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Abstract

Background: Climate change potentially has important effects on distribution, abundance, transmission and virulence of
parasites in wild populations of animals.

Methodology/Principal Finding: Here we analyzed paired information on 89 parasite populations for 24 species of bird
hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather
parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was
related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire
dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased
over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in
temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to
change in temperature between first and second study year. In addition, changes in clutch size, brood size and body
condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were
not significantly related to changes in abundance of parasites or their prevalence.

Conclusions/Significance: Climate change is associated with a general increase in parasite abundance. Variation in laying
date depended on locality and was associated with latitude while body condition of hosts was associated with a change in
temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results
suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of
their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–
15 years was used, suggesting that short intervals may bias findings.
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Introduction

The commonest interactions between species occur between

parasites and their hosts [1,2]. These interactions depend on

parasite prevalence and abundance, rate and mode of transmis-

sion, effect of parasites on fecundity and mortality of hosts and the

level of anti-parasite defence by hosts [3]. Each of these different

steps in the interaction can potentially be affected by environ-

mental conditions including climatic conditions [4]. Several studies

have indicated that parasite diversity is higher at low latitudes [5–

7], and negative impacts on avian [8] and human hosts [5,9,10]

are higher at low latitudes. This is partly linked to latitudinal clines

in climate, but also clines in host immunity and host population

density [11–13], and consequently climate may have direct effects

on interactions between hosts and parasites by affecting the

abundance of parasites, or by indirectly affecting phenology of

parasites and hosts [14].

Many studies have pondered the effects of climate change on

parasites, host-parasite interactions and ultimately veterinary and

public health [15–22]. Increasing temperature is the main factor

linked to climate change effects on living organisms although

changing precipitation and wind may also play a role. Many

parasites are advancing their date of emergence [4,23–25], and

some that were previously active only in the summer are now

active year-round [26,27]. A longer and earlier period of

reproduction by parasites may increase the number of parasite

generations per year, as a longer breeding season of the host

provides parasites with a selective advantage [28,29]. However, a

longer reproductive season may also allow hosts to better defend

themselves against parasites and hence achieve higher reproduc-

tive success because timing of reproduction is less constrained by

migration [30,31]. Most models of the effect of climate change on

host-parasite interactions predict that the distribution of parasites

will move northwards, while the overall geographical range of the

parasite will not change, nor will total population size [4]. Host

populations may also expand as a consequence of climatic change,

although that will partly depend on their immunity and hence

their ability to cope with novel parasite assemblages [32].

Empirical assessments of effects of climate change on host-

parasite interactions are scarce, and, therefore, there is high

uncertainty in predicting the consequences. Møller [33] analyzed

prevalence and intensity of several species of parasites exploiting

the barn swallow Hirundo rustica, showing that parasites that do not

complete their life cycles on hosts were more strongly affected by

climate change than those that do. In addition, a directly

transmitted mite seemed to have reduced its virulence in response

to climate change, while cell-mediated immunity of swallows

decreased over time. A recent meta-analysis concluded that the

incidence of blood parasites and avian malaria increased during

recent decades [34]. Likewise, changes in prevalence of a brood

parasitic cuckoo were related to change in temperature [35–36].

In addition, several studies have shown changes in phenology of

both hosts and parasites [34]. Finally, some studies of hosts and

parasites have demonstrated changes in parasite-mediated mor-

tality and resistance of hosts [34,36,37]. For example, host races of

the cuckoo Cuculus canorus rely on migratory hosts that now arrive

well before the arrival of the parasitic cuckoo. Therefore such host

races have declined dramatically in abundance in recent years

[36]. While there is evidence of changes in host-parasite

interactions related to climate change, there is considerable

unexplained heterogeneity among parasite taxa.

In an attempt to fill this gap, we established a European network

of scientists interested in host-parasite interactions exploiting

existing historical data on abundance and impact of parasites on

their bird hosts. By returning to exactly the same host populations

in 2010, and recording parasitological, host demographic and host

density data as already done in exactly the same way in an earlier

study year, we developed a paired design to test for climate-driven

change in host-parasite interactions. We explicitly tested for an

effect of interval between first and second study year on

temperature and parasite and host variables while statistically

controlling for the time elapsed between studies. Such within-

population comparisons are known to be particularly powerful

because they allow separation of within from between population

variance [38]. Despite the statistical advantage of this approach

and the common use of among-year variation for exploring effects

of climate changes [39–42], we are unaware of any previous study

adopting this design to explore the effects of time for such a broad

range of species and populations.

The objectives of the study were to test the link between climate

change and host-parasite interactions. Specifically, we tested (1)

if prevalence and mean abundance of parasites and abundance

of hosts have changed over time within study sites; (2) if the

changes in parasite prevalence and abundance are related

to changes in temperature within study sites; (3) if the

change in prevalence and abundance of parasites has fitness

consequences for their hosts; and (4) if a decrease in population

density of hosts can be predicted by an increase in abundance of

parasites and an increase in temperature. We obtained data on

17,891 individuals of 89 parasite populations for 24 different

species of hosts making this study by far the largest ever conducted

on the relationship between climate change and host-parasite

interactions.

Methods

Ethics Statement
This study was carried out in strict accordance with current laws

of all the countries where the study was performed and following

the recommendations of the ‘Guidelines to the Use of Wild Birds

in Research’ (J. Fair, E. Paul and J. Jones, eds. 2010.

Ornithological Council, Washington, D. C.). All efforts were

Host-Parasite Interactions and Climate
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made to ameliorate suffering of animals and minimize handling

time. No birds were injured or killed during the study.

Blood sampling was carried out at locations in Belgium,

Bulgaria, Denmark, Finland, Hungary, Norway, and Spain. The

sampling consisted of collection of a tiny blood sample from the

brachial vein. This procedure is a standard procedure performed

by numerous bird banders throughout the world for the study of

avian malaria. No birds showed signs of negative consequences of

blood sampling. We have recorded as high survival rates from

sampled birds as from other birds. Collection of blood was

specifically authorized in each location under the permits issued

for this work.

Study Populations
In January 2010 we requested 58 European scientists, who had

published on bird-parasite interactions to participate in the

project. Participants were mainly selected based on a recent

review of the effects of bird parasites on the fitness of their hosts

[8]. Three requests were made and eventually 37 scientists

participated in the study. Some scientists did not participate

because they were not working on parasites any more, or they

were committed to other projects during 2010. The geographical

distribution of the study sites is shown in Fig. 1. We deliberately

collected all recent samples during a single breeding season (2010)

to reduce potential bias related to variation in variables among

years. Although this approach may reduce variation in estimated

differences due to the second year being the same for all

populations, geographic variation in climatic conditions during

2010 was sufficiently large among study populations to ensure

conclusions that are independent of the particular climatic

conditions of 2010. Geographic variation in temperature in 2010

did not differ from that of the first study year (Levene’s test,

F = 0.45, d.f. = 1, 88, P = 0.50), although the first study year

differed among populations. We asked all participants to use

exactly the same methods in 2010 as during the first year of their

study, but also that the same person conduct or at least supervise

the study, thus ensuring that all studies were consistent in

methodology over time to avoid inter-observer variability.

Parasites
We distinguished between four functional parasite groups based

on their taxonomic and transmission status: protozoans including

blood parasites, feather parasites, dipteran parasites and non-

dipteran parasites. Protozoans are generally vector-transmitted.

Feather parasites such as chewing lice and feather mites live in the

plumage of birds. Dipteran parasites include louseflies and

blowflies. Non-dipteran parasites included blood-sucking fleas,

ticks and mites. When more than one taxon of parasite within one

of these groups were investigated in a target host species and

population, we estimated mean values, which were used for

subsequent analyses. Variance explained by the four functional

groups of parasites was significantly larger than the residual

variance (that was explained by different kinds of parasites within

the four functional groups) for parasite abundance (F = 4.31,

Figure 1. Geographical distribution of the 26 sites for the study of temporal change in abundance and prevalence of parasites of
birds and their consequences.
doi:10.1371/journal.pone.0082886.g001
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d.f. = 3,44, P = 0.01) and prevalence (F = 4.14, d.f. = 3,82,

P = 0.009), which further supports the use of mean values.

We requested information on prevalence (the fraction of adults

or nests harboring a given parasite) and the mean abundance of

parasites exactly as done in the first year of the study and again in

2010. We requested that participants record information on

demographic traits and population density of hosts as described

below.

Information on the methods used to quantify parasites can be

found in the references in Møller et al. [8] and Merino et al. [43].

In brief, we quantified prevalence and intensity of infection (mean

abundance of parasites per host/host nest). Most studies either

used two independent methods to quantify parasites or quantified

parasites repeatedly for the same individuals/nests to allow

estimation of repeatability. All studies used statistically significant

and highly repeatable estimators of parasite prevalence and

abundance.

Temperature Trends
We used the E-OBS gridded dataset (version 5.0) maintained by

the European Climate Assessment and Dataset (ECAandD)

(http://eca.knmi.nl/) to estimate temperatures at the study sites

[44]. We calculated mean monthly temperature for each

0.2560.25 degree squares, covering the study sites from the daily

mean temperature of the E-OBS gridded dataset. Change in

temperature during the month best covering the laying, incubation

and nestling period of each bird host species was estimated as the

temperature in 2010 minus the temperature in the first study year

divided by the interval between the two years. This change in

temperature over time (uC/year) is referred to as change in

temperature throughout the remainder of this paper.

Life History and Population Density of Hosts
We requested that all participants record for each host the date

of laying of the first clutch, clutch size, reproductive success (no.

fledglings) and body condition (estimated as body mass at the

start of the breeding season, if possible). We also requested a

local estimate of population density of hosts (such as the

proportion of nest boxes occupied for nest box studies, the total

number of occupied nest boxes, the number of individual birds

captured, colony size, or in a few cases population density for open

nesting species). The entire dataset is reported in File S1 in Tables

S1–S2, while Table S3 in file S1 presents correlations between

prevalence and response variables in the supplementary material

(ESM).

Statistical Analyses
All variables were log10-transformed to achieve approximately

normal distributions. The effects of time between sampling of host

populations and parasite intensity and prevalence were explored

by Repeated Measures ANOVAs with laying date, clutch size,

brood size, body condition of adults, population density, parasite

loads and parasite prevalence estimated for the two study years as

within subject, and population identity, host (or parasite) identity,

latitude, and temperature change per year (uC/years) as between

subject factors. All analyses were performed individually in order

to avoid inclusion of more than one interaction term of between

and within factors (i.e. repeated measure).

The effects of parasitism on characteristics of host populations

were also explored using Repeated Measures ANOVAs with

laying date, clutch size, brood size, body condition of adults and

population density estimated for the two study years as within

subject factors and change in parasite abundance and prevalence

as between subject factors. Parasite functional group, latitude and

temperature change (uC/years) were also included in the models as

additional between factors to statistically control for the effect of

these factors on changes in host population characteristics. A

significant interaction between repeated measure and between

factors would be consistent with an effect of the latter on change in

host population characteristics.

Statistical analyses assume that each observation provides

equally precise information about the deterministic part of the

process variance [38]. Sample sizes differed among species due to

differences in abundance of hosts, and such variation may affect

the precision of estimates and hence the outcome of the statistical

analyses [45,46]. Therefore, we weighted all analyses by sample

size to ensure that individual observations contributed relative to

their precision.

The findings might depend on duration of the interval between

first and second study year. Therefore, we conducted a second

series of analyses based on datasets with an interval of 5–15 years,

and these results are reported in Tables S4–6 in File S1. All

analyses were performed with Statistica 10 [47]. Values reported

are means (SE).

Results

Summary Statistics
The mean change in temperature per year across the 89 data

sets was + 0.085uC (SE = 0.029), with a range from 20.65uC to

+1.07uC, differing significantly from zero which would be

expected if temperature on average was the same in the first and

the last year of study (t-test, t = 2.90, P = 0.0047). A similar increase

in temperature over time was found for studies based on intervals

of 5–15 years (+0.076uC (SE = 0.020), with a range from 20.55uC
to +0.50uC). Temperature in the first year was lower than in the

second year (t = 2.52, P = 0.013), and that was even more so for

studies with an interval of 5–15 years (t = 4.30, P,0.0001). The

number of years between the first study year and 2010 was on

average 10 years (SE = 0.63), range 1 to 39 years with 78% within

the interval 5–15 years. We also detected a large range in change

in temperature across studies from 22.94uC to +4.04uC, on

average +0.40uC, for the mean period of study. Because change in

temperature between the first year of study and 2010 decreased

slightly with the number of years of study (F = 4.02, d.f. = 1,87,

r2 = 0.04, P = 0.048, estimate (SE) = 20.053 (0.027)), implying that

temperatures decreased more in studies of long duration, we used

temperature change among study years divided by number of

years elapsed between the first year and 2010 in the subsequent

analyses. There were no additional effects of latitude or longitude

on change in temperature (latitude: F = 0.05, d.f. = 1,85, P = 0.83;

longitude: F = 0.39, d.f. = 1,85, P = 0.54), suggesting that these

variables were not confounding effects on change in temperature.

Total sample size was 9935 hosts (or host nests depending on

study) in the first year and 7956 in 2010, or in total 17,891 hosts/

nests. A total of 37.2% of the 89 parasites studied were

ectoparasites, and 76.4% of the 89 parasites lived permanently

on the host, with the remaining species living apart from the host

at ambient temperature at least part of the annual cycle.

Prevalence and abundance of parasites in the first study year

was independent of the duration of the study period (GLM:

prevalence: log-likelihood x2 = 2.12, d.f. = 1, P = 0.14; abundance:

log-likelihood x2 = 0.42, d.f. = 1, P = 0.51).

Temporal Change in Host Populations
Host populations on average started to reproduce later during

2010 than during the first study year (Fig. 2). Moreover, temporal

change in laying date differed significantly among localities

Host-Parasite Interactions and Climate
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(Table 1), which may be related to differential effects of climatic

change at different latitudes (Table 1, Fig. 3). Change in clutch size

decreased with increasing change in temperature (Table 1;

Fig. 4A). Change in brood size differed among localities

(Table 1), but not when considering studies with intervals between

5–15 years (Table S4 in File S1). Change in body condition tended

to decrease with increasing temperature (Table 1; Fig. 4B). Host

populations were less abundant in 2010 and this did not depend

on host identity when studies with intervals between 5–15 years

were considered (Table 1, Table S4 in File S1).

Figure 2. Temporal change in laying date of hosts, body condition of hosts, population size of hosts, brood size of hosts and clutch
size of hosts between the first study year and 2010. Box plots show means, standard errors and 95% confidence intervals.
doi:10.1371/journal.pone.0082886.g002

Table 1. Repeated measures ANOVAs with laying date, clutch size, brood size, body condition and population density of hosts in
two separate study years as within subjects factors and locality identity, host identity, latitude, interval in years and temperature
change (uC/year) as between subjects factors.

Repeated measure Locality Host identity Latitude Interval in years

Temperature change

(6C/year)

F d.f. P F d.f. P F d.f. P F d.f. P F d.f. P F d.f. P

Laying date 8.69 1,26 0.007 7.38 19,7 0.006 1.17 15,11 0.406 5.78 1,25 0.024 0.02 1,25 0.900 2.49 1,25 0.127

Clutch size 0.86 1,29 0.363 0.83 20,9 0.654 0.80 17,12 0.673 0.27 1,28 0.606 0.27 1,28 0.606 6.84 1,28 0.014

Brood size 0.18 1,28 0.673 3.53 19,9 0.029 0.42 16,12 0.948 3.02 1,27 0.093 0.00 1,27 0.973 0.00 1,27 0.983

Body condition 0.57 1,22 0.458 1.00 12,10 0.505 1.22 14,8 0.400 0.14 1,21 0.710 0.18 1,21 0.675 5.33 1,21 0.031

Population density 22.88 1,38 0.0001 1.54 22,16 0.190 5.51 22,16 0.001 0.41 1,37 0.525 0.01 1,37 0.926 0.39 1,37 0.537

Each effect was estimated in separates models. P-values smaller than 0.05 are shown in bold.
doi:10.1371/journal.pone.0082886.t001
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Temporal Change in Parasite Populations
We detected 18 gains and 8 losses of parasites among studies,

and for studies with 5–15 years intervals there were 10 gains and

10 losses. Abundance of parasites was larger in 2010 than in the

first study year. However, none of the variables explained change

in abundance of parasites (Table 2; Fig. 5A). Variables that

explained change in parasite prevalence depended on interval

between study years. Locality was associated with parasite

prevalence when considering studies with 5–15 years intervals

(Table S5 in File S1), while parasite identity did so when all studies

Figure 4. Host clutch size and body condition in relation to change in temperature. (A) Change in clutch size in relation to change in
temperature. (B) Change in body condition in relation to change in temperature. The size of symbols is proportional to log-transformed sample sizes,
while the lines are linear regression lines.
doi:10.1371/journal.pone.0082886.g004

Figure 3. Change in laying date between first study year and 2010 in relation to latitude. The size of symbols is proportional to log-
transformed sample size, while the lines are linear regression lines.
doi:10.1371/journal.pone.0082886.g003
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Table 2. Repeated measures ANOVAs with parasite abundance and prevalence in two separate study years as within subjects
factors and locality identity, parasite identity, latitude, interval in years and temperature change (uC/year) as between subjects
factors.

Repeated
measure Locality Parasite identity Latitude Interval in years

Temperature change (6C/

year)

F d.f. P F d.f. P F d.f. P F d.f. P F d.f. P F d.f. P

Parasite load 1.15 1,29 0.293 0.81 17,12 0.660 2.81 3,26 0.059 0.25 1,28 0.618 0.61 1,28 0.590 0.30 1,28 0.590

Parasite prevalence 0.19 1,43 0.668 0.89 20,23 0.597 4.37 3,40 0.009 0.51 1,18 0.943 0.01 1,18 0.943 0.187 1,18 0.668

Each effect was estimated in separates models. P-values smaller than 0.05 are shown in bold.
doi:10.1371/journal.pone.0082886.t002

Figure 5. Change in parasite abundance and parasite prevalence over time for different categories of parasites. (A) Change in parasite
abundance and (B) change in parasite prevalence between study years for different parasite taxa. Box plots show means, standard errors and 95%
confidence intervals. The right Y-axis in (A) is the number of non-dipteran parasites.
doi:10.1371/journal.pone.0082886.g005
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were considered (Table 2). Non-dipteran parasites were the only

group that tended to decrease in prevalence between sampling

years although this category did not differ significantly from

tendencies for other categories (Table 2; Fig. 5B).

Relationships between Temporal Change in Host and
Parasite Populations

When considering the entire dataset, change in parasite

abundance, but not in prevalence was associated with delayed

laying (beta (SE) = 0.70 (0.21), P = 0.004) and reduced body

condition (beta (SE) = 20.49 (0.16), P = 0.038) by their avian hosts

(Table 3). Moreover, the rate of change in body condition and

laying date of hosts depended on parasite group (Table 3). These

associations were detected after controlling for the effects of

latitude and temperature change (Table 3).

When only considering studies with an interval of 5–15 years,

the association between laying date and parasite abundance did

not reach statistical significance, but change in laying date differed

significantly among parasite categories when either parasite

abundance or parasite prevalence were included in the model

(Table S6 in File S1). Interestingly, these restricted analyses

showed not only the detected negative association between change

in parasite abundance and change in body condition of hosts (beta

(SE) = 20.49 (0.16), P = 0.038), but also significant effects of

parasite abundance on clutch size (beta (SE) = 20.61 (0.23),

P = 0.026) and brood size (beta (SE) = 20.58 (0.21), P = 0.021)

(Table S6 in File S1). Finally, when considering this restricted

sample of studies, the results indicate that parasite categories

explained changes in population density of hosts when parasite

abundance was included in the model (Table S6 in File S1). All

these associations were detected after controlling for the effects of

latitude and temperature change (Table S6 in File S1).

Discussion

We posed the question whether a general increase in

temperature had a significant effect on abundance of parasites

and hosts, and whether this led to altered effects of parasites on

host fitness. We recorded 18 gains and 8 losses of parasites

although a more balanced frequency of 10 gains and 10 losses

were found for the restricted dataset. Hosts generally started to

reproduce later in recent years, and we could link this change in

clutch size and change in body condition to change in

temperature, although obviously other unknown factors could

have changed as well. Change in parasite abundance and

prevalence was not significantly related to change in temperature.

Change in parasite abundance, but not change in parasite

prevalence, explained a significant proportion of variance in host

life-history variables. Specifically, increasing parasite abundance

was associated with clutch size, brood size and body condition, as

was the increase in temperature. This suggests that changes in

parasite abundance occurred through indirect effects such as

effects of temperature on hosts. This raises the possibility that

other aspects of climate change such as precipitation or wind could

affect insect vectors and larval nematodes. Finally, population size

of hosts was not significantly correlated with abundance and

prevalence of parasites or change in temperature.

Change in abundance of parasites was linked to change in

temperature during the breeding season of hosts, which in general

is also the breeding season of the parasites. This general finding is

in accordance with several studies that have documented changes

in prevalence and/or abundance of parasites over time [34], or in

response to change in climate [33,35,36]. We caution that change

in parasite prevalence or abundance over time may be linked to

many factors other than climate change. Long-term studies of the

same population of hosts and parasites during decades in areas

where temperature has increased dramatically are clearly more

powerful, and hence more likely to find predicted changes [33]

than studies based on two years.

Increasing temperatures advance the emergence of resting

stages of parasites [4,23–25,33,48] or their vectors [33,34,49].

This can affect the fitness costs of parasitism for hosts because

parasites inflict greater fitness costs when weather is poor [50–52],

and earlier start of reproduction by hosts is likely to increase the

risk of adverse weather. Likewise higher temperatures can increase

reproductive rates of parasites and thus the rate of evolution by

parasites relative to that of hosts [4,23,24,48], even when hosts also

increase their reproductive rate [33]. Finally, climate may affect

defenses of hosts and thereby increase the level of virulence of

parasites [4,13,37,53,54]. These scenarios predict changes in

parasite populations associated with climate change as shown by

our results when restricting the analyses to studies with an interval

of 5–15 years. In addition, we found support for the prediction

that temperature explained change in clutch size and body

condition of hosts, and both these fitness components were

associated with parasite abundance. This provides evidence of an

indirect effect of parasites on fitness components of hosts

associated with an effect of temperature on the same fitness

components.

The support for our predictions when restricting the analyses to

studies with intervals of 5–15 years suggests that a certain amount

of time must have passed to result in changes. We found

associations between change in temperature and change in clutch

size and change in body condition, respectively, although similar

effects were absent for laying date and brood size. Factors such as

those related to host characteristics, and whether parasites spend

part of the year away from hosts, may be important.

We found an increase in abundance of parasites in 2010

compared to the first year when restricting the analyses to datasets

with an interval of 5–15 years. There was no confounding effect of

population density of hosts because host population density on

average decreased during the course of the study, thereby reducing

parasite transmission rates. Most of the parasite species were

endoparasites living permanently within their hosts, hence only

indirectly being affected by changing temperatures. We can only

speculate that the detected change in the abundance of parasites

for populations may be related to the indirect effects of

temperature on host population density (Results) and/or an

increase in immunity and anti-parasite responses of hosts

[14,55,56].

The parasite species have all at least sometimes been shown to

negatively impact fitness components of their hosts [8]. We

detected that species, which experienced an increase in the

abundance of parasites during the study period, advanced their

laying date compared to species in which parasite abundance

decreased. However, this effect disappeared when considering the

restricted dataset that only included studies with an interval of 5–

15 years. With this restricted dataset we found evidence of change

in body condition, clutch size and brood size of hosts being

negatively linked to change in temperature and parasite

abundance, while changes in body condition and clutch size were

also associated with change in temperature. These associations

were not detected when considering parasite prevalence. While

parasite abundance reflects the impact of parasites on hosts at the

level of individual hosts, prevalence constitutes a measure of

parasite populations at the level of host populations. Our results

are therefore in accordance with the assumption that parasitism

negatively influences reproductive success of their hosts, and with
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the hypothesis that the effect of climate change on host

reproduction is at least partially mediated by changes in parasitism

due to climate change.

While changes in the distribution and abundance of parasites

may impact their hosts, whether this has any population

consequence for the host depends on density-dependent mortality

and fecundity [57–59]. Populations which have declined the most

are those that have not responded to climate change [9,35,60,61].

We found no evidence for an effect of climate change on

population size of birds as mediated by parasites. Change in

population density of hosts depended on latitude, and it differed

among parasite groups. These findings suggest that climate change

has not affected population size of hosts directly through effects of

change in parasitism or change in temperature.

In conclusion, while climate change may affect hosts by

affecting phenology, reproduction and host body condition, an

increase in temperature was associated with a general increase in

parasite abundance. Clutch size, brood size and body condition of

hosts were associated with a change in temperature and with a

change in parasitism, respectively, suggesting that parasites may

affect fecundity and condition of their hosts.
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