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Abstract

Short-term memory in the brain cannot in general be explained the way long-term memory can – as a gradual modification
of synaptic weights – since it takes place too quickly. Theories based on some form of cellular bistability, however, do not
seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a
sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining
information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural
model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of
synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of
synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest
possible experiments to test its viability in more biological settings.
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Introduction

Slow but sure, or fast and fleeting?
Memory – the storage and retrieval of information by the brain

– is probably nowadays one of the best understood of all the

collective phenomena to emerge in that most complex of systems.

Thanks to a gradual modification of synaptic weights (the

interaction strengths with which neurons signal to one other)

particular patterns of firing and non-firing cells become energet-

ically favourable and so systems evolve towards these attractors

according to a mechanism known as Associative Memory [1–4]. In

nature, these synaptic modifications occur via the biochemical

processes of long-term potentiation (LTP) and depression (LTD)

[5,6]. However, some memory processes take place on timescales

of seconds or less and in many instances cannot be accounted for

by LTP and LTD [7], since these require at least minutes to be

effected [8,9]. For example, visual stimuli are recalled in great

detail for up to about one second after exposure (iconic memory);

similarly, acoustic information seems to linger for three or four

seconds (echoic memory) [10,11]. In fact, it appears that the brain

actually holds and continually updates a kind of buffer in which

sensory information regarding its surroundings is maintained

(sensory memory) [12]. This is easily observed by simply closing

one’s eyes and recalling what was last seen, or thinking about a

sound after it has finished. Another instance is the capability

referred to as working memory [7,13]: just as a computer requires

RAM for its calculations despite having a hard drive for long-term

storage, the brain must continually store and delete information to

perform almost any cognitive task. We shall here use short-term

memory to describe the brain’s ability to store information on a

timescale of seconds or less.

Evidence that short-term memory is related to sensory

information while long-term memory is more conceptual can be

found in psychology. For instance, a sequence of similar sounding

letters is more difficult to retain for a short time than one of

phonetically distinct ones, while this has no bearing on long-term

memory, for which semantics seems to play the main role [14,15];

and the way many of us think about certain concepts, such as

chess, geometry or music, is apparently quite sensorial: we imagine

positions, surfaces or notes as they would look or sound. Most

theories of short-term memory – which almost always focus on

working memory – make use of some form of previously stored

information (i.e., of synaptic learning) and so can account for

labelling tasks, such as remembering a particular series of digits or

a known word, but not for the instant recall of novel information

[16–18]. (This method can also be used to represent a continuous

variable, such as the value of an angle or the length of an object,

because concepts such as angle and length are in some sense already

‘‘known’’ at the time of the stimulus [19].) An interesting exception

is the mechanism proposed by Chialvo et al. [20] which allows for

arbitrary patterns of activity to be temporarily retained thanks to

the refractory times of neurons.

Attempts to deal with novel information have been made by

proposing mechanisms of cellular bistability: neurons are assumed to

retain the state they are placed in (such as firing or not firing) for

some period of time thereafter [21–23]. Although there may

indeed be subcellular processes leading to a certain bistability, the

main problem with short-term memory depending exclusively on

such a mechanism is that if each neuron must act independently of
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the rest the patterns will not be robust to random fluctuations [7] –

and the behaviour of individual neurons is known to be quite noisy

[24]. It is worth pointing out that one of the strengths of

Associative Memory is that the behaviour of a given neuron

depends on many neighbours and not just on itself, which means

that robust global recall can emerge despite random fluctuations at

an individual level.

Harnessing network structure
Something that, at least until recently, most neural-network

models have failed to take into account is the structure of the

network – its topology – it often being assumed that synapses are

placed among the neurons completely at random, or even that all

neurons are connected to all the rest. Although relatively little is

yet known about the architecture of the brain at the level of

neurons and synapses, experiments have shown that it is

heterogeneous (some neurons have very many more synapses

than others), clustered (two neurons have a higher chance of being

connected if they share neighbours than if not) and highly modular

(there are groups, or modules, with neurons forming synapses

preferentially to those in the same module) [25,26]. We show here

that it suffices to use a more realistic network topology, in

particular one that is modular and/or clustered, for a randomly

chosen pattern of activity the system is placed in to be metastable.

This means that novel information can be instantly stored and

retained for a short period of time in the absence of both synaptic

learning and cellular bistability. The only requisite is that the

patterns be coarse grained versions of the usual patterns – that is,

whereas it is often assumed that each neuron in some way

represents one bit of information, we shall allocate a bit to a small

group or neurons. (This does not, of course, mean that memories

are expected to be encoded as bitmaps. In fact, we are not making

any assumptions regarding neural coding.)

The mechanism, which we call Cluster Reverberation (CR), is

very simple. If neurons in a group are more densely connected to

each other than to the rest of the network, either because they

form a module or because the network is significantly clustered,

they will tend to retain the activity of the group: when they are all

initially firing, they each continue to receive many action

potentials and so go on firing, whereas if they start off silent,

there is not usually enough input current from the outside to set

them off. (This is similar to the ‘re-entrant’ activity exhibited by

excitable elements [27].) The fact that each neuron’s state depends

on its neighbours confers to the mechanism a certain robustness to

random fluctuations. This robustness is particularly important for

biological neurons, which as mentioned are quite noisy. Further-

more, not only does the limited duration of short-term memory

states emerge naturally from this mechanism (even in the absence

of interference from new stimuli) but this natural forgetting follows

power-law statistics, as has been observed experimentally [28–30].

It is also coherent with recent observations of locally synchronized

neural activity in vivo [31], and of clustering in both synaptic inputs

[32] and plasticity [33] during development. The viability of this

mechanism in a more realistic setting could perhaps be put to the

test by growing modular and/or clustered networks in vitro and

carrying out similar experiments as we do here in simulation

[34,35] (see Discussion).

Results

The simplest neurons on modular networks
Consider a network of N model neurons, with activities si~+1.

The topology is given by the adjacency matrix âaij~f1,0g, each

element representing the existence or absence of a synapse from

neuron j to neuron i (âa need not be symmetric). In this kind of

model – a network of what are often referred to as Amari-Hopfield

neurons – each edge usually has a synaptic weight associated, vij[R,

which serves to store information [1–4]. However, since our

objective is to show how this can be achieved without synaptic

learning, we shall here consider these to have all the same value:

vij~vw0 Vi,j. Neurons are updated in parallel (Little dynamics)

at each time step, according to the stochastic transition rule

P(si?+1)~
1

2
+ tanh

hi

T

� �
z1

� �
, ð1Þ

where hi~v
P

j âaijsj is the field at neuron i, and T is a

stochasticity parameter called temperature. This dynamics can be

derived by considering coupled binary elements in a thermal bath,

the transition rule stemming from energy differences between

states [3,4,36].

We shall consider the network defined by âa to be made up of M
distinct modules. To achieve this, we can first construct M
separate random directed networks, each with n~N=M nodes

and mean degree (mean number of neighbours) SkT. Then we

evaluate each edge âaij~1 and, with probability l, eliminate it

(âaij?0), to be substituted for another edge between the original

(postsynaptic) neuron i and a new (presynaptic) neuron l chosen at

random from among any of those in other modules (âail?1). We do

not allow self-edges (although they can occur in reality) since these

could be regarded as equivalent to a form of cellular bistability.

Note that this protocol does not alter the number of presynaptic

neighbours of each node, kin
i ~

P
j âaij , although the number of

postsynaptic neurons, kout
i ~

P
j âaji, can vary. The parameter l

can be seen as a measure of modularity of the partition considered,

since it coincides with the expected value of the proportion of

edges that link different modules [37]. In particular, l~0 defines a

network of disconnected modules, while l~1{M{1 yields a

random network in which this partition has no modularity. If

l[(1{M{1,1), the partition is less than randomly modular – i.e.,

it is quasi-multipartite (or multipartite if l~1).

Cluster reverberation
A memory pattern, in the form of a given configuration of

activities, fji~+1g, can be stored in this system with no need of

prior learning. (The system will recall the pattern perfectly when

si~ji, Vi.) Imagine a pattern such that the activities of all n
neurons found in any module are the same – i.e., ji~jm(i), where

the index m(i) denotes the module that neuron i belongs to. The

system can be induced into this configuration through the

application of an appropriate stimulus: the field of each neuron

will be altered for just one time step according to

hi?hizdjm(i),Vi,

where the factor d is the intensity of the stimulus (see Fig. 1). This

mechanism for dynamically storing information will work for

values of parameters such that the system is sensitive to the

stimulus, acquiring the desired configuration, yet also able to

retain it for some interval of time thereafter (a similar setting is

considered, for instance, in Ref. [38]).

The two configurations of minimum energy of the system are

si~1 Vi and si~{1 Vi (see the next section for a more detailed

discussion on energy). However, the energy is locally minimized

for any configuration in which each module comprises either all

active or all inactive neurons (that is, for configurations si~dm(i) Vi,

Robust Short-Term Memory without Synaptic Learning
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with dm(i)~+1 a binary variable specific to the whole module m(i)

that neuron i belongs to). These are the configurations that we

shall use to store information. We define the mean activity of each

module, mm:SsiTi[m, which is a mesoscopic variable, as well as

the global mean activity, m:SsiTVi (these magnitudes change with

time, but, where possible, we shall avoid writing the time

dependence explicitly for clarity; S:Tx stands for an average over x).

The mean activity in a neural network model is usually taken to

represent the mean firing rate measured in experiments [39]. The

extent to which the network, at a given time, retains the pattern fjig
with which it was stimulated is measured with the overlap parameter

mstim:SjisiTi~SjmmmTm. Ideally, the system should be capable of

reacting immediately to a stimulus by adopting the right configu-

ration, yet also be able to retain it for long enough to use the

information once the stimulus has disappeared. A measure of

performance for such a task is therefore

g:
1

t

Xt0zt

t~t0z1

mstim(t),

where t0 is the time at which the stimulus is received and t is the

period of time we are interested in (DgDƒ1) [38]. If the intensity of

the stimulus, d, is very large, then the system will always adopt the

right pattern perfectly and g will only depend on how well it can

then be retained. In this case, the best network will be one that is

made up of mutually disconnected modules (l~0). However, since

the stimulus in a real brain can be expected to arrive via a relatively

small number of axons, either from another part of the brain or

directly from sensory cells, it might be more realistic to assume that

d is of a similar order as the input a typical neuron receives from its

neighbours, ShT*vSkT.

Figure 2 shows the mean performance obtained in Monte Carlo

(MC) simulations when the network is repeatedly stimulated with

different randomly generated patterns. For low enough values of l
and stimuli of intensity d *> vSkT, the system can capture and

successfully retain any pattern it is ‘‘shown’’ for some period of

time, even though this pattern was in no way previously learned.

For less intense stimuli (dvvSkT), performance is nonmonotonic

with modularity: there exists an optimal value of l at which the

system is sensitive to stimuli yet still able to retain new patterns

quite well.

Just as some degree of structural (quenched) noise, given by l,

can improve performance by increasing sensitivity, so too the

dynamical (annealed) noise set by T can have a similar effect. This

apparent stochastic resonance is looked into below in Analysis.

Energy and topology
Each pair of neurons contributes a configurational energy

eij~{
1

2
v(âaijzâaji)sisj [4]; that is, if there is an edge from i to j

and they have opposite activities, the energy is increased in
1

2
v,

whereas it is decreased by the same amount if their activities are

equal. Given a configuration, we can obtain its associated energy

by summing over all pairs. To study how the system relaxes from

the metastable states (i.e., how it ‘‘forgets’’ the information stored)

we shall be interested in configurations with x neurons that have

s~z1 (and N{x neurons with s~{1), chosen in such a way

that one module at most, say m, has neurons in both states

simultaneously. Therefore, x~nrzz, where r is the number of

modules with all their neurons in the positive state and z is the

number of neurons with positive sign in module m. We can write

m~(2x{1)=N and mm~(2z{1)=n. The total configurational

energy of the system will be

E~
X

ij

eij~
1

2
v(L:;{SkTN),

where L:; is the number of edges linking nodes with opposite

activities. By simply counting over expected numbers of edges, we

can obtain the expected value of L:; (which amounts to a mean-

Figure 1. Diagram of a modular network composed of four
five-neuron clusters. The four circles enclosed by the dashed line
represent the stimulus: each is connected to a particular module, which
adopts the input state (red or blue) and retains it after the stimulus has
disappeared thanks to Cluster Reverberation.
doi:10.1371/journal.pone.0050276.g001

Figure 2. Performance g against l for networks of the sort
described in the main text with M~160 modules of n~10
neurons each, SkT~9, obtained from Monte Carlo (MC)
simulations; patterns are shown with intensities d~8:5, 9 and
10, and performance is computed evey 200 time steps,
preceding the next random stimulus; T~0:02 (error bars
represent standard deviations; lines – splines – are drawn as
a guide to the eye). Inset: typical time series of mstim (i.e., the overlap
with whichever pattern was last shown) for l~0:5 (bad performance), 0
(intermediate), and 0:25 (optimal); with d~vSkT~9.
doi:10.1371/journal.pone.0050276.g002
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field approximation), yielding:

E

vSkT
z

N

2
~

ln

N{n
fr½n{zzn(M{r{1)� ð2Þ

z(M{r{1)(zznr)gz(1{l)
z(n{z)

n{1
:

Figure 3 shows the mean-field configurational energy curves for

various values of the modularity on a small modular network. The

local minima (metastable states) are the configurations used to

store patterns. It should be noted that the mapping x?m is highly

degenerate: there are CM
mM patterns with mean activity m that all

have the same energy.

Forgetting avalanches
In obtaining the energy we have assumed that the number of

synapses rewired from a given module is always equal to its

expected value: n~SkTnl. However, since each edge is evaluated

with probability l, n will in fact vary somewhat from one module

to another, being approximately Poisson distributed with mean

SnT~SkTnl. Neglecting all but the last term in Eq. (2) and

approximating n{1^n, the depth of the energy well correspond-

ing to a given module is DE^
1

4
v(nSkT{n). The typical escape

time t from an energy well of depth DE at temperature T is

t*eDE=T [40]. Using Stirling’s approximation [n!*
ffiffiffiffiffiffiffiffi
2pn
p

(n=e)n]

in the Poisson distribution over n and expressing it in terms of t,

we find that the escape times are distributed according to

P(t)* 1{
4T

vnSkT
ln t

� �{3
2
t{b(t), ð3Þ

where

b(t)~1z
4T

vnSkT
1z ln

lnSkT
1{ 4T

vnSkT ln t

 !" #
: ð4Þ

Therefore, at low temperatures, P(t) will behave approximately

like a power law. Note also that the size of the network, N, does

not appear in Eqs. (3) and (4). Rather, T scales with n, which could

be small even in the thermodynamic limit (N??).

The left panel of Fig. 4 shows the distribution of time intervals

between events in which the overlap mm of at least one module m
changes sign. The power-law-like behaviour is apparent, and

justifies talking about forgetting avalanches – since there are cascades

of many forgetting events interspersed with long periods of

metastability. This is very similar to the behaviour observed in

other nonequilibrium settings in which power-law statistics arise

from the convolution of exponentials, such as demagnetization

processes [41] or Griffiths phases on networks [42].

It is known from experimental psychology that forgetting in

humans is indeed quite well described by power laws [28–30] –

although most experiments to date seem to refer to slightly longer

timescales than we are interested in here. The right panel of Fig. 4

shows the value of the exponent b(t) as a function of t. Although

for low temperatures it is almost constant over many decades of t –

approximating a pure power law – for any finite T there will

always be a t such that the denominator in the logarithm of Eq. (4)

approaches zero and b diverges, signifying a truncation of the

distribution.

Note that we have considered the information stored in a

pattern to be lost once the system evolves to any other energy

minimum. However, this new pattern will be highly correlated

with the original one, and it might be reasonable to assume that

the system has to escape from a large number of energy minima,

L, before the information can be considered to have been entirely

forgotten. The time for this is tsum~
PL

i~0 ti, where ti are

independently drawn from Eq (3). If L is sufficiently large, the

distribution of times tsum will tend to a Lévy distribution [43]. In

practice, these different broad-tailed distributions [power-law,

Lévy, or as given by Eq. (3)] are likely to be indistinguishable

experimentally unless it is possible to observe over many orders of

magnitude.

Clustered networks
Although we have illustrated how the mechanism of Cluster

Reverberation works on a modular network, it is not actually

necessary for the topology to have this characteristic – only for the

patterns to be in some way ‘‘coarse-grained, ’’ as described, and

that each region of the network encoding one bit have a small

enough parameter l, defined as the proportion of synapses to

other regions. For instance, for the famous Watts-Strogatz small-

world model [44] – a ring of N nodes, each initially connected to its

k nearest neighbours before a proportion p of the edges are

randomly rewired – we have l^p (which is not surprising

Figure 3. Configurational energy of a network made up of
M~5 modules of n~10 neurons each, according to Eq. (2), for
various values of l (increasing from bottom to top). The minima
correspond to situations such that all neurons within any given module
have the same sign.
doi:10.1371/journal.pone.0050276.g003

Figure 4. Left panel: distribution of escape times t, as defined
in the main text, for l~0:25 and T~2, from MC simulations.
Slope is for b~1:35. Other parameters as in Fig. 2. Right panel:
exponent b of the quasi-power-law distribution p(t) as given by Eq. (4)
for temperatures T~1, 2 and 3 (from bottom to top).
doi:10.1371/journal.pone.0050276.g004
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considering the resemblance between this model and the modular

network used above). More precisely, the expected modularity of a

randomly imposed box of n neurons is

l~p{
n{1

N{1
pz

1{p

n

k

4
{

1

2

� �
,

the second term on the right accounting for the edges rewired to

the same box, and the third to the edges not rewired but

sufficiently close to the border to connect with a different box.

Perhaps a more realistic model of clustered network would be a

random network embedded in d-dimensional Euclidean space.

For this we shall use the scheme laid out by Rozenfeld et al. [45],

which consists simply in allocating each node to a site on a d-torus

and then, given a particular degree sequence, placing edges to the

nearest nodes possible – thereby attempting to minimize total edge

length. For a scale-free degree sequence [i.e., a set fkig drawn

from a degree distribution p(k)*k{c] according to some

exponent c, then, as shown in Analysis, such a network has a

modularity

l^
1

d(c{2){1
d(c{2)l{1{l{d(c{2)
� �

, ð5Þ

where l is the linear size of the boxes considered. It is interesting

that even in this scenario, where the boxes of neurons which are to

receive the same stimulus are chosen at random with no

consideration for the underlying topology, these boxes need not

have very many neurons for l to be quite low (as long as the

degree distribution is not too heterogeneous).

Carrying out the same repeated stimulation test as on the

modular networks in Fig. 2, we find a similar behaviour for the

scale-free embedded networks. This is shown in Fig. 5, where for

high enough intensity of stimuli d and scale-free exponent c,

performance can, as in the modular case, be g^1. We should

point out that for good performance on these networks we require

more neurons for each bit of information than on modular

networks with the same l (in Fig. 5 we use n~100, as opposed to

n~10 in Fig. 2). However, that we should be able to obtain good

results for such diverse network topologies underlines that the

mechanism of Cluster Reverberation is robust and not dependent

on some very specific architecture.

Spiking neurons
In the usual spirit of determining the minimal ingredients for a

mechanism to function we have, up until now, used the simplest

model neurons able to exhibit CR. This approach makes for a

good illustration of the main idea and allows for a certain amount

of analytical understanding of the underlying phenomena.

However, before CR can be considered as a plausible candidate

for helping to explain short-term memory, we must check that it is

compatible with more realistic neural models. For this we examine

the behaviour of the popular Integrate-and-Fire (IF) model

neurons – often referred to as spiking neurons – in the same kind

of setting as described above for the simpler Amari-Hopfield

neurons. In the IF model, each neuron is characterized at time t
by a membrane potential V (t), described by the differential equation

tm

dV (t)

dt
~{V (t)zRmIin(t),

where tm and Rm are, respectively, the membrane time constant

and resistance, and Iin(t)~Isyn(t)zIst(t)zIext(t); the term

Isyn(t)~
P

j I j
syn(t) is the synaptic current generated by the arrival

of Action Potentials (AP) from the neuron’s presynaptic neigh-

bours, Ist(t) is the current generated by the presentation of a

particular external stimulus to the network and

Iext(t)~I0z
ffiffiffiffiffi
tm
p

Dj(t) is an additional noisy external current.

Here I0 and D are constants and j(t) is a Gaussian noise of mean

Sj(t)T~0 and autocorrelation Sj(t)j(t’)T~d(t{t’). Each synap-

tic contribution to the total synaptic current is modelled as

I j
syn(t)~Ayj(t), where yj(t) represents the fraction of neurotrans-

mitters in the synaptic cleft, which follows the dynamics [46]

dyj(t)

dt
~{

yj(t)

tin

zUd(t{tj
sp):

Here, tj
sp is the time at which an AP arrives at synapse j, inducing

the release of a fraction U of neurotransmitters, and tin is the

typical time-scale for neurotransmitter inactivation. Whenever V
surpasses a given threshold h, the neuron fires an AP to all its

postsynaptic neighbours and V is reset to zero, then undergoing a

refractory time tref before again becoming susceptible to input.

Because the parameters and variables of this model represent

measurable physiological quantities, it is possible to use it to make

quantitative – albeit tentative – predictions about the timescales on

which CR might be expected to be effective in a real neural

system.

Figure 6 is a raster plot of a modular network of IF neurons.

The system performs a short-term memory task akin to the one

previously described for the Amari-Hopfield neural network: the

neurons belonging to clusters that correspond to ones in a random

pattern are stimulated, for 10 ms, with an intensity Istim, while the

the remaining neurons receive an opposite stimulus, {Istim. We

then allow the system to evolve for 500 ms, before choosing a new

random pattern and stimulating again. In such tests, the neurons

in positively stimulated clusters usually begin to oscillate in

synchrony, while the rest remain silent (save for occasional

individual APs caused by noise). However, since this is a

metastable state, with time active clusters can suddenly go mostly

Figure 5. Performance g against exponent c for scale-free
networks, embedded on a 2D lattice, with patterns of M~16
modules of n~100 neurons each, SkT~4 and N~1600; patterns
are shown with intensities d~3:5, 4, 5 and 10, and T~0:01 (error
bars represent standard deviations; lines – splines – are drawn
as a guide to the eye). Inset: typical time series for c~2, 3, and 4,
with d~5.
doi:10.1371/journal.pone.0050276.g005
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silent, or the neurons in silent clusters begin spontaneously to fire

in synchrony. Thus, the information is gradually lost, as in the case

with simpler neurons.

To gauge how well the system is performing the task, we look at

each cluster m for the last 100 ms before the next stimulus and

assign a value mm~1 to its mean activity if it is active, and

mm~{1 if it is silent. We then define the performance as:

g~
1

M

X
m

mmjm: ð6Þ

In Fig. 7 we show the values of g obtained in MC simulations

against l. Using different values of Istim we observe a similar

behaviour to that of Fig. 2. In particular, for Istim^100 pA, we

have the interesting nonmonotonic behaviour in which perfor-

mance benefits from a certain degree of rewiring. While, for the

sake of illustration, in Fig. 6 we only show the evolution of the

system for 500 ms after stimulation, in Fig. 7 we wait for five

seconds. Although the model is too simple, and the network too

small, to make quantitative predictions about the brain, it is

nevertheless promising that with physiologically realistic param-

eters we observe high performance (g^1) over several seconds,

since this is the timescale on which short-term memory operates in

humans.

Discussion

Cluster Reverberation may be a means available to neural

systems for performing certain short-term tasks, such as sensory

memory or working memory. To the best of our knowledge, it is

the first mechanism proposed to use network properties with no

need of synaptic learning. All that is required is for the underlying

network to be highly clustered or modular, and for small groups of

neurons in some sense to store one bit of information, as opposed

to a conventional view which assumes one bit per neuron.

Considering the enormous number of neurons in the brain, and

the fact that real neurons are possibly too noisy to store

information individually anyway, these hypotheses do not seem

far-fetched. The mechanism is furthermore consistent with what is

known about the structure of biological neural networks, with

experiments that have revealed power-law statistics of forgetting,

and with recent observations of locally synchronized synaptic

activity.

For the sake of illustration, we have focused here on the simplest

model neurons that are able to exhibit the behaviour of interest.

However, we have shown how the mechanism can also work with

the slightly more sophisticated Integrate-and-Fire neurons, and

there is no reason to believe that it would not also be viable with

more realistic models, or even actual cells. Although CR comes

about thanks to the high modularity of small groups of neurons, we

have shown how robust it is to the details of the topology by

carrying out simulations on clustered networks with no explicitly

built-in modularity. And this setting suggests an interesting point.

If an initially homogeneous (i.e., neither modular nor clustered)

area of brain tissue were repeatedly stimulated with different

patterns in the same way as we have done in our simulations, then

synaptic plasticity mechanisms (LTP and LTD) might be expected

to alter the network structure in such a way that synapses within

each of the imposed modules would all tend to become

strengthened, while inter-module synapses would vary their

weights in accordance with the details of the patterns being

shown [47]. The result would be a modular structure conducive to

efficient CR for arbitrary patterns, with simultaneous Hebbian

learning in the inter-synapses of the actual patterns shown. In this

way, the same network might be capable of both short-term and

long-term memory, explaining, perhaps, why our brains can

indeed store completely novel information but usually with a

certain bias in favour of what we are expecting to perceive.

Although we have not gone into the question of neural coding,

there would seem to be an intrinsic difference between semantic

storage of information – used for long-term memory and probably

useful for certain working-memory tasks that require the labelling

Figure 6. Raster plot, obtained from MC simulations, of a
network of 1000 integrate-and-fire (IF) neurons wired up (as
described in the main text) in groups of 50, with a rewiring
probability l~0:02. Every 500 ms, a new pattern is shown for 10 ms
with an intensity Istim~500 pA (plotted in blue). Parameters for the
neurons are A~42:5 pA, h~8 mV, tref ~5 ms, tin~3 ms, U~0:02,
Rm~0:1 GV and tm~10 ms, which are all within the physiological
range; and the external noisy current is modelled with I0~15 pA and

D~10 pA ms{1=2 .
doi:10.1371/journal.pone.0050276.g006

Figure 7. Performance g against rewiring l for modular
networks of IF neurons, as obtained from MC simulations.
The network is periodically stimulated with a new random pattern for
10 ms with an intensity Istim~98 pA (green squares), 100 pA (red
circles) and 200 pA (blue triangles) (error bars represent standard
deviations; lines – splines – are drawn as a guide to the eye). The system
evolves in the absence of stimuli for 5000 ms and performance, g, is
computed according to Eq. (6). (An interval of 5 seconds corresponds
roughly to the timescale on which short-term memory operates in the
brain.) Other parameters are as in Fig. 6.
doi:10.1371/journal.pone.0050276.g007
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of previously learned information – and sensory storage, for which

some mechanism such as the one proposed here must store novel

information immediately – in a similar but more efficient way to

how the retina retains the pigmentation left by an image it was

recently exposed to. If novel sensory information were held for

long enough in metastable states, Hebbian learning (either in the

same or other areas of the brain) could take place and the

information be stored thereafter indefinitely. This might constitute

the essence of concentrating so as to memorise a recent stimulus.

Finally, we should mention that CR could work in conjunction

with other mechanisms, such as processes leading to cellular

bistability, making these more robust to noise and augmenting

their efficacy. Whether CR would work for biological neural

systems could perhaps be put to the test by growing such modular

networks in vitro, stimulating appropriately, and observing the

duration of the metastable states [34,35]. In vivo recordings of

neural activity during short-term memory tasks, together with a

mapping of the underlying synaptic connections, might be used to

ascertain whether the brain could indeed harness this mechanism.

For this it must be borne in mind that the neurons forming a

module need not find themselves close together in metric space,

and that effective modularity might come about via stronger intra-

than inter-connexions, instead of simply through a higher density

of synapses within the clusters. We hope that observations and

experiments such as these will be carried out and eventually reveal

something more about the basis of this puzzling emergent property

of the brain’s known as thought.

Analysis

The effect of noise
On a random network (l~1{M{1), the Amari-Hopfield

model described in the main text has a second order phase

transition with temperature, T , at Tc~vk [4]. This can be seen

by considering the mean-field equation for the overlap at the

steady state, m~ tanh (vkm=T), where we have substituted

hi~v
P

j aijsi?vkm in Eq. (1). For TvTc, the paramagnetic

solution m~0 becomes unstable, and ferromagnetic solutions

m=0 appear [36]. This result also holds for the modular networks

described in the main text. However, that the global overlap m is

different form zero does not mean that the short-term memory

configurations we are interested in are stable. In fact, we know

they are metastable for any Tw0 (see Results: Energy and

topology), but we can set an upper bound on the temperature at

which these states can be maintained even for a short time by

considering again the mean-field equation for such a configura-

tion. For a neuron in module m, hi?vk½(1{l)mmzlm�. For

patterns with mean activity zero (m~0), states mm=0 will be

unstable if Tw(1{l)vkƒTc.

As we saw from Fig. 2, for stimuli d vSkT, the system does not

always leave whichever meatastable state it is in to go perfectly to

the pattern shown. A degree of ‘‘structural noise’’ (lw0) can lead

to a better response. In the same way, the dynamical noise set by T

can improve performance. Figure 8 shows how performance varies

with T for different values of l. Due to the trade-off between

sensitivity to stimuli and stability of the memory states, there is in

general an optimum level of noise at which the system performs

best. This dynamics can be interpreted as a kind of stochastic

resonance, with the stimuli playing the part of the periodic forcing

typically seen in such systems [48]. Both the dynamic (annealed)

noise, T , and the structural (quenched) noise, l, serve to increase

the sensitivity of the system to stimuli.

It is interesting to observe in Fig. 8 that whereas highly modular

networks (l^0) are most robust to T , for no values of parameters

do they exhibit as good performance as the less modular networks

when T is relatively low.

Effective modularity of clustered networks
We wish to estimate l, the proportion of edges that cross the

boundaries of a box of linear size l placed randomly on a network

embedded in d-dimensional space according to the scheme laid

out in Ref. [45]. The number of nodes within a radius r is

n(r)~Adrd , with Ad a constant. We shall therefore assume a node

with degree k to have edges to all nodes up to a distance

r(k)~(k=Ad )1=d , and none beyond (note that this is not necessarily

always feasible in practice). To estimate l, we shall first calculate

Figure 8. Performance g against T for the Hopfield-Amari
networks described in the main text, obtained from MC
simulations, for values of the rewiring l~0:0, 0:1, 0:2 and 0:3,
and stimulus d~8:5. All other parameters as in Fig. 2. (Error bars
represent standard deviations; lines – splines – are drawn as a guide to
the eye).
doi:10.1371/journal.pone.0050276.g008

Figure 9. Proportion of outgoing edges, l, from boxes of linear
size l against exponent c for scale-free networks embedded on
2D lattices. Lines from Eq. (7) and symbols (with error bars
representing standard deviations) from simulations with SkT~4 and
N~1600.
doi:10.1371/journal.pone.0050276.g009
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the probability that a randomly chosen edge have length x. The

chance that the edge belong to a node with degree k is

p(k)*kp(k) (where p(k) is the degree distribution). The propor-

tion of edges that have length x among those belonging to a node

with degree k is n(xDk)~dAdxd{1=k if Adxd
vk, and 0 otherwise.

Considering, for example, scale-free networks (as in Ref. [45]), so

that the degree distribution is p(k)*k{c in some interval

k[½k0,kmax�, and integrating over p(k), we have the distribution

of lengths,

P(x)~(Const:)

ðkmax

max (k0,Axd )

p(k)n(kDx)dk~d(c{2)x{½d(c{2)z1�,

where we have assumed, for simplicity, that the network is

sufficiently sparse that max (k0,Axd )~Axd , Vx§1, and where we

have normalised for the interval 1ƒxv?; strictly,

xƒ(kmax=A)1=d , but we shall also ignore this effect. Next we

need the probability that an edge of length x fall between two

compartments of linear size l. This depends on the geometry of the

situation as well as dimensionality; however, a first approximation

which is independent of such considerations is

Pout(x)~ min 1,
x

l

	 

:

We can now estimate the modularity l as

l~

ð?
1

Pout(x)P(x)dx~
1

d(c{2){1
d(c{2)l{1{l{d(c{2)
� �

: ð7Þ

Figure 9 compares this expression with the value obtained

numerically after averaging over many network realizations, and

shows that it is fairly good – considering the approximations used

for its derivation.
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