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Abstract

Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this
context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed,
Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding,
allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a
slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural
properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of
the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been
discounted – as a second factor – we find that nestedness is strongly correlated with disassortativity and hence – as random
networks have been recently found to be naturally disassortative – they also tend to be naturally nested just as the result of
chance.
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Introduction

Networks have become a paradigm for understanding systems

of interacting objects, providing us with a unifying framework for

the study of diverse phenomena and fields, from molecular biology

to social sciences [1]. Most real networks are not assembled

randomly but present a number of non-trivial structural traits such

as the small-world property, scale freeness, hierarchical organiza-

tion, etc [2,3]. Network topological features are essential to

determine properties of complex systems such as their robustness,

resilience to attacks, dynamical behavior, spreading of informa-

tion, etc. [3–5]. A paradigmatic case is that of ecosystems, in which

species can be visualized as nodes of a network and their mutual

interactions (predation, mutualism, etc) encoded in the edges or

links. In this context, the solution to May’s famous paradox [6] –

the fact that large ecosystems seem to be especially stable, while

random matrix theory predicts the contrary – is still not fully clear,

but it is widely suspected that there are structural (non random)

features of ecological networks at the basis of enhanced stability,

which as yet elude us (see [7] for a recent challenge to this idea).

One such feature of ecological networks, which has been studied

for some time by ecologists, is called nestedness [8]. Loosely

speaking, a bipartite network [3] – say, for argument’s sake, of

species and islands, linked whenever the former inhabits the latter

– is said to be nested if the species that exist on a few islands tend

always to be found also on those islands inhabited by many

different species. This can be most easily seen by graphically

representing a matrix such that species are columns and islands are

rows, with elements equal to one whenever two nodes are linked

and zero if not. If, after ordering all nodes by degree (number of

neighbours), most of them can be quite neatly packed into one

corner, the network is considered highly nested [8,9]. This is

illustrated in Fig. 1 where we plot different connectivity matrices

with different levels of maximal ‘‘compactability’’ and, thus, with

different levels of nestedness.

Nestedness is usually measured with purposely-designed soft-

ware. The most popular nestedness calculator is the ‘‘temperature of

Atmar and Patterson (used to extract a temperature from the

matrices in Fig. 1) [8]. It estimates a curve of equal density of ones

and zeros, calculates how many ones and zeros are on the

‘‘wrong’’ side and by how much, and returns a number between 0
and 100 called ‘‘temperature’’ by analogy with some system such

as a subliming solid. A low temperature indicates high nestedness.

It is important to caution that nestedness indices should not be

used as black-boxes, as this can lead to false conclusions [10,11].

The main drawback of these calculators is that they are defined by

complicated algorithms, hindering further analytical develop-

ments. Even if initially introduced for bipartite networks, the

concept of nestedness can be readily generalized for generic

networks.

In a seminal work, Bascompte and collaborators [12] showed

that real mutualistic networks (i.e. bipartite networks of symbiotic

interactions), such as the bipartite network of plants and the insects

that pollinate them, are significantly nested. They also defined a

measure to quantify the average number of shared partners in

these mutualistic networks, and called it ‘‘nestedness’’ because of

its close relation with the concept described above. They go on to

show evidence of how the so-defined nestedness of empirical

mutualistic networks is correlated with the biodiversity of the

corresponding ecosystems [13]: the global species competition is

significantly reduced by developing a nested network architecture

and this entails a larger biodiversity. The principle behind this is

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74025



simple. Say nodes A and B are in competition with each other. An

increase in A will be to B’s detriment and vice-versa; but if both A

and B engage in a symbiotic relationship with node C, then A’s

thriving will stimulate C, which in turn will be helpful to B. Thus,

the effective competition between A and B is reduced, and the

whole system becomes more stable and capable of sustaining more

nodes and more individuals. The beneficial effect that ‘‘compet-

ing’’ nodes (i.e. those in the same side of a bipartite network) can

gain from sharing ‘‘friendly’’ partners (nodes in the other side) is

not confined to ecosystems. It is expected also to play a role, for

instance, in financial networks or other economic systems [14]. To

what extent the measure introduced by Bascompte et al. is related

to the traditional concept of nestedness has not, to the best of our

knowledge, been rigorously explored. Irrespectively of this

relation, however, the insight that mutual neighbours can reduce

effective competition in a variety of settings is clearly interesting in

its own right, and it is for this reason that we analyse this feature

here. On a different front, Staniczenko et al. [15] have made some

promising analytical progress regarding the traditional concept of

nestedness.

Here, we take up this idea of shared neighbours (though

characterized, owing to reasons we shall explain in the Methods,

with a slightly different measure) and study analytically and

computationally how it is influenced by the most relevant

topological properties, such as the degree distribution and

degree-degree correlations. Our aim is to understand to what

extent nestedness is a property inherited from imposing a given

degree distribution or a certain type of degree-degree correlations.

Methods: Analytical Quantification of Nestedness

Consider an arbitrary network with N nodes defined by the

adjacency matrix âa: the element âaij is equal to the number of links

(or edges) from node j to node i (typically considered to be either 1
or 0 though extensions to weighted networks have also been

considered in the literature [15]). If âa is symmetric, then the

network is undirected and each node i can be characterized by a

degree ki~
P

j âaij . If it is directed, i has both an in degree,

kin
i ~

P
j âaij , and an out degree, kout

i ~
P

j âaji; we shall focus here

on undirected networks, although most of the results could be

easily extended to directed ones.

Bastolla et al. [13] have shown that the effective competition

between two species can be reduced if they have common

neighbours with which they are in symbiosis. Therefore, in

mutualistic networks it is beneficial for the species at two nodes i

and j if the number of shared symbiotic partners,

n̂nij~
P

l âail âalj~(âa2)ij , is as large as possible. Going on this, and

assuming the network is undirected, the authors propose to use the

following measure:

gB~

P
ivj n̂nijP

ivj min (ki,kj)
, ð1Þ

which they call nestedness because it would seem to be highly

correlated with the measures returned by nestedness software.

Note that, although the authors consider only bipartite graphs,

such a feature is not imposed in the above definition.

Here, we take up the idea of the importance of having an

analytical expression for the nestedness but, for several reasons, we

use a definition slightly different from the one in [13]. Actually, gB

suffers from a serious shortcoming; if one commutes the sums in

the numerator of Eq. (1), it is found that the result only depends on

the heterogeneity of the degree distribution:P
ij n̂nij~

P
l

P
i âail

P
j âalj~NSk2T (in an undirected network,

P
ivj ~

1
2

P
ij ; we shall always sum over all i and j, since it is easier

to generalize to directed networks and often avoids writing factors

2). Therefore, this index essentially provides a measurement of

network heterogeneity. Also, although the maximum value n̂nij can

take is min (ki,kj), this is not necessarily the best normalization

factor, since (as we show explicitly in the next Section) the

randomly expected number of paths of length 2 connecting nodes i

and j depends on both ki and kj . Furthermore, it can sometimes

be convenient to have a local measure of nestedness (i.e. nestedness

of any given node) which cannot be inferred from the expresion

Figure 1. Measures of nestedness in networks. The figure shows three different connectivity matrices with different levels of nestedness as
measured by (i) our new nestedness index [Eq. (6)] and (ii) the standard nestedness ‘‘temperature’ calculator’’. As can be readily seen, the most
packed matrix corresponds to a very low temperature and to a high nestedness index (gw1) and, reciprocally, the least packed one exhibits a high
temperature and an index close to its expected value for a random network (g^1).
doi:10.1371/journal.pone.0074025.g001
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above. For all these reasons, we propose to use

~ggij:
n̂nij

kikj

~
(âa2)ij

kikj

, ð2Þ

which is defined for every pair of nodes (i,j). This allows for the

consideration of a nestedness per node, ~ggi~N{1
P

j ~ggij , or of the

global measure

~gg~
1

N2

X

ij

~ggij ð3Þ

which is very similar in spirit to the measure introduced by

Bastolla et al. in [13] but, as argued above, has a number of

additional advantages. This new index can be easily applied to

bipartite networks, as shown in Appendix S1.

Having an analytical definition of nestedness, it becomes

feasible to scrutinize how it is influenced by the most basic

structural features, such as the degree distribution and degree-

degree correlations. The standard procedure to determine how

significantly nested a given network is, is to generate randomiza-

tions of it (while keeping fixed some properties such as the total

number of nodes, links, or degree distribution) and compare the

nestedness of the initial network with the ensemble-averaged one.

The set of features kept fixed in randomizations determine the null-

model used as reference.

Effects of the Degree Distribution: Configuration Model
Many networks have quite broad degree distributions P(k);

most notably the fairly ubiquitous scale-free networks, P(k)*k{c

[2]. Since heterogeneity tends to have an important influence on

any network measure, it is important to analytically quantify the

influence of degree-distributions on nestedness. For any particular

degree sequence, the most natural choice is to use the configuration

model [3,16] – defined as the ensemble of random networks wired

according to the constraints that a given degree sequence

(k1,:::,kN ) is respected – as a null model. In such an ensemble,

the averaged value of any element of the adjacency matrix is

âaij:îjij
c~

kikj

SkTN
: ð4Þ

We use an overline, (:), to represent ensemble averages and

angles, S:T, for averages over nodes of a given network.

Nestedness in the Configuration Model
Plugging Eq. (4) into Eq. (2), we obtain the expected value of ~gg

in the configuration ensemble, which is our basic null model

~ggij~
Sk2T

SkT2N
:~ggconf : ð5Þ

It is important to underline that ~ggi,j is independent of i and j;

hence, it coincides with the expected value for the global measure,

~gg~~ggi,j (which justifies the normalization chosen in Eq. (2)). Also, it

is noteworthy that for degree distributions with finite first and

second moments, ~ggconf goes to zero as the large-N limit is

approached.

It is obvious from Eq. (5) that degree heterogeneity has an

important effect on ~gg; for instance, scale-free networks (with a

large degree variance) are much more nested than homogeneous

ones. Therefore, if we are to capture aspects of network structure

other than those directly induced by the degree distribution it will

be useful to consider the nestedness index normalized to this

expected value,

g:
~gg

~ggconf

~
SkT2

Sk2TN

X

ij

(âa2)ij

kikj

: ð6Þ

Although g is unbounded, it has the advantage that it is equal to

unity for any uncorrelated random network, independently of its

degree heterogeneity, thereby making it possible to detect

additional non-trivial structure in a given empirical network.

Degree-degree Correlations in the Configuration Model
In the configuration ensemble, the expected value of the mean

degree of the nearest neighbours (nn) of a given node is

knn,i~k{1
i

P
j îjij

ckj~Sk2T=SkT, which is independent of ki. Still,

specific finite-size networks constructed with the configuration

model can deviate from the ensemble average results (which hold

exactly only in the N?? limit). Real networks are finite, and they

often display degree-degree correlations, which result in

knn,i~knn(ki). If knn(k) increases (decreases) with k, the network

is said to be assortative (disassortative), i.e. nodes with large degree

tend to be connected with other nodes of large (small) degree.

The measure usually employed of this phenomenon is Pearson’s

coefficient applied to the edges [3,4,17]:

r~(½klk’l �{½kl �2)=(½k2
l �{½kl �2), where kl and k’l are the degrees

of each of the two nodes belonging to edge l, and

½:�:(SkTN){1P
l (:) is an average over edges. WritingP

l (:)~
P

ij âaij(:), r can be expressed as [17]

r~
SkTSk2knn(k)T{Sk2T2

SkTSk3T{Sk2T2
: ð7Þ

In the infinite network-size limit we expect r~0 in the

configuration model (null model) as there are no built in

correlations. Even if the index r is widely used to measure

network correlations, some drawbacks of it have been put forward

[18,19].

Results

Emergence of Effective Correlations in Finite-size
Networks

We have computationally constructed finite random networks

with different degree distributions; in particular, Poissonian,

Gaussian, and scale-free distributions, assembled using the

configuration model as explained above (for the scale-free case

see Ref. [20]) and measured their Pearson’s correlation coefficient.

Results are illustrated in Fig. 2; the probability of obtaining

negative (disassortative) values of r is larger than the one for

positive (assortative) values (observe the shift between r~0 and the

curve averaged value). This means that the null-model expectation

value of r is negative! i.e. finite random networks are more likely to

be disassortative than assortative. This result is highly counterin-

tuitive because the ensemble is constructed without assuming any

type of correlations and is, clearly, a finite-size effect. Indeed, for

Nestedness in Complex Networks
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larger network sizes the averaged value of r converges to 0 as we

have analytically proved and computationally verified. For

instance, for scale-free networks, r can be easily shown to converge

to 0 as r!N{1=3 in the large-N limit (see Appendix S2 and

Fig. 2B). A well-known effect leading to effective disassortativity, is

that simple algorithms, which are supposed to generate uncorre-

lated networks, can instead lead to degree-degree anti-correlations

when the desired degree distribution has a heavy tail and no more

than one link is allowed between any two vertices (as hubs are not

as connected among themselves as they should be without such a

constraint) [21,22]. Also, our observation is in agreement with the

recent claim that, owing to entropic effects, real scale-free

networks are typically disassortative: simply, there are many more

ways to wire networks with disassortative correlations than with

assortative ones [23].

Effective Correlations Imply Nestedness in Finite
Networks

A straightforward consequence of the natural tendency of finite

networks to be disassortative is that they thereby also become

naturally nested. Indeed, the nestedness index g was defined

assuming there were no built-in correlations, but if degree-degree

correlations effectively emerge in finite-size random networks, then

deviations from the neutral value g~1 are to be expected. Indeed,

in Fig. 2C we have considered networks constructed with the

configuration model, employing the same probability distributions

(Gaussian, Poissonian and scale free) as above. For each so-

constructed random network we compute both r and g and plot

the average of the second as a function of the first (technical details

on how to sample networks with extreme values of r – using the

Wang-Landau algorithm [24] – are given in Appendix S3). The

resulting three curves exhibit a neat (almost linear) dependence of

the expected value of g on r: disassortative networks are nested

while assortative ones are anti-nested. As disassortative ones are

more likely to appear, a certain degree of nestedness is to be

expected in finite random networks. Observe that for truly

uncorrelated random networks, i.e. with r~0, the expectation

value of g is 1.

Finally, in Appendix S4, we provide an analytical connection

between disassortativity and nestedness in random networks with

explicitly built-in degree-degree correlations. Also in this case a

clear relation between nestedness and disassortativity emerges (as

shown in the figure of Appendix S4) for scale-free networks.

Degree Correlations in Real vs Randomized Networks
We have considered 60 different empirical networks, both

bipartite and unimodal, from the literature. The set includes

foodwebs, metabolic, neuronal, ecological, social, and technolog-

ical networks (see Appendix S5). We have performed randomiza-

tions preserving the corresponding degree sequences (configura-

tion ensemble) and avoiding multiple links between any pair of

nodes. Results for a subset of 16 networks are illustrated in

Figure 3, which shows the distribution of r-values (see figure

caption) compared with the actual value of r.

The actual value of r in empirical networks coincides with the

ensemble average within an error of the order of 1, 2, or 3
standard deviations in about two thirds of the cases (53%, 67%,

and 76% respectively). Similarly, the corresponding p-values are

larger than the significance threshold (0:05) in 60% of the cases.

Particularizing for bipartite networks, the z-scores rise to: 60%,

76%, and 89%, respectively, and the significant P-values go up to

68% (data are collected in Appendix S5).

Therefore, roughly speaking, the null model – in which

networks are randomly wired according to a specified degree

sequence – explains well the correlations of about two-thirds (or

more) of the networks we have analysed and, more remarkably,

it explains even better the correlations of bipartite networks.

Thus, once it has been realized that random networks have a

Figure 2. Correlation coefficient and nestedness in random networks. (Panel A): Correlation coefficient, r, and nestedness g for 106 networks
generated independently using the configuration model with N~50 nodes and vkw~5 and (from left to right) scale-free (with exponent c~2:25),
Poissonian, and Gaussian (s2~10) degree distributions. (Panel B): Pearson’s correlation coefficient as a function of network size for scale free
networks with c~2:25. (Panel C): Averaged nestedness (with error bars corresponding to one standard deviation) as a function of Pearson’s
correlation index r in random (scale-free, Poissonian, and Gaussian) networks (as in the left panel). These curves are obtained employing the Wang-
Landau algorithm as described in Appendix S3. All three curves show a positive (almost linear) correlation between disassortativity and nestedness:
more disassortative networks are more nested. By restricting the corresponding configuration ensembles to their corresponding subsets in which r is
kept fixed it is possible to define a more constraint null model as discussed in the main text.
doi:10.1371/journal.pone.0074025.g002
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slight natural tendency to be disassortative, in many cases, there

does not seem to be a clear generic statistical tendency for real

networks to be more correlated (either assortatively or

disassortatively) than expected in the null model. For instance

in almost all foodwebs we have analyzed the empirical value of

r is well explained by randomizations, while in some other

social and biological networks there are some residual positive

correlations (assortativity).

Nestedness in Real vs Randomized Networks
We have conducted a similar analysis for the nestedness index g

and compare its value in real networks with the expected value in

randomizations (see Fig. 3). In this case, the actual value of g in

empirical networks coincides with the ensemble average with an

error of the order of 1, 2, or 3 standard deviations also in about

two thirds of the cases (43%, 73%, and 83% respectively). As for

the p-value, it is above threshold in 63% of the cases (which goes

up to 76% for bipartite networks). Thus, in most of the analysed

examples, empirically observed values of nestedness are in

agreement with null-model expectations once the degree-distribu-

tion has been taken into consideration (data shown in Appendix

S5).

Nestedness vs Degree Correlations in Empirical Networks
As said above, both Fig. 2C and Fig. 3 reveal a global tendency:

exceedingly disassortative empirical networks tend to be nested

while assortative ones are anti-nested. To further explore this

relation, Fig. 4 shows a plot of nestedness against assortativity for

the selection of empirical networks listed in Appendix S5.

Although these networks are highly disparate as regards size,

density, degree distribution, etc., it is apparent that the main

contribution to g comes indeed from degree-degree correlations.

The observation of such a strong generic correlation between the nestedness and

disassortativity constitutes one of the main findings of this paper.

A more Refined Null Model
A unique criterion for choosing a proper null model does not

exist [25]. For instance, it is possible to go beyond the null model

studied so far by preserving not just the degree sequence but also

empirical correlations. Indeed, from the full set of networks

generated with the configuration model for a given degree

sequence, one could consider the subset of networks with a fixed

value of r, as done in Fig. 2C (and as explained in Appendix S3).

In particular, one could take the sub-ensemble with the same r as

empirically observed. This constitutes a more refined null model in

which the number of nodes, degree sequence, and degree-degree

Figure 3. Correlation coefficient and nestedness in degree-preserving randomiaztions. Probability distribution of Pearson’s coefficient r
and of the nestedness coefficient, g, as measured in degree-preserving randomizations of a subset of 16 (out of a total of 60) real empirical networks
(as described and referenced in Appendix S5). The actual empirical values in the real network are marked with a black box and compared (also in
black) with a segment centered at the mean value of the random ensemble (configuration model) with width equal to one standard deviation. In
most cases but not all, the empirical values lie in or near the corresponding interval, suggesting that typically empirical networks are not significantly
more assortative/nested than randomly expected.
doi:10.1371/journal.pone.0074025.g003
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correlations are preserved. This more refined null model

reproduces slightly better than the configuration model the

empirical values of nestedness; for instance, allowing for three

standard deviations bipartite networks are explained in a 100% of

the cases (details can be found in Appendix S3). Thus, the null

model preserving degree-degree correlations explains quite well

the observed levels of nestedness.

Discussion and Conclusions

Theoretical studies suggest that a nested structure minimizes

competition and increases the number of coexisting species [13],

and also it makes the community more robust to random

extinctions [26] and habitat loss [27]. In order to make progress,

systematic analyses of nestedness and nestedness indices are

necessary.

The first contribution of this work is that a new analytical

nestedness index has been introduced. It is a variant of the one

introduced in Ref. [13], allowing for analytical developments,

which are not feasible with standard computational estimators (or

calculators) of nestedness. Besides that, the new index exhibits a

number of additional advantages: (i) it allows us to identify the

amount of nestedness associated with each single node in a

network, making it possible to define a ‘‘local nestedness’’; (ii) the

new index is properly normalized and provides an output equal to

unity in uncorrelated random networks, allowing us in this way to

discriminate contributions to nestedness beyond network hetero-

geneity.

Having removed the direct effects of the degree distribution –

which has a dominant contribution to other measures of

nestedness – it is possible to move one step forward and ask how

degree-degree correlations (as quantified by Pearson’s coefficient)

influence nestedness measurements. Curiously enough, there are

more disassortative (negatively degree-degree correlated) networks

than assortative ones even among randomly assembled networks.

Different reasons for this have already being pointed out in the

literature [21–23] and we have confirmed that indeed this is the

case for finite networks built with the configuration model.

Therefore, the neutral expectation for finite random networks is

to have some non-vanishing level of disassortativity (rv0).

Analogously, as we have first reported here, there is a very similar

tendency for finite random networks to be naturally nested. There

is a clean-cut correspondence between nestedness and disassorta-

tivity: disassortative networks are typically nested and nested

networks are typically disassortative. This is true for finite-size

computational random models, analytically studied correlated

networks of any size (Appendix S4), as well as in real empirical

networks (as vividly illustrated in Figure 2C and Fig. 4).

Analyses of 60 empirical networks (both bipartite and non-

bipartite) taken from the literature reveal that in many cases the

measured nestedness is in good correspondence with that of the

degree-preserving null model. In particular, almost 90% of the

studied bipartite networks are well described by the null model and

this figure rises up to 100% when a more refined null model is

considered. Finally, recent results by Allesina’s group [15] suggest

that one should consider weighted networks to properly study

nestedness; we leave an extension of our analyses along this line for

a future work.

In conclusion, degree heterogeneity together with the finite size

of real networks suffice to justify most of the empirically observed

levels of nestedness in ecological bipartite network.

Supporting Information

Appendix S1 In this appendix we show how to general-
ize the new nestedness index to bipartite networks.
(PDF)

Appendix S2 This appendix explains how the Pearson’s
correlation coefficient scales with size in finite scale-free
networks.
(PDF)

Appendix S3 This appendix illustrates how to sample
networks with a given value of the Pearson’s correlation
coefficient.
(PDF)

Appendix S4 In this appendix we analytically compute
degree-degree correlations in heterogeneous networks.
(PDF)

Appendix S5 This appendix contains tables with the
network data used in the manuscript.
(PDF)
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disassortativity in complex networks. Phys Rev Lett 104: 108702.

24. Wang F, Landau D (2001) Efficient multiple-range random walk algorithm to
calculate the density of states. Physical Review Letters 86: 2050–2053.

25. Gotelli N (2001) Research frontiers in null model analysis. Global Ecology and

Biogeography 10: 337–343.
26. Burgos E, Ceva H, Perazzo RP, Devoto M, Medan D, et al. (2007) Why

nestedness in mutualistic networks? Journal of Theoretical Biology 249: 307–
313.

27. Fortuna M, Bascompte J (2006) Habitat loss and the structure of plant- animal

mutualistic networks. Ecology Letters 9: 281–286.

Nestedness in Complex Networks

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e74025


