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Abstract

In this work we study the detection of weak stimuli by spiking (integrate-and-fire) neurons in the presence of certain level of
noisy background neural activity. Our study has focused in the realistic assumption that the synapses in the network present
activity-dependent processes, such as short-term synaptic depression and facilitation. Employing mean-field techniques as
well as numerical simulations, we found that there are two possible noise levels which optimize signal transmission. This
new finding is in contrast with the classical theory of stochastic resonance which is able to predict only one optimal level of
noise. We found that the complex interplay between adaptive neuron threshold and activity-dependent synaptic
mechanisms is responsible for this new phenomenology. Our main results are confirmed by employing a more realistic
FitzHugh-Nagumo neuron model, which displays threshold variability, as well as by considering more realistic stochastic
synaptic models and realistic signals such as poissonian spike trains.
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Introduction

It is known that a certain level of noise can enhance the

detection of weak input signals for some nonlinear systems. This

phenomenon, known as stochastic resonance (SR), is characterized

by the presence of a peak, or a bell-shaped dependence, in some

information transfer measurement as a function of the noise

intensity [1–3]. More precisely, for low noise levels the system is

not able to detect the signal due to its small amplitude. For

moderate noise levels, however, the noise is able to enhance the

signal up to a certain detection threshold, and this makes the

system respond in a highly correlated fashion with the signal (and a

peak of information transfer appears). Finally, for too high noise

levels the output is dominated by the noise and the signal is not

detected.

Stochastic resonance has been measured in a wide variety of

physical and biological systems, including bidirectional ring lasers

[4], electronic circuits [5], crayfish mechanoreceptor [6], or

voltage-dependent ion channels [7]. In the brain, it has been found

in different types of sensory neurons [8,9], in the hippocampus

[10], in the brain stem [11], and in some cortical areas [12–15].

Although SR behavior has been extensively studied in many

works, most of them assume a controlled source of noise that

affects the dynamics of the system additively and, in some cases,

without temporal correlations. Such assumption is no longer valid

in in vivo experiments in actual neural systems, where noise is the

result of the inherent activity of the medium (which could be, for

instance, the highly irregular spontaneous activity of other cortical

regions projecting to the structure of interest) and, therefore, not

easily controlled by the experimentalist. The effect of such

stochasticity on the dynamics of a particular neuron could, indeed,

involve details concerning concrete biological mechanisms not

considered yet. In particular, since neurons receive signals from its

neighbors though synapses, the concrete characteristics of synapses

may strongly influence the SR properties of in vivo neural circuits.

It is known, for instance, that actual synapses present activity

dependent mechanisms, such as short-term depression (STD) and

short-term facilitation (STF), that may strongly modify the

postsynaptic neural response in a nontrivial way. The former of

these mechanisms considers that the amount of neurotransmitter

ready to be released – due to the arrival of an action potential (AP)

– is limited, and the synapse needs some time to recover these

resources in order to transmit the next incoming AP. Synaptic

facilitation, on the other hand, has an opposite effect and increases

the postsynaptic response under repetitive presynaptic stimulation.

Such increment is mediated by the influx of calcium ions into the

presynaptic terminal [16]. The competition between STD and

STF may be highly relevant in signal detection in noisy

environments, as for instance in cortical gain control [17] or in

spike coincidence detection [18], and therefore they could have a

main role in SR tasks.

In addition to these synaptic mechanisms, the dynamics of the

neuron firing threshold constitutes another important issue to be

considered in the study of SR phenomena in neural media. In

particular, it has been recently found that the firing threshold of

cortical neurons may be raised as a consequence of a slow
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depolarization due to an input current [19,20]. The biophysical

origin of such effect is believed to be the differential kinetics of the

voltage-dependent activation and inactivation of sodium and

potassium channels on the neuron membrane (for further details,

see [19]). Fast depolarizations due to input fluctuations, on the

other hand, do not cause such effect [20,21]. This increment of the

firing threshold with slow depolarizations, which has been found in

different cortical regions in vivo, is known as adaptive threshold

dynamics. A prominent feature of such dynamics is that, unlike

other neural adaptation mechanisms (see [22,23]), adaptive

threshold dynamics allows a neuron to raise its firing threshold

without the generation of previous APs. In cat striate cortex, for

instance, the existence of adaptive neural thresholds seems to play

an important role in stimulus orientation by reducing cellular

sensitivity to slow depolarizations [19,21]. It is highly relevant,

therefore, to take into account the possible effect of such

mechanism in signal detection in noisy environments. Indeed,

high cortical activity levels could cause slow depolarizations and

affect the excitability properties of the neuron, and therefore its

information transmission properties, via adaptive threshold

dynamics. The mechanism of adaptive threshold dynamics has

been captured by a number of neuron models [24–28]. However,

the complex interplay between dynamic synapses and adaptive

thresholds has caught little attention from researchers, despite the

computational implications that it may have in SR properties of

actual neural systems.

In this work, we use a phenomenological model of dynamic

synapses and a standard integrate-and-fire (IF) neuron model with

an input-dependent threshold to study the interaction between

adaptive threshold, STD and STF in the detection of weak

(subthreshold) signals under a noisy environment. More precisely,

we consider a system of N presynaptic neurons which transmit

APs, within a Poisson distribution with mean frequency fn, to a

postsynaptic neuron through dynamic synapses. In these condi-

tions, a weak and low-frequency sinusoidal signal is also

transmitted to the postsynaptic neuron to study its response and

the conditions in which SR occurs. Our results show that new

phenomena can emerge as a consequence of the interplay between

the adaptive threshold and short-term synaptic processes.

Concretely, this interplay induces the appearance of a second

resonance peak at relatively high frequencies, which coexists with

the standard SR peak located at low frequencies. The coexistence

of these two resonance peaks allows the system to efficiently detect

incoming weak signals for two well defined network noise levels.

The precise frequency at which each one of these two resonance

peaks appear is determined by the particular values of the relevant

parameters involved in the dynamics of the synapses. Our main

results are confirmed by employing a more realistic FitzHugh-

Nagumo (FHN) neural model (which possesses an intrinsic

adaptive threshold mechanism), as well as by considering more

realistic stochastic synaptic models and weak input signals

constituted by poissonian spike trains.

Materials and Methods

The system under study is schematized in figure 1. It consists of

a postsynaptic neuron which receives both a slow, weak external

signal - for simplicity, considered periodical - and the uncorrelated

activity of a network of N excitatory neurons. The membrane

potential V (t) of the postsynaptic neuron is assumed as in the IF

neuron model, namely

tm
dV (t)

dt
~{V (t)zRinI(t) ð1Þ

where tm is the membrane time constant, and the neural input or

excitatory postsynaptic current (EPSC) is given by I(t), which is

multiplied here by the input resistance Rin. Due to the input

current I(t), the membrane potential V (t) depolarizes, and when

it reaches a certain threshold h, an AP is generated. The

membrane potential is then reset to its resting value Vr for a

short period of time, called the absolute refractory period, namely

tref .

We also assume that the neural input consists of two terms,

namely I(t)~S(t)zIn(t). The first term, S(t):ds sin(2pfst), is

the input weak signal, with frequency fs and amplitude ds. The

second term is the total synaptic current generated by N
uncorrelated presynaptic neurons, namely In(t):

PN
i~1 Ii(t). This

accounts for the noisy current induced by the other neurons in the

network, and its level is controlled by the mean firing rate of the

network fn. This noisy current involves an activity-dependence of

the synaptic strength as proposed in a phenomenological model

presented in [29]. According to this model, the state of the synapse

i is governed by the system of equations

dxi(t)

dt
~

zi(t)

trec

{ui(t)xi(t)d(t{tsp)

dyi(t)

dt
~ {

yi(t)

tin

zui(t)xi(t)d(t{tsp)

dzi(t)

dt
~

yi(t)

tin

{
zi(t)

trec

,

ð2Þ

where xi(t), yi(t), zi(t) are the fraction of neurotransmitter in a

recovered, active and inactive state, respectively (see [29] for

details). Here, tin and trec are the synapse inactivation and active

neurotransmitter recovery time constants, respectively. The delta

functions in equation (2) take into account that an AP arrives to

the synapse at some fixed time t~tsp. On the other hand, ui(t) is

an auxiliary variable such that ui(t)xi(t) stands for the fraction of

available neurotransmitter that is released after the arrival of a

presynaptic AP at time t or, from a probabilistic point of view, the

Figure 1. Schematic plot of the system considered in our study.
The postsynaptic neuron (in yellow) receives a weak input periodic
signal, and it is exposed to noisy background activity of other neurons
(in blue). These neurons transmit Poissonian spike trains of frequency fn

through dynamic synapses. The aim is to determine how the properties
of these synapses can influence the detection of the weak signal by a
postsynaptic neuron having nonlinear membrane excitability proper-
ties.
doi:10.1371/journal.pone.0017255.g001
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neurotransmitter release probability at that time. Synaptic

facilitation is introduced by considering the following dynamics

for ui(t):

dui(t)

dt
~

USE{ui(t)

tfac

zUSE ½1{ui(t)�d(t{tsp): ð3Þ

This equation considers the influx of calcium ions into the neuron

near the synapse through voltage-sensitive ion channels. These

ions usually can bind to some acceptor which gates and facilitates

the release of neurotransmitters [16]. Pure depressing synapses

correspond to ui(t)~USE constant (which is also obtained in the

limit tfac?0), where USE is the neurotransmitter release

probability without the facilitation mechanism. Within this model,

the excitatory postsynaptic current generated in the synapse i is

considered to be proportional to the amount of active neurotrans-

mitter (i.e., that which has been released into the synaptic cleft

after the arrival of an AP), namely Ii(t)~ASEyi(t).

As can be easily checked in equations (2–3), in activity

dependent or dynamic synapses, the degree of synaptic depression

and facilitation increases with trec and tfac, respectively, and these

levels are also controlled by USE . On the other hand, static

synapses (i.e., when synapses are not activity dependent) are

obtained for trec, tfac?0.

To complete the description of the system, we assume that the

firing threshold h of the postsynaptic neuron follows a simple linear

dynamics given by

th
dh(t)

dt
~{h(t)zdzRinI(t), ð4Þ

where th is the threshold variation time scale and d is a small

positive constant. This dynamics implies that, in steady state

conditions, the firing threshold displays approximately a linear

dependence with the steady state postsynaptic membrane potential

V:RinI , with I being the steady state EPSC. As explained above,

this property has been observed in many neural media, and it is

known as adaptive threshold dynamics [19,20,24,27] (the linear

dependence given by such dynamics also holds for more realistic

neuron models, as we will show later on). To obtain a slow

threshold dynamics as is reported in [19], we set th~800 ms

(although other values are also possible and yield the same results

for our study). The parameter d~2 mV ensures that the firing

threshold lies above the mean membrane potential V , and it

guarantees that the output spiking activity is driven by the current

fluctuations which lead to fast depolarizations [19]. Moreover, we

assume that the signal S(t) is too weak to have an appreciable

effect on the value of the threshold, and therefore we set

V~RinI^RinIn in equation (4). It is worth noting here that

other threshold dynamics can be used without affecting our results,

as long as the steady state linear dependence between the

threshold and the input (as observed in [19]) is preserved. To

ensure physiological values of the neuron threshold, we impose a

minimum value for the firing threshold hm~7 mV . In the

following, unless specified otherwise, we choose for the other

parameters the values N~200, tm~10 ms, Rin~0:1 GV, Vr~0,

tref ~5 ms, fs~5 Hz, ds~10 pA, and tin~3 ms, which are

within the physiological range for cortical neurons.

Results

As we have mentioned before, the phenomenon of stochastic

resonance has been measured in neurons under different

conditions and, in particular, in the cortex [13–15,30]. Using

our IF neuron model with adaptive threshold, we studied the level

of background noisy activity received by a postsynaptic neuron

which improves its ability to detect an incoming weak signal. This

signal is considered weak in the sense that, if the level of noise is

zero or sufficiently low, the neuron does not generate APs strongly

correlated with the signal [31]. In order to quantify the level of

coherence between the input signal S(t) and the response of the

postsynaptic neuron, we employed a cross-correlation function

defined as in [32], that is,

C0:SS(t)n(t)T~
1

T

ðT

0

S(t)n(t)dt, ð5Þ

where T is the total recording time of each trial, typically much

greater than the signal period f {1
s , and n(t) is the instantaneous

firing rate of the postsynaptic neuron. This type of cross-

correlation functions have been extensively used in the literature

to measure the input-output dependence in neuron models and

experiments (see, for instance, [11,32,33]). An example of

stochastic resonance in the case of a presynaptic population with

static synapses is shown in figure 2. For low noise frequencies, the

neuron is not able to fire, and therefore, to detect the weak signal.

This is reflected in the fact that C0 takes low values. However,

when the noise frequency is increased, both noise and signal terms

contribute to make the system follow the signal, that is, the neuron

response becomes highly correlated with the stimulus. As a

consequence of this, a maximum value of C0 is reached. Beyond

that point, the activity of the presynaptic neurons produces a high

and noisy postsynaptic response, which impedes the postsynaptic

neuron to detect the weak signal, and therefore the cross-

correlation function C0 decays with its characteristic shape.

This typical resonance behavior appears when synapses do not

show any fast variability in their strength, or when the variation is

only due to a slow learning processes, which we do not consider

here. However, we must take into account that actual synapses

show activity-dependent variability at short time scales, and this

feature could modify the response of the postsynaptic neuron to

the signal. In particular, since STD is a mechanism that usually

modulates the high frequency inputs, one can wonder about its

effect in the SR curve. In fact, our results show that this effect is

quite noticeable as can be viewed in figure 3A. The figure shows

the emergence of bimodal resonances in the presence of STD. More

precisely, in addition to the standard SR peak, a second resonance

peak appears at high frequencies and moves towards lower

frequency values as the degree of depression increases. This second

peak allows the system to efficiently detect the weak input signal

among a wide range of high frequencies (note the logarithmic scale

on fn). Therefore, this new resonance peak reflects that the neuron

is able to properly detect the incoming signal for both low and high

values of the mean network rates.

We also observe that the location of the second resonance peak

has a nonlinear dependence with trec. To better visualize this effect

we plot in figure 3B the behavior of f �, defined as the noise

frequency value at which the second resonance peak is located, as

a function of trec. We can observe in this figure that data from

numerical simulation agrees with our mean-field prediction. In the

following and unless specifically specified, we have considered a

time window of *10 seconds for the simulations of the SR curves,

and we have averaged each data point over 30 trials.

As well as STD, the facilitation mechanism is able to modulate

the intensity of the postsynaptic response in a nonlinear manner

for given presynaptic conditions. Following a similar reasoning to

Bimodal Resonances in Neural Systems
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the one considered above, we expect synaptic facilitation to have

and important effect in the signal detection properties of the

postsynaptic neuron under noisy conditions. This effect is shown in

figure 3C where, depending on the value of tfac, the resonance

peak located at low frequencies can be tuned among different

values of fn. It is worthy to note that the appearance of the low

frequency peak is not induced by the presence of depression or

facilitation mechanisms in the synapse, since it also appears for

static synapses (see figure 2A). Therefore, it corresponds to the

standard SR phenomena observed in many excitable nonlinear

systems. However, its precise location in the frequency range is

influenced by STF. Concretely, since the effect of facilitation is to

potentiate the postsynaptic response, one should expect that levels of

noise which are too low to cause high C0 values with static synapses

would, in the presence of STF, contribute to the resonance. On the

other hand, the noise frequency values which were optimal to cause

SR in absence of STF, becomes too high in the presence of STF and

provoke a decrease in C0. Considering these two effects together,

one should expect a displacement of the first resonance peak

towards lower values of fn as tfac increases, which is what we observe

in simulations. Since the position of the first peak is highly sensitive

to the value of tfac, STF could have an important role for a precise

discrimination of the network noisy activity level needed for the

optimal detection of weak signals. The second peak, which is mainly

caused by the depression mechanism, does not change its position

when tfac is varied, due to the prevalence of the STD effect over the

STF at high frequencies. The dependence of the position of the low

frequency peak, namely f z, with the facilitation characteristic time

is shown in the figure 3D.

The appearance of these bimodal resonances is not exclusively

due to the dynamical characteristics of synapses. Considering

adaptive thresholds is of vital importance for the emergence of

bimodal resonances. To illustrate this, we have computed SR

curves for different values of trec and an IF neuron with fixed

firing threshold (that is, an input-independent threshold), namely

h0. The result is shown in figure 4A, where one can see that STD

is not able to induce a second resonance peak when neuron

threshold is considered independent of the mean membrane

potential. Instead of this, we found that C0 does not decay from

its peak value to zero for high fn values, but it stabilizes at a

steady value C�0 (trec). Such high steady value means that some

level of coherence between the weak signal and the postsynaptic

response is maintained for arbitrarily high mean rates. It is

worthy to note that, for a particular value of trec (500 ms in the

figure), the value of C�0 obtained is similar to its peak value, thus

allowing a good detection over a wide range of background firing

rate values.

This saturation of C0 for strong enough STD, which is due to

the oversimplification assumed by the IF model with fixed

threshold, can be easily explained as follows. Firstly, our

simulations show that, in order to have large values of C0, a

necessary condition is that In&h0=Rin, with In being the mean

noisy input current (if In%h0=Rin the postsynaptic neuron is not

firing at all, and if In&h0=Rin the postsynaptic neuron is firing all

the time). Secondly, in the presence of STD and for high

background noise rate, the mean noisy input current In saturates

at certain value I?: limfn?? In – see expressions for the mean

and peak value of the postsynaptic current in Text S1 – which is

infinity for trec~0 and decreases as trec increases. Moreover, for

trec sufficiently high (strong depression), the mean noisy current is

near to its asymptotic value I?, for a finite and relatively low noise

frequency fn. As a consequence, there is a sufficiently high value of

trec for which In&I?&h0=Rin. In this situation an optimal C0

value will be maintained over a wide range of network firing rates,

as the figure 4A shows.

Since short-term synaptic mechanisms alone are not able to

induce bimodal resonances in simple IF neurons with fixed

threshold, as we have already seen, a plausible hypothesis is that

this two-peak resonant behavior emerges from the interplay

between these synaptic mechanisms and adaptive thresholds. To

illustrate this hypothesis, we can sketch a simple explanation of

such cooperative effect by considering that, for an excitable system

displaying SR, a resonance peak is obtained when the strength of

the fluctuations is approximately equal to some potential barrier

height [34]. According to previous works [32,34], and considering

the potential function associated with the IF model (see, for

instance, [35]), one can easily demonstrate that the condition for

the appearance of a resonance peak is Rinsn^D, where

 
  

 

 

 
 

Figure 2. Stochastic resonance with static synapses. (A) Characteristic curve of SR as a function of the mean network rate fn . Numerical
simulations of the model (symbols) agree with our mean-field theory (solid line). (B) The input signal and several time series (marked as a, b, c) of the
postsynaptic membrane potential V (t) for different input noise frequencies. This is for static synapses (trec~tfac~0), USE~0:4, ASE~120 pA,
fs~3 Hz and a fixed threshold h0~10 mV .
doi:10.1371/journal.pone.0017255.g002
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D:h{RinIn is the distance in voltage between the mean

membrane potential and the firing threshold. Considering a

threshold dependence such as the one defined in equation (4) in

the steady state, D takes the value of a small constant (Dd^d,

where the subindex d highlights that it corresponds to a dynamic

threshold situation) for large enough fn. Since the dependence of

Rinsn with fn is non-monotonic for dynamic synapses (see Text S1

for details), plotting together the expressions of Rinsn and Dd as a

function of fn shows two well located crossing points, as the top

panels of figure 4B illustrate. Each one of these crossing points is

associated then with a maximum in C0 (as we have argued above),

and therefore a bimodal resonance is obtained. The local

minimum in C0 is due to a high number of erratic firings of the

postsynaptic neuron, which is caused by high values of the current

fluctuations (compared with Dd ) around the point where the local

minimum appears. This feature is depicted in the top-left panel of

figure 4B with a double-head arrow. Without such large current

fluctuations, the local minimum of C0 would vanish and the

bimodal resonance would be lost. On the other hand, for the case

of an IF neuron with fixed threshold, the quantity D (namely Ds, to

highlight that it corresponds to a fixed threshold situation) is a

monotonically decreasing function of fn. In these conditions, a

single crossing point between Rinsn and Ds is obtained, and

therefore the SR curve presents a single peak, as the bottom panels

of figure 4B show. It should be noted that, for certain sets of values

of the model parameters, two crossing points between the level of

EPSC fluctuations and Ds can also be found for a fixed neuron

threshold. However, in such situations Ds is large and comparable

to Rinsn. As a consequence, the local minimum of C0 cannot be

obtained, and the SR curve remains with the characteristic single-

peak shape.

The appearance of bimodal resonances gives a high versatility

to neurons as weak signals detectors. In actual neural media,

populations of neurons could take advantage of such versatility,

and they could use the high heterogeneity of synaptic properties

[36] to organize groups of neurons with non-resonance, single-

resonance or two-resonance peak behavior. A phase diagram,

which locates the repertoire of different behaviors in the space

 
 

 
 

 

 

 

 

Figure 3. Bimodal resonances for the case of dynamic synapses. (A) Bimodal SR curves for several values of trec , considering USE~0:4 and
ASE~120 pA. This shows that the effect of STD in stochastic resonance is the production of a second resonance peak at certain frequency f � which
decreases when trec is increased. This is illustrated in panel (B), where the inset is a semi-logarithmic plot of the same data. (C) Bimodal SR curves for
different values of tfac , with USE~0:1 and ASE~350 pA. The panel (D) illustrates a decrease of the frequency f z at which the first resonance peak
appears as tfac is increased. The inset in (D) is a semi-logarithmic plot of the same data. In all panels, data from numerical simulations (denoted with
symbols) show a good agreement with mean-field predictions (denoted with lines).
doi:10.1371/journal.pone.0017255.g003
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of synaptic relevant parameters, is shown in figure 5A. For

realistic synaptic conditions, the three types of behavior are

accessible. The region P29 corresponds initially to two res-

onances, but the second resonance is usually located in an

extremely high network rate (f �w200 Hz), which means that

the second resonance does not occur in realistic conditions. If

we increase trec (for a given value of tfac), the system pass from a

single-peak resonance behavior (region P29) for low trec, to the

bimodal resonance phase P2 (because increasing trec implies

lowering f �). After that, the system reaches a single-peak

behavior again (due to the fusion of the two peaks of the

bimodal resonance into just one peak, namely region P1).

Finally, increasing trec even more would lead to a decrement of

the detection ability of the neuron, leading to the zero-

resonance phase (labeled as P0 in the figure).

Robustness of the results
The fact that we considered a simplified neuron model allowed

us to make an analytical treatment, which confirmed the

numerical results both for STD and STF, as we have already

seen. However, we should consider whether bimodal resonances

appear in more realistic conditions. For instance, so far we

assumed (as a first approximation) that the signal term was a

sinusoidal function of weak amplitude and slow frequency. It is

well known, however, that in vivo neural signals are usually

encoded in spike trains. Moreover, since these presynaptic spike

trains affect the postsynaptic neuron via the synapses, STD

mechanisms should, a priori, affect the signal term as well. To take

into account this possibility we can consider, for instance, a signal

constituted by a poissonian spike train whose instantaneous firing

rate is modulated by a slow sinusoidal function [37]. Therefore, in

order to test our results in more realistic conditions, we consider a

signal term given by S(t)~dsy(t), where ds~7 pA is the

amplitude of the signal, and y(t) introduces STD on the signal

(see equation (2)). As it has been previously mentioned, we also

assume a poissonian train of spikes with instantaneous firing rate

fs(t) given by

fs(t)~f0zf0ms sin(2pfmt), ð6Þ

where f0~5Hz is the time-averaged firing rate, and fm~2 Hz and

ms are the frequency and amplitude of the modulation,

respectively. The consideration of this more realistic signal term

does not have a dramatic effect on the resonant behavior of the

neuron, as can be seen in figures 5B and C. Indeed, STD induces

the appearance of a second resonance peak for different values of

the amplitude modulation ms (figure 5B), and it also appears for

the same range of values of trec and fn than before (figure 5C),

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The importance of the adaptive threshold. (A) SR curves for an IF neuron model with fixed threshold h0~8 mV receiving a weak
signal and a noisy input modulated by depressing synapses, for USE~0:5, ASE~90 pA and different values of trec. This shows that ignoring the
adaptive threshold can lead to drastic modifications in the performance of the system (cf. figure 3A, see also the main text). Numerical simulations
(symbols) are consistent with our simple mean field approach (lines). (B) Schematic plot to illustrate how a resonance peak appears when the
amplitude of the voltage variations induced by synaptic current fluctuations (that is, s:Rinsn) is comparable to D (see main text). In the case of an IF
neuron model with adaptive threshold and in the presence of dynamic synapses, this occurs at two frequency values separated by a frequency range
where s&D~Dd (which induces sustained spiking activity and therefore decreases the coherence C0 between the two maxima). For an IF neuron
model with fixed threshold, however, s is comparable to Ds only for a single frequency value which explains the emergence of a single resonance
peak.
doi:10.1371/journal.pone.0017255.g004
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which implies that our results are robust with this more realistic

assumption for the signal term.

Another important question to check the robustness of our

results is whether bimodal resonances also appears when one

considers other input-output measurements. A typical measure-

ment which may be employed here is the amplitude of the

modulation of the postsynaptic firing rate caused by the sinusoidal

signal. For this purpose we define the amplitude of the firing rate

modulation as Dn:nmax{nmin, where nmax, nmin denotes, respec-

tively, the maximum and minimum value of the postsynaptic firing

rate measured by averaging over a high enough number of

systems. As expected, nmax, nmin correspond to the value of n(t) at

times when S(t) is maximal and minimal, respectively. The figure 6

shows that bimodal resonances are obtained in the same

conditions as before, that is, when the synapses present short-

term plasticity mechanisms (here, short-term depression) and the

postsynaptic neuron displays adaptive threshold mechanisms. The

emergence of bimodal resonances is, therefore, quite robust and

can also be obtained by using other input-output measurements,

such as the signal-to-noise ratio defined in [34] (data not shown).

We should clarify that, so far, we have considered that the firing

threshold h(t) is able to fully compensate any increment in the mean

excitatory postsynaptic current In. This can be achieved by setting

h(t) into its steady state value (that is, assuming
dh(t)

dt
~0 in equation

(4)), which yields h~dzRinIn, meaning that any increment in RinIn

will cause an increment of the same magnitude in h. However, this

could not always be the case, as experimental data reported in [19]

indicate that an increment in the mean input RinIn causes a smaller

increment in h. Then, to account for this finding and in order to test

the main predictions of our study, we have introduced a constant

factor av1 in the last term of the right hand side of equation (4), so

that in steady state conditions one has h~dzaRinIn as suggested by

experiments in [19]. The figure 6B shows that bimodal resonances

also appear when one takes into account this realistic consideration

about adaptive threshold, highlighting the robustness of our results.

In this figure, the parameter values of the adaptive threshold are set

to d~8:5 mV and a~0:6, which are close to the physiological

values measured in [19]. Both analytical and numerical results also

indicate that a higher value of the reset membrane potential Vr is

convenient to preserve the bimodal resonances for these conditions.

Despite all these results, further research employing more realistic

models of adaptive threshold are needed to gain more knowledge

about this important topic.

The emergence of bimodal resonances is also maintained when

one considers a more realistic neuron model to simulate the response

of the postsynaptic neuron. Although we have employed an adaptive

threshold to include some of the nonlinear features of actual neurons

into the IF neuron model, it should be convenient to test our findings

by considering an intrinsic nonlinear neuron model which could

present this type of threshold variability without additional

ingredients. A common simple model employed in the literature to

describe the nonlinear excitability properties of actual neurons is the

FitzHugh-Nagumo neuron model [38], which can be defined as

tm
dv(t)

dt
~tme½v(t)(v(t){a)(1{v(t)){w(t)�zS(t)zRinIn(t)

dw(t)

dt
~bv(t){cw(t),

ð7Þ

where v(t) represents the postsynaptic membrane potential, w(t) is a

slow recovery variable related with the refractory time, and

a~0:001, b~3:5 ms{1, c~1 ms{1, e~1000 ms{1 are parame-

 
 

 
 

 
 

Figure 5. Phase diagram and more realistic signals. (A) Phase diagram, obtained from our mean-field approach, which shows different regimes
of the behavior of the system, for USE~0:1 and ASE~120 pA. Labels P0, P1, P2 denote, respectively, regions in which zero, one, or two resonance
peaks occur. The region P29 denotes values of the synaptic parameters for which a second resonance appears, but at a frequency too high to be
considered realistic (that is, f �w1=tref ~200 Hz). For trec?0 the typical single resonance peak is recovered. (B) Bimodal resonances obtained for a
realistic signal (a rate-modulated poissonian spike train influenced by STD mechanisms), with USE~0:5, trec~300 ms, tfac~0 and different values of
the modulation amplitude. (C) Same as panel B, but for ms~0:1 and different values of trec .
doi:10.1371/journal.pone.0017255.g005
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ters of the model. With this choice of values for the parameters, the

model is set in the excitable regime, the (dimensionless) voltage

v(t)~1 corresponds to 100mV and time is given in ms. We also

consider Rin~0:1 GV=mV and tm~10 ms, which lie within the

physiological range of actual cortical neurons. The terms S(t) and

In(t) are described as before, with ds~5. We have performed

numerical simulations of the system presented in figure 1, but

considering now this FHN model for the membrane potential of the

postsynaptic neuron. The results are shown in figure 7A, which

illustrates that for large enough values of trec a bimodal resonance

also appears. The location of the second peak moves towards lower

values of fn as trec increases, as it was found with the IF model with

adaptive threshold. The range of values of the noisy frequency fn at

which the second peak is located is also the same than in the previous

model.

It is necessary to demonstrate here that the FHN model presents

several threshold variability properties which are similar to those

we assumed for the IF neuron model with adaptive threshold. In

order to check this, we define two types of temporal stimuli that

the postsynaptic neuron can receive (in addition to the weak

signal): h1(t) and h2(t). The first stimulus, h1(t), consists in a train

of narrow (*2 ms) square pulses of frequency fs (that is, the same

frequency as the signal). We impose that each one of these pulses

arrives to the postsynaptic neuron every time the signal S(t)
reaches its maximum value, namely ds. Similarly, the other type of

stimulus, h2(t), consists in a train of narrow (*2 ms) square pulses

also of frequency fs, but in this case each pulse arrives at the

postsynaptic neuron when S(t)~{ds (that is, every time the

signal takes its lowest value). We also set a constant input m, in such

a way that the total input to the postsynaptic neuron is given by

S(t)zmzh1(t)zh2(t). For a given fixed value of m, we can

determine the value of the neural firing threshold by increasing the

strength of the stimulus h1(t) (that is, the height of the narrow

pulses) until an AP is generated as a consequence of such stimulus

(we denote this minimal strength of the stimulus h1(t) which

generates APs as h�1). This measure of the firing threshold will be

denoted as h1. Similarly, we can perform a second estimation of

the neuron threshold, namely h2, by varying the strength of h2(t)
until an AP is generated in response to this second stimulus (being

this minimal stimulus for the generation of APs called h�2).

According to these definitions, the different measures of the firing

threshold that we adopt here will be hi~mzh�i , for i~1,2. It is

worth noting that, for coherence purposes with the case of the IF

neuron presented above, the firing threshold is defined here as the

distance between the stable fixed point of the dynamics of the

FHN for zero input (that is, V~0) and the unstable branch of the

nullcline (that is, the value of V for which a spike is generated).

Both estimations (h1, h2) of the firing threshold, as a function of the

constant input m, are shown in figure 7B. The figure illustrates two

major features of the excitability properties of the FHN neuron

model. The first one is that, independently of the value of m, both

estimations give almost identical results for the value of the neural

firing threshold of the FHN neuron model. Since the only

distinction between the stimuli h1(t) and h2(t) is a difference in

amplitude of 2 ds, which is due to the signal term, this result

indicates that the weak signal does not influence the value of the

firing threshold (independently of the value of the constant input

m). This confirms the assumption we made for the IF model in

equation (4). The second major feature illustrated by the figure 7B

(see also the inset of the same figure) is that the value of the firing

threshold increases linearly with m. This dependence coincides

with the expression for the steady state of the firing threshold

obtained from equation (4), which we assumed for the IF model

with adaptive threshold. Therefore, the hypothesis we made on the

modeling of the threshold variability for the IF model is

appropriate as is confirmed by using more realistic neuron

models, such as the FHN model (which incorporates nonlinear

excitability properties).

The robustness and generality of our previous results can be also

tested by considering a more realistic model for the activity-

dependent synaptic mechanisms. For instance, until now we have

treated the synapses employing a deterministic model of dynamic

 

 

 

  

 
 

Figure 6. Additional input-output measurements and more realistic adaptive threshold. (A) SR curves for an IF neuron model with
adaptive threshold receiving a weak sinusoidal signal and uncorrelated noisy input modulated by depressing synapses. The input-output
measurement employed is the amplitude of the modulation of the postsynaptic firing rate, namely Dn. Numerical simulations (symbols) confirm the
mean field prediction (lines), and highlights the robustness of our results when one considers other input-output measurements. Parameters are
USE~0:4, tfac~0 and ASE~120 pA, and results have been obtained after averaging over 30 different systems. (B) Bimodal resonances for an IF
neuron whose adaptive threshold compensates the increments of In only partially (see main text for details). The relation h{fn , needed to obtain the
SR curve, has been slightly smoothed to allow a better visualization of the first resonant peak (see the inset). Parameter values are
USE~0:6, ASE~120 pA, trec~400 ms, tfac~800 ms, a~0:6, d~8:5 mV , hm~14:5 mV and Vr~13 mV .
doi:10.1371/journal.pone.0017255.g006
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synapses for the sake of simplicity. However, it is known that actual

synapses have a stochastic nature [39] and their fluctuations can

play an important role in neural computation [39,40], and

therefore they should be taken into account. In particular, since

the SR curves depend strongly on the noise properties, it is

important to consider the additional source of noise due to

synaptic fluctuations, since this could lead to a very different

emergent behavior in the system. To see the influence of such

fluctuations in our analysis, we have simulated our system using an

intrinsically stochastic model of dynamic synapses presented in

[41]. This model considers that each connection between neurons

has a finite number of functional contacts, or synaptic buttons, and

this number is randomly chosen (for each particular connection)

from a Gaussian distribution of mean M and standard deviation

DM . In addition, the strength of each individual synaptic button is

also randomly determined from a Gaussian distribution of mean J

and standard deviation DJ . The release of a neurotransmitter

vesicle from a synaptic button to the synaptic cleft, when an AP

arrives at the button, is modeled as a random event. After that

release, the recovering of the synaptic button is considered as a

probabilistic event following a Poisson distribution with a typical

time trec. This probabilistic model gives the same mean values for

the EPSC, but the fluctuations differ from the deterministic model

of dynamic synapses (see figure 7D and Text S1 for more details).

As it is shown in figure 7C, this stochastic model induces the same

phenomenology during SR experiments as those for the

deterministic model described by (2–3). That is, for the case of

static synapses, a single resonance peak at low frequencies is

obtained as usual, and when trec is increased, a second peak

appears at high frequencies, with the resonance peak location

moving towards low noise rates. We also tested our results by

considering a conductance based description of the synaptic

 
 

 
  

 
 

 

 

 

 

Figure 7. More realistic neuron and synapse models. (A) Numerical SR curves for a postsynaptic FHN neuron model receiving a weak signal
and uncorrelated background noisy activity of frequency fn , for tfac~0, USE~0:5, ASE~15 pA and different values of trec . In order to estimate the
firing times of the FHN model, the dynamics of the variable v(t) was thresholded at v~0:8. (B) Estimation of the neuron firing threshold for different
values of the constant input current m, and employing two different measures (see the main text for details). The inset shows that the quantity h{m
slowly decreases with m (as occurs in actual neurons), although it may be considered approximately constant for the range of values of m considered.
(C) Numerical SR curves for several trec values and USE~0:5, when a more realistic stochastic model for the synapses is employed (see main text). We
set the parameters of the stochastic model in M~50, J~3 pA, DM~0:1 and DJ~1 pA. (D) Comparison of the standard deviation of the synaptic
current for the two synaptic models employed in our study. The conditions are the same than those in panel C but trec~100 ms. Although the
difference between the predictions of these two models is about 60% for high frequencies, similar bimodal resonances are obtained in both cases.
doi:10.1371/journal.pone.0017255.g007
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current (data not shown), leading to the appearance of bimodal

resonances as well.

Discussion

It is widely known that noise can have relevant and positive

effects in many nonlinear systems in nature. These effects include

noise-induced phase transitions [42,43], stochastic dynamics of

domain growth [44], or multiple types of stochastic resonance

[6,32,34], to name a few. The particular case of stochastic

resonance has been widely studied in the context of biological

systems [6,7], and in particular in the brain. More precisely,

stochastic resonance phenomena could occur in many brain areas,

such as the cortex [13–15], the hippocampus [10], or the brain

stem [11]. Therefore, it is highly relevant to understand the

influence that some features of actual neural systems could have in

the emergence of stochastic resonance phenomena.

Short-term synaptic mechanisms are, in this framework, a

good candidate to consider. It is known, for instance, that both

STD and STF play an important role in the transmission of

relevant correlations between neurons in noisy environments

[18], in the temporal maintenance of information in persistent

states of working memory tasks [45], in the recall of stored

memories on attractor neural networks [46], or in the switching

behavior between neural activity patterns [47,48]. However, the

interplay between these two mechanisms, or between them and

other adaptation processes of neurons, has not been fully

addressed yet.

In this work we have considered the role of dynamic synapses in

the detection of weak signals by neurons embedded in neural

networks, via a stochastic resonance formalism. To the best of our

knowledge, this is the first study that shows the dramatic effect of

the interplay between the dynamical nature of synapses and

adaptive threshold mechanisms on the stochastic resonance

properties of neurons. More precisely, we have demonstrated that

this interplay may originate the appearance of bimodal resonanc-

es, where the location of the resonances in the frequency domain is

related with the relevant synaptic parameters. In addition, to test

our findings we have used several neuron and synapse models, as

well as a number of realistic considerations such as poissonian

input spike trains (for both signal and noise terms) and the

consideration of an additional noisy term in the adaptive threshold

dynamics (data not shown), for instance.

Although recent studies [11,49] have also suggested a relevant

role of STD in neural stochastic resonance, the emergence of

bimodal resonances, which is the crucial point of our study, is

missed in these works. On the other hand, bimodal resonances

have been found in several complex excitable and bistable systems

[50–58], although their occurrence in neural media has not been

reported up to date, nor experimentally neither by employing

realistic neural modeling.

An interesting issue to consider in future studies is, for instance,

whether the interplay between short-term plasticity mechanisms

and other threshold dynamics (apart from the one considered here)

could also cause the appearance of bimodal resonances. In this

work, we have explicitly considered a linear model for the adaptive

threshold dynamics, which constitutes a good approach in steady

state conditions as the experiments suggest [19]. However, more

detailed models are needed if one is interested, for instance, in the

effect of the interplay between dynamic synapses and adaptive

thresholds in non-steady state conditions, such as in the

transmission of fast transient signals. Other neural homeostatic

mechanisms may be considered as well. It is known, for instance,

that the postsynaptic response of a neuron may influence its own

excitability properties— a property which is known as neural

adaptation. This mechanism has been studied in a wide range of

neural systems (see, for instance, [22,23,59,60]) and its effect in

neural dynamics could be similar (but only under certain conditions)

to the adaptive threshold dynamics considered here. Therefore,

analyzing in detail the interplay between neural adaptation and

dynamic synapses during the transmission of weak signals

constitutes an open problem and deserves future investigation.

Although we have considered in our study that the effect of the

spikes arriving through N afferent synapses is a noisy synaptic

current that we assume to be approximately Gaussian, more

realistic conditions must consider other types of noise, including

for instance the possibility of non-Gaussian noises. This has been

reported to have a strong effect in stochastic resonance

phenomena by enlarging the range of noise intensity at which

detection occurs, and making the detection less dependent on the

noise [61]. Interestingly, this effect can be also obtained in our case

by modifying the level of depression (note that in the present study

we use a logarithmic scale for the frequency domain, which

indicates that the second resonance peak is in fact a very broad

peak).

It should be also interesting to investigate whether bimodal

resonances may be obtained as a combination of individual

synapse-neuron properties and network mechanisms. For instance,

one could assume that the role of the adaptive threshold (which

compensates for the increment in the mean noisy input with the

presynaptic firing rate) could also be achieved by a certain balance

between the input of excitatory and inhibitory populations. In

these conditions, bimodal resonances could also appear in

balanced networks of simple IF neurons connected by dynamic

synapses, and some preliminary findings suggest that this could be

the case (data not shown). The concrete details of this possible

emergence of bimodal resonances as a consequence of synaptic

and network mechanisms is, therefore beyond the scope of this

work, and a complete study of this interesting issue will be

published elsewere.

Several questions raised by our study should be experimentally

tested. An interesting prediction to test is, for instance, whether

STF has the effect on the first resonance peak predicted by our

results. This gives an idea of the relevance of the dynamics of

intracellular calcium in processing weak signals at spontaneous

activity states, which are common in cortical areas. The observed

dependences of the position of the peaks with the synaptic

characteristic time scales should be confirmed experimentally as

well. Finally, the question of how these bimodal resonances could

be measured in actual cortical structures, and its possible effect in

brain cognitive tasks, constitutes an interesting issue that still

remains open. In fact, the experimental validation of our work

would require to select brain areas in which neurons receive at

least two clearly distinguishable types of inputs (so one may

identify a signal and a noise term). Good candidates to consider

are sensory associative regions, in which neurons may receive

distinguishable inputs from different senses [11]. Indeed, very

recent works indicate that the interplay between different sensory

inputs could lead to an enhanced detection of weak sensory stimuli

(a phenomenon known as crossmodal resonance [11,62]), and

therefore this would constitute a proper framework to test our

theoretical predictions.

Supporting Information

Text S1 Theoretical derivations. In this supplementary text

we derive an analytical approximation of the input-ouput

correlation function defined in the main text, which is used
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together with numerical simulations to show the behavior of the

system under study.
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