
Stochastic Resonance Crossovers in Complex Networks
Giovanni Pinamonti¤, J. Marro, Joaquı́n J. Torres*

Institute ‘‘Carlos I’’ for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain

Abstract

Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an
amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a
cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual
interactions or ‘‘synapses’’ varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the
cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two
types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise
and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network
wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the
brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have
technological application. We also present here a first contact between the model behavior and psychotechnical data.
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Introduction

Ambient fluctuations that are treated as annoying and often

ignored play in fact a fundamental role in nature. For example,

they may transmit information notwithstanding their deceptive

lack of structure (see, e.g., [1,2]), help setting up order at the

macroscopic, mesoscopic and even nanoscopic levels despite their

apparent order-disturbing effect [3], and optimize propagation by

turning the medium into an excitable one [4,5] and inducing

coherence among environmental noise and the periodic part of the

signal, which helps weak inputs to go through without damping.

This is named stochastic resonance (SR) which, believed to occur in

many different instances [6–15], and known to be technologically

relevant, e.g., in designing filters and sensory devices and in

extracting details about waves-traversed geological media [16,17],

is now established as a genuine and common, perhaps universal

phenomenon [18–20].

Deciphering the detailed microscopic mechanisms bringing a

constructive role of diverse fluctuations in such a varied range of

circumstances is puzzling. This goal became even more difficult

after the discovery of stochastic multi-resonance (SMR) in human

perception [21] in accordance with predictions in assorted

contexts, which demands searching for further causes [22–27].

The hallmark of SR is a rise of the power spectral density or the

input-output correlation with increasing strength of a noise which

is competing with the main input signal. The noise tends again to

dominate, so that the signal transmission may be impeded in

practice, past a peak as the noise level is further increased. One

speaks of SMR when several peaks of this kind show up for

different levels of noise.

In this paper, we report on a numerical study of SR and SMR

in the Ising system on a network in which each node is linked to

each other. Such a full wiring is not realistic but this feature is in

practice swept away here by assuming inhomogeneous connectiv-

ity. That is, the interactions or connections are weighted and time

varying following a pattern which has been observed, for instance,

in the central nervous system [28–31]. This transforms in practice

the original regular net into an effective complex network whose

links happen to play an essential role, as described in detail, for

example, in [31] and references therein. The ambient noise is

modelled in our case by the standard thermal bath, and an

external deterministic, time-periodic signal is added to the current

arriving each unit. Using this simple setting, in which one may

think of units and connections as oversimplified neurons and

synapses, respectively, we describe a crossover from SR to SMR

by changing the dynamic properties of synapses. Important

features of SMR phenomena are then tuned by simply modifying

model parameters that have a well-defined physical meaning. Our

study thus deepens on the microscopic basis and therefore on the

detailed nature of SMR as it may occur in an ample family of

complex, cooperative or interacting systems, and we relate SMR

to nonequilibrium phase transitions that are known to bear

relevance to the understanding of some brain functions [32,33].

Methods

Let N binary neurons, namely, si = 0 or 1, i~1,:::,N, each

linked to the rest by synapses i<j~1,:::,N, whose intensities or

weights are given by the covariance rule [34]:
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This, which modifies the familiar Hebbian prescription to avoid

saturation of weights, as if there were a threshold, involves P

patterns, namely, jm
i ~0,1

� �
with m~1, . . . ,P, that are assumed

to have been previously ‘‘learned’’ by the system. The parameter p

in (1) measures the excess of 1’s over 0’s or symmetry in the mean

net activity of the set of patterns, namely, p~Sjm
i Ti,m: In practice,

for simplicity and also to avoid specificities concerning this model

feature, we deal here with random patterns in the sense that each

jm
i is given either 0 or 1 at random with the only restriction that

Sjm
i Ti,m equals the given value of p.

Evolution with time is by parallel, cellular automata dynamics,

namely, by stochastic changes at each time of the whole set

s~ sif g according to the probabilities:
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Here, s equals either 1 or 0, T is the temperature of the

underlaying bath, and

Ii(t)~2 hi tð Þ{hizA(t)½ � ð3Þ

stands for the total input on each neuron. The last term in this

equation is an external signal that we shall first assume to be

A(t)~A0 cos(ft) (see, however, the section ‘‘Changing the signal’’

below) where the amplitude A0 will in practice be small compared

to the total input, and hi are thresholds for firing, which we take

here equal to half the sum of the weights of all the synapsis

connecting i to the other neurons, hi~
1

2

XN

j~1
vij . The first term

in the rhs of Eq. (3) is the net current from others on neuron i,

which is given by

hi tð Þ~
XN

j~1

vij xj tð Þsj tð Þ: ð4Þ

Therefore, we modulate the synaptic weights with the variable

xi(t) that we shall assume to change with time according to the

map [28]:

xi(tz1)~xi(t)z
1{xi(t)

a
{bxi(t)si(t): ð5Þ

This ansatz could be replaced by direct assumptions on the net

links that have an easy interpretation on physical grounds, see e.g.

[31], without affecting our main results here. Nevertheless, the

choice (5) is simpler and has been previously tested in neuroscience

studies [35]. It amounts to assume a sawtooth–shaped time

change, with a and b measuring the teeth width and depth,

respectively, describing a competition of effects associated to

synapses ‘‘fatigue’’. That is, the link of intensity vijxj is debilitated

as b is increased, while decreasing a makes x to recover its

maximum value more rapidly. The link weight effectively remains

constant in practice if such a recovery becomes very fast, so that

one sometimes speaks of ‘‘a~0’’ as the limit of static synapses

which characterizes the standard Ising and Hopfield cases [36,37].

The origin of (5) are differential equations trying to account for the

fact that electrical stimulation due to local and even spatially

extended activity may induce short-term plasticity leading to

depression and sometimes also facilitation of synaptic transmission

[35,38].

The relevant order in this system may be described by

monitoring the firing rate, i.e., m(t)~ 1
N

P
i si(t), which is in fact

sometimes recorded in laboratory experiments. Though hardly

experimentally accessible, also interesting to illustrate in detail the

system behavior is the overlap of the actual state with each pattern

m, defined as

mm(t)~
1

Np(1{p)

XN

i~1

(jm
i {p)si tð Þ: ð6Þ

Furthermore, we are interested in measuring the intensity of the

input-output correlation, so that we shall compute the function

Cf ~ lim
t??

1

t

ðt

0

m(t)exp iftð Þdt, ð7Þ

i.e., the Fourier coefficient at frequency f of the output firing rate.

The relevant correlation, to be denoted C Tð Þ in the following, is

signal dependent, e.g., we define it in the cosinus case as the value

of C f ,Tð Þ:DCf D2=A2
0 computed at the frequency of the input

signal.

The phase diagram of the above model with A tð Þ~0 Vt was

examined before [28,29,31,32,39]. The most detailed study so far

concerns the case in which x in (4) is interpreted as a stochastic

variable with distribution inspired in (5) [31]. A main result in this

case, which does not differ essentially from the present one, is its

relevance to better understanding cooperative phenomena in

several fields. In particular, tuning properly parameter values, the

model exhibits familiar equilibrium phases, namely, a disordered

high-T phase —corresponding to the paramagnetic phase in

condensed matter— in which (the stationary values of) all the

overlaps are practically zero, a low-T phase with conventional

order —corresponding to ferromagnetism— in which the global

activity converges with time towards one of the attractors jm
i

� �
, so

that it is often taken as a model example of associative memory,

and a —say, spin-glass— phase in which convergence is towards a

mixture of stored patterns. In addition, the system may be tuned to

Figure 1. The signal–to–noise function C Tð Þ depicts in this
semilogarithmic plot a shallow resonance for static synapses at
the critical temperature. (Here, A0~0:005, f ~0:04, and p~0:5:)
doi:10.1371/journal.pone.0051170.g001
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exhibit nonequilibrium phases [36]. Namely, (i) one in which there

is a rapid and rather irregular roaming among the attractors —

thus closely mimicking, for example, long-time structural changes

and oscillations that have been associated with reaction–diffusion

phenomena in physics and chemistry, as well as efficient, say, states

of attention that are of interest in neuroscience—, (ii) one which is

mainly characterized by oscillations between one of the stored

patterns and its negative or corresponding antipattern, and (iii) one

with quite irregular, apparently chaotic roaming randomly

interrupted by pattern–antipattern oscillations [31]. The case (5)

induces similar though relatively simpler behavior, e.g., the most

involved behavior (iii) does not seem to fully develop in this case.

Results

From single to multiple resonance
We report here on Monte Carlo simulations of the above model.

Exploratory runs showed no essential influence of N nor P in the

main behavior of interest, so that we shall report first on the

sufficiently large, typical case N~1000, and will focus on P~1, i.e.,

the only dynamic attractors are a given pattern and its antipattern.

Varying N and P is also interesting, however, and we shall latter

be concerned with this. The stored pattern will initially correspond

to p~0:5, which means same number of firing and silent neurons

on the average, but changing p will be shown later on to modify

importantly the system behavior. Time series for performing

averages consisted of 105 Monte Carlo steps.

In the Hopfield limit of static synapses, x(t)~1 Vt, the system

exhibits a rather weak resonance. As shown in Fig. 1, a well-

defined though shallow peak in the input-output correlation occurs

Figure 2. Three sets — at different noise level or temperature T , as indicated — each with two time series for, respectively, the firing
rate (top of each set) and the overlap (bottom of each set) showing a tendency towards coherence at TC~1: The common external
signal A tð Þ and time scale are shown at the bottom below the sets. (Same case as in Fig. 1, except that A0 = 0.01.)
doi:10.1371/journal.pone.0051170.g002
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around T~TC~1: This is the bath temperature separating the

ferromagnetic phase, for TvTC, from the disordered phase, for

TwTC: The mechanism behind this behavior is illustrated in

Fig. 2. This exhibits typical time series corresponding to the two

relevant equilibrium phases. Namely, one is characterized by non-

zero overlap —in fact, this is close to its maximum in our example

shown as the second graph of the top set for T~0:4— and the

other by zero overlap —i.e., small-amplitude fluctuations around

zero as in the bottom set. This figure also exhibits a near-critical

condition (middle set) in which the overlap shows larger-amplitude

fluctuations. It is remarkable that only in the latter case with

T&TC is the firing rate clearly coupled to the cosinus within A tð Þ;
the overlap also happens to be somewhat coupled here to the

signal but this is not obvious to the naked eye in Fig. 2. The

familiar critical bistability resulting from a competition between

thermal fluctuations and —static though non-homogeneous— node

interactions is in this case the mechanism [18,19] that allows the

weak signal to prevail despite the noise.

More involved behavior shows up when synapses are dynamic,

namely, x in (4) varies with time as stated in (5). As a matter of fact,

one may then expect changes in the transmission of signals, given

the very different development of order which occurs depending

on the parameter values in this case, as we described at the end of

the previous section.

Fig. 3 illustrates the case as one modifies the depression

parameter a in (5). The SR maximum is still clearly depicted for

any a, but it corresponds now to the transition between the

equilibrium disordered phase and the nonequilibrium one

characterized by (possibly irregular) oscillations of the global

activity —that is, the phase identified (ii) above. Furthermore, two

other main differences arise. One is that the peak location moves

as a increases towards lower temperature, in agreement with a

reported scaling of the critical temperature with synaptic

depression [28]. Furthermore, there is a factor of near 103 in

the vertical scale here as compared to the one in Fig. 1, namely,

the resonance effect is now much stronger, though the signal for

this figure is even weaker than in the simulation before for static

synapses.

Actually more intriguing is some indication of SMR for

dynamic synapses, i.e., C Tð Þ tends to form and sometimes

develops a plateau at low temperature which seems to announce a

second resonance peak having a different origine that will finally

show up for p=0:5: The tendency is not fully materialized here,

however, due to our restriction so far to strictly symmetric patterns

(p~0:5), which induces some symmetry of the connection

intensities, as we discuss next.

Effects of asymmetry
The fact that the incipient correlation plateaus in Fig. 3 are

associated to the mechanisms inducing transitions between the

equilibrium-memory and nonequilibrium-oscillatory phases is

confirmed by analysis of the corresponding time series (not

shown). That is, one observes that the overlap then describes rapid

oscillations between the stored pattern and its antipattern that are

definitely correlated with the signal waving. Closer inspection does

not evidence any such correlations in the firing rate series,

however. Consequently, the function C Tð Þ —which derives from

m tð Þ— shows no definite peak. This apparent inconsistency is

because, in as long as one considers p~0:5, the firing rate, unlike

the overlap, fluctuates with only small amplitude, around m~0:5
in practice. It follows that analyzing p=0:5 is needed now,

specially after one notices that the asymmetric case is in fact the

only bearing interest for hypothetical realizations of this resonance

phenomenology in the laboratory.

Figs. 4 and 5 illustrate the change of behavior as the mean

neuron activity in the pattern, p, is modified. The first one shows

that any asymmetry in the number of firing and silent neurons

induces SMR, namely, a sharp peak (together with some

‘‘harmonics’’) at very low T , near the transition between memory

and oscillatory phases, and a cleaner and somewhat less

pronounced peak at higher T , near the transition between

oscillatory and disordered phases. Interesting enough, the reso-

nance is enhanced with increasing asymmetry. We also notice that,

as expected, the underlying pattern-antipattern symmetry induces

the same behavior for pw0:5 than for pv0:5:
Fig. 5 clearly depicts the nature of the low-temperature

resonance peak and how this is associated with asymmetry. That

is, the oscillations of the firing rate are essentially different for the

two cases of correlated behavior. One observes at T~0:045 a

behavior that resembles the one for the middle set in Fig. 2. This is

a critical condition, corresponding to a second–order phase

transition, in which the resonance is essentially induced by noise

and long–ranged correlations. There are oscillations of both m tð Þ
and mm tð Þ that are definitely correlated with those of A tð Þ—which

results in the high-T resonance peak— but occurring between

states that, due to the underlaying noise, are not strongly

Figure 3. Different resonance curves C Tð Þ as one modifies the
value of a in (5), as indicated, for A0~0:001, f ~0:04 and b~0:5:
doi:10.1371/journal.pone.0051170.g003

Figure 4. Resonance curves when one introduces an essential
asymmetry by varying the mean neuron activity in the stored
pattern, p, as indicated. (Here, A0~0:001, f ~0:04, b~0:5 and
a~80:)
doi:10.1371/journal.pone.0051170.g004
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correlated with the information content, as one should have

expected given that jumping is now practically among the store

pattern and a disordered phase. Perhaps the most striking

observation here is that mm tð Þ subtly correlates with the signal,

namely, it occurs as a modulation in the amplitude of the pattern–

antipattern oscillations (see middle panel of the bottom left set in

Fig. 5). Also interesting is that, in spite of the noise in this case, the

weak signal is able to correlate with the neurons activity therefore

affecting the processing of information at very short time scales, as

discussed further in the next section.

The relevant mechanism happens to be qualitatively different

near the low-T resonance peak, e.g. T~0:0076 in Fig. 5. Both the

firing rate and the overlap now show abrupt oscillations with

precisely the same frequency and strongly correlated with A tð Þ: In

particular, the low (high) firing metastable states corresponding to

high (low) overlap —i.e., transitions between the two only possible

levels of neural activity in the (normal) case of asymmetric

patterns— are synchronized to the maxima (minima) of the

cosinus signal. As in a first–order phase transition, and unlike the

high-T case, such a strong correlation tends to diminish sharply as

T is either increased or decreased even slightly, Fig. 5 reveals.

Furthermore, none of the time series, m tð Þ and mm tð Þ, display

superimposed fluctuations, confirming that the noise, even though

necessary, is not here the relevant cause. The control is now in the

weak signal, and the global activity changes correlated with the

information content during a relatively long time, namely, one at

least of order of the signal period.

Figure 5. Time series for the firing rate (top graph of each set) and for the overlap (bottom graph of each set) at different
temperature, as indicated, in the asymmetric case p~0:45. (Other parameters as in Fig. 4.) The second set from top in the right column
corresponds to the low-T peak; the bottom set in the left column corresponds to the high-T peak. The common external signal A tð Þ and time scale
are shown at the bottom below the sets.
doi:10.1371/journal.pone.0051170.g005
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Fig. 6 illustrates the situation for p=0:5 as one changes a: On

one hand, the behavior happens to be similar to the one for SR as

observed above in the symmetric case (cf. Fig. 3), namely,

increasing (decreasing) a shifts the peaks to lower (higher) T and,

at the same time, the high of the peak increases (decreases). On the

other hand, the two peaks tend to merge into a single one as a is

decreased, and the low-T peak does not really show up in practice

for any av10: A main conclusion is therefore that SMR requires

both asymmetry of the patterns concerning p in (1), which is in fact

a general property of nature, and large enough values of the

parameter a characterizing the synaptic changes in (5), i.e., a

complex functionality of connections —even though the actual

wiring may be a simple, fully-connected one.

Changing the signal
The above suggests that the details of the input signal may also

have an effect on resonance. Indeed, Fig. 7 reveals a substantial

influence of the amplitude A0, and confirms the different nature of

the two peaks. While the high-T peak remains constant, the low-T

peak strongly increases with A0 for p=0:5: This is due to the

normalization of C Tð Þ with respect to A0: That is, since the

oscillations that correspond to the first peak are fixed in amplitude

(the system is switching between pattern and antipattern), the

normalization factor leads to the inverse dependence between the

peak height and the signal amplitude. This is not the case for the

second resonance peak because the amplitude of the oscillations in

the firing rate also increases with A0: This peak of C thus remains

constant, maintaining its shape and height independently of the

value for A0: Such differences are a consequence of what we

observed above in relation with Fig. 5. That is, the behavior

around T~0:045 is determined more by the signal —and,

therefore, by A0— than by the well to be overcome at the

transition point, while the well depth dominates over the signal

influence around the (first–order) transition in T~0:0076.

We also checked the robustness of behavior in relation to the

nature of the signal. Let us consider, which is a familiar case, a

non-homogeneous Poissonian spike train with an instantaneous

firing rate modulated by a slow sinusoidal function. That is,

instead of a cosinus, we shall now use in Eq. (3) the signal

A(t)~A0

Pk
i~1 d(t{ti) were the occurrence times ti are gener-

ated from a non-homogeneous Poisson process of mean

l(t)~l0 1za cos ftð Þ½ �, i.e., varying with time. This is believed to

be more realistic than a sinus or a cosinus, at least for neural

systems, e.g., this is sometimes assumed to represent the spike

activity of a neuron in sensory areas processing structured external

signals from senses. This choice is also a more general function,

which eliminates specific features of the cosinus and includes both

stochasticity (inherent here to the Poisson process) and some

quasi–periodic structure codifying relevant information, which is

important for the involved phenomena.

A first observation is that, as Fig. 8 illustrates, no essential

qualitative changes occur using one or the other signal in a typical

case of SMR. On the other hand, inspection of time series as those

in Fig. 9 shows again indications of the different nature of the two

peaks. At low T , e.g., T~0:007 in this figure, the firing rate

switches from low to high mean activity each time a train or burst

of inputs arrives. Once the stimulus ends or the arriving signals

become sparse, the system stays at the metastable state of high

activity —as it occurs in Fig. 5 for the cosinus maxima— until

synapses depress, due to such staying at high activity, and the

metastable state destabilizes. It seems sensible to link this behavior

with that in a hypothetical working memory context in which the

activity persists for some time after the stimulus has ceased. As a

matter of fact, a sort of short–term synaptic plasticity which

reminds one of this situation has already been proposed [40,41].

On the contrary, the system processes without slothfulness at high

T , e.g., T~0:045 in Fig. 9. That is, a single spike input induces

switching from low to high activity, and the high activity state

persists but only during the duration of the stimulus, so that any

temporal structure encoded in the signal is precisely processed at

the high-T resonance.

Discussion

We here studied the origin of stochastic resonance as it occurs in

a biologically-motivated Ising-Hopfield model system with thre-

sholded neurons and dynamic synapses. This results in an

interacting complex network, namely, one in which the intensity

of connections is inhomogeneously distributed and varies with

time, which essentially influences functionality. For a wide range of

parameter values, the system shows intense resonance for different

levels of noise. More specifically, as the noise is increased in case

P~1, i.e., when the system stores a single pattern, the network

Figure 6. Resonance curves for varying a, as indicated, when
p~0:45 and b~0:5, for a sinusoidal signal with A0~0:001 and
f0~0:04:
doi:10.1371/journal.pone.0051170.g006 Figure 7. Effect of varying the amplitude A0 for p~0:45. The inset

shows the dependence on A0 of the amplitude of the oscillations of
m(t) for each of the two peaks.
doi:10.1371/journal.pone.0051170.g007
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activity passes from a resting state with some activity around this

pattern to a phase in which this situation destabilizes and the

global activity oscillates between the metastable states correspond-

ing to the pattern and its antipattern configurations. When the

noise increases even more, the pattern–antipattern oscillations

wash out and a disordered phase emerges. Interesting enough,

SMR happens to require in this setting some synaptic depression,

so that the relevant phases occur —and the stored pattern to be

asymmetric as it is always the case in practice. Two resonance

peaks —namely, sudden increase of the efficiency in transmitting a

weak signal through two different levels of the environmental

noise— are then exhibited that are associated with the transitions

points between the phases.

The nature of the peaks importantly differs from each other.

The low noise one is mainly due to the coupling between the

frequency of the pattern–antipattern oscillations —associated to

the occurrence of nonequilibrium phases— and the waving of the

input signal. The high noise peak, however, ensues when a

modulation of the amplitude of these oscillations (and not the

pattern–antipattern oscillations themselves) correlates with the

signal. This relevant modulation clearly manifests itself as a noisy

slow oscillation in the firing rate, as illustrated by the inset of Fig. 7

Figure 9. Time series for different values of T , as indicated, corresponding to the SMR curve in Fig. 8 for the Poissonian input train
(shown below each set with the time scale). The resonances occur in this case around T~0:007 (second set in the left collumn) and T~0:045
(third set in the left column).
doi:10.1371/journal.pone.0051170.g009

Figure 8. Resonance curves for a sinusoidal signal and for a
non-homogeneous Poissonian input train (in this case, C Tð Þ
stands for DCf D2=A2

0l2
0 at the modulation frequency f of the non-

homogeneous Poissonian process rate). Here, p~0:45, a~80,
b~0:5, f ~0:04, and A0~0:001 for the sinus and A0~0:005, l0~0:05,
and a~0:75 for the Poissonian signal.
doi:10.1371/journal.pone.0051170.g008

Stochastic Resonance Crossovers
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showing how the amplitude of the firing rate oscillations increases

with the amplitude of the signal.

The peaks not only differ in their birth mechanism but also in

the way the signal is processed. This is made evident when an

inhomogeneous Poissonian spike train of small amplitude is used

as input signal. Around the low-noise peak, the system activity

rather tends to follow the signal every time a burst of spikes arrives,

and it remains excited for a time, which is short but larger than the

stimulus duration, until the synaptic fatigue mechanism destabi-

lizes such metastability. This is precisely the basic microscopic

origin of peculiar properties reported to occur in nature such as

undamped propagation in excitable media [4,32,33], and it may

also be interpreted as a sort of short–term memory mechanism

able to maintain information for, say, a few seconds as in the so–

called sensory and working memories. The situation essentially

changes around the high-noise peak, where the system detects

each single input spike, that is, the finest time structure of the

underlying signal.

We also checked how SMR is affected by varying the number P

of stored patterns. This is interesting for completeness but also

because the global activity becomes for Pw1 even more complex.

That is, the system then tends to keep visiting all the stored

patterns and their antipatterns, and it may do this by following

quite irregular, even chaotic paths [31]. As Fig. 10 shows,

increasing P for a fixed frequency f of the input signal (left), the

high–noise resonance slightly increases and moves a little bit

towards lower T , and the low-T peak markedly decreases while

moving to lower T : This is due to the fact that increasing P tends

to increase the frequency of the pattern–antipattern oscillations of

the firing rate and, therefore, to decorrelate the firing rate from the

input signal. This is as expected because the memory capacity of

the standard Ising–Hopfield model is known to generally decrease

due to interference among the stored patterns [42]. For a given

value of P, on the other hand, the height of the low-noise peak

increases with the frequency f of the signal as this approaches the

frequency of the pattern–antipattern oscillations (right graph in

Fig. 10). The net result is therefore that SMR is robust for a range

of P values as far as input signals are of high frequency, while one

should expect the low–frequency signals to be poorly processed.

A picture similar to the one in Fig. 1 was reported before in

settings that are close to ours here but involving serious restrictive

conditions [43–45]. In particular, a recent study within the linear

and mean-field approximations of the Ising model with —

constant and homogeneous — ferromagnetic interactions under

an oscillating magnetic field [44,45] describes resonance behavior

when the wiring of connections is not homogeneous. The outcome

happens to depend crucially on specific properties of the involved

network structure, and the resonance resembles the one in Fig. 1

when the degree distribution obeys a power law *k{c with cw3:
In spite of its interest for other purposes [46–48], the relevance of

the Ising model on scale-free networks is perhaps questionable

within the present context. That is, large values of c are generally

not observed in nature, and the system is physically anomalous due

to finite-size effects for 2vcv3 [44–48]. On the contrary, it is

remarkable in our model that defining its wiring a situation in

which all neurons are in principle connected to each other, the

Figure 12. The experimental data (symbols with the corre-
sponding error bars) reported in [54] are plotted here against
our theoretical prediction (red solid line) corresponding to the
case p~0:45 in Fig. 4. To obtain this fit, the experimental data C with
arbitrary units are multiplied by a factor 180, and the external noise
amplitude N (which is given in dB) needed to be transformed into our
intrinsic noise parameter T using the nonlinear relationship

T~10{4 T0z
gN
2

1zerf((N{N0)=
ffiffiffi
2
p

sN )

 �� �

w i t h T0~5, g~7:7,

N0~50dB, and sN~26:19dB.
doi:10.1371/journal.pone.0051170.g012

Figure 10. Left: Resonance curves for f ~0:04 as the number P
of stored patterns is varied, suggesting that the low-T
resonance tends to disappear with increasing P. Right: Reso-
nance curves for P~5 as one varies the signal frequency f . This shows
the contrary effect, i.e., the low-T resonance intensity increases with f .
(Here, p~0:45, A0~0:001, a~80, and b~0:5):
doi:10.1371/journal.pone.0051170.g010

Figure 11. Effect of the network size N on SMR. The inset shows
how the value of T locating the low (circles) and high (squares) noise
peaks depends on N . This is for a sinusoidal signal with A0~0:001 and
f0~0:04, and p~0:45, a~80 and b~0:5:
doi:10.1371/journal.pone.0051170.g011
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intensity of connections is not homogeneous and constantly varies

with time. This in fact induces a real complex functionality of the

network which is likely to correspond more generally to the one in

nature [49–53].

Fig. 11, on the other hand, shows how the results in this paper

do not depend essentially on the network size N: That is, SMR

occurs qualitatively the same for a range of sizes, and the value of

noise at which the peaks develop depends on N but tends soon to

saturate at a constant value. This is interesting because the neural

systems that we attempt to describe are far from being infinite in the

thermodynamic sense but correspond to relatively small values of

N:
Finally, we comment on possible experimental realizations of

SMR. Some limited data from a psychotechnical experiment [54–

56] concerning the human cortex were recently interpreted in the

light of SMR using a simple model consisting of FitzHugh–

Nagumo neurons [57–60], which account for adaptive thresholds

and fatigue–enduring synapses [21]. This in fact motivated the

present study of a similar situation in a complex network. We

therefore attempted a new contact between those experimental

data and the present model; figure 12 shows the result, which is

encouraging. No doubt that further experiments trying to confirm

SMR, which will thus clarify the possible existence of intriguing

mechanisms as suggested by the model in this paper, will be most

welcome.
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