle the interpretability-accuracy trade-off
in linguistic FRBSs with adaptive defuzzification. Adaptive defuzzification methods
improve the accuracy of the system, but cause a loss of interpretability and increase
complexity, due to the introduction of parameters in the defuzzification operator and
weights associated with each rule. To quantify the interpretability of FRBSs with adap-
tive defuzzification, a novel index is proposed, which is the aggregation of two metrics:
number of rules with weight and average number of rules triggered by each example.
Afterwards, an adaptation of NSGA-II is exploited in order to obtain a set of accurate
and interpretable linguistic fuzzy models with adaptive defuzzification. Three objec-
tives are minimized: the MSE, the number of final rules in the system and the proposed
interpretability index.

1.3.2 Approaches to performing KB learning

Besides the tuning of FRBS components, another possibility is to learn the KB or a part
of it by means of MOEAs. We identify three approaches within this category: learning
by rule selection, RB learning and the simultaneous learning of KB components.
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1.3.2.1 Approaches to learning by rule selection

The first contributions to the application of MOEAs to linguistic FRBS generation
with a good interpretability-accuracy trade-off were proposed by Ishibuchi’s group on
multi-objective rule selection applied to learning. In their earlier works (104, [105), the
authors use Ist-generation MOEAs (i.e. MOEAs without elitism) to perform a rule
selection on an initial set of candidate rules as a two-stages learning process: candi-
date rule set generation and multi-objective rule selection. In the second stage they
consider two different objectives: maximization of the number of correctly classified
training patterns and minimization of the number of selected rules, therefore the ob-
tained classification systems consist of a small number of linguistic rules. In (104)
this rule selection method is extended to the case of classification problems with many
continuous attributes, by using a prescreening procedure of candidate rules based on
the number of antecedent conditions of each rule.

To better control the dimensionality problem, the authors add a third objective in
(115). An MOEA is used to extract a small number of fuzzy rules from numerical data,
taking into account three objectives: to maximize the number of correctly classified
training patterns, to minimize the number of fuzzy rules and to minimize the total
number of antecedent conditions. The MOEA presented in (103) is extended to a
Multi-Objective Genetic Local Search (MOGLS) algorithm, in which a local search
procedure adjusts the selection process. Moreover, it is combined with a learning
algorithm to obtain rule weights.

In (107), two multi-objective genetic-based approaches are applied, to obtain FR-
BCs with a good trade-off between accuracy and complexity. The first approach was
presented in (105)), while the second one is a hybrid multi-objective Genetics-Based
Machine Learning (GBML) algorithm, a hybridization between the Michigan (31,101
and Pittsburgh (155) approaches. It considers the same three objectives as the previous
model (115).

The same multi-objective GBML algorithm is used in (111)), but in this contribution
it is implemented taking advantage of the well-known NSGA-II and again consists
of a hybrid version of the Michigan and Pittsburgh approaches: each fuzzy rule is
represented by its antecedent fuzzy sets as an integer string of fixed length, then the
concatenation of these strings represents an FRBC. The objectives remain the same as
in (107).

In (110), NSGA-II is applied to the design of FRBCs belonging to the accuracy-
complexity Pareto optimal front. The accuracy of each classifier is measured as the
number of correctly classified training patterns, whereas the complexity is computed
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as the number of fuzzy rules and the total number of antecedent conditions. Finally,
an ensemble classifier (also called a multi-classifier) is designed by combining non-
dominated FRBCs and its performances are analyzed by performing computational
experiments on six benchmark datasets taken from the UCI machine learning repos-
itory. The authors observe that the effect of combining several FRBCs is problem
dependent and that an ensemble of classifiers with high diversity usually has better
performances.

1.3.2.2 Approaches to performing RB learning

Most of the approaches proposed to automatically learn the KB from numerical infor-
mation focus on RB learning using a predefined DB.

In (152) an MOEA is used to generate FRBCs with a good trade-off between the
complexity of the rule systems and their reflection of the data. This MOEA uses a
measure based on Area Under the receiver operating characteristic Curve (AUC) to
determine how well the classifier reflects the data. Moreover, some concepts taken
from SPEA?2 are included: the fitness assignment of SPEA2 is used to avoid premature
convergence and an external archive is maintained to store the best individuals from
all the solutions considered. In addition, a tailor-made representation scheme is used
to preserve the comprehensibility of the rule systems and a self-adaptation mechanism
is included to reduce the number of free parameters. Three objectives are optimized:
the accuracy, expressed as a measure based on the AUC, and complexity, computed as
the number of rules and conditions.

An example of rule learning for regression problems is presented in (51), in which
the authors propose a modified version of the well-known (2+2)Pareto Archived Evo-
lution Strategy (PAES), called (2+2)M-PAES, introduced in (129). Unlike classical
(2+2)PAES, which only uses mutation to generate new candidate solutions, (2+2)M-
PAES exploits both crossover and mutation. This approach considers a predefined DB
uniformly distributed and enables a large set of RBs to be derived, concurrently mini-
mizing the accuracy and the complexity. The accuracy is computed as the Root Mean
Squared Error (RMSE), whereas complexity is measured as the sum of the conditions
which compose each of the antecedents of the rules included in the FRBS.

In (69), the accuracy-interpretability trade-off is considered in the context of imbal-
anced classification problems. Usually, the accuracy of a classifier is measured as the
percentage of correct classification, but this objective might not be suitable for prob-
lems characterized by highly imbalanced distributions of patterns. In this proposal,
authors applied the well-known NSGA-II to provide a set of binary FRBCs with a
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good trade-off between complexity and accuracy. In this case, complexity is computed
as the sum of the conditions in the antecedents of the classifier rules, whereas accu-
racy is expressed in terms of two objectives, sensitivity and specificity. These express
how well the system classifies patterns belonging to the positive and the negative class,
respectively.

1.3.2.3 Approaches to simultaneous learning of KB components

KB learning of linguistic FRBSs aims to learn the DB and RB concurrently. This
approach tackles a very large search space, which is also difficult for EAs to handle.
Some approaches have been proposed to learn concurrently the overall RB and DB.

In (55) the authors proposed a method for feature selection and DB learning, to
obtain FRBCs composed of a compact set of comprehensible fuzzy rules with high
classification ability. The DB learning involves both the number of labels for each
variable (granularity) and the form of each fuzzy membership function. A non-linear
scaling function is used to adapt the fuzzy partition contexts for the corresponding
granularity. This approach uses an MOEA to evolve the DB and considers a simple
generation method to derive the RB. The MOEA has two goals: to improve the accu-
racy, by minimizing the classification error percentage over the training dataset, and
to obtain a compact and interpretable KB, by penalizing fuzzy classifiers with large
numbers of selected features and high granularity. The second objective is expressed
by the product of the number of selected variables and their averaged granularity.

In (9) the authors proposed a technique to concurrently perform the RB identifi-
cation and the DB learning of fuzzy models for regression problems. Two MOEAs
are exploited to generate a set of linguistic FRBSs with different trade-offs between
accuracy and interpretability. The proposed approach can learn RBs and membership
function parameters of the associated linguistic labels, therefore the search space in-
creases considerably. To manage the size of the search space, the linguistic two-tuple
representation model (99)) is included, which uses a reduced number of parameters to
perform the symbolic translation of labels. The first MOEA is (2+2)M-PAES and it
is compared with the well-known NSGA-II. Two objectives are considered: the MSE
and the number of antecedents activated in each rule.

The same (2+2)M-PAES is exploited in (23)) to generate linguistic FRBSs for re-
gression problems, with different trade-offs between complexity and accuracy. The
presented approach aims to learn the RB and the granularity of the uniform partitions
defined by the input and output variables concurrently. Consequently, the concepts of
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virtual and concrete RBs are introduced: the former is defined by uniformly partition-
ing each linguistic variable with a fixed maximum number of fuzzy sets. The latter
takes into account, for each variable, the number of fuzzy sets determined by the spe-
cific partition granularity of that variable. RBs and membership function parameters
are defined by the virtual partitions and, whenever a fitness evaluation is required, they
are mapped to the concrete partitions. Two objectives are considered: the accuracy of
the FRBSs, measured as the MSE, and their complexity, computed as the number of
propositions used in the antecedent of the rules contained in the concrete RB.

This work is extended in (24)), in which the same MOEA is used to concurrently
learn not only the RB and partition granularity, but also membership function param-
eters. The same approach is presented in (26), where a partition integrity index is
proposed as a third objective. This index measures to what extent a partition is dif-
ferent from an initially interpretable one. Furthermore, in (25) a novel interpretability
index is proposed, which combines RB complexity with DB integrity.

In (41) a specific MOEA, called Pitt-DNF, is proposed to obtain FRBSs for re-
gression problems. The Pittsburgh approach is chosen, therefore each chromosome
encodes a complete set of fuzzy rules. Antecedents of rules are represented in Dis-
junctive Normal Form (DNF), i.e. each input variable can take an OR-ded combina-
tion of several linguistic terms as a value and the different input linguistic variables are
combined by an AND operator. Nevertheless, the authors wrongly call Conjunctive
Normal Form these kinds of fuzzy rules. This representation provides a high degree of
compactness and improves the interpretability of fuzzy models, but the combination of
the Pittsburgh approach with DNF-type fuzzy rules causes some problems to generate
the rules themselves. The proposed learning algorithm, based on NSGA-II, has been
developed to avoid the generation of DNF-type fuzzy rule sets with these problems and
it gives a set of solutions with different trade-offs between complexity, computed as the
number of DNF rules, and accuracy, measured by the MSE. One crossover operator and
two mutation operators were specifically designed to take into account the particular
representation of fuzzy rules, thus avoiding inconsistency, redundancy, over-generality
and incompleteness in fuzzy rules.

In (149) an MOEA is proposed to learn the granularities of fuzzy partitions, tune
the membership function parameters and learn the fuzzy rules of a linguistic FRBS for
regression problems. A two-step evolutionary approach is applied: the fuzzy models
are initialized using a method that combines the benefits of an ad-hoc RB generation
algorithm and decision-tree algorithms, with the aim of reducing the search space. The
initial population is then optimized by an MOEA that reduces the number of rules, rule
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conditions, membership functions and input variables. The MOEA is based on NSGA-
IT and the original genetic operators are replaced with new ones that take into account
dynamic constraints to ensure the transparency of fuzzy partitions. Two objectives are
optimized: accuracy, expressed as the MSE, and complexity, computed as the total rule
length (number of active rule conditions).

In (12), the authors propose a two stage approach to obtain linguistic KBs in classi-
fication problems based on the multi-objective fuzzy rule selection presented in (115),
by also including a lateral tuning (8)) within the same process and by considering the
same three objectives: to maximize the number of correctly classified training patterns,
to minimize the number of fuzzy rules and to minimize the total number of antecedent
conditions. The first stage determines appropriate granularities for the DB and a set of
candidate rules. The second stage performs multi-objective rule selection and tuning,
based on using NSGA-II to obtain the final RB and the appropriate DB parameters.

A recent proposal can be found in (10)), where the authors focus on the scalability
issue of linguistic FRBSs in 17 regression problems. The first stage uses an improved
MOEA (based on SPEA?2) to perform an embedded genetic DB learning including fea-
ture selection, granularities and the reduced lateral displacement of fuzzy partitions in
order to control the dataset dimensionality and obtain a reduced KB. For each DB def-
inition an ad-hoc RB is derived by adding a cropping mechanism to avoid large RBs
and to reduce the required computation time. Two minimization objectives are used:
MSE and number of rules. Finally, a post-processing stage for fine tuning and rule se-
lection is applied to the obtained KBs using the same objectives. A speeded-up version
of a previous MOEA, namely Exploration-Exploitation based SPEA2 (S PEA2g k), 1s
presented by including a new approach to fast fitness estimation which only uses a
small percentage of the training data. Since this mechanism is proposed for any kind
of EA, authors also include it in the first stage in order to address the problem of large
datasets (many-instance datasets).

In (20), Alonso et al. propose embedding the High Interpretable Linguistic Knowl-
edge (HILK) heuristic method (22) in a three-objective evolutionary algorithm, with
the aim of getting a good accuracy-interpretability trade-off when building FRBCs.
The well-known NSGA-II algorithm is employed, using two point crossover and Thrift’s
mutation (159). Three criteria are optimized: accuracy, by maximizing the right clas-
sification rate; readability, by minimizing the total rule length; comprehensibility, by
minimizing the average number of rules fired at the same time (Average Fired Rules -
AVR). Each chromosome includes a number of genes equal to the number of input vari-
ables and each gene represents the number of linguistic terms defined for the related
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input. Recently, this proposal has been extended in (33) by considering a novel com-
prehensibility index called the Logical View Index (LVI), which estimates how much
an RB satisfies logical properties. In this novel version, the AVR is substituted by the
LVI as a better FRBCs comprehensibility measure. Finally, in (34), both LVI and AVR
indexes are considered. The proposed evolutionary framework is used to set up two in-
dependent experimental sessions with two objectives: classification rate vs. AFR and
classification rate vs. LVI. The study aims to find possible relationships between AFR
and LVI, showing that the AFR minimization implies the LVI minimization, while the
opposite is not verified.

1.3.3 Approaches that deal with TSK FRBSs

TSK fuzzy models provide a powerful tool for modeling complex non-linear systems,
as multiple sub-models (typically linear models) are combined to describe the global
behavior of the system. The resulting model is often more difficult to interpret, and
few works can be found on this topic.

In (161) a technique based on a hierarchical MOEA (66)), derived from MOGA
(80), is proposed to construct TSK fuzzy models (157) from data, considering both
their accuracy and interpretability. The initial model is generated through a two-step
procedure: a fuzzy clustering method is used to preprocess the training data and to
construct the rule antecedents, then the Recursive Least Square (RLS) method is ap-
plied to determine the consequent rule. Finally, the hierarchical MOEA is exploited
to obtain the optimized fuzzy models, for regression problems. A hierarchical chro-
mosome formulation is used, so that it can perform the simultaneous optimization
of rule antecedents and number of rules, whereas consequents are obtained with the
RLS method. A two-level hierarchical structure is used: control genes and parameter
genes. Considering that there are two types of genes in the chromosome, a multi-
point crossover is applied for control genes, whereas for the parameter genes which
are represented in real numbers, BLX-a crossover is applied. During the optimiza-
tion an interpretability-driven RB simplification is applied, to reduce the search space.
Five objectives are optimized: the MSE for accuracy, the total number of fuzzy sets
and the number of fuzzy rules for compactness, a purposely-defined aggregate index
for both completeness and distinguishability, and finally an appropriate equation for
non-redundancy.

In (164), a novel coevolutionary algorithm (143)) is proposed to improve the per-
formance of TSK fuzzy systems in regression problems. This algorithm is called
the Pareto Multi-Objective Cooperative Coevolutionary Algorithm (PMOCCA). The
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fuzzy system is decomposed into two species: antecedents of fuzzy rules and param-
eters of fuzzy sets. To obtain a good initial fuzzy system, a modified fuzzy clustering
algorithm is used. Afterwards, the PMOCCA and some interpretability-driven simpli-
fication techniques are used to evolve the initial fuzzy system with three objectives:
accuracy of the system, the number of fuzzy rules and the number of antecedents in
each fuzzy rule.

The problem of the trade-off between accuracy and complexity in TSK fuzzy sys-
tems is also faced in (93)), in which a specific version of NSGA-II is proposed to deter-
mine a Pareto-optimal set of fuzzy models for regression problems. In particular, two
competing objectives are addressed: the accuracy, measured by the normalized RMSE,
and the complexity, expressed by the number of fuzzy rules. The specialization of the
algorithm is obtained first by using several heuristics to obtain a good initialization of
the population, and second by designing crossover and mutation operators specific to
the problem.

In (92) a Multi-Objective Neuro-Evolutionary Algorithm (MONEA) is proposed to
obtain a parameter estimation of TSK fuzzy models for regression problems. Neural
network based techniques and ad-hoc techniques for interpretability improvement are
included in the MOEA to increase the efficacy of the algorithm: the fuzzy model is
defined by a radial basis function neural network (47, [71). The number of neurons
in the hidden layer of the neural network is equal to the number of rules in the fuzzy
model and the firing strength of the ith neuron in the hidden layer matches the firing
strength of the ith rule. The neurons in the output layer perform the computation for
the function described in the consequents of the fuzzy model. The MONEA considers
four objectives: accuracy, computed as the MSE, transparency, for which the similarity
among distinct fuzzy sets is considered, and compactness, expressed by the number of
rules and the number of antecedents in the fuzzy model.

Another proposal can be found in (94), in which the authors used a hybrid tech-
nique to optimize the structure of TSK fuzzy systems for regression problems. Firstly,
a backpropagation algorithm is applied to optimize the membership function parame-
ters and the parameters of fuzzy rules. In a second phase, NSGA-II is used to perform
a fine tuning of parameters and to select the optimal number of fuzzy rules. The al-
gorithm considers two objectives: the system’s accuracy, computed as the MSE, and
complexity, defined by the number of active fuzzy rules in the RB.

In (50), a regression problem named the ocean color inverse problem is approached
by using the (2+2)M-PAES to optimize TSK FRBSs. The evolutionary optimization
roughly identifies the structure of the fuzzy models, then a tuning process is performed:
TSK FRBSs are implemented as an artificial neural network and by training the neural
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network, the parameters of the fuzzy model are adjusted. The result is a set of fuzzy
models with different trade-offs between accuracy and complexity.

A recent contribution has been presented in (52), in which the authors first analyze
the time complexity for both the generation and the evaluation of TSK FRBSs. Since
the identification of the rule consequent parameters is one of the most time-consuming
phases in TSK FRBS generation, a simple and effective technique is proposed for
speeding it up. Then, this approach is included in the optimization process of the
structure of TSK fuzzy systems for regression problems. (2+2)M-PAES is applied and
one-point crossover and three appropriately defined mutation operators are used. Two
objectives are optimized: the MSE as a measure of accuracy and the total number of
conditions different from don’t care as a measure of complexity.

1.3.4 A summary of MOEFSs designed to generate FRBSs with
different accuracy-interpretability trade-offs

In order to give an overview of the contributions described so far, Table presents a
summary of the works dealing with the accuracy-interpretability trade-off of FRBSs.
Papers are grouped considering the components of the KB that are optimized and
within each group they appear in chronological order. For each paper the type of
FRBS approach is shown, together with the kinds of rules. The number and type of the
objectives are reported together with the name of the MOEA, its generation type and
the kind of proposal (novel, general use or based on a previous MOEA). The repetition
of the objective type means the presence of two different optimized measures for the
same objective. In the last column, the type of application problem is briefly described.

Except for some earlier works, the greater part of the approaches use a second-
generation MOEA (1.e. MOEA with elitism) to tackle the accuracy-interpretability
trade-off: in fact, the introduction of the concept of elitism is essential for the con-
vergence of the algorithms. Moreover, the concept of interpretability becomes more
complex and complete over the years: earlier contributions considered interpretability
only in terms of complexity, whereas more recently, semantic interpretability has been
studied in depth and included in the optimization process.

Looking at the FRBS approach, it is evident that Mamdani FRBSs are used more
than TSK ones, probably due to the intrinsic interpretability of the Mamdani model.
Finally, we can remark that earlier contributions scarcely considered the problem of
learning the whole KB, which is progressively considered more often in the latter con-
tributions.
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Table 1.1: Summary of the proposals on MOEFSs designed to generate FRBSs with good
Accuracy-Interpretability trade-offs.

A-I trade-off FRBS approach Objectives MOEA
Authors Ref. Year Rules Type #0Obj. Type Name Gen. Type Problem type
o | Wangetal. el 2005 TSK LING. = 5 A+C+C+S+S MOHGA Ist To ReG.
’g % Alcald et al. [nh) 2007 Mam. LinG. 2 A+C SPEA2,cc 2nd Te REG.
5 = Gonzalez et al. ©3) 2007 TSK Scar. 2 A+C NoN. 2nd I7 ReG
é E Gomez et al. 92) 2007 TSK Scar. 4 A+C+C+S MONEA 2nd N REeG
g § Pulkkinen et al. (148) 2008 Mawm. LinG. 3 A+C+C NSGA-II 2nd G CLas.
g E Pulkkinen et al. 47 2008 Mam. LinG. 3 A+A+S NSGA-II 2nd G CLas.
g E Guenounou et al.  (94) 2009 TSK LiNG. # 2 A+C NSGA-II 2nd G ReG.
E E Gacto et al. (82) 2009 Mam. LinG. 2 A+C VARIOUS 2nd G ReG
"3 E Botta et al. 32) 2009 Mam. LiNa. 2 A+S NSGA-II 2nd G REeG
i Gacto et al. (83) 2010 Mam. LiNG. 3 A+C+S SPEA2-SI 2nd Te REG.
% 2 Marquez et al. (135) 2009 Mam. LinG. 2 A+C VARIOUS 2nd Ife REkG.
'é é Marquez et al. (136) 2010 Mam. LiNaG. 3 A+C+S NoN. 2nd I REG.
o
2 | Ishibuchi et al. (10411105)  1997,1998 Mam. LinG. 2 A+C NoN. Ist N CLas.
E Ishibuchi et al. (107) 2001 Mam. LiNa. 3 A+C+C GBML Ist N CLas.
E Ishibuchi et al. (L15) 2004 Mam. LinG. 3 A+C+C MOGLS Ist N Cras.
@ | Alcald et al. (12) 2010 Mam. LinG. 3 A+C+C NSGA-II 2nd G CLas.
% Ishibuchi et al. (L10) 2006 Mawm. LiNG. 2 A+C NSGA-II 2nd G CLaAs.
2 | Ishibuchi et al. (L1 2007 Mam. LinG. 3 A+C+C GBML 2nd 1T CLas.
2 | Setzkorn et al. (152) 2005 Mam. LiNaG. 3 A+C+C NoN. 2nd Te CLAs.
é Cococcioni etal.  (51) 2007 Mawm. LiNG. 2 A+C (2+2)M-PAES  2nd I REG.
=] Xing et al. (164) 2007 TSK LiNG. 2 A+C PMOCCA 2nd N REG.,Ts.
o & Ducange et al. (69) 2010 Mam. Line. 3 A+A+C NSGA-II 2nd G Ims. Cras.
% Cordoén et al. 55) 2003 Mam. LinG. 2 A+C NoN. Ist N CLas.
é E Cococcioni et al.  (50) 2008 TSK Scar. 2 A+C (2+2)M-PAES  2nd Ix Rec
g % Alcald et al. ©) 2009 Mawm. LiNG. 2 A+C (2+2)M-PAES  2nd I REG.
% Antonelli et al. (23) 2009 Mawm. LinG. 2 A+C (242)M-PAES 2nd 1% ReG.
: Antonelli et al. 24) 2009 Mam. LinG. 2 A+C (2+2)M-PAES  2nd Ix REeG.
; Casillas et al. “1) 2009 DNF-ruLes LiNG. 2 A+C NoN. 2nd 17 ReG
2 Pulkkinen et al. (149) 2010 Mawm. LinG. 2 A+C NoN. 2nd I7 ReG.
% Alonso et al. 20) 2010 Mam. LinG. 3 A+C+S NSGA-II 2nd g CLas.
& | Cannone et al. 33) 2011 Mawm. LinG. 3 A+C+S NSGA-II 2nd g CLas.
é Cannone et al. 34) 2011 Mam. LinG. 2 A+S aND A+S  NSGA-II 2nd g CLAs.
2 Cococcioni et al.  (52) 2011 TSK. Scar. 2 A+C (2+2)M-PAES  2nd Ix Rec
E Antonelli et al. 26) 2011 Mam. LinG. 3 A+C+S (242)M-PAES  2nd Ix ReG
§ Antonelli et al. 25) 2011 Mam. LinG. 2 A+(C+S) (2+2)M-PAES  2nd Ix Rec
Alcald et al. (10) 2011 Mam. LiNG. 2 A+C NoN. 2nd  I7 REG.

LP.=Inference Parameters, Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Ling.=Linguistic,
Scar.=Scatter, «In the antecedent;
A=Accuracy, C=Complexity, S=Semantic aspects;
NoN.=No name, N=Novel algorithm, I=Improved version, G=General use;
Cras.=Classification, REG.=Regression, Ts.=Time Series, Imp.=Imbalanced;

TNSGA-II based, *xPAES based, oMOGA based, eSPEA2 based.
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1.4 MOEFSs designed for multi-objective control prob-
lems

FLCs are one of the most common applications of fuzzy logic. An FLC includes a
set of linguistic control rules related by the dual concepts of fuzzy implication and
the compositional rule of inference (132). No fixed process for designing a fuzzy
controller exists and the appropriate fuzzy parameters have to be chosen on the basis
of an experimental study of the control objective. To overcome this difficulty, the
application of EAs was proposed for the design of FLCs (7, 85, [100). Two problems
arise during this process: the first issue concerns how to establish the structure of the
controller; secondly, the numerical values of the controller’s parameters have to be
chosen.

Many contributions can be found in the literature on the use of EAs to obtain the
optimal design of FLCs, both for tuning and learning tasks. Most of them take into
account only one performance objective. The first multi-objective approaches were
carried out by combining several performance objectives into a single one, by using
a weighting approach. Afterwards, more objectives were included in the optimization
process with the aim of considering not only different performance measures, but also
characteristics such as time constraints, robustness and stability requirements, compre-
hensibility and the compactness of the obtained controller. EAs have been used either
for off-line or on-line design of FLCs, although in the latter case the computation time
1s sometimes a critical issue. Further information on EAs applied to FL.Cs can be found
in (117).

In the following we will analyze the existing works on the application of MOEFSs
to Fuzzy Control, considering both categories presented in section They are
controller parameters’ identification and the learning of controller structure. Unless
otherwise specified, the contributions use a Mamdani-type FLC.

1.4.1 Controller parameters’ identification

The first approach aims to modify the parameters that affect the controller’s perfor-
mance once an initial design of the FLC is established. Tuned parameters can be the
scaling factors for each variable, the shape of fuzzy sets representing the meaning of
linguistic values and the selected IF-THEN rules. This approach permits the reduction
of the computational load required, since the search space is smaller than the one con-
sidered when learning all the components together. Nevertheless, since the parameters
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and structure of fuzzy models are strictly related, the obtained solutions are affected
by the initial system definition.

One of the first works on the use of a first-generation MOEA for the optimization of
an FLC is presented in (2). A Mamdani-type fuzzy system is designed for the vibration
control of a civil engineering structure in seismic zones. Consideration of the building
performance includes both the safety and the comfort level of the user. The former
issue is achieved by minimizing the peak displacement, the latter one by minimizing
the peak acceleration. The trade-off between the two objectives is handled using a two-
branch tournament GA that provides a set of Pareto optimal solutions and optimizes the
parameters of the input and output membership functions. Each membership function
is represented by a generalized bell shaped function defined by three values. One-
point crossover is employed and the mutation is performed on a bit-by-bit basis, with
a certain probability.

A similar approach is undertaken in (3)), where a hybrid control system (using ac-
tive and passive control strategies) is proposed for the structural vibration control of
buildings. A tuned mass damper and an active mass driver are used as respective the
passive and active control components of the hybrid control system. To control the
active mass driver, an FLC is used and the two-branch tournament GA is applied to the
optimization of the parameters of the input and output membership functions. In (4) a
further objective is added. A three-branch tournament GA is used this time, in which
the minimization of peak displacement, acceleration and rotation of the structure about
its vertical axis are considered as the three objective functions.

In (3), the same approach is used for the optimization of an FLC that drives an
active tuned mass damper towards the response control of wind-excited tall buildings.
Furthermore, in (6), the authors improve the proposal presented in (3) by adding an
active control system to the hybrid control system. The overall system is driven by an
FLC, whose parameters are optimized by means of the two-branch tournament GA,
presented in the previous works.

Further works use a first-generation MOEA to tune the parameters of the mem-
bership functions of an FLC. In (49) a hierarchical MOGA-based approach is used to
tune fuzzy scheduling controllers for a gas turbine engine. The engine should satisfy
nine large-signal performance criteria (e.g. steady-state accuracy, transient accuracy,
disturbance rejection, stability, stall margin, structural integrity, engine degradation,
etc). Once an initial suitable fuzzy scheduling controller is designed, parameters of
membership functions and scaling factors are tuned to meet the former criteria.

In (119), an MOGA-based approach is presented to tune an FLC for a solid oxide
fuel cell power plant. The obtained model achieves fast transient responses and has
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very low total harmonic distortion in output current steady-state operation. To improve
the fuzzy structure of the controller, a tuning process adapts the parameters of mem-
bership functions and scaling factors. Fuzzy sets are defined by the center points of
normalized, triangular membership functions. Objectives are described by a system of
equations that represent the harmonics to be minimized.

With regard to the use of second-generation MOEAs, in (124), the authors inves-
tigate the use of smart base-isolation strategies to reduce structural damage caused
by severe loads. A friction pendulum system and a magnetorheological damper are
employed in a smart base-isolation system and an FLC is used to modulate the magne-
torheological damper. The classic NSGA-II is used to optimize parameters of member-
ship functions and to find appropriate fuzzy rules for the FLC. Gaussian membership
functions are used for all input and output variables of the FL.C. The shapes of Gaussian
membership functions are defined by two parameters and are coded into the chromo-
some with a real-valued representation. The optimization process aims to minimize
root mean squared structural acceleration and base drift.

This problem is tackled again in (125)), in which a novel control technique is pro-
posed, by utilizing a hierarchical structure of FLCs. The structure consists of two
lower-level controllers and a higher-level supervisory controller. Lower-layer con-
trollers are optimized by NSGA-II, considering four objectives: reduction of peak
superstructure acceleration, peak isolation system deformation, RMSE of superstruc-
ture acceleration and RMSE of isolation system deformation. Gaussian membership
functions are used for all input and output variables of the FLC, as in the previous
contribution.

In (154) an FLC is designed to manage two magnetorheological dampers for the
mitigation of seismic loads. NSGA-II with Controlled Elitism is used for the optimiza-
tion of FLC parameters. Fuzzy sets of input and output variables are represented by
Gaussian membership functions, which are described by two parameters. These pa-
rameters are coded in the chromosome by means of floating point values. The overall
optimization process aims to maximize four objective functions: peak interstory drift,
peak acceleration, RMSE of interstory drift and RMSE of acceleration.

In (139), the authors present a multi-objective evolutionary process for tuning the
fuzzy membership functions of a fuzzy visual system for autonomous robots. This
fuzzy visual system is based on a hierarchical structure that includes three different
linguistic FRBCs. The combined action of these classifiers allows robots to detect the
presence of doors in the images captured by their cameras. The DB of the whole fuzzy
visual system is coded in a single chromosome, which comprises the four parameters
defining each trapezoidal-shaped membership function. Blend crossover (BLX-a) (73)
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and random mutation are considered as genetic operators, whereas the conflicting ob-
jectives to be optimized are the true positive and false positive detection rates. Different
single (a generational GA and CHC) and multi-objective (SPEA, SPEA2, NSGA-II)
evolutionary algorithms are considered and compared, with NSGA-II obtaining the
best performance.

In (60) the parameters of an adaptable hierarchical TSK fuzzy controller for blinds
are optimized by NSGA-II, considering two objectives: energy consumption and ther-
mal comfort. The fuzzy sets are represented by triangular membership functions,
whose parameters are optimized. The performances of the FLC are tested by means of
a software for dynamic simulation of indoor climate and energy.

In (70) an MOEA based on SPEA?2 is developed to optimize the parameter of an
FLC that aims to improve the water quality of a sewage treatment plant. The FLC uses
ten parameters for its operation and each chromosome codifies a set of parameters.
Depending on these parameters, the controller decides when to activate a blower in
the aeration tank, in order to keep the water clean. Water quality is based on different
criteria, therefore the optimization process tries to minimize the concentrations of three
chemical compounds.

In (85), the authors proposed a tuning process combined with a rule selection pro-
cess, to improve the performance of FLCs for the control of heating, ventilating and
air conditioning (HVAC) systems, including several performance criteria such as en-
ergy performance, stability and indoor comfort requirements. The technique is based
on § PEA2g; and aims to obtain a more accurate controller by forcing the removal of
unnecessary rules and biasing the search through those solutions that satisfy the per-
formance objective to a higher degree. Two objectives are considered: maximizing
the performance, expressed by aggregating five quality measures, and minimizing the
complexity, computed as the number of rules obtained.

1.4.2 Learning of controller structure

Learning of controller structures is used for the generation of an FLC in situations
where a reasonable set of rules is not immediately apparent. These kinds of approaches
are able to take into account the synergy between the RB and DB, but they involve a
heavier computational burden due to the increase in the search space.

One of the first works in this branch is (29). An FLC for a non-linear missile
autopilot is designed using NSGA. Both the membership functions’ distribution and
the RB of the FLC are determined. The design process minimizes four objectives: the
steady state error, the overshoot, the settling and the rising time.
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In (156)) a specific MOEA is presented for the on-line design of the structure of a
fuzzy speed controller for a DC motor motion control platform. The optimization in-
volves three objectives to be minimized: the current tracking error, the velocity track-
ing error and the power consumption of the system.

A medical application is presented in (/7), where an MOEA 1is used to design FLCs
to adjust the amount of drug dosage necessary to achieve the required neuromuscu-
lar blockade level in patients during surgery. The evolutionary approach is based on
SPEA?2 and considers two goals: the optimization of the amount of the drug required
and the minimization of the complexity of the obtained FLC, so that the undertaken
control decision can be explained in natural language.

Beyond the works presented above, there are some contributions that use a hybrid
approach of fuzzy systems, neural networks and GAs, in order to automatically con-
struct a controller. For example, in (48) an intelligent combustion controller is designed
to handle an incineration process, by integrating different soft computing approaches.
The proposed methodology applies three techniques simultaneously: a representative
state function is modeled using a GA and a neural network. Then, this model is used as
surrogate of the plant and a specific first-generation MOEA 1is applied to obtain a set of
FLCs, represented by TSK-type control rules. Finally, the control RB is improved by
a tuning process. In this specific application, two goals are considered: effluent quality
and heat recovery.

In (150) a gain scheduling adaptive control scheme for nonlinear plants is pre-
sented. The controller is based on fuzzy systems, neural networks and GAs. A fuzzy
PI controller is optimally designed using a specific MOEA to satisfy three objectives:
minimizing overshoot time, minimizing settling time and smoothing output response.
Then, the backpropagation algorithm is applied to design a neural gain scheduler with
the aim of tuning the optimal parameters of the fuzzy PI controller at some operating
points.

1.4.3 A summary of MOEFSs designed for multi-objective control
problems

All contributions on MOEFSs designed for Fuzzy Control are grouped in Table [T.2]
Papers are divided based on the aspects of the controller that are considered by the
optimization process. A description of this type of table is given for Table in Sec-
tion[1.3.4] In almost all cases the objectives express a performance measure, therefore
the objective type does not appear in this table. Due to the various application fields
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of FLCs, the last column contains a brief description of the application framework.
Within each group, papers are sorted in chronological order.

Table 1.2: Summary of the proposals on MOEFSs for multi-objective fuzzy control prob-

lems.
Fuzzy Control FRBS approach MOEA
Authors Ref. Year Rules  Type #0Obj. Name Gen. Type Application Framework
Ahlawat et al. ) 2001 Mam. LinG. 2 NoN. Ist  Ix BUILDING VIBRATION
Ahlawat et al. (3115) 2002,2004 Mam. LiNG. 2 NoN. Ist  Ix BUILDING VIBRATION
': Ahlawat et al. ) 2002 Mam. LinG. 3 NoN. Ist  Ix BUILDING VIBRATION
E Chipperfield et al.  (49) 2002 Mawm.  Line. 9 NoN. Ist N GAS TURBINE ENGINE
2 5 Ahlawat et al. ©) 2004 Mam.  LinG. 2 NoN. Ist Ix BUILDING VIBRATION
E E Jurado et al. (119) 2005 Mam.  LING. 16 NoN. Ist To SOLID OXIDE FUEL CELL
é E Kim et al. (124) 2006 Mam.  Scar. 2 NSGA-II 2nd G BASE-ISOLATION SYSTEM
§ E Kim et al. 125) 2007 MaMm.  Scart. 4 NSGA-II 2nd G BASE-ISOLATION SYSTEM
% Shook et al. (154) 2008 Mam. LiNG. 4 NSGA-IICE 2nd I SEISMIC LOADS MITIGATION
© Muioz et al. 139) 2008 MaMm. LiNG. 2 VARIOUS 2nd G Fuzzy VISUAL SYST. FOR ROBOTS
Daum et al. (60) 2010 TSK  Scar. 2 NSGA-II 2nd G HVAC systems
Ebner et al. (70) 2010 i i 3 NoN. 2nd Te ‘WATER TREATMENT
Gacto et al. 85) 2010 Mam.  LinG. 2 SPEA2p g 2nd Ie HVAC sysTEMS
- Blumel et al. 29) 2001 MaMm. LiNG. 4 NSGA Ist N MISSILE AUTOPILOT
E 2 Chen et al. (48) 2002 TSK LiNG. = 2 NoN. Ist N INCINERATION PROCESS
E % | Stewart et al. 156) 2004 Mam.  LiNG. 3 NoN. Ist N DC MOTOR MOTION CTRL.
5 é Serra et al. (150) 2006 Mam LiNa. 3 NoN. 2nd N NONLINEAR PLANTS
Fazendeiro etal.  (77) 2007 Mam.  LinG. 2 NoN. 2nd Ie DRUG DOSAGE FOR SURGERIES

Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Lmc.=Linguistic,

antecedent, FPatented FLC, not available information;

A=Accuracy, C=Complexity, S=Semantic aspects;

Scar.=Scatter,

%In the

NoN.=No name, N=Novel algorithm, I=Improved version, G=General use;
*2-branch tournament GA, oMOGA based, TNSGA-II based, eSPEA2 based.

In most cases, the proposal deals with the post-processing of FLC parameters, since

it is the simplest approach and requires a reduced search space. Earlier works con-

sider first-generation algorithms and only very recently have the best known second-
generation MOEAs been applied. Finally, in almost all papers a Mamdani-type FRBS

1s used.

1.5 MOEFSs designed for fuzzy association rule min-

ing

The knowledge extracted by the mining process can be represented in several ways,

for example, using association rules. A general association rule is defined as an impli-
cation X = Y, where both X and Y are defined as sets of attributes. This implication is
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interpreted as follows: “for a specified fraction of the existing transactions, a particular
value of attribute set X determines the value of attribute set ¥ as another particular
value under a certain confidence”, where a transaction consists of a set of items /.
Two classic concepts are involved in association rules: support, that is the per-
centage of transactions that contains both X and Y, and confidence, that is, the ratio
between the support of X U Y and the support of X. Thus, the problem of association
rule mining (167) consists of finding all association rules that satisfy user-specified
minimum support and confidence. Early works used Boolean association rules, which
consider only whether an item is present in a transaction or not, without evaluating its
quantity. To take into account this aspect, fuzzy association rules (63)) were introduced.
In the following, we describe those contributions that apply MOEFSs to fuzzy
association rule mining. Then, a brief summary of the existing works is provided.

1.5.1 Description of the existent contributions

Fuzzy association rule extraction can be performed using MOEAs, as they obtain good
results when dealing with problems involving several measures that could be contra-
dictory to some degree. Moreover, they could also include interpretability concepts,
since fuzzy association rules can explain the associations they represent.

For example, in (123) a specific Pareto-based multi-objective evolutionary ap-
proach is presented for mining optimized fuzzy association rules. Two different coding
schemes are proposed: the first one tries to determine the appropriate fuzzy sets in a
pre-specified rule, also called certain rule. In such cases, each individual represents the
base values of membership functions of a quantitative attribute in the DB. The second
coding scheme tries to find both rules and their appropriate fuzzy sets. In both ap-
proaches three objectives are maximized: support, confidence and comprehensibility
of fuzzy association rules, where the last one is expressed by a measure related to the
number of attributes in a rule.

A fuzzy data mining approach is presented in (46) for the Single-minimum-Support
Fuzzy-Mining problem. An MOGA-based algorithm is proposed to extract both mem-
bership functions and association rules from quantitative transactions. The algorithm
tries to maximize two objectives. The first is the suitability of membership functions,
through a combination of coverage and overlap factors. This measure is used to reduce
the membership functions that are redundant or too separate. The second objective is
the total number of large 1-itemsets in a given set of minimum support values. Since a
larger number of 1-itemsets will usually result in a larger number of all of the itemsets
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with a higher probability, this implies more interesting association rules. Thus, this
metric expresses the interestingness of a rule.

The earlier proposals in fuzzy association rule mining assumed that the number
of fuzzy sets is pre-specified. In (18) an automated clustering method is proposed,
which aims to automatically cluster values of a quantitative attribute, in order to obtain
a large number of large itemsets in less time. The method uses an MOEA based on
SPEA and the optimization process considers two objectives. The first is to maximize
the number of large itemsets with respect to a given minimum support value, since a
large itemset potentially leads to the discovery of some interesting fuzzy association
rules. The second objective is to minimize the time required to find all large itemsets in
a given database. In (158) a technique for mining optimized fuzzy association rules is
proposed, to detect intrusions in a network. The proposed framework aims to concur-
rently identify fuzzy attributes and to define the membership functions by exploiting
clustering techniques. Afterwards, MOGA (80) is applied to generate and optimize
fuzzy association rules of different orders. The optimization process tries to maximize
two objectives: confidence, which represents the strength of a rule, and support, which
in this case identifies the generality of a rule.

A particular approach focused on predictive induction is presented in (42), in which
an MOEA is used to derive fuzzy association rules from uncertain data for consumer
behavior modeling. Rules are codified with DNF-type fuzzy rules. The proposed
framework considers data collection, data mining and finally knowledge interpretation.
During the mining process, an evolutionary scheme based on NSGA-II is applied and
three objectives are minimized. The accuracy is expressed by the approximation error,
the complexity is represented by the number of DNF-type fuzzy rules. This second
objective does not completely assess the interpretability of the fuzzy system, since
the internal structure of each DNF-type fuzzy rule is not considered. Thus, a third
objective is added that measures the number of equivalent Mamdani-type fuzzy rules
for each DNF-type fuzzy rule.

Beyond predictive and descriptive induction, there are mixed techniques that com-
bine the characteristics of both types of induction. An example is Subgroup Discovery
(128), which aims to extract descriptive knowledge from data that concerns a property
of interest. Subgroup Discovery is a form of supervised inductive learning or subgroup
description, in which the algorithm analyzes a set of data in order to find interesting
subgroups, given a property of interest chosen by the user. The induction of rules that
describe subgroups can be considered a multi-objective problem, since a Subgroup
Discovery rule can be evaluated by means of different quality measures.
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An application of an MOEA to Subgroup Discovery can be found in (38). The
algorithm, called the Non-dominated Multi-objective Evolutionary algorithm for Ex-
tracting Fuzzy rules in Subgroup Discovery (NMEEF-SD), is based on the well-known
NSGA-II and aims to extract novel and interpretable fuzzy rules that describe sub-
groups. In NMEEF-SD, the quality measures considered as objectives in the evolution-
ary process can be selected, making it possible to study the combinations of measures
that provide better results. Three quality measures are available: support, confidence
and unusualness, i.e. the weighted relative accuracy of a rule. These last measures
attempt to obtain a good trade-off between the generality, interest and precision.

1.5.2 A summary of MOEFSs designed for fuzzy association rule
mining

Table [I.3]|contains all contributions that deal with MOEFSs designed for mining fuzzy

association rules, presented in chronological order. As with Tables [I.T| and [1.2] a

description of this type of table is given in Section [I.3.4] but the column describing

the FRBS approach is no longer necessary. The remaining fields assume the meanings

previously explained.

In most cases, the classical measures of data mining, support and confidence, are
used as objectives. The application of MOEAs to extract fuzzy association rules is
quite recent, beginning in 2006. Therefore, the majority of works exploit a second-
generation MOEA.

Table 1.3: Summary of the proposals on MOEFSs for mining fuzzy association rules.

Fuzzy association Objectives MOEA
rule mining

Authors Ref. Year #Obj. Description Name Gen. Type
Kaya et al. 123) 2006 3 TSup. + TCon. + Att. NoN. 2nd N
Alhajj et al. (18) 2008 2 TLI + | Tim. NoN. 2nd Te
Chen et al. (46) 2008 2 TLII + 7Sui. NoN. Ist To
Thilgam et al. (158) 2008 2 TSup. + TCon. MOGA Ist G
Casillas et al. “42) 2009 3 LErr. + |[IDNF-FR + [MAM-FR NoN. 2nd  I7
Carmona et al. 38) = 2010 3 TSup. + TFCon. + TUnu. NMEEF-SD 2nd 17

xApplied for Subgroup Discovery;

Con.=Confidence, Sup.=Support, Tim.=Time, Err.=Error, LI=#Large itemsets, L1I=#Large
l-itemsets, Att.=#Attributes, Sui.=Suitability, DNF-FR=#DNF-type Fuzzy Rules, MAM-
FR=#Equivalent Mamdani-type Fuzzy Rules, Unu.=Unusualness, FCon.=Fuzzy confidence,
TMaximize, |Minimize, NoN.=No name, N=Novel algorithm, I=Improved version, G=General
use; TNSGA-II based, xPAES based, cMOGA based, eSPEA based.
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1.6 Open problems and new trends in MOEFSs

In this section, some current trends in the field of MOEFSs will be presented and some
recent contributions related to them will be described. In addition, some issues will be
highlighted in order to focus researchers’ attention on new problems that arise when
using MOEFSs in real-world applications.

One important issue concerns the fact that MOEAs have not been specifically de-
signed for MOEFSs, in which a chromosome represents parts of an FRBS and conse-
quently assumes a complex structure that can even comprise a combination of binary,
integer and real coding. Moreover, MOEFSs have to take into account test errors,
which are not usually present in Evolutionary Multi-Objective Optimization bench-
marks. Due to this fact, existent MOEAs may not be suited to optimize FRBS struc-
tures, thus producing sub-optimal solutions.

Considering this issue and the current state-of-the-art of MOEFSs described in the
previous sections, we try to highlight some problems related to MOEFSs that should
be investigated. The following subjects will be stated as open problems and briefly
described:

a) performance evaluation of MOEFSs;

b) reliable interpretability measures;

c¢) objective dimensionality;

d) scalability issues;

e) application to imbalanced datasets;

f) automatic selection of the most suitable solution;
g) integration of decision maker’s preferences;

h) design MOEFSs to generate type-2 fuzzy systems.

1.6.1 Performance evaluation of MOEFS approaches

Comparing different multi-objective optimization techniques is a difficult task, since
the optimization result is a set of non-dominated solutions rather than a single solu-
tion. Researchers generally agree on considering two informal criteria to assess the
quality of a solution set: the distance of the approximated points from the true Pareto
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front should be minimized and solutions should be equally distribute along the front.
Additionally, the extent of the obtained non-dominated front should be maximized.

In the literature, several performance measures have already been proposed to con-
sider these criteria and to evaluate the search capacity of algorithms. The follow-
ing measures are widely used: attainment surfaces, hypervolume, epsilon dominance
(814 [1°70% 11771), etc. A drawback of these measures is that the quality difference be-
tween the obtained FRBSs remains unclear. Moreover, the Pareto front approximation
is generated with respect to the training data, whereas the performance of the algorithm
should be evaluated with respect to test data by applying a statistical analysis.

A novel attempt based on the ideas in (82) to obtain representative mean values
has been proposed in (9) to compare different multi-objective approaches: for each
dataset and for each trial of an algorithm (considering cross validation), the approxi-
mated Pareto front is generated and three representative points are extracted (the best
in the first objective, the median considering both objectives and the best in the second
objective). Afterwards, for each dataset, the mean values and the standard deviations
of some measures (first objective or training accuracy, second objective or complexity
and test accuracy) are computed for each representative point over all the trials, and a
non-parametric statistical test is applied locally for each measure at each representative
point. In this way, authors were able to statistically compare the different algorithms
by analyzing the performance of the obtained FRBSs when looking for the desired
properties in the Pareto front extremes and in the mid point (equilibrium point).

This approach has been extended in (83)) and applied to problems with more than
two objectives. To make a statistical comparison of the different interesting points
possible, the authors project the obtained Pareto fronts on the planes generated by con-
sidering pairs of objectives (in this case, accuracy-complexity and accuracy-semantic
planes). In this way, they can analyze the non-dominated solutions by considering the
said interesting points for each pair of objectives.

This technique presents some problems when the Pareto fronts generated by dif-
ferent algorithms reside in distant zones of the objective space, as it is not applicable
in these cases. Therefore, a previous graphical representation of the averaged Pareto
fronts is necessary to determine whether this technique is suitable or not. In cases
where the obtained Pareto fronts are located in different parts of the objective space,
it could be determined which representative points are comparable for each dataset
by considering this graphical representation, constituting a first attempt to assess the
quality difference between fronts.
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1.6.2 Reliable interpretability measures

In Section [I.3] we have explained how the definition of interpretability heavily af-
fects the comprehensibility of an FRBS and researchers are still looking for reliable
and widely accepted interpretability measures. Some proposals attempt to define new
indexes to consider multiple interpretability measures (19, 25, [83). This problem is
mainly related to contributions of the first category and it is discussed deeply in (84),
where a taxonomy is proposed to organize the different measures or constraints that are
used in the literature to assess interpretability in linguistic FRBSs. A taxonomy with
four quadrants is presented: complexity and semantic interpretability are taken into
account at the level of RB or at the level of fuzzy partitions. Since the interpretability
of linguistic FRBSs is still an open problem, the review tries to organize the different
measures proposed so far, in order to help researchers to determine the most appropri-
ate measures according to the part of the KB in which they want to maintain or improve
interpretability.

This research (84) highlighted that there is not a single comprehensive global mea-
sure to quantify the interpretability of linguistic models, thus it would be necessary
to consider appropriate measures from all the quadrants. It is necessary to establish
a way to combine these measures globally. To this end, the different measures might
be optimized as different objectives within a multi-objective framework, by also taking
accuracy into account. However, the real problem resides in the choice of common and
widely accepted measures for each of the quadrants, which is still an open problem for
the useful application of MOEFSs that aim to discover the accuracy-interpretability
trade-off of FRBSs.

1.6.3 Objective dimensionality

MOEAs usually work very well for two or three objective problems, whereas their
search capacity worsens as the number of objectives increases. Problems with four or
more objectives are often called many-objective problems (114)).

These kinds of problems can be handled by different approaches:

e integrating many aspects into few objectives;
e selecting few aspects as objectives;

e using all the objectives.
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The first approach aims to combine several objectives into a single one, using
weights or appropriate aggregation operators. This method presents the common prob-
lems of a single-objective approach: the aggregation method and weights have to be
chosen carefully, since they greatly influence the performance of the optimization pro-
cess. However, it represents an effective way of handling many objectives when some
of them are related and can be properly combined.

The second approach is achieved by reducing the dimensionality in the objective
space, since not all the objectives may be necessary. If there is a certain number of
non-conflicting objectives, these objectives must be considered redundant. On the
other hand, in some cases there are some objectives (conflicting or not) that could
be removed without significantly losing the problem information, in which case only
the statistically significant conflicting objectives should be considered.

The third method is the most complex one, as when applying a classic MOEA to
a many-objective problem, several problems arise. When the number of objectives
increases, almost all solutions in a population become non-dominated, therefore the
search capacity of MOEAs based on the Pareto-dominance concept is heavily affected.
The number of solutions required to approximate the entire Pareto front increases ex-
ponentially with the number of objectives. This happens because in many-objective
problems the Pareto front is represented by a hyper-surface in the objective space. The
decision making process becomes harder, since the final solution is chosen from among
a wider number of multi-objective solutions.

To overcome these problems, researchers found that the low selection pressure
could be tackled by inducing a preference ordering over the points in the non-dominated
set. The approaches based on preference ordering include relaxing the concept of
Pareto-dominance, controlling the dominance area, modifying the rank definition, sub-
stituting the distance metric, etc. These approaches seem promising, but they still need
further investigation.

1.6.4 Scalability issues

In recent years, having to deal with large or high dimensional datasets has become
more common (97, [118). Large datasets include many instances, while high dimen-
sional datasets refer to datasets with a large number of features. These kinds of datasets
provide some difficulties: the size of large datasets affects the fitness function com-
putation, thus increasing the computational time, whereas high dimensional datasets
increase the search space. Moreover, in most of the cases, the wider the search space,
the greater the number of generated rules. Resulting models can be very complex,
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with interpretability heavily affected. This problem is particularly evident in the works
belonging to the first and third groups of the taxonomy.

In the case of large datasets, these problems can be tackled by reducing the training
set, i.e. removing irrelevant training instances prior to the learning process. The choice
of the subset is a crucial task, since it has to describe the whole training set without the
loss of information. When dealing with high dimensional datasets, it is also possible to
perform a feature selection process that determines the most relevant variables before
or during the learning process. Finally, the interpretability issue can be tackled by
reducing the rule set through a post processing approach.

Large and high dimensional datasets increasingly occur in real-word problems,
but until now there have been few works that attempt to approach them through the
multi-objective evolutionary optimization of fuzzy systems, therefore this is still an
interesting investigation field. A recent example can be found in (10), which proposes
an MOEA for obtaining linguistic Mamdani compact models in 17 regression prob-
lems, including up to 80 variables and up to 40.000 example data. A variable selection
mechanism is applied to ensure a fast convergence in the presence of a high number
of variables. To handle problems with a high number of examples, an error estimation
of the obtained models is computed by using a reduced subset of the training patterns
within a new mechanism for fitness estimation which is applicable to any EA.

1.6.5 Imbalanced datasets

Problems with imbalanced datasets appear mainly when dealing with classification
tasks (45). Usually, the accuracy of a classifier is evaluated according to the percent-
age of correct classification, which should be maximized by the optimization process.
This measure is inappropriate when the application domain is characterized by a highly
imbalanced distribution of samples, since positive cases compose just a small fraction
of the available data used to train the classifier. In some cases the cost of misclassi-
fication is different between the positive and the negative classes. Thus, the obtained
classifier presents a high predictive accuracy over the majority class and poor predic-
tive accuracy over the minority class. Furthermore, the minority class examples can be
considered as noise and completely ignored.

Two approaches can be followed to reduce or avoid bias toward the majority class.

e At data level: pre-processing mechanisms can be applied to patterns, to prevent
imbalance. These solutions include different forms of re-sampling, i.e. oversam-
pling, undersampling, and variations on or combinations of the previous tech-
niques.
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e At algorithmic level: solutions are mainly based on cost-sensitive approaches,
by using metrics that take into account the misclassification costs of each class.

With regard to MOEFSs, imbalanced datasets could be handled in the application
of FRBC:s. A first approach in this sense can be found in (69), in which the performance
of binary FRBCs are analyzed, considering an application domain characterized by
highly imbalanced distributions of examples. To assess FRBCs’ performance, two
objectives are maximized: sensitivity and specificity. Sensitivity corresponds to the
true positive rate, specificity to the complement of the false positive rate. These two
metrics describe the system’s ability to correctly classify patterns belonging to both the
positive and the negative classes. The sum of the conditions in the antecedents of rules
in the classifier is added as a third objective, in order to decrease the complexity. After
the optimization process, the Receiver Operating Characteristic (ROC) curve analysis
is used to compare the obtained binary classifiers and to select a set of potentially
optimal classifiers.

Since these kinds of datasets are increasingly used in several fields, such as security
systems, medicine, telecommunication systems, information retrieval tasks, etc, they
are receiving increasing attention from researchers.

1.6.6 Automatic selection of the most suitable solution

The strength of MOEASs resides in their ability to approximate a wide part of the Pareto
front, thus providing multiple solutions with different trade-offs between objectives.
However, in many application fields, only a single solution is required. The problem of
automatically choosing a single solution for a specific purpose has not been discussed
in the studies presented so far.

Focusing on a set of obtained FRBSs (and on a single FRBS) represents a way to
ease the choice of an appropriate single solution. However, this kind of visualization is
a difficult task when the number of objectives increases, since it is impossible to show
all the non-dominated solutions in many-dimensional visualization spaces.

The obtained FRBSs also present the problem of overfitting since they are evaluated
according to test data (generalization ability). Since MOEFSs are expected to obtain a
large set of FRBSs, the choice of a single solution should consider FRBSs with good
generalization abilities. However, this is not an easy task since it has to be included in
the learning process, so it is only possible to take into account the results of the training
set, while the test set remains unused.

An approach to determine the most suitable FRBS from a given Pareto front in
terms of its generalization ability has been proposed in (109). In this contribution the
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authors propose a technique using a double cross-validation to evaluate the generaliza-
tion ability of the obtained models. Double cross-validation has a nested structure of
two cross-validation loops. The inner loop is used to determine the best complexity of
fuzzy rule-based systems with the highest generalization ability for the training data in
each run in the outer loop. That is, the inner loop plays the role of validation data. The
determined best complexity is used to choose the final FRBS in each run in the outer
loop.

1.6.7 Integration of decision maker’s preferences

In a multi-objective optimization problem, exploring the whole search space can be un-
necessary if the final goal is to find only those solutions that satisfy some requirements
specified by the decision maker. A good strategy may be to direct the search process
towards the areas of the Pareto front that better reflect the decision maker’s preferences,
by integrating these preferences into the optimization process. In this way, the search
space is reduced and the efficiency of the search process is significantly increased. The
incorporation of decision maker’s preferences is an interesting research issue which
has not yet been well explored in the literature.

In (30) the problem of Multi Criteria Decision Making (MCDM) is considered as
the conjunction of three components: the search of the possible solutions, a preference
trade-off process to select a single solution and an interactive visualization process
to embed the decision-maker in the solution refinement and selection loop. Authors
introduce a requirement framework to compare most MCDM problems, their solutions
and analyze their performances.

A second example is presented in (140), where user preferences are incorporated
into a rule selection process of FRBSs for pattern classification problems. Due to the
difficulty in choosing an objective interpretability measure, multiple interpretability
criteria are combined into a single preference function, which is used as one of the
objective functions during the optimization process. Moreover, the preference function
can be changed interactively by the user, through the modification of the priority of
each interpretability criterion.

Another possibility to indirectly consider user’s preferences is to concentrate the
search on the most significant objectives. Usually, when dealing with MOEFSs, the
objectives used present different difficulty levels. In this way, objectives that are easy
to achieve, such as the complexity of the obtained models, bias the search, leading to
sub-optimal models (overly simple models presenting inappropriate accuracies when
using complexity measures). However, the user is not only interested in obtaining
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simple models but also accurate ones. Some approaches concentrating the search on
the accuracy objective as a way to obtain the most accurate models can be found in
(11,182} 185)).

1.6.8 Design MOEFSs to generate type-2 fuzzy systems

At the end of the 90s, a new class of fuzzy system was presented (120), in which the
antecedent or consequent membership functions were type-2 fuzzy sets. The concept
of a type-2 fuzzy set is introduced by Zadeh (160) as a generalization of the concept
of an ordinary fuzzy set, also referred to as type-1 fuzzy set. A type-2 fuzzy set in-
corporates uncertainty about the membership function into fuzzy set theory since its
membership function is three-dimensional, where the third dimension is the value of
the membership function at each point on its two-dimensional domain. If there is no
uncertainty, a type-2 fuzzy set is reduced to a type-1 fuzzy set. Such sets are useful
when it is difficult to determine an exact membership function for a fuzzy set.

As in the case of type-1 fuzzy systems, the hybridization of type-2 fuzzy systems
and GAs was proposed in (144), in order to automatically design type-2 fuzzy sys-
tems, following which several contributions have been published, in which GAs, and
in general EAs, are used to obtain type-2 fuzzy systems, mainly in control applications
(43,1137, [160).

Despite this, as far as we know, no proposals have yet been presented to com-
bine MOEAs with type-2 fuzzy systems, therefore this may be a new and promising
research field.

1.7 Conclusion

In this Chapter a two-level taxonomy has been presented to categorize the considerable
number of contributions presented on the application of MOEFSs. In the first level,
the contributions are divided depending on the multi-objective nature of the problem
tackled, while in the second level they are divided according to the type of GFS used.
In the first level, the most prolific category includes works on the application of
MOEEFSs to the trade-off between interpretability and accuracy. Therefore, many com-
plex variations of existing MOEAs have been proposed in order to obtain better perfor-
mances. The second category gathers works that deal with the application of MOEFSs
to multi-objective fuzzy control problems, in which many contributions focus on first-
generation algorithms, probably due to the fact that they could be efficiently applied
in control problems, in spite of their simplicity. However, it should be remembered

42



1.7 Conclusion

that the introduction of the elitism concept in second-generation MOEAs is a theoret-
ical requirement to assure convergence. Only recently, MOEFSs have been applied
to extract fuzzy knowledge from databases, therefore the third category includes few
contributions. Moreover, nor are there well-described measures that consider fuzziness
in association rules.

Finally, several current trends and open problems have been highlighted, in order
to draw the attention of the research community to their importance, since they are
either unsolved or have still not been addressed. Among these problems, we focused
on the scalability issues, i.e. the study of the accuracy-interpretability trade-off when
dealing with high dimensional and large scale datasets. In particular, an analysis of
the influence of granularity has been carried out, since it has been demonstrated that
appropriate granularities contribute to the generation of more accurate models (39).
Moreover, in some cases a granularity learning process can indirectly realize a feature
selection process, in fact, when the granularity assigned to a certain variable is equal
to one, the variable itself can be considered useless to the scope of the problem. This
approach is particularly useful when dealing with high-dimensional problems.
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Chapter 2

Improving a Fuzzy Association
Rule-Based Classification Model by
Granularity Learning based on
Heuristic Measures over Multiple
Granularities

2.1 Introduction

A FRBS is composed of two main parts: the inference system, which implements the
fuzzy inference process needed to obtain an output when an input is given, and the
Knowledge Base (KB), which represent the knowledge about the problem to be solved
and it consists of the Rule Base (RB) and the Data Base (DB). When designing a FRBS,
both components need to be specified and the precision of the FRBS is directly related
to them. Focusing in the KB specification, many approach have been presented to
automatically learn the RB from numerical data representing the system behavior, but
there is not a similar effort for specifying the DB, although its design it also a critical
task. Most of the RB learning methods assume the existence of a previously designed
DB. In particular, one of the problems that arise is how to determine the number of
fuzzy sets associated to each variable in the DB, i.e. the granularities, which can
affect both accuracy and complexity of FRBCSs (39).

The easiest strategy consists in fixing a single a-priori granularity and creating
uniform fuzzy partitions for all the variables (105, [113)). Despite its simplicity, this
approach can not be the most appropriate since it does not consider at all the available
knowledge of a problem and usually induces the generation of a high number of fuzzy
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rules, thus increasing the complexity of models. The choice of suitable granularities
is crucial since it contributes to the generation of more precise models (39). A further
approach consists in the use of multiple granularities (115)), which is useful to reduce
the number of rules in the obtained models, although it causes a loss of semantic inter-
pretability.

For this reason, in (13) the authors proposed a mechanism to identify appropriate
single granularities while performing a multi-objective evolutionary fuzzy rule selec-
tion process, based on the proposal presented in (115). The framework includes four
steps: a) first, a heuristic procedure is used to create a pre-specified number of promis-
ing fuzzy rules; b) then, for each attribute a single granularity is learnt, considering
the frequency of used partitions and the importance of the rules extracted in the previ-
ous step; ¢) next, these granularities are used to extract again a pre-specified number
of fuzzy rules; d) finally, a multi-objective evolutionary algorithm is used to perform
the rule selection process. Nevertheless, this method presents some limitations when
dealing with high dimensional problems, due to the increase of the search space and
of the time required by the fitness evaluation in the MOEA when it is working on the
large amount of extracted fuzzy rules.

However, this would be possible considering more appropriate rule generation
approaches dealing with high dimensional problems as the Fuzzy Association Rule-
Based Classification model for High Dimensional problem (FARC-HD) proposed in
(15). This algorithm currently belongs to the state-of-the-art of classification algo-
rithms, since it has been demonstrated to outperform in accuracy some of the most
widespread classification algorithms. In particular, the results presented in (15) show
that it performs better than three other GFSs (FH-GBML, 2SLAVE, SGERD), two ap-
proaches to obtain fuzzy associative classifiers (LAFAR and CFAR) and five classic
approaches for associative classification (C4.5, CBA, CBA2, CMAR, CPAR).

In the following, a method is proposed that combines the single granularity spec-
ification mechanism presented in (13) with a new multi-objective version of a fuzzy
associative classification algorithm based on FARC-HD (15), especially designed to
continue dealing with high-dimensional problems. We name this method MO-FARCG.
The aim is to avoid the use of multiple granularities but still reducing the complexity of
the obtained classifiers while maintaining high generalization ability, by considering
both objectives within a multi-objective evolutionary framework.

The remaining part of this chapter is arranged as follows: Section introduces
some preliminary concepts about FRBSs for classification (FRBC) and fuzzy associa-
tion rules. Section [2.3|describes in detail each stage of the proposed approach. Section
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[2.4] presents the experimental setup and discusses the obtained results. Finally, in Sec-
tion 2.6 some concluding remarks are pointed out.

2.2 Preliminaries

In this section, FRBCs are briefly introduced. Then, fuzzy association rules are de-
scribed and their application to classification problems is explained.

2.2.1 Fuzzy rule-based classifiers

Let us consider a set of m patterns X, = (Xp1,..., Xpn), p = 1,2,...,m to be classified
and a set of M classes to be assigned. Considering an n-dimensional pattern space,
Xp; 1s the attribute value of the p-th pattern for the i-th attribute (i = 1, ..., n). A
classification problem is to assign a label to each pattern, in a way that it is consistent
with some observed data we know about the problem (training data).

In this case, fuzzy rules of the following type are used:

R, : If x;i1s Ay and ... and x,, is Ay,

then Class C, with RW, (2.1)

where R, is the label of the g-th fuzzy rule, x = (xy, ..., x,) is an n-dimensional pattern
vector, A, is an antecedent fuzzy set (i = 1,...,n), C, is a class label, and RW, is
the rule weight. The antecedents fuzzy sets of R, are denoted as a fuzzy vector A, =
(Ag1, Ag, ..., Ag). Each new pattern is classied as the class with the maximum total
strength of the vote.

The performance of FRBC:s is highly affected by the rule weight RW, associated
with each fuzzy rule (106). The rule weight can be defined in different ways and many
mechanisms have been proposed in the literature. For example, in (116)), the authors
present several heuristic methods that can be used to specify the weight of fuzzy rules.
In this study, the most common one has been chosen, i.e. the fuzzy confidence value
or certainty factor (CF) (56)).

The certainty factor is widely used for fuzzy classification as it just affects the
strength of each fuzzy IF-THEN rule in the classification phase, without changing the
positions of the antecedent fuzzy sets (106).
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2.2.2 Fuzzy association rules for classification

Association rules are used to represent and identify dependences between items in a
database (96, [167). They are expressions of the type A — B, where A and B are sets
of items, and A N B = @ . This means that if all the items in A exist in a transaction,
then all the items in B with a high probability are also in the transaction, and A and B
should have no common items (1)).

Several studies have been presented in which association rules are extracted from
databases with binary or discrete values, but many real-world problems include also
quantitative data. Therefore, the new trend in this field is to design mining algorithms
that can handle different types of data.

In this case, the fuzzy set theory represents an useful tool, due to its affinity with the
human reasoning (108). Fuzzy association rules can be used to describe associations
between data in a more effective way than simple association rules do. In fact, the
linguistic representation makes them more understandable for human experts and fuzzy
sets avoid sharp boundaries when partitioning the domain of an attribute. Recently,
the mining of fuzzy association rules from quantitative data has been investigated in
several studies (14, 165] [123)).

An example of fuzzy association rule is a rule of the type:

A is Middle — B is High. (2.2)

where A and B are the attributes present in the database and Middle and High are
linguistic terms associated to these variables.

The interestingness of a fuzzy association rule is commonly evaluated by two mea-
sures, namely support and confidence, which can be defined as follows:

Dixye (xp)
Support(A — B) = % (2.3)
2 (xp)
Confidence(A — B) = =T HA7r] 2.4)

Zx,,eT HA (xp)

where |N| is the number of transactions that appear in the database T', ps(x,) is the
matching degree of the transaction x, with the antecedent of the rule, and p4p(x),) is
the matching degree of the transaction x, with the antecedent and consequent of the
rule.

In recent years, fuzzy association rules have been investigated to be used as classi-
fication rules (102, 103} 142). A fuzzy association rule can be used as a classification
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rule if its consequent part includes only one class label (C = Cy,...,Cj, ...,Cs). This
type of rule is called fuzzy associative classification rule and assumes the following

form:
A—C; (2.5)
As common fuzzy association rules, it can be evaluated in terms of support and
confidence:
Zx ass ‘:uA(x )
Support(A — C)) = peCl U\C,lj p (2.6)

ZX assC /’t (x )
Confidence(A — C;) = peClassC; PAYTY (2.7)
Zx[,eT ,UA(XP)

2.3 Multi-objective fuzzy association rule-based classi-
fier with granularity learning (MO-FARCG)

In this section, the integration between the granularity learning and a fuzzy associative
classification algorithm will be described. In this case, the framework is organized into
three stages:

1) Setting stage: Learning the Appropriate Granularities. First, for each class a
fixed pre-specified number of rules with multiple granularities are obtained, ac-
cording to well-known data mining rule evaluation measures (1). Then, a single
granularity for each attribute is chosen, depending on the frequency of extracted
rules and some quality measures.

2) Learning stage: Extraction of Candidate Fuzzy Association Rules. All the possi-
ble frequent fuzzy itemsets are listed in a search tree and then fuzzy association
rules are generated. Finally, rules are evaluated and sorted following a criterion
and only the best rules are maintained in order to reduce the number of candidate
rules.

3) Post-processing stage: Multi-Objective Evolutionary Fuzzy Rule Selection and
MFs Tuning. The best cooperative rules are selected and tuned by using a Multi-
Objective Evolutionary Algorithm based on the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) (169), exploiting the positive synergy of both techniques
within the same process.
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2.3.1 Setting stage: Learning the appropriate granularities

In this stage an initial set of rules is extracted, following the multiple granularity ap-
proach presented in (13). Then, a single granularity for each attribute is chosen on the
basis of some information included in the extracted rules. These granularities will be
used in the next stage to obtain a new initial set of fuzzy rules.

2.3.1.1 Extracting rules with multiple granularities

At the beginning, a multiple granularity is used for all attributes: fourteen fuzzy sets
are considered, distributed into four fuzzy partitions (see Figure [2.I). An additional
fuzzy set is also used, to represent a don’t care condition (the domain interval [0, 1]),
then the overall number of possible fuzzy rules is 15”".

This number of rules is too large to be considered for the generation of the initial
candidate rule set, therefore only rules with a small number of antecedent conditions
are selected. This number is fixed on 3 for datasets with less than 30 attributes, and 2
for datasets with a number of attributes equal to or bigger than 30.

The heuristic procedure presented in (112) is used to determine the rule weight
CF, and the consequent class C, for each fuzzy rule R,. For the antecedent part A,
the confidence of each class is calculated as

HA, (Xp)

xp € Class h

c(A, = Class h) = , h=1, .., M. (2.8)

m

HA, (Xp)
1

p=

Then, the consequent class C, is specified according to the class with the maximum

6 7 8 9 104 11 12 13 X14|

Figure 2.1: The fourteen antecedent fuzzy sets considered for each variable.
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confidence:
c(A; = Class C,) = h_1n12ax M{c(Aq = Class h)}. (2.9)

As previously said, the performance of FRBCs is highly influenced by the rule
weight. In this proposal, the following definition of CF| is used since it has led to
good results (116):

M

CF,=c(A, = ClassC,) = >~ c(A, = Classh). (2.10)

h=1
h#Cq

In order to maintain only useful rules, a fuzzy rule R, is not selected as a candidate
rule if its confidence is smaller than 0.5.

The heuristic technique described before generates a large number of short fuzzy
rules as candidate rules, including not interesting rules. To decrease this number and to
select the most useful rules, a preventive rule reduction is performed. To this end, rules
are evaluated and sorted according to the product p(R,) = s(R,) - ¢(R,), where c(R,) is
the confidence and s(R,) is the support, that is the percentage of samples covered by
R,. Finally, for each class, the best 300 rules are chosen.

2.3.1.2 Specifying a single granularity for each attribute

The pool of extracted fuzzy rules contains information that can be used to choose a

single granularity for each attribute. This can be done by considering how many times

a granularity appears in the extracted rules (weighted by the corresponding rule impor-

tance). This approach has been already used in (13)) to establish a single granularity.
In particular, we use the following specification:

Gr(i) = argmax{ Z Imp(Rq)}, (2.11)

Gran(A4)=g

where Gran(A,;) is the granularity of the partition that include the fuzzy set used in
attribute 7 of rule R, and Imp(R,) is a criterion to measure the importance of the rule.
Frequency, confidence, weight, support and product of confidence and support are
some of the criteria that can be used.

In order to promote more general rules, two different approaches were investigated
in the original proposal (13): 1-ALL approach and 1-2-3 approach. Both of them
give priority to those rules which include a single antecedent condition in the attribute
considered. The only difference is when all the rules presents more than one condition:
in 1-ALL approach, the granularity is obtained by considering all the rules including
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the attribute itself, without taking into account the number of conditions, whereas, in
1-2-3 approach, the priority is given to shorter rules.

Here, we focus on the product and confidence criteria, combined with 1-ALL ap-
proach, since these combinations provided better results. At the end of this stage, a
single granularity is obtained for each attribute.

2.3.2 Learning stage: Extraction of candidate fuzzy association
rules

In this stage, the attributes’ granularities learnt in the previous phase are used to extract
from the original data a new set of fuzzy association rules. Afterwards, this set is
reduced by applying a prescreening procedure. These two steps are as follows.

2.3.2.1 Rule extraction

For each class, all the possible fuzzy itemsets are constructed, using a search tree.
The root level of each tree (level 0) is generated as an empty set. All attributes are
assumed to have an order, which is the order of appearance in the training data, and all
the one-itemsets constitute the first level of the search tree, following their order (level
1). The further level (level 2) for an attribute A is constructed by considering all the
two-itemsets that combine the one-itemset of attribute A with all the one-itemsets for
the other attributes in the order. The same procedure is used to construct the following
levels of the tree. No repeated itemsets appear in the tree.

Moreover, each itemset is evaluated with respect to a minimum support and a min-
imum confidence: an itemset with a support higher than the minimum support is a
frequent itemset and an itemset with a confidence higher than the confidence’s thresh-
old has reached the quality level demanded by the user. Therefore, if the support of
an n-itemset in a node A is lower than the minimum support, the node is not extended
anymore. At the same way, if the classification rule associated to an item set has a con-
fidence higher than the minimum confidence, the correspondent node does not need to
be extended further.

The procedure above lists all the frequent fuzzy itemsets, which are used to gener-
ate the candidate fuzzy association rules. Each rule will contain a frequent itemset in
the antecedent and the corresponding class in the consequent and for all the classes this
process is repeated. The number of frequent fuzzy itemsets extracted depends directly
on the minimum support, which is defined for each class using the distributions of the
classes over the data set. This stage generates a large number of rules, which can be
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hardly handled by human users. To simplify the understanding of the model, the depth
of the trees (Depth,,,,), and so the length of the fuzzy rules, is limited to a fixed value.

2.3.2.2 Rule prescreening

The rule extraction process generates a large number of rules, which can cause a prob-
lem of rule redundancy. To decrease this number by selecting only the best rules, a
subgroup discovery technique is used, in particular the pattern weighting scheme de-
scribed in (122)).

Each pattern is associated to a weight w(i) = -1

Tl
the pattern has been covered by a rule. Initially, all the weights assume the same value
w(0) = 1.

For each class, the algorithm selects the best rule, then the weights related to the

where i stores how many times

patterns covered by this rule are decreased. In this way, the patterns that are still
uncovered will have a greater possibility of being covered in the following iterations.
When the i counter reach a threshold k;, the correspondent pattern is deleted.

The remaining rules are sorted again and the procedure is repeated until either all
patterns have been deleted, or there is no rule left in the rule base.

To evaluate the quality of fuzzy rules, we use a modification of the wWRAcc’
measure described in [33]. The wWRAcc’ measure has been modified to enable the
handling of fuzzy rules. The new measure is defined as follows:

n'(A-C) n"(A-C) n(C))
n(C)) n"(A) N

wWRAcc”"(A — C;) = ) (2.12)
where n”’(A) is the sum of the products of the weights of all covered patterns by their
matching degrees with the antecedent part of the rule, n”(A - C;) is the sum of the
products of the weights of all correctly covered patterns by their matching degrees
with the antecedent part of the rules, n(C;) is the number of patterns of class C; and
n’(Cj;) is the sum of the weights of patterns of class C;.

2.3.3 Post-processing stage: Multi-objective evolutionary fuzzy rule
selection and membership functions tuning

In the final step, a modification of the well-known SPEA?2 is applied as post-processing
algorithm to the KB generated by the previous stage. A similar version of this algo-
rithm was already used for regression problems in (83)), in which three objectives are
considered instead of two. The SPEA2 was preferred to the well-known NSGA-II
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2. GRANULARITY LEARNING FROM MULTIPLE GRANULARITIES

since in (11) the approaches based on SPEA2 have been demonstrated to be more
appropriate when a tuning of MFs is performed.

This SPEA2 modification performs a fuzzy rule selection together with a tuning of
the MFs, aiming to improve the model accuracy as the first objective and to reduce the
model complexity as the second objective. In the next sections, the main components
of this algorithm are described, and then, the specific characteristics and its main steps
are presented.

2.3.3.1 Objectives

Each chromosome is associated with a bi-dimensional vector, whose elements express
the fulfillment degree of the following two objectives, respectively:

e classification error minimization: it is represented by the complement of the
number of the classification rate;

e complexity minimization: it is represented by the number of selected rules;

To compute the classification error, the following function has been used:

#Hits

Fitness(C) =1 —
N

(2.13)

where #Hits 1s the number of patterns correctly classified and N is the total number of
patterns.

2.3.3.2 Coding scheme and initial gene pool

A double coding scheme for both rule selection (Cs) and tuning (Cy) is used: C? =
C%CY, where C? is the chromosome representing the individual p. The C§ = (cs1, . .., Csm)
part is represented by a binary-coded string with m genes, where m is the number of
initial rules. Each gene contains a values of 71 if the correspondent rule is selected,
0 otherwise. The C} part uses a real coding scheme to codify the three definition
parameters of the triangular MFs, where m' is the number of labels in the database for
each of the n variables.

Ch =CC,...C,

Ci=(d\,b\,c},....a, b,.c)i=1,..,m

The first individual of the first population codifies the KB obtained by the previous
step. The remaining individuals of the first population are generated randomly, with
each value within the corresponding variation intervals.
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2.3.3.3 Crossover and mutation

An intelligent crossover and mutation operators are described in this section. Each
offspring is obtained in the following way.

o First, the C7 part of the offspring is obtained by applying blend crossover (BLX)-
0.5 (74) to the Cr part of the parents.

e Then, the binary part Cy is generated depending on the Cy parts of parents and
offspring: for each gene in the Cy part, the following steps are performed.

— Each gene of the Cr part which represents the corresponding MFs of the
rule, is considered for both parents and offspring. The MFs of these three
rules are extracted.

— Between the offspring rule and each parent rule, euclidean normalized dis-
tances are computed by considering the center points of the MFs involved
in these rules. The differences between each pair of centers are normalized
by the amplitudes of their respective variation intervals.

— The parent’s rule closer to the offspring’s rule is selected and its value is
duplicated in the Cs part of the offspring.

This process is repeated until each gene in the Cy part of the offspring is obtained.
In each step four offspring are generated, although after applying mutation only the two
best offspring are maintained. This type of crossover prevents the recovery of a bad
rule already discarded, while permits the recovery of a rule that can be still considered
good due to its MFs configuration.

The crossover operator performs a better exploration in the Cg part, therefore the
mutation operator does not need to add rules. It simply changes randomly a gene value
in the Cr part and sets to zero a random gene in the Cg part, with probability P,,.

The application of these operators brings some advantages: the crossover between
individuals with very different rules allows the algorithm to explore different parts of
the search space, while the mutation promotes rule extraction, since it is used to remove
unnecessary rules.

2.3.3.4 Modifications of the classic SPEA2

Some changes have been introduced to the original selection mechanism of SPEA2, to
improve the algorithm’s search ability.
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e A mechanism to prevent incest has been included, based on the concepts of CHC
presented in (/2). This avoid premature convergence in the real coding (Cr)
part, which has a greater influence on the algorithm convergence and represents
a wider search space than the binary coding part (Cs). In the CHC approach, par-
ents are crossed only if their Hamming distance divided by 4 exceeds a threshold.
To follow this approach, the real coding scheme needs to be converted in a binary
one, thus each gene is transformed using a gray code with a fixed number of bits
per gene (BGene). The threshold value is initially set to L = (#CT X BGene)/4,
where #CT is the number of genes in the Cr part of the chromosome. This
value is decreased by 1 at each generation of the algorithm, therefore in further
generations closer solutions can be crossed.

A restart operator has been introduced to renew the external population when we
detect that all the crossover are allowed. Actually, to prevent premature conver-
gence, the first restart is applied if 50% of crossovers are detected at any genera-
tion (the required ratio can be defined as %;eguir.a = 0.5). Each time the restart is
performed, the required ratio is updated ad follows: %,guireq = (1 + Yorequirea) /2.

The external population after the restart includes the individuals with the best
value in each objective, and the remaining individuals are initialized as follows:
the Cg part is copied from the most accurate individual, while the values in the
Cr part are generated randomly. In this way, the most accurate and interpretable
solutions obtained so far are preserved.

Some constraints to the application of restart have been introduced: a) a new
restart cannot be applied if the most accurate solution has not been improved; b)
the restart is not applied at the end, when the approximation of the Pareto front
is well formed and needs to be preserved; c) restart is disabled if the midpoint of
the total evaluations number is reached and it has been never applied before.

A mechanism to promote the most accurate solutions has been introduced. At
each stage of the algorithm, between restarting points, the number of solutions
in the external population (P,,;) that can be used to constitute the mating pool
is reduced progressively and the most accurate solutions are preferred. To this
end, solutions are sorted according their accuracy and the number of eligible
solutions is reduced progressively from 100% at the beginning to 50% at the end
of each stage. This mechanism is disabled in the last evaluations (when restart is
disabled too), in order to obtain a wide and well-formed Pareto front.
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2.4 Experimental framework

To evaluate the performance of the proposed approach with respect to the original
FARC-HD, we have considered 24 real-world datasets (Table[2.1). Only datasets with
continuous attributes have been considered, since the two first steps of the method have
not been designed to handle nominal data. Moreover, in case of instances presenting
missing values, they have been removed from the datasets (Cleveland). All datasets
can be downloaded from the Knowledge Extraction based on Evolutionary Learning
(KEEL)-dataset repository (http://sci2s.ugr.es/keel/datasets.php).

To carry the different experiments out, a ten-fold cross-validation model is consid-
ered: each dataset is randomly split into ten folds, each containing 10% of the patterns
of the dataset. Then, a single fold is used for testing and the remaining for training.
The cross-validation process is repeated ten times, with each fold used exactly once
for testing. For each of the ten partitions, three trials of the algorithm are executed and
finally the results are averaged out over 30 runs.

The proposed method is called MO-FARCG and it has been compared with the
original approach FARC-HD (15)). Two versions of MO-FARCG have been consid-
ered, using product (MO-FARC-prod) and confidence (MO-FARC-conf) criteria, re-
spectively. Due to the multi-objective nature of the SPEA2 included in MO-FARCG,
the average of the most accurate solution from all the Pareto fronts is considered for
the comparison.

Table [2.2] summarizes the parameters used for the methods’ analysis. The max-
imum number of antecedents allowed for a fuzzy rule is restricted to 3 (short fuzzy
rules), in order to encourage the generation of simpler models. While this was re-
ported by the authors that the original FARC-HD did not present any change over
15000 evaluations, the proposed approach needs 20000 evaluations to reach the con-
vergence. For this reason we fix 15000 for FARC-HD and 20000 for MO-FARCG,
since no changes are obtained for the original approach over the specified number of
evaluations. The parameter k; is the threshold beyond which the covered patterns are
completely eliminated.

Statistical analysis (88, |89)) was adopted to evaluate the results, and in particular
non-parametric tests, following the recommendations presented in (67), where a set
of simple and robust non-parametric tests for statistical comparisons of classifiers has
been described.

The Wilcoxons signed-ranks test (153) [162) for pair-wise comparison was used,
with a confidence level of @ = 0.05 in all cases. A wider description of this test and a
software to perform it can be found on the web site available at: http://sci2s.ugr.es/sicidm/.
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Table 2.1: Datasets considered in the study.

Name Attributes (R/I/N) Patterns Classes
Appendicitis 7 (7/0/0) 106 2
Cleveland 13 (13/0/0) 297(303) 5
Ecoli 7 (7/0/0) 336 8
Glass 9 (9/0/0) 214 7
Heart 13 (1/12/0) 270 2
Iris 4 (4/0/0) 150 3
Magic 10 (10/0/0) 19020 2
Monks 6 (0/6/0) 432 7
Movement Libras 90 (90/0/0) 360 15
Page-blocks 10 (4/6/0) 5472 5
Penbased 16 (0/16/0) 10992 10
Phoneme 5 (5/0/0) 5404 2
Pima 8 (8/0/0) 768 2
Ringnorm 20 (20/0/0) 7400 2
Satimage 36 (0/36/0) 6435 6
Sonar 60 (60/0/0) 208 2
Spambase 57 (57/0/0) 4597 2
Specttheart 44 (0/44/0) 267 2
Texture 40 (40/0/0) 5500 11
Twonorm 20 (20/0/0) 7400 2
Vowel 13 (10/3/0) 990 11
Wdbc 30 (30/0/0) 569 2
Wine 13 (13/0/0) 178 3
Yeast 8 (8/0/0) 1484 10

2.5 Experimental results

This section shows the results of the experiments described in the previous section.
Table shows the average number of rules/conditions (#R/#C) and classification
percentages in training (Tra) and test (Tst) of the most accurate solution from each
of the obtained Pareto fronts, for the two versions of MO-FARCG, and of the best
solution for FARC-HD. The overall mean values for each method are highlighted in
the last row.
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Table 2.2: Parameters of the methods considered for comparison.

Method Parameters

FARC-HD Minsup = 0.05, Maxconf = 0.85, Depth,., =3, k, = 2,
Pop = 50, Evaluations = 15000 BITSGENE = 30

MO-FARCG-prod Minsup = 0.05, Maxconf = 0.85, Depthy,, = 3, k; = 2,
Pop = 50, Evaluations = 20000 BITSGENE = 30

MO-FARCG-conf Minsup = 0.05, Maxconf = 0.85, Depth,,,, = 3, k, = 2,
Pop =50, Evaluations = 20000 BITSGENE = 30

Table 2.3: Results referred to the most accurate solutions obtained by applying MO-
FARC-prod and MO-FARC-conf, respectively, and to the solution obtained by applying
FARC-HD.

MO-FARCG-prod MO-FARCG-conf FARC-HD
DATASETS #RULE #COND TRA TST | #RULE #COND TRA TST | #RULE #COND TRA TST
Appendicitis 4.73 1.83 9343 8579 4.80 1.68 9326 86.09 6.8 1.8 93.82 84.18
Cleveland 21.23 285 79.03 56.22 24.53 2.87 8193 56.45 61.3 29 88.18 5524
Ecoli 7.07 275 6441 62.80 7.07 275 6441 62.80 33.8 2.4 9233 8219
Glass 10.23 235 7638 66.56 11.20 238 75.89 68.55 22.7 25 81.1 70.24
Heart 14.40 260 93.00 81.48 15.70 258 9353 8222 27 2.6 9391 84.44
Iris 4.77 1.13 9820 95.56 4.77 1.15  98.17 95.56 4 1.1 98.59 96
Magic 4.23 224  81.15 80.80 10.77 1.86  83.58 82.99 433 2.5 8536 84.51
Monk2 13.53 1.92  100.00 99.47 12.43 1.65 100.00 99.92 14.2 29992 99.77
Movement libras 46.33 294 9431 71.67 46.40 294 9472 7287 83.1 29 9552 76.67
Pageblocks 5.77 2.17 9440 94.30 6.17 205 9436 94.23 19.1 23 9562 95.01
Penbased 55.57 291 9538 94.25 55.70 292 9507 93.89 152.8 2.8 97.04 96.04
Phoneme 3.87 235 80.09 79.13 8.00 2.08 81.79 80.53 17.8 22 83.52 8214
Pima 4.23 1.75  80.04 74.93 8.77 235  82.17 76.01 227 24 829 75.66
Ring 8.27 1.50 84.82 83.72 14.07 1.65 9254 91.52 24 1.9 95.13 94.08
Satimage 30.00 2.68 88.88 86.77 32.63 2,67 89.21 87.04 76.1 2.7 88.68 87.32
Sonar 4.73 2774 88.98 79.09 6.50 2.69 9270 78.81 18 2.3 98.77 80.19
Spambase 2.83 275 7178 7142 293 276 7476 74.11 29.8 2.4 9237 91.93
Spectfheart 3.50 1.00 7940 79.42 3.50 1.00  79.40 79.42 12.9 2.8 9143 79.83
Texture 21.20 275 9359 9237 21.67 271 9445 93.08 54.5 277 9371 92.89
Twonorm 14.87 296 97.06 96.06 14.87 296  97.06 96.06 60.9 2.6 96.64 9528
Vowel 27.50 277  50.06 46.16 34.97 275 59.60 54.38 72.3 29 8048 71.82
Wdbc 523 144  96.69 94.56 5.37 1.54 9727 95.09 10.4 1.7 98.57 95.25
Wine 8.83 1.87  99.67 9553 8.43 1.80 9990 95.88 8.7 1.6 99.94 9435
Yeast 12.17 253  58.69 56.34 15.77 253 5824 56.11 352 26 6381 585
MEANS 13.96 228 85.23 80.43 15.71 226 86.42 81.40 | 37.98 2.36 91.14 84.31

A first comparison has been drawn between the two different approaches of MO-
FARCG: the Wilcoxon’s signed-ranks test has been applied to establish if the two ver-
sions are statistically equivalent (null-hypothesis). Table [2.4] shows that the Wilcoxon
test applied on the test classification percentage of the most accurate solutions rejects
the null hypothesis, since p — value < /alpha. Therefore, the two approaches are not
statistically equivalent and the version MO-FARCG-conf is to be preferred.

For this reason, this version of MO-FARCG has been chosen to be compared with
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Table 2.4: Comparison on test accuracy between MO-FARCG-prod and MO-FARCG-
conf

Comparison (test accuracy) p value Hypothesis
MO-FARCG-prod vs MO-FARCG-conf 0.0084 Rejected

the FARC-HD and the Wilcoxon’s signed-ranks test has been applied again on the
test classification percentage of the most accurate solutions. The null-hypothesis is
rejected, since p — value < /alpha (see Table , hence the two methods are not
statistically equivalents.

A further comparison has been drawn between the two algorithm with respect to the
average number of rules of the most accurate solutions. Once more the null-hypothesis

is rejected with p — value = 1.35E — 005 and the two method are not statistically
equivalent (Table [2.5)).

Table 2.5: Comparison on test accuracy and complexity between FARC-HD and MO-
FARCG-conf

Comparison (test accuracy) p value Hypothesis
FARC-HD vs MO-FARCG-conf 0.00754 Rejected

Comparison (complexity) p value Hypothesis
FARC-HD vs MO-FARCG-conf 1.35E-005 Rejected

By looking at the results reported in Table[2.3] we can state that MO-FARCG-conf
is outperformed by the original FARC-HD regarding the test accuracy, whereas the op-
posite is true when considering the complexity of the obtained systems. Nevertheless,
against less than 3% loss on test accuracy, the complexity is reduced by more than
50%. This makes the models easier to understand but maintaining their accuracy at a
similar level or even better for some datasets.

Ideally, when a multi-objective approach and a single-objective approach are ap-
plied to the same task, the solution set obtained by the former approach includes the
solution obtained by the latter one. In the present study we cannot expect a similar
result since the starting conditions are different for the multi-objective and the single-
objective algorithms. In fact, FARC-HD uses an initial database generated by consid-
ering equidistributed granularities, while the initial database in MO-FARCG is con-
structed by considering the most promising granularities obtained in the initial steps
of the algorithm. Therefore, the loss of accuracy and the complexity reduction are
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provoked by the initial granularities choice rather than by the application of the multi-
objective algorithm.

2.6 Conclusion

In this chapter, we have investigated how the granularity learning affects the perfor-
mance of a FRBCs. To this aim, a method has been proposed, named MO-FARCG,
by extending the FARC-HD algorithm proposed in (15). Two preliminary steps have
been added: first a set of rules with multiple granularities is extracted and then a single
granularity for each attribute is specified, depending on some measures performed on
the extracted rules. Moreover, the single-objective genetic algorithm included in the
original FARC-HD algorithm has been extended with a MOEA (that is a modification
of SPEA2), in order to consider both accuracy and complexity of the obtained models.

According to the results obtained by performing experiments over 24 real-world
datasets, we can conclude that the method proposed to learn attributes’ granularities
produces models with a slightly decreased accuracy, which is balanced by a consider-
able reduction of models’ complexity.
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Chapter 3

A Multi-Objective Evolutionary
Method for Learning Granularities
Based on Fuzzy Discretization to
Improve the Accuracy-Complexity

Trade-Off of Fuzzy Rule-Based
Classification Systems: D-MOFARC

3.1 Introduction

In the previous chapter a method has been proposed to learn suitable granularities, and
its influence over the accuracy-complexity trade-off of the obtained FRBSs has been
investigated. The experimental results have highlighted that the proposed granularity
learning process leads to models in which the complexity is reduced, but the accuracy
is slightly decreased.

The ideal goal would be to concurrently improve both objective or, at least, to im-
prove the accuracy while maintaining the complexity to an acceptable level. This issue
is addressed in the present chapter, in which a granularity learning process is proposed
to generate granularities that will be used to define the initial fuzzy partitions of the
DB. To this end, we present a fuzzy discretization algorithm which extracts suitable
granularities from data. This mechanism has been integrated within a MOEFS which
evolves the initial KB. Although the main objective is the accuracy, the MOEA has
been exploited as a tool to mainly improve precision while decreasing the complexity
of the models (82]).
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In particular, the multi-objective evolutionary method, namely Multi-Objective
Fuzzy Association Rule-Based Classification Model with granularity learning based
on Discretization (D-MOFARC), comprehends the following steps:

e Step 1. A Fuzzy Discretization Algorithm is designed, in order to learn automat-
ically suitable granularities for each variable and to generate the correspondent
fuzzy partitions. This approach is based on the concept of discretization (44, 76)),
which represents the process of transforming the range of values of a continuous
attribute in a set of intervals and assigning a discrete value to each interval. We
extend this approach to the case of fuzzy partitions, considering attributes inter-
dependencies. Therefore, after obtaining a set of intervals for each variable, a
fuzzy set is assigned to each interval, instead of a discrete value, to obtain the
fuzzy labels associated to each variable. The process has been integrated with
a tree-based generation mechanism that considers attribute partitioning interde-
pendencies.

e Step 2. An initial RB associated to the previous fuzzy partitions is created by
extracting candidate fuzzy association rules. To this aim, the first two steps of
the Fuzzy Association Rule-Based Classification Model for High-Dimensional
Problems (FARC-HD) method proposed in (15) have been used. Since the ex-
tracted rules do not use all the labels generated in the initial step, the initial fuzzy
partitions are finally refined by removing the unused labels.

e Step 3. A new specific MOEA is designed to concurrently perform the tuning
of MFs in the DB and the selection of rules in the RB. This algorithm is a mod-
ified version of the Strength Pareto Evolutionary Algorithm 2 (SPEA2)(169),
and aims to improve the accuracy while maintaining the complexity of the ini-
tial model, at the same time. As said, the multi-objective approach has been
preferred since it has been demonstrated to be useful in generating more precise
models, while the use of the number of rules as second objective helps in limiting
their complexity (82).

This chapter is arranged as follows: Section [3.2]introduces some preliminary con-
cepts about discretization methods in general and the CAIM discretization algorithm
(131) in particular. Section [3.3]illustrates the characteristics of the fuzzy discretiza-
tion approach. In Section the features of the proposed method are introduced and
described in detail. Section [3.5]illustrates the experimental framework, in which the
experimental setup is described and the obtained results are presented and discussed.
Finally, in section 3.6, some concluding remarks are pointed out.
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3.2 Preliminaries: Discretization approaches and the
CAIM algorithm

A possible approach for learning granularities is represented by discretization algo-
rithms, which transform continuous attribute’s values into a set of intervals and assign
to each interval a numerical and discrete value. The aim is to minimize the number
of discrete intervals while maximizing the interdependency between class labels and
discrete attribute values, to prevent an excessive information loss during the discretiza-
tion. A discretization scheme D on a continuous attribute A divides the continuous
domain of A into n discrete intervals and can be represented as follows:

D: {[d07d1]’(d1’d2]"" ,(dn—l’dn]}, (31)

where d, and d,, are the minimum and the maximum values of the attribute A, respec-
tively, and the values d; identify the cut points for the discretization D.

The process consists of two steps: first, the number of intervals for each attribute
are found and then the boundaries of the intervals are determined. Usually the first task
is not performed automatically and the number of intervals must be specified by the
user. Discretization algorithms can be grouped into two categories:

e Unsupervised (or class-blind) algorithms generate intervals without considering
the class labels of each pattern.

e Supervised algorithms discretize attributes by considering the interdependence
between class labels and the attribute values.

We will focus on this latter type. In (131) a discretization algorithm is proposed,
that automatically determines the number of intervals for data partitioning and concur-
rently finds the boundaries of each interval. The method is named CAIM, from the
name of the criterion optimized to measure the dependency between the class C and
the discretization D for the attribute A. The criterion is defined for a given attribute
by means of a matrix, called quanta matrix. Table shows the quanta matrix for a
generic attribute A, where S is the number of classes, ¢;, is the total number of pat-
terns that belong to the i — th class and have the value of the attribute A in the interval
(d,-1,d,], M, is the total number of patterns belonging to the i —th class, M., is the to-
tal number of values of the attribute A that are in the interval (d,_;,d,], fori=1,---,S
andr = 1,--- ,n and M is the total number of patterns.
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Table 3.1: Quanta Matrix for attribute A and discretization scheme D

Class Interval Class Total
[do, d1] (dr-1,d,] (dn-1,d,]
G q1 q1r Gin My,
C; qi1 Gir Gin M,
Cs qs1 qsr qsn Mg,
Interval Total | M, M., M,, M
The CAIM criterion is expressed as follows:
= max?
r=1 M+r
CAIM(C,DIA) = ——— 3.2)
n

where n is the number of intervals, max, is the maximum value among all g;. values
andi=1,---,8§.

The space of all the possible discretization schemes is large and the search of the
optimal scheme cannot be optimally solved using exact algorithms due to the time
requirement. Thus, the CAIM algorithm searches for an approximation of the optimal
scheme by finding local maximum values of the CAIM criterion. This approach has
demonstrated to be computationally not expensive and to lead to good approximations
of the optimal discretization scheme. This algorithm is executed in two steps:

e For each continuous attribute A, a set of candidate interval boundaries B (i.e.
the candidate cut points) and an initial discretization scheme are created: first,
the minimum (dy) and maximum (d,,) values of the attribute’s domain are found
and added to the set of candidate cut points. Then, all the distinct values of A
in the dataset are considered and for each adjacent pair of values, a midpoint
is calculated. All the midpoints are added to the set of candidate cut-points B.
The algorithm starts by considering the a discretization scheme (D : [dy,d,])
that covers all the possible values of a continuous attribute and with the criterion
GlobalCAIM = 0.

e These new cut-points are added to the initial discretization according to the max-
imization of the CAIM criterion. From all candidate cut-points, the algorithm
chooses the point that gives the highest value of the CAIM criterion, then this
point is added to the discretization if CAIM > GlobalCAIM or if there are less
than S intervals in the discretization. In fact, it is assumed that each discretized
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attribute needs at least the number of discretization intervals to be equal to the
number of classes, since this guarantees that the discretized attribute can improve
the subsequent classification. After the addition of a cut-point to the discretiza-
tion, the GlobalCAIM criterion is updated and assigned with the CAIM value of
the added cut-point.

A detailed description of the algorithm can be found in the original proposal (131).
The CAIM algorithm generates separately a single discretization D for each attribute.
However, when considering FRBSs, the attributes are combined together to form the
rules and an appropriate discretization should take into account this aspect. Therefore,
in the following section we propose a new discretization approach that try to exploit
the interdependence among attributes to generate fuzzy discretizations, i.e. the initial
fuzzy partitions.

3.3 Data base extraction: A proposal for fuzzy discretiza-
tion on interdependent attribute scenarios

In order to extract an initial set of fuzzy rules from a dataset, it is necessary to build
an associated DB and in particular to choose a granularity for each variable (13}, 159).
We already highlighted how a fixed by hand single granularity approach may not be
the best choice, since it leads to models with a bad trade-off between accuracy and
complexity.

To this end, we present a fuzzy discretization method to generate automatically a
promising set of labels for each attribute. The proposed approach actually does not
generate a single fuzzy partition, but instead a small set of promising fuzzy partitions
for each attribute, in order to provide a wider number of labels for the rule extraction
process. The number of partitions is fixed to a maximum of 3 for each attribute.

This method includes some concepts derived from the CAIM discretization algo-
rithm, to generate the initial discretizations that will be subsequently fuzzified to obtain
the associated fuzzy partitions. We do not use directly the CAIM algorithm since it
does not consider a possible dependence among attributes in the generation process.

The proposed technique, named Fuzzy Discretization Algorithm, uses trees to take
into account relationships among attributes. For each attribute a tree is constructed:
first, the considered attribute is set as root node, then, children nodes are added by
choosing from the remaining attributes and promoting the ones that present a good
combination with the parent node.

The Fuzzy Discretization Algorithm comprehends the following three steps:
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e Ordering the attributes according to a fitness, based on the CAIM criterion.
e Generating a set of discretizations for each attribute in the dataset.

e Transforming each discretization in a fuzzy partition to obtain the DB.

3.3.1 Step 1: Ordering the attributes

When dealing with classification datasets, attributes are supposed to be more or less
important for the classification task. To establish an order among them, the CAIM
algorithm is initially applied for each attribute and the obtained discretizations are
evaluated and ordered with respect to the CAIM criterion (3.2). In this way, the CAIM
algorithm itself determines the order of the attributes and the trees’ construction will
follow this order.

3.3.2 Step 2: Generating the discretizations

The previous step generates a CAIM discretization for each attribute. This discretiza-
tion is discarded, since the CAIM algorithm usually promotes discretizations with a
small number of cut points, especially when a dataset presents few classes. On the
contrary, the first discretization for each attribute is generated by considering equidis-
tributed intervals, fixing the number of cut points to a high value in order to promote
better granularities. In our case, the number of cut points for the initial discretization
has been fixed to 4, to generate at least 5 fuzzy labels for each attribute.

The first discretization is used to generate a tree for each attribute, in a recursive
manner. Let’s consider a parent node attribute A and its corresponding first discretiza-
tion D4. The input patterns are sorted with respect to the values of attribute A and they
are grouped according to the intervals i = 1,--- ,I defined by the discretization D,
where [ is the number of intervals of discretization D4. Let’s now consider the group
of patterns corresponding to an interval i. The CAIM algorithm is applied on these
patterns, considering all the attributes 7; # A (j = 1,---,S) and for each of them a
discretization is obtained. These discretizations are evaluated according to the CAIM
criterion and the attribute corresponding to the discretization that maximize it is chosen
as child node B for the interval i in the tree.

This process is repeated for each interval in the discretization D4. After generat-
ing all the children of a node (i.e. a child for each interval) and their corresponding
discretizations, the entire step is repeated recursively for each child (Figure and it
stops when one of the following conditions occurs:
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e only two patterns of the dataset fall in an interval.

e the depth of the tree reaches Depth,,,., fixed to 3.

#g@@@@

soe -

Figure 3.1: An example of generated tree for an attribute.

After this step, a tree for each attribute has been built and for each node a discretiza-
tion has been generated. However, for each attribute a maximum of three discretiza-
tions are stored, in particular the first encountered in the trees’ generation process, that

are supposed to be the best ones.

3.3.3 Step 3: Generating the data base

In this step, the discretizations corresponding to each attributes are transformed into
fuzzy partitions, by applying the concept of strong fuzzy partition (38)). For each inter-
val a triangular fuzzy set is generated: the centroid ¢; is set in correspondence with the
middle point between the boundaries of the interval (d;_;, d;], while the left and right
parameters $; and S, of the labels between two adjacent centroids ¢; and c¢;;; are set in

correspondence with the adjacent centroids themselves (Figure [3.2)).

71
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Figure 3.2: Fuzzification of a discretization according to the extended fuzzy CAIM crite-
rion.

3.4 Multi-objective fuzzy association rule-based classi-
fication algorithm with granularity learning based
on discretization (D-MOFARC)

The discretization approach presented so far has been integrated within a new Multi-
Objective Evolutionary method, which evolves an initial KB by performing concur-
rently a rule selection process and a tuning process. The aim is to improve the pre-
cision of the initial fuzzy model through the tuning of the MFs, while maintaining or
decreasing the complexity by means of the selection of rules. This proposed method
can be summarized in three stages:

e Data base extraction. The Fuzzy Discretization Algorithm described in section
[3.3]is used to construct a set of initial fuzzy partitions.

e Rule base extraction. An initial RB associated to the previous fuzzy partitions is
created by extracting candidate fuzzy association rules. To this aim, the first two
steps of the FARC-HD method proposed in (15) have been used. Since some of
the labels belonging to the initial fuzzy partitions are never used in any of the
extracted rules, the initial partitions are refined by removing the unused labels
and an initial DB is generated.

e Data base tuning and rule selection. A new specifically designed MOEA is pro-
posed, which concurrently performs the MFs tuning of the DB and the selec-
tion of rules from the RB. This algorithm is a modified version of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2)(169)), and aims to improve the accu-
racy while reducing the complexity of the initial model at the same time.

Hereinafter, the stage 2 and 3 of the method are described in detail.
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3.4.1 Rule base extraction

The Fuzzy Discretization Algorithm generates a maximum of three fuzzy partitions for
each attribute, which are used to derive the initial RB. To this aim, the first two steps of
the approach presented in (15) have been applied. This method uses fuzzy association
rules to codify the information extracted from a dataset, that are an extension of asso-
ciation rules, used to represent dependencies between itemsets in a database (96, 167)).
Fuzzy association rules can consider not only binary or discrete values, but also quan-
titative values, and can be used as classification rules if their consequent is expressed
with a class label. The generation of the RB is performed in two consecutive steps. In
the following we briefly describe these two steps (for a more detailed explanation see

(15)).

3.4.1.1 Step 1: Rule extraction

In this first step, a set candidate association rules is extracted: for each class a search
tree is built, in order to list all the possible frequent itemsets of a class. itemsets are
constructed, using a search tree. The root level of each tree (level 0) is generated as
an empty set and all the one-itemsets constitute the first level of the search tree (level
1). The further level (level 2) for an attribute A is constructed by considering all the
two-itemsets that combine the one-itemset of attribute A with all the one-itemsets for
the other attributes. The same procedure is used to construct the following levels of
the tree. No repeated itemsets appear in the tree. Once all the frequent itemsets have
been listed, a candidate fuzzy association rule is constructed for each itemset, by set-
ting the itemset itself in the antecedent and the corresponding class in the consequent.
The maximum depth of the trees is fixed to three, in order to generate rules with few
antecedent conditions, thus keeping the model simple.

3.4.1.2 Step 2: Rule prescreening

The rule extraction process generates a large number of rules, which can cause a prob-
lem of rule redundancy. To decrease this number by selecting only the best rules, a
subgroup discovery technique is used, in particular the pattern weighting scheme de-
scribed in (122)). Each pattern is associated to a weight w(i) = Hil, where i stores how
many times the pattern has been covered by a rule. Initially, all the weights assume
the same value w(0) = 1. For each class, the algorithm selects the best rule, then the
weights related to the patterns covered by this rule are decreased. In this way, the

patterns that are still uncovered will have a greater possibility of being covered in the
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following iterations. When the i counter reach a threshold k;, the correspondent pattern
is deleted. The remaining rules are sorted again and the procedure is repeated until ei-
ther all patterns have been deleted, or there is no rule left in the rule base. To evaluate
the quality of fuzzy rules, a modification of the wWWRAcc’ measure described in (122)
has been used. The wWRAcc’ measure has been modified in order to handle fuzzy
rules. The new measure is defined as follows:

n'(A-Cj) n"(A-Cj) n(C))
n(C;) n”(A) N

wWRAcc”"(A — Cj) = ) (3.3)
where n’’(A) is the sum of the products of the weights of all covered patterns by their
matching degrees with the antecedent part of the rule, n”(A - C;) is the sum of the
products of the weights of all correctly covered patterns by their matching degrees
with the antecedent part of the rules, n(C;) is the number of patterns of class C; and
n’(C;) is the sum of the weights of patterns of class C;.

Since the rule prescreening process can remove a large number of rules, after this
step it is possible that some of the labels that belong to the original fuzzy partitions
do not appear anymore in any of the remaining rules. Therefore, the initial DB needs
to be refined by removing all the unnecessary labels, thus contributing to decrease the
complexity of fuzzy partitions.

3.4.2 Evolutionary multi-objective data base tuning and rule se-
lection

In this step, the knowledge base previously obtained is improved by concurrently
applying a tuning of the DB parameters and a rule selection process. A modifica-
tion of the SPEA2 algorithm(169) is designed, with the aim improving the accuracy-
complexity trade-off. In the following subsections the main features of this algorithm
are presented. They are:

e Objectives.
e Coding scheme and initial gene pool.
e Crossover and mutation operators.

A further subsection is included at the end, which describes the main modifications
introduced with respect to the classic SPEA2 algorithm.
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3.4 D-MOFARC

3.4.2.1 Objectives

Each chromosome is associated with a bi-dimensional vector, whose elements express
the fulfillment degree of the following two objectives, respectively:

e Classification error minimization. It is represented by the complement of the
number of the classification rate, i.e. the error rate. To compute this classification
error, the following function has been used:

#Hits

Fitness(C) =1 — (3.4)
where #Hits 1s the number of patterns correctly classified and N is the total
number of patterns.

e Complexity minimization. It is represented by the number of selected rules.

3.4.2.2 Coding scheme and initial gene pool

A double coding scheme for both rule selection (Cs) and tuning (Cy) is used: C? =
C% Cy, where C? is the chromosome representing the individual p. The C§ = (cs1, . .., Csm)
part is represented by a binary-coded string with m genes, where m is the number of
initial rules. Each gene contains a value of “1* if the corresponding rule is selected,
“0“ otherwise. The CJ part uses a real coding scheme and codifies three definition
parameters for each triangular MF.
Cl =CC,...C,
Ci = (a},bl,cl,....a,,b, c,)i=1,...,nwhere m; is the number of labels in
the database for each of the n variables.
Each triangular MF is represented as MF; = (a;,bj,c;), where j = (1,...,k) and
k is the granularity of the considered fuzzy partition. Each MF parameters can assume
the values within the following variation intervals:
[}, 1,1 = la; = (b; = a))/2, a;+(b;—a)/2]
[y, 1,1 = [b; = (bj = a))/2, bj+(c;=b)/2] (3.5)
[, 121 =[c;—(cj—b))/2, c;+(c;—b)/2]

i’ Ci

The first individual of the first population codifies the KB obtained by the previous
step. The remaining individuals of the first population are generated randomly, with
each value within the corresponding variation intervals.
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3.4.2.3 Crossover and mutation

Crossover and mutation operators have been specifically designed. Each offspring is
obtained in the following way.

e First, the Cy part of the offspring is obtained by applying blend crossover (BLX)-
0.5 (74) to the Cr part of the parents.

e Then, the binary part Cy is generated depending on the Cr parts of parents and
offspring. For each gene in the Cy part, the following steps are performed:

— Each gene of the Cr part which represents the corresponding MFs of the
rule, is considered for both parents and offspring. The MFs of these three
rules are extracted.

— Between the offspring rule and each parent rule, euclidean normalized dis-
tances are computed by considering the center points of the MFs involved
in these rules. The differences between each pair of centers are normalized
by the amplitudes of their respective variation intervals.

— The parent’s rule closer to the offspring’s rule is selected and its value is
duplicated in the Cs part of the offspring.

This process is repeated until each gene in the Cy part of the offspring is obtained.
In each step four offspring are generated, although after applying mutation only the two
best offspring are maintained. This type of crossover prevents the recovery of a bad
rule already discarded, while permits the recovery of a rule that can be still considered
good due to its MFs configuration.

The crossover operator performs a better exploration in the Cg part, therefore the
mutation operator does not need to add rules. It simply changes randomly a gene value
in the Cr part and sets to zero a random gene in the Cg part, with probability P,,.

The application of these operators brings some advantages: the crossover between
individuals with very different rules allows the algorithm to explore different parts of
the search space, while the mutation promotes rule extraction, since it is used to remove
unnecessary rules.

3.4.2.4 Modifications of the classic SPEA2 algorithm

Some changes have been introduced to the original selection mechanism of SPEA2, to
improve the algorithm’s search ability.
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3.4 D-MOFARC

e A mechanism to prevent incest has been included, based on the concepts of CHC
presented in (72). This avoid premature convergence in the real coding (Cr)
part, which has a greater influence on the algorithm convergence and represents
a wider search space than the binary coding part (Cs). In the CHC approach, par-
ents are crossed only if their Hamming distance divided by 4 exceeds a threshold.
To follow this approach, the real coding scheme needs to be converted in a binary
one, thus each gene is transformed using a gray code with a fixed number of bits
per gene (BGene). The threshold value is initially set to L = (#CT X BGene)/4,
where #CT is the number of genes in the Cr part of the chromosome. This
value is decreased by 1 at each generation of the algorithm, therefore in further
generations closer solutions can be crossed.

e A restart operator has been introduced to renew the external population when we
detect that all the crossover are allowed. Actually, to prevent premature conver-
gence, the first restart is applied if 50% of crossovers are detected at any genera-
tion (the required ratio can be defined as %;¢guir.a = 0.5). Each time the restart is
performed, the required ratio is updated ad follows: %,.guireq = (1 + %0requirea) /2.

The external population after the restart includes the individuals with the best
value in each objective, and the remaining individuals are initialized as follows:
the Cg part is copied from the most accurate individual, while the values in the
Cr part are generated randomly. In this way, the most accurate and interpretable
solutions obtained so far are preserved.

Some constraints to the application of restart have been introduced: a) a new
restart cannot be applied if the most accurate solution has not been improved; b)
the restart is not applied at the end, when the approximation of the Pareto front
is well formed and needs to be preserved; c) restart is disabled if the midpoint of
the total evaluations number is reached and it has been never applied before.

¢ A mechanism to promote the most accurate solutions has been introduced. At
each stage of the algorithm, between restarting points, the number of solutions
in the external population (P,,;) that can be used to constitute the mating pool
is reduced progressively and the most accurate solutions are preferred. To this
end, solutions are sorted according their accuracy and the number of eligible
solutions is reduced progressively from 100% at the beginning to 50% at the end
of each stage. This mechanism is disabled in the last evaluations (when restart is
disabled too), in order to obtain a wide and well-formed Pareto front.
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3.5 Experimental framework

The method proposed and described in the previous sections has been evaluated by
comparing its results with the results obtained by applying a recent and well-performing
GFS for classification problems, named FARC-HD (15)). As we said in Section [2.1],
this algorithm has been demonstrated to generate good fuzzy rule-based models, in
particular when dealing with high dimensional problems, outperforming in accuracy
some of the most widespread state-of-the-art classification algorithms.

3.5.1 Experimental setup

The experiments have been performed by considering 35 real-world datasets, whose
characteristics are described in Table|3.2l The number of instances (#Inst), the number
of attributes (#Attr) (numerical and nominal attributes Num/Nom are highlighted, re-
spectively) and the number of classes (#Cls) of each dataset are shown. The web link
to the Knowledge Extraction based on Evolutionary Learning(KEEL)-data set reposi-
tory is also reported (16), from which the datasets can be downloaded. The instances
that presented missing values have been removed from the datasets (in particular, from
cleveland, crx, marketing datasets).

To carry the different experiments out, a ten-fold cross-validation model has been
applied: each dataset has been randomly split into ten folds, each containing 10% of the
patterns of the dataset. Then, a single fold has been used for testing and the remaining
folds for training. The cross-validation process has been repeated ten times, with each
fold used exactly once for testing. For each of the ten partitions, three trials of the
algorithm have been executed and finally the results have been averaged out over 30
runs. Due to the multi-objective nature of the evolutionary algorithm included in the D-
MOFARC method, the average of the most accurate solution from all the Pareto fronts,
which is our main objective, has been considered for the comparison with the single-
objective FARC-HD approach. To evaluate the results, statistical analysis has been
adopted (88, [89), in particular non-parametric tests, following the recommendations
presented in (67)), where a set of simple and robust non-parametric tests for statistical
comparisons of fuzzy rule-based classifiers has been described. The Wilcoxons signed-
ranks test (153}, /162)) for pair-wise comparison was used, considering a confidence level
of @ = 0.05. A wider description of this test and a software to perform it can be found
on the web site available at: http://sci2s.ugr.es/sicidm/.
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Table 3.2: List of the datasets used in the study.

DATASET #InsT | #ATTR(NUM/Nom) | #CLs
iris 150 4 (4/0) 3
tae 151 5 (5/0) 3
hepatitis 155 19 (19/0) 2
wine 178 13 (13/0) 3
automobile 205 25 (15/10) 6
glass 214 9 (9/0) 7
newthyroid 215 5 (5/0) 3
heart 270 13 (13/0) 2
cleveland 297(303) 13 (13/0) 5
haberman 306 3 (3/0) 2
ecoli 336 7 (7/0) 8
bupa 345 6 (6/0) 2
balance 625 4 (4/0) 3
crx 653(690) 15 (6/9) 2
australian 690 14 (8/6) 2
wisconsin 699 9 (9/0) 2
pima 768 8 (8/0) 2
vehicle 846 18 (18/0) 4
german 1000 20 (7/13) 2
contraceptive 1473 9 (9/0) 3
titanic 2201 3 (3/0) 2
segment 2310 19 (19/0) 7
spambase 4597 57 (57/0) 2
banana 5300 2 (2/0) 2
phoneme 5404 5(5/0) 2
page-blocks 5472 10 (10/0) 5
texture 5500 40 (40/0) 11
optdigits 5620 64 (64/0) 10
satimage 6435 36 (36/0) 7
thyroid 7200 21 (21/0) 3
ring 7400 20 (20/0) 2
twonorm 7400 20 (20/0) 2
0112000 9822 85 (85/0) 2
penbased 10992 16 (16/0) 10
magic 19020 10 (10/0) 2

http://sci2s.ugr.es/keel/datasets.php

3.5.2 Results and analysis

This section shows the results of the experiments described in the previous section. Ta-
ble [3.3[ summarizes the average number of rules/conditions (#R/#C) and classification
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percentages in training (Tra) and test (T'st) of the most accurate solution from each of
the obtained Pareto fronts, for the D-MOFARC approach and of the best solution for
FARC-HD (15). The overall mean values for each method are highlighted in the last
rOow.

The two methods have been compared by applying the Wilcoxon’s signed-ranks
test, in order to understand if they are statistically equivalent (null-hypothesis). When
considering the accuracy, the Wilcoxon’s test is based on computing the differences
between the average errors on the test set, whereas when considering the complexity
the test is computed by taking into account the average number of rules that are ob-
tained by a pair of algorithms. A normalized difference DIFF has been adopted when
considering the number of rules, which is defined as

MeanRules(x) — MeanRules(RA)

DIFF = 3.6
MeanRules(x) (3-6)

where MeanRules(x) represents the number of rules obtained on average by the x al-
gorithm (D-MOFARC) and RA is the reference algorithm (FARC-HD). This difference
expresses the improvement in percentage with respect to the reference algorithm.

Table|3.4|shows the statistics obtained by applying the Wilcoxon’s signed-rank test
on the accuracy achieved on the test set and on the number of rules, comparing the
results obtained by applying the D-MOFARC approach with the results achieved by
using the FARC-HD algorithm. The ranks R* and R~ and the p-value are shown and
a further column is added to highlight if the null-hypothesis is rejected or not, with a
significance level o = 0.05.

When considering the accuracy on test, the p value > «a, therefore the test rejects
the null-hypothesis of equivalence. The R* and R~ values highlight that the results
of the proposed method outperform the results obtained by the FARC-HD algorithm.
A further comparison has been drawn between the two methods with respect to the
average number of rules of the most accurate solutions. In this case, the null-hypothesis
is not rejected but the two approaches could be considered statistically different with
a significance level of 0.065, i.e., a 93.5% confidence. Nevertheless, by looking at the
average values presented in Table we can notice that the average number of rules
obtained by applying the D-MOFARC method is slightly lower than the average value
obtained by applying the FARC-HD algorithm.

Figure |3.3| presents a representative example of the rule sets obtained by the D-
MOFARC (3.3}a) and the FARC-HD (3.3}b) approaches, respectively, when consid-
ering the third fold of the bupa dataset. As well, Figure represents the rule sets
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Table 3.3: Comparison of the average results obtained by applying the D-MOFARC
method and the FARC-HD algorithm.

10 folds D-MOFARC FARC-HD

Dataset #R #C  Tra Tst #R #C  Tra Tst
iris 56 1.1 98.1 96.0 44 1.1 986 953
tae 202 27 821 593 | 199 23 71.7 59.0
hepatitis 114 19 1000 90.0 | 104 2.1 994 88.7
wine 8.6 1.8 100.0 95.8 83 1.5 100.0 955
automobile 389 27 993 81.0| 341 27 96.6 76.8
glass 274 26 952 706 | 182 24 79.0 69.0
newthyroid 9.5 1.7 99.8 95.5 96 1.8 992 944
heart 1877 27 944 844 | 278 2.6 93.1 83.7
cleveland 456 29 909 529 | 421 2.8 822 583
haberman 92 20 817 69.4 57 12 792 1735
ecoli 262 25 940 827 | 322 24 91.6 812
bupa 77 26 828 70.1| 106 19 782 664
balance 20.1 23 894 856 188 1.0 922 91.2
crx 226 26 916 849 | 244 24 91.0 847
australian 198 27 913 86.0| 259 25 908 864
wisconsin 90 14 986 968 | 13.6 1.1 983 96.2
pima 104 25 823 755| 202 23 823 762
vehicle 224 28 845 706 | 316 25 772 680
german 554 28 868 724 | 633 27 834 717
contraceptive | 49.0 2.9 63.6 53.6| 685 2.6 612 541
titanic 104 1.8 789 78.7 41 13 79.1 788
segment 262 25 980 96.6 | 41.1 27 948 933
spambase 243 22 917 905 | 305 23 924 916
banana 87 20 903 89.0| 129 1.5 86.0 855
phoneme 93 24 848 835| 172 22 839 824
page-blocks 215 24 978 97.0| 184 23 955 950
texture 60.5 28 975 952 | 509 27 937 930
optdigits 1354 3.0 97.0 934|204.0 3.0 970 935
satimage 56.0 28 908 87.5| 302 2.8 844 838
thyroid 59 24 993 99.1 49 1.8 943 94.1
ring 153 1.7 942 933| 249 19 951 94.0
twonorm 102 27 945 93.1| 604 26 96.6 951
c0il2000 89.0 1.0 94.0 94.0 26 1.0 940 94.0
penbased 1192 29 974 96.2 | 1527 2.8 97.0 96.0
magic 322 26 863 854 | 438 25 854 848
Mean 303 24 914 842 | 339 22 89.0 83.6
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Table 3.4: Wilcoxon’s statistic on test accuracy and number of rules for D-MOFARC (R")
vs FARC-HD (R™), considering 37 datasets (10 folds).

Comparison (Tst Acc) R* R
D-MOFARC vs FARC-HD 414.5 180.5

p-value Hypothesis
0.04544 Rejected

Comparison (#Rules) R* R
D-MOFARC vs FARC-HD 428.0 202.0

p-value Hypothesis
0.0649 Not Rejected

obtained by the D-MOFARC (3.4}a) and the FARC-HD (3.4}b) approaches, respec-
tively, when considering the third fold of the newthyroid dataset. In these specific
cases, the figures highlight that the proposed method induces the generation of more
compact rule sets and smaller granularities with respect to the FARC-HD algorithm.
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(a) Bupa rule set generated by D-MOFARC (b) Bupa rule set generated by FARC-HD

Figure 3.3: Example rule sets obtained by the D-MOFARC(a) and the FARC-HD(b) ap-
proaches, respectively, when considering the third fold of the bupa dataset.

Although the results presented so far only consider the best solution obtained by
the D-MOFARC method, it actually generates a set of Pareto-optimal solutions, each
of them representing a trade-off between accuracy and complexity. Even though it
was not our main purpose, it is possible for a decision maker to choose the solution
that better satisfies the required trade-off for a certain problem. As an example, some
Pareto-optimal sets are represented in Figure [3.5] in particular for heart, bupa, pima
and segment datasets, respectively. Each Pareto front has been drawn by choosing a
representative fold of the considered dataset and reporting the number of rules in the
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Figure 3.4: Example rule sets obtained by the D-MOFARC(a) and the FARC-HD(b) ap-
proaches, respectively, when considering the third fold of the newthyroid dataset.

x-axis and the correct classification rate on training in the y-axis. The Pareto-optimal
solutions are represented with dark square symbols in the graphs. In addition, the
correspondent values for the correct classification rate on test are depicted with light
square symbols. We have also depicted the correct classification rate on training (dark
triangle symbols) and test (light triangle symbols) of the solution obtained by the ap-
plication of the FARC-HD algorithm on the same folds. The observation of the Pareto
fronts points out that in some cases there exist solutions with an accuracy level almost
equivalent to the best solution’s accuracy, while their complexity is considerably lower
than the best solution’s complexity.

3.6 Conclusion

In this chapter we have presented a multi-objective evolutionary method which per-
forms concurrently a tuning process and a rule selection process on an initial KB of a
FRBCS. In this method, a Fuzzy Discretization Algorithm has been integrated, in order
to extract suitable granularities from data and generate the fuzzy partitions that consti-
tute the initial DB. The associated RB has been generated by extracting a set of fuzzy
association rules, according to the first two steps of the FARC-HD method presented
in (15). The proposed MOEA is a modification of the SPEA2 algorithm and its aim is
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Figure 3.5: Pareto solutions obtained by the D-MOFARC method when considering rep-
resentative folds of four datasets, namely heart(a), pima(b), bupa(c) and segment(d).

to generate compact and precise FRBCSs by considering concurrently two objectives:
the correct classification rate and the number of rules of the obtained models.

The results obtained by comparing the proposed algorithm with a recent and well
performing accuracy-driven GFS highlight that in this case our method clearly outper-
forms the FARC-HD when considering the precision of the obtained models, whereas
less significant statistical difference has been observed when considering the complex-
ity. Nevertheless, the mean results show that the number of rules is also reduced on
average.
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Chapter 4

A Study on the Application of Instance
Selection Techniques with Genetic
Fuzzy Rule-Based Classification

Systems: Accuracy-Complexity
Trade-Off

4.1 Introduction

The learning process of a GFS is strongly affected by the amount of instances used to
generate the FRBS. A first problem is related to the computational time required by
the fitness evaluation during the evolutionary process, since it is directly proportional
to the number of instances. A second problem regards the complexity of the obtained
models: in order to cover as much as possible instances of the dataset, the learning
process tends to generate a high number of rules.

To reduce the amount of instances would speed up the learning process and pos-
sibly would lessen the complexity of the generated FRBSs. To this aim several ap-
proaches have been proposed in the literature. In particular, when considering medium
and large datasets, the reduction can be obtained by applying techniques of Instance
Selection (IS) (68, 86, 133} 1163), which aim to extract a small representative subset of
instances from the initial set, by removing superfluous instances. The subset should
maintain all the information of the original set, so that it can be used to generate clas-
sification models with the same accuracy as models generated by using the original
set.
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4. APPLICATION OF IS TECHNIQUES WITH GFSS

IS techniques can be grouped into two categories, depending on the aim pursued
after obtaining the reduced set:

e Prototype Selection (PS) methods (145): the reduced set is used by an instance-
based classifier (for example K-NN) to classify new instances. Instance-based
classifiers assume that unlabeled instances can be classified by relating them
to the labeled instances, according to a certain similarity or distance function.
The selected instances should provide the best trade-off between classification
accuracy and reduction of the number of instances.

e Training Set Selection (TSS) methods (27, 37): the subset of instances is em-
ployed by a machine learning algorithm to build a predictive model (e.g. neural
networks, FRBSs, decision trees, etc).

Several studies can be found in the literature for both PS and TSS. For example
in (35), the authors perform IS by means of an evolutionary process. The quality of
the reduced set is assessed by using the 1-NN classifier and a classification model
constructed by the C4.5 algorithm. A comparison is carried out among evolutionary
and non-evolutionary IS techniques, with respect to the classification accuracy and the
instance reduction rate. This study has been subsequently extended in (36) and (37),
where the concept of data stratification has been integrated in the framework with the
aim of handling the scaling problem that appears when evaluating medium-large size
datasets, and generating classification models with a good accuracy-interpretability
trade-off.

A particular application of TSS is presented in (87). Here, the authors focus on
classification problems in presence of imbalanced dataset. Data are re-balanced by
undersampling the instances belonging to the majority class thorough a TSS method.
TSS is integrated in an evolutionary algorithm and the quality of the reduced set is
evaluated by generating a classification model with the well-known C4.5 algorithm.

A recent approach can be found in (27)), where the authors investigate the use of
TSS to reduce the set of instances required by a Multi-Objective Evolutionary Algo-
rithm (MOEA) to generate FRBSs for regression problems. The TSS is integrated in
a co-evolutionary framework: cyclically, a single-objective GA selects a subset of in-
stances which are used by the MOEA for generating the FRBSs. The GA maximizes
an index that measures the quality of the reduced set of instances.

In this chapter, we focus on the use of TSS techniques as pre-processing methods
before applying a GA for generating Fuzzy Rule-Based Classification Systems (FR-
BCSs). We aim to investigate if TSS techniques can help to reduce the complexity of
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the generated FRBCSs, preserving or hopefully increasing their accuracy. A prelimi-
nary study discussed in (91), where a set of 20 small size datasets have been consid-
ered, has highlighted that a specific family of TSS methods is effective in achieving
this objective.

This chapter extends the study in (91), in order to analyze the effects of instance
selection preprocessing not only on small size datasets, but also on the kind of prob-
lems mainly addressed in this thesis, by considering medium-large size datasets, which
frequently appear in real-world problems. For these datasets, the number of rules of
the generated FRBCSs can be quite large and therefore their interpretability can be
quite low, blurred by the complexity. We have considered 36 TSS techniques and 17
additional medium-large size datasets. The TSS techniques have been applied to each
dataset and reduced datasets have been obtained. Then, the reduced datasets have been
used to generate FRBCSs by exploiting a recently developed GFS, named Fuzzy Asso-
ciation Rule-based Classification model for High-Dimensional problems (FARC-HD)
(15)), which, as previously said, has been demonstrated to be efficient when working
with high-dimensional datasets, i.e. datasets with a high number of variables. Since
medium-large size datasets usually involve also a high number variables, FARC-HD
results to be particularly suitable for these datasets. The goal is to understand if TSS
techniques are able to decrease the number of instances in a dataset without losing
the information needed for allowing FARC-HD to generate FRBCSs that achieve high
classification rate despite a low complexity and a low computational time.

A further study has been performed by considering the combination of small and
medium-large size datasets. The aim is to obtain more reliable results when applying
statistical tests and to investigate if there exist TSS techniques that can be effectively
used with datasets of any size.

Finally, an analysis of the computational time required by the application of TSS
techniques and by the execution of the GFS on the reduced datasets is reported, in
order to evaluate if the selected subsets lead to a reduction in the time required by the
GFS to generate classification models.

This chapter is organized as follows: Section contains a brief description of
the IS process and IS methods in general. The methods used in this study are listed,
according to the taxonomy proposed in (86). Section describes the methodology
used to carry out the experiments. Section[.4|includes a brief overview of FARC-HD.
In Section [4.5] the experimental framework is presented and the obtained results are
examined and discussed. Finally, in section [3.6] some concluding remarks are stated.
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4. APPLICATION OF IS TECHNIQUES WITH GFSS

4.2 Instance selection methods

Given a training set TR, the aim of an IS algorithm is to find a representative subset
S C TR of meaningful instances by removing superfluous instances (Figure {.1]). The
resulting subset will be used to build a classifier.

TR R dS d
- - eauce

Training IS method Training
Set Set

SCTR

Superflous

instances

Figure 4.1: Instance Selection algorithm.

During the last years, more than fifty IS methods have been proposed in the litera-
ture and some reviews can be found in (28, 86,90, (127, (133 141} [163).

A comprehensive description of IS methods has been presented in a recent survey
(86). Here, a taxonomy based on the main characteristics of the methods has been
proposed, analyzing advantages and drawbacks of each of them. Hereinafter, the cate-
gories of IS methods are briefly described and then the methods selected for the current
study are listed.

4.2.1 Classification of instance selection methods

IS methods have been grouped in different categories according to their common prop-
erties and to the description presented in (86):

e Type of selection: this characteristic is mainly influenced by the type of search
strategy carried out by the IS algorithms, depending on the position of the in-
stances to be retained with respect to the decision boundaries (border instances,
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4.2 Instance selection methods

central instances or some other set of instances). The techniques are conden-
sation, edition and hybrid. Condensation methods try to compute a consistent
subset S by removing unnecessary instances that will not affect the classification
accuracy on the training set. Edition methods aim to remove noisy instances, al-
lowing the classifier to increase its accuracy. Hybrid methods search for a subset
in which both noisy and unnecessary instances are concurrently eliminated.

e Direction of search: when searching for a subset S of instances from the train-
ing set TR, there are a variety of directions in which the search can proceed:
incremental, decremental, batch, mixed and fixed. Incremental methods start
with an empty subset S and add instances during the selection process accord-
ing to some criterion; on the contrary decremental methods start with the whole
training set (S = TR) and remove instances during the selection process. Batch
methods examine all the instances before removing any of them and those in-
stances that meet a removal criteria are eliminated at once. Mixed methods start
with a subset S (that can be randomly chosen or obtained by an incremental or
decremental process) and add or remove instances that meet a certain criterion.
Finally, fixed methods act like mixed ones, but the number of instances to be
added or removed is fixed in advance, thus the final number of selected instances
is determined beforehand.

e Evaluation of search: according to the strategy used to add or remove instances
in the subset S, the IS methods can be divided in wrapper and filter. Wrapper
methods consider a selection criterion based on the accuracy obtained by a clas-
sifier. Usually, the instances that do not influence the accuracy classification are
discarded. Filter methods use a selection function as selection criterion that is
not based on a specific classifier.

e Other properties: there are other properties that can influence the results of an
IS algorithm in combination with a given classifier. However these properties
depend on the type of classifier used and therefore are not suitable for discrimi-
nating different types of instance selection techniques.

4.2.2 Instance selection methods used in this study

The characteristics explained above have been used in (86) to organize IS methods
in a taxonomy, since they influence the behavior of the methods. According to this
taxonomy, the methods chosen for the current study are shown in Figure
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Figure 4.2: Taxonomy of Instance Selection methods.

This figure shows a classification hierarchy based on, first, type of selection and,
then, direction of search. The selected methods are the most representative ones, ac-
cording to the study described in (86). In Table the methods are listed by reporting

their complete and short names.

4.3 Experimental methodology for studying performances
of IS methods as TSS techniques

In this section we give a description of the methodology used to assess the suitability
of using IS methods together with a classification system (Figure for TSS.

Let us consider a dataset DS consisting of a number N of instances. The instances
are randomly split into a training set 7R and a test set 7S by using a K-fold cross-
validation scheme. In particular, the instances are divided into K folds, each containing
a percentage 1/K of the instances. Then, K — 1 folds are used as training set TR; and
the remaining fold is used as 7'S;, where i = 1,---, K. The analysis is performed on
the TR;, while the validation of the model is performed on the 7'S ;.

At each cross-validation round 7, an IS method is applied to the TR;, in order to
extract a subset of instances S,;. The goal is to obtain a subset that does not include
superfluous instances, is representative of TR;, and preserves the original information
contained in TR;.

The extracted subset S, is used by the GFS to generate a classifier, with the aim
of obtaining a model with an accuracy Acc(S;) equal to or higher than the accuracy
Acc(TR;) that would be obtained by using the complete training set TR; to generate
the classifier. The generalization abilities of the obtained classifier are evaluated on the
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4.3 Experimental methodology

Table 4.1: Instance Selection methods used in the current study.

Complete name Short name
All-KNN AIIKNN
C-Pruner CPruner
CHC Evolutionary Algorithm CHClassic
Condensed Nearest Neighbor CNN
Decremental Reduction Optimization Procedure 3 | DROP3
Edited Nearest Neighbor ENN
Edited Nearest Neighbor Estimating ENNTh
Edited Normalized Radial Basis Function ENRBF
Explore Explore
Fast Condensed Nearest Neighbor 1 FCNN
Generalized Condensed Nearest Neighbor GCNN
Generational Genetic Algorithm GGA

Hit Miss Network Edition Iterative HMNEI
Instance Based 3 1B3
Intelligent Genetic Algorithm IGA
Iterative Case Filtering ICF
Minimal Consistent Set MCS
Model Class Selection ModelCS
Modified Condensed Nearest Neighbor MCNN
Modified Edited Nearest Neighbor MENN
Modified Selective Subset MSS
MultiEdit MultiEdit
Mutual Neighborhood Value MNV
Nearest Centroid Neighbor Edition NCNECdit
Patterns by Ordered Projections POP
Population Based Incremental Learning PBIL
Prototype Selection using Relative Certainty Gain | PSRCG
Random Mutation Hill Climbing RMHC
Reconsistent Reconsistent
Reduced Nearest Neighbor RNN
Relative Neighborhood Graph Editing RNG
Selective Nearest Neighbor SNN
Steady-State Genetic Algorithm SGA
Steady-State Memetic Algorithm SSMA
Tomek Condensed Nearest Neighbor TCNN
Variable Similarity Metric VSM

test set 7'S;. For each dataset, the results on training and test sets have been averaged

over the K rounds.

To investigate the effectiveness of the IS techniques, the GFS has been also applied
to the original TR; (Figure 4.4). For each dataset, the results on the training and test
sets have been averaged over the K rounds and they have been compared with the ones

obtained by applying the IS methods.
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Algorithm
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Figure 4.3: Application of IS methods to obtain a reduced set S; that is consequently used
to build a classifier.

4.4 Classification algorithm used in the study: FARC-
HD

The aim of this study is to analyze the influence of TSS methods when combined with
evolutionary classification algorithms. To this end, we choose a recently proposed
classification algorithm, named FARC-HD (15)), which has proved to obtain good per-
formances and to be especially suitable for high-dimensional datasets. Hereinafter, a
brief description of the algorithm is given.

FARC-HD uses fuzzy association rules to represent the information. These rules
are an extension of the classical association rules, which are used to represent the
dependencies between itemsets in a database (96, [167). Unlike classical association
rules, fuzzy association rules can consider not only binary or discrete values, but also
quantitative values. A fuzzy association rule can be represented as follows:

A is Middle — B is High. 4.1)
i e e ifi Training
training |Classification Classifier
bs — TR Algorithm | | Evaluation Acc(TR))
Classifier
—» TS, Evaluation —>AI:(S'It'Ri)

Figure 4.4: Using the original TR; to construct a classifier.
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Fuzzy association rules can be used for classification tasks if their antecedents contain
fuzzy itemsets and their consequents contain only one class label. FARC-HD extracts
a set of fuzzy association rules from the input data and uses them to build an FRBCS.
The method consists of three steps, which will be briefly described.

e Extraction of fuzzy association rules for classification: A tree is built for each
class, to list all the possible frequent itemsets, i.e. sets of items that frequently
appear together in the dataset. After obtaining all the frequent itemsets, the rules
are built by setting the frequent itemsets in the antecedent and the corresponding
class in the consequent. The depth of the trees is fixed to Depth,,,., in order to
generate rules with few antecedent conditions and therefore to keep the model
simple.

e Rule prescreening: this second step uses subgroup discovery to preliminarily re-
duce the rule set, by removing unnecessary rules. Each rule is evaluated using
a modification of the wWRAcc’ measure presented in (122), that correlates the
quality of a rule with the number of input instances correctly covered and with
their matching degrees with the antecedent part of the rule. After this prescreen-
ing process, only the most promising rules are maintained.

e Rule selection and Data Base tuning: the final step performs a rule selection
process to further reduce the number of rules, by applying a genetic algorithm.
Further, a tuning process of the membership functions is included in the ge-
netic process, in order to obtain higher classification accuracy. The CHC genetic
model (72) is used for the rule selection and tuning process, due to its ability
in the exploration and the exploitation of the search space. The obtained final
model is an FRBCS with low complexity and high accuracy.

4.5 Experimental framework

This section describes the experiments that have been performed to evaluate the ef-
fectiveness of the TSS methods. The results of each experiment are presented and
analyzed to draw the conclusions. This section is divided into four parts:

e Experimental Set-Up.
e Results and analysis considering 17 medium-large datasets.

e Results and analysis considering 37 datasets (different sizes).
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e Results and analysis of time performances.

4.5.1 Experimental set-up

In this study, 37 datasets have been considered, divided into small size and medium-
large size datasets according to their number of instances. Datasets with more than
2000 instances are considered medium-large size datasets. Table 4.2] summarizes their
characteristics, by reporting the number of instances (#Inst), the number of attributes
(#Attr) (numerical and nominal attributes Num/Nom are highlighted, respectively)
and the number of classes (#Cls) of each dataset. The web link to the Knowledge
Extraction based on Evolutionary Learning(KEEL)-data set repository is also reported
(16), from which the datasets can be downloaded. The instances that presented miss-
ing values have been removed from the datasets (in particular, from cleveland, crx,
marketing datasets).

Table 4.2: List of the datasets used in the study, divided according to their number of
instances.

SmaLL DS #InsT | #ATTR(NUM/NoMm) | #CLs MEbium-LARGE DS #InsT | #ATTR(NUM/NoMm) | #CLs
australian 690 14 (8/6) 2 abalone 4174 8 (7/1) 28
automobile 205 25 (15/10) 6 banana 5300 2 (2/0) 2
balance 625 4 (4/0) 3 ¢0il2000 9822 85 (85/0) 2
bupa 345 6 (6/0) 2 magic 19020 10 (10/0) 2
cleveland 297(303) 13 (13/0) 5 marketing 6876(8993) 13 (13/0) 9
contraceptive 1473 9 (9/0) 3 optdigits 5620 64 (64/0) 10
crx 653(690) 15 (6/9) 2 page-blocks 5472 10 (10/0) 5
ecoli 336 7 (7/0) 8 penbased 10992 16 (16/0) 10
german 1000 20 (7/13) 2 phoneme 5404 5(5/0) 2
glass 214 9 (9/0) 7 ring 7400 20 (20/0) 2
haberman 306 3(3/0) 2 satimage 6435 36 (36/0) 7
heart 270 13 (13/0) 2 segment 2310 19 (19/0) 7
hepatitis 155 19 (19/0) 2 spambase 4597 57 (57/0) 2
iris 150 4 (4/0) 3 texture 5500 40 (40 /0) 11
newthyroid 215 5 (5/0) 3 thyroid 7200 21 (21/0) 3
pima 768 8 (8/0) 2 titanic 2201 3 (3/0) 2
tae 151 5 (5/0) 3 twonorm 7400 20 (20/0) 2
vehicle 846 18 (18/0) 4

wine 178 13 (13/0) 3

wisconsin 699 9 (9/0) 2

http://sci2s.ugr.es/keel/datasets.php

A ten-fold cross validation scheme has been applied following the indications pre-
sented in Section 4.3|and for each round the method has been applied three times with
different random seeds. Therefore, the results have been averaged over thirty execu-
tions for each dataset.
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36 TSS techniques (Table [4.1) have been applied to each dataset and the reduced
sets have been used by the FARC-HD algorithm to generate FRBCSs. For each TSS
technique, the results have been averaged over the group of considered datasets. The
FARC-HD algorithm has also been applied to the original datasets without using any
TSS technique and again the results have been averaged over the group of considered
datasets.

Thus, for each reduced dataset generated by a TSS technique and for the overall
dataset, a single value is obtained for each metric. The following metrics have been
computed:

¢ Instance reduction rate: percentage of instances that have been removed from
the training set.

e Accuracy on the training set: percentage of training instances correctly classi-
fied.

e Accuracy on the test set: percentage of test instances correctly classified.

e Number of Rules: complexity of the obtained FRBCSs, computed as the average
number of rules.

To analyze the results, non-parametric statistical tests have been considered, ac-
cording to the recommendations made in (67). A wider description of these tests and
a software for their application can be found on the web site available at:
http://sci2s.ugr.es/sicidm/. In particular, the Wilcoxon’s signed-rank test (162)) has
been applied to perform pairwise comparison between the results obtained by applying
the FARC-HD algorithm to the original TS and to the reduced TSs generated by the
different TSS techniques discussed in this chapter.

In order to ease the understanding of some parts of the following sections we in-
cluded here the table of average results of the previous study (91) on small size datasets
(Table 4.3), which will be referred in further sections.

4.5.2 Results and analysis considering 17 medium-large datasets

The average results obtained by applying the TSS techniques before FARC-HD to 17
medium-large datasets are presented in Table 4.4l We denote the sequences (specific
TSS technique — FARC-HD) as name of the specific TSS technique followed by a
hyphen and by FARC-HD. In the table, FARC-HD alone indicates the execution of
FARC-HD on the original training set.
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Table 4.3: Average results obtained by applying 36 TSS techniques to 20 small size data

sets.

Inst Red Rate Tra Acc Tst Acc #Rules
Explore 0.980 | FARC-HD 0.873 | FARC-HD 0.785 | Cpruner 2.530
CHC 0.980 | POP 0.868 | POP 0.778 | CHC 3.390
SSMA 0.960 | MSS 0.858 | ModelCS 0.774 | Explore 3.460
PBIL 0.950 | ModelCS 0.853 | MSS 0.768 | SSMA 4.830
GGA 0.950 | NCNEdit 0.830 | NCNEdit 0.768 | PBIL 6.240
SSGA 0.940 | CNN 0.828 | RNG 0.768 | RNN 6.300
RNN 0.920 | RNG 0.823 | ENN 0.762 | GGA 6.370
Cpruner 0.920 | TCNN 0.823 | AIIKNN 0.751 | SSGA 6.670
IGA 0.920 | Reconsistent 0.823 | Multiedit 0.750 | ENRBF 7.430
MCNN 0.900 | FCNN 0.822 | ENNTh 0.749 | IGA 8.200
RMHC 0.900 | PSRCG 0.820 | HMNEI 0.747 | RMHC 8.320
DROP3 0.820 | ENN 0.817 | TCNN 0.745 | MENN 8.630
ICF 0.750 | MNV 0.812 | CNN 0.741 | MCNN 9.200
SNN 0.720 | MCS 0.807 | MENN 0.740 | ENNTh 9.280
1B3 0.700 | HMNEI 0.807 | Reconsistent 0.740 | Multiedit 11.130
FCNN 0.610 | AIIKNN 0.799 | FCNN 0.735 | AIIKNN 12.070
MNV 0.610 | IB3 0.796 | PSRCG 0.734 | DROP3 12.330
TCNN 0.600 | GCNN 0.789 | MCS 0.729 | ICF 12.440
VSM 0.580 | Multiedit 0.779 | MNV 0.720 | ENN 14.430
Reconsistent 0.580 | ENNTh 0.776 | GCNN 0.717 | RNG 14.820
CNN 0.570 | MENN 0.768 | IB3 0.716 | NCNEdit 15.070
MCS 0.570 | ICF 0.763 | RMHC 0.710 | HMNEI 15.480
HMNEI 0.520 | VSM 0.759 | ICF 0.706 | IB3 19.290
PSRCG 0.510 | DROP3 0.739 | ENRBF 0.692 | SNN 20.510
GCNN 0.500 | RMHC 0.736 | GGA 0.686 | ModelCS 21.160
MENN 0.470 | ENRBF 0.713 | DROP3 0.684 | GCNN 21.240
ENNTh 0.460 | SSGA 0.706 | IGA 0.679 | MNV 21.550
MSS 0.460 | RNN 0.702 | SSGA 0.677 | TCNN 21.680
AIIKNN 0.350 | IGA 0.701 | RNN 0.675 | CNN 21.790
Multiedit 0.330 | GGA 0.698 | PBIL 0.673 | FCNN 21.890
ENRBF 0.320 | PBIL 0.694 | VSM 0.655 | VSM 21.890
ENN 0.250 | SNN 0.685 | Explore 0.647 | MCS 22.070
RNG 0.250 | SSMA 0.669 | Cpruner 0.644 | Reconsistent 22.220
NCNEdit 0.230 | MCNN 0.668 | SSMA 0.643 | PSRCG 22.980
ModelCS 0.140 | Explore 0.663 | CHC 0.632 | MSS 23.530
POP 0.100 | Cpruner 0.653 | MCNN 0.623 | POP 23.600
FARC-HD 0.000 | CHC 0.642 | SNN 0.618 | FARC-HD 24.480

Inst Red Rate, Tra Acc, Tst Acc and #Rules denote the instance reduction rate,
the accuracies on the training and test sets, and the number of rules of the generated
FRBCSs, respectively. Obviously, when FARC-HD is applied to the overall training
set, the instance reduction rate is equal to 0. For each metric, the methods are sorted
from the best to the worst. Table 4.4 shows that there exists an inverse proportionality
between the complexity and the accuracy in most of the cases: the larger the number
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Table 4.4: Average results obtained by applying 36 TSS techniques to 17 medium-large
size data sets.

Inst Red Rate Tra Acc Tst Acc #Rules
CHClassic-FARC-HD 99.3 | RNG-FARC-HD 83.7 | RNG-FARC-HD 82.7 | CHClassic-FARC-HD 8.8
Explore-FARC-HD 99.2 | ModelCS-FARC-HD 83.3 | ModelCS-FARC-HD 82.3 | Explore-FARC-HD 10.7
MCNN-FARC-HD 98.7 | POP-FARC-HD 83.2 | FARC-HD 82.3 | Cpruner-FARC-HD 14.0
SSMA-FARC-HD 98.5 | FARC-HD 83.2 | POP-FARC-HD 82.3 | MCNN-FARC-HD 16.0
RNN-FARC-HD 95.9 | NCNEdit-FARC-HD 82.7 | AIIKNN-FARC-HD 81.6 | SSMA-FARC-HD 16.5
SGA-FARC-HD 94.8 | AIKNN-FARC-HD 82.6 | NCNEdit-FARC-HD 81.6 | SNN-FARC-HD 17.0
GGA-FARC-HD 90.9 | ENN-FARC-HD 82.5 | ENN-FARC-HD 81.6 | RNN-FARC-HD 18.6
DROP3-FARC-HD 90.6 | ENNTh-FARC-HD 82.4 | ENNTh-FARC-HD 81.5 | IB3-FARC-HD 24.1
RMHC-FARC-HD 90.0 | HMNEI-FARC-HD 82.2 | IGA-FARC-HD 81.1 | ENRBF-FARC-HD 24.4
PBIL-FARC-HD 89.8 | IGA-FARC-HD 81.8 | HMNEI-FARC-HD 81.0 | SGA-FARC-HD 24.5
Cpruner-FARC-HD 89.3 | Multiedit-FARC-HD 81.5 | Multiedit-FARC-HD 80.5 | DROP3-FARC-HD 24.6
SNN-FARC-HD 85.3 | PBIL-FARC-HD 81.1 | PBIL-FARC-HD 80.4 | VSM-FARC-HD 24.7
ICF-FARC-HD 84.4 | GGA-FARC-HD 80.7 | GGA-FARC-HD 80.2 | GGA-FARC-HD 25.6
VSM-FARC-HD 78.0 | Reconsistent-FARC-HD  80.3 | Reconsistent-FARC-HD 79.5 | MCS-FARC-HD 26.1
IGA-FARC-HD 75.5 | MENN-FARC-HD 79.7 | MENN-FARC-HD 78.9 | MNV-FARC-HD 26.1
IB3-FARC-HD 74.3 | RMHC-FARC-HD 79.1 | RMHC-FARC-HD 78.4 | PBIL-FARC-HD 26.3
FCNN-FARC-HD 73.4 | SGA-FARC-HD 78.3 | SGA-FARC-HD 77.7 | RMHC-FARC-HD 27.7
TCNN-FARC-HD 72.6 | MSS-FARC-HD 78.0 | MSS-FARC-HD 77.2 | ICF-FARC-HD 28.5
CNN-FARC-HD 71.7 | Cpruner-FARC-HD 76.1 | Cpruner-FARC-HD 75.8 | PSRCG-FARC-HD 29.5
PSRCG-FARC-HD 67.1 | MCS-FARC-HD 75.5 | MCS-FARC-HD 75.0 | TCNN-FARC-HD 29.7
Reconsistent-FARC-HD  66.4 | MNV-FARC-HD 75.5 | MNV-FARC-HD 75.0 | CNN-FARC-HD 29.9
MSS-FARC-HD 58.6 | RNN-FARC-HD 74.7 | RNN-FARC-HD 74.2 | IGA-FARC-HD 30.5
GCNN-FARC-HD 57.7 | IB3-FARC-HD 74.3 | IB3-FARC-HD 73.6 | FCNN-FARC-HD 30.5
MCS-FARC-HD 53.3 | TCNN-FARC-HD 74.2 | TCNN-FARC-HD 73.5 | GCNN-FARC-HD 34.1
MNV-FARC-HD 53.3 | CNN-FARC-HD 74.2 | CNN-FARC-HD 73.5 | MSS-FARC-HD 34.1
HMNEI-FARC-HD 51.4 | FCNN-FARC-HD 74.1 | FCNN-FARC-HD 73.4 | HMNEI-FARC-HD 34.7
MENN-FARC-HD 31.4 | PSRCG-FARC-HD 74.1 | VSM-FARC-HD 73.3 | Reconsistent-FARC-HD 37.2
ENRBF-FARC-HD 30.4 | VSM-FARC-HD 73.9 | PSRCG-FARC-HD 73.3 | MENN-FARC-HD 37.3
ENNTh-FARC-HD 30.0 | ICF-FARC-HD 73.3 | ICF-FARC-HD 72.6 | ENNTh-FARC-HD 383
Multiedit-FARC-HD 22.8 | ENRBF-FARC-HD 71.7 | ENRBF-FARC-HD 71.4 | Multiedit-FARC-HD 41.5
ANIKNN-FARC-HD 22.4 | SSMA-FARC-HD 71.6 | SSMA-FARC-HD 71.3 | RNG-FARC-HD 43.9
ENN-FARC-HD 17.9 | CHClassic-FARC-HD 71.2 | CHClassic-FARC-HD 71.0 | AIKNN-FARC-HD 439
NCNEdit-FARC-HD 16.4 | DROP3-FARC-HD 69.4 | Explore-FARC-HD 68.8 | ENN-FARC-HD 44.0
RNG-FARC-HD 15.9 | Explore-FARC-HD 69.2 | DROP3-FARC-HD 68.7 | NCNEdit-FARC-HD 44.1
POP-FARC-HD 8.7 | GCNN-FARC-HD 66.8 | GCNN-FARC-HD 66.4 | FARC-HD 453
ModelCS-FARC-HD 8.6 | MCNN-FARC-HD 64.0 | MCNN-FARC-HD 63.6 | ModelCS-FARC-HD 454
FARC-HD 0.0 | SNN-FARC-HD 40.0 | SNN-FARC-HD 39.4 | POP-FARC-HD 45.6

of rules, the more accurate the obtained model. Nevertheless, the most accurate mod-
els are obtained by applying RNG-FARC-HD and ModelCS-FARC-HD, which also
succeed in reducing the number of rules with respect to FARC-HD.

For the sake of brevity, among the 36 TSS methods, we will focus on the most
promising ones, i.e. those methods that allow achieving a considerable reduction of
the number of rules in the FRBCSs without penalizing their accuracy. To perform
this analysis, we plot the last two columns of Table in Figure For the sake
of clarity, the FARC-HD part of the name has not been reported. The x and y axes
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4. APPLICATION OF IS TECHNIQUES WITH GFSS

represent the average values of the percentage of correct classification on the test set
and of the number of rules of the obtained FRBCSs, respectively.

The methods represented with a gray circle belong to the set of the non-dominated
solutions in the plane accuracy-complexity. A solution is non-dominated if none of
its objective functions (accuracy and complexity in our case) can be improved without
causing a worsening in the other objective function. Therefore, the methods that are
non-dominated in the accuracy-complexity plane represent the best methods among
the analyzed ones.

The non-dominated solutions, which are generated by using TSS selection methods
of the same family, have been represented within a cloud to point out if methods of
the same type appear in the same zone. We observe that the most accurate methods,
namely RNG-FARC-HD and ENNTh-FARC-HD, belong to the edition decremental
family, represented with a cloud filled with parallel vertical lines. Nevertheless, the
reduction rate achieved by RNG-FARC-HD with respect to FARC-HD is modest.

A second group, represented within a uniform gray cloud, includes methods be-
longing to the hybrid mixed family. Almost all of them (except SGA-FARC-HD and
CHClassic-FARC-HD) lead to a good reduction in the number of rules, while main-
taining adequate accuracy on test (>80%) compared with the accuracy of FARC-HD
(84.2%).

The last non-dominated method belongs to the hybrid decremental family (Cpruner-
FARC-HD), and is represented within a cloud filled with parallel diagonal lines. It
manages to reduce considerably the number of rules of the obtained models, but caus-
ing a severe detriment of the accuracy on the test set.

Among the methods belonging to the non-dominated set, the most promising ones
have been selected by considering those that achieve an accuracy larger than 80%. The
GGA-FARC-HD method has been excluded due to the fact that its complexity is almost
equal to the complexity of PBIL-FARC-HD, but its accuracy is slightly lower. Four
TSS methods have been finally selected to perform a statistical analysis on them. They
are RNG-FARC-HD, ENNTh-FARC-HD, IGA-FARC-HD and PBIL-FARC-HD. The
Wilcoxon’s signed-rank test (162) has been applied to perform pairwise comparison
both on accuracy and complexity, with a level of confidence @ = 0.05.

For each TSS technique, a single value per dataset, averaged over K rounds, has
been used to perform the pairwise comparison. When considering the accuracy, the
Wilcoxon’s test is based on computing the differences between the average errors on
the test set, whereas when considering the complexity the test is computed by taking
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Figure 4.5: TSS methods in the accuracy-complexity plane

into account the average number of rules that are obtained by a pair of algorithms. We
adopt a normalized difference DIF F for the number of rules, which is defined as

MeanR — MeanR RA
DIFF — eanRules(x) eanRules(RA) 42)
MeanRules(x)

where MeanRules(x) represents the number of rules obtained on average by the x al-
gorithm and RA is the reference algorithm. This difference expresses the improvement
in percentage with respect to the reference algorithm.

Table 4.5 shows the statistics obtained by applying the Wilcoxon’s signed-rank test
on the accuracy achieved on the test set, by comparing the results obtained by the
FARC-HD algorithm with the ones obtained by the methods previously selected. In
each row, the ranks R* and R~ and the p-value are shown. A further column is added to
highlight if the Null-Hypothesis is rejected or not, with a significance level @ = 0.05.

The test rejects the Null-Hypothesis for two methods: IGA-FARC-HD and PBIL-
FARC-HD. The R~ values corresponding to these methods are lower than the R™ val-
ues corresponding to FARC-HD: we can conclude that these methods are statistically
worse than FARC-HD in terms of accuracy on the test set. The Null-Hypothesis is
not rejected in the case of the RNG-FARC-HD and ENN-FARC-HD methods. Thus,
we can conclude that no significant difference is found with respect to the accuracy
obtained on test set.
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4. APPLICATION OF IS TECHNIQUES WITH GFSS

Table 4.5: Wilcoxon’s statistics on the accuracy achieved on the test set obtained by com-
paring FARC-HD with the four most accurate non-dominated methods, considering 17
medium-large size datasets.

Comparison R* R~ p-value Null-Hypothesis
FARC-HD vs RNG-FARC-HD 112.0 41.0 0.09838 Not Rejected
FARC-HD vs ENN-FARC-HD  86.5 49.5 0.32273 Not Rejected
FARC-HD vs IGA-FARC-HD  140.0 13.0 0.00134 Rejected
FARC-HD vs PBIL-FARC-HD 128.0 25.0 0.01286 Rejected

Table |4.6[shows the statistics obtained by applying the Wilcoxon’s signed-rank test
on the number of rules. The test rejects the Null-Hypothesis for two methods: IGA-
FARC-HD and PBIL-FARC-HD. The R* and R~ values highlight that the rejected al-
gorithms are statistically better than FARC-HD. Actually, in Table [3.3]we can observe
that these two methods lead to models with an average number of rules considerably
lower than the models obtained by applying FARC-HD directly to the original training
set.

Table 4.6: Wilcoxon’s statistics on number of rules obtained by comparing FARC-HD
with the four most accurate non-dominated methods, considering 17 medium-large size
datasets.

Comparison R* R p-value Null-Hypothesis
RNG-FARC-HD vs FARC-HD 92.0 44.0 0.205204 Not Rejected
ENNTh-FARC-HD vs FARC-HD  78.0 75.0 0.924572 Not Rejected
IGA-FARC-HD vs FARC-HD 122.0 14.0 0.003356 Rejected
PBIL-FARC-HD vs FARC-HD 125.0 28.0 0.02016 Rejected

By observing all the results presented so far, we can draw some conclusions about
the benefits of combining TSS techniques with a genetic FRBCS algorithm, when
considering medium-large size datasets.

To this aim, we have computed the differences in percentage between the average
results obtained by the four most accurate non dominated models and by the FARC-
HD algorithm applied to the original training set, respectively. Table shows these
differences by considering as metrics the average accuracy on the test set (TstAccDiff)
and the average number of rules (RulesDiff), respectively, taking the 17 medium large
size datasets into account. The results highlight that, except for RNG-FARC-HD, the
other analyzed TSS techniques cause a negligible loss (within a range of 3%) in ac-
curacy. On the other hand, all the methods manage to decrease the complexity of the
obtained models, although only IGA-FARC-HD and PBIL-FARC-HD achieve a sig-
nificant reduction of the number of rules (-32.6% and -42%, respectively).
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Table 4.7: Differences in percentage between the average values of accuracy on the test set
(TstAccDiff) and of the number of rules (RulesDiff), obtained by the four most accurate
non-dominated models and by FARC-HD, respectively, considering the 17 medium-large
size datasets.

Method TstAccDiff RulesDiff
RNG-FARC-HD 0.4 % 3.1 %
ENNTh-FARC-HD -0.9 % -15.4 %
IGA-FARC-HD -1.4 % -32.6 %
PBIL-FARC-HD 23 % -42.0 %

We can conclude that the TSS techniques belonging to the edition decremental
family, i.e. RNG-FARC-HD and ENNTh-FARC-HD, are able to generate models with
an accuracy almost equal to the one obtained by models generated by using the overall
training set. Also, the reduction in complexity is not significant for RNG-FARC-HD,
while it is more evident for ENNTh-FARC-HD.

On the other hand, two of the techniques belonging to the hybrid mixed family, i.e.
IGA-FARC-HD and PBIL-FARC-HD, manage to reduce on average the number of
rules by 30-40%, causing at the same time only a small loss in classification accuracy
(1-2%).

These results are different from the ones obtained in the preliminary study dis-
cussed in (91)), where a similar analysis has been performed by considering 20 small
size datasets. Indeed, in (91), the edition decremental family has proved to be the
most effective, since the reduction in complexity is about 50% on average while the
accuracy on the test set is almost the same as for the FARC-HD applied to the overall
training set. These techniques are listed in Table which also shows the average
accuracy obtained on the test set (TstAcc) in the 20 small size datasets, the difference
in percentage of the accuracy achieved on the test set (TstAccDiff) with respect to
FARC-HD applied to the original training set, the average number of rules (#Rules)
and the difference in percentage of the number of rules (RulesDiff) with respect to the
FRBCSs generated by FARC-HD applied to the original training set. On the contrary,
hybrid mixed methods, which do not obtain good results when applied to small size
datasets, seem to be more appropriate when dealing with medium-large size datasets.

4.5.3 Results and analysis considering 37 datasets (all dataset sizes)

The statistical analysis presented in the previous section considers 17 medium-large
datasets. We have observed that the conclusions drawn by this analysis are different
from the ones discussed in a preliminary work on the same subject, which however
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Table 4.8: Average accuracy on the test set (TstAcc), average number of rules (#Rules)
and difference in percentage of the average values of accuracy on the test set (TstAccDiff)
and of the number of rules (RulesDiff) obtained by three models including edition decre-
mental methods and by FARC-HD, respectively, considering 20 small size datasets.

Method TstAcc TstAccDiff | #Rules RulesDiff
FARC-HD 78.51 0.0 % 24.5 0.0 %
NCNECdit-FARC-HD | 76.79 22 % 15.1 -38.4 %
RNG-FARC-HD 76.78 2.2 % 14.8 -39.4 %
ENN-FARC-HD 76.25 29 % 14.4 -41.0 %

had taken only small datasets into account. Thus, to investigate whether if there exists
a TSS technique that is suitable for being used with datasets of any dimension, we
combined the 20 small datasets analyzed in (91) (see this previous results in Table
M.3] in section with the 17 medium-large datasets analyzed in this thesis and
compared the best TSS techniques, namely ENN, RNG and NCNEdit, determined in
(91)) with the best TSS techniques, namely IGA and PBIL, identified from the previous
analysis on medium-large size datasets performed in this chapter. The comparison is
statistically validated by applying the Wilcoxon’s signed rank test. The results are
shown in Table We observe that the Null-Hypothesis is rejected in all cases. We
can conclude that none of the TSS techniques generates results that are statistically
equivalent to the ones obtained when no TSS technique is applied.

Table 4.9: Wilcoxon'’s statistics on the accuracy achieved on the test set obtained by com-
paring FARC-HD with the selected methods, considering 37 datasets.

Comparison R* R~ p-value Null-Hypothesis
FARC-HD vs ENN-FARC-HD 464 202 0.039300 Rejected
FARC-HD vs IGA-FARC-HD 683 20 5.398E-9 Rejected
FARC-HD vs NCNEdit-FARC-HD 490.5 212.5 0.035590 Rejected
FARC-HD vs PBIL-FARC-HD 657 46 2.776E-7 Rejected
FARC-HD vs RNG-FARC-HD 562 141 0.001059 Rejected

The Wilcoxon’s signed rank test has been performed again by considering the nor-
malized number of rules as metric and the results are shown in Table 4.10l In all
cases the Null-Hypothesis is rejected, therefore the results obtained by applying the
FARC-HD algorithm to the reduced sets of instances and to the original datasets are
not statistically equivalent. The R*/R™ values indicate that when a TSS technique is
used, the obtained models are less complex.

Table shows the average accuracy on the test set (TstAcc), the difference
in percentage of the accuracy achieved on the test set (TstAccDIiff) by the selected
methods and by FARC-HD, respectively, the average number of rules (#Rules) and
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Table 4.10: Wilcoxon’s statistics on the number of rules obtained by comparing FARC-
HD with the selected methods, considering 37 datasets.

Comparison R* R p-value Null-Hypothesis
ENN-FARC-HD vs FARC-HD 583 120 2.69E-4 Rejected
IGA-FARC-HD vs FARC-HD 649 17 6.024E-9 Rejected
NCNEUdit-FARC-HD vs FARC-HD 576 90 5.142E-5 Rejected
PBIL-FARC-HD vs FARC-HD 673 30 2.962E-8 Rejected
RNG-FARC-HD vs FARC-HD 587 79 1.936E-5 Rejected

the difference in percentage of the number of rules (RulesDiff). We observe that the
application of IGA-FARC-HD and PBIL-FARC-HD methods reduces considerably the
number of rules, but it also considerably worsens the accuracy performances. The other
methods, i.e. ENN-FARC-HD, NCNEdit-FARC-HD and RNG-FARC-HD, lead to an
average reduction of about 17% with respect to the number of rules, while the accuracy

on the test set is only slightly decreased (-2% on average).

Table 4.11: Average accuracy on the test set (TstAcc), average number of rules (#Rules)
and difference in percentage of the average accuracy on the test set (TstAccDiff) and of the
average number of rules (RulesDiff), with respect to FARC-HD, considering 37 datasets.

Method TstAcc TstAccDiff | #Rules RulesDiff
FARC-HD 80.25 00% | 34.05 0.0 %
RNG-FARC-HD 79.48 -1.0% | 28.17 -17.3 %
NCNEdit-FARC-HD | 79.02 -1.5% | 28.42 -16.5 %
ENN-FARC-HD 78.71 -1.9 % 28.04 -17.6 %
IGA-FARC-HD 73.95 -7.8 % 18.45 -45.8 %
PBIL-FARC-HD 73.31 -8.6 % 15.45 -54.6 %

We can conclude that RNG, NCNEdit and ENN are the most promising TSS tech-
niques to be used with GFS, since they induce the generation of less complex models
without causing an excessive reduction in accuracy. On the other hand, the IGA and
PBIL techniques lead to a considerable reduction of the complexity of the generated
models despite a strong deterioration of the accuracy.

Probably, the best choice would be to apply different TSS techniques according to
the size of the datasets. To this aim, Table @ shows the average results obtained
by applying RNG-FARC-HD for small size datasets, and IGA-FARC-HD and PBIL-
FARC-HD for medium-large size datasets. These combinations lead to an improved
balance between the reduction of the complexity of the generated FRBCSs and their
accuracy, since they manage to reduce the average complexity by 38% on average,
while the accuracy is only slightly decreased.
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4.5.4 Results and analysis of time performances

In this section, the computational cost of using TSS techniques is analyzed. The time
values reported in this analysis have been computed in the following way: for each
dataset a TSS technique has been applied and the reduced training set has been ob-
tained. Then, the FARC-HD algorithm has been applied to the reduced set of instances
and the time required by its execution has been recorded.

This process has been repeated for each TSS technique and the results are shown
in Figure 4.6/ and in Figure for small size datasets and medium-large size datasets,
respectively. In the x-axis, the datasets are sorted in ascending order, according to the
number of instances they include, while in the y-axis the time in seconds required to
execute only the FARC-HD algorithm is reported.
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Figure 4.6: Time required by the FARC-HD algorithm to be performed for each small
size dataset, without applying any TSS technique and after applying TSS techniques.

For each curve, a different TSS technique has been performed before applying
the FARC-HD algorithm, except for the curve shown with a black solid line, which

Table 4.12: Average accuracy on the test set (TstAcc), average number of rules (#Rules)
and difference in percentage of the average accuracy on the test set (TstAccDiff) and of the
average number of rules (RulesDiff), with respect to FARC-HD, considering 37 datasets.

Method TstAcc TstAccDiff | #Rules RulesDiff
FARC-HD 80.25 00% | 34.05 0.0 %
(RNG/IGA)-FARC-HD 78.78 -1.8% | 22.04 -353 %
(RNG/PBIL)-FARC-HD | 78.46 22% | 20.09 -41.0 %
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Figure 4.7: Time required by the FARC-HD algorithm to be performed for each medium-
large size dataset, without applying any TSS technique and after applying TSS techniques.

represents the time required to perform the FARC-HD algorithm without applying any
TSS technique. In Figure we notice that when the number of instances is smaller
than 215 (new-thyroid dataset), the application of any TSS technique does not visibly
reduce the time required by the FARC-HD algorithm to be performed. On the contrary,
starting from this point in the graph, we can see that almost all the TSS techniques
(excluding RNG and NCNEdit) manage to match or reduce the time required by the
FARC-HD algorithm to be performed. In particular, starting from datasets with more
than 345 instances (bupa dataset), the IGA (black dotted line) and PBIL (dark gray
solid line) techniques are the most effective in reducing the time required by the FARC-
HD algorithm. This conclusion is even more evident in Figure in which the values
of the curves corresponding to IGA and PBIL techniques are always equal to or smaller
than the values of the other curves.

To better quantify the time reduction induced by each TSS technique on the execu-
tion of the FARC-HD algorithm, the values obtained for each curve have been averaged
over all datasets and the results have been reported in the second column of Table 4.13]
The table also shows in the first column the execution time of each TSS technique,
averaged over all datasets, and in the third column the overall time required to perform
each TSS technique and the FARC-HD algorithm. Finally, in the last column, the in-
stance reduction rate for each TSS technique is reported. The first row includes the
average time needed to execute the FARC-HD algorithm when no TSS technique is
applied (the TSS time is 0 as well as the reduction rate).
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Table 4.13: Execution times averaged over 37 datasets, for the TSS pre-processing and
FARC-HD post-processing, respectively, overall execution times and instance reduction
rate achieved by each TSS technique.

TSS FARC-HD | Overall Instance

Method ' i i K
Time(s) Time(s) | Time(s) | Reduction
NO TSS 0 489 489 0%
ENN 2 456 458 -21.8 %
IGA 6730 198 6928 -84.2 %
NCNEdit 13 459 472 -20.2 %
PBIL 2995 142 3137 -92.5 %
RNG 161 453 614 -20.7 %
(RNG/IGA) 6711 202 6913 -48.1 %
(RNG/PBIL) 2985 145 3130 -54.7 %

As expected, the results highlight that the slower TSS techniques (IGA and PBIL)
remove a larger number of instances and therefore the time required by the FARC-HD
to be executed as a post-processing method is shorter. In particular, the PBIL method
is the most effective, since its aggressive instance removal policy makes the execu-
tion of the FARC-HD algorithm three times faster than the execution of the FARC-HD
algorithm when no TSS technique is applied. Nevertheless, taking into account that
PBIL obtains too poor accuracy on the small size datasets and that the times for the
RNG/PBIL combination are still very similar, we consider that such combination pro-
motes the best equilibrium between performance and execution time of the FARC-HD
algorithm.

On the other hand, if we consider the overall time needed to select a reduced set of
instances with a TSS technique and to subsequently execute the FARC-HD algorithm
on the reduced set, the results show that this time is frequently longer than the time
needed to execute the FARC-HD algorithm on the original dataset, except when using
ENN, NCNEdit and RNG techniques. In these cases, the overall computational time
is almost equivalent to the time required by the execution of the FARC-HD algorithm,
although the reduction obtained on the number of instances is modest ( 20%).

4.6 Conclusion

In this chapter we have presented an analysis of the influence of instance selection
methods, used for training set selection, combined with a genetic fuzzy system for
classification. The analysis was carried out by considering 36 methods and 37 datasets
of different sizes in order to investigate if these methods are useful to decrease the
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time of the evolutionary process and the complexity of the obtained models, although
maintaining or improving their accuracy.

The analysis highlights that different IS techniques should be used depending on
the dimension of the considered dataset. According to (91), we recommend to use
techniques belonging to the edition decremental family, and in particular RNG when
small size datasets are involved.

When dealing with medium-large size datasets, one of our main aims in this thesis,
the IGA and PBIL techniques, belonging to the hybrid mixed family, have resulted to
be the most suitable for generating models with a good trade-off between accuracy and
complexity. Nevertheless, the execution of the PBIL technique is on average faster than
the execution of the IGA technique, although the overall computational times required
to perform both the TSS and the FARC-HD algorithm are longer than the time needed
by the execution of the FARC-HD algorithm on the original training set. Therefore,
the objective of using a TSS technique is not to reduce the overall computational time,
but rather to improve the trade-off between accuracy and complexity, by reducing the
number of rules while preserving most of the accuracy.
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Chapter 5

Final Remarks

In the following, some overall conclusions are presented on the work developed in the
thesis and on the results obtained. The publications associated with the thesis are listed
and finally some ideas for possible future works are highlighted.

A Summary and conclusions

This thesis focuses on the accuracy-complexity trade-off in MOEFSs, dealing with
high dimensional and large scale classification problems. We illustrated two approaches
to address this problem:

e The first strategy aims to learn the granularity of each variable appearing in a
dataset, since it has been demonstrated that this approach produces a more ap-
propriate DB, helping to improve the precision of the obtained models. The gran-
ularity learning has been combined with MOEAs, which are able to maintain or
reduce the complexity during the evolutionary process thanks to their ability in
managing two objectives concurrently. Moreover, they have been specifically
designed to deal with dataset with a large number of variable and instances. To
this end, two proposals have been presented: in the first one, we described a
MOEEFS that learns single granularities of the variables on the basis, of some
heuristic measures computed on multiple granularities. This method achieves a
reduction of the complexity, while the accuracy is slightly decreased. In the sec-
ond proposal, we presented a MOEFS in which the granularity learning process
is performed by using a fuzzy discretization algorithm. This method achieves
an improvement of the accuracy, while the complexity is maintained at the same
level or, in some cases, decreased.
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e The second strategy addresses the problem through a pre-processing of the input
data, by applying instance selection techniques in combination with a GFS. The
study we performed highlighted that in the obtained models the complexity has
been reduced considerably, without an appreciable reduction of the accuracy. A
further analysis performed on the computational times evidenced that instance
selection techniques are not useful to globally reduce the time required by the
pre-processing plus the GFS application, since the total time increases.

B  Publications associated with this thesis

In the following, we present a list including the publications associated to this thesis:
e International journals:

— M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera, A Review
of the Application of Multiobjective Evolutionary Fuzzy Systems: Current
Status and Further Directions. IEEE Transactions on Fuzzy Systems, 21:1,
45-65 (2013).

— M. Fazzolari, B. Giglio, R. Alcal, F. Marcelloni, F. Herrera, A study on
the application of instance selection techniques in genetic fuzzy rule-based

classification systems: Accuracy-complexity trade-off. Knowledge-Based
Systems, in press, doi: 10.1016/j.knosys.2013.07.011 (2013).

— M. Fazzolari, R. Alcala, F. Herrera, A Multi-Objective Evolutionary Method
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Fuzzy Association Rule-Based Classification Model by Granularity Learn-
ing based on Heuristic Measures over Multiple Granularities. 1EEE In-
ternational Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS
2013), Singapore (Singapore), 44-51 (2013).

C Future works

The conclusions presented so far pointed out that granularity learning and instance
selection techniques represent valid tools to improve the balance between accuracy
and complexity in FRBSs for high dimensional problems. Even so, there are other
issues that should be considered. In the following we present some possible future
investigation trends related with this problem.

e A possible research line can focus on the development of MOEFSs that consider
not only complexity measures but also semantic interpretability measures. How-
ever, we should remember that there are still no measures commonly accepted
by the scientific community. In some recent works new measures have been pro-
posed to describe semantic interpretability (25, 83) and they have been applied
to regression problems. A possibility would be to apply these measures to the
case of MOEFSs for classification problems, with the aim of generating more
interpretable DB from the semantic point of view.

e Regarding the instance selection, the study performed in this thesis pointed out
that these techniques does not aim to reduce the total calculation time, but rather
to improve the accuracy-complexity trade-off through the reduction of the rules
of the obtained models. In this case, a possible improvement would be to specif-
ically design instance selection techniques to be used in combination with GFSs
and MOEFSs, in order to improve both objectives simultaneously.

e By analyzing the results presented in chapter 2| and [3] it is clear how the choice
of appropriate granularities can influence the accuracy of FRBSs. One possi-
ble future research line can investigate the development of wrapper MOEFSs,
in which the granularity learning process is performed within the evolutionary
process based on the application of a fast rule induction process each time a DB
needs to be evaluated. To this end, a fuzzy discretization algorithm can be used
to initialize the chromosome that will be evolved by the MOEA.
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Final remarks

e An alternative proposal to the use of instance selection techniques as pre-process-
ing would be the use of instance reduction mechanisms integrated within the
MOEA. A similar approach has been used in (27) for regression problems. Its
advantage resides in the fact that the reduced set of examples is adapted during
the evolutionary process, providing models with similar accuracy but reducing
drastically the computational time required by the overall fitness evaluation.
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