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Prólogo

De acuerdo con las normas reguladoras de las enseñanzas ofi-
ciales de Doctorado y del T́ıtulo de Doctor por la Universidad de
Granada, aprobadas por Consejo de Gobierno de la Universidad
de Granada en su sesión del 2 de Mayo del 2012, la tesis doctoral
“puede consistir en el reagrupamiento en una memoria de tra-
bajos de investigación publicados por el doctorando en medios
cient́ıficos relevantes en su ámbito de conocimiento”.

Los art́ıculos elegidos para la memoria deben haber sido pu-
blicados o aceptados para su publicación en fecha posterior a la
obtención del t́ıtulo de grado y de master universitario. La pre-
sente memoria ha sido realizada como compilación de 9 art́ıculos.
Todas las publicaciones incluidas en esta memoria han aparecido
en revistas de relevancia internacional en el ámbito del Análisis
Matemático, referenciadas en la última relación publicada por
el Journal of Citations Reports e incluidas en las bases de datos
MathSciNet (American Mathematical Society) y Zentralblatt für
Mathematik (European Mathematical Society).

Esta memoria ha sido presentada por D. Jorge José Garcés
Pérez para optar al t́ıtulo de Doctor en Matemáticas por la
Universidad de Granada dentro del programa oficial de docto-
rado en F́ısica y Matemáticas (FisyMat). Para poder optar a la
mención internacional en el t́ıtulo de doctor, la mayor parte de

v



vi Caṕıtulo 0. Prólogo

esta memoria está escrita en inglés, idioma que actualmente es
el mayoritario para la comunicación cient́ıfica en el ámbito de
las matemáticas. Al redactarse la tesis en una lengua no oficial,
incluimos en el primer caṕıtulo un amplio resumen en español.
Los caṕıtulos posteriores (escritos en inglés) incluyen (aunque no
separadamente) una introducción, los objetivos propuestos, un
resumen de los resultados y conclusiones obtenidas, aśı como la
bibliograf́ıa utilizada.

Dado el gran número de conceptos y resultados previos que
se han de introducir, en lugar de presentarlos todos en un único
caṕıtulo, hemos decidido incluir cada uno de ellos justo en el
momento en que sea necesario.

Los resultados presentados en esta memoria han sido obte-
nidos a lo largo de los últimos cinco años bajo la supervisión del
Dr. Antonio M. Peralta Pereira en el Departamento de Análisis
Matemático de la Universidad de Granada. En este tiempo el
doctorado ha sido alumno del Master y del Programa Oficial de
Doctorado en F́ısica y Matemáticas (FisyMat); desde Septiem-
bre de 2009 ha disfrutado de una beca de investigación asociada
al Proyecto de Excelencia “Aproximación algebraico-anaĺıtica de
los sistemas no-asociativos y sus aplicaciones FQM-3737”, finan-
ciado por la Junta de Andalućıa. Entre Septiembre y Diciembre
de 2012 el doctorando realizó una estancia de investigación en
el Departamento de Matemáticas de la Universidad de Reading
(Reino Unido).
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nivel en Cartuja que siempre vienen bien para despejarse. Tam-
bién por no destituirme cuando cambié el fútbol por la salsa o
la tesis.

A los de comedores: Rodri, Wil, Ix, Juan Omiste, Alex-Peter,
Luis, Kathe con los que he compartido innumerables almuerzos
en comedores y cafés “en lo de Javi”, siempre acompañados de
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A mi antiguo compañero de piso, Carlos, que me aguantó un-
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Capı́tulo 1
Introducción

El Caṕıtulo 2 de esta memoria está dedicado a introducir
las estructuras algebraico-topológicas en las que llevamos a cabo
nuestro trabajo: las C∗-álgebras, las JB∗-álgebras y los JB∗-triples.
En dicho Caṕıtulo damos las nociones, resultados y referencias
básicas de la teoŕıa de C∗-álgebras, JB∗-álgebras y JB∗-triples.

En el Caṕıtulo 3 hacemos un recorrido histórico por los resul-
tados que han motivado nuestra investigación, desde la década
de 1930 hasta nuestros d́ıas. El objetivo no es otro que motivar
el interés de los problemas que han sido objeto de estudio en esta
tesis.

Uno de los ejes principales de esta memoria es el concepto
de ortogonalidad, y más concretamente, el estudio de los oper-
adores que preservan ortogonalidad. Cuatro de los caṕıtulos de
esta memoria y muchos de los problemas abiertos presentados
en el último caṕıtulo están dedicados al estudio de problemas
relacionados con las aplicaciones lineales que preservan ortogo-
nalidad.

El libro “Théorie des opérations linéaires” [17], de S. Ba-

1
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nach, marca el inicio del Análisis Funcional. En él se define por
primera vez el concepto de espacio de Banach y se prueban al-
gunos de los teoremas fundamentales del Análisis Funcional. Por
lo que a nuestro trabajo concierne, destacamos los resultados
sobre isometŕıas lineales sobreyectivas entre varios espacios de
Banach clásicos, como son los espacios de funciones continuas
(C(K)-espacios) y los espacios Lp([0, 1]).

Existe cierto consenso en situar en estos trabajos de Banach
(más tarde generalizados por M. Stone en [176]) sobre isometŕıas
lineales sobreyectivas entre espacios de funciones continuas, el
origen del estudio de los operadores que preservan ortogonali-
dad. Si bien es cierto que la propiedad de preservar ortogonali-
dad, no fue directamente considerada por Banach ni por Stone,
la forma de las isometŕıas lineales sobreyectivas (esto es, un op-
erador de composición con peso) proporciona el primer ejemplo
de operador que preserva ortogonalidad. La forma más gener-
al del Teorema de Banach (que enunciamos a continuación) es
conocida en la actualidad como Teorema de Banach-Stone.

Teorema 1.1.1 [Banach-Stone] Sean K1, K2 espacios compactos
y de Hausdorff y sea T : C(K1) → C(K2) una isometŕıa lin-
eal sobreyectiva. Entonces existen una función continua h en
C(K2), con |h(s)| = 1, para todo s ∈ K2, y un homeomorfis-
mo ϕ : K2 → K1 tales que

T (f)(s) = h(s)f(ϕ(s)),

para cualesquiera f ∈ C(K1), s ∈ K2. 2

Como ya hemos mencionado, Banach también considera las
isometŕıas sobreyectivas entre espacios Lp([0, 1]). Curiosamente,
en este caso Banach śı observa que estas aplicaciones son sepa-
radoras. Citando al propio Banach:
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“Etant donée une rotation y = U(x) de (L(p)), oú 1 ≤ p 6= 2,
autour de 0, si on a pour un couple x1(t), x2(t) des fonctions
appartenat á (L(p))

x1(t)x2(t) = 0, persque partout dans [0, 1],

alors pour le couple y1(t), y2(t), oú y1(t) = U(x1) et y2 = U(x2),
on a également

y1(t)y2(t) = 0, persque partout dans [0, 1].′′

Sean A,B dos C(K)-espacios (o espacios Lp([0, 1])) y sea
T : A → B una aplicación lineal. Diremos que T es separadora
si satisface la propiedad

fg = 0 =⇒ T (f)T (g) = 0.

El citado párrafo de Banach afirma precisamente que una
isometŕıa sobreyectiva entre espacios Lp([0, 1]) es separadora.
Del mismo modo, el Teorema de Banach-Stone implica que toda
isometŕıa lineal sobreyectiva entre espacios C(K) es separadora.

Definición 1.1.2 Sean K1, K2 espacios compactos Hausdorff y
sea T : C(K1) → C(K2) una aplicación lineal. Diremos que T
es un operador de composición con peso, si existe una función
continua h ∈ C(K2) y ϕ : K2 → K1 continua en el conjunto
{t : h(t) 6= 0} tales que

T (f)(s) = h(s)f(ϕ(s)),

para cualesquiera f ∈ C(K1), s ∈ K2. 2

Toda isometŕıa lineal sobreyectiva entre espacios C(K) es
un operador de composición con peso. Además, es fácil compro-
bar que todo operador composición con peso es una aplicación
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separadora. Las isometŕıas lineales sobreyectivas entre espacios
Lp([0, 1]) (con 1 ≤ p 6= 2) también son operadores de com-
posición con peso (con la salvedad de extender a los Lp([0, 1])
las definiciones dadas anteriormente). Cabe mencionar que este
último resultado de Banach fue generalizado por J. Lamperti a
espacios de medida con una medida σ-finita arbitraria y también
para p < 1 en [126]. El hecho de que las isometŕıas sobreyecti-
vas son separadoras es importante en las pruebas de Banach y
Lamperti. Tanto es aśı que las aplicaciones separadoras han sido
también denominadas por muchos autores como operadores de
Lamperti.

Desde su aparición, los trabajos de Banach y Stone han ins-
pirado a muchos autores que dedicaron sus esfuerzos a obtener
teoremas de tipo Banach-Stone en ambientes más generales, co-
mo por ejemplo: los ret́ıculos de Banach, los espacios de funciones
continuas vector-valuadas, las álgebras de Banach, las álgebras
de Jordan-Banach o los JB∗-triples (ver por ejemplo [112], [149],
[187], [162], [96], [119], [65] y [66]).

En vista de las contribuciones de Banach, Stone y Lamperti,
entre otras, los investigadores en varios ámbitos del Análisis Fun-
cional notaron que la propiedad de “ser aplicación separadora”
teńıa una gran importancia. A partir de la década de 1970 exper-
tos en ret́ıculos de Banach empezaron un estudio sistemático de
aquellas aplicaciones lineales que tienen dicha propiedad. Recor-
damos que un ret́ıculo de Banach es un ret́ıculo vectorial real,
(E, ‖.‖),con una norma completa que tiene la siguiente propiedad
adicional:

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖,

donde |x| = máx{x,−x}. Dos elementos x, y en un ret́ıculo de
Banach E son disjuntos (notado mediante el śımbolo x ⊥ y) si
mı́n{x, y} = 0.
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Un aplicación lineal T : E → F entre ret́ıculos de Banach
se dice separadora si T (x) ⊥ T (y) siempre que x ⊥ y en E. Los
operadores de composición con peso (definidos apropiadamente
dependiendo del ambiente en el que se trabaje) son el prototipo
de aplicaciones lineales separadoras. Aśı, los investigadores se
preguntaron si toda aplicación lineal (y continua) entre ret́ıculos
de Banach que es separadora se puede representar como un ope-
rador de composición con peso. Y.A. Abramovich, A.I. Veksler
y A.V. Koldunov prueban en [2] que este es el caso, entre otros,
cuando la T es biyectiva, separadora y su inversa también lo es.

Otro importante problema es el estudio de la continuidad au-
tomática, esto es, si bajo ciertas hipótesis se puede probar que
una aplicación separadora es continua. Abramovich, Veksler y
Koldunov ya probaron en [2] que si T es biyectiva, separadora
y T−1 es separadora, entonces T es continua. En vista de este
resultado surge la pregunta de si se pueden relajar un poco las
hipótesis sobre T , por ejemplo, exigiendo solamente que ésta sea
biyectiva y preserve ortogonalidad para obtener su continuidad
de forma automática. Otra cuestión que surge de manera na-
tural es si, en este caso, se puede demostrar que también T−1

es separadora. Como veremos a lo largo de esta introducción,
estas cuestiones han dado lugar a una vasta literatura, no sólo
en el ambiente de los ret́ıculos de Banach. Destacamos que Y.A.
Abramovich y A.K. Kitover dieron un ejemplo de aplicación se-
paradora biyectiva cuya inversa no es separadora (ver [1]).

De particular importancia para nuestros intereses son los tra-
bajos de E. Beckenstein, L. Narici y A.R. Todd sobre aplicaciones
separadoras entre espacios C(K) (ver [23]). En estos trabajos di-
chos autores introducen una herramienta de gran utilidad para
el estudio de estas aplicaciones lineales: la función soporte aso-
ciada a un aplicación separadora. Usando esta función soporte
consiguen obtener varios resultados de continuidad automática.
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En [100], K. Jarosz explota estas ideas y consigue obtener una
descripción general de las aplicaciones lineales separadoras entre
espacios de funciones continuas. Como consecuencia, prueba que
si una tal aplicación es biyectiva, entonces es automáticamente
continua y un operador de composición con peso.

Teorema 1.1.3 [K. Jarosz, Canadian J., 1990] Consideremos
una aplicación lineal y separadora T : C(K1) → C(K2). En-
tonces, existen subconjuntos disjuntos dos a dos Z1, Z2 y Z3 de
K2 con K2 = Z1∪Z2∪Z3, Z2 abierto y Z3 cerrado, una función
acotada que no se anula y es continua h : Z1 → C, y una función
continua ϕ : Z1 ∪ Z2 → K1 tales que

T (f)(s) = h(s)f(ϕ(s)), para cualesquiera f ∈ C(K1), s ∈ Z1

y T (f)(s) = 0, para cualesquiera f ∈ C(K1), s ∈ Z3.
Además ϕ(Z2) es finito y todos los funcionales de la forma

δsT, para algún s en Z2, son discontinuos. 2

Merece la pena destacar que si T : C(K1) → C(K2) es una
biyección lineal separadora, entonces T−1 también es separadora.
Los resultados de Jarosz fueron generalizados por J.S. Jeang y
N.C. Wong en [103] al ambiente de los espacios C0(L) (funciones
continuas en un espacio localmente compacto Hausdorff que se
anulan en infinito).

Este tipo de problemas se puede plantear en un ambiente
más general, como el de las funciones continuas vector-valuadas
o las álgebras de Banach. Nosotros nos centraremos en el segundo
ambiente.

Recordamos que un álgebra de Banach es un álgebra asocia-
tiva, A, dotada de una norma completa tal que ‖ab‖ ≤ ‖a‖‖b‖,
para cualesquiera a, b en A.



7

Definición 1.1.4 Sea T : A → B un aplicación lineal entre
álgebras de Banach. Diremos que T preserva productos cero si
ab = 0 implica T (a)T (b) = 0.

Si A y B son espacios C(K) o C0(L), entonces las aplica-
ciones lineales entre A y B que preservan productos cero son
precisamente las separadoras.

En toda álgebra asociativa se puede definir otro producto
(no asociativo, en general) llamado producto de Jordan, definido
mediante a ◦ b = 1

2
(ab + ba). Una aplicación lineal T : A → B

entre álgebras de Banach se dice que es un homomorfismo de
Jordan si verifica T (a ◦ b) = T (a) ◦ T (b), para cualesquiera a, b
en A.

En esta introducción usaremos con frecuencia la palabra ope-
rador para designar a una aplicación lineal y continua. Los ope-
radores entre álgebras de Banach que preservan productos cero
han sido estudiados por muchos autores en los últimos 20 años. El
prototipo de operador que preserva productos cero es un múlti-
plo de un homomorfismo de Jordan S : A→ B por un elemento
de B que verifica ciertas propiedades de conmutatividad con los
elementos de la imagen de S (ver por ejemplo [42], [43], [67],
[192], [185], [124] y [5]). Sin embargo, no es, en general, posible
describir estos operadores. Para obtener una descripción de los
mismos suelen necesitarse hipótesis adicionales sobre las álge-
bras de Banach en las que actúan o sobre el propio operador
(t́ıpicamente sobreyectividad).

Cuando la estructura de las álgebras de Banach en las que
actúan los operadores es más rica se pueden obtener mejores
descripciones de los mismos. Éste es el caso de las C∗-álgebras.
Recordemos que una C∗-álgebra es un álgebra de Banach comple-
ja, (A, ‖.‖), dotada de una involución ∗ : A → A que satisfacen
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la condición (conocida como axioma de Gelfand-Naimark):

‖aa∗‖ = ‖a‖2 (a ∈ A).

Dado en elemento a de una C∗-álgebra, diremos que es au-
toadjunto si a = a∗. Denotaremos por Asa al conjunto de los
elemento autoadjuntos de A.

Sea A una C∗-álgebra y sean a, b elementos de A. Diremos
que a y b son ortogonales, y lo denotaremos con el śımbolo a ⊥ b,
si ab∗ = b∗a = 0.

Definición 1.1.5 Una aplicación lineal T : A → B entre C∗-
algebras preserva ortogonalidad cuando a ⊥ b implica que T (a) ⊥
T (b).

En virtud del Teorema de Gelfand conmutativo toda C∗-álge-
bra abeliana es ∗-isomorfa a un espacio C0(L), para un cierto
espacio topológico localmente compacto Hausdorff L (compacto
si ésta es unital). Teniendo en cuenta esto último y el hecho
de que la ortogonalidad y el producto cero en una C∗-álgebra
abeliana coinciden, los resultados de Jarosz, y Jeang-Wong per-
miten describir los operadores que preservan ortogonalidad entre
C∗-álgebras abelianas.

Teorema 1.1.6 Sea T : A → B un operador que preserva or-
togonalidad entre C∗-álgebras abelianas. Entonces existen un ho-
momorfismo de Jordan S : A → B y un elemento h en B tales
que T = hS. 2

El Caṕıtulo 3 de esta memoria está dedicado a la descripción
de los operadores que preservan ortogonalidad entre C∗-álgebras
(no necesariamente abelianas).
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En 1994, M. Wolff estudia aquellos operadores entre C∗-álge-
bras (unitales) que preservan ortogonalidad y son simétricos, es-
to es, verifican la identidad adicional T (a∗) = T (a)∗, para todo
a en A. Llamaremos ∗-homomorfismos de Jordan a aquellos ho-
momorfismos de Jordan que además son simétricos, en el sentido
que acabamos de definir.

En [183], Wolff obtiene la siguiente descripción de estos ope-
radores:

Teorema 1.1.7 [M. Wolff, Arch. Math., 1994] Sean A,B C∗-
álgebras unitales, T : A→ B un operador simétrico que preserva
ortogonalidad y sea h = T (1). Entonces h conmuta con todos
los elementos de T (A) y existe un ∗-homomorfismo de Jordan
S : A→ B∗∗ tal que T = hS. 2

Conviene señalar que hemos reformulado el resultado de Wolff
para no tener que entrar en demasiado detalle.

Los resultados de Wolff fueron generalizados por M.A. Cheb-
otar, W.F. Ke, P.H. Lee y N.C. Wong en [42, Theorem 4.6].
Destacamos que un operador linear y simétrico que preserva pro-
ductos cero preserva también ortogonalidad. Sin embargo, si el
operador no es simétrico ésto deja de ser cierto (en general). Aśı,
para generalizar los resultados de Wolff existen dos opciones:
bien considerar operadores que preservan productos cero, o bi-
en considerar operadores que preservan ortogonalidad. En [42]
Chebotar, Ke, Lee y Wong optan por la primera opción. En
este trabajo consideran operadores (no necesariamente simétri-
cos) entre C∗-álgebras que preservan productos cero. En dicho
art́ıculo, consiguen dar una descripción similar a la de Wolff bajo
ciertas hipótesis adicionales (como sobreyectividad). Sin embar-
go, como ellos mismos observan, “una descripción de estos ope-
rador como múltiplos de un homomorfismo de Jordan no es, en
general, posible” (ver [42, Ejemplo 4.8]).
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En una C∗-álgebraA podemos definir un producto triple {., ., .} :
A×A×A→ A mediante la expresión {a, b, c} = 1

2
(ab∗c+ cb∗a).

La ortogonalidad en una C∗-álgebra se puede caracterizar en
términos de este producto triple. Efectivamente, dos elementos
a, b en A son ortogonales si, y sólo si, {a, b, c} = 0, para todo c
en A (cf. [34, Lemma 1]).

Sea T : A→ B un operador entre C∗-álgebras. Diremos que T
es un triple homomorfismo, si T preserva el producto triple, esto
es, si T ({a, b, c}) = {T (a), T (b), T (c)} para cualesquiera a, b, c en
A.

A un elemento u de una C∗-álgebra que verifique {u, u, u} = u
se le denomina isometŕıa parcial. En base a lo antes mencionado,
es claro que todo triple homomorfismo preserva ortogonalidad.
Además, se puede comprobar que el elemento h = T ∗∗(1) verifica
{h, h, h} = h (esto es, h es una isometŕıa parcial).

El rećıproco de este enunciado se debe a N.C. Wong (ver
[184]).

Teorema 1.1.8 [N.C. Wong, Southeast J. Asian Bull. Math.,
2005] Un operador T : A → B entre C∗-algebras es un triple
homomorfismo si, y sólo si, preserva ortogonalidad y T ∗∗(1) es
una isometŕıa parcial. 2

El problema de dar una descripción general de los operadores
que preservan ortogonalidad entre C∗-algebras permaneció abier-
to hasta 2008. En este año, y en colaboración con los profesores
M. Burgos, F.J. Fernández-Polo, J. Mart́ınez y A. M. Peralta
conseguimos en [34] determinar los operadores que preservan
ortogonalidad entre C∗-álgebras, sin más hipótesis que la con-
tinuidad. Para ello resultan de gran utilidad herramientas como
las formas sesquilineales ortogonales o los polinomios ortogonal-
mente aditivos.
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Recordemos que una forma sesquilineal Φ : A×A→ C sobre
una C∗-álgebra es llamada ortogonal si Φ(a, b) = 0 para todo
a, b en A con a ⊥ b. Una descripción general de estas formas fue
obtenida por S. Goldstein en [83].

Teorema 1.1.9 [S. Goldstein, J. Funct. An., 1993] Sea A una
C∗-álgebra y sea Φ : A×A→ C una forma sesquilinear ortogonal
y continua. Entonces existen ψ1, ψ2 en A∗ tales que

Φ(a, b) = ψ1(ab
∗) + ψ2(b

∗a),

para cualesquiera a, b en A. 2

Sean A una C∗-álgebra y X un espacio de Banach. Por un
polinomio n-homogéneo X-valuado entenderemos una aplicación
X-valuada y continua P : A → X tal que existe un operador
n-lineal T : A× . . .× A→ X que satisface P (x) = T (x, . . . , x),
para todo x en A. Diremos que un polinomio n-homogéneo es
ortogonalmente aditivo (respectivamente, ortogonalmente aditi-
vo en Asa) si P (a + b) = P (a) + P (b) siempre que a ⊥ b en A
(respectivamente, en Asa).

Los polinomios n-homogéneos ortogonalmente aditivos fueron
en primer lugar estudiados en el ambiente de los ret́ıculos de Ba-
nach por Y. Benyamini, S. Lassalle y J.G. Llavona y en el de
las C∗-álgebras abelianas (i.e. C(K) espacios) por D. Pérez e I.
Villanueva (ver [25] y [155], respectivamente).

La descripción de Pérez y Villanueva fue generalizada para
C∗-álgebras no necesariamente abelianas por C. Palazuelos, A.M.
Peralta e I. Villanueva en [148].

Teorema 1.1.10 [C. Palazuelos, A.M. Peralta, I. Villanueva,
Quart. J. Math. Oxford, 2008] Sean A una C∗-álgebra, X un
espacio de Banach y P : A → X un polinomio n-homogéneo
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ortogonalmente aditivo. Entonces existe un operador F : A→ X
tal que

P (a) = F (an),

para todo a en A. 2

Otra de las herramientas fundamentales que nos permite obte-
ner una descripción completa de los operadores que preservan
ortogonalidad entre C∗-álgebras es la estructura de JB∗-triple
asociada, de forma natural, a toda C∗-álgebra.

Recordemos que un álgebra de Jordan es un álgebra (no nece-
sariamente asociativa), (J, ◦), cuyo producto es conmutativo y
verifica la propiedad

a ◦ (a2 ◦ b) = a2(a ◦ b),

para cualesquiera a, b en J . Una JB∗-álgebra es un álgebra de
Jordan J dotada de una involución y una norma completa que
satisfacen los axiomas:

‖a ◦ b‖ ≤ ‖a‖‖b‖ y ‖Ua(a∗)‖ = ‖a‖3,

para cualesquiera a, b en J (donde Ua(b) = 2a(a ◦ b)− b ◦ a2).
Las C∗-álgebras y las JB∗-álgebras (complejas) pertenecen a

una clase más general de espacios de Banach, conocidos como
JB∗-triples.

Recordemos que sistema triple de Jordan normado (o simple-
mente triple normado) es un espacio vectorial (real o complejo)
normado, E, dotado de un producto triple {., ., .} : E×E×E →
E, que es lineal y simétrico en las variables exteriores y conju-
gado lineal en la variable interior (trilineal si E es un espacio
vectorial real) que es norma-continuo y además satisface la lla-
mada identidad de Jordan:

L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y)− L(x, L(b, a)y),
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donde L(a, b) es el operador en E que viene dado por L(a, b)x =
{a, b, x} . Si además E es completo entonces se dice que E es un
sistema triple de Jordan-Banach.

Un tripotente en un triple de Jordan E es un elemento e de E
verificando tal que {e, e, e} = e. Todo tripotente da lugar a una
descomposición de E, conocida como descomposición de Peirce
de E asociada a e, esto es,

E = E2(e)⊕ E1(e)⊕ E0(e),

donde para cada i = 0, 1, 2, Ei(e) es el espacio propio asociado al
valor propio i

2
del operador L(e, e). Los espacios Ei(e), i = 0, 1, 2

son conocidos como subespacios de Peirce asociados al tripotente
e.

El espacio de Peirce E2(e) puede ser dotado de estructura de
algebra de Jordan con el producto x •e y := {x, e, y}. Además la
aplicación x]e := {e, x, e} es una involución en E2(e).

Un JB∗-triple es un sistema triple de Jordan-Banach complejo
E, que satisface los axiomas adicionales:

(a) L(a, a) es hermı́tico con espectro no negativo,

(b) ‖L(a, a)‖ = ‖a‖2,

para todo a en A.

Dado un elemento a de un JB∗-triple E, existe un
Si E es un JB∗-triple y e un tripotente de E, entonces E2(e)

es una JB∗-álgebra con el producto e involución definidos ante-
riormente (cf. [29]).

Algunos ejemplos particulares de JB∗-triples fueron inicial-
mente estudiados en trabajos precursores de O. Loos y K. Mc-
Crimmon (ver [136]) y L.A. Harris en [90]. Sin embargo, la defini-
ción general de JB∗-triple fue introducida por W. Kaup en [119].
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En dicho trabajo, Kaup prueba que la categoŕıa de los JB∗-triples
es equivalente a la de los dominios simétricos acotados en espa-
cios de Banach complejos.

Aunque la motivación inicial para introducir los JB∗-triples
fue el estudio de la holomorf́ıa en dimensión infinita. Estas es-
tructuras algebraico-topológicas rápidamente cobraron relevan-
cia por śı mismas y empezaron a ser estudiadas desde el punto
de vista del Análisis Funcional y el álgebra.

Toda C∗-álgebra (respectivamente, toda JB∗-álgebra) es un
JB∗-triple para el producto

{a, b, c} :=
1

2
(ab∗c+ cb∗a)

(respectivamente, {a, b, c} = (a◦ b∗)◦ c+ (c◦ b∗)◦a− (a◦ c)◦ b∗).
Una de las ventajas de utilizar la estructura de JB∗-triple en

una C∗-álgebra es la teoŕıa local de JB∗-triples. Recordemos que
si A es una C∗-álgebra y a un elemento normal de A, entonces
la C∗-subálgebra de A generada por a es ∗-isomorfa a un espacio
C0(L), para un cierto espacio topológico localmente compacto
Hausdorff L. Este hecho es utilizado por M. Wolff para probar
su descripción de los operadores simétricos que preservan ortogo-
nalidad (entre C∗-álgebras unitales). El hecho de que, en general,
la C∗-subálgebra generada por un elemento no necesariamente
simétrico de una C∗-álgebra no pueda ser descrita como un es-
pacio C0(L) dificulta el estudio de los operadores que preservan
ortogonalidad cuando T (1) no es simétrico. La teoŕıa local es
más satisfactoria cuando consideramos JB∗-subtriples en lugar
de C∗-subálgebras.

Sea E un JB∗-triple e I un subespacio de I. Diremos que
I es un subtriple de E si {I, I, I} ⊆ I. Dado un elemento x
en E, el subtriple generado por x, Ex, es el menor subtriple
norma-cerrado de E que contiene a x. El subtriple generado por
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un elemento de un JB∗-triple siempre se puede identificar con
un espacio C0(L), para un cierto espacio topológico localmente
compacto Hausdorff L ⊆ [0, ‖x‖], tal que L ∪ {0} es compacto
(ver [118, 4.8], [119, 1.15] y [70]).

Este hecho permite definir un cálculo funcional triple en
todo elemento de un JB∗-triples. Aśı, dado un elemento x de
un JB∗-triple E, existe un único elemento y ∈ Ex que satis-
face {y, y, y} = x. El elemento y, que denotaremos x[

1
3
], es de-

nominado ráız cúbica de x. Definimos inductivamente, x[
1
3n

] =(
x[

1
3n−1 ]

)[ 1
3
]

, n ∈ N. La sucesión (x[
1
3n

]) converge en la topoloǵıa

débil∗ de E∗∗ a un tripotente que denotaremos por r(x) y lla-
maremos el tripotente rango de x. El tripotente rango r(x) es el
menor tripotente e ∈ E∗∗ tal que x es positivo en la JBW∗-álge-
bra E∗∗2 (e) (ver [56, Lemma 3.3]).

Dos elementos a y b de un JB∗-triple son llamados ortogonales
si L(a, b) = 0. Como ya hemos mencionado con anterioridad, si A
es una C∗-álgebra entonces ab∗ = b∗a = 0 si, y sólo si, L(a, b) = 0.
Es decir, el concepto de ortogonalidad en una C∗-álgebra coincide
con el que ésta hereda de su estructura de JB∗-triple.

Sea J un álgebra de Jordan y a en J . Definimos el operador de
multiplicación Ma : J → J mediante Ma(b) = a ◦ b. Diremos que
dos elementos a, b de J conmutan como operadores si MaMb =
MbMa.

Resultados sobre formas sesquilineales ortogonales y poli-
nomios ortogonalmente aditivos, aśı como la teoŕıa de JB∗-triples
fueron herramientas cruciales gracias a las que fuimos capaces de
describir los operadores que preservan ortogonalidad en C∗-álge-
bras en [34]. La caracterización que a continuación presentamos
generaliza los resultados de Wolff y Wong mencionados anteri-
ormente.
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Teorema 1.1.11 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Applic., 2008]
Sea T : A → B un operador que preserva ortogonalidad entre
dos C∗-álgebras y sea h = T ∗∗(1). Entonces

a) h∗T (z) = T (z∗)∗h, hT (z∗)∗ = T (z)h∗,

b) r(h)∗T (z) = T (z∗)∗r(h), y r(h)T (z∗)∗ = T (z)r(h)∗.

Además, existe un triple homomorfismo S : A→ B∗∗ tal que

T (z) = L(h, r(h))S(z) =
1

2
(hr(h)∗S(z) + S(z)r(h)∗h)

para todo a ∈ A. 2

Sea T : E → F una aplicación lineal entre JB∗-triples. Di-
remos que T preserva triples productos cero si para x, y, z ∈ E,
{x, y, z} = 0 implica {T (x), T (y), T (z)} = 0. Es claro que todo
operador que preserva productos triples cero preserva también
ortogonalidad. Rećıprocamente, si el operador actúa entre C∗-
álgebras el Teorema 1.1.11 garantiza que T preserva también
productos triples cero.

Corolario 1.1.12 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Applic., 2008]
Sea T : A → B un operador entre dos C∗-álgebras. Entonces T
preserva ortogonalidad si, y sólo si, T preserva productos triples
cero. 2

Es fácil comprobar que para que un operador entre álgebras
de Banach sea un homomorfismo de Jordan, es suficiente que éste
preserve cuadrados (cuadrados de elementos simétricos si se trata
de C∗-álgebras o JB∗-álgebras). El lector podŕıa preguntarse si
un resultado similar es cierto para triples homomorfismos entre
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C∗-álgebras. En la prueba del Teorema 1.1.8 N.C. Wong afirma
que esto es cierto, aunque no da una referencia de este hecho. En
[34] demostramos esta afirmación. Conviene destacar que para
probar este resultado, el mero uso de identidades algebraicas
parece no ser suficiente (contrariamente a lo que ocurre con los
homomorfismos de Jordan).

Corolario 1.1.13 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Applic., 2008]
Sean A una C∗-algebra, E un JB∗-triple y T : A → E un ope-
rador. Las siguientes afirmaciones son equivalentes:

1. T es un triple homomorfismo.

2. T ({a, a, a}) = {T (a), T (a), T (a)}, para todo a en Asa.

3. T preserva ortogonalidad en Asa y T ∗∗(1) es una isometŕıa
parcial. 2

En [34] también estudiamos los operadores que preservan or-
togonalidad entre una JB∗-álgebra y un JB∗-triple y conseguimos
describirlos asumiendo algunas hipótesis adicionales sobre el el-
emento T ∗∗(1). Sin embargo, una descripción general quedaŕıa
como problema abierto.

Un poco más tarde, en colaboración con M. Burgos, F.J.
Fernández-Polo y A.M. Peralta, resolvimos el problema gen-
eral en [35]. En este trabajo demostramos además que el uso
del álgebra de multiplicadores permite asumir, en el estudio de
polinomios n-homogéneos ortogonalmente aditivos u operadores
que preservan ortogonalidad, que el álgebra de partida es unital.
Gracias a esto damos una prueba simplificada de los resultado
de Palazuelos, Peralta y Villanueva sobre polinomios ortogonal-
mente aditivos.
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En cuanto a los operadores que preservan ortogonalidad, con-
seguimos generalizar la descripción al ambiente de las JB∗-álge-
bras con el siguiente resultado:

Teorema 1.1.14 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Applic., 2008]
Sea T : J → E un operador de una JB∗-álgebra J y un JB∗-triple
E y sea h = T ∗∗(1). Las siguientes afirmaciones son equivalentes:

a) T preserva ortogonalidad.

b) Existe un ∗-homomorfismo de Jordan unital S : M(J) →
E∗∗2 (r(h)) tal que S(x) y h conmutan como operadores y

T (x) = {h, r(h), S(x)} = h •r(h) S(x),

para todo x ∈ J. 2

Es claro que como consecuencia del teorema anterior todo
operador que preserva ortogonalidad preserva productos triples
cero.

Corolario 1.1.15 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Applic., 2008]
Sea T : J → E un operador de una JB∗-álgebra J en un JB∗-
triple E. Entonces T preserva ortogonalidad si, y sólo si, preser-
va productos triples cero. 2

Una vez descritos los operadores que preserva ortogonali-
dad nos interesamos en problemas de continuidad automática.
El Caṕıtulo 4 de esta memoria está dedicado a exponer varios
resultados de continuidad automática para aplicaciones lineales
que preservan ortogonalidad obtenidos en colaboración con M.
Burgos y A.M. Peralta en [38] y [39].
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Como ya hemos mencionado, es conocido que en algunos
ambientes toda biyección que preserva ortogonalidad o es se-
paradora y cuya inversa tiene la misma propiedad (llamadas
aplicaciones que preservan ortogonalidad en ambos sentidos o
biseparadoras, respectivamente), es automáticamente continua.
En algunos casos, como los espacios C(K), es suficiente que la
aplicación lineal preserve ortogonalidad y sea biyectiva, como
demostró K. Jarosz en [100]. Estos resultados han dado lugar
a la conjetura que afirma que toda aplicación que preserva or-
togonalidad en ambos sentidos o es biseparadora (considerando
el concepto de ortogonalidad adecuado al ambiente en que se
trabaje) debe ser automáticamente continua. Esta conjetura ha
sido estudiada y confirmada en muchos casos particulares.

En [12], J. Araujo y K. Jarosz demuestran que toda apli-
cación biseparadora entre álgebras estándar de operadores (es-
to es, subálgebras de L(X) que contienen a los operadores de
rango finito y la identidad, siendo X un espacio de Banach) es
automáticamente continua. En dicho art́ıculo Araujo y Jarosz
conjeturan que toda aplicación biseparadora entre C∗-álgebras
es automáticamente continua.

Sea T : A→ B una aplicación lineal entre C∗-álgebras. Dire-
mos que T preserva ortogonalidad en ambas direcciones si tiene
la propiedad

a ⊥ b⇐⇒ T (a) ⊥ T (b).

La pregunta es, claro está, si toda biyección lineal que preser-
va ortogonalidad en ambas direcciones (ya sea entre C∗-álgebras,
JB∗-álgebra o JB∗-triples) es automáticamente continua. Es fácil
comprobar que toda aplicación lineal que preserva ortogonalidad
en ambas direcciones es inyectiva, aśı que esta hipótesis es de he-
cho superflua.

En [38] estudiamos aquellas aplicaciones entre C∗-álgebras
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que preservan ortogonalidad en ambos sentidos.

Sean A un álgebra de Banach y a un elemento de A. Decimos
que a es compacto si el operador x 7→ axa es un operador com-
pacto. Un álgebra de Banach es compacta si todos sus elementos
son compactos. Las C∗-álgebras compactas fueron descritas por
J.C. Alexander en [7] en la forma que exponemos a continuación.
Dado un espacio de Hilbert complejo, denotamos por K(H) al
espacio de los operadores compactos en H. Si A es una C∗-álge-
bra compacta, entonces existe una familia de espacios de Hilbert
complejos (Hλ) tal que A ∼=

⊕c0
λ K(Hλ).

En [38] probamos que toda aplicación lineal entre C∗-álgebras
compactas que preserva ortogonalidad en ambas direcciones y es
sobreyectiva es automáticamente continua.

Teorema 1.1.16 [M. Burgos, J. Garcés, A.M. Peralta, J. Math.
Ann. Appl., 2010] Toda aplicación lineal y sobreyectiva entre C∗-
álgebras compactas que preserva ortogonalidad en ambas direc-
ciones es continua. 2

Ejemplos de C∗-álgebras en las que todo elemento puede es-
cribirse como una combinación lineal finita proyecciones ha sido
descritos en [82], [138], [139] y[150]. Sorprendentemente, toda
aplicación lineal que preserva ortogonalidad desde una de es-
tas C∗-álgebras (siempre que ésta sea unital) en otra C∗-álgebra
cualquiera es automáticamente continua.

Teorema 1.1.17 [M. Burgos, J. Garcés, A.M. Peralta, J. Math.
Ann. Appl., 2010] Sea A una C∗-álgebra unital en la que todo
elemento puede expresarse como una combinación lineal finita
de proyecciones. Entonces toda aplicación lineal desde A en otra
C∗-álgebra que preserva ortogonalidad es continua. 2
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Recordemos que un álgebra de von Neumann es una C∗-álge-
bra que es un espacio de Banach dual. Es bien conocido que toda
álgebra de von Neumann es unital.

Dos proyecciones p, q en un álgebra de von Neumann A son
Murray-von Neumann equivalentes si existe una isometŕıa par-
cial u ∈ A tal que u∗u = p and uu∗ = q. Denotaremos este hecho
por p ∼ q. Si en cambio p es equivalente a una proyección q1 ≤ q,
entonces escribiremos p . q.

Diremos que una proyección q es finita si p ∼ q ≤ p implica
p = q. Un álgebra de von Neumann es finita si su unidad lo es.

Proposition 1.1.1 [M. Burgos, J.J. Garces and A.M. Peralta,
J. Math. Ann. Applic., 2010] Toda aplicación lineal y sobreyectiva
entre álgebras de von Neumann, una de las cuales es finita, que
preserva ortogonalidad en ambas direcciones es continua. 2

Usando el Teorema 1.1.17, la Proposición 1.1.1, la descom-
posición de Murray-von Neumann de un álgebra de von Neu-
mann, aśı como la descripción de operadores que preservan or-
togonalidad entre C∗-álgebras conseguimos el siguiente resultado
de continuidad automática en el ambiente de las álgebras de von
Neumann:

Teorema 1.1.18 [M. Burgos, J. Garcés, A.M. Peralta, J. Math.
Ann. Appl., 2010] Todo aplicación lineal y sobreyectiva entre
álgebras de von Neumann que preserva ortogonalidad en ambas
direcciones es automáticamente continua. 2

Posteriormente estudiamos continuidad automática en algunos
casos particulares de JB∗-triples (ver [39]).

Un elemento x de un JB∗-triple E se dice débilmente com-
pacto si el operador Q(x) : E → E, dado por Q(x)y = {x, y, x}
es débilmente compacto. Un JB∗-triple es débilmente compacto
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si todos sus elementos son débilmente compactos. Los JB∗-triples
débilmente compactos fueron descritos por L. Bunce y C.H. Chu
en [31]. Éstos son c0-sumas de un tipo especial de JB∗-triples
llamados JB∗-triples elementales. Un JB∗-triple elemental es el
espacio de los elementos débilmente compactos de algún “factor
de Cartan” (ver Caṕıtulo 4 para una descripción detallada de los
mismos).

Conviene señalar que todo espacio de Hilbert complejo es un
factor de Cartan (y un JB∗-triple elemental). Además, su rango
(el cardinal del mayor subconjunto de H en el que sus elementos
son mutuamente ortogonales) es uno, aśı que toda aplicación li-
neal en H preserva ortogonalidad. Es claro que si H tiene dimen-
sión infinita podemos encontrar una biyección lineal discontinua
en H, por tanto en este caso no es cierto que toda aplicación
lineal desde H en un JB∗-triple que preserve ortogonalidad en
ambas direcciones sea continua.

Teorema 1.1.19 [M. Burgos, J. Garcés, A.M. Peralta, Studia
Math., 2011] Toda aplicación lineal entre JB∗-triples débilmente
compactos (que no contengan sumandos de rango 1) que preserva
ortogonalidad en ambas direcciones es continua. 2

Un JBW∗-triple, esto es, un JB∗-triple que es un espacio de
Banach dual, es un factor si no contiene ideales (triples) propios
débil∗-cerrados. Los factores de Cartan se pueden clasificar (salvo
isomorfismos) en 6 tipos diferentes (ver [122],[72] o el Caṕıtulo
4, donde éstos se describen detalladamente).

En este trabajo también consideramos operadores que preser-
van ortogonalidad entre JBW∗-triples atómicos. Recordemos que
todo JBW∗-triple atómico es una l∞-suma de factores de Cartan
(ver [72]).
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Es bien sabido que el predual de L(H) (donde H es un espacio
de Hilbert complejo) coincide con los llamados operadores clase-
traza. Un resultado de independiente interés obtenido en este
trabajo es la descripción del predual de los factores de Cartan
de tipo 1, 2 y 3 (ver [39, Proposition 5.1]). Un tripotente e en
un JB∗-triple E es llamado minimal si E2(e) ∼= Ce.

Proposición 1.1.20 [M. Burgos, J. Garcés, A.M. Peralta, Stu-
dia Math., 2011] Sea C un factor de Cartan de dimensión in-
finita y de tipo 1, 2 ó 3. Para cada ϕ ∈ C∗, existen una sucesión
(λn) ∈ l1 y una sucesión (un) de tripotentes minimales mutua-
mente ortogonales en C tales que

‖ϕ‖ =
∞∑
n=1

|λn| and ϕ(x) =
∑
n

λnϕn(x) (x ∈ C)

donde para cada n ∈ N, ϕn(x)un = P2(un)(x) (x ∈ C), donde
P2(un) es la proyección de E en E2(un). 2

Los resultados de continuidad para aplicaciones lineales entre
JB∗-triples débilmente compactos que preservan ortogonalidad
en ambas direcciones, aśı como la anteriormente mencionada de-
scripción de los preduales de los factores de Cartan de tipo 1,2
y 3 son algunas de las herramientas que nos permiten probar el
siguiente resultado:

Teorema 1.1.21 [M. Burgos, J. Garcés, A.M. Peralta, Studia
Math., 2011] Toda aplicación lineal y sobreyectiva entre JBW∗-
triples atómicos (que no tengan sumandos de rango 1) que preser-
va ortogonalidad en ambas direcciones es continua. 2

El Caṕıtulo 5 de esta memoria está dedicado al Teorema de
Kaplasnsky en JB∗-triples. Merece la pena destacar que este re-
sultado además de ser importante por śı mismo, permitirá (co-
mo se expone en el Caṕıtulo 6) obtener caracterizaciones de los
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triples homomorfismos débilmente compactos, claves para la de-
scripción de los operadores que preservan ortogonalidad y son
débilmente compactos.

Los antecedentes del Teorema de Kaplansky se remontan a
1940, cuando M. Eidelheit demostró que L(X) (siendo X un
espacio de Banach) tiene una única norma completa que lo con-
vierte en un álgebra de Banach (ver [59]). Es en 1949 cuando I.
Kaplansky obtiene el famoso resultado que lleva su nombre.

Teorema 1.1.22 [I. Kalplansky, Duke Math., 1949 ] Sea ‖.‖ un
norma en C(K) con la propiedad ‖fg‖ ≤ ‖f‖‖g‖, para cua-
lesquiera f, g ∈ C(K). Entonces ‖.‖∞ ≤ ‖.‖, donde ‖.‖∞ denota
a la norma del supremo en C(K). 2

Como consecuencia del Teorema de Kaplansky, toda norma
multiplicativa que sea ‖.‖∞-continua, es equivalente a ‖.‖∞.

Posteriormente W.G. Bade y P.C. Curtis o C.E. Rickart dan
varios ejemplos de álgebras de Banach con esta propiedad (ver
[16] y [159]). Uno de los resultados más importantes es el obtenido
por B.E. Johnson en [105], donde prueba que toda álgebra de Ba-
nach semisimple tiene una única norma de álgebra de Banach.

Es fácil comprobar que el Teorema de Kaplansky es equiva-
lente al siguiente enunciado: Todo monomorfismo en C(K) está
acotado inferiormente.

Un álgebra de Banach A, con norma ‖.‖ tiene la propiedad
de minimalidad de la topoloǵıa de norma (MOANT), si para
cualquier otra norma multiplicativa ‖.‖2 en A tal que ‖.‖2 ≤
‖.‖ se tiene que M‖.‖ ≤ ‖.‖2, para algún M > 0. Si además
‖.‖2 = ‖.‖, diremos que A tiene la propiedad de minimalidad de
la norma.

Como consecuencia del Teorema de Kaplansky, C(K) tiene
la propiedad de minimalidad de la topoloǵıa de la norma.
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Una generalización del Teorema de Kaplansky para C∗-álge-
bras (no necesariamente abelianas) fue obtenida por S. Cleven-
land en [46]. La correspondiente versión en el ámbito de las JB∗-
álgebras se debe a A. Bensebah [24]. Este autor además deja
abierto el problema de si las JB∗-álgebras tienen la propiedad de
minimalidad de la norma.

Un respuesta afirmativa para esta pregunta fue dada por J.
Pérez, L. Rico y A. Rodŕıguez-Palacios en [154] (de hecho, este
resultado es probado en el ambiente más general de las JB∗-álge-
bras no conmutativas). S. Hejazian y A. Nikman dieron también
una demostración alternativa del Teorema de Kaplansky para
JB∗-álgebras en [92].

Sea E un sistema triple de Jordan normado con norma ‖.‖.
Diremos que E tiene la propiedad de minimalidad de la topoloǵıa
de la norma triple (MTNT), si para toda norma triple ‖.‖1
en E (esto es, para toda norma que verifique ‖{x, y, z}‖1 ≤
‖x‖1‖y‖1‖z‖1) tal que ‖.‖1 ≤ ‖.‖ se tiene que ésta es equivalente
a la norma de E. Equivalentemente, E tiene la propiedad MT-
NT si todo triple monomorfismo continuo T de E en otro triple
normado está acotado inferiormente (esto es, existe M > 0 tal
que M‖x‖ ≤ ‖T (x)‖,∀x ∈ E).

K. Bouhya y A. Fernández demostraron que todo JB∗-triple
(complejo) tiene la propiedad de minimalidad de la topoloǵıa de
la norma triple (ver [28]). En [62] damos una versión más general
del Teorema de Kaplansky para JB∗-triples eliminando algunas
de las hipótesis que impońıan Bouhya y Fernández y extendiendo
su resultado al caso de los JB∗-triples reales.

Recordemos un JB∗-triple real es un subtriple real (es decir,
un subespacio real que es además un subtriple) de un JB∗-triple
complejo (ver [95]).

Un J*B-triple es un sistema triple de Jordan Banach real
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cuya norma satisface la propiedad ‖{a, a, a}‖ = ‖a‖3 y los ax-
iomas adicionales:

(J∗B1) ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖;

(J∗B2) σC
L(E)(L(x, x)) ⊂ [0,+∞) para todo x ∈ E;

(J∗B3) σC
L(E)(L(x, y)− L(y, x)) ⊂ iR para cualesquiera x, y ∈ E.

La clase de los J∗B-triples incluye a la de los JB∗-triples reales
y complejos.

En uno de los resultados principales de [62] demostramos que
todo J∗B-triple tiene la propiedad MTNT. Sin embargo, recorde-
mos que el Teorema de Kaplansky aseguraba que la norma de
C(K) tiene una propiedad más fuerte, y es que toda norma mul-
tiplicativa ‖.‖ en C(K) (no necesariamente ‖.‖∞-continua) veri-
fica que M‖.‖∞ ≤ ‖.‖, para algún real positivo M . Equivalente-
mente, todo triple monomorfismo (no necesariamente continuo)
de C(K) en un triple normado está acotado inferiormente.

En [62] demostramos que los J∗B-triples también tienen esta
propiedad. Para ello usamos una estrategia clásica: los espacios
separantes.

Teorema 1.1.23 [F.J. Fernández-Polo, J.J. Garcés, A.M. Per-
alta, Proc. AMS, 2012] Sea T : E → F un triple monomorfismo
de un JB∗-triple complejo o un J∗B-triple real en un triple nor-
mado. Entonces T está acotado inferiormente. 2

En el Caṕıtulo 6 de esta memoria volvemos al estudio de los
operadores que preservan ortogonalidad. En este caso nos pro-
ponemos describir los operadores que preservan ortogonalidad y
tienen la propiedad adicional de ser débilmente compactos.
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Para estudiar los operadores débilmente compactos que preser-
van ortogonalidad necesitamos en primer lugar estudiar los triples
homomorfismos. Es bien sabido que un homomorfismo desde una
C∗-álgebra es débilmente compacto si, y sólo si, su imagen tiene
dimensión finita (ver [78] y [140]).

En [63] generalizamos los resultados sobre homomorfismos
débilmente compactos desde una C∗-álgebra al ámbito de los
triples homomorfismos desde un JB∗-triple. Una de las herramien-
tas que nos permiten caracterizar los triples homomorfismos débil-
mente compactos desde un JB∗-triple es precisamente el Teorema
de Kaplansky para JB∗-triples (o J∗B-triples reales).

Teorema 1.1.24 [F.J. Fernández-Polo, J.J. Garcés, A.M. Per-
alta, Math. Z., 2012] Sea T un triple homomorfismo de un JB∗-
triple real o complejo en un triple normado. Entonces la imagen
de T es un triple normado reflexivo. 2

Como consecuencia (aunque no inmediata), conseguimos de-
mostrar que la imagen de un triple homomorfismo débilmente
compacto desde una C∗-álgebra es también finito dimensional.
Sin embargo, existen JB∗-álgebras y JB∗-triples reflexivos de di-
mensión infinita, por tanto la imagen de un triple homomorfismo
desde una JB∗-álgebra o un JB∗-triple no es, en general, finito
dimensional.

Sea T : A→ B un operador que preserva ortogonalidad entre
C∗-álgebras. Puesto que T es, esencialmente, un múltiplo de un
triple homomorfismo, podŕıamos pensar que si T es débilmente
compacto, entonces debeŕıa tener imagen finito dimensional. En
[63] mostramos con un ejemplo que esto no es, en general, cierto.

Parece que el primero en consider los operadores débilmente
compactos que preservan ortogonalidad entre C∗-álgebras fue M.
Wolff (cf. [183]). Aunque no consigue una descripción de éstos
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śı comenta al final de [183] art́ıculo que su caracterización (ver
Teorema 1.1.7) podŕıa, en principio, usarse para determinar la
forma de un operador simétrico que preserva ortogonalidad, para
a continuación afirmar que esto podŕıa ser “algo engorroso”.

En el caso abeliano los operadores débilmente compactos que
preservan ortogonalidad fueron descritos satisfactoriamente por
Y.F. Lin y Ng.-Ch. Wong en [133].

Teorema 1.1.25 [Y.F. Lin, N.C. Wong, Math. Nachr., 2009]
Sea T : C0(L1) → C0(L2) un operador que preserva ortogonali-
dad. Las siguientes afirmaciones son equivalentes:

1. T es completamente continuo.

2. T es débilmente compacto.

3. T es compacto.

4. Existe una sucesión (a lo sumo numerable) {xn} de puntos
de L2 y una sucesión {hn} en C0(L1) de funciones dos a
dos ortogonales tales que

Tf =
∑
n

f(xn)hn, para toda f ∈ C0(L1).

En caso de haber un número infinito de puntos {xn} y
funciones {hn}, entonces ‖hn‖ → 0. 2

Es interesante mencionar que el resultado de Lin y Wong es una
generalización al caso no unital de un precedente establecido por
H. Kamowitz en [115].

En [63] conseguimos generalizar esta descripción al ámbito
de las C∗-álgebras y las JB∗-álgebras. Para obtener la caracter-
ización que a continuación presentamos, las herramientas fun-
damentales son los anteriormente mencionados resultados sobre
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triples homomorfismo débilmente compactos, el Teorema de Ka-
plansky para JB∗-triples y la caracterización de los operadores
que preservan ortogonalidad entre C∗-álgebras obtenida en [34].

Teorema 1.1.26 [F.J. Fernández-Polo, J.J. Garcés, A.M. Per-
alta, Math. Z., 2012] Sean A una C∗-álgebra, E un JB∗-triple,
T : A → E un operador débilmente compacto que preserva or-
togonalidad. Sea r = r(h) el tripotente rango de h = T ∗∗(1) ∈ E.
Entonces existe una familia a lo sumo numerable, {In}, de ide-
ales C∗ mutuamente ortogonales en A∗∗, una familia {Sn : A∗∗ →
E∗∗2 (r)} de ∗-homomorfismos de Jordan y una sucesión {xn} de
elementos de E mutuamente ortogonales tales que:

(a) Cada In es un factor von Neumann de tipo I finito;

(b) ‖xn‖ → 0 y h =
∑

n xn;

(c) Sn|In es un ∗-monomorfismo, Sn|I⊥n = 0, Sn y Sm tienen
imágenes ortogonales siempre que n 6= m;

(d) Para cada x en A∗∗, xn y Sm(x) conmutan como operadores,
para cualesquiera n y m;

y

T (x) =
∞∑
n=1

L(xn, r)Sn(x) =
∞∑
n=1

xn •r Sn(x), (1.1)

para todo x ∈ A. 2

Puesto que todo factor de von Neumann de tipo I irreducible
en C0(L)∗∗ es isomorfo a C, es claro que la descripción dada por
el Teorema anterior generaliza la establecida por Lin y Wong
en [134]. En este trabajo Lin y Won prueban también que estos
operadores factorizan a través de c0.
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Conviene destacar que, como consecuencia de nuestro resul-
tado se puede ver que, en general, un operador débilmente com-
pacto que preserva ortogonalidad entre C∗-álgebras no necesari-
amente factoriza a través de c0.

Teorema 1.1.27 [F.J. Fernández-Polo, J.J. Garcés, A.M. Per-
alta, Math. Z., 2012] Sea T un operador que preserva ortogo-
nalidad desde una C∗-álgebra en un JB∗-triple. Las siguientes
afirmaciones son equivalentes:

1. T es compacto.

2. T es débilmente compacto.

3. T admite una factorización a través de una c0-suma de la
forma

c0⊕
n

Mmn(C),

donde (mn) es una sucesión de números naturales. 2

En [63] también caracterizamos los operadores débilmente
compactos que preservan ortogonalidad entre una JB∗-álgebra y
un JB∗-triple. Una prueba similar a la del caso de las C∗-álgebras,
y el uso de la caracterización de los operadores que preservan or-
togonalidad desde una JB∗-álgebra, aśı como los resultados antes
expuestos sobre triples homomorfismos y también el Teorema de
Kaplansky para JB∗-triples permiten establecer:

Teorema 1.1.28 [F.J. Fernández-Polo, J.J. Garcés, A.M. Per-
alta, Math. Z., 2012] Sean A una JB∗-álgebra, E un JB∗-triple,
T : A → E un operador débilmente compacto que preserva or-
togonalidad y r = r(h) el tripotente rango de h = T ∗∗(1) ∈ E.
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Entonces existe una familia a lo sumo numerable, {In}, de JB∗-
ideales debil∗-cerrados y mutuamente ortogonales en A∗∗, una
familia {Sn : A∗∗ → E∗∗2 (r)} de ∗-homomorfismos de Jordan y
una sucesión (xn) de elementos de E mutuamente ortogonales
verificando:

(a) Cada In es un factor debil∗-cerrado reflexivo;

(b) ‖xn‖ → 0 y h =
∑

n xn;

(c) Sn|In es un ∗-monomorfismo, Sn|I⊥n = 0, Sn y Sm tienen
imágenes ortogonales siempre que n 6= m;

(d) Para cada x en A∗∗, xn y Sm(x) conmutan como operadores,
para cualesquiera n y m;

y

T (x) =
∞∑
n=1

L(xn, r)Sn(x) =
∞∑
n=1

xn •r Sn(x),

para todo x ∈ A. 2

En este caso, tenemos que un tal operador factoriza a través
de una c0-suma de JBW∗-triples factores reflexivos.

El Caṕıtulo 8 está dedicado a los triples homomorfismos y las
derivaciones generalizadas. En colaboración con A.M. Peralta es-
tudiamos en [76] la continuidad automática de estas aplicaciones.

Sea T : A → B una aplicación lineal entre álgebras de Ba-
nach. Se dice que T es un homomorfismo generalizado si existe
un ε > 0 tal que

‖T (ab)− T (b)T (a)‖ ≤ ε‖a‖‖b‖,

para cualesquiera a, b en A.
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Los homomorfismos generalizados (también conocidos como
homomorfismos aproximados o casi homomorfismos) fueron es-
tudiados por K. Jarosz en [101]. En este trabajo Jarosz prueba
que todo homomorfismo generalizado de un álgebra de Banach
en un C(K)-espacio es automáticamente continuo.

B.E. Johnson también se interesó por los homomorfismos gen-
eralizados. En [107] estudia la continuidad automática de estas
aplicaciones lineales.

Otro importante problema relacionado con estas aplicaciones
es el de la estabilidad, esto es, ¿cúando un homomorfismo gener-
alizado está cerca de un homomorfismo?. K. Jarosz y B.E. John-
son abordaron esta cuestión en [101] y [108], respectivamente (en
el Caṕıtulo 10 de esta memoria se describe más detalladamente
este problema).

Sean E y F dos sistemas triples de Jordan normados y T :
E → F una aplicación lineal. Diremos que T es un triple homo-
morfismo generalizado si existe un real positivo ε tal que

‖T{a, b, c} − {T (a), T (b), T (c)‖ ≤ ε‖a‖‖b‖‖c‖,

para cualesquiera a, b, c en E.

La cuestión que nos planteamos en [76] es cuándo un triple
homomorfismo generalizado es automáticamente continuo.

En primer lugar exploramos las conexiones entre los homo-
morfismos generalizados y los triples homomorfismos generaliza-
dos.

Sea A un álgebra de Banach. Definimos en A el producto
triple (elemental) {a, b, c} = 1

2
(abc + bca). Claramente todo ho-

momorfismo es también un triple homomorfismo para el pro-
ducto triple elemental. Es natural preguntarse si también todo
homomorfismo generalizado es un triple homomorfismo general-
izado. En [76] probamos que ésto es siempre cierto.
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Una aplicación lineal entre ∗-álgebras de Banach es un ∗-
homomorfismo generalizado si es un homomorfismo generaliza-
do y además la aplicación lineal a 7→ T (a∗)∗ − T (a) es con-
tinua. Destacamos que todo ∗-homomorfismo generalizado entre
C∗-álgebras es automáticamente continuo (ver [107]).

En una ∗-álgebra de Banach podemos definir el producto
triple {a, b, c} = 1

2
(ab∗c + cb∗a). En [76] también probamos que

todo ∗-homomorfismo generalizado entre ∗-álgebras de Banach
es un triple homomorfismo generalizado para el producto triple
que acabamos de definir.

En [158, Page 70], C.E. Rickart introduce los espacios sep-
aradores como herramienta para el estudio de problemas rela-
ciones continuidad automática en álgebras de Banach. Sea T :
X → Y una aplicación lineal entre espacio de Banach. El espa-
cio separador, σY (T ), de T en Y se define como el conjunto de
todos aquellos z en Y para los que existe una sucesión (xn) ⊆ X
tal que xn → 0 y T (xn) → z. El espacio separador σY (T ) es un
subespacio de Y . Además, como consecuencia del Teorema de la
gráfica cerrada T es continua si, y sólo si, σY (T ) = {0} (c.f. [46,
Proposition 4.5]).

Sea T : A→ B es un homomorfismo generalizado entre álge-
bras de Banach, B.E. Johnson prueba en [107] que el espacio
separador σB(T ) es un ideal de la subálgebra norma-cerrada de
B generada por T (A). En [76] también seguimos esta estrategia,
sin embargo la dificultad para obtener el resultado análogo en
ambiente triple es considerablemente más alta.

Para abordar este problema introducimos en [76] los monomios
impares, que nos permiten dar una descripción más precisa del
subtriple generado por un subconjunto. Gracias al uso de los
monomios impares somos capaces de demostrar que, dado un
triple homomorfismo generalizado T : E → F , el espacio sepa-
rador σF (T ) es un ideal (triple) del subtriple norma-cerrado de
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F generado por T (E).

Entre los resultados de continuidad automática que obten-
emos en [76] destacamos los siguientes:

En primer lugar, demostramos que todo triple homomorfis-
mo generalizado entre JB∗-triples es automáticamente continuo.
Conviene señalar que este resultado generaliza el resultado de
continuidad automática de Johnson para ∗-homomorfismo gen-
eralizados.

El siguiente objetivo que nos planteamos es obtener una car-
acterización de la continuidad de los triples homomorfismos en-
tre triples normados. Objetivo que conseguimos cuando en el
dominio tenemos un JB∗-triple.

Recordemos que, dado un triple normado E y M ⊆ E, se
define el anulador de M en E, AnnE(M), como el conjunto

AnnE(M) = {a ∈ E : {a,M, a} = 0}.

El complemento ortogonal the M , M⊥, es el conjunto

{a ∈ E : a ⊥ b,∀b ∈M}.

Teorema 1.1.29 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Sea T : E → F un triple homomorfismo generalizado entre
un JB∗-triple y un triple normado y sea J = T−1(AnnF (σF (T ))).
Equivalen:

a) J es un ideal triple norma-cerrado de E y

{AnnF (σF (T )), AnnF (σF (T )), σF (T )} = 0.

b) T es continuo. 2
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Este resultado no es en general válido para JB∗-triples reales
salvo que estos sean “JB∗-triples reales reducidos” (ver los co-
mentarios posteriores al Lemma 16 en [76]).

En algunos casos concretos de JB∗-triples el teorema anterior
se puede mejorar considerablemente. Por ejemplo, probamos que
todo triple homomorfismo generalizado desde un factor de Car-
tan de tipo I o un spin complejo en un triple normado anisotrópi-
co (esto es, que no contiene elementos nilpotentes) es automática-
mente continuo (ver [76, Lemma 15 y Lemma 16]).

Un importante resultado de J. Cuntz afirma que si T : A→
X es una aplicación lineal de una C∗-álgebra en un espacio de
Banach, entonces T es continua si, y sólo si, su restricción a toda
C∗-subálgebra de A generada por un elemento simétrico de A es
continua (ver [48]).

Sea T : E → X una aplicación lineal entre un JB∗-triple y
un espacio de Banach. En vista de lo probado por Cuntz, po-
dŕıa conjeturarse que si la restricción de T a todo subtriple de
E generado por un elemento de E es continua, entonces T es
continua. Lamentablemente esto no es, en general, cierto como
mostramos en [76]. De hecho, este enunciado tampoco es cierto
cuando, en lugar de considerar una aplicación lineal cualquiera
de un JB∗-triple en un espacio de Banach, consideramos un triple
homomorfismo entre un JB∗-triple y un triple normado.

Un ideal interno de un triple normado E es un subespacio
I que verifica {I, E, I} ⊆ I. Dado un elemento a de un JB∗-
triple E, el ideal interno generado por a, E(a), coincide con el
cierre en norma del conjunto {a,E, a} (ver [32, pp, 19-29]). Para
evitar los contraejemplos dados al Teorema de Cuntz en JB∗-
triples, consideramos ideales internos generados por un elemento
en lugar de subtriples generados por un elemento.

Las aplicaciones de la propiedad de factorización de Cohen
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para álgebras de Banach en el estudio de la continuidad au-
tomática son bien conocidas. En [76] también exploramos las con-
secuencias de la propiedad de factorización de Cohen en triples
normados.

Sea E un triple normado. Se dice que E tiene la propiedad de
factorización de Cohen (CFP) si para toda sucesión norma-nula
(an) en E, existen x, y en E y una sucesión norma-nula (bn) en
E tales que an = {x, bn, y}, ∀n ∈ N.

Toda álgebra de Jordan con una identidad aproximada tiene
la propiedad CFP (ver [3]). En consecuencia, las JB- y las JB∗-
álgebras tienen la propiedad de factorización de Cohen.

Recordemos que un sistema triple de Jordan es anisotrópico si
dado un elemento a tal que a[2n+1] para algún natural n, entonces
a = 0.

Teorema 1.1.30 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Sea T : E → F una aplicación lineal entre dos triples de
Jordan-Banach y supongamos que una de las siguientes afirma-
ciones es cierta:

1. T es un triple homomorfismo generalizado y F es anisotrópi-
co.

2. E tiene la propiedad de factorización de Cohen.

Si la restricción de T a todo ideal interno norma-cerrado gener-
ado por un elemento de E es continua, entonces T es continua.

2

En la sección final de [76] consideramos también las deriva-
ciones triples generalizadas.

Una derivación en un JB∗-triple es una aplicación conjugado
lineal (lineal si es un JB∗-triple real) tal que

δ({a, b, c}) = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)}.
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Las derivaciones en JB∗-triples fueron inicialmente estudi-
adas por T. Barton y Y. Friedman en [20], donde prueban que
toda derivación en un JB∗-triple es continua. El resultado análo-
go para JB∗-triples reales fue probado por T. Ho, A.M. Peralta
y B. Russo en [93].

En [163], A.M. Peralta y B. Russo definen los módulos sobre
un JB∗-triple y estudian la continuidad de las derivaciones triples
δ : E → X de un JB∗-triple E en un triple E-módulo X (ver
[163], [76] o el Caṕıtulo 7 de esta memoria para las definiciones
de triple módulo y derivación triple). En el mencionado trabajo
Peralta y Russo caracterizan la continuidad de las derivaciones
triples. Como consecuencia de esta caracterización, demuestran
que toda derivación triple de un JB∗-triple (real o complejo) en
śı mismo, o en su dual es automáticamente continua.

En [76] definimos las derivaciones triples generalizadas y damos
una caracterización para la continuidad de las mismas. Como
consecuencia, probamos que toda derivación triple generalizada
de un JB∗-triple en śı mismo, o en su dual es automáticamente
continua.

Cuando el dominio es una C∗-álgebra, los resultados se puede
mejorar considerablemente. Efectivamente, haciendo uso del Teo-
rema de Cuntz y de la caracterización de continuidad para deriva-
ciones generalizadas, probamos que toda derivación triples gen-
eralizada desde una C∗-álgebra A (vista como JB∗-triple) en un
Jordan-Banach triple A-módulo es automáticamente continua
(generalizando aśı el resultado análogo para derivaciones obtenido
previamente por Peralta y Russo en [163]).

En el Caṕıtulo 8 de esta memoria, describimos los resultados
sobre formas bilineales ortogonales y operadores que preservan
ortogonalidad entre C∗-álgebras reales abelianas obtenidos en
colaboración con A.M. Peralta en [77].
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Recordemos que una C∗-álgebra real es una ∗-álgebra de Ba-
nach real cuya norma satisface el axioma de Gelfand-Naimark
y la propiedad adicional de que 1 + aa∗ es invertible, para to-
do a en A. Dada una C∗-álgebra real, con complexificación B,
existe un ∗-automorfismo conjugado lineal de cuadrado la iden-
tidad τ : B → B tal que A = Bτ = {x ∈ B : τ(x) = x} (ver
[130, Proposition 5.1.3] o [158, Lemma 4.1.13], y [84, Corollary
15.4]).

Una vez caracterizados los operadores que preservan ortogo-
nalidad desde una C∗-álgebra o una JB∗-álgebra en un JB∗-triple
complejo, es natural tratar de hacerlo también en el ambiente re-
al. Hasta donde nosotros sabemos, este problema parece no haber
sido considerado aún por otros autores.

Como conocemos por el caso complejo, las formas ortogonales
son una herramienta muy útil para el estudio de los operadores
que preservan ortogonalidad. Es por ello que resulta también
natural abordar su estudio en el ambiente real.

Sean A una C∗-álgebra real y V : A × A → R una forma
bilineal. Diremos que V es ortogonal si V (a, b∗) = 0 para cua-
lesquiera a, b en A tales que a ⊥ b. En la primer parte de [77]
estudiamos la formas bilineales ortogonales sobre una C∗-álgebra
real. Para ello probamos primero algunos resultados previos de
extensión de formas multilineales a los biduales. En particular,
demostramos que toda forma multilineal en una C∗-álgebra real
admite una única extensión, que denotaremos por T ∗∗, a A∗∗ que
es separadamente débil∗-continua (ver [77]). Además, la restric-
ción de T ∗∗ al álgebra de los multiplicadores de A, M(A), es una
forma bilineal ortogonal.

En una primera aproximación al problema logramos de de-
scribir la restricción de V a Asa probando la existencia de un ψ
en A∗ tal que V (a, b) = ψ(a◦b), para cualesquiera a, b simétricos.
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Una descripción general o incluso el comportamiento de V so-
bre los elementos antisimétricos de A permanece como problema
abierto. Sin embargo, en el caso abeliano conseguimos describir
satisfactoriamente cualquier forma bilineal ortogonal.

Sean A una C∗-álgebra real abeliana y unital y sea V : A ×
A → R una forma bilineal ortogonal. Como consecuencia de la
teoŕıa de Gelfand conmutativa y el Teorema de Banach-Stone,
existe un compacto K tal que A ∼= C(K) y un homeomorfismo
σ : K → K, con σ2(t) = t, ∀t ∈ K, tales que

τ(a)(t) = a(σ(t)),

para cualesquiera a ∈ C(K) y t ∈ K.
En lo que sigue, dada un en espacio de tipo C(K)τ , usaremos

el śımbolo σ para el homeomorfismo σ : K → K dado por el Teo-
rema de Banach-Stone aplicado a la isometŕıa lineal sobreyectiva
τ .

Nuestra estrategia consiste en extender V al álgebra de Borel
de K, B(K), y aprovechar la abundancia de proyecciones en esta
C∗-álgebra real.

Como resultado de importancia en śı mismo, obtenemos una
resolución espectral para elementos antisimétricos muy útil para
nuestros propósitos.

Lema 1.1.31 [J.J. Garcés, A.M. Peralta, Linear and Multilin-
ear algebra, 2013] Sean a, b elementos de B(K), con a simétrico
y b antisimétrico. Denotamos por F el conjunto de puntos fijos
de σ. Entonces se verifican: :

a) b|F = 0;

b) Para cada ε > 0, existen subconjuntos borelianos B1, . . . , Bm ⊆
dos a dos disjuntos tales que Bi ∩ σ(Bi) = ∅, ∀i = 1, . . . ,m,
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y números reales λ1, . . . , λm tales que∥∥∥∥∥b−
m∑
j=1

i λj(χBj − χσ(Bj))

∥∥∥∥∥ < ε;

c) Para cada ε > 0, existen borelianos dos a dos disjuntos C1, . . .
, Cm ⊂ K y números reales µ1, . . . , µm tales que σ(Cj) = Cj,

que verifican

∥∥∥∥∥a−
m∑
j=1

µjχCj

∥∥∥∥∥ < ε. 2

La anunciada descripción de las formas bilineales ortogonales
en C∗-álgebras reales abelianas y unitales es la siguiente:

Teorema 1.1.32 [J.J. Garcés, A.M. Peralta, Linear and Multi-
linear algebra, 2013] Sea V : A × A → R una forma bilineal y
ortogonal en una C∗-álgebra real abeliana unital. Entonces exis-
ten ϕ1 y ϕ2 en A∗ tales que

V (x, y) = ϕ1(xy) + ϕ2(xy
∗),

para todo x, y ∈ A. 2

El lector podŕıa preguntarse si habŕıa sido posible obtener
este resultado extendiendo V a la complexificación de A y apli-
cando el Teorema de Goldstein. En vista de la forma que tiene
V , es claro que la extensión de una forma bilineal ortogonal a la
complexificación de A no es, en general, una forma ortogonal.

Otro de los problemas que tratamos en [77] es el estudio
de aplicaciones lineales que preservan ortogonalidad entre C∗-
algebras abelianas. Puesto que consideramos aplicaciones lineales
no necesariamente continuas, no podemos en este aplicar los re-
sultados sobre forma bilineales ortogonales previamente proba-
dos.
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Sean A = C(K)τ una C∗-álgebra abeliana unital, F = {t ∈
K : σ(t) = t} y N = {t ∈ K : σ(t) 6= t}. En [77] demostramos
que F es cerrado y existe un abierto O maximal con respecto a
la propiedad O ∩ σ(O) = ∅. Además N = O ∪ σ(O).

Sea T : C(K1)
τ1 → C(K2)

τ2 una aplicación lineal que preser-
va ortogonalidad. Definimos Li = Fi ∪Oi y Cr(Li) como el con-
junto de funciones continuas f : Li → C que toman valores reales
en Fi. La aplicación que env́ıa cada f en C(Ki)

τi a su restricción
al conjunto Li es un C∗-isomorfismo. Esta observación permite
reducir el estudio de las aplicaciones lineales que preservan or-
togonalidad entre espacios C(K)τ al estudio de las aplicaciones
lineales que preservan ortogonalidad entre espacios Cr(L).

Sea T : Cr(L1) → Cr(L2) una aplicación lineal que preserva
ortogonalidad. Siguiendo las ideas de E. Beckenstein, L. Nari-
ci y A.R. Todd [23] K. y Jarosz [100] asociamos a T una fun-
ción soporte. Esta técnica nos permite obtener una versión real
del los famosos resultados de Jarosz sobre aplicaciones lineales
(no necesariamente continuas) entre C(K)-espacios que preser-
van ortogonalidad.

Teorema 1.1.33 [J.J. Garcés, A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Sea T : Cr(L1) → Cr(L2) una aplicación
lineal que preserva ortogonalidad. Entonces L2 descompone como
unión de tres subconjuntos dos a dos disjuntos Z1, Z2, y Z3, con
Z2 abierto y Z3 cerrado, y existe una función soporte continua
ϕ : Z1 ∪ Z2 → L1, y una función acotada T (i) : L2 → C que es
continua en el conjunto ϕ−1(O1) tales que:

T (i)(s) ∈ R, ∀s ∈ F2,

T (i)(s) = 0, ∀s ∈ Z3 ∪ Z2 y ∀s ∈ Z1 tal que ϕ(s) ∈ F1,

|T (1)(s)|+ |T (i)(s)| 6= 0, (∀s ∈ Z1), (1.2)
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T (f)(s) = T (1)(s) <ef(ϕ(s)) + T (i)(s) =mf(ϕ(s)), (1.3)

para todo s ∈ Z1, f ∈ Cr(L1), y

T (f)(s) = 0, (∀s ∈ Z3, f ∈ Cr(L1)).

Además, dado s ∈ L2, la aplicación Cr(L1) → C, f 7→ T (f(s)),
es discontinua si, y sólo si, s ∈ Z2 y el conjunto ϕ(Z2) es finito.

2

Como en el caso complejo, cuando se asumen hipótesis adi-
cionales sobre T , se obtienen propiedades adicionales sobre la
función soporte. Sin embargo, el hecho de que T sea biyectiva
no garantiza que la función soporte sea un homeomorfismo. Aun
aśı obtenemos el deseado resultado de continuidad automática.

Corolario 1.1.34 [J.J. Garcés, A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Toda biyección lineal que preserva ortogo-
nalidad entre C∗-álgebras reales abelianas unitales es automática-
mente continua. 2

Encontramos aqúı una gran diferencia con lo que ocurre en
el caso complejo, y es que el hecho de que T sea biyectiva no
garantiza que T−1 preserve ortogonalidad (ver ejemplo 3.7 en
[77]). Surge aśı la pregunta de cuándo una biyección que preserva
ortogonalidad preserva ortogonalidad en ambos sentidos. En [77]
también damos respuesta a esta pregunta.

Teorema 1.1.35 [J.J. Garcés, A.M. Peralta, Linear and Multi-
linear algebra, 2013] Sea T : Cr(L1) → Cr(L2) una aplicación.
Las siguientes afirmaciones son equivalentes:

(a) T es sobreyectiva y preserva ortogonalidad en ambas direc-
ciones;
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(b) Existen un homeomorfismo ϕ : L2 → L1 tal que ϕ(O2) = O1,
una función a1 = γ1 + iγ2 en Cr(L2) con a1(s) 6= 0 para todo
s ∈ L2, y una función a2 = η1+iη2 : L2 → C que es continua
en O2 y satisface la propiedad

0 < ı́nf
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣
≤ sup

s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ < +∞,

tales que

T (f)(s) = a1(s) <ef(ϕ(s)) + a2(s) =mf(ϕ(s))

para cualesquiera s ∈ L2 y f ∈ Cr(L1). 2

En el Caṕıtulo 9 de esta memoria exponemos los resulta-
dos sobre derivaciones locales en C∗-álgebras obtenidos recien-
temente en colaboración con M. Burgos, F.J. Fernández-Polo y
A.M. Peralta (ver [36]).

Las derivaciones locales aparecen por primera vez en el tra-
bajo de R.V. Kadison [113]. Sean A un álgebra de Banach y X
un A-bimódulo. Diremos que una aplicación lineal T : A→ X es
una derivación local si para cada a en A, existe una derivación
δa : A→ X tal que T (a) = δa(a). En el trabajo que acabamos de
mencionar, Kadison prueba que toda derivación local continua
de un álgebra de Von Neumann W en un bimódulo dual es una
derivación (ver [113, Theorem A]). Este resultado fue más tarde
generalizado por B.E. Johnson, quien demuestra, en [110], que
toda derivación local de una C∗-álgebra en un bimódulo es una
derivación.
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Sea E un JB∗-triple. Diremos que un aplicación conjugado
lineal T : E → E es una derivación triple local si, para cada a en
E existe una derivación triple δa : E → E tal que T (a) = δa(a).

Las derivaciones locales triples fueron por primera vez consid-
eradas por M. Mackey en [137]. Este autor demuestra que toda
derivación triple local en un JBW∗-triple es una derivación (ver
[137]). Conviene señalar que, aunque ésto no es observado por el
Mackey, sus argumentos pueden adaptarse para demostrar que
toda derivación triple local en JB∗-triple débilmente compacto
es una derivación.

En [36] consideramos derivaciones triples locales en C∗-álge-
bras (y JB∗-álgebras) unitales. También estudiamos la conexión
existente entre las derivaciones generalizadas introducidas por J.
Li y Zh. Pan en [132].

Como principales resultados obtenidos en este trabajo probamos
que toda triple derivación local en una C∗-álgebra (o una JB∗-
álgebra) unital es una derivación triple.

Teorema 1.1.36 [M.Burgos, F.J. Fernández-Polo, J.J. Garcés,
A.M. Peralta, Comm. Alg., 2013] Sea A una C∗-álgebra (o una
JB∗-álgebra) unital. Entonces toda derivación triple local T :
A→ A es una derivación triple. 2

Finalmente, en el último Caṕıtulo de esta memoria exponemos
una serie de problemas abiertos relacionados con la temática de
esta tesis. El estudio de estos problemas permitirá continuar la
labor iniciada en estos años de doctorado que han culminado con
la realización de esta memoria.

Incluimos también como anexo todos los art́ıculos cuyos re-
sultados han hemos utilizado para escribir esta memoria.



Chapter 2
Introduction

According to the rules governing the official Ph.D. Studies
and Doctorate from the University of Granada, approved by the
Governing Council of the University of Granada on May 2, 2012,
“the thesis may consist in the regrouping, in a memoir, research
papers published by the doctoral student in relevant scientific
Journals in their field of knowledge.” This memoir has been pre-
pared as a compilation of nine papers, all of them published in
journals of international importance in the field of Mathemati-
cal Analysis, referenced journals included in the list by the Jour-
nal Citations Reports and databases like MathSciNet (American
Mathematical Society) and Zentralblatt für Mathematik (Euro-
pean Mathematical Society). We have opted for a memory which
resumes the results obtained during the last five years. The orig-
inal published results are in a series of papers attached at the
end of this memoir. Thus, we shall survey the results, forerun-
ners and previous contributions without paying attention to the
detailed proofs of these results. We shall highlight the most im-
portant contributions and the context in which they were ob-
tained (precedents, motivations, references and difficulties). All

45
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details can be found in the original papers enclosed after the
final chapter and in the references.

2.1. Basic notions: C∗-algebras, Func-

tion Algebras and JB∗-triples

In general, we shall introduce basic concepts and definitions
just before they are needed. As exception, in this section, we re-
call some basic results in the theory of C∗-algebras, JB∗-algebras
and JB∗-triples that will be needed in this memory. For further
results on the theory of C∗-algebras we recommend [152], [165]
and [178], from where we have borrowed the results and defini-
tions presented here.

By an involution on a complex algebra we mean a conjugate
linear mapping ∗ : A→ A verifying:

a∗∗ := (a∗)∗ = a, (ab)∗ = b∗a∗,

for every a in A.

The term Banach algebra will stand for an associative com-
plete normed algebra. A linear mapping between algebras is said
to be a homomorphism when it preserves products. A Banach
algebra endowed with an involution is called a Banach ∗-algebra.
A ∗-homomorphism (respectively, a Jordan ∗-homomorphism)
between two ∗-algebras A and B, is an homomorphism (respec-
tively, Jordan homomorphism for the Jordan product a ◦ b :=
1
2
(ab + ba)) T : A → B which satisfies T (a∗) = T (a)∗, for ev-

ery a in A. Two ∗-algebras are said to be ∗-isomorphic if there
is a bijective ∗-homomorphism, called a ∗-isomorphism, between
them.

Let A be a Banach algebra with identity 1 and let a be an
element in A. The spectrum of a relative to A, denoted by σ

A
(a),
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is the set of all complex numbers λ such that a − λ1 is not
invertible. When no confusion can arise we shall simply write
σ(a).

If A is a Banach algebra without identity, then there exists a
norm in the unital algebra Ã = C1⊕A, such that Ã is a Banach
algebra (we call Ã the unitization of A). Let a be an element in
A. We define the spectrum of a to be the spectrum of a relative
to Ã, that is, σ

A
(a) := σ

Ã
(a).

Theorem 2.1.1 [Gelfand-Mazur theorem, Gelfand, [80]] If A is
a complex Banach algebra, then the spectrum of any element of
A is a non-empty compact set.

An important class of Banach ∗-algebras is that of C∗-algebras.

Definition 2.1.2 A C∗-algebra is a complex Banach ∗-algebra
satisfying the so-called Gelfand Naimark axiom:

‖aa∗‖ = ‖a‖2,

for every a in A.

Next, we give some examples of C∗-algebras.

Let L be a locally compact Hausdorff space. The space C0(L),
of all complex valued continuous functions on L vanishing at in-
finity, endowed with the supreme norm and the usual product is
a Banach algebra. Further, it is easy to check that the assign-
ment ∗ : C0(L) → C0(L), f 7→ f ∗, given by f ∗(t) = f(t), is an
involution which makes C0(L) into a Banach ∗-algebra. Morevor-
er, the norm in C0(L) also satisfies the Gelfand-Naimark axiom.
Thus C0(L) is a (commutative) C∗-algebra.

Let H be a complex Hilbert space and let L(H) denote the
space of continuous linear mappings on H. Then L(H) with the
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operator norm and product given by composition is a Banach
algebra. It is well know that, for each T ∈ L(H) there exists
a unique T ∗ ∈ L(H) such that (T (x)|y) = (x|T ∗(y)),∀x, y ∈
H. The mapping ∗ : L(H) → L(H), T 7→ T ∗ is an involution
on L(H). Furthermore, the above involution and product also
satisfy the Gelfand-Naimark axiom, that is,

‖TT ∗‖ = ‖T‖2,

for every T in L(H).

Now let A be a norm closed subalgebra of L(H) which is also
∗-invariant (called a self-adjoint subalgebra of L(H)). Clearly, A
also is a C∗-algebra.

The origins of C∗-algebras can be placed in the foundations of
quantum mechanics, with the contributions by E. Heissenberg,
P. Jordan and J. von Neumann.

The abstract characterisation of C∗-algebras was given by I.
Gelfand and M. Naimark in 1943 (see [81]), however they im-
posed the following extra condition: 1 + aa∗ is invertible, for
every a in A. Abstract C∗-algebras (that is, those that satisfy
the axioms given by Gelfand and Naimark) where called B∗-
algebras by C. E. Rickart in 1947, while those C∗-algebras which
are norm closed ∗-invariant subalgebras of some L(H) were called
C∗-algebras, although nowadays the term B∗-algebra is not in use
anymore.

In 1943, Gelfand and Naimark proved that every C∗-algebra
(with the extra assumption of 1 + aa∗ being invertible for every
a in A), can be realised as a norm closed self adjoint subalgebra
of some L(H). They actually conjectured that this extra condi-
tion was superfluous, a conjecture which was proved in 1951 by
Fukamiya (see [73]).
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Theorem 2.1.3 [Gelfand-Naimark, 1943] Every C∗-algebra is
C∗-isomorphic to a norm-closed selfadjoint subalgebra of L(H),
for some complex Hilbert space H.

Let A be an abelian C∗-algebra. The spectrum of A, Ω(A), is
the set non-zero homomorphisms from A to the complex numbers
(called characters). It is well known that Ω(A) is contained in
the unit ball of A∗, and Ω(A) ∪ {0} is weak∗-compact. If A is
unital then Ω(A) is weak∗-compact.

The Gelfand transform is the homomorphism from A into
C0(Ω(A)) given by x 7→ x̂, x̂(t) = t(x), for all x in A and t in
Ω(A).

Theorem 2.1.4 [Abelian Gelfand-Naimark theorem][165, The-
orem 1.2.1 and Corollary 1.2.2] If A is an abelian C∗-algebra then
the Gelfand transform is a surjective isometric ∗-homomorphism.
Furthermore, when A is unital Ω(A) is compact and A is C∗-
isomorphic to C(Ω(A)).

Let a be an element in a C∗-algebra A. We denote by Aa (re-
spectively, A1,a if A is unital) the C∗-subalgebra of A generated
by a (respectively, by a and 1) that is, the smallest C∗-subalgebra
of A containing a (respectively, a and 1).

We say that an element a in A is normal (respectively, self-
adjoint) if a∗a = aa∗ (respectively, a∗ = a). Clearly a self-adjoint
element is normal. We denote by Asa the set of all self-adjoint
elements in A. An element p in A is said to be a projection
whenever p2 = p = p∗. We recall that a partial isometry in A is
an element e satisfying that ee∗ (and e∗e) is a projection in A,
or equivalently ee∗e = e.

Let A be a unital C∗-algebra, and let a be a normal element
in A. Then A1,a is an abelian C∗-algebra. We further have:
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Theorem 2.1.5 [165, Corollary 1.2.3] Let a be a normal ele-
ment in a unital C∗-algebra A. Then A1,a is C∗-isomorphic to
C(σ

A
(a) ∪ {0}).

If A is not unital, then we have the following:

Theorem 2.1.6 [165, Corollary 1.2.3] Let a be a normal ele-
ment in a C∗-algebra A. Then Aa is ∗-isomorphic to C0(σ(a) ∪
{0}), where C0(σ(a)∪{0}) stands for the space of all continuous
functions on σ(a) ∪ {0}) vanishing at 0.

This representation theorem gives raise to the so-called con-
tinuous functional calculus of a normal element. We briefly de-
scribe how it works.

Given a normal element a in a C∗-algebra, A, let

F : Aa −→ C0(σA(a) ∪ {0}),

denote the Gelfand representation. Given a continuous function
f ∈ C0(σ(a)∪{0}), we define f(a) ∈ Aa to be the unique element
in Aa such that F (f(a)) = f. The mapping C0(σ(a)∪{0})→ Aa,
f 7→ f(a) is called the (continuous) functional calculus associat-
ed to the element a. This functional calculus enjoys the following
properties:

(αf+βg)(a) = αf(a)+βg(a), (fg)(a) = f(a)g(a), f(a) = f(a)∗,

σ(f(a)) = f(σ(a)), and ‖f(a)‖ = sup{|f(λ)| : λ ∈ σ(a)}.

We say that a self-adjoint element a in a C∗-algebra A is positive

if σ
A

(a) ⊂ R+
0 . We shall denote by A+ the set of positive elements

in the C∗-algebra A.

Two elements a, b in a C∗-algebra A are said to be orthogonal ,
denoted a ⊥ b, if ab∗ = b∗a = 0.
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As an application of the functional calculus, it is easy to see
that a self-adjoint element a can be uniquely written as the dif-
ference of two orthogonal positive elements a+, a−. The positive
element a+ + a− is called de absolute value of a and is denoted
by |a|.

A von Neumann algebra is a C∗-algebra which is also a dual
Banach space. By a celebrated result due to Sakai, every von
Neumann algebra has an unique (isometric) predual, its invo-
lution is weak∗-continuous and its product is separately weak∗-
continuous (cf. [165, §1.7]).

The functional calculus also allows us to compute powers of
a normal element, and roots of a positive element a. That is, for
each natural n we are able to find an element z in Aa such that
zn = a. This element will be denoted be z

1
n and will be called

de n-th root of a.

A Jordan algebra is an abelian (but non-necessarily associa-
tive) algebra whose product satisfies the so-called Jordan iden-
tity

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2.
Every associative algebra is a Jordan algebra when endowed

with the Jordan product a ◦ b = 1
2
(ab+ ba).

Let A be a Jordan algebra and let a be an element in A, we
define the multiplication operator Ma : A→ A, by Ma(b) = a◦b,
while the quadratic operator Ua : A → A is given by Ua(b) =
2a ◦ (a ◦ b)− b ◦ a2.

It can be deduced from the Jordan identity that Jordan alge-
bras are power associative, that is, if A is a Jordan algebra and
a ∈ A then for m,n ≥ 1 we have

am+n = am ◦ an,

for every a in A (compare [89, Lemma 2.4.5]).
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A linear mapping T : A → B between Jordan algebras is
said to be a Jordan homomorphism if it preserves the Jordan
product, that is, if

T (a ◦ b) = T (a) ◦ T (b),

for every a, b in A.

A normed Jordan algebra is a Jordan algebra such that

‖a ◦ b‖ ≤ ‖a‖‖b‖,

for every a, b in A. If A is complete as a Banach space then we
say that A is a Jordan-Banach algebra.

A JB-algebra is a real Jordan-Banach algebra A in which the
norm satisfies the following two additional conditions for all a, b
in A:

a) ‖a2‖ = ‖a‖2;

b) ‖a2‖ ≤ ‖a2 + b2‖.

Jordan algebras were first studied by P. Jordan, J. von Neu-
mann and E. Winger in the decade of 1930 as a suitable setting
for quantum formalism (see [111]).

Special cases of JB-algebras were studied by E. Stormer and
D.M. Topping in [177] and [180], although general JB-algebras
were defined and studied by E.M. Alfsen, F.W. Schultz and E.
Stormer in [8]. For the basic results on the theory of JB-algebras
we refer to [89].

Let A be a C∗-algebra and denote by Asa the set of all self-
adjoint elements of A. We notice that Asa is not, in general, an
associative subalgebra of A. However it is easy to see that if we
endow A with the Jordan product, then Asa is a real Jordan
subalgebra of A. Furthermore, Asa is a JB-algebra.
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A complex Jordan-Banach ∗-algebra is a complex Jordan-
Banach algebra, A, endowed with a continuous involution ∗ :
A → A. A Jordan ∗-homomorphism between Jordan-Banach
∗-algebras is a Jordan homomorphism T : A → B such that
T (a∗) = T (a)∗, for all a ∈ A.

A JB∗-algebra is a complex Jordan-Banach ∗-algebra satisfy-
ing the additional axiom

‖Ua(a∗)‖ = ‖a‖3.

This axiom is the Jordan version of the Gelfand-Naimark
axiom for C∗-algebras. Actually, when a C∗-algebra is endowed
with the Jordan product and its natural involution, it becomes
a JB∗-algebra.

JB∗-algebras are, in some sense, the complex version of JB-
algebras. They were first considered by I. Kaplansky, who pre-
sented them at a lecture for the Edinburgh Mathematical Society
in 1976. It is easy to see that the set of self-adjoint elements of a
JB∗-algebra is a JB-algebra. Conversely, J.D.M. Wright proved
a milestone result in the Jordan theory showing that the com-
plexification of a JB-algebra is a JB∗-algebra (see [186]).

An associative JB∗-algebra A is clearly an abelian C∗-algebra,
as a consequence, there exists a locally compact Hausdorff space
L such that A is ∗-isomorphic to C0(L).

If A is an associative JB-algebra, then its complexification is
an associative JB∗-algebra (see [89, Theorem 3.2.2]) and thus ∗-
isomorphic to some C0(L). It is easy to see that C0(L)sa coincides
with C0(L,R), and A is ∗-isomorphic to C0(L, ). The set L is
compact if, and only if, A is unital.

Let A be a unital JB∗-algebra and a an element in Asa. We
denote by A1,a the JB∗-subalgebra of A generated by a and 1. By
power associativity, A1,a is associative, and hence a C∗-algebra.
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We define the spectrum of a, σ(a), as the spectrum of a relative
to A1,a.

Theorem 2.1.7 [89, 3.2.4] Let a be a self-adjoint element in a
unital JB∗-algebra A. Then A{1,a} is ∗-isomorphic to C(σ(a) ∪
{0}). If A is not unital, then Aa is ∗-isomorphic to C0(σ(a)∪{0}).

A continuous functional calculus on self-adjoint elements on
a JB∗-algebra can be analogously defined as in the case of C∗-
algebras.

A JBW-algebra A (respectively, a JBW∗-algebra) is a JB-
algebra (respectively, a JB∗-algebra) which is a dual Banach
space, that is, there exists some Banach space B such that B∗ =
A (such a Banach space is called a predual of A). Every JBW-
algebra (respectively, JBW∗-algebra) has a unique isometric pre-
dual, which we call the predual of A, and denoted by A∗ (cf. [89,
Theorem 4.4.16]). It is also known that the Jordan product of
a JBW- or a JBW∗-algebra is separately weak∗-continuous ([89,
Corollary 4.1.6]).

C∗-algebras and JB∗-algebras belong to a more general class
of (complex) Banach spaces known under the name of (complex)
JB∗-triples. We recall that a real (respectively, complex) Jordan-
Banach triple is a real (respectively, complex) Banach space, E,
together with a continuous triple product {., ., .} : E×E×E →
E, which is trilinear (respectively, conjugate linear in the middle
variable and bilinear in the outer variables) and symmetric in
the outer variables satisfying the so-called Jordan identity ,

L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y)− L(x, L(b, a)y),

where L(a, b) is the operator on E given by L(a, b)x = {a, b, x} .
A complex Jordan Banach triple E is said to be a (complex)

JB∗-triple if it satisfies the following additional axioms axioms:
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(a) L(a, a) is an hermitian operator with non-negative spectrum;

(b) ‖ {a, a, a} ‖ = ‖a‖3.

We observe that axiom (b) is the appropriate Jordan triple ver-
sion of the Gelfand-Naimark axiom.

For each x in a JB∗-triple E, Q(x) will stand for the conjugate
linear operator on E defined by y 7→ Q(x)y = {x, y, x}.

An element e in a Jordan triple E is said to be a tripotent
if {e, e, e} = e. Each tripotent e in E gives raise to the so-called
Peirce decomposition of E associated with e, that is,

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0, 1, 2, Ei(e) is the i
2

eigenspace of L(e, e). The
Peirce decomposition satisfies certain rules known as Peirce arith-
metic:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e),

if i− j + k ∈ {0, 1, 2} and is zero otherwise. In addition,

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.

The corresponding Peirce projections from E onto Ei(e) are de-
noted by Pi(e) : E → Ei(e), (i = 0, 1, 2). The Peirce space E2(e)
is a Jordan algebra with product x•ey := {x, e, y} and involution
x]e := {e, x, e}. If E is a JB∗-triple then E2(e) is a JB∗-algebra
(cf. [29]).

Every C∗-algebra (respectively, every JB∗-algebra) is a JB∗-
triple with respect to

{a, b, c} :=
1

2
(ab∗c+ cb∗a)

(respectively, {a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗).
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A JBW∗-triple is a JB∗-triple which is also a dual Banach
space (with a unique isometric predual [15]). It is known that the
triple product of a JBW∗-triple is separately weak∗-continuous
[15]. The second dual of a JB∗-triple E is a JBW∗-triple with a
product extending the product of E [53].

Let I be a subspace of a Jordan triple E. We shall say that
I is a subtriple of E if {I, I, I} ⊆ I. Given be a subset M of a
JB∗-triple E, we denote by E

M
the norm-closed subtriple of E

generated by M, that is, the smallest norm-closed subtriple of E
containing M. When M = {x}, for some x in E, we shall simply
write Ex instead of E

M
.

For each element x in a JB∗-triple E, we shall denote x[1] := x,
x[3] := {x, x, x}, and x[2n+1] :=

{
x, x, x[2n−1]

}
, (n ∈ N). It is

known that, for every n,m, k in N, {x[2n−1], x[2m−1], x[2k−1]} =
x[2(n+m+k)−3] that is, JB∗-triples are power associative.

It is also known that, that for each element x, Ex is JB∗-
triple isomorphic (and hence isometric) to C0(L) for some locally
compact Hausdorff space L contained in (0, ‖x‖], such that L ∪
{0} is compact and there exists a triple isomorphism Ψ from
Ex onto C0(L), such that Ψ(x)(t) = t (t ∈ L) (cf. [118, 4.8],
[119, 1.15] and [70]). The set L ∪ {0} = Sp(x) is called the
triple spectrum of x. This local theory provides us a continuous
triple functional calculus as in the case of C∗-algebras and JB∗-
algebras.

Therefore, for each x ∈ E, there exists a unique element
y ∈ Ex satisfying that {y, y, y} = x. The element y, denoted by

x[
1
3
], is termed the cubic root of x. We can inductively define,

x[
1
3n

] =
(
x[

1
3n−1 ]

)[ 1
3
]

, n ∈ N. The sequence (x[
1
3n

]) converges in

the weak∗-topology of E∗∗ to a tripotent denoted by r(x) and
called the range tripotent of x. The tripotent r(x) is the smallest
tripotent e ∈ E∗∗ satisfying that x is positive in the JBW∗-
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algebra E∗∗2 (e) (compare [56, Lemma 3.3]).

Complex JB∗-triples were introduced by W. Kaup in the
study of bounded symmetric domains in complex Banach spaces
(see [118], [119]), although particular forerunners of JB∗-triples
were studied before by O. Loos and K.M Crimmon (see [136])
and by L.A. Harris in [90]. Although the initial motivation to
study the JB∗-triples was holomorphic theory, the theory of JB∗-
triples has motivated an area of independent interest and they
are nowadays studied by many authors from the point of view
of algebra and functional analysis. In these structures (the JB∗-
triples) the algebraic, topological, holomorphic and geometric
structures have a particularly good interaction, and as conse-
quence of this interaction, frequently purely algebraic hypothesis
determine topological and geometric properties, and reciprocally.
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Chapter 3
Characterisation of
orthogonality preservers

3.1. Historical overview

The main subject of this thesis is the study of different prop-
erties of a type of linear operators called “orthogonality preserv-
ing operators”. We have tracked this problem and it seems to
have its origins in the description of isometries in some classical
Banach spaces, such as the C(K)-spaces or the Lp-spaces.

Let L be a locally compact Hausdorff space and K denote
the field of real or complex numbers. A continuous function f :
L→ K vanishes at infinite if for each ε > 0 the set

{s ∈ L : |f(s)| ≥ ε}

is compact. We denote by C0(L,K) the set of all continuous
functions on L vanishing at infinite.

Unless specified, we shall always endow the space C0(L,K)
with the sup norm, which is a complete norm in C0(L,K). When

59
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L is compact Hausdorff C0(L,K) coincides with C(L,K), the
space of K-valued continuous functions on L. When the setting
is clear we shall simply write C0(L) or C(L) if L is compact
Hausdorff.

In the seventh chapter of [17], Stefan Banach studies the
structure of surjective linear isometries between C(K,R)-spaces.

Theorem 3.1.1 [S.Banach, 1932]Let K1, K2 be compact met-
ric spaces and let T : C(K1,R) → C(K2,R) be a (linear) sur-
jective linear isometry. Then there exist an homeomorphism ϕ :
K2 → K1 and a continuous function h ∈ C(K2), with h(s) ∈
{+1,−1}, ∀s ∈ K2, such that

T (f)(s) = h(s)f(ϕ(s)),

for every f ∈ C(K1), s ∈ K2.

We notice that the linearity assumption is superfluous since
Banach himself proved that surjective linear isometries are au-
tomatically linear.

This important result is the origin of the study of isome-
tries between various classical Banach spaces (and structures
that generalise them) but also of a huge number of different
(although related) problems in the vast area of linear preservers.

For each function f in C(K) we define its cozero set as the
set

coz(f) = {s ∈ K : f(s) 6= 0},

that is, the complementary in K of the set of zeros of f.

Let’s look a bit deeper on the properties of surjective linear
isometries between C(K)-spaces. Let us fix a surjective linear
isometry T : C(K1)→ C(K2) and f, g in C(K1) such that fg = 0
(this means that coz(f) and coz(g) are disjoint sets). Then, we
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clearly have T (f)T (g) = 0. So T sends functions with disjoint
cozero sets to functions with disjoint cozero sets. In other words,
T sends disjoint functions to disjoint functions. Linear mappings
that enjoy this property are usually said to be disjointness pre-
serving or separating .

Now we observe that we can consider operators having a sim-
ilar form to that of surjective linear isometries but with weaker
assumptions on the functions h and ϕ, still preserving disjoint
functions. Indeed, any linear mapping with the form T (f) =
h(f ◦ ϕ) for some h ∈ C(K1) and ϕ : K2 → K1 continuous on
{t : h(t) 6= 0}, also is separating (or disjointness preserving).

Definition 3.1.2 Let K1, K2 be two compact Hausdorff spaces
and let T : C(K1)→ C(K2) be a linear mapping. If there exists
h ∈ C(K2) and ϕ : K2 → K1 continuous on {t : h(t) 6= 0} such
that

T (f)(s) = h(s)f(ϕ(s)),

for all f ∈ C(K1), s ∈ K2. Then T is said to be a weighted
composition operator.

As proved by Banach, every surjective linear isometry is a
weighted composition operator (it is easy to see that not every
weighted composition operator is an isometry). As we have al-
ready observed, every weighted composition operator is separat-
ing. This key observation was not explicitly made by Banach, at
least not for the case of isometries between C(K)-spaces. How-
ever, just a few pages after proving Theorem 3.1.1, Banach al-
so studies surjective linear isometries between Lp([0, 1])-spaces,
(for 1 ≤ p 6= 2) (and also between lp-spaces). We find in page
175 what might be the first reference in the literature to the
disjointness preserving property (extracted from french version):
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“Etant donée une rotation y = U(x) de (L(p)), oú 1 ≤ p 6= 2,
autour de 0, si on a pour un couple x1(t), x2(t) des fonctions
appartenat á (L(p))

x1(t)x2(t) = 0, persque partout dans [0, 1],

alors pour le couple y1(t), y2(t), oú y1(t) = U(x1) et y2 = U(x2),
on a également

y1(t)y2(t) = 0, persque partout dans [0, 1].′′

That is, in our terminology, Banach proves that a surjec-
tive linear isometry between Lp([0, 1])-spaces (for 1 ≤ p 6= 2)
is separating (or disjointness preserving). Banach also charac-
terises surjective linear isometries between Lp([0, 1])-spaces, by
proving that they are also weighted composition operators (in
this case ϕ must be a bijection of [0, 1] such that both ϕ and
ϕ−1 preserve measurable sets, and h satisfies the property that

h(t) = ĺım
δ→0+

(m(ϕ([t,t+δ]))
δ

)
1
p , t ∈ [0, 1]).

This result was generalised by J. Lamperti in 1958 (see [126])
to arbitrary σ-finite measure spaces and also for p < 1. Lamper-
ti also proves that surjective linear isometries are separating, a
property that plays an important role in the description of this
kind of operators (that might be the reason for which both Ba-
nach and Lamperti observed this property for isometries between
Lp-spaces but not in the case of C(K)-spaces).

In 1937, M. Stone proves a version of Banach’s theorem for
complex C(K)-spaces (where K is a compact (non necessarily
metric) Hausdorff space).

Theorem 3.1.3 [M. Stone, [176]] Let K1, K2 be compact Haus-
dorff spaces and T : C(K1,K) → C(K2,K) a surjective linear
isometry. Then there exist a continuous function h ∈ C(K2)
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with |h(s)| = 1,∀s ∈ K2, and an homeomorphism ϕ : K2 → K1

such that
T (f)(s) = h(s)f(ϕ(s)),

for all f ∈ C(K1), s ∈ K2.

This theorem is nowadays known as Banach-Stone theorem.
All the results trying to generalise the Banach-Stone theorem to
some other setting are known as Banach-Stone type theorems
(that is the case, for example, of the just quoted Banach’s de-
scription of surjective linear isometries on Lp([0, 1]). The study of
different types of Banach-stone theorems in wider settings (Ba-
nach lattices, C(K,X)-spaces, Banach algebras, Jordan struc-
tures, etc.) has attracted the attention of many mathematician
during the last 80 years, still being a very active area of research
(see for instance [112], [149], [187], [162], [96], [119], [65] and
[66]). We shall, however, focus our attention in another, but not
less important, problem that also has its origin in the seminal
work by Banach and Stone. We refer to the study of separating
or disjointness preserving operators.

The C(K)-spaces or Lp-spaces can be replaced with spaces in
some wider classes of Banach spaces, one of them being the cat-
egory of Banach lattices . A Banach lattice is a real vector lattice
with a complete norm which satisfies the additional property:

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖,

where |x| = máx{x,−x}. Two elements x, y in a Banach lattice
E are said to be disjoint , denoted by x ⊥ y, if mı́n{x, y} = 0.

In [143, page 187], H. Nakano proves that order isomorphisms
between C0(L)-spaces are weighted composition operators (and
hence disjointness preserving). An interesting fact is that con-
tinuity is not assumed, that is, Nakano also proves that order
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isomorphisms between C0(L)-spaces are automatically continu-
ous. This result can be considered as the starting point in the
study of separating (disjointness preserving) mappings in Banach
lattices.

As we have seen, many particular examples of separating lin-
ear mappings were already known by the decade of 1950, howev-
er a systematic study of these linear mappings had to wait until
late 70’s. It seems that the study of disjointness preserving lin-
ear mappings has brought first attention of experts in the field
of Banach lattices. The special case of band preserving operators
was first studied.

Definition 3.1.4 A linear mapping T : X → Y between Banach
lattices is said to be band preserving or to preserve bands if

x ⊥ y implies T (x) ⊥ y.

Mathematicians were mainly concerned with questions like
automatic continuity, representability (as weighted composition
operators), spectral theory and the inverses of disjointness pre-
serving linear mappings. Concerning automatic continuity, band
preserving operators and lattice isomorphisms where known to
be automatically continuous, however the situation for general
disjointness preserving linear mappings was not clear.

In 1979, Y.A. Abramovich, A.I. Veksler and A.V. Koldunov
prove that a surjective linear mapping T : X → Y between
Banach lattices with the property that x1 ⊥ x1 if, and only if,
T (x1) ⊥ T (x2) is continuous. They also give a description of such
a mapping as an appropriate weighted composition operator (see
[2]).

Definition 3.1.5 A linear mapping T : X → Y between Banach
lattices with the property that

x1 ⊥ x1 if, and only if, T (x1) ⊥ T (x2)
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is said to be biseparating or a d-isomorphism.

As proved by Abramovich, Veksler and Koldunov, every bisep-
arating linear surjection between Banach lattices is automatical-
ly continuous. Here we observe an interesting fact, a property
that depends only on the order and linear structure (being lin-
ear and biseparating) determines a topological property (being
continuous).

A question that naturally arises is whether the biseparating
hypothesis can be dropped, that is, whether a separating linear
bijection is automatically continuous and, in that case, whether
its inverse is also a separating. This question turned out to be
very difficult. Some examples where this is true were known,
but it’s not until 2000 when a counterexample is given by Y.A.
Abramovich and A.K. Kitover (see [1]).

Back to the C(K)-spaces, in [23] E. Beckenstein, L. Narici
and A.R. Todd studied separating linear maps in this setting.
One of the interesting novelties found in their contribution is
the use of the so-called support of a separating linear mapping.
In their own words, this support “is based on an analog of the
notion of support of a linear functional”. The support function
allows to fully understand separating linear mappings between
C(K)-spaces, even when they are not continuous. In the just
quoted paper they are able, under some additional hypothesis
(such as T (1) being invertible and T being surjective), to de-
scribe separating linear mappings (they are weighted composi-
tion operators, as expected) and give some automatic continuity
results for separating linear bijections (although some additional
hypothesis on the compact set K were also needed).

Later, in [100], K. Jarosz gives a general description of a
separating linear mapping. We sketch here this description: Let
T : C(K1) → C(K2) be a separating linear mapping between
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C(K)-spaces. The compact set K2 can be decomposed as a dis-
joint union K2 = Z1 ∪ Z2 ∪ Z3, where

Z3 = {s ∈ K2 : δs◦T = 0}, Z2 = {s ∈ K2 : δs◦T is unbounded},

and

Z1 = K2 \ Z2 ∪ Z3.

For s ∈ K2 the support of δsT, denoted supp(δsT ), is defined
to be the set of all t ∈ K1 such that for every open neighborhood
U of t there exists f ∈ C(K1) with coz ⊂ U and T (f)(s) 6= 0.

It can be proved that supp(δsT ) is a single point whenever s
lies in Z1 ∪ Z2 and is empty if, and only if, s ∈ Z3. This allows
to define a continuous function ϕ : Z1 ∪ Z2 → K1, given by
ϕ(s) = supp{δsT}. We recall that the set Z1 is the set of those
s ∈ K2 where δsT is a nonzero continuous functional. Jarosz
proved (among other things) that the restriction of T to the set
Z1 acts as a weighted composition operator.

Theorem 3.1.6 [K. Jarosz, Canadian J., 1990] Let us consid-
er a separating linear mapping T : C(K1) → C(K2). Under the
above notation, Z2 is open, Z3 is closed and there exists a bound-
ed, non-vanishing, continuous function h : Z1 → C, such that

T (f)(s) = h(s)f(ϕ(s)),

for every f ∈ C(K1), s ∈ Z1, T (f)(s) = 0, for every s ∈ Z3 and
every f ∈ C(K1), and the set ϕ(Z2) is finite.

When additional hypothesis on T are assumed (injectivity
and/or surjectivity), additional properties on the support func-
tion can be obtained. When T is bijective Jarosz proves the fol-
lowing:
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Corollary 3.1.7 [K. Jarosz, Canadian J., 1990] Let T be a sep-
arating linear bijection from C(K1) to C(K2). Then T is con-
tinuous (and the mapping ϕ given in Theorem 3.1.6 is a home-
omorphism).

In the hypothesis of the above corollary, T−1 is also sep-
arating. Therefore, the inverse of a separating linear bijection
between C(K)-spaces is separating.

This results were later generalised to the case of separating
linear mappings between C0(L)-spaces by J.S. Jeang and N.C.
Wong in [103].

Another class of Banach spaces containing the C(K)-spaces
is the class of vector valued continuous functions. Let K be a
compact Hausdorff space and X a Banach space. The symbol
C(K,X) stands for the space of all continuous functions f :
K → X. The space C(K,X) endowed with the supreme norm is
again a Banach space.

Definition 3.1.8 Two functions f, g ∈ C(K,X) are said to be
disjoint, denoted fg = 0, if

‖f(t)‖‖g(t)‖ = 0,

for every t in K.

Associated with this concept of disjointness, naturally arises
the problem of studying disjointness preserving linear mappings
between C(K,X)-spaces.

Definition 3.1.9 Let K1, K2 be compact Hausdorff spaces and
let X1, X2 Banach spaces. A linear mapping T : C(K1, X1) →
C(K1, X2) is said to be separating (or disjointness preserving)
if T (f)T (g) = 0, whenever fg = 0.
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A linear bijection T : C(K1, X1) → C(K1, X2) is said to be
biseparating if both T and T−1 are separating.

In [79], H.L. Gau, J.S. Jeang and N.C. Wong studied bisepa-
rating linear mappings between C(K,X)-spaces. The main result
of the just quoted paper states that these linear mappings are
continuous and can be represented as an appropriate composi-
tion operator (see also [13]).

C(K)-spaces also belong to another class of Banach spaces
with additional algebraic and geometric properties. We refer to
the class of Banach algebras.

We say that two elements a, b in a Banach algebra A are
disjoint (or have zero product) whenever ab = 0. Having zero
product seems to be a natural generalisation of disjointness in
this setting, however, we shall see later that, when the algebra
has a richer structure, there are other choices.

Definition 3.1.10 A linear mapping T between two Banach al-
gebras A and B is said to be disjointness preserving or to pre-
serve zero-products if

ab = 0 implies T (a)T (b) = 0.

Clearly, every algebra homomorphism preserves zero-products.

Two elements a, b in a Banach algebra A are said to commute
if ab = ba. Let R ⊆ A, the commutant of R, denoted by R′, is
the set of all elements of A that commute with all elements in
R, that is R′ = {a ∈ A : ab = ba,∀b ∈ R}. The center of A
is Z(A) = A′. An element in the center of A is called a central
element. Of course, Z(A) = A if, and only if, A is abelian.

Let A,B be Banach algebras, S : A→ B be a homomorphism
and let h ∈ Z(B). It is easy to check that the linear mapping
T = hS preserves zero products. If h is not central, the operator
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T = hS might be zero product preserving, provided that h lies
in S(A)′, for instance. Such a linear mapping seems to be the
appropriate generalisation of a weighted composition operator
to the new setting. Notice that, if A and B are C(K)-spaces and
T is a weighted composition operator given by T (f) = h(f ◦ ϕ),
then the mapping S : A→ B given by S(f) = f ◦ ϕ is a homo-
morphism (and the element h trivially lies in in the commutant
of S(A)).

The natural question that arises now is whether a zero prod-
uct preserving linear mapping between Banach algebras, say T ,
can be represented as a multiple of an homomorphism by an
element that verifies certain commutativity relations with all el-
ements in the range of T .

Let A be a Banach algebra. We recall, once again, that the
Jordan product of A is defined as

a ◦ b =
1

2
(ab+ ba).

The Jordan product is commutative, however, it is not, in gen-
eral, associative. A linear mapping T : A → B between Banach
algebras is said to be a Jordan homomorphism if

T (a ◦ b) = T (a) ◦ T (b),

while T is said to preserve Jordan-zero products if

T (a) ◦ T (b) = 0 whenever a ◦ b = 0.

Obviously, Jordan homomorphisms and multiples of Jordan
homomorphisms by a central element (sometimes called weighted
Jordan homomorphisms) are examples of Jordan-zero product
preserving linear mappings.
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Zero-product and Jordan-zero product preservers have been
studied by many authors during the last 20 years (see for instance
[42], [43], [67], [192], [185], [124] and [5]). An hypothesis that is
usually assumed on a zero-product or a Jordan-zero product pre-
serving linear mapping when trying to describe it, is surjectivity
(although some hypothesis on the algebra are needed). However,
the desired description of zero product preserving operators be-
tween general Banach algebras (without assuming extra hypoth-
esis on the operator) seems to be hopeless (see [42]). Fortunately,
when the algebra has a richer structure, a better knowledge of
these operators can be obtained. That will be the case for the
class of C∗-algebras.

As a special case of Banach algebras, the study of zero prod-
uct preservers makes perfect sense in this new setting. However,
another notion of disjointness arises naturally in the class of C∗-
algebras.

Let H be a complex Hilbert space and let S, T be elements in
L(H). Since, for x, y in H, (T (x)|S(y)) = (x|T ∗S(y)), we see that
the ranges of T and S are orthogonal if, and only if, T ∗S = 0. If
we want this orthogonality relation to be symmetric, we should
also require ST ∗ = 0.

Definition 3.1.11 We say that two elements a, b in a C∗-algebra
A are orthogonal, denoted a ⊥ b, if ab∗ = b∗a = 0.

It is easy to see that if A is a C0(L)-space then two elements
in A have zero product if, and only if, they are orthogonal.

With this new notion of disjointness a new problem arises: the
study of those linear mappings between C∗-algebras preserving
orthogonal elements.

Definition 3.1.12 Let T : A→ B be a linear mapping between
C∗-algebras. We say that T is orthogonality preserving or that
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T preserves orthogonality if

a ⊥ b implies T (a) ⊥ T (b).

When T (a) ⊥ T (b) in B if and only if a ⊥ b in A, we say
that T is biorthogonality preserving .

The study of orthogonality preserving operators between C∗-
algebras begins with the work of W. Arendt [14] in the setting of
C(K)-spaces. More concretely, the author proved that for every
orthogonality preserving operator (originally termed Lamperti
operator in [14]), T : C(K)→ C(K), there exists h ∈ C(K) and
a mapping ϕ : K → K being continuous on {t ∈ K : h(t) 6= 0}
satisfying that

T (f)(t) = h(t)f(ϕ(t)),

for all f ∈ C(k), t ∈ K. The study was latter extended by K.
Jarosz [100] and J.S. Jeang and N.C. Wong [103] to the setting of
orthogonality preserving operators between C0(L)-spaces, where
L is a locally compact Hausdorff space.

From the results on disjointness preserving linear mappings
between C0(L)-spaces (see [103]) and the commutative Gelfand
theory we already know that continuous linear orthogonality
preservers between abelian C∗-algebras are weighted composi-
tion operators and that orthogonality preserving linear bijec-
tions between abelian C∗-algebras are automatically continuous
(see [100]). The description given in [103] and [100] can be refor-
mulated as follows:

Theorem 3.1.13 Let A,B be abelian C∗-algebras and let T :
A → B be an orthogonality preserving linear mapping. The fol-
lowing statements hold:

a) If T is continuous, then there exist h in B and a homomor-
phism S : A→ B such that

T (f) = hS(f),
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for every f in C(K).

b) If T is bijective then T is continuous and T−1 is orthogonality
preserving. 2

Notice that every homomorphism between Banach algebras
is a Jordan homomorphism.

For a result on orthogonality preservers between non nec-
essarily commutative C∗-algebras we have to wait until 1994.
In [183], M. Wolff studies continuous linear mappings between
unital C∗-algebras that preserve orthogonality of self adjoint ele-
ments and are symmetric, that is, operators mapping self adjoint
elements to self adjoint elements.

Definition 3.1.14 Let A,B be C∗-algebras and let T : A → B
be a linear operator. We say that T preserves orthogonality on
Asa if T satisfies

T (a) ⊥ T (b) whenever a ⊥ b in Asa.

Following Wolff’s terminology we say that T is disjointness
preserving on Asa if T preserves orthogonality on Asa and is
symmetric.

In a first step to describe disjointness preserving symmetric
linear operators between unital C∗-algebras, Wolff deals first with
the special case in wich T (1) = 1 (see Lemma 3.3 in [183]). He
proves that, in this case, T is a Jordan ∗-homomorphism. We
notice that, in order to prove this statements, it is enough to
prove that T (a2) = T (a)2, for every a in Asa. Wolff is able to
prove that by studying the restriction of T to the subalgebra
generated by a single self adjoint element and the unit of A.

Proposition 3.1.15 [M. Wolff, Arch. Math., 1994] Let S be a
disjointness preserving operator between unital C∗-algebras sat-
isfying S(1) = 1. Then S is a Jordan ∗-homomorphism. 2
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When the element h = T (1) is invertible, Wolff proves that
the linear operator S = h−1T is a Jordan ∗-homomorphism and
T = hS (see the proof of Theorem 3.5 in [183]).

Finally, in [183, Theorem 3.5] Wolff characterises general
symmetric disjointness preserving linear operators between uni-
tal C∗-algebras. To obtain this characterisation, the element h
being self-adjoint seems to be crucial, since the commutative
Gelfand theory is again used to describe C1,h, for a certain C∗-
subalgebra C of B∗∗.

We shall slightly reformulate Wolff’s original result to avoid
technical details. Let T : A → B be a disjointness preserving
linear operator between unital C∗-algebras and h = T (1). Then
h lies in {T (A)}′, the commutator of T (A), and there exists a
sequence Sn : A → B∗∗ of Jordan ∗-homomorphisms such that
w∗-ĺımn hSn(a) = T (a), for every a in A. Furthermore, if we take
a free ultrafilter U then the assignment

a 7→ S(a) = w∗ − ĺım
U
Sn(a),

defines a Jordan ∗-homomorphism from A into B∗∗ and T =
hS(a).

The following is a reformulation of the main theorem in [183].

Theorem 3.1.16 [M. Wolff, Arch. Math., 1994] Let A,B be
unital C∗ algebras, T : A → B a disjointness preserving sym-
metric operator and let h = T (1). Then h lies in {T (A)}′ and
there exists a Jordan ∗-homomorphism S : A → B∗∗ such that
T = hS. 2

Looking at Wolff’s proof one is tempted to think that when
h is normal it might be posible to generalise this result following
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the same ideas. If we want to drop the hypothesis of T being sym-
metric then we have two choices: first, considering zero product
preservers, and second, considering orthogonality preservers.

In [42, Theorem 4.6], M.A. Chebotar, W.F. Ke, P.H. Lee and
N.C. Wong studied not-necessarily symmetric zero-product pre-
servers between C∗-algebras. However they required additional
hypothesis.

Theorem 3.1.17 [Chebotar, Ke, Lee, Wong, Monaths. Math.,
2003] Let T be a surjective bounded linear mapping from a unital
C∗-algebra to a C∗-algebra B that preserves zero products of self
adjoint elements. Then B is unital, T (1) is invertible and lies
in the center of B and there exists a Jordan homomorphism S :
A→ B such that

T (a) = hS(a),

for every a in A. 2

It should be noticed here that the Jordan homomorphism
J in the above theorem need not be, in general, a Jordan ∗-
homomorphism. The just quoted authors claim that “a general
result without assuming that T (1) is invertible might not be
posible to obtain” (see the comments before Theorem 4.7 in [42]).
In [42, Theorem 4.7] the same authors partially generalise Wolff’s
Theorem 3.1.16 by proving the following:

Theorem 3.1.18 [Chebotar, Ke, Lee, Wong, Monaths. Math.,
2003] Let T : A → B be a surjective bounded linear mapping
from a unital C∗-algebra to a C∗-algebra B that preserves zero
products of self adjoint elements and such that h = T (1) is a
normal element. Then there exists a sequence of bounded Jor-
dan homomorphisms Sn : A → B∗∗ such that for each a in A,
T (1)Sn(a) converges in the weak∗-topology to T (a). 2



3.2. New Progress 75

However, in the above result, a representation of T as a
weighted composition operator is not, in general, posible. More
concretely, in [42, Example 4.8] an example is given of a linear op-
erator satisfying the hypothesis of Theorem 3.1.18 that cannot
be written in the form T = T (1)S, for any Jordan homomor-
phism S : A→ B∗∗. It is worth to notice that in the just quoted
example, the sequence of Jordan homorphisms (Sn) such that
w∗-ĺımn hSn(a) = T (a),∀a ∈ A, satisfies ‖Sn‖ ≥ 2n,∀n ∈ N,
that is, the sequence (Sn) is unbounded.

If T is symmetric then the Jordan operators in the sequence
(Sn) given by Theorem 3.1.18 [42] (see also the proof of the
main Theorem in [183]) are not mere Jordan homomorphisms
but also ∗-homomorphism. This might be the reason because
Wolff succeeded in describing what he calls disjointness preserv-
ing operators, since Jordan ∗-homomorphisms are contractive,
and thus the sequence (Sn) allows us to obtain a Jordan ∗-
homomorphism S such that T = hS. The cause for (Sn) being
Jordan ∗-homomorphisms and not only Jordan homomorphisms
is that T preserves orthogonality instead of zero products.

In next section we shall see how Wolff’s description for dis-
jointness preserving linear mappings can be generalised. If T is
not symmetric or h is not normal or A is not unital, then we
have the problem that we cannot use local theory of C∗-algebras.
This problem will be avoided by using the triple structure which
is naturally associated with every C∗-algebra.

3.2. New Progress

Before giving a characterisation of orthogonality preserving
linear mappings we need to give some basic results and defini-
tions on Jordan-Banach structures that will be needed during



76 Chapter 3. Orthogonality preservers

this section.

Definition 3.2.1 Two elements a, b in a JB∗-triple are said
to be orthogonal, denoted a ⊥ b, if L(a, b) = 0 (equivalently
L(b, a) = 0).

When A is a C∗-algebra, then L(a, b) = 0 if, and only if,
ab∗ = b∗a = 0. That is, the concept of orthogonality on a C∗-
algebra is equivalent to the concept of orthogonality inherited
from its triple structure.

In [34], M. Burgos. F.J. Fernández-Polo, A.M. Peralta, J.
Mart́ınez-Moreno and the author of this thesis introduce the
triple structure of a C∗-algebra in the study of orthogonality
preservers. The triple structure of a C∗-algebra had already re-
vealed to be a key tool for the solution of some important prob-
lems. For instance, it appears in the study of the Banach-Stone
theorem for C∗-algebras. In [112], R.V. Kadison proves that a
surjective linear isometry between (unital) C∗-algebras is a Jor-
dan ∗-isomorphism multiplied by an unitary. Such a mapping
need not be a ∗-homomorphism but it is always a triple homo-
morphism. This result was generalised for non-unital C∗-algebras
by A.L. Paterson and A.M. Sinclair in [149]. Banach-Stone type
theorems for JB∗-algebras and JB∗-triples have also been ob-
tained (see [187], [96], [119], [51] and [64] ). A bijective linear
mapping between JB∗-triples is an isometry if and only if it is a
triple isomorphism (cf. [119]).

Another problem where the triple structure of C∗-algebras
plays an important role is the contractive projection problem.
The range of a contractive projection on a C∗-algebra is a not,
in general, a subalgebra but a subtriple (see [58], [68], [69], [71],
and [120] for the mentioned result and generalisations).
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Definition 3.2.2 A linear mapping T : E → F between JB∗-
triples is a triple homomorphism if it preserves the triple prod-
uct, that is, if it satisfies

T{x, y, z} = {T (x), T (y), T (z)},

for all x, y, z in E.

Concerning orthogonality preservers, N.C. Wong proved in
[184], the following result, which characterizes triple homomor-
phisms between C∗-algebras in terms of orthogonality preserving
properties.

Theorem 3.2.3 [N.C. Wong, Southeast J. Asian Bull. Math.,
2005] Let T : A → B be a linear operator between C∗-algebras.
Then T is a triple homomorphism if, and only if, T preserves
orthogonality and T ∗∗(1) is a tripotent. 2

We shall see now how the triple structure of a C∗-algebra also
plays a crucial role in the study of orthogonality preservers. This
new point of view together with recent results on orthogonal
bilinear forms and orthogonality additive polynomials on C∗-
algebras allow us to give a complete description of orthogonality
preserving linear operators between C∗-algebras.

Let A be a C∗-algebra. A sesquilinear form Φ : A × A →
C is called orthogonal if Φ(a, b) = 0, whenever a ⊥ b in Asa.
Orthogonal forms where first studied by K. Ylinen in 1975 and
later by R. Jajte and A. Paszkiewicz in 1978 (see [189] and [98],
respectively). However, a general description was not given until
1993, when S. Goldstein proved the following:

Theorem 3.2.4 [S. Goldstein, J. Funct. An., 1993] Let A be a
C∗-algebra and let Φ : A × A → C be a continuous orthogonal
sesquilinear form. There exist ψ1, ψ2 in A∗ such that

Φ(a, b) = ψ1(ab
∗) + ψ2(b

∗a),



78 Chapter 3. Orthogonality preservers

for every a, b in A. 2

This result was also reproved by U. Haagerup and N.J. Laut-
sen using different techniques in [88].

Let us take a C∗-algebra A and a Banach space X. By an X-
valued n-homogeneous polynomial on A we mean a continuous
X-valued mapping P : A→ X such that there exists a continu-
ous and symmetric n-linear mapping T : A× . . .× A → X sat-
isfying P (x) = T (x, . . . , x), for every x in A. An n-homogeneous
polynomial is said to be orthogonally additive (respectively, or-
thogonally additive on Asa) if P (a+ b) = P (a) +P (b), whenever
a ⊥ b in A (respectively, a ⊥ b in Asa.).

The study of n-homogeneous orthogonally additive polyno-
mials in operators algebras is very recent. In [155], D. Perez and
I. Villanueva describe the (scalar valued) orthogonally additive
n-homogeneous polynomials on C(K)-spaces (see also [25] for
a more general result by Y. Benyamini, S. Lassalle and J. G.
Llavona in the category of Banach Lattices). Roughly speaking,
these mappings are of the form f 7→ φ(fn), for some φ ∈ C(K)∗,
as it was expected. It seems natural to ask whether a similar
result can expected for general C∗-algebras.

The above description of orthogonally additive n-homogeneous
polynomials on C(K)-spaces was later generalised to arbitrary
C∗-algebras by C. Palazuelos, A.M. Peralta and I. Villanueva in
[148]. They describe the vector-valued n-homogeneous orthogo-
nally additive polynomials from on a C∗-algebra.

Theorem 3.2.5 [C. Palazuelos, A.M. Peralta, and I. Villanue-
va, Quart. J. Math., 2008] Let A be a C∗-algebra, X a Banach
space and P : A → X an n-homogeneous orthogonally additive
polynomial. Then there exists a bounded operator F : A → X
satisfying

P (x) = F (xn),
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for every x in A. 2

We remind that in Wolff’s description of symmetric orthogo-
nality preserving operator the special case T (1) being invertible
was considered first. We shall next study orthogonality preserv-
ing operators from a C∗-algebra to a JB∗-triple.

Let T : A → E be an orthogonality preserving operator
form a C∗-algebra to a JB∗-triple. The element h = T ∗∗(1) will
play an important role in the description of T. Before attacking
the general problem we shall first describe T with additional
assumptions on the element h.

We recall that, in general, a JB∗-triple does not have a unit
element (unless it is a JB∗-algebra) and thus the concept of in-
vertibility dos not make sense.

Let A be a Banach algebra. An element a in A is said to be
regular if there exists b in A such that a = aba and b = bab.
Regular elements in C∗-algebras where first studied by R. Harte
and M. Mbekhta (see [91]). Regularity seems to be the appro-
priate alternative for invertibility in Jordan triples. An element
a in a JB∗-triple E is said to be von Neumann regular if there
exists b ∈ E such that Q(a)(b) = a. The element b is called the
generalised inverse of a.

We observe that every tripotent e in a JB∗-triple E is von
Neumann regular whose generalised inverse is itself. We refer
to [135], [61], [123] and [40] for basics facts and results on von
Neumann regularity. It is shown in [123, Lemma 3.2] (see also
the proof of [40, Theorem 3.4]) that for each von Neumann reg-
ular element a ∈ E, there exists a tripotent e ∈ E satisfying
that a is a symmetric and invertible element in the JB∗-algebra
E2(e). Moreover, e coincides with the range tripotent of a. It is
also known that an element a in E is von Neumann regular if,



80 Chapter 3. Orthogonality preservers

and only if, it is von Neumann regular in any JB∗-subtriple F
containing a (compare [121]).

We shall also need an appropriate alternative of commuta-
tivity in Jordan algebras. Two elements a and b in a Jordan
algebra A are said to operator commute in A if the multipli-
cation operators Ma and Mb commute, where Ma is defined by
Ma(x) := a ◦ x. That is, a and b operator commute if, and only
if, (a ◦ x) ◦ b = a ◦ (x ◦ b) for all x in A.

Self-adjoint elements a and b in a JB∗-algebra A generate
a JB∗-subalgebra that can be realised as a JC∗-subalgebra of
some B(H) (compare [186]) and, in this realisation, a and b
commute in the usual sense whenever they operator commute
in A (see [180, Proposition 1]). Similarly, two elements a and
b of Asa operator commute if, and only if, a2 ◦ b = Ua(b) (i.e.,
a2 ◦ b = 2(a ◦ b) ◦ a − a2 ◦ b). If b ∈ A we use the symbol
{b}′ to denote the set of elements in A that operator commute
with b. (This corresponds to the usual notation in von Neumann
algebras).

Let A be a C∗-algebra, E be a JB∗-triple and T : A → E
be an orthogonality preserving linear operator. Before attacking
the general case we study the case when d = T ∗∗(1) is von Neu-
mann regular. We consider the linear operator S = L(b, r(b))T,
where b is the generalised inverse of d. It is clear that S∗∗(1)
is a tripotent. Since T is orthogonality preserving, one would
expect S to be so, however this is not easy to check. In [34],
we apply the previously mentioned results on orthogonal forms
and orthogonally additive n-homogeneous polynomials to study
orthogonality preserving linear mappings. These application to-
gether with techniques from Jordan theory allow us to prove
that all elements in the range of T verify certain commutativity
relations with d, as a consequence we prove that S is a Jordan
∗-homomorphism (and that T is, in some sense, a multiple of S.)
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We notice that no local theory is used to obtain this result.

Theorem 3.2.6 [M. Burgos, F.J. Fernández-Polo, J. Garcés, J.
Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008] Let
A be a C∗-algebra, E a JB∗-triple and T : A → E an orthogo-
nality preserving linear operator. Let us assume that h = T ∗∗(1)
is a von Neumann regular element. Then T (A) ⊆ E∗∗2 (r(h)),
T (A) ⊂ {h}′ and there exists a Jordan ∗-homomorphism S :
A→ E∗∗2 (r(h)) such that

T = L(h, r(h))S.

2

Since every tripotent is a von Neumann regular element and
a Jordan ∗-homomorphism is always a triple homomorphism, we
obtain, as a direct consequence, a generalisation of Wong’s result
(Theorem 3.2.3).

Corollary 3.2.7 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008]
Let A be a C∗-algebra, E a JB∗-triple and T : A → E a linear
operator. Then T is a triple homomorphism if, and only if, T
preserves orthogonality and T ∗∗(1) is a tripotent. 2

We were also able to generalise, in the just quoted paper
[34], the above Theorem 3.2.6 to the setting of orthogonality
preserving linear mappings from a JB∗-algebra to a JB∗-triple.

Theorem 3.2.8 [M. Burgos, F.J. Fernández-Polo, J. Garcés, J.
Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008] Let
J be a JB∗-algebra, E a JB∗-triple and T : J → E an orthogo-
nality preserving linear operator. Let us assume that h = T ∗∗(1)
is a von Neumann regular element. Then T (A) ⊆ E∗∗2 (r(h)),
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T (A) ⊂ {h}′ and there exists a Jordan ∗-homomorphism S :
A→ E∗∗2 (r(h)) such that

T = L(h, r(h))S.

2

The problem of describing general orthogonality preserving
linear operators from a JB∗-algebra to a JB∗-triple remained
open for some time. For the announced characterisation of or-
thogonality preservers between C∗-algebras we take advantage of
local theory of JB∗-triples. We recall that if a is an element in
a C∗-algebra which is not normal, then a description of the C∗-
subalgebra generated by a as a C0(L)-space cannot be obtained.
Fortunately, if we consider “subtriples” the situation is different,
as we have seen in chapter 2

Let T : A→ B be an orthogonality preserving linear operator
between two C∗-algebras and let h = T ∗∗(1). Again, we use or-
thogonal forms and orthogonality additive polynomials, together
with the triple functional calculus on the element h in B to prove
that certain commutativity relations between h, h∗, r(h), r(h)∗

and all elements in the range of T hold. Local theory is then
used to find a sequence Tn : A → B∗∗ of orthogonality pre-
serving linear operators such that, for each natural n, Tn(1)
is von Neumann regular, and w∗-ĺımn Tn(a) = T (a), for every
a in A. By Theorem 3.2.6 above, for each natural n, the op-
erator Sn = L(bn, r(hn))Tn is a Jordan ∗-homomorphism (and
hence contractive). Since the sequence (Sn) is bounded, then
the assignment z 7→ S(z) = w∗ − ĺımSn(z) defines a Jordan
∗-homomorphism such that T = L(h, r(h))S.

Theorem 3.2.9 [M. Burgos, F.J. Fernández-Polo, J. Garcés, J.
Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008] Let



3.2. New Progress 83

T : A → B be an orthogonality preserving linear operator be-
tween two C∗-algebras and let h = T ∗∗(1). Then

a) h∗T (z) = T (z∗)∗h, hT (z∗)∗ = T (z)h∗,

b) r(h)∗T (z) = T (z∗)∗r(h), and r(h)T (z∗)∗ = T (z)r(h)∗.

Furthermore, there exists a triple homomorphism S : A → B∗∗

such that

T (z) = L(h, r(h))S(z) =
1

2
(hr(h)∗S(z) + S(z)r(h)∗h)

for all a ∈ A. 2

Definition 3.2.10 Let T : E → F be a linear operator be-
tween JB∗-triples. We say that T preserves zero-triple products
if {T (x), T (y), T (z)} = 0 in F whenever {x, y, z} = 0 in E.

It is easy to see that every zero-triple product preserving
operator is orthogonality preserving. Conversely, by Theorem
3.2.9 every orthogonality preserving linear operator between C∗-
algebras preserves zero-triple products.

Corollary 3.2.11 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008]
Let T : A→ E be a linear operator from a C∗-algebra to a JB∗-
triple. Then T preserves orthogonality if, and only if, T preserves
zero-triple products. 2

The reader may be wondering if there is some relation be-
tween zero-product preserving and orthogonality preserving lin-
ear operators. It is not hard to find a example of a linear operator
that preserves orthogonality but does not preserves zero prod-
ucts. Indeed, let T : M2(C) → M2(C) be the operator given by
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T (x) = ux, (x ∈ M2(C)), where u =

(
0 −1
1 0

)
. Clearly T is a

triple homomorphism and hence orthogonality preserving, but

taking x =

(
0 1
0 1

)
and y =

(
1 −1
0 0

)
, we have xy = yx = 0

and T (y)T (x) 6= 0.

Inspired by an assertion contained in the proof in the main
theorem in [184] for which we were not able to find a reference,
we also studied, in the final section of [34], those linear operators
between C∗-algebras that preserve cubes of self adjoint elements.

Corollary 3.2.12 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
J. Mart́ınez-Moreno, A.M. Peralta, J. Math. Ann. Appl., 2008]
Let J be a JB∗-algebra, E a JB∗-triple and T : J → E a linear
operator. The following statements are equivalent:

a) T is a triple homomorphism;

b) T (a[3]) = T (a)[3], por every a in Jsa;

c) T preserves orthogonality on Jsa and T ∗∗(1) is a tripotent.2

In [35], M. Burgos, F.J. Fernández-Polo, A.M. Peralta and
the author of this thesis solved one of the problems that re-
mained open in [34], this problem is a general description of
orthogonality preservers from a JB∗-algebra to a JB∗-triple. One
of the novelties we introduce in [35] is the use of the multiplier
algebra in the study of problems related with orthogonality.

Let A be a C∗-algebra (respectively, a JB∗-algebra). The mul-
tiplier algebra of A, M(A), is the set of all elements x in A∗∗,
such that xA,Ax ⊂ A (respectively, x◦A ⊂ A). It is well known
that M(A) is a unital C∗-algebra (respectively, a JB∗-algebra).

Two orthogonal elements in the multiplier algebra can be ap-
proximated (in the weak∗-topology) by orthogonal nets in A, that
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is, for a, b in M(A) with a ⊥ b there exist nets (aλ), (bµ) such that
aλ ⊥ bµ, ∀λ, µ and aλ (respectively bµ) converges in the weak∗-
topology to a (respectively, to b). This property makes M(A) the
suitable unital C∗-algebra (or JB∗-algebra) to extend orthogonal-
ity preserving operators (or orthogonal forms, or orthogonally
additive polynomials) in such a way that the extension keeps
the property of being orthogonality preserving (respectively, an
orthogonal form, or an orthogonally additive polynomial). If a
and b lie in M(A)sa, then the nets (aλ), (bλ) can be found so that
they lie in Asa (see the proof of Proposition 3.1 in [35]).

Let T : A× . . .× A→ C be a symmetric n-linear form such
that the polynomial P (x) = T (x, . . . , x) is orthogonally additive
on Asa and denote by T ∗∗ : A∗∗ × . . . × A∗∗ → C the Aron-
Berner (o Arens) extension of T . We prove in [35, Proposition 3.1]
that the polynomial R : M(A) → C, x 7→ R(x) = T ∗∗(x, . . . , x)
is orthogonally additive on M(A)sa. We use this fact to give a
simplified proof of Theorem 3.2.5 (compare [35, Section 3]).

In a similar way, we prove that the extension of an orthogo-
nality preserving operator from a JB∗-algebra J, to its multiplier
algebra is orthogonality preserving.

The following result ([35, Corollary 4.1]) is the key tool to
generalise the characterisation of orthogonality preservers be-
tween C∗-algebras to the current setting of JB∗-algebras:

Proposition 3.2.13 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
A.M. Peralta, Asian-European J. Math., 2009] Let J be a JB∗-
algebra, E a JB∗-triple and T : J → E an orthogonality pre-
serving operator. Then for h = T ∗∗(1), the following assertions
hold:

a) {T (x), h, h} = {h, T (x∗), h}, for all x ∈ J ;

b) T (Jsa) = E∗∗2 (r(h))sa;
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c) For each a ∈ Jsa, T (a) and h operator commute in E∗∗2 (r(h));

d) When h is a tripotent, then T : A→ E∗∗2 (r(h)) is a Jordan∗-
homomorphism, in particular T is a triple homomorphism.2

Finally, we generalise Theorem 3.2.9 to the Jordan setting.

Theorem 3.2.14 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
A.M. Peralta, Asian-European J. Math., 2009] Let T : J → E
be an operator from a JB∗-algebra to a JB∗-triple and let h =
T ∗∗(1). Then the following are equivalent:

a) T is orthogonality preserving.

b) There exists a (unital) Jordan ∗-homomorphism S : M(J)→
E∗∗2 (r(h)) such that S(x) and h operator commute and T (x) =
{h, r(h), S(x)}, for every x ∈ J. 2

As a consequence of the above theorem, every orthogonality
preserving operator from a JB∗-algebra to a JB∗-triple preserves
zero-triple products. We actually have:

Corollary 3.2.15 [M. Burgos, F.J. Fernández-Polo, J. Garcés,
A.M. Peralta, Asian-European J. Math., 2009] Let T : J → E
be an operator from a JB∗-algebra to a JB∗-triple. Then T is
orthogonality preserving if, and only if, T preserves zero-triple
products.



Chapter 4
Automatic continuity

Results assuring automatic continuity of certain classes of lin-
ear mappings between Banach algebras have focussed the atten-
tion of experts during the last 60 years. In these kind of problems
the goal is to find algebraic conditions for a map that guarantee
that it is (automatically) continuous.

It is not easy to locate exactly the origins of the automatic
continuity problems, however, one of the first results ensuring
automatic continuity for homomorphisms from a certain class of
Banach algebras is probably that obtained by M. Eidelheit in
1940 (see [59] 2.5.10), who showed that every monomorphism
from L(X) (where X is a Banach space) into a Banach algebra
is automatically continuous. In this result we see how a pure-
ly algebraic property (being an injective homomorphism from
L(X)) determines a topological one (being continuous). Sub-
sequent studies by I.M. Gelfand and C.E. Rickart pointed out
again the connections between algebraic and topological struc-
tures (compare [80] and [159], respectively). One of the most
important results in this area is that due to B.E. Johnson stat-

87
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ing that Any homomorphism onto a semisimple Banach algebra
is automatically continuous (see [105]).

In the class of C∗-algebras, results on automatic continuity
of ∗-homomorphisms are in the origin of the theory itself. In
1943, I.M. Gelfand and M.A. Naimark [81] prove that every
∗-isomorphism between C∗-algebras is automatically isometric
(this result would be later generalised to the setting of JB∗-
triples by W. Kaup in [119]). A few years later, in 1947, Segal
proves that every ∗-representation of a C∗-algebra (that is, ev-
ery ∗-homomorphism into L(H), where H is a complex Hilbert
space) is automatically continuous (see [166]).

The monographs [174], [50] and the surveys [49], [182] provide
more information on automatic continuity in various settings.

As we have already mentioned in Chapter 3, automatic con-
tinuity results for orthogonality preserving linear mappings have
been also explored. There is the conjecture, supported by many
affirmative answers in particular cases (in the settings of abelian
C∗-algebras, Banach lattices, or C(K,E)-spaces, for instance)
that a biorthogonality preserving (or biseparating) linear bijec-
tion should be automatically continuous.

A standard operator algebra is a norm-closed subalgebra of
L(X) (where X is a Banach space) containing all rank-one opera-
tors. In [12], J. Araujo and K. Jarosz proved that linear bijections
between standard operator algebras that preserve zero products
in both directions are automatically continuous. In the same pa-
per they pose the conjecture affirming that a linear mapping
between C∗-algebras preserving zero products in both directions
must be automatically continuous. The papers [42], [43], [103],
[128] and [179] give partial answers to the conjecture posed by
Araujo and Jarosz. We also consider this conjecture.
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4.2. Biorthogonality preservers on C∗-

algebras

In [38] M. Burgos, A. M. Peralta and the author of this thesis
study biorthogonality preserving linear mappings between C∗-
algebras.

Definition 4.2.1 Let T : A → B be a linear mapping between
C∗-algebras. We say that T is biorthogonality preserving if T
satisfies the following property:

T (a) ⊥ T (b)⇐⇒ a ⊥ b.

Every biorthogonality preserving linear mapping between C∗-
algebras is injective. Indeed, let T : A→ B be a biorthogonality
preserving linear mapping and let a be an element in A such
that T (a) = 0. Then T (a) ⊥ T (b), for every b in A. Since T
is biorthogonality preserving we have that a ⊥ b, for every b in
A. In particular, a ⊥ a, equivalently aa∗ = a∗a = 0, and hence
a = 0.

4.2.1. The case of dual C∗-algebras

K. Vala proves in [181], the following characterisation of com-
pact operators on L(X), where X is a Banach space.

Theorem 4.2.2 [K. Vala, Ann. Acad. Sci. Fenn. Ser., 1967] Let
X be a Banach space and T, T ′ nonzero elements in L(X). The
operator S 7→ TST ′ is compact if, and only if, both T and T ′ are
compact. 2
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Inspired by this characterisation J.C. Alexander, introduces
in [7] the following concept of compact element in a Banach al-
gebra.

Definition 4.2.3 Let A be a Banach algebra and let a be an
element in A. Then a is said to be compact if the mapping Ua :
A→ A, x 7→ Ua(x) := axa is compact.

We say that a Banach algebra A is compact if all its elements
are compact elements . It was J.C. Alexander who gave a char-
acterisation of compact C∗-algebras in [7]. We recall that given
a complex Hilbert space H, we denote by K(H) the space of all
compact operators on H.

Theorem 4.2.4 [Alexander, Proc. London Math. Soc., 1968]
Let A be a compact C∗-algebra, then there exists a family of
complex Hilbert spaces (Hλ)λ such that A is C∗-isomorphic to
the c0-sum

A =

c0⊕
λ

K(Hλ).

2

We recall that a projection p (respectively, a tripotent e) in a
C∗-algebra (respectively, in a JB∗-triple) A is said to be minimal
when pAp = Cp (respectively, A2(e) = Ce). The socle of A,
soc(A), is defined as the linear span of all minimal tripotents in
A (it coincides with the linear span of minimal projections in A
when the latter is a C∗-algebra).

It is also due to J.C. Alexander that compact C∗-algebras can
be characterised as those C∗-algebras with dense socle (compare
[7, Corollary 8.3]), and the latter are precisely the so-called dual
C∗-algebras considered by Kaplansky (see [117]).
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The ideal of compact elements in A, K(A), is defined as the
norm closure of soc(A).Of course,K(A) is a compact C∗-algebra.
Compact elements in C∗-algebras were also studied by K. Ylinen
in [188]. The following generalisation of the spectral theorem for
self-adjoint compact operators an a Hilbert space is due to K.
Ylinen (compare [188, Theorem 3.11]):

Theorem 4.2.5 [K. Ylinen, Ann. Acad. Sci. Fenn. Ser., 1968]
Let a be a self-adjoint compact element in a C∗-algebra A. Then
there exist a sequence (αn) ∈ c0 and a family of mutually orthog-
onal minimal projections (pn) such that

a =
∑
n

αnpn.

2

In [35], in collaboration with M. Burgos and A. M. Peralta we
study biorthogonality preserving linear mappings between dual
C∗-algebras.

In a first step, we provide a characterisation of all bounded
biorthogonality preserving linear mappings between von Neu-
mann algebras (it can be essentially deduced from Theorem
3.2.9).

Corollary 4.2.6 [M. Burgos, J.J. Garces and A.M. Peralta, J.
Math. Ann. Appl., 2010] Let T : A → B be a bounded linear
operator between von Neumann algebras. For h = T (1) and r =
r(h) the following assertions are equivalent:

a) T is a biorthogonality preserving linear surjection.
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b) h is invertible and there exists a unique triple isomorphism
S : A → B such that h∗S(z) = S(z∗)h, hS(z∗)∗ = S(z)h∗,
and

T (z) =
1

2
(hr(h)∗S(z) + S(z)r(h)∗h)

= hr(h)∗S(z) = S(z)r(h)∗h,

for all z in A.

c) h is positive and invertible in B2(r) and there exists a unique
Jordan ∗-isomorphism S : A → B2(r) = b satisfying S(1) =
r, h ∈ Z(B) and T (z) = h ◦r S(z) for all z ∈ A. 2

Now, let T : A → B be a biorthogonality preserving linear
surjection between C∗-algebras. In [38, Theorem 5] we prove that
such a T maps minimal projections in A (if any) to scalar multi-
ples of minimal tripotents, and thus it maps the socle of A into
the socle of B.

After various lemmas we are able to establish the following
result, which provides a necessary and sufficient condition to as-
sure continuity of the restriction of a biorthogonality preserving
linear surjection to the ideal of compact elements of A:

Proposition 4.2.7 [M. Burgos, J.J. Garces and A.M. Peralta,
J. Math. Ann. Applic., 2010] Let T be a biorthogonality preserv-
ing linear surjection between C∗-algebras. Then T|K(A) is contin-
uous if and only if the set

{‖T (p)‖ : p is a minimal projection in A}

is bounded. 2

We recall that the C∗-algebra generated by two non orthogo-
nal minimal projections coincides with M2(C) (compare [151] or
[157]).
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Let p, q be two minimal projections that are not orthogonal.
Since Ap,q ∼= M2(C), T|Ap,q : Ap,q → T (Ap,q) is a biorthogonality
preserving linear surjection and Z(M2(C)) = C, then T|Ap,q must
be a scalar multiple of an isometry (by Corollary 4.2.6). Thus
‖T (p)‖ = ‖T (q)‖.

Under these conditions, if the set

{‖T (p)‖ : p is a minimal projection in A}

is unbounded, we can find a sequence of mutually orthogonal
minimal projections (pn) in A such that ‖T (pn)‖ > n. The
element a =

∑
m

1√
m
pn lies in K(A) and satisfies ‖T (a)‖ ≥√

m, ∀m ∈ N, which is a contradiction. We therefore have:

Theorem 4.2.8 [M. Burgos, J.J. Garces and A.M. Peralta, J.
Math. Ann. Appl., 2010] Every biorthogonality preserving linear
surjection between compact C∗-algebras is automatically contin-
uous. 2

4.2.2. The case of von Neumann algebras

From [82], [138], [139] and [150] it is known that there exist
many examples of C∗-algebras where every element is a finite lin-
ear combination of projections. Recall that a unital C∗-algebra is
properly infinite if it contains two orthogonal projections equiva-
lent to the identity (i.e. it contains two isometries with mutually
orthogonal range projections). It follows by [133, Corollary 2.2]
(see also [150]) and [82, Theorem 2.2.(a)] that every element in a
properly infinite C∗-algebra or in a von Neumann algebra of type
II1. can be expressed as a finite linear combination of projections.
Surprisingly, every orthogonality preserving linear mapping from
such a C∗-algebra (whenever it is unital) is automatically con-
tinuous.
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Theorem 4.2.9 [M. Burgos, J.J. Garces and A.M. Peralta, J.
Math. Ann. Appl., 2010] Let T : A→ B be an orthogonality pre-
serving linear mapping between C∗-algebras, where A is unital.
Suppose that every element in A is a finite linear combination
od projections, then T is continuous. 2

Two projections p, q in a von Neumann algebra A are said
to be Murray-von Neumann equivalent if there exists a partial
isometry u ∈ A such that u∗u = p and uu∗ = q. We denote this
fact by p ∼ q. If a projection q is equivalent to a projection q1 ≤ q
then we say that p is subequivalent to q, denoted by p . q. If
p . q but p is not equivalent to q then we write p ≺ q. Clearly,
the relation ∼ is an equivalence relation. The modular theory
classifies von Neumann algebras in terms of this relations.

A projection q in a von Neumann algebra is said to be finite
if p ∼ q ≤ p implies p = q. Otherwise, it is said to be infinite. A
projections p is said to be purely infinite if there is no nonzero
finite projection q ≤ p in A. If zp is infinite for every central
projection z ∈ A with zp 6= 0, then p is said to be properly
infinite. If pAp is abelian then p is said to be abelian.

A von Neumann algebra is said to be finite, infinite, prop-
erly infinite, or purely infinite according to the property of the
identity projection 1.

A von Neumann algebra A is said to be of type I if every
nonzero central projection in A majorizes a nonzero abelian pro-
jection in A. If there is no nonzero finite projection in A, that
is, if A is purely infinite, the it is said to be of type III. If A
has no nonzero abelian projection and if every nonzero central
projection in A majorizes a nonzero finite projection A, then it
is said to be of type II. If A is finite and of type II, then it
is said to be of type II1. If A is of type II and has no nonzero
central finite projection, the A is said to be of type II∞.



4.2. Biorthogonality preservers on C∗-algebras 95

Every von Neumann algebra can be uniquely decomposed
into an orthogonal sum of summands type I, type II1, type II∞,
and type III.

Every element in a properly infinite C∗-algebra or a type II1
von Neumann algebra can be expressed as a finite linear combi-
nation (compare [133, Corollary 2.2] or [150] and [82, Theorem
2.2 (a)], repsectively). As a consequence of Theorem 4.2.9 we
have the following:

Corollary 4.2.10 [M. Burgos, J.J. Garces and A.M. Peralta,
J. Math. Ann. Appl., 2010] Let A be a properly infinite unital
C∗-algebra or a type II1 von Neumann algebra. Every orthog-
onality preserving linear map from A to another C∗-algebra is
continuous. 2

Let A be a von Neumann algebra, then by the Murray-von
Neumann decomposition, A decomposes as

A = AIfin ⊕∞ AI∞
⊕∞ A

II1
⊕∞ A

II∞
⊕∞ A

III
.

The summands AIfin and A
II1

are finite von Neumann alge-
bras, while the summands A

I∞
, and A

III
are properly infinite

C∗-algebras. Let A1 = AIfin ⊕∞ AII1
, Ap∞ = A

I∞
⊕∞ A

III
.

The finite part deserved its own argument. The following
result is part of [38, Proposition 18].

Proposition 4.2.11 [M. Burgos, J.J. Garces and A.M. Peralta,
J. Math. Ann. Applic., 2010] Every biorthogonality preserving
linear surjection between von Neumann algebras one of which is
finite is continuous.

Now, let T : A → B be a biorthogonality preserving linear
surjection. By Corollary 4.2.10, T|A

II1
: A

II1
→ B and T|Ap∞ :
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Ap∞ → B are continuous. Let A2 = A
II1
⊕∞ Ap∞ , and B2 =

B
II1
⊕∞ Bp∞ , where B

II1
and Bp∞ , are defined from de Murray-

von Neumann decompostion of B analogously as we have done
for A. Although it is not easy, it can be proved that T (A2) =
B2, and thus, by Proposition 4.2.11, TAfin : Afin → Bfin is
continuous.

Theorem 4.2.12 [M. Burgos, J.J. Garces and A.M. Peralta, J.
Math. Ann. Appl., 2010] Every biorthogonality preserving linear
surjection between von Neumann algebras is continuous.

Let T : A → B be a linear mapping surjection such that T
and T−1 are preserve zero products. It is not hard to see that
if T is symmetric then T is biorthogonality preserving. As a
consequence of the previous theorem, we could give a partial
affirmative answer to the conjecture posed by J. Araujo and K.
Jarosz in [12].

Corollary 4.2.13 [M. Burgos, J.J. Garces and A.M. Peralta,
J. Math. Ann. Appl., 2010] Let T : A → B be a biseparating
symmetric linear map between von Neumann algebras. Then T
is continuous. 2

4.3. Biorthogonality preservers on atom-

ic JBW∗-triples

In collaboration with M. Burgos and A.M Peralta we suc-
cessfully explored biorthogonality preserving linear surjections
between “weakly compact JB∗-triples” and also between “atom-
ic JBW∗-triples”.

A subspace I of a JB∗-triple E is said to be a triple ideal if
{E,E, I}+{E, I, E} ⊆ I. By Proposition 1.3 in [31], I is a triple
ideal if, and only if, {E,E, I} ⊆ I.
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An important class of JB∗-triples is given by the Cartan fac-
tors. A JBW∗-triple is called a factor if it contains no proper
weak∗-closed ideals. The Cartan factors can be characterised as
those factors containing a minimal tripotent (compare [122]).
These come, up to isomorphisms, in the following six types (see
[122] and [72]):

Type 1 Cartan factors

A Cartan factor of type I, denoted by In,m, is a JB∗-triple
of the form L(H,H ′), where L(H,H ′) stands for the space of
bounded linear operators between two complex Hilbert spaces
H,H ′ of dimension n and m, respectively (we note that n and
m can be infinite). L(H,H ′) is endowed with the triple product
defined by {x, y, z} = 1

2
(xy∗z + zy∗x).

Type 2 and type 3 Cartan factors

We recall that given a conjugation j on a n-dimensional
(where n can be infinite) complex Hilbert space H (i.e., a con-
jugate linear mapping j on H such that j2 = IdH), we define
the linear involution x 7→ xt := jx∗j on L(H). A Cartan fac-
tor of type 2 (respectively, type 3), denoted by IIn (respectively,
IIIn), is the subtriple of L(H) whose elements are the t-skew-
symmetric (respectively, t-symmetric) operators. It is well known
that IIn and IIIn are, up to isomorphisms, independent of the
conjugation j on H.

Type 4 Cartan factors

A Cartan factor of type 4, denoted IVn (also called a complex
spin factor), is an n-dimensional complex Hilbert space endowed
with an conjugation x 7→ x, where the triple product and norm
are given by

{x, y, z} = (x|y)z + (z|y)x− (x|z)y

and ‖x‖2 = (x|x) +
√

(x|x)2 − |(x|x)|2, respectively.
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Before defining Cartan factors of type 5 and 6 (known as
exceptional Cartan factors) we need to introduce the algebra of
complex octonions.

Given a field K, the so-called Cayley-Dickson “split” algebras
(with divisors of zero) C(K), over K, can be represented in the
following matricial form:

Matrices of the form

(
α x
y β

)
where α, β ∈ K and x, y lie

in K3. The sum and product by scalar are the usual for matrices
and the product is given by:

(
α x
y β

)(
γ z
t δ

)
=

(
αγ + (x | t) αz + δx− y × t
γy + βt+ x× z βδ + (y | z)

)
where

((x1, x2, x3) | (y1, y2, y3)) := x1 y1 + x2 y2 + x3 y3

(x1, x2, x3)× (y1, y2, y3) = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1).

The algebra of complex octonions, denoted by OC, is the
Cayley-Dickson split algebra over C (cf. [194, Theorem 2.7]).

We can endow C(C) with the linear involution, −, given by(
α x
y β

)
=

(
β −x
−y α

)
When K = C another involution on C(K) can be defined by(

α x
y β

)∗
=

(
α y

x β

)
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where by x we mean the mapping that acts by conjugating com-
ponentwise.

We denote by H3(OC) the set of all those 3×3 matrices with
coefficients onver OC which are symmetric for the (linear) invo-
lution (ai,j)

t := (aj,i). The algebra H3(OC) is a Jordan algebra
when endowed with the Jordan product a ◦ b := 1

2
(ab+ ba). Fur-

thermore, the involution (ai,j)
∗ := (a∗j,i) makes H3(OC) into a

unital JB∗-algebra (see [89, Remark 3.1.8], [8], [169], [186]).

The Cartan factor of type 6, which we denote by VI is the
algebra H3(OC).

Finally, the Cartan factor of type 5, denoted V, is the Jordan
triple M1,2(OC), which is a subtriple of the Cartan factor VI, via
the monomorphism

(a, b) 7→

 0 a b
a 0 0

b 0 0

 for every a, b ∈ OC.

We recall that the Cartan factors of type In,n, IIn, with n
even or infinite, IIIn and IVn, can be seen as JB∗-algebras (they
have an unitary element).

The Cartan factors are the building blocks of the so-called
atomic JB∗-triples. A JB∗-triple is said to be atomic if it coin-
cides with the weak∗-closed ideal generated by its minimal tripo-
tents. Every atomic JB∗-triple is an l∞-sum of Cartan factors (see
[72]).

In [31], L.J. Bunce and C.H. Chu describe the so-called “com-
pact and weakly compact JB∗-triples”. These are the natural
generalisation to the class of JB∗-triples of the notion of dual
C∗-algebras (also to that of “dual JB-algebras” previously stud-
ied by L.J. Bunce in [30]).
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Let E be a JB∗-triple. An element x in E said to be weakly
compact (respectively, compact) if the mapping Q(x) : E → E
is weakly compact (respectively, compact). We denote by K(E)
the JB∗-subtriple of E generated by its minimal tripotents. It
is proved in Proposition 4.7 in [31] that K(E) is a norm-closed
triple ideal of E and that it coincides with the set of weakly
compact elements of E.

An important subclass of weakly compact JB∗-triples is the
one formed by the so-called elementary JB∗-triples. The elemen-
tary JB∗-triples play the same role in the description of weakly
compact JB∗-triples that Cartan factors played in the description
atomic JB∗-triples.

For a Cartan factor C we define the elementary JB∗-triple
of the corresponding type to be K(C). Thus, the elementary
JB∗-triples Ki (for i = 1, . . . , 6) are defined as follows: K1 =
K(H,H ′) (that is, the compact operators between the complex
Hilbert spaces H and H ′); Ki = Ci ∩ K(H) for i = 2, 3 and
Ki = Ci for i = 4, 5, 6.

If follows from [31, Lemma 3.3 and Theorem 3.4] that a JB∗-
triple E is weakly compact if and if one of the following state-
ments holds:

a) K(E∗∗) = K(E).

b) K(E) = E.

c) E is a c0-sum of elementary JB∗-triples.

Let E be a JB∗-triple and S ⊆ E. The set S is said to be
orthogonal if 0 /∈ S and x ⊥ y for every x, y in S. The minimal
cardinal number r satisfying card(S) ≤ r for every orthogonal
set S ⊆ E is called the rank of E (denoted r(E)).
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In Remark 4.13 of [39] we give an example of an unbound-
ed biorthogonality preserving linear bijection between rank-one
JB∗-triples. Thus, when we study automatic continuity of bi-
orthogonality preserving linear surjections we shall assume that
they do not have rank-one summands.

The following generalisation of Corollary 4.2.6 follows from
the characterisation of orthogonality preserving operator described
in Theorem 3.2.14 (see [39]).

Theorem 4.3.1 [M. Burgos, J.J. Garces and A.M. Peralta, Stu-
dia Math., 2011] Let T : J → E be a surjective linear operator
from a JB∗-algebra onto a JBW∗-triple and let h denote T (1).
Then T is biorthogonality preserving if, and only if, r(h) is a
unitary tripotent in E, h is an invertible element in the JBW∗-
algebra E = E2(r(h)), and there exists a Jordan ∗-isomorphism
S : J → E = E2(r(h)) such that S(J) ⊆ {h}′ and T = h ◦r(h) S.
Further, if J is a factor (i.e. Z(J) = C1), then T is a scalar
multiple of a triple isomorphism. 2

In [39, Theorem 4.11] we generalise Proposition 4.2.7 by prov-
ing the following:

Proposition 4.3.2 [ M.Burgos, J.J. Garces and A.M. Peralta,
Studia Math., 2011] Let T : E → F be a biorthogonality pre-
serving linear surjection between JB∗-triples, where E is weakly
compact. Then T is continuous if, and only if, the set

T = {‖T (e)‖ : e minimal tripotent in E}

is bounded. 2

If J is a weakly compact JB∗-triple which is a JB∗-algebra,
then in the above proposition it is enough to prove that the set
T = {‖T (p)‖ : p minimal projection in J} is bounded.
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The idea behind the proofs is the same as in the case of
C∗-algebras, however to achieve it requires more work. If T =
{‖T (e)‖ : e minimal tripotent in E} is unbounded, then there
exists a sequence of minimal tripotents (en) such that ‖T (en)‖
diverges.

Let us assume that we have proved that for any two minimal
tripotents e1, e2 which are not orthogonal (notice that this means
that they lie in the same summand), we have ‖T (e1)‖ = ‖T (e2)‖.
Then we can assume that the elements in the sequence (en) must

be mutually orthogonal. Then the element z =
∑

n ‖T (en)‖− 1
2 en

lies in E and ‖T (z)‖ ≥
√
‖T (em)‖, ∀m ∈ N, which is imposible.

We shall proved the desired property. If E is a JB∗-algebra,
then it is enough to prove that if p and q are two minimal pro-
jections which are not orthogonal, then ‖T (p)‖ = ‖T (q)‖.

We need to distinguish the following cases:

1. E is finite dimensional:

2. E is a type 1 Cartan factor;

3. E is a weakly compact JB∗-algebra.

Of course, in the first case T is continuous, and a scalar mul-
tiple of a triple isomorphism.

Let T : E → F be a biorthogonality preserving from a factor
of type In,m, where n,m ≥ 2. If e1, e2 are two non-orthogonal
tripotents, we prove that the inner ideal generated by e1 and
e2, E(e1, e2), is isomorphic to M2(C) and that T (E(e1, e2)) is a
subtriple of F. As a consequence T|E(e1,e2) is a scalar multiple of
an isometry (this follows from Theorem 4.3.1 and the Banach-
stone Theorem for JB∗-triples) and ‖T (e1)‖ = ‖T (e2)‖. By the
comments after Proposition 4.2.7 we deduce that T is continuous.
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Actually, T must be an scalar multiple of a triple isomorphism
(see Theorem 4.2 and Corollary 4.7 in [39]).

Let J be a JB∗-algebra. In [39, Lemma 4.8], we prove that
the subtriple of J generated by two non orthogonal projections
p, q, denoted by Jp,q, is ∗-isomorphic to S2(C), the type 3 Cartan
factor of all symmetric operators on a two dimensional complex
Hilbert space.

Let T : J → E be a biorthogonality preserving linear bijec-
tion from a weakly compact JB∗-algebra onto a JB∗-triple. Let p
and q be two minimal projections which are not orthogonal and
Jp,q ≡ S2(C) the subtriple generated by them. We prove that
T (Jp,q) is a subtriple of F (see the proof of [39, Theorem 4.9]) and
T|Jp,q is a scalar multiple of an isometry. Thus ‖T (p)‖ = ‖T (q)‖
and T is continuous.

Any two minimal tripotents e, f in E which are not orthog-
onal lie in the same summand of E. As a consequence of a),
b) and c) we have ‖T (e)‖ = ‖T (f)‖, which gives the required
statement.

Theorem 4.3.3 [M.Burgos, J.J. Garces and A.M. Peralta, Stu-
dia Math., 2011] Every biorthogonality preserving linear surjec-
tion between weakly compact JB∗-triples containing no rank-one
summands is continuous.

We also prove that a biorthogonality preserving linear sur-
jection form a Cartan factor (of rank greater than 1) onto a
JB∗-triple is a scalar multiple of an isometry.

In the final section of [39] we deal with atomic JB∗-triples.

It is well known that the predual of L(H) coincides with
the so-called trace class operators. In [39, Proposition 5.1] we
describe the predual of the Cartan factors of type 1, 2 and 3.
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Proposition 4.3.4 [M. Burgos, J.J. Garces and A.M. Peralta,
Studia Math., 2011] Let C be an infinite dimensional Cartan
factor of type 1, 2 or 3. For each ϕ ∈ C∗, there exists a sequence
(λn) ∈ l1 and a sequence (un) of mutually orthogonal minimal
tripotents in C such that

‖ϕ‖ =
∞∑
n=1

and ϕ(x) =
∑
n

λnϕn(x) (x ∈ C)

where for each n ∈ N, ϕn(x)un = P2(un)(x) (x ∈ C).

Finally, we use the description of biorthogonality preserving
linear mappings between factors and Proposition 4.3.4 above to
prove that biorthogonality preserving linear bijections between
atomic JBW∗-triples with no rank-one summands are also con-
tinuous.

Theorem 4.3.5 [M.Burgos, J.J. Garces and A.M. Peralta, Stu-
dia Math., 2011] Every biorthogonality preserving linear surjec-
tion between atomic JBW∗-triples containing no rank-one sum-
mands is continuous.



Chapter 5
Minimality of triple norm
topology and a Kaplansky
Theorem for JB∗-triples

In 1949, I. Kaplansky proves that if ‖.‖ is a norm making
C(K) a normed algebra, then ‖.‖ ≥ ‖.‖∞ (where ‖.‖∞ denotes
the sup norm), equivalently, every (non necessarily continuous)
monomorphism from C(K) into a normed algebra is automati-
cally bounded bellow.

Related to Kaplansky’s Theorem we find the results by C.E.
Rickart on uniqueness of norm topology in certain Banach alge-
bras (see [159]). In the just quoted paper examples of Banach
algebras enjoying the property that every complete multiplica-
tive norm is equivalent to the original norm are given. One of the
most important results in this subject is that by B.E. Johnson,
who proved in [105] that every semisimple Banach algebra has a
unique Banach algebra norm. We note that from Johnsons’s re-
sult, every monomorphism (with closed range) from a semisimple

105
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Banach algebra is both continuous and bounded bellow.

Under the additional assumption of continuity, versions of
Kaplansky’s Theorem have been obtained in different settings.

Definition 5.1.1 Let A be a Banach (or a Jordan) algebra with
norm ‖.‖. We say that A has minimality of algebraic norm topol-
ogy (abbreviated by MOANT) if for any multiplicative norm ‖.‖2
(i.e. ‖ab‖2 ≤ ‖a‖2 ‖b‖2), with ‖.‖2 ≤ ‖.‖ there exists M > 0 such
that M‖.‖2 ≥ ‖.‖.

We say that A has minimality of the norm if ‖.‖2 ≤ ‖.‖
implies ‖.‖2 = ‖.‖.

Of course, minimality of the norm implies minimality of the norm
topology.

Let T : A → B be an homomorphism between Banach alge-
bras. The assignment

‖.‖2 : A→ R+, a 7→ ‖a‖2 := ‖T (a)‖,

defines a seminorm on A. Since T is an homomorphism then
‖.‖2 also satisfies the property ‖ab‖2 ≤ ‖a‖2‖b‖2, that is, ‖.‖2 is
a multiplicative seminorm. Thus every homomorphism from A
defines a multiplicative seminorm on A.

It is clear that ‖.‖2 is a norm if, and only if, T is a monomor-
phism. If A has a MOANT then every continuous monomorphism
from A to a Banach algebra is bounded bellow.

Let us assume that every monomorphism from A to a Ba-
nach algebra is bounded bellow and let ‖.‖2 be a multiplicative
and ‖.‖-continuous norm on A. Then the identity mapping from
(A, ‖.‖) to (A, ‖.‖2) is a continuous monomorphism and thus
bounded bellow, as a consequence there exists M > 0 such that
M‖.‖ ≤ ‖.‖2.
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We have seen that A having MOANT is equivalent to say that
every continuous monomorphism from A to a normed algebra is
bounded bellow.

The aforementioned Kaplansky’s Theorem assures that an
abelian unital C∗-algebra has minimality of the norm topology
(actually a stronger property).

In the setting of general C∗-algebras, a noncommutative ver-
sion of Kaplansky’s Theorem was given by S. Cleveland in [46]:

Theorem 5.1.2 [S. Cleveland, Pacific J. Math., 1963] Let T :
A → B be a monomorphism between C∗-algebras, then there
exists M > 0 such that M‖T (a)‖ ≥ ‖a‖, ∀a ∈ A. 2

A. Bensebah proved in [24] that JB∗-algebras have MOANT.
This author also posed the question whether every JB∗-algebra
has minimality of the norm (see [24]).

In [154], J. Pérez, L. Rico and A. Rodriguez-Palacios studied
MOANT in the more general setting of “non-commutative JB∗-
algebras”, they also give an affirmative answer to the question
posed by Bensebah on the uniqueness of the Jordan norm (see
[154, Proposition 11]). More recently, S. Hejazian and A. Nikman
obtained an alternative proof of Kaplansky’s Theorem for JB∗-
algebras in [92].

5.1.1. Kaplansky Theorem for JB*-triples

Recently, in collaboration with F.J. Fernández Polo and A.
M. Peralta we have obtained a generalisation of Kaplansky’s
Theorem to the setting of JB*-triples (see [62]).

Let E be a Jordan triple with norm ‖.‖. We say that the norm
‖.‖ is multiplicative or a triple norm if (E, ‖.‖) is a normed Jor-
dan triple , that is, if there exists M > 0 such that ‖{x, y, z}‖ ≤
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M‖x‖‖y‖‖z‖, for every x, y, z in E. Given a multiplicative norm
on E we let N(E) or N(E, ‖.‖) be the supreme of the set

{‖{x, y, z}‖ : ‖x‖, ‖y‖, ‖z‖ ≤ 1x, y, z ∈ E}.

It is easy to see that, in this case, we can find a norm ‖.‖2,
equivalent to ‖.‖, such that N(E, ‖.‖′) ≤ 1. We notice that if E
is a JB∗-triple with norm ‖.‖, then we have N(E, ‖.‖) = 1.

We shall say that a normed Jordan triple E has minimality of
the triple norm topology (MOTNT) if any other (non-necessarily
complete) triple norm, dominated by the norm of E, defines an
equivalent topology.

We notice that MOTNT admits the following reformulation:

Every bounded triple monomorphism from E to a Jordan-
Banach triple is bounded bellow.

We say that E has minimality of the norm if, for every triple
norm ‖.‖2 on E such that ‖.‖2 ≤ ‖.‖ we have ‖.‖2 = ‖.‖.

Remark 5.1.3 In order to study minimality of the norm we can
always assume that N(E, ‖.‖2) = 1. Indeed, if N(E, ‖.‖2) > 1,
we define ‖.‖′2 = 1

N(E,‖.‖2)‖.‖2, then ‖.‖′2 ≤ ‖.‖ and N(E, ‖.‖′2) =

1. Clearly. ‖.‖′2 and ‖.‖2 are equivalent triple norms on E that
coincide whenever E has minimality of the norm.

Let A be an associate normed algebra. We denote by A(+)

the normed Jordan algebra A equipped with the Jordan prod-
uct a ◦ b = 1

2
(ab + ba) and the original norm. It is easy to see

that if A(+) have MOANT then A has MOANT. However, we do
not know if the reciprocal statement is, in general, true. By [45,
Proposition 3], there exists an associative normed algebra B such
that there exists a norm ‖.‖1 on B for which the Jordan prod-
uct is continuous but the associative product is discontinuous.
In particular, (B(+), ‖.‖1) doesn’t have MOANT.
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In [62, Section 2] we explore the relation between MOANT
and MOTNT. Let J be a Jordan algebra. If we endow J with
the triple product {a, b, c} = (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c) ◦ b, it
is easy to see that MOANT implies MOTNT and the reciprocal
statement holds whenever J is unital.

When A is simple and has a unit, every norm on A making
the Jordan product continuous also makes continuous the asso-
ciative product (compare [45, Theorem 3]). Under this additional
hypothesis, we have

(A(+), ‖.‖) has MOANT ⇐⇒ (A, ‖.‖) has MOANT.

As we have already mentioned, I. Kaplansky proved that
abelian C∗-algebras have MOANT. It is natural to ask whether
they have MOTNT. The complex statement in the following re-
sult was established by K. Bouhya and A. Fernández López in
[28, Proposition 13]. In [62] we prove the aforementioned result
for real or complex C0(L)-spaces.

Lemma 5.1.4 [F.J. Fernández-Polo, J.J. Garcés, A.M. Peral-
ta, Proc. Amer. Math. Soc., 2012] Let L ⊂ R+

0 be a subset
of non-negative real numbers satisfying that L ∪ {0} is a com-
pact. Let C0(L) denote the Banach algebra of all real or com-
plex valued continuous functions on L ∪ {0} vanishing at zero
(equipped with the supremum norm ‖.‖∞). Suppose that ‖.‖2 is a
‖.‖∞-continuous norm on C0(L) under which C0(L) is a normed
triple system. Then ‖.‖2 is equivalent to an algebra norm on
C0(L), and consequently ‖.‖∞ and ‖.‖2 are equivalent norms.
More concretely, writing M = sup{‖x‖2 : ‖x‖∞ ≤ 1} we have
‖a‖∞ ≤MN(C0(L), ‖.‖2) ‖a‖2, for all a ∈ C0(L). 2

We remark that the above lemma also shows that real and
complex C0(L)-spaces have minimality of the triple norm (see
Remark 5.1.3).
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As we have already mentioned, S.B. Cleveland applied Ka-
plansky’s Theorem to prove that every continuous monomor-
phism from a C∗-algebra to a normed algebra is bounded below
[46, Lemma 5.3], equivalently, every C∗-algebra has MOANT. It
follows as a consequence of [24, Theorem 1] or [154, Theorem 10]
or [92], that JB∗-algebras have MOANT. In the setting of (com-
plex) JB∗-triples, K. Bouhya and A. Fernández López proved the
following result:

Proposition 5.1.5 [K. Bouhya, A. Fernández-Lopez, Proc. Lon-
don Math. Soc., 1994] [28, Corollary 14] Let T : E → F be a
continuous triple monomorphism from a JB∗-triple to a normed
complex Jordan triple. Then T is bounded below. That is, every
JB∗-triple has MOTNT. 2

In [62] we give a version of the above result to the more
general setting of (real) J∗B-triples.

We recall that a real JB∗-triple is a norm-closed real subtriple
of a complex JB∗-triple (compare [95]). A J*B-triple is a real
Banach space E equipped with a structure of a real Banach
Jordan triple which satisfies ‖{a, a, a}‖ = ‖a‖3 and the following
additional axioms:

(J∗B1) N(E) = 1;

(J∗B2) σC
L(E)(L(x, x)) ⊂ [0,+∞) for all x ∈ E;

(J∗B3) σC
L(E)(L(x, y)− L(y, x)) ⊂ iR for all x, y ∈ E.

Every closed subtriple of a J∗B-triple is a J∗B-triple (c.f. [54,
Remark 1.5]). The class of J∗B-triples includes real (and com-
plex) C∗-algebras and real (and complex) JB∗-triples. Moreover,
in [54, Proposition 1.4] it is shown that complex JB∗-triples are
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precisely those complex Jordan-Banach triples whose underlying
real Banach space is a J∗B-triple.

T. Dang and B. Russo established a Gelfand theory for J∗B-
triples in [54, Theorem 3.12]. This Gelfand theory can be refined
to show that given an element a in a J∗B-triple E, there exists
a bounded set L ⊆ (0, ‖a‖] with L ∪ {0} compact such that
the smallest (norm) closed subtriple of E containing a, Ea, is
isometrically isomorphic to

C0(L,R) := {f ∈ C0(L), f(L) ⊆ R},

(see [41, Page 14]).

Let T : E → F be a continuous triple monomorphism from
a (real) J∗B-triple to a normed Jordan triple. Take an arbitrary
element a in E. Then, as we have already mentioned, Ea coin-
cides C0(L,R) for some locally compact Hausdorff space L such
that L∪ {0} is compact. The assignment ‖x‖2 = ‖T (x)‖ defines
a ‖.‖∞-continuous triple norm on C0(L,R). Since N(Ea, ‖.‖2) ≤
N(F ) and

sup{‖x‖2 : x ∈ Ea, ‖x‖∞} ≤ ‖T‖,

then Lemma 5.1.4 assures that ‖a‖ ≤ N(F )‖T‖‖a‖2, for every
a in A.

As a consequence, every J∗B-triple have minimality of the
triple norm. Indeed, if ‖.‖2 is a norm such that N(E, ‖.‖2) = 1
and ‖.‖2 ≤ ‖.‖ then, by the above paragraph, ‖.‖ ≤ ‖.‖2.

Proposition 5.1.6 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Am. Math. Soc., 2012] Let T : E → F be a contin-
uous triple monomorphism from a (real) J∗B-triple to a normed
Jordan triple. Then T is bounded below. Equivalently, every J∗B-
triple has MOTNT. 2.
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A real JB∗-algebra is a closed ∗-invariant real subalgebra of a
(complex) JB∗-algebra. Real C∗-algebras (i.e., closed ∗-invariant
real subalgebras of C∗-algebras), equipped with the Jordan prod-
uct a ◦ b = 1

2
(ab+ ba), are examples of real JB∗-algebras.

The following corollaries are immediate consequences of Propo-
sition 5.1.6.

Corollary 5.1.7 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Every continuous triple
homomorphism from a (real) J∗B-triple to a normed Jordan triple
has closed range. In particular, every continuous triple homo-
morphism from a real or complex C∗-algebra to a normed Jordan
triple has closed range. 2

Corollary 5.1.8 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Let A be a real JB∗-
algebra and let B be a real Jordan Banach algebra (or a real
Jordan-Banach triple). Then every continuous triple monomor-
phism from A to B is bounded below. That is, A has MOTNT
and MOANT. 2

Corollary 5.1.9 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Let A be a real or com-
plex C∗-algebra and let B be a real Banach algebra (or a real
Jordan-Banach triple). Then every continuous triple monomor-
phism from A to B is bounded below. That is, A has MOTNT
and MOANT. 2

We have seen that real J∗B-triples have minimality of triple
norm topology. However, we recall that Kaplansky’s Theorem
actually proves that C(K)-spaces enjoy a stronger property. If
K is a compact Hausdorff space, it is not hard to see that every
(non-necessarily ‖.‖∞-continuous) norm ‖.‖2 in C(K) that makes
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the triple product continuous, is equivalent to ‖.‖∞ (see [62,
remark 4]).

C∗-algebras and JB∗-algebras also satisfy this stronger prop-
erty: when A is a C∗-algebra (respectively, a JB∗-algebra) every
non-necessarily continuous monomorphism from A to a Banach
algebra (respectively, a Jordan Banach algebra) is bounded be-
low (compare [46, Theorem 5.4] and [24, Theorem 1] or [154,
Theorem 10] or [92]).

The question clearly is whether every non-necessarily contin-
uous triple monomorphism from a complex JB∗-triple (respec-
tively, from a real J∗B-triple) to a normed Jordan triple is bound-
ed below. In [62] we provide a positive answer to this question.
Following a classical strategy, we shall study the separating ideals
associated with a triple homomorphism.

Under additional geometric assumptions, triple homomor-
phisms are automatically continuous. More concretely, every
triple homomorphism between two JB∗-triples is automatically
continuous (compare [19, Lemma 1]). In this setting the prob-
lem reduces to the question of minimality of triple norm topology
that the we have just treated. However, when the codomain space
is not a JB∗-triple, the continuity of a triple homomorphism does
not follow automatically. We shall derive a new strategy without
any additional geometric hypothesis on the codomain space.

The following definitions and results are inspired by classical
ideas developed by C. Rickart [158], B. Yood [191], W.G. Bade
and P.C. Curtis [16] and S. Cleveland [46]. Let T : X → Y be a
linear mapping between two normed spaces. Following [158, Page
70], the separating space, σY (T ), of T in Y is defined as the set
of all z in Y for which there exists a sequence (xn) ⊆ X with
xn → 0 and T (xn)→ z. The separating space, σX(T ), of T inX is
defined by σX(T ) := T−1(σY (T )). For each element y in Y , ∆(y)
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is defined as the infimum of the set {‖x‖+ ‖y−T (x)‖ : x ∈ X}.
The mapping x 7→ ∆(x), called the separating function of T ,
satisfies the following properties:

a) ∆(y1 + y2) ≤ ∆(y1) + ∆(y2),

b) ∆(λy) = |λ| ∆(y),

c) ∆(y) ≤ ‖y‖ and ∆(T (x)) ≤ ‖x‖,

for every y, y1 and y2 in Y , x in X and λ scalar (compare [158,
Page 71] or [46, Proposition 4.2]).

A straightforward application of the closed graph theorem
shows that a linear mapping T between two Banach spacesX and
Y is continuous if and only if σY (T ) = {0} (c.f. [46, Proposition
4.5]).

It is not hard to see that σY (T ) = {y ∈ Y : ∆(y) = 0},
while σX(T ) = {x ∈ X : ∆(T (x)) = 0}. Therefore σX(T ) and
σY (T ) are closed linear subspaces of X and Y, respectively. The
assignment

x+ σX(T ) 7→ T̃ (x+ σX(T )) = T (x) + σY (T )

defines an injective linear operator from X/σX(T ) to Y/σY (T ).

Moreover, T̃ is continuous whenever X and Y are Banach spaces.

It is not hard to see that if T : E → F is triple homomor-
phism between Jordan triples, then σE(T ) is a norm-closed triple
ideal of E, while σF (T ) is a norm-closed triple ideal in the com-
pletion of the subtriple of F generated by T (E) (see Lemma 10
in [62]).

From the preceding comments it is clear that if we factor the
separating spaces out we obtain a continuous triple monomor-
phism.
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Proposition 5.1.10 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Am. Math. Soc., 2012] Let T : E → F be a non-
necessarily continuous triple homomorphism between two Jordan-
Banach triples. Then the mapping

T̃ : E/σE(T )→ F/σF (T ),

T̃ (a+ E/σE(T )) = T (a) + F/σF (T )

is a continuous triple monomorphism. 2

By Corollary 5.1.7, if E is a real or complex JB∗-triple, then
the continuous triple monomorphism T̃ is bounded bellow, that
is, there exists M > 0 such that

M‖x+ σE(T )‖ ≤ ‖T (x+ σF (T ))‖ ≤ ‖T (x)‖,

for all x ∈ E. However that does not guarantee that T is bounded
bellow. We shall see that σE(T ) = 0.

First, we obtain a triple version of the “main boundedness
theorem”. The first version of the main boundedness Theorem is
due to Badé and Curtis (compare [16, Theorem 2.1]), where these
authors study continuity of homomorphisms into commutative
semisimple Banach algebras. A non-commutative version of the
main boundedness Theorem was obtained by S. Cleveleland in
[46, Theorem 3.1].

Theorem 5.1.11 [F.J. Fernández-Polo, J.J. Garcs and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Let T : E → F a non-
necessarily continuous triple homomorphism between Jordan- Ba-
nach triples and let (xn), (yn) be two sequences of non-zero ele-
ments in E such that xn ⊥ xm, ym for every n 6= m, then

sup

{
‖T ({xn, xn, yn})‖
‖xn‖2‖yn‖

, n ∈ N
}
<∞.
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As a consequence of the main boundedness Theorem, it can
be proved that if T : E → E is a triple monomorphism from a
JB∗-triple (or a real J∗B-triple) and (xn) is a sequence of mutu-
ally orthogonal elements in σE(T ), then T (xn) = 0, except for
finitely many n in N (see [62, Lemma 13]). Let us suppose that
σE(T ) 6= 0 and a is a nonzero element in σE(T ), we prove that
if Ea ∼= C0(L), then L must be finite and hence a is an algebraic
element (compare see [62, Lemma 15]). But for every tripotent
e in σE(T ) we have T (e) = 0 (compare [62, Lemma 14]), thus
T (a) = 0 and hence a = 0.

Proposition 5.1.12 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Am. Math. Soc., 2012] Let T : E → F be a
non-necessarily continuous triple monomorphism from a (com-
plex) JB∗-triple (respectively, a (real) J∗B-triple) to a Jordan-

Banach triple. Then the linear mapping T̃ : E → F/σF (T ),

T̃ (a) = T (a)+F/σF (T ), is a continuous triple monomorphism.2

Finally, we obtained the announced result:

Theorem 5.1.13 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Let T : E → F be a non-
necessarily continuous triple monomorphism from a (complex)
JB∗-triple (respectively, a (real) J∗B-triple) to a normed Jordan
triple. Then T is bounded below. 2

The following corollary is the desired generalisation of a result
due to B. Yood [190] and S. Cleveland [46] (see also [16, Theorem
4.3]).

Corollary 5.1.14 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Proc. Amer. Math. Soc., 2012] Let T : E → F be a non-
necessarily continuous triple monomorphism from a (complex)
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JB∗-triple (respectively, a (real) J∗B-triple) to a normed Jordan
triple. Then the norm closure of T (E) in the canonical comple-
tion of F decomposes as the direct sum of T (E) and σF (T ). 2
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Chapter 6
Weakly compact orthogonality
preservers

It is well known that every reflexive C∗-algebra is finite di-
mensional (compare [164, Proposition 2]). In other words, the
identity mapping on a C∗-algebra A is weakly compact if and
only if A is finite dimensional. Actually, an algebraic homomor-
phism from a C∗-algebra to a normed algebra is weakly compact
if and only if it has finite dimensional range (cf. [74], [78], [140]).

Suppose that S : A → B is a Jordan *-homomorphism be-
tween two C∗-algebras. In this case, S∗∗ : A∗∗ → B∗∗ is a Jor-
dan ∗-isomorphism between von Neumann algebras. It follows,
from Kadison’s theorem (see [112, Theorem 10]), that there exist
weak∗-closed ideals I1 and I2 in A∗∗ and J1 and J2 in B∗∗ satis-
fying that A∗∗ = I1 ⊕∞ I2, B

∗∗ = J1 ⊕∞ J2, S
∗∗|I1 : I1 → J1 is

an ∗-isomorphism, and S∗∗|I2 : I2 → J2 is a ∗-anti-isomorphism.
Thus, S is weakly compact if and only if it has finite dimensional
range.

We shall see that the above conclusion remains true for every

119
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triple homomorphism from a C∗-algebra to a normed Jordan
triple (in particular, for every Jordan homomorphism from a C∗-
algebra to a normed algebra). This statement will follow from a
result which is valid in a more general setting.

The proof of the following Theorem combines the argument
given by M. Mathieu in [140] with a recent Kaplansky theorem
for JB∗-triples presented in the previous chapter.

Theorem 6.1.1 [F.J. Fernández-Polo, J.J. Garcés and A.M. Per-
alta, Math. Z., 2012] Let S : E → F be a weakly compact (re-
spectively, compact) triple homomorphism from a real or com-
plex JB∗-triple to a normed Jordan triple. Then E/ ker(S) and
S(E) are reflexive (respectively, finite dimensional) Jordan Ba-
nach triples.

It is well known that a linear operator between Banach spaces
is weakly compact if, and only if, it factors through a reflexive
Banach space (compare [52]). In [74] J.E. Gale, T.J. Ransford
and C. White study weakly compact homomorphisms between
Banach algebras. They pose the following problem:

Problem 6.1.2 Let T : A → B be a weakly compact homo-
morphism between Banach algebras. Do there exist a reflexive
Banach algebra C and continuous homomorphisms ϕ : A → C
and ψ : C → B such that T = ψϕ?

As observed by Gale, Ransford and White “the interpolation
method used in [52] does not respect Banach algebras”.

Although it is not explicitly stated, our characterisation of
weakly compact triple homomorphisms from a JB∗-triple gives
a partial affirmative answer to the above problem in the triple
setting. Indeed, let S : E → F be a weakly compact homo-
morphism from a JB∗-triple, let R : E → E/Ker(S) be the
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quotient map and let T : E/Ker(S) → F be the mapping giv-
en by T (x + ker(S)) = S(x). Then E/ker(S) is reflexive and
S = RT.

An element h of a unital Banach algebra A is called hermi-
tian if ‖eith‖ = 1 for all t in R. Let H be the set of hermitian
elements in A and AH be the subalgebra of A generated by H. In
[74, Theorem 3.2], it is proved that all elements in H + iH are
algebraic of degree at most n, for some n ∈ N. These authors also
pose the question wether every element in T (AH) is algebraic.

The characterisation that we next present contains a partial
affirmative answer to the analogue of the above question in the
triple setting.

Given a real or complex JB∗-triple E,a necessary and suffi-
cient requirement for E to be reflexive is that E has the Radon-
Nikodym property, or equivalently, E is isomorphic to a Hilbert
space or E has finite rank ([44, Theorem 6] and [21, Theorems 2.3
and 3.1]).Thus, every element in the range of a weakly compact
triple homomorphism from a JB∗-triple is algebraic.

Corollary 6.1.3 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Math. Z., 2012] Let S : E → F be a continuous triple
homomorphism from a real or complex JB∗-triple to a normed
Jordan triple. The following statements are equivalent:

(a) S is weakly compact.

(b) There exists a triple isomorphism from S(E) to a reflexive
JB∗-triple.

(c) There exists a triple isomorphism from S(E) to a finite rank
JB∗-triple.

(d) S(E) is isomorphic as normed space to a Hilbert space.
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(e) E/ ker(S) is a reflexive or finite rank JB∗-triple. 2

Weakly compact Jordan ∗-homomorphisms between JB∗-alge-
bras were also charactersied by J. Perez, L. Rico and A. Ro-
driguez (compare [154, Remark 14]) and J. Gale [75]. Since, as
it is well known by the reader at this point, every JB∗-algebra is
a JB∗-triple, the above result generalises the just quoted contri-
butions. We notice that there exist infinite dimensional reflexive
JB∗-algebras, so the range of a weakly compact Jordan homo-
morphism from a JB∗-algebra need not to be finite dimensional
(take for instance the identity mapping on a complex spin fac-
tor).

Corollary 6.1.4 [ F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Math. Z., 2012] Every weakly compact Jordan homo-
morphism from a JB∗-algebra has reflexive range. 2

When particularised to the setting of C∗-algebras, the above
result reads as follows.

Corollary 6.1.5 [F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Math. Z., 2012] Every weakly compact triple homomor-
phism from a C∗-algebra to a normed Jordan triple has finite
dimensional range. 2

6.2. Weakly compact orthogonality

preservers from a C∗-algebra

As seen in previous sections, an orthogonalty preserving lin-
ear mapping between C∗-algebras is, in some sense, a multiple
of a triple homomorphism. By Corollary 6.1.5 every triple ho-
momorphism between C∗-algebras has finite dimensional range.
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The reader might wonder whether a weakly compact orthogo-
nality preserving operator between C∗-algebras must also have
finite dimensional range.

Let K := N∪{∞}, ϕ = idK and define u un K by u(n) = 1
n
.

The composition operator T : C(K) → C(K), f 7→ T (f)(n) =
u(n)f ◦ ϕ(n) is weakly compact, however it is easy to see that
its range is not finite dimensional (cf. Remark 13 in [63]).

This is example also shows that an analogous to Problem
6.1.2 for orthogonality preserving operator between C∗-algebras
does not have an affirmative answer, that is, a weakly compact
orthogonality preserving operator between C∗-algebras might
not factorise through a reflexive C∗-algebra.

Weakly compact orthogonality preserving operators between
abelian C∗-algebras were described by Y.F. Lin and N.C. Wong
in [134].

Theorem 6.2.1 [Y.F. Lin, N.C. Wong, Math. Nachr., 2009] Let
T : C0(L1)→ C0(L2) be a bounded disjointness preserving oper-
ator. The following assertions are equivalent:

1. T is completely continuous.

2. T is weakly compact.

3. T is completely continuous.

4. There are at most countably many distinct points {xn}
in X and mutually orthogonal disjoint functions {hn} in
C0(L1) such that

Tf =
∑
n

f(xn)hn, for all f ∈ C0(L1).

In case there are infinitely many such {xn} and hn, we have
‖hn‖ → 0 and thus the sum converges uniformly. 2
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The above result is a generalization of a theorem due to H.
Kamowitz for Weakly compact orthogonality preserving opera-
tors between unital abelian C∗-algebras (cf. [114]).

M. Wolff seems to have ventured to describe symmetric weak-
ly compact orthogonality preserving operators between (non-
necessarily abelian) C∗-algebras, as the final remark in [183] sug-
gests: “ The proof of Theorem 2.3 (cf. step III of 3.5) enables
us in principal to characterize those disjointness preserving op-
erators which are compact. For if T (1A) is invertible then S has
to be compact and since Jordan ∗-homomorphisms are open onto
their range S has to be of finite rank. Unfortunately it is cum-
bersome to chracterize such an operator in the non-commutative
case contrary to the commutative case. So we are not able to gen-
eralize the results of Kamowitz [114] in any reasonable manner”.

In collaboration with F. Fernández-Polo and A.M. Peralta we
succeeded in describing weakly compact orthogonality preserv-
ing operators even in a more general setting. Previous results
on weakly compact triple homomorphisms and the characterisa-
tion of orthogonality preserving operators obtained in previous
Chapters (see [34, 35]) were crucial tools needed to obtain this
description.

Theorem 6.2.2 [F.J. Fernández-Polo, J.J. Garcés and A.M. Per-
alta, Math. Z., 2012] Let A be a C∗-algebra, E a JB∗-triple,
T : A → E a weakly compact orthogonality preserving oper-
ator and let r = r(h) be the range tripotent of the element
h = T ∗∗(1) in E∗∗. Then there exists a countable family {In}n∈N
of mutually orthogonal weak∗-closed C∗-ideals in A∗∗, a fami-
ly {Sn : A∗∗ → E∗∗2 (r) : n ∈ N} of continuous Jordan ∗-
homomorphisms and a sequence (xn) of mutually orthogonal el-
ements in E satisfying:

(a) Each In is a finite type I von Neumann factor;
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(b) ‖xn‖ → 0 and h =
∑∞

n=1 xn;

(c) Sn|In is a Jordan ∗-monomorphism, Sn|I⊥n = 0, Sn and Sm
have orthogonal ranges for n 6= m;

(d) For each x in A∗∗, xn and Sm(x) operator commute for every
n and m;

and

T (x) =
∞∑
n=1

L(xn, r)Sn(x) =
∞∑
n=1

xn •r Sn(x), (e)

for every x ∈ A. Moreover, the Jordan ∗-homomorphism S :
A → E∗∗2 (r) given in Theorem 3.2.9, b), satisfies that S(z) =∑∞

n=1 Sn(z), for each z in A, where the series converges in the
weak∗ topology of E∗∗2 (r). 2

Since every irreducible finite type I von Neumann factor in
C0(L)∗∗ is isomorphic to C, then the description of weakly com-
pact disjointness preserving operators between commutative C∗-
algebras given by Lin and Wong follows now as a consequence of
Theorem 6.2.2. Lin and Wong also proved that, for an orthog-
onality preserving operator between abelian C∗-algebras, being
compact is equivalent to being weakly compact, and as conse-
quence of Theorem 6.2.1 the latter is also equivalent to T admit-
ting a compact factorisation through the whole c0. We were also
able to generalise this characterisation.

Theorem 6.2.3 [ F.J. Fernández-Polo, J.J. Garcés and A.M.
Peralta, Math. Z., 2012] Let T be a continuous orthogonality
preserving operator from a JB∗-algebra to a JB∗-triple. The fol-
lowing are equivalent:

1. T is compact.
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2. T is weakly compact.

3. T admits a compact factorisation through a c0-sum of the
form

c0⊕
n

Mmn(C),

where (mn) is a sequence of natural numbers. 2

As noticed in [63] the C∗-algebra
⊕c0

n Mmn(C) is not, in gen-
eral, isomorphic to c0 (see comments after Corollary 10 in [63]),
thus a weakly compact orthogonality preserving operator be-
tween C∗-algebras does not admit in general a compact factori-
sation through c0.

By using results on weakly compact Jordan homomorphisms
from a JB∗-algebra to a normed Jordan triple (see Corollary
6.1.3) and the characterisation of orthogonality preserving oper-
ators from a JB∗-algebra to a JB∗-triple described in Chapter 4
(see also [35]), we are also able to generalise Theorem 6.2.2 to
this setting.

Theorem 6.2.4 [F.J. Fernández-Polo, J.J. Garcés, A.M. Peralta,
Math. Z., 2012] Let J be a C∗-algebra, let E be a JB∗-triple,
T : J → E a weakly compact orthogonality preserving oper-
ator and let r = r(h) be the range tripotent of the element
h = T ∗∗(1) in E∗∗. Then there exists an at most countably family
{In} of mutually orthogonal weak∗-closed ideals in J∗∗, a fami-
ly {Sn : J∗∗ → E∗∗2 (r)} of continuous Jordan ∗-homomorphisms
and a set {xn} of mutually orthogonal elements in E satisfying:

(a) Each In is reflexive JBW∗-factor;

(b) ‖xn‖ → 0 and h =
∑

n xn;
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(c) Sn|In is a Jordan ∗-monomorphism, Sn|I⊥n = 0, Sn and Sm
have orthogonal ranges for n 6= m;

(d) For each x in J∗∗, xn and Sm(x) operator commute for every
n and m;

and

T (x) =
∞∑
n=1

L(xn, r)Sn(x) =
∞∑
n=1

xn •r Sn(x),

for every x ∈ A. 2

In this case equivalence a) ⇐⇒ b) in Corollay 6.2.3 is no
longer true. Indeed, the identity mapping on an infinite dimen-
sional spin factor is weakly compact and orthogonality preserv-
ing but it’s not a compact operator. Similar construction to that
Corollary 6.2.3 c), allow to prove that in this case T factorises
through a c0-sum of reflexive JBW∗-factors.

Finally, Theorems 6.2.2 and 6.2.4 allow to charactersie those
C∗-algebras (respectively, JB∗-algebras) which admit a weakly
compact orthogonality preserving operator.

Corollary 6.2.5 [F.J. Fernández Polo, J.J. Garcés, A.M. Peralta,
Math. Z., 2012] Let A be a C∗-algebra (respectively, JB∗-algebra).
There exists a weakly compact orthogonality preserving operator
from A to a JB∗-triple if and only if A∗∗ contains a non-zero
finite dimensional weak∗-closed C∗-ideal (respectively, A∗∗ con-
tains a non-zero reflexive weak∗-closed JB∗-ideal).
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Chapter 7
Generalised triple
homomorphisms and derivations

We have already commented that automatic continuity of
homomorphisms in associative and non-associative context has
been the subject of many studies, contributions begin with the
already mentioned results by Eidelheit, Gelfand and Kaplansky.
We recommend the surveys [174] and [182], which cover many of
the main results in this area.

In [99], K. Jarosz considered those linear mappings that “al-
most preserve products” an proves that any such a mapping from
a Banach algebra to a C(K)-space is automatically continuous.
Further results on automatic continuity of these kind of map-
pings were added by B.E. Johnson in [107].

We recall the basic notions. Let T : A → B be a linear
mapping between Banach algebras. A is said to be a generalised
(associative) homomorphism if there exists ε > 0 such that

‖T (a)T (b)− T (ab)‖ ≤ ε‖a‖‖b‖,

129
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for every a, b in A. Equivalently, T is a generalised associative
homomorphism if and only if the bilinear mapping

Ť : A× A −→ B,

Ť (a, b) = T (a)T (b)− T (ab)

is (jointly) continuous.

B.E. Johnson proved in [107, Theorem 1] that every gener-
alised homomorphism from a Banach algebra onto a semisimple
Banach algebra is continuous. This can be seen as a generali-
sation of his celebrated result on minimality of norm topology
of semisimple Banach algebras (indeed, every homomorphism is
clearly a generalised homomorphism).

In [76] A.M. Peralta and the author of this thesis studied
those linear mappings between Jordan triples that “almost pre-
serve the tripe product”. We shall describe in this chapter the
main results obtained in this line.

Definition 7.1.1 Let T : E → F be a linear mapping between
normed Jordan triples. T is said to be a generalised triple ho-
momorphism if there exists ε > 0 such that

‖{T (a), T (b), T (c)} − T ({a, b, c})‖ ≤ ε‖a‖‖b‖‖c‖,

for every a, b, c in E.

Let T : E → F be a linear mapping between normed Jordan
triples. We define Ť : E × E × E → E by the rule

Ť (a, b, c) := T ({a, b, c})− {T (a), T (b), T (c)}.

The mapping Ť is linear in the outer variables and conjugate
in the middle one (trilinear when E is a real Jordan triple). It
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can be seen that T is a generalised triple homomorphism if and
only if Ť is (jointly) continuous.

Let A be a Banach algebra. We shall refer to the triple prod-
uct {a, b, c} = 1

2
(abc + cba) as the “elemental” triple product of

A. When A is a Banach ∗-algebra we can also consider the triple
product {a, b, c} = 1

2
(ab∗c+ cb∗a), and we shall refer to it as the

natural Jordan triple product of A.

Let T : A→ B be a generalised homorphism between Banach
∗-algebras. We shall say that T is a generalised ∗-homomorphism
if the mapping

a 7→ S(a) = T (a∗)∗ − T (a)

is continuous. Generalised ∗-homomoprhisms where also consid-
ered by Johnson in [107], where he proved the following:

Theorem 7.1.2 [B.E. Johnson, Bull. London Math., 1987] Ev-
ery generalised ∗-homomorphism between C∗-algebras is contin-
uous.

It is natural to ask whether there is a relation between gener-
alised homomorphisms (respectively, generalised ∗-homomorphisms)
between Banach algebras (respectively, Banach ∗-algebras) when
they are endowed with the elemental triple product (respective-
ly, natural Jordan triple product). The answer is affirmative as
the following result shows:

Proposition 7.1.3 [J.J. Garcés and A.M. Peralta, Canad. J.
Math., 2013] Let A,B be Banach algebras. Every generalised ho-
momorphism T : A → B is a generalised triple homomorphism
when A and B are equipped with the elemental triple product.

When A and B are Banach ∗-algebras and T is a generalised
∗-homomorphism, then T is a generalised triple homomorphism
with respect to the triple product 2{a, b, c} = ab∗c+ cb∗a. 2
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The aim of [76] is generalising Johnson’s results to the set-
ting of generalised triple homomorphisms between normed Jor-
dan triples. To study automatic continuity of generalised triple
homomorphisms between normed Jordan triples we make use of
the separating spaces (see Chapter 5 for definitions).

Let T : A → B be a generalised homomorphism between
Banach algebras. It is not hard to see that the separating space,
σF (T ), is a two-sided ideal of the closed subalgebra of B gener-
ated by T (A) (compare [107, Lemma 1]).

One would expect the separating space σF (T ) of a generalised
triple homomorphism T : E → F between Jordan triples to be a
triple ideal of the closed subtriple of F generated by T (E). This
statement, although true, is not easy to check. In order to prove
it we first need a precise description of the subtriple generated
by a subset. With this aim we introduce in [76] the “odd triple
monomials”.

Let x1, x2, . . . be a sequence of indeterminates. Then a triple
monomial is a term that can be obtained by the following pro-
cedure:

1. Every indeterminate xk is a triple monomial of degree 1.

2. If V1, V2 and V3 are triple monomials of degrees d1, d3 and
d3 respectively, then V := {V1, V2, V3} is a triple monomial
of degree d1 + d2 + d3 where {., ., .} is a “formal triple
product” in three variables.

If the triple monomial V does not contain any indeterminate
xj with j > 2n − 1, we also write V = V (x1, . . . , x2n−1). In
that case, for every JB∗-triple E and every a = (a1, . . . , a2n−1) in
E2n−1 the element V (a) = V (a1, . . . , a2n−1) ∈ E is well defined-
just specialize every xk to ak and the “formal triple product”
to the concrete triple product of E. In this sense V induces a



133

polynomial map E2n−1 → E which is denoted by V (or by VE to
avoid confusion). Now, for a fixed natural n ≥ 1, denote OP2n−1

the set of all triple monomials V of degree 2n−1 in which every xk
with 1 ≤ k ≤ n occurs precisely once. Then V = V (x1, . . . , xn)
and the induced map VE : En → E is multilinear for ever JB∗-
triple E.

The symbol OP2m+1(E) will stand for the set of all multilin-
ear mappings of the form VE, where V runs in OP2m+1, while
OP(E) the set of all odd triple monomials of any degree on E.
It should be here noticed that when F is another Jordan triple,
each triple monomial V in OP2m+1(E) by just replacing the
triple product of E in the definition of V by the corresponding
triple product of F.

The following Lemma is the key to prove that the desired
property of the seprating space associated with a generalised
triple homomorphism.

Lemma 7.1.4 [J.J. Garcés and A.M. Peralta, Canadian J. Math.,
2013] Let T : E → F be a triple homomorphism between normed
Jordan triples and m a natural number. Let V be an odd triple
monomial of degree 2m+ 1, which can be regarded as an element
in OP2m+1(E) or in OP2m+1(F ) indistinclty. Suppose that V is
of the form V = {.,W, P} (respectively, V = {W, ., P}) and let
j = deq(W ). Then

ĺım
n→∞

V (T (xn), T (a1), . . . , T (a2m))− T (xn, a1, . . . , a2m) = 0,

(respectively,

ĺım
n→∞

V (T (a1), . . . , T (aj), T (xn), T (aj+1), . . . , T (a2m))

−T (V (a1, . . . , aj, xn, aj+1, . . . , a2m)) = 0,

for every a1, . . . , a2m in E. 2
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As a first application, the triple monomials can be used to
obtain a more precise description of the subtriple generated by
a subset. Let E be a normed Jordan triple and S ⊆ E. The
norm-closed Jordan subtriple of E generated by S is the smallest
norm-closed subtriple of E containing S, and will be denoted by
ES. It is not hard to see that ES coincides with the norm closure
of the linear span of the set

OP(S) :=

{
V (a1, . . . , a2m+1) :

m ∈ N, V ∈ OP2m+1(E),
a1, . . . , a2m+1 ∈ S

}
.

Let us recall that I ⊂ E is a triple ideal of E if {E,E, I} +
{E, I, E} ⊆ I. Let S ⊆ E and I ⊆ ES. By the continuity of the
triple product, in orther to prove that I is an ideal of ES it is
enough to show that

V (I, S, . . . , S) + V ′(S, . . . , S, I, S, . . . , S) ⊆ I

holds, for arbitrary odd triple monomials V and V ′ of the form
{W, ., P} and {.,W ′, P ′}, respectively.

This fact, together with Lemma 7.1.4 allow us to prove the
following.

Proposition 7.1.5 [J.J. Garcés and A.M. Peralta, Canad. J.
Math., 2013] Let T : E → F be a generalised triple homomor-

phism between Jordan-Banach triples. Let I and F̃ denote σF (T )
and FT (E), respectively. Then we have the following:

1. I is a (closed) triple ideal of F̃ .

2. I⊥
F̃

contains all the elements of the form Ť (a, b, c). Further,

if J is a closed triple ideal of F̃ containing I⊥
F̃

then π ◦ T
is a triple homomorphism, where π is the quotient map
F̃ → F̃ /J. 2
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If F is a JB∗-triple then we have that I⊥F := {a ∈ F : a ⊥ I}
contains Ť (E,E,E).

The following property have been very useful in the study
of automatic continuity of homomorphism, and will prove itself
to be useful for the case of generalised triple homomorphisms as
well.

Remark 7.1.6 Let T : X → Y be a linear mapping between
Banach spaces. A useful property of the separating space σF (T )
asserts that for every bounded linear map R from Y to another
Banach space Z, the composition RT is continuous if and only if

σF (T ) ⊆ ker(R). It is also known that σ(RT ) = R(σ(T ))
‖.‖

(see
[174, Lemma 1.3]).

Remark 7.1.6 together with Lemma 7.1.4 and the well known
fact that triple homomorphisms between JB∗-triples are contin-
uous (compare [19]) allow to prove that every generalised triple
homomorphism between JB∗-triples is continuous.

Theorem 7.1.7 [J.J. Garcés and A.M. Peralta, Canad. J. Math.,
2013] Every generalised triple homomorphism between JB∗-triples
is continuous. 2

As a consequence we obtain Johnson’s result on generalised
∗-homomorphisms (compare [107]).

Corollary 7.1.8 [J.J. Garcés and A.M. Peralta, Canad. J. Math.,
2013] Every generalised ∗-homomorphism between C∗-algebras is
continuous.

A general characterisation for continuity of generalised triple
homomorphisms form a JB∗-triple is also abtained in [76].

The following Lemma can be seen, in some sense, as a main
boundedndess Theorem for generalised triple homomorhpisms:
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Lemma 7.1.9 [J.J. Garcés and A.M. Peralta, Canad. J. Math.,
2013] Let T : E → F be a generalised triple homomorphism
between real Jordan-Banach triples and let (xn), (yn) be sequences
of elements in E such that

Q(yn)Q(xn) = Q(xn) and Q(yn)Q(xm) = 0,

for n 6= m. Then Q(T (xn))T and TQ(xn) are continuous for all
but a finite number of n. 2

As a consequence of the above Lemma we have

sup

{
‖T ({xn, yn, xn})‖
‖xn‖2‖yn‖

, n ∈ N
}
<∞,

where (xn), (yn) are sequences as in Lemma 7.1.9.

Let B be a subset of a Jordan-Banach triple E. We de-
fine its quatratic annihilater, AnnF (B), to be the set {a ∈ F :
Q(a)(B) = {a,B, a} = 0. It is not hard to see that the inclusion
B⊥F ⊆ AnnF (B) holds, however the quadratic annihilator does
not coincide, in general, with the orthogonal complement.

The set J = T−1(AnnF (σF (T ))) plays a crucial role in the
study of continuity of T. Indeed, as a consequence of Remark
7.1.6 it can be seen that J coincides with the set {a ∈ E :
Q(T (a))T is continuous }. Since T is a generalised triple homo-
morphism it coincides also with the set

{a ∈ E : T (Q(a)) is continuous }.

It can be proved, as a consequence of Lemma 7.1.9 that J enjoys
additional properties.

Proposition 7.1.10 [J.J. Garcés and A.M. Peralta, Canad. J.
Math., 2013] Let T : E → F be a generalised triple homomor-
phism from a real JB∗-triple to a Jordan-Banach triple. The fol-
lowing statements hold:
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1. For every norm-closed triple ideal I of E containing the
set T−1(AnnF (σF (T ))), then E/I is algebraic of bounded
degree.

2. Let K be a triple ideal of E. The linear mapping

x ∈ E 7→ {T (a), T (x), T (a)}

is continuous if, and only if, K is contained in the set
T−1(AnnF (σF (T ))).

2

Let us suppose that J = T−1(AnnF (σF (T ))) is a norm-closed
triple ideal. Then the mapping x ∈ E 7→ {T (a), T (x), T (a)}
is continuous. However, this is not enough to prove that T|J is
continuous (unless E has cohen’s factorisation property, as we
shall prove in Theorem 7.1.14). If J also satisfies the property

{AnnF (σF (T )), AnnF (σF (T )), σF (T )} = 0

the we are also able to prove that, for every a, b ∈ E the mapping

x ∈ E 7→ {T (a), T (b), T (x)}

is continuous. Then an application of the uniform boundedness
principle and the triple functional calculus allow to prove that T|J
is continous. By Proposition 7.1.10 E/J is algebraic of bounded
degree. To prove that E/J = 0 we borrow some ideas from the
proof of [163, Proposition 12].

Theorem 7.1.11 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Let T : E → F be a generalised triple homomorphism
from a JB∗-triple and let J = T−1(AnnF (σF (T ))). The following
statements are equivalent:
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a) J is a norm closed triple ideal of E and

{AnnF (σF (T )), AnnF (σF (T )), σF (T )} = 0.

b) T is continuous.

2

We notice here that Theorem 7.1.11 is valid for complex JB∗-
triples and “reduced real JB∗-triples” (see comments after Lem-
ma 16 in [76]). The characterisation of continuity of generalised
triple homomorphism from an arbitrary real JB∗-triple to a real
Jordan-Banach triple remains as an open problem.

Some automatic continuity results in particular cases are also
obtained. In [76, Lemma 15 and 16] we prove that every gener-
alised triple homomorphism from a type I Cartan factor or from
a complex spin factor to an annistropic Jordan triple is continu-
ous.

In [161], J.R Ringrose proves that a linear functional on a
von Neumann algebra A is continuous whenever its restriction to
every maximal abelian C∗-subalgebra of A is continuous. Later
B.A. Barnes improved Ringrose’s result, by showing that it is
enough to prove that the functional is continuous on every C∗-
subalgebra generated by single hermitian element is continuous.
Barnes also proved that dual C∗-algebras enjoy this property
(compare [18]). In [48], J. Cuntz obtained the definitive version
of Ringorse’s result, by proving that a linear mapping from a C∗-
algebra to a Banach space is continuous whenever its restriction
to every C∗-subalgebra generated by single hermitian element is
continuous.

Let H be a complex Hilbert space regarded as a JB∗-triple.
It is easy to check that every norm-one element in H is a tripo-
tent. Therefore the JB∗-subtriple generated by a single element
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a coincides with H. Let X be a Banach space and T : H → X be
a linear mapping. Then T is continuous when restricted to any
singly generated subtriple of H. When H is infinite dimensional,
we can easily find a discontinuous linear mapping from H to X.

The above comment shows that a triple version of Cuntz’s
Theorem does not hold.

Earlier versions of Cuntz’s Theorem were given by J.D.Stein
Jr. and A.M. Sinclair for homomorphisms form a C∗-algebra to a
Banach algebra (see[175] and [173], respectively). In particular,
Sinclair proved a similar automatic continuity result for homo-
morphisms from a C∗-algebra. From Remark 1.6 in [163] it is easy
to give an example of a triple discontiuous triple homomorphism
from a JB∗-triple to a Jordan triple which is continuous when
restricted to any singly generated JB∗-triple (apply to construc-
tion of Θδ described in next section to the mentiones example
in Remark 1.6). Thus, an automatic continuity result for JB∗-
triples similar to Cuntz’s Theorem does not hold, not even for
the case of triple homomorphisms to a Jordan triple.

In [76] we explore assumptions that avoid the previous coun-
terexamples. We replace the subtriple generated by the inner
ideal generated by a single element. We remind that the inner
ideal generated by a single element a, E(a), coincides with norm
closure of the set {a,E, a} (see [32, pp, 19-29]). If H is a complex
Hilbert space, then H(a) = H, for every norm-one element a in
A.

Let T : E → F be a generalised triple homomorphism be-
tween Jordan-Banach triples, such that T is continuous when
restricted to any inner ideal generated by a single element of E.
Then all elements in σF (T ) are nilpotent (see comment preced-
ing [76, Theorem 6]). If F is anisotropic then σF (T ) = 0, and
hence T is continuous.
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Let T : A → B be a linear mapping between Banach al-
gebras and a in A. Let us suppose that the linear mapping
(x, y) 7→ T (xy) is continuous. If A has an approximate iden-
tity, then by Cohen’s factorisation property ([104]), for a norm-
null sequence (xn) in A there exist a ∈ A and a norm-null
sequence (yn) in A, such that xn = ayn. As a consequence
ĺımn T (xn) = ĺımn T (ayn) = 0. By the closed graph theorem
T is continuous. Cohen’s factorisation Theorem is very useful in
the study of automatic continuity of homomorphisms and other
linear preservers (see for instance [104], [107] or [106]).

In [76] we also explore the applications of Cohen’s factorisa-
tion property in the triple setting.

Definition 7.1.12 A Jordan-Banach triple E has Cohen’s fac-
torisation property (CFP) if given a norm-null sequence (an) in
E there exist elements x, y in E and a norm-null sequence (bn)
such that an = {x, bn, y},∀n ∈ N.

Definition 7.1.13 Let J be a Jordan-Banach algebra. An ap-
proximate identity in J is a bounded net (eλ) satisfying:

1. ĺımλ a ◦ eλ = a, and

2. ĺımλ Ueλ(a) = 0, for every a in J.

Every Jordan-Banach algebra with an approximate identity
has CFP (see [3]). As a consequence, every JB∗-algebra has CFP
(see [89, Proposition 3.5.4]).

Theorem 7.1.14 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Let T : E → F be a linear mapping between two Jordan-
Banach triples and suppose that one of the following statements
hold:
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1. T is a generalised triple homomoprhism and F is anisotrop-
ic.

2. E has Cohen’s factorisation property.

If the restriction of T to any closed inner ideal generated by a
single element is continuous, then T is continuous. 2

7.2. Triple modules and derivations

Let A be an associative algebra. Le us recall that an A-
bimodule is a vector space X, equipped with two bilinear prod-
ucts (a, x) 7→ ax and (x, a) 7→ xa form A × X to X satisfying
the following axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and (xa)b = x(ab)

for every a, b ∈ A and x ∈ X.
Let J be a Jordan algebra. A Jordan J-module is a vector

space X, equipped with two bilinear products (a, x) 7→ a ◦x and
(x, a) 7→ x ◦ a form J ×X → X, satisfying

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x ◦ a) ◦ b) ◦ a+ x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2,

for every a, b in A and x in X.

In [163], A.M. Peralta and B. Russo introduced the so-called
Jordan triple modules which we next present. These are the Jor-
dan triple version of the bimodules and Jordan modules.
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Let E be a complex (respectively, real) Jordan triple. A Jor-
dan triple E-module (also called triple E-module) is a vector
space X equipped with three mappings

{., ., .}1 : X × E × E → X, {., ., .}2 : E ×X × E → X

and {., ., .}3 : E × E ×X → X

satisfying the following axioms:

(JTM1) {x, a, b}1 is linear in a and x and conjugate linear in
b (respectively, trilinear), {a, b, x}3 is linear in b and x
and conjugate linear in a (respectively, trilinear) and
{a, x, b}2 is conjugate linear in a, b, x (respectively, tri-
linear)

(JTM2) {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2 for
every a, b ∈ E and x ∈ X.

(JTM3) Denoting by {., ., .} any of the products {., ., .}1, {., ., .}2
and {., ., .}3, the identity

{a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e}

+ {c, d, {a, b, e}} ,
holds whenever one of the elements a, b, c, d, e is in X
and the rest are in E.

When E is a Jordan-triple and X a triple E-module which
is also a Banach space, we will say that X is a Banach (Jor-
dan) triple E-module when the products {., ., .}1, {., ., .}2 and
{., ., .}3 are (jointly) continuous. From now on, the products
{., ., .}1, {., ., .}2 and {., ., .}3 will be simply denoted by {., ., .}.

Every real or complex associative algebra A (respectively Jor-
dan algebra J) is a real Jordan triple with respect to {a, b, c} =
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1
2
(abc+ cba), a, b, c ∈ A (respectively, {a, b, c} = (a ◦ b) ◦ c+ (c ◦
b)◦a−(a◦x)◦b), a, b, c ∈ J). It is easy to see that an A-bimodule
becomes a triple A-module when endowed with the triple prod-
ucts {a, x, b}2 = 1

2
(axb + bxa) and {a, b, x}3 = abx + xba, and

that every Jordan module X is a triple J-module with respect
to the products

{a, x, c}2 = (a ◦ x) ◦ c+ (c ◦ x) ◦ a− (a ◦ c) ◦ x) and

{a, b, x}3 = (a ◦ b) ◦ x+ (x ◦ b) ◦ a− (a ◦ x) ◦ b).

Let E be a real or complex Jordan-Banach triple. The dual
space of E, E∗, is a triple E-module when endowed with the
product:

{a, b, ϕ}(x) = {ϕ, b, a}(x) := ϕ{b, a, x}

and

{a, ϕ, b}(x) := ϕ{a, x, b}.

Let δ : A→ X be a linear mapping from a Banach algbera to a
Banach A-bimodule. Then δ is said to be a derivation if

δ(ab) = aδ(b) + δ(a)b,

for every a, b in A. Jordan derivations are similarly defined.

As in the case of homomorphisms between Banach algebras,
automatic continuity of derivations in associative and non asso-
ciative context has a focused the interest of many authors (see
for instance the survey [182]). It is due to J.R. Ringrose that
every derivation from a C∗-algebra to a Banach A-bimodule is
continuous (cf. [160]).

Let E be a real (respectively, complex) be a Jordan triple
a and X a triple E-module. A linear (respectively, conjugate
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linear) mapping δ : E → X is said to be a triple derivation if it
satisfies

δ({a, b, c}) = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)}.

Ringore’s result on automatic continuity of derivations from
a C∗-algebra is not true in this setting, as Remark 16 in [163]
shows.

Automatic continuity of triple derivations on JB∗-triples was
first studied by T. Barton and Y. Friedman. These authors proved
that every triple derivation from a complex JB∗-triple to itself is
continuous [20]. This result was extended to the real setting by
T. Ho, A.M. Peralta and B. Russo in [93].

In [163] B. Russo and A.M. Peralta give a charactersiation
for continuity of triple derivations. As a consequence they obtain
an alternative prove for the aforementioned results on automatic
continuity of triple derivations on a real or complex JB∗-triple.
Further, they prove that every derivation from a JB∗-triple to
its dual is automatically continuous.

Theorem 7.2.1 [A.M. Peralta, B. Russo, Preprint, 2010] Let E
be a real or complex JB∗-triple. The following statements hold:

1. Every triple derivation δ : E → E is continuous.

2. Every triple derivation δ : E → E∗ is continuous. 2

In the case of derivations from a C∗-algebra further automatic
continuity results can be obtained. In [163] Peralta and Russo
prove that every triple derivation from an abelian C∗-algebra to
a real Jordan-Banach triple A-module is continuous. Then, an
application of Cuntz’s theorem allow them to prove the following:
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Theorem 7.2.2 [A.M. Peralta, B. Russo, Preprint, 2010] Let A
be a C∗-algebra. Then every triple derivation from A (respective-
ly, from Asa) into a complex (respectively, real) Jordan-Banach
triple A-module is continuous. 2

7.3. Generalised triple derivations

It seems natural now to consider those linear or conjugate lin-
ear mappings that are “almost derivations”. This problem seems
not to have been considered before. In the last section of [76] we
introduce the concept of generalised triple derivation.

Definition 7.3.1 Let δ : E → X be a linear (respectively, conju-
gate linear) mapping from a real (respectively, complex) Jordan-
Banach triple into a Jordan-Banach triple E-module. Then δ is
said to be a generalised triple derivation if the mapping

δ̌ : E × E × E :→ X,

δ̌(a, b, c) := δ{a, b, c} − {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)}.

To prove the desired automatic continuity result for gener-
alised triple derivations we argue as in [163], by associating to a
generalised derivation a generalised triple homomorphism into a
certain Jordan-Banach triple module.

Let E be a Jordan-Banach triple and X a Jordan-Banach
triple E-module. The linear space E ⊕X equipped with the l1-
norm and the product

{a1 + x1, a2 + x2, a3 + x3} := {a1, a2, a3}+ {x1, a2, a3}+

{a1, x2, a3}+ {a1, a2, x3}
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is a Jordan-Banach triple, which we shall call the triple split null
extension of E and X.

Let δ : E → X be a generalised triple derivation. We define
the mapping

Θδ : E → E ⊕X,
a 7→ a+ δ(a).

It is clear that δ is continuous if and only if Θδ is continuous.
Furthermore, straightforward calculations show that

δ̌(a, b, c) = Θ̌δ(a, b, c),

for every (a, b, c) in E. Thus, Θδ is a generalised triple homomor-
phism. The fact that Jδ := Θ−1δ (AnnE⊕X(σE⊕X(Θδ))) coincides
with AnnE(σX(δ) is proved in [76, page 22].

If E is a JB∗-triple and X coincides E or E∗, the latter yields
that Jδ is a is a norm-closed triple ideal of E and

{AnnE⊕X(σE⊕X(Θδ)), AnnE⊕X(σE⊕X(Θδ)), σE⊕X(Θδ)} = 0.

Now, Theorem 7.1.11 proves that Θδ is continuous.

Theorem 7.3.2 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Let E be a real or complex JB∗-triple and δ : E → X be
a generalised triple derivation, where X = E or E∗. Then T is
continuous. 2

Since every triple derivation is a generalised triple derivation,
the above Theorem generalises the aforementioned automatic
continuity results on automatic continuity of triple derivations
by Peralta and Russo [163].

In the final part of [76] we also benefit from Cuntz Theorem
and follow the ideas of [163] to prove that every generalised triple
derivation from a C∗-algebra A to a Jordan-Banach triple A-
module is continuous.
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Theorem 7.3.3 [J.J. Garcés, A.M. Peralta, Canad. J. Math.,
2013] Every generalised triple derivation from a real or complex
C∗-algebra to a Jordan-Banach triple A-module is continuous.2



148 Chapter 7. Generalised triple homomorphisms



Chapter 8
Orthogonality preservers on real
C∗-algebras

Once the structure of an orthogonality preserving operator
between complex C∗-algebras has been described, one might won-
der about the structure orthogonality preserving operators be-
tween real C∗-algebras. As we have seen in Chapters 3 and 4, or-
thogonal sesquilinear forms play an important role in the descrip-
tion of orthogonality preservers in the complex setting. Thus, it
seems to be a worth problem that of describing orthogonal bi-
linear forms in the real setting. A little or nothing was known
about orthogonality preserving operators (nor about orthogonal
bilinear forms) on real C∗-algebras when we (Antonio M. Peralta
and the author of this thesis) studied them in [77].

Before presenting the results obtained in [77], we shall recall
some background on real C∗-algebras.

A real C∗-algebra is a real Banach *-algebra A which satisfies
the standard C∗-identity, ‖a∗a‖ = ‖a‖2, and which also has the
property that 1 + a∗a is invertible in the unitization of A for

149
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every a ∈ A. It is known that a real Banach *-algebra, A, is a
real C∗-algebra if, and only if, it is isometrically *-isomorphic
to a norm-closed real *-subalgebra of the space of all bounded
operators on a real Hilbert space (cf. [130, Corollary 5.2.11]).

Clearly, every (complex) C∗-algebra is a real C∗-algebra when
scalar multiplication is restricted to the real field. If A is a real
C∗-algebra whose algebraic complexification is denoted by B =
A⊕ iA, then there exists a C∗-norm on B extending the norm of
A. It is further known that there exists an involutive conjugate-
linear ∗-automorphism τ on B such that A = Bτ := {x ∈ B :
τ(x) = x} (compare [130, Proposition 5.1.3] or [158, Lemma
4.1.13], and [84, Corollary 15.4]). The dual space of a real or
complex C∗-algebra A will be denoted by A∗. Let τ̃ : B∗ → B∗

denote the map defined by

τ̃(φ)(b) = φ(τ(b)) (φ ∈ B∗, b ∈ B).

Then τ̃ is a conjugate-linear isometry of period 2 and the map-
ping

(B∗)τ̃ → A∗

ϕ 7→ ϕ|A
is a surjective linear isometry. We shall identify (B∗)τ̃ and A∗

without making any explicit mention.

Now, we focus our attention on orthogonal bilinear forms. Let
V : A×A→ R be a bounded bilinear form on a real C∗-algebra.
We say that V is orthogonal if V (a, b∗) = 0, whenever a ⊥ b in
A.

As we see in Chapter 3, orthogonal sesquilinear forms on
complex C∗-algebra were described by S. Goldstein in [83] (see
Theorem 3.2.4).

Let V : A × A → R be a bounded bilinear form from a
real C∗-algebra. At first look, one is tempted to extend V to a
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bilinear form on A⊕ iA and when the latter is orthogonal, apply
Goldstein Theorem. However, this extension need not to be be
orthogonal (see [77, Example 2.7]). Thus, we need to develop a
different strategy. Our approach will consist in extending V to
a bilinear form on A∗∗. To that end we proved some preliminary
results on extension of multilinear operator on real C∗-algebras
(compare [77, pp. 3-4]).

Lemma 8.1.1 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Let A1, . . . , Ak be real C∗-algebras and let
T be a multilinear continuous operator from A1 × . . . × Ak to
a real Banach space X. Then T admits a unique Arens exten-
sion T ∗∗ : A∗∗1 × . . . × A∗∗k → X∗∗ which is separately weak∗

continuous. 2

Given a real or complex C∗-algebra, A, the multiplier algebra
of A, M(A), is the set of all elements x ∈ A∗∗ such that, for each
element a ∈ A, xa and ax both lie in A. We notice that M(A) is
a C∗-algebra and contains the unit element of A∗∗. It should be
recalled here that A = M(A) whenever A is unital. The following
property allows us to restrict ourselves to the study of orthogonal
bilinear forms on unital real C∗-algebras.

Proposition 8.1.2 [J.J. Garcés and A.M. Peralta, Linear and
Multilinear algebra, 2013] Let A be a real C∗-algebra. Suppose
that V : A × A → R is an orthogonal bounded bilinear form.
Then the continuous bilinear form

Ṽ : M(A)×M(A)→ R, Ṽ (a, b) := V ∗∗(a, b)

is orthogonal. 2

Using two different approaches we were able to describe the
behavior of an orthogonal bilinear form on the set of self-adjoint
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elements, however we are not able to give a complete description
of its form on the whole real C∗-algebras.

Proposition 8.1.3 [J.J. Garcés and A.M. Peralta, Linear and
Multilinear algebra, 2013] Let A be a unital C∗-algebra with unit
1. Suppose that V : A × A → R is an orthogonal, symmetric,
bounded bilinear form. Then defining φ(x) := V (x, 1) (x ∈ A),
we have V (a, b) = φ1(a ◦ b), for every a, b in Asa. 2

A description of such a form V on the whole A remains open
for general real C∗-algebras. Nevertheless, we were able to de-
scribe bounded orthogonal forms on abelian real C∗-algebras.

8.2. Orthogonal bilinear forms on

abelian real C∗-algebras

Throughout this section, A will denote a unital, abelian, real
C∗-algebra whose complexification will be denoted by B. Clearly
B is a unital abelian C∗-algebra. It is known that there exists a
period 2 conjugate-linear ∗-automorphism τ : B → B such that
A = Bτ := {x ∈ B : τ(x) = x} (cf. [158, 4.1.13] and [84, 15.4] or
[130, §5.2]).

By the commutative Gelfand theory, there exists a compact
Hausdorff space K such that B is C∗-isomorphic to the C∗-
algebra C(K) of all complex valued continuous functions on K.
The Banach-Stone Theorem implies the existence of a homeo-
morphism σ : K → K such that σ2(t) = t, and

τ(a)(t) = a(σ(t)),

for all t ∈ K, a ∈ C(K). Real function algebras of the form
C(K)τ have been studied by its own right and are interesting in
some other settings (see, for example, [125]).



8.2. Orthogonal bilinear forms on
abelian real C∗-algebras 153

Henceforth, the symbol B will stand for the σ-algebra of
all Borel subsets of K, S(K) will denote the space of B-simple
scalar functions defined on K, while the Borel algebra over K,
B(K), is defined as the completion of S(K) under the supre-
mum norm. It is known that B = C(K) ⊂ B(K) ⊂ C(K)∗∗.
The mapping τ ∗∗ : C(K)∗∗ → C(K)∗∗ is a period 2 conjugate-
linear ∗-automorphism on B∗∗ = C(K)∗∗. It is easy to see that
τ ∗∗(B(K)) = B(K), and hence τ ∗∗|B(K) : B(K) → B(K) de-
fines a period 2 conjugate-linear ∗-automorphism on B(K). By
an abuse of notation, the symbol τ will denote τ , τ ∗∗ and τ ∗∗|B(K)

indistinctly. It is clear that, for each Borel set B ∈ B, τ(χ
B

) =
χ
σ(B)

.

Let V be an orthogonal bilinear form on an abelian real C∗-
algebra. First of all, we observe that, by Proposition 8.1.2, we can
assume that A is unital. Our strategy shall consist in extending
V to a bilinear form on B(K). The main reason to do that is
the abundance of projections in B(K). We recall that such an
extension exists and is unique by Lemma 8.1.1. However, it is
not clear, at least initially, that this extension, that we shall also
call V , is orthogonal.

Before studying bilinear forms we study spectral resolutions
of self-adjoint and skew symmetric elements inA. It is well known
that a self-adjoint element in A can be approximated in norm by
finite sums of the form

∑n
k=1 λkχBk , where {Bk}nk=1 is a family

of mutually disjoint borel sets such that σ(Bk) = Bk for every k.

If b is a ∗-skew-symmetric element in A, then it is not hard
to see that b can be approximated in norm by sums of the form

n∑
k=1

λkiαk(χEk − χσ(Ek)),

where (Ek)
n
k=1 is a family of mutually disjoint borel sets. How-

ever, this “spectral resolution” is no as good as one could wish,
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since for k 6= j the elements iαk(χEk−χσ(Ek)) and iαj(χEj−χσ(Ej))
might not be orthogonal.

The following Lemma is the key to obtain a more useful spec-
tral resolution for ∗-skew-symmetric elements in A.

Lemma 8.2.1 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Let A be a unital, abelian, real C∗-algebra
whose complexification is denoted by B = C(K), for a suit-
able compact Hausdorff space K. Let τ : B → B be a peri-
od 2 conjugate-linear ∗-automorphism satisfying A = Bτ and
τ(a)(t) = a(σ(t)), for all t ∈ K, a ∈ C(K), where σ : K → K is
a period 2 homeomorphism. Then the set N = {t ∈ K : σ(t) 6= t}
is an open subset of K, F = {t ∈ K : σ(t) = t} is a closed sub-
set of K and there exists an open subset O ⊂ K maximal with
respect to the property O ∩ σ(O) = ∅. 2

It should be noticed here that, in Lemma 8.2.1, O ∪ σ(O) =
N , an equality which follows from the maximality of O.

From Lemma 8.2.1 and the comments preceding it, the fol-
lowing “spectral resolution” of a *-skew-symmetric element in
B(K)τ can be deduced:

Lemma 8.2.2 [J.J. Garcés and A.M. Peralta, Linear and Multi-
linear algebra, 2013] In the notation of Lemma 8.2.1, let B(A) =
B(K)τ , let a ∈ B(K)τsa, and let b be an element in B(A)skew.
Then the following statements hold:

a) b|F = 0;

b) For each ε > 0, there exist mutually disjoint Borel sets B1,
. . . , Bm ⊂ O and real numbers λ1, . . . , λm satisfying∥∥∥∥∥b−

m∑
j=1

i λj(χBj − χσ(Bj))

∥∥∥∥∥ < ε;
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c) For each ε > 0, there exist mutually disjoint Borel sets C1,
. . . , Cm ⊂ K and real numbers µ1, . . . , µm satisfying σ(Cj) =

Cj, and

∥∥∥∥∥a−
m∑
j=1

µjχCj

∥∥∥∥∥ < ε.

We shall keep the notation of Lemma 8.2.1 throughout the
section. Henceforth, for each C ⊆ O we shall write u

C
= i (χ

C
−

χ
σ(C)

). The symbol u0 will stand for the element uO . It is easy
to check 1 = χ

F
+ u0u

∗
0, where 1 is the unit element in B(K)τ .

By Lemma 8.2.2 a), for each b ∈ B(K)τskew we have b ⊥ χ
F
, and

so b = bu0u
∗
0.

The separate weak∗-continuity of V ∗∗ together with succes-
sive applications of the Urysohn Lemma, and regularity of el-
ements in B(K)τ allow us to prove the following properties of
V ∗∗:

Proposition 8.2.3 [J.J. Garcés and A.M. Peralta, Linear and
Multilinear algebra, 2013] Let K be a compact Hausdorff space, τ
a period 2 conjugate-linear isometric ∗-homomorphism on C(K),
A = C(K)τ , and V : A×A→ R be an orthogonal bounded bilin-
ear form whose Arens extension is denoted by V ∗∗ : A∗∗×A∗∗ →
R. Let σ : K → K be a period 2 homeomorphism satisfying
τ(a)(t) = a(σ(t)), for all t ∈ K, a ∈ C(K). Then the fol-
lowing assertions hold for all Borel subsets D,B,C of K with
σ(B) ∩B = σ(C) ∩ C = ∅:

a) V (χ
D
, u

B
) = V (u

B
, χD) = 0, whenever A ∩B = ∅;

b) V (u
B
, u

C
) = 0, whenever B ∩ C = ∅;

c) V ((u0u
∗
0 − uCu∗C )u

B
, u

C
) = V (u

C
, (u0u

∗
0 − uCu∗C )u

B
) = 0.

2
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The identities proved in the above proposition together with
the spectral resolution in Lemma 8.2.2 led us to describe all
continuous orthogonal forms on real C∗-algebras.

Theorem 8.2.4 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Let V : A × A → R be a continuous or-
thogonal form on a commutative real C∗-algebra, then there exist
ϕ1, and ϕ2 in A∗ satisfying

V (x, y) = ϕ1(xy) + ϕ2(xy
∗),

for every x, y ∈ A. 2

An immediate consequence of the above theorem is that the
Arens extension of an orthogonal form on A is again an orthog-
onal form (compare [77, Corollary 2.6]).

We notice that the functionals ϕ1 and ϕ2 appearing in the
above Theorem 8.2.4 need not to be unique, as it is shown in
[77, Remark 2.5].

Clearly, the statement of the above Theorem 8.2.4 doesn’t
hold for bilinear forms on a commutative (complex) C∗-algebra.
The real version presented here is completely independent from
the result proved by K. Ylinen for commutative complex C∗-
algebras in [189, Theorem 6.11] and from [83]. It seems natural
to ask whether the real result follows from the complex one by
a mere argument of complexification. The answer is, in general,
negative. In [77, Example 2.7] we provide an example of an or-
thogonal bilinear form on a commutative real C∗-algebra whose
(canonical) extension to the complexification is not an orthogo-
nal form.

The reader may be wondering which orthogonal bilinear forms
can be extended to a bilinear form on the complexification. The
following result answers this question:
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Corollary 8.2.5 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Let V : A × A → R be a continuous or-
thogonal form on a commutative real C∗-algebra, let B denote the
complexification of A and let Ṽ : B × B → R be the (complex)

bilinear extension of V . Then the form Ṽ is orthogonal if, and
only if, V writes in the form V (x, y) = ϕ1(xy) (x, y ∈ A), where
ϕ1 is a functional in A∗. 2

8.3. Orthogonality preservers

Once the the structure of orthogonal forms on abelian real
C∗-algebras is known, it is natural to try to describe orthogonal-
ity preserving operators between unital abelian real C∗-algebras.
Our approach in this study will consist on associating to an or-
thogonality preserving linear mapping a “support function” that
will enjoy similar properties to those of the support of an or-
thogonality preserving linear mapping between complex C(K)-
spaces.

The results presented here are independent innovations and
extensions of those proved by Beckenstein, Narici and Todd, and
Jarosz for C(K)-spaces.

Let T : C(K1)
τ1 → C(K2)

τ2 be an orthogonality preserving
linear mapping. Keeping in mind the notation in the previous
section, we write Li := Oi∪Fi, whereOi and Fi are the subsets of
Ki given by Lemma 8.2.1. The map sending each f in C(Ki)τi to
its restriction to Li is a C∗-isomorphism (and hence a surjective
linear isometry) from C(Ki)τi onto the real C∗-algebra Cr(Li)
of all continuous functions f : Li → C taking real values on
Fi. Thus, studying orthogonality preserving linear maps between
C(K)τ spaces is equivalent to study orthogonality preserving
linear mappings between the corresponding Cr(L)-spaces.
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Henceforth, we consider an orthogonality preserving (not nec-
essarily continuous) linear map T : Cr(L1) → Cr(L2), where L1

and L2 are two compact Hausdorff spaces and each Fi is a closed
subset of Li.

We consider a partition of the set L2 :

Z1 = {s ∈ L2 : δsT is a non-zero bounded real-linear mapping},

Z3 = {s ∈ L2 : δsT = 0}, and Z2 = L2\(Z1 ∪ Z3).

It is easy to see that Z3 is closed.

As in the complex case, we can define a continuous support
map ϕ : Z1∪Z2 → L1. More concretely, for each s ∈ Z1∪Z2, we
write supp(δsT ) for the set of all t ∈ L1 such that for each open
set U ⊆ L1 with t ∈ U there exists f ∈ Cr(L1) with coz(f) ⊆ U
and δs(T (f)) 6= 0.

Following a standard argument, it can be shown that, for
each s ∈ Z1 ∪ Z2, supp(δsT ) is non-empty and reduces exactly
to one point ϕ(s) ∈ L1, and the assignment s 7→ ϕ(s) defines a
continuous map from Z1 ∪ Z2 to L1. Furthermore, the value of
T (f) at every s ∈ Z1 depends strictly on the value f(ϕ(s)). More
precisely, for each s ∈ Z1 with ϕ(s) /∈ F1, the value T (g)(s) is the
same for every function g ∈ Cr(L1) with g ≡ i on a neighborhood
of ϕ(s). Thus, defining T (i)(s) := 0 for every s ∈ Z3∪Z2 and for
every s ∈ Z1 with ϕ(s) ∈ F1, and T (i)(s) := T (g)(s) for every
s ∈ Z1 ∪ Z2 with ϕ(s) /∈ F1, where g is any element in Cr(L1)
with g ≡ i on a neighborhood of ϕ(s), we get a (well-defined)
mapping T (i) : L2 → C. It should be noticed that “T (i)” is just
a symbol to denoted the above mapping and not an element in
the image of T .

The next theorem is the desired generalisation of the classical
results on complex C(K)-spaces presented in Chapter 3.
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Theorem 8.3.1 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] In the notation above, let T : Cr(L1) →
Cr(L2) be an orthogonality preserving linear mapping. Then L2

decomposes as the union of three mutually disjoint subsets Z1, Z2,
and Z3, where Z2 is open and Z3 is closed, there exist a contin-
uous support map ϕ : Z1 ∪ Z2 → L1, and a bounded mapping
T (i) : L2 → C which is continuous on ϕ−1(O1) satisfying:

T (i)(s) ∈ R (∀s ∈ F2),

T (i)(s) = 0 (∀s ∈ Z3 ∪ Z2 and ∀s ∈ Z1 with ϕ(s) ∈ F1),

|T (1)(s)|+ |T (i)(s)| 6= 0, (∀s ∈ Z1), (8.1)

T (f)(s) = T (1)(s) <ef(ϕ(s)) + T (i)(s) =mf(ϕ(s)), (8.2)

for all s ∈ Z1, f ∈ Cr(L1),

T (f)(s) = 0, (∀s ∈ Z3, f ∈ Cr(L1)),

and for each s ∈ L2, the mapping Cr(L1)→ C, f 7→ T (f(s)), is
unbounded if, and only if, s ∈ Z2. Furthermore, the set ϕ(Z2) is
finite. 2

As in the complex case, when further hypothesis on T are as-
sumed, more properties on ϕ are obtained. When T is bijective
we were able to prove that T is continuous, however contrary
to the result in the complex case, ϕ need not to be, in general,
a homeomorphism, and T−1 need not be orthogonality preserv-
ing (see Example 3.7 in [77]). However, a result of automatic
continuity can be derived.

Theorem 8.3.2 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Every orthogonality preserving linear bi-
jection between unital commutative real C∗-algebras is (automat-
ically) continuous.
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As we have already mentioned, the inverse of an orthogonal-
ity preserving linear bijection between Cr(L)-spaces need not be
orthogonality preserving. In [77], we also characterised biortho-
gonality preserving operators between Cr(L)-spaces.

Theorem 8.3.3 [J.J. Garcés and A.M. Peralta, Linear and Mul-
tilinear algebra, 2013] Let T : Cr(L1) → Cr(L2) be a mapping.
The following statements are equivalent:

(a) T is a biorthogonality preserving linear surjection;

(b) There exists a (surjective) homeomorphism ϕ : L2 → L1

with ϕ(O2) = O1, a function a1 = γ1 + iγ2 in Cr(L2) with
a1(s) 6= 0 for all s ∈ L2, and a function a2 = η1 + iη2 : L2 →
C continuous on O2 with the property that

0 < ı́nf
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣
≤ sup

s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ < +∞,

such that

T (f)(s) = a1(s) <ef(ϕ(s)) + a2(s) =mf(ϕ(s))

for all s ∈ L2 and f ∈ Cr(L1). 2



Chapter 9
Local triple derivations

According to a chronological order, one of the latest prob-
lems we have explored is the problem of local triple derivations
on C∗-algebras, treated in collaboration with M. Burgos, F.J.
Fernández-Polo and A.M. Peralta in [36].

Local (associative) derivations on a Banach algebra where
introduced by R. Kadison in 1990 (see [160]) in the following
sense: Let A be an associative Banach algebras and X an A-
bimodule. A linear mapping T : A → X is said to be a local
(associative) derivation if for each a in A, there is a derivation
Da : A → X such that T (a) = Da(a). R. Kadison proved that
each norm-continuous local derivation of a von Neumann algebra
W into a dual W -bimodule is a derivation (cf. [113, Theorem A]).
In a remarkable paper, B.E. Johnson extended the above result
proving that every (continuous) local derivations from any C∗-
algebra B into any Banach B-bimodule is a derivation (see [110,
Theorem 5.3]). In [110], B.E. Johnson also gave an automatic
continuity result, showing that local derivations on C∗-algebras
are automatically continuous.

161
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The above results were highly stimulating for a multitude
of studies on local derivations on C∗-algebras (see, for example,
[4, 5, 47, 86, 87, 94, 127, 132, 131, 171] and [193]). The above
theorems also led to the study of local automorphisms, local
isometries and 2-local derivations and automorphisms (see for
instance [167, 141, 85, 142, 102] and [168]).

In [36] M. Burgos, F.J. Fernández-Polo, A.M. Peralta and
the author of this Thesis study local triple derivations on C∗-
algebras. We also explore the connections of local triple deriva-
tions and the generalised derivations introduced in [132] by J. Li
and Z. Pan (we aware that this concept of generalised derivation
does not, in general, coincide with the concept of generalised
derivation introduced in [76]).

Although our main results are obtained in the setting of C∗-
algebras we also give some of the definitions and preliminary
results in a more general setting.

Definition 9.1.1 Let E be a JB∗-triple and let X be a Jordan-
Banach triple E-module. A conjugate linear mapping δ : E → X
is said to be a local triple derivation if for each a in E, there
exits a triple derivation δa : E → X such that δ(a) = δa(a).
A local triple derivation on E is a linear mapping T : E → E
satisfying that for each a ∈ E, there exists a triple derivation
δA : E → E such that T (a) = δa(a).

The problem we are interested in is whether every local triple
derivation on a C∗-algebra or on a JB∗-triple is a triple deriva-
tions.

Local triple derivations on a JB∗-triple were introduced by
M. Mackey in [137]. In the just quoted paper, M. Mackey gave a
partial affirmative answer the above problem by proving that ev-
ery continuous local triple derivation on a JBW∗-triple is a triple
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derivation. The proofs and techniques applied by M. Mackey in
this result depend heavily in the particular structure of a JBW∗-
triple and the abundance of tripotent elements in this setting (for
this reason, they are also valid to prove that every local triple
derivation on a compact JB∗-triple is a triple derivation). Mack-
ey’s theorem is an appropriate triple version of the aforemen-
tioned Kadison’s theorem. The corresponding JB∗-triple version
of Johnson’s theorem was an open problem.

Problem 9.1.2 Is every (continuous) local triple derivation on
a JB∗-triple E (or more generally, every local triple derivation
from E into a Jordan Banach triple E-module) a triple deriva-
tion?

Let a, b be elements in E. Then the conjugate linear mapping
δ(a, b) := L(a, b)− L(b, a) is a derivation. A triple derivations is
said to be inner if it can be written as a finite sum of derivations
of the form δ = δ(a, b) := L(a, b)− L(b, a).

Throughout this chapter A will denote a unital C∗-algebra
and B a subalgebra of A containing the unit of A. It is not
hard to see that if δ : A → B is a local triple derivation, then
δ(1)∗ = −δ(1). The mapping δ(T (1), 1) is a triple derivation with
δ(T (1), 1)1 = 2T (1). Therefore

T̃ = T − 1

2
δ(T (1), 1)

is a local triple derivation with T̃ (1) = 0.

Following the terminology employed by J. Li and Zh. Pan
in [132], a linear mapping D from a unital C∗-algebra A to a
(unital) Banach A-bimodule X is called a generalised derivation
whenever the identity

D(ab) = D(a)b+ aD(b)− aD(1)b
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holds for every a, b and c in A.

Let a be an element in a C∗-algebra B. It is easy to see that
the operator Ga : B → B, x 7→ Ga(x) := ax+ xa, is an example
of a generalised derivation on B. Since, in the case of B being
unital, Ga(1) = 2a, it follows that Ga is not a local ternary
derivation whenever a∗ 6= −a.

We shall say that D is a generalised Jordan derivation when-
ever D(a ◦ b) = D(a) ◦ b + a ◦D(b)− Ua,bD(1), for every a, b in
A, where the Jordan product is given by a ◦ b := 1

2
(ab+ ba) and

Ua,b(x) := (a ◦ x) ◦ b+ (b ◦ x) ◦ a− (a ◦ b) ◦ x. Every generalised
(Jordan) derivation D : A → X with D(1) = 0 is a (Jordan)
derivation, and every generalised derivation is a generalised Jor-
dan derivation. The reciprocal statement is not clear at this stage
(see [36, Remark 9.6] for completeness).

Let us note that the above notions of generalised derivations
and generalised Jordan derivations are not related to the concept
of generalised triple derivations used in Chapter 7. Unfortunate-
ly, the names are similar but the concept are not related.

It is due to B.E. Johnson that every bounded Jordan deriva-
tion from a C∗-algebra A to a Banach A-bimodule is an asso-
ciative derivation (cf. [109]). It is also known that every Jordan
derivation from a C∗-algebra A to a Banach A-module or to a
Jordan Banach A-module is continuous (cf. [163, §1]). Therefore,
every generalised Jordan derivation D from a unital C∗-algebra
A to a Banach A-bimodule with D(1) = 0 is a bounded Jordan
derivation and hence a continuous derivation.

We shall explore now the connections between generalised
(Jordan) derivations and triple derivations from A to B. Let
δ : A→ B be a triple derivation. Since δ(1)∗ = −δ(1), we have

δ(a ◦ b) = δ {a, 1, b} = {δ(a), 1, b}+ {a, 1, δ(b)}+ {a, δ(1), b}
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= δ(a)◦ b+a◦ δ(b) +Ua,b(δ(1)∗) = δ(a)◦ b+a◦ δ(b)−Ua,b(δ(1)),

for every a, b in A, which shows that δ is a generalised Jordan
derivation.

Direct computations allow to prove the following property for
local triple derivations:

Lemma 9.1.3 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés and
A.M. Peralta, Commun. Alg., 2013] Let E be a JB∗-subtriple of
a JB∗-triple F , where the latter is regarded as a Jordan Banach
triple E-module with respect to its natural triple product. Let
T : E → F be a bounded local triple derivation. Then the prod-
ucts of the form {a, T (b), c} vanish for every a, b, c in A with
a ⊥ b ⊥ c. 2

The next result, whose proves makes use of Lemma 9.1.3 and
Goldstein’s description of orthogonal sesquilinear forms, shows
that every local triple derivation from a commutative unital C∗-
algebra is also a generalised Jordan derivation.

Proposition 9.1.4 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés
and A.M. Peralta, Commun. Alg., 2013] Let A be a commutative
C∗-subalgebra of a C∗-algebra B. Suppose A and B are unital, A
contains the unit, 1, of B and the latter is regarded as a Jordan
Banach triple A-module with respect to its natural triple product.
Let T : A→ B be a bounded local triple derivation. Then T is a
generalised Jordan derivation. 2

During the prove of the above Proposition, we showed that
the identity

{x, T (ys), t} = {x, T (y), s∗t}+ {xy∗, T (s), t} − {xy∗, T (1), s∗t}

holds for every x, y, s, t in A. An application of Goldstine’s The-
orem and the separate weak∗-continuity of the triple product
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in A∗∗ and the weak∗-continuity of T ∗∗ allow to prove that the
equality

{x, T ∗∗(ys), t} = {x, T ∗∗(y), s∗t}+ {xy∗, T ∗∗(s), t}

−{xy∗, T (1), s∗t}

holds for every x, y, s, t in A∗∗. Taking x = t = 1 we see that T ∗∗

also is a generalised Jordan derivation.

The above observation establishes a stronger version of Propo-
sition 9.1.4, which is a subtle variant of [113, Sublemma 5] and
[132, Proposition 1.1].

Proposition 9.1.5 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés
and A.M. Peralta, Commun. Alg., 2013] In the hypothesis of
Proposition 9.1.4, let T : A→ B be a bounded local triple deriva-
tion. Then for each a, b, c ∈ A with ab = bc = 0 we have

aT (b)∗c = aT (b∗)∗c = 0.

2

One of the main results established by J. Li and Z. Pan in
[132, Corollary 2.9] implies that a bounded linear operator T :
A → B is a generalised derivation if, and only if, aT (b)c = 0,
whenever ab = bc = 0.

Let us suppose that, in the above hypothesis, A is commuta-
tive and T : A→ B is a local triple derivation. Proposition 9.1.5
assures that aT (b∗)∗c = 0, for every ab = bc = 0 in A, and con-
sequently, the mapping x 7→ T (x∗)∗ is a generalised derivation,
and thus,

T (a∗b∗)∗ = T (a∗)∗b+ aT (b∗)∗ − aT (1)∗b,
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or equivalently,

T (ba) = T (ab) = bT (a) + T (b)a− bT (1)a,

showing that T is actually a generalised derivation. We have
therefore proved the following:

Corollary 9.1.6 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés
and A.M. Peralta, Commun. Alg., 2013] In the hypothesis of
Proposition 9.1.4, every local bounded triple derivation T from
A to B is a generalised derivation. Moreover, taking T̃ = T −
1
2
δ(T (1), 1) = T − δ

(
1
2
T (1), 1

)
, it follows that T̃ is a local triple

derivation with T̃ (1) = 0 and hence T̃ is a derivation. 2

The statement concerning T̃ in the above corollary could be
also derived applying the previously mentioned Johnson’s theo-
rem on the equivalence of Jordan derivations and (associative)
derivations (cf. [109, Theorem 6.3]).

Associative derivations from A to B are not far away from
triple derivation. It is not hard to check that, in our setting,
a bounded linear operator δ : A → B is a triple derivation
and δ(1) = 0 if, and only if, it is a ∗-derivation, that is, it is a
derivation and δ(a∗) = δ(a)∗. The next result assures that local
triple derivations also are symmetric operators.

Lemma 9.1.7 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés and
A.M. Peralta, Commun. Alg., 2013] Let B be a unital C∗-algebra,
and let T : B → B be a bounded local triple derivation with
T (1) = 0. Then T is a symmetric operator, that is, T (a∗) =
T (a)∗, for every a ∈ B. 2

In [36, Theorem 10] we were finally able to prove that, in our
setting, every local triple derivation is actually a triple deriva-
tion.
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Theorem 9.1.8 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés
and A.M. Peralta, Commun. Alg., 2013] Let B be a unital C∗-
algebra. Every bounded local triple derivation on B is a triple
derivation. 2

In the final section of [36] we generalise the above Theorem
9.1.8 to the setting of unital JB∗-algebras.

Theorem 9.1.9 [M. Burgos, F.J. Fernández-Polo, J.J. Garcés
and A.M. Peralta, Commun. Alg., 2013] Let J be a unital JB∗-
algebra. Every bounded local triple derivation from J to J is a
triple derivation. 2



Chapter 10
Conclusions and open problems

We believe that the relevance of the problems considered in
this thesis has been proved. As we have seen, these problems
have been treated in past by many important authors.

We also believe that our contributions have their importance
since, in many cases, we gave a final solution to problems that
had been open for a long time (that is the case, for example, of
the description of orthogonality preservers between C∗-algebras
or the characterization of weakly compact orthogonality preserv-
ing operators between C∗-algebras). Some problems remain open
after our research. In these cases our contribution doesn’t give a
definitive answer to the problem we treated, but our results im-
prove considerably what was known before on the subject. As it
can be contrasted in the list of references, our results have been
published in well reputed journals in our area.

We conclude this memory by explaining some current re-
search lines that we are considering at the moment or that we
want to consider in the future.

169
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10.1. Orthogonality preserves on real

C∗-algebras

As we have seen in Chapter 3, the structure of an orthog-
onality preserving operator between complex C∗-algebras (also
between JB∗-algebras) is already known. In Chapter 8 we initi-
ated the study of orthogonality preservers on real C∗-algebras.

Using classical techniques (the support function) we are able
to determine orthogonality preserving linear mappings between
abelian unital real C∗-algebras. However, the non-unital and the
non-associative case remain open.

Problem 10.1.1 Goal: To study orthogonality preserving linear
mappings between abelian real C∗-algebras.

Problem 10.1.2 Is every orthogonality preserving linear bijec-
tion between abelian real C∗-algebras continuous?

We notice that under continuity assumption the problem can
be reduced to the unital case (via an extension of the mapping to
the multiplier algebra) where the structure of an orthogonality
preserving operator is already known. However in Problem 10.1.1
we do not assume continuity.

More generally, we can pose the problem of describing or-
thogonality preserving operators between real C∗-algebras.

Problem 10.1.3 To describe orthogonality preserving operators
between real C∗-algebras.

If we observe the techniques used to determine orthogonali-
ty preserving operators in the complex setting, we see that the
orthogonal forms and the orthogonality additive n-homogeneous
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polynomials were important tools to obtain this description. Thus,
these notions might also play a role in the solution of Problem
10.1.3.

Problem 10.1.4 To describe orthogonal bilinear forms on real
C∗-algebras.

We recall that, by Proposition 8.1.3, if V : A× A→ R is an
orthogonal bilinear form on a real C∗-algebra A, the there exists
φ in A∗ such that

V (a, b) = φ(a ◦ b),

for every a, b in Asa. However, the behavior of V on Askew remains
unknown.

Let P : A → R be an orthogonally additive 2-homogeneous
polynomial on an abelian (unital) real C∗-algebra. We define
V : A × A → R by V (a, b) = P (a + b) − P (a) − P (b). Clearly,
V is an orthogonal bilinear form. By Theorem 8.2.4 there exist
ψ, ϕ in A∗ such that

V (a, b) = ψ(ab) + ϕ(ab∗),

for every a, b in A. We then have that P (a+ b)−P (a)−P (b) =
ψ(ab) + ϕ(ab∗), for every a, b in A. Taking a = b we prove that
P (a) = 1

2
ψ(a2) + 1

2
ϕ(aa∗), for every a in A.

Let us fix n in N and ψ, ϕ in A∗. For k ≤ n, it is not hard to
see that the assignment

P{k,ψ,ϕ}(a) = ψ(an) + ϕ(ak(a∗)n−k)

defines an n-homogeneous polynomials on A which is clearly or-
thogonally additive.
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Problem 10.1.5 Is every n-homogeneous polynomial on a com-
mutative (unital) real C∗-algebra A a finite sum of polynomials
of the form P{k,ψ,ϕ}?

More generally, What is the form of an n-homogeneous or-
thogonally additive polynomial on a (not necessarily commuta-
tive) real C∗-algebra?

Another problem we have considered, once the structure of an
orthogonality preserving operator is known, is that of studying
the special case in which the operator also is weakly compact.

Let T : A → B be an orthogonality preserving operator
between abelian unital C∗-algebra. From Theorems 8.3.1 and
Theorem 6.2.2 (see also 6.2.1) one might conjecture the existence
of norm-null sequences (an), (bn) in B, where an ⊥ am and bn ⊥
bm for n 6= m, and a a sequence of points mutually distinct points
(tn) in K2 such that

T (f) =
∑
n

an <ef(ϕ(tn)) + bn =mf(ϕ(tn))

for every f in A (where ϕ stands for the support function of T ).

However we should be careful since, as we have already seen,
frequently, statements which are true in the complex setting need
not be true in the real setting.

Problem 10.1.6 To describe weakly compact orthogonality pre-
serving operators between (abelian) real C∗-algebras.

10.2. Automatic continuity

Concerning automatic continuity of orthogonality preservers
between C∗-algebras our main results in [38] (see also Chapter 4)
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shows that every biorthogonality preserving linear surjection be-
tween dual C∗-algebras or von Neumann algebras is continuous.
As a consequence, a partial affirmative answer to the a conjec-
ture posed by J. Araujo and K. Jarosz in [12] can be given (com-
pare Corollary 4.2.13). Indeed, if T is a symmetric zero-product
preserving operator, then T preserves orthogonality. Thus, ev-
ery symmetric and bijective linear mapping between dual C∗-
algebras or von Neumann algebras which preserves zero-products
in both directions is biorthogonality preserving and hence con-
tinuous.

In [129], C.W. Leung, N.C. Tsai, N.C. Wong prove that every
linear bijection between von Neumann algebras which preserves
zero-products in both directions is automatically continuous.

The problem for general C∗-algebras remains open, for both
biorthogonality preserving linear surjections and linear bijections
preserving zero-products in both senses.

Problem 10.2.1 Is every biorthogonality preserving linear sur-
jection between C∗-algebras (automatically) continuous?

We can also consider biorthogonality preserving linear sur-
jections on JB∗-algebras. From the automatic continuity results
proved in [39], we know that every biorthogonality preserving
linear surjection between dual JB∗-algebras or atomic JBW∗-
algebras is continuous.

JBW∗-algebras are, in some sense, non-associative Jordan
analogues of von Neumann algebras. Thus, it is natural to ask
whether every biorthogonality preserving linear surjection be-
tween JBW∗-algebras is continuous.

Problem 10.2.2 Is every biorthogonality preserving linear sur-
jection between JBW∗-algebras (automatically) continuous?
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Let J be a unital JB∗-algebra and let P(J) denote the set of
projections of J. Let T : J → E be a non-zero orthogonality pre-
serving linear mapping from J to a JB∗-triple. Take a projection
p in P(J), the JB∗-subalgebra generated by 1 and p, J1,p, is a
two dimensional JB∗-algebra. Let r = r(h), where h = T (1). By
Theorem 3.2.14, there exists a (unital) Jordan ∗-homomorphism
Sp : J1,p → E∗∗2 (r), such that S(J1,p) ⊆ {h}′ and

T (x) = h ◦r Sp(x),

for every x in J1,p. In particular, there exists a unique projection
Sp(p) in E∗∗2 (r) such that T (p) = h ◦r Sp(p).

We define the mapping

S : span(P(J))→ E2(r),

given by

S

(
n∑
k=1

λkpk

)
:=

n∑
k=1

λkSpk(pk).

Let us suppose that
∑n

k=1 λkpk =
∑m

j=1 αjqj then, since

T

(
n∑
k=1

λkpk

)
=

n∑
k=1

λkT (pk) =
m∑
j=1

αjT (qj) = T

(
m∑
j=1

αjqj

)
,

we have

h ◦r

(
n∑
k=1

λkSpk(pk)

)
= h ◦r

(
m∑
j=1

αjSqj(qj)

)
.

Now, it follows from [35, Lemma 4.1] that the multiplication
operator Mh : E∗∗2 (r) → E∗∗2 (r) is injective. The latter implies
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that
n∑
k=1

λkSpk(pk) =
m∑
j=1

αjSqj(qj), and thus the mapping S is

well-defined. Actually, it is not hard to see that S is a Jordan
∗-homomorphism.

Proposition 10.2.3 Let T : J → E be an orthogonality pre-
serving linear mapping from a unital JB∗-algebra to a JB∗-triple.
Then there exists a (unital) Jordan ∗-homomorphism

S : span(P(J))→ E∗∗2 (r(h))

such that S(span(P(J))) ⊆ {h}′ and

T (x) = h ◦r S(x),

for every x in span(P(J)). 2

If J = span(P(J)) then S is continuous and therefore T is
continuous too.

Theorem 10.2.4 Let J be a unital JB∗-algebra linearly spanned
by its projections. Then every orthogonality preserving linear
mapping from J to a JB∗-triple is continuous. 2

The following generalisation of Theorem 4.2.9 follows as a
direct consequence:

Corollary 10.2.5 Let A be a unital C∗-algebra linearly spanned
by its projections. Then every orthogonality preserving linear
mapping form A to a JB∗-triple is continuous. 2

Theorem 10.2.4 justifies the interest of the following problem:

Problem 10.2.6 To find examples of JB∗-algebras linearly spa-
nned by projections.
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10.3. Stability

Let A and B be Banach algebras and let T : A → B be a
bounded generalised homoeomorphism, that is, a mapping for
which there exists ε > 0 such that

‖T (ab)− T (a)T (b)‖ ≤ ε‖a‖‖b‖,

for every a, b ∈ A.
Since, in some sense, T almost preserves the product, one

might wonder whether T is far from being an homomorphism
or not. In [108] studies this problem. More concretely, Johnson
studies when a generalised homomorphism is near an homomor-
phism.

We shall denote by M(A,B) the set of homomorphisms form
a into B. Given a generalised homomorphism T in L(A,B) we
define

d(T ) = ı́nf{‖T − S‖ : S ∈M(A,B)}.
The constant d(T ) can be seen as a measure of how products are
preserved by T .

Clearly, T is an homomorphism if, and only if, d(T ) = 0. The
problem considered by Johnson in [108] is whether ‖Ť‖ being
small implies d(T ) being small.

Definition 10.3.1 We say that a pair of Banach algebras (A,B)
is AMNM (almost multiplicative are near multiplicative maps)
if for each positive ε and K there is a positive δ such that if
T ∈ L(A,B) with ‖T‖ < K and ‖Ť‖ < δ then d(T ) < ε.

Definition 10.3.1 admits the following reformulation:

Proposition 10.3.2 [108, PROPOSITION 1.4] The following
are equivalent:
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1. (A,B) is AMNM.

2. For any bounded sequence {Tn} in L(A,B), with Ťn → 0
there is a sequence {Sn} in M(A,B) with Tn − Sn → 0. 2

A Banach algebra is said to be AMNM if (A,C) is AMNM
(is Jarosz’s terminology being AMNM is called f -stable [101]).

Many examples of AMNM pairs of Banach algebras are pro-
vided by Johnson in [108]. Perhaps one of the more important
ones is the following:

Theorem 10.3.3 [108, THEOREM 3.1] Let A and B be ame-
nable Banach algebras and suppose that B is a Banach algebra
such that there is a Banach B-bimodule B∗ so that B is isomor-
phic as a B-bimodule to (B∗)

∗. The (A,B) is AMNM. 2

In the same paper, Johnson also considers stability of gener-
alised ∗-homomorphisms.

Definition 10.3.4 We shall say that a pair of Banach ∗-algebras
(A,B) is AMNM∗ if for each positive ε and K there is a pos-
itive δ such that if T ∈ L(A,B) with ‖T‖ < K and ‖Ť‖ < δ
and ‖T (a∗)∗ − T (a)‖ ≤ δ‖a‖, then there is a ∗-homomorphism
S : A→ B such that ‖T − S‖ < ε.

Every pair of Banach star algebras satisfying the conditions
of Theorem 10.3.3 is an AMNM∗ pair (compare [108, Theorem
7.2]). The motivation to study stability of homorphisms seems
to be in the deformation theory of Banach algebras (see the
monograph [99] for more on this subject).

Examples of Banach algebras not being AMNM can be found
in [172] and [108].

The study of stability of homomorphisms naturally leads to
the study of stability of disjointness preservers.
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Definition 10.3.5 Let T : A→ B be a linear mapping between
Banach algebras. We say that T approximately preserves zero
products (or that T is almost zero-product preserving) if there
is ε ≥ 0 such that ‖T (ab)‖ ≤ ε‖a‖‖b‖, whenever ab = 0.

In [55], G. Dolinar proves the following stability result:

Theorem 10.3.6 Let K1 and K2 be compact Hausdorff spaces
and T : C(K1)→ C(K2) an almost zero-product preserving map-
ping with ‖T (ab)‖ ≤ ε‖a‖‖b‖, whenever ab = 0. Then there is
an homomorphism S : C(K1)→ C(K2) such that

‖T (f)− S(f)‖ ≤ 20
√
ε‖f‖

for all f in C(K1). 2

See [9], [10] and [11] for further results on stability in C(K)-
spaces by J. Araujo and J.J. Font.

Stability of zero-product preserving linear mapping between
Banach algebras has also being considered by J. Alaminos, J.
Extremera and A.R. Villena in [6].

Let A,B be Banach algebras. For a surjective linear map-
ping T ∈ L(A,B) a positive constant M > 0 is called an open-
ness constant for T if given y ∈ Y , there exists x ∈ X with
T (x) = y and ‖x‖ ≤ M‖y‖. The openness index of T , de-
noted op(T ), is defined as the infimum of the set {M > 0 :
M is an openness constant for T}. On the other hand, a mea-
sure of how zero-products are, in some sense, preserved by T is
given by the constant zmult(T ) given by

zmult(T ) = sup{‖T (a)T (b)‖ : a, b ∈ A, ab = 0, ‖a‖ = ‖b‖ = 1}.

The following stability result for zero-product preservers be-
tween Banach algebras was obtained by J. Alaminos, J. Ex-
tremera and A. Villena.
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Theorem 10.3.7 Let A be either the group algebra L1(G), for
some locally compact group G, or a C∗-algebra and let B be a Ba-
nach algebra. Suppose that both A and B are amenable and that
there is a Banach B-bimodule X so that M(B) is isomorphic as a
B-bimodule to X∗. Let ε,K,M > 0. Then there exists delta > 0
such that if T ∈ L(A,B) is surjetive with ‖T‖ < K, op(T ) ≤M
and zmult(T ) < δ, then there are an invertible element υ in in
the zentroid Z(M(B)) and a continuous epimorphism Φ : A→ B
with ‖T − υΦ‖ < ε. 2

As long as we know stability of triple homomorphisms or
orthogonality preservers has not been studied yet.

Let E,F be JB∗-triples. We denote by THom(E,F ) the set
of triple homomorphism between E and F , while OrthP(E,F )
stands for the set of orthogonality preserving operators between
E and F . If E and F are JB∗-algebras the symbol J∗Hom(E,F )
will stand for the set of Jordan ∗-homomorphisms between E
and F .

We shall also somehow measure how an operator preserves
triple products (respectively Jordan products or orthogonality).
Let T : E → F be a linear operator, we define the following
constants

Tpres(T ) = sup{‖Ť (a, b, c)‖ : ‖a‖ = ‖b‖ = ‖c‖ = 1},

Orthp(T ) = sup{{T (a), T (b), z} : a ⊥ b, ‖a‖ = ‖b‖ = ‖z‖ = 1}},

and J∗pres(T ) is defined as the maximum of

sup{‖T (a ◦ b)− T (a) ◦ T (b)‖ : ‖a‖ = ‖b‖ = 1}

and
sup{‖T (a∗)∗ − T (a)‖ : ‖a‖ = 1}.
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The question clearly is whether these constants measure the
distance from T to the set of those operators preserving the
defining property of the corresponding constant.

The answer to the above problem might depend on the pair
of JB∗-triples E and F . The following definitions seem to be the
appropriate generalisations of the AMNM pairs considered by
Johnson.

Definition 10.3.8 The pair of JB∗-triples (E,F ) is said to be
ATHNTH (respectively, AOPNOP ) if for each ε,K > 0 there is
a δ > 0 such that if T ∈ L(A,B) with ‖T‖ < K and ‖Ť‖ < δ (re-
spectively, Orthp(T ) < δ) then there is a triple homomorphism
(respectively, an orthogonality preserving operator) S : E → F
such that ‖T − S‖ < ε.

If E,F are JB∗-algebras then AJHNJH∗ pairs are analogously
defined.

Problem 10.3.9 Goal: To find examples of ATHNTH, AOPNOP
and AJHNJH pairs of JB∗-triples and JB∗-algebras.

A simpler problem to begin with might be the case when
F = C. Following Johnson we shall say that a JB∗-triple E is
ATHNTH if (E,C) is a ATHNTH pair. Analogously we define
AJHNJH and AOPNOP JB∗-triples and JB∗-algebras.

Since an orthogonality preserving linear operator between C∗-
algebras (or JB∗-algebras) is essentially a multiple of a triple
homomorphism, the following question arises naturally.

Problem 10.3.10 What is the relation (if any) between being
ATHNTH (or AJHNJH) and being AOPNOP?

Similarly, stability of generalised derivation can also be con-
sidered.
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10.4. Local triple homomorphisms

In Chapter 9 of this memory we presented local triple deriva-
tions and the results we obtained in this subject (see [36] for more
details). Our main results state that every local triple derivation
on a unital C∗-algebra (or a unital JB∗-algebra) is actually a
triple derivation.

The problem for non-unital C∗-algebras and JB∗-algebras
(as well as for general JB∗-triples) was left open. This prob-
lem has been recently solve in full generality by M. Burgos, F.J.
Fernandez-Polo and A.M. Peralta in [37], where they also prove
that every local triple derivation between JB∗-triples is automat-
ically continuous (compare [37, Theorem 2.8]).

Theorem 10.4.1 [M.J. Burgos, F.J. Fernández-Polo, and A.M.
Peralta, preprint, 2013] Every (non necessarily continuous) local
triple derivation on a JB∗-triple is a triple derivation. 2

The study of local (associative) derivation gave way to the
study of local automorphisms, local isometries and 2-local deriva-
tions and automorphisms (see for instance [167, 141, 85, 142, 102]
and [168]).

Once the problem of local triple derivations is solved, it seems
natural to consider the triple version of the above mentioned
problems.

Definition 10.4.2 A linear operator T : E → F between JB∗-
triples is said to be a local triple homomorphism if for each a
in E there is a triple homomorphism Ta : E → F such that
T (a) = Ta(a).

Since triple homomorphisms are contractive, if T is a local
triple homomorphism then ‖T (a)‖ = ‖Ta(a)‖ ≤ ‖a‖, thus local
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triple homomorphism are not merely continuous but also con-
tractive.

The following question is clear (cf. [137, Remark 6.3]).

Problem 10.4.3 Is every local triple homomorphism a triple
homomorphism?

The question if every local triple derivation on a real JB∗-
triple is a triple derivation remains as an open question (cf. [37]).

10.5. M-norms

A geometric notion of orthogonality (called M -orthogonality)
can be given in an arbitrary Banach space. Two elements x, y in
a Banach space X are said to be M-orthogonal , denoted x ⊥M y,
if ‖a±b‖ = máx{‖a‖, ‖b‖}. The elements x, y are said to be semi-
M-orthogonal , written x ⊥SM y, if ‖x± y‖ ≥ máx{‖x‖, ‖y‖}.

When the Banach space has additional algebraic structure
there exists a connection between algebraic orthogonality and
M -orthogonality. Indeed, let a and b be elements in a C∗-algebra
A. It is known that a ⊥M b whenever a ⊥ b. In general, two M -
orthogonal elements in a C∗-algebra need not be (algebraically)
orthogonal.

As we have mentioned, the C∗-norm of a C∗-algebras satisfies
the following property

if a ⊥ b then ‖a± b‖ = máx{‖a‖, ‖b‖}.

A norm ‖.‖1 on A is said to be an M -norm (respectively, a
semi-M-norm) if for every a, b in A with a ⊥ b we have ‖a±b‖1 =
máx{‖a‖1, ‖b‖1} (respectively, ‖a± b‖1 ≥ máx{‖a‖1, ‖b‖1}). M-
and semi-M-norms were introduced and studied in [146], by T.
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Oikhberg, A.M. Peralta and M.I. Ramı́rez, a paper where they
posed the following problem:

Problem 10.5.1 [146] Is every complete semi-M-norm on a C∗-
algebra automatically continuous with respect to the original C∗-
norm?

In the aforementioned paper, T. Oikhberg, A.M. Peralta and
M.I. Ramı́rez give an affirmative answer to the above problem
for von Neumann algebras and for compact C∗-algebras (com-
pare [146] Corollaries 4.6 and 5.9). However, the problem in full
generality remains open.

Problem 10.5.1 has a connection with the study of automatic
continuity of orthogonality preserving linear mapping between
C∗-algebras. Indeed, if T : A → B is an injective orthogonality
preserving linear mapping between C∗-algebras which has closed
range, then the assignment

‖a‖1 := ‖T (a)‖

defines an M -norm on A. If ‖.‖1 is continuous then T is contin-
uous.

More generally, linar mappings T : A→ X from a C∗-algebra
to a Banach space sending (algebraically) orthogonal elements
to M -orthogonal or semi-M-orthogonal elements in X can be
considered.

Connections between M -orthogonality and algebraic orthog-
onality on JB∗-triples have been explore by C.M. Edwards and
G.T. Ruttimann in [57]. In this setting orthogonal elements also
are M -orthogonal. The reciprocal statement is not true in gener-
al, but it holds for tripotents (compare Theorem 5.3 and Lemma
5.5 in [57]).

It would be interesting to study M -norms in the more general
setting of JB∗-triples.
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Problem 10.5.2 Is every complete semi-M-norm on a JB∗-
triple automatically continuous with respect to the original JB∗-
norm?

As we already mentioned, an affirmative answer to the above
problem would yield an automatic continuity result for orthogo-
nality preserving linear mappings between JB∗-triples. Perhaps,
the particular cases of M -norms on JBW∗-algebras or weakly
compact JB∗-triples should be explored before considering the
problem in its full generality.

Not so much is known yet about the structure of an orthogo-
nality preserving linear mapping between real C∗-algebras (only
linear orthogonality preservers between unital abelian real C∗-
algebras have been studied). Nevertheless, the following problem
seems to be a natural problem too.

Problem 10.5.3 Is every complete semi-M-norm on a real C∗-
algebra automatically continuous with respect to the original C∗-
norm?
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H
hermitian element, 121
homomorphism, 46

– Jordan ∗-homomorphism,
46

– Jordan homomorphism,
46, 52

– generalised ∗- homomor-
phism, 131

– generalised homomor-
phism, 129

– generalised triple homo-
morphism, 130

– local triple homomor-
phism, 181

– triple homomorphism, 77
– weakly compact Jordan
∗-homomorphism, 122

– weakly compact triple
homomorphism, 120

– ∗-homomorphism, 46
– Jordan ∗-homomorphism,

46

J
Jordan identity, 51, 54
Jordan product, 46, 51
Jordan triple

– norm-closed Jordan sub-
triple, 134

– normed Jordan triple,
107

Jordan-Banach triple, 54
– JB∗-triple, 54
– JBW∗-triple, 56
– real J∗B-triple, 110

Jordan-zero product preserv-
er, 69

M
M -orthogonal, 182

– semi-M -orthogonal, 182
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minimal projection, 90
minimal tripotent, 90
minimality of algebraic norm

topology or (MOANT),
106

minimality of triple norm topol-
ogy (MOTNT), 108

multiplier algebra, 84

N
normal element, 49

O
operator

– band preserving opera-
tor, 64

– biorthogonality preserv-
ing operator, 71

– disjointness preserving
operator, 72

– symmetric operator, 72
– zero-triple products pre-

serving operator, 83
operator commute, 80
orthogonal

– orthogonal form, 150
orthogonal elements in a C∗-

algebra, 50, 70
orthogonal elements in a JB∗-

triple, 76
orthogonal sesquilinear form,

77
orthogonality preserver, 70

orthogonality preserving op-
erator, 70

orthogonally additive
n-homogeneous polyno-
mial, 78

P
partial isometry, 49
Peirce arithmetic, 55
Peirce decomposition, 55
Peirce projections, 55
positive element in a C∗-algebra,

50
projection, 49

– Murray-von Neumann equiv-
alent projections, 94

– finite projection, 94
– infinite projection, 94
– properly infinite projec-

tion, 94
– purely infinite projec-

tion, 94
– subequivalent projection,

94

R
range tripotent, 56
von Neumann regular ele-

ment, 79

S
self adjoint or self-adjoint

element, 49
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self-adjoint subalgebra, 48
separating linear mapping,

61, 67
separating space, 113, 133
socle of a C∗-algebra, 90
spectrum, 46
subtriple, 56
support, 66

T
Theorem

– Abelian Gelfand-Naimark
Theorem, 49

– Banach-Stone theorem,
63

– Gelfand-Mazur Theorem,
47

– Gelfand-Naimark The-
orem, 49

– Kadinson’s theorem, 119
– Kaplansky’s Theorem,

105
triple monomial, 132
tripotent, 55

U
unitization, 47

V
von Neumann algebra

– finite von Neumann al-
gebra, 94

– infinite von Neumann al-
gebra, 94

– properly infinite von Neu-
mann algebra, 94

– purely infinite von Neu-
mann algebra, 94

– type I Neumann alge-
bra, 94

– type II von Neumann
algebra, 94

– type III Neumann al-
gebra, 94

– type II1 von Neumann
algebra, 94

– type II∞ Neumann al-
gebra, 94

W
weakly compact orthogonal-

ity preserving operator,
123, 124

weighted composition oper-
ator, 61

Z
zero product, 68
zero product preserver, 68
zero triple products preserv-

er, 83
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algèbres normées complètes non associatives. Colloq. Math.
70, no. 2, 253-264 (1996).

[4] J. Alaminos, M. Bresar, J. Extremera, A. Villena, Char-
acterizing homomorphisms and derivations on C∗-algebras,
Proc. Roy. Soc. Edinb. A 137 1-7 (2007).

[5] J. Alaminos, M. Bresar, J. Extremera, A.R. Villena, Maps
preserving zero products. Studia Math. 193, no. 2, 131-159
(2009).

191



192 Bibliography

[6] J. Alaminos, J. Extremera, A.R. Villena, Approximately
zero-product-preserving maps. Israel J. Math. 178, 1-28
(2010).

[7] J.C. Alexander Compact Banach algebras. Proc. London
Math. Soc.(3). 18, 1-18 (1968).

[8] E.M. Alfsen, F.W. Shultz, E. Størmer, A Gelfand-Neumark
theorem for Jordan algebras. Advances in Math. 28, no. 1,
11-56 (1978).

[9] J. Araujo, J.J. Font, Stability of weighted composition op-
erators between spaces of continuous functions. J. Lond.
Math. Soc. (2). 79, no. 2, 363-376 (2009).

[10] J. Araujo, J.J. Font, Stability of weighted point evaluation
functionals. Proc. Amer. Math. Soc. 138, no. 9, 3163-3170
(2010).

[11] J. Araujo, J.J. Font, On the stability index for weight-
ed composition operators. J. Approx. Theory. 162, no. 12,
2136-2148 (2010).

[12] J. Araujo, K. Jarosz, Biseparating maps between operator
algebras, J. Math. Anal. Appl. 282, no. 1, 48-55 (2003).

[13] J. Araujo, K. Jarosz, Automatic continuity of biseparating
maps, Studia Math. 155, no. 3, 231-239 (2003).

[14] W. Arendt, Spectral properties of Lamperti operators, In-
diana Univ. Math. J. 32, no. 2, 199-215 (1983).

[15] T. Barton, R.M. Timoney, Weak∗-continuity of Jordan
triple products and its applications, Math. Scand. 59, 177-
191 (1986).



Bibliography 193

[16] W.G. Bade, P.C. Curtis, Homomorphisms of commutative
Banach algebras, Amer. J. Math. 82 589-608 (1960).
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[57] C.M. Edwards, G.T. Rüttimann, Orthogonal faces of the
unit ball in a Banach space. Atti Sem. Mat. Fis. Univ. Mod-
ena. 49 no. 2, 473-493 (2001).

[58] E.G. Effros, E. Størmer, Erling Positive projections and Jor-
dan structure in operator algebras. Math. Scand. 45, no. 1,
127-138 (1979).

[59] M- Eidelheit, M. On isomorphisms of rings of linear opera-
tors. Studia Math. 9, 97-105 (1940)..

[60] T. Fack, H. Kosaki, Generalized s-numbers of τ -measurable
operators. Pacific J. Math. 123, no. 2, 269-300 (1986).



198 Bibliography
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[154] J. Pérez, L. Rico, A. Rodŕıguez, Full subalgebras of Jordan-
Banach algebras and algebra norms on JB∗-algebras, Proc.
Amer. Math. Soc. 121, no. 4, 1133-1143 (1994).
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We study orthogonality preserving operators between C∗-algebras, JB∗-algebras and JB∗-
triples. Let T : A → E be an orthogonality preserving bounded linear operator from a C∗-
algebra to a JB∗-triple satisfying that T ∗∗(1) = d is a von Neumann regular element.
Then T (A) ⊆ E∗∗

2 (r(d)), every element in T (A) and d operator commute in the JB∗-
algebra E∗∗

2 (r(d)), and there exists a triple homomorphism S : A → E∗∗
2 (r(d)), such that

T = L(d, r(d))S , where r(d) denotes the range tripotent of d in E∗∗. An analogous re-
sult for A being a JB∗-algebra is also obtained. When T : A → B is an operator between
two C∗-algebras, we show that, denoting h = T ∗∗(1) then, T orthogonality preserving if
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)(
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)
.

This allows us to prove that a bounded linear operator between two C∗-algebras is orthog-
onality preserving if and only if it preserves zero-triple-products.
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It should be noticed here that a bounded linear operator between two abelian C∗-algebras is orthogonality preserving
if and only if it preserves zero-products (i.e., it sends zero-products to zero-products). This equivalence does not hold
for operators between general C∗-algebras (see Section 4). There are many contributions to the study of zero-products
preserving operators between Banach algebras and C∗-algebras, see for example [1–3,10–12,19,23,24,32,39].

M. Wolff gave a complete characterisation of all symmetric orthogonality preserving operators between general C∗-
algebras in [37, Theorem 2.3]. More precisely, if T : A → B is a symmetric orthogonality preserving bounded linear operator
between two C∗-algebras with A unital, then denoting T (1) = h the following assertions hold:

(a) T (A) is contained in the norm closure of h{h}′, where {h}′ denotes the commutator of {h}.
(b) There exists a Jordan ∗-homomorphism S : A → B∗∗ such that T (z) = hS(z), for all z ∈ A.

In [38, Theorem 3.2], N.-C. Wong established that a bounded linear operator T between two C∗-algebras is a triple
homomorphism if and only if T is orthogonality preserving and T ∗∗(1) is a partial isometry (tripotent).

Every C∗-algebra belongs to a more general class of Banach spaces known under the name of JB∗-triples. JB∗-triples
were introduced by W. Kaup in [26]. A JB∗-triple is a complex Banach space E together with a continuous triple product
{. , . ,.} : E × E × E → E, which is conjugate linear in the middle variable and symmetric and bilinear in the outer variables
satisfying that

(a) (Jordan Identity) L(a,b)L(x, y) = L(x, y)L(a,b) + L(L(a,b)x, y) − L(x, L(b,a)y), where L(a,b) is the operator on E given
by L(a,b)x = {a,b, x};

(b) L(a,a) is a hermitian operator with non-negative spectrum;
(c) ‖L(a,a)‖ = ‖a‖2.

For each x in a JB∗-triple E , Q (x) will stand for the conjugate linear operator on E defined by the law y 
→ Q (x)y = {x, y, x}.
Every C∗-algebra is a JB∗-triple via the triple product given by

2{x, y, z} = xy∗z + zy∗x,

and every JB∗-algebra is a JB∗-triple under the triple product

{x, y, z} = (
x ◦ y∗) ◦ z + (

z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗.
A JBW∗-triple is a JB∗-triple which is also a dual Banach space (with a unique isometric predual [6]). It is known that

the triple product of a JBW∗-triple is separately weak∗-continuous [6] (see also [31]). The second dual of a JB∗-triple E is a
JBW∗-triple with a product extending the product of E [13].

Let E be a JB∗-triple. Following [28], we call two elements a,b in E orthogonal and write a ⊥ b if L(a,b) = 0 (or equiva-
lently L(b,a) = 0) holds. Two sets R, S ⊆ E are said to be orthogonal if for every a ∈ S, b ∈ R, we have a ⊥ b.

On every C∗-algebra A we can consider its structure of JB∗-triple and its natural structure of C∗-algebra. We have,
a priory, two notions of orthogonality in A. However, it can be checked that two elements a,b ∈ A are orthogonal for the
C∗-algebra product if and only if they are orthogonal when A is considered as a JB∗-triple (compare Lemma 1).

Let E and F be JB∗-triples. A linear operator T : E → F is said to be orthogonality preserving if T (a) ⊥ T (b) whenever
a ⊥ b in E . This concept extends the usual definition of orthogonality preserving linear operator between C∗-algebras.

Despite of the vast literature on zero-products preserving and orthogonality preserving operators between C∗-algebras,
no attention has yet been paid to those orthogonality preserving operators from a C∗-algebra or a JB∗-algebra to a JB∗-triple.
In Section 3, we shall study orthogonality preserving operators T : A → E , in the case of A being a C∗-algebra, a JB∗-algebra
or a JB∗-triple and E being a JB∗-triple.

Theorems 6 and 10 establish the following description: Let A be a C∗-algebra or a JB∗-algebra, E a JB∗-triple and
T : A → E an orthogonality preserving bounded linear operator. Suppose that T ∗∗(1) = d is a von Neumann regular ele-
ment in E∗∗ . Then the following statements hold:

(a) T (A) is contained in the Peirce subspace E∗∗
2 (r(d)), where r(d) denotes the range tripotent of d. Moreover, when

E∗∗
2 (r(d)) is regarded as a JB∗-algebra, then T (A) is in the commutator of d.

(b) There exists a triple homomorphism S : A → E∗∗
2 (r(d)), satisfying that T = L(d, r(d))S .

Since every tripotent in a JB∗-triple is von Neumann regular, we shall establish, in Corollaries 7 and 11, that whenever A
is a C∗-algebra (or a JB∗-algebra) and E is a JB∗-triple, then a bounded linear operator T : A → E is a triple homomorphism
if and only if T is orthogonality preserving and T ∗∗(1) is a tripotent. Recalling that for a C∗-algebra, A, tripotents and partial
isometries in A coincide, then the main result in [38] follows now as a consequence.

Section 4 is completely devoted to the study of orthogonality preserving operators between C∗-algebras. As a novelty,
we consider the natural JB∗-triple structure associated to each C∗-algebra. This new point of view allows us to apply new
techniques based on the triple spectrum and the triple functional calculus to establish a definite description of orthogonality
preserving operators between C∗-algebras (Theorem 17). More precisely, we prove the following: Let T : A → B be an
operator between two C∗-algebras. For h = T ∗∗(1) the following assertions are equivalent:
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(a) T is orthogonality preserving.
(b) There exists a triple homomorphism S : A → B∗∗ satisfying h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗, and

T (z) = L
(
h, r(h)

)(
S(z)

) = 1

2

(
hr(h)∗ S(z) + S(z)r(h)∗h

) = hr(h)∗ S(z) = S(z)r(h)∗h,

for all z ∈ A.

The main consequence of the above characterisation assures that when T is a bounded linear operator between two
C∗-algebras then T is orthogonality preserving if and only if T preserves zero-triple-products (see Corollary 18). It could be
said that the appropriate structure to characterise the orthogonality preserving operators between C∗-algebras is the natural
structure of JB∗-triple associated to each one of them.

In the last section we shall prove another generalisation of the main result in [38]. Indeed, for each operator T from a
C∗-algebra to a JB∗-triple the following three statements are equivalent:

(a) T is a triple homomorphism.
(b) T (a3) = {T (a), T (a), T (a)}, for all a ∈ Asa .
(c) T is orthogonality preserving (on Asa) and T ∗∗(1) is a tripotent.

2. Notation and preliminaries

Given Banach spaces X and Y , L(X, Y ) will denote the space of all bounded linear mappings from X to Y . The space
L(X, X) will be denoted by L(X). Throughout the paper the word “operator” will always mean bounded linear mapping. The
dual space of a Banach space X is denoted by X∗ .

When A is a JB∗-algebra or a C∗-algebra then, Asa will denote the set of all self-adjoint elements in A. We shall make
use of standard notation in C∗-algebra and JB∗-triple theory.

An element e in a JB∗-triple E is said to be a tripotent if {e, e, e} = e. Each tripotent e in E gives raise to the so-called
Peirce decomposition of E associated to e, that is,

E = E2(e) ⊕ E1(e) ⊕ E0(e),

where for i = 0,1,2, Ei(e) is the i
2 eigenspace of L(e, e). The Peirce decomposition satisfies certain rules known as Peirce

arithmetic:
{

Ei(e), E j(e), Ek(e)
} ⊆ Ei− j+k(e), if i − j + k ∈ {0,1,2}, and is zero otherwise.

In addition,
{

E2(e), E0(e), E
} = {

E0(e), E2(e), E
} = 0.

The corresponding Peirce projections are denoted by Pi(e) : E → Ei(e) (i = 0,1,2). The Peirce space E2(e) is a JB∗-algebra
with product x • y := {x, e, y} and involution x� := {e, x, e}.

For each element x in a JB∗-triple E , we shall denote x[1] := x, x[3] := {x, x, x}, and x[2n+1] := {x, x, x[2n−1]} (n ∈ N). The
symbol Ex will stand for the JB∗-subtriple generated by the element x. It is known that Ex is JB∗-triple isomorphic (and
hence isometric) to C0(Ω) for some locally compact Hausdorff space Ω contained in (0,‖x‖], such that Ω ∪ {0} is compact,
where C0(Ω) denotes the Banach space of all complex-valued continuous functions vanishing at 0. It is also known that if
Ψ denotes the triple isomorphism from Ex onto C0(Ω), then Ψ (x)(t) = t (t ∈ Ω) (cf. [25, Corollary 4.8], [26, Corollary 1.15]
and [18]). The set Ω = Sp(x) is called the triple spectrum of x. We should note that C0(Sp(x)) = C(Sp(x)), whenever 0 /∈ Sp(x).

Therefore, for each x ∈ E , there exists a unique element y ∈ Ex satisfying that {y, y, y} = x. The element y, denoted

by x[ 1
3 ] , is termed the cubic root of x. We can inductively define, x[ 1

3n ] = (x
[ 1

3n−1 ]
)[ 1

3 ] , n ∈ N. The sequence (x[ 1
3n ]

) converges
in the weak∗-topology of E∗∗ to a tripotent denoted by r(x) and called the range tripotent of x. The tripotent r(x) is the
smallest tripotent e ∈ E∗∗ satisfying that x is positive in the JBW∗-algebra E∗∗

2 (e) (compare [14, Lemma 3.3]).
The symmetrized Jordan triple product in a JB∗-triple E is defined by the expression

〈x, y, z〉 := 1

3

({x, y, z} + {y, z, x} + {z, x, y}).
A subspace I of a JB∗-triple E is said to be an inner ideal of E if {I, E, I} ⊆ I . Given an element x in E , let E(x) denote

the norm closed inner ideal of E generated by x. It is known that E(x) coincides with the norm-closure of the set Q (x)(E).
Moreover E(x) is a JB∗-subalgebra of E∗∗

2 (r(x)) and contains x as a positive element (compare [7, Proposition 2.1, p. 19]).
The following result characterises the relation of orthogonality between elements in a JB∗-triple.

Lemma 1. Let a and b be two elements in a JB∗-triple E. The following assertions are equivalent:

(a) a ⊥ b;
(b) {a,a,b} = 0;
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(c) a ⊥ r(b);
(d) r(a) ⊥ r(b);
(e) E∗∗

2 (r(a)) ⊥ E∗∗
2 (r(b));

(f) E(a) ⊥ E(b);
(g) Ea ⊥ Eb.

Proof. The implication (a) ⇒ (b) is clear.
(b) ⇒ (c). The condition L(a,a)(b) = 0, together with the Jordan Identity assure that L(a,a)(b[3]) = 0. We deduce, by

mathematical induction, that L(a,a)(b[2n−1]) = 0 (n ∈ N). Since the “odd polynomials” in b form a norm dense subset of Eb ,
we have L(a,a)(Eb) = {0}.

Notice that, for each natural n, b[ 1
3n ] lies in Eb . Thus, by assumptions, L(a,a)(b[ 1

3n ]
) = 0. The separate weak∗-continuity

of the triple product implies that

L(a,a)r(b) = L(a,a)
(

w∗ − lim b[ 1
3n ]) = w∗ − lim L(a,a)

(
b[ 1

3n ]) = 0.

This proves, via [18, Lemma 1.5] or via [8, Proposition 2.4], that a lies in E∗∗
0 (r(b)), and hence a ⊥ r(b) by the Peirce

arithmetic.
(c) ⇒ (d). Since r(b) ⊥ a. We deduce from (a) ⇒ (b) ⇒ (c) that r(b) ⊥ r(a).
(d) ⇒ (e) follows by Peirce arithmetic.
The implications (e) ⇒ (f), (f) ⇒ (g) and (g) ⇒ (a) are clear. �
Let E be a JB∗-triple. Suppose that a and b are two elements in a JB∗-subtriple, F , of E . The equivalence (a) ⇔ (b) in

Lemma 1, implies that a ⊥ b in F if and only if a and b are orthogonal in E .
The following lemma provides another useful characterisation of orthogonality in JB∗-triples.

Lemma 2. Let e and x be two elements in a JB∗-triple E. Suppose that e is a tripotent. The following are equivalent:

(a) e ⊥ x;
(b) (e ± x)[3] = e ± x[3].

Proof. (a) ⇒ (b). Since L(e, e)(x) = 0, we have x ∈ E0(e). Therefore, by the Peirce rules, (e ± x)[3] = e ± x[3].
(b) ⇒ (a). The equality

(e ± x)[3] = e ± x[3] + 2{x, x, e} + {x, e, x} ± 2{e, e, x} ± {e, x, e},
implies that (e + x)[3] − (e − x)[3] = 4{e, e, x} + 2{e, x, e} + 2x[3] . On the other hand, by hypothesis we also have

(e + x)[3] − (e − x)[3] = e + x[3] − e + x[3] = 2x[3],

and consequently 2{e, e, x} + {e, x, e} = 0. In particular x = P0(e)x, and hence x ⊥ e. �
An element a in a JB∗-triple E is said to be von Neumann regular if there exists b ∈ E such that Q (a)(b) = a and

Q (b)(a) = b. The element b is called the generalised inverse of a. We observe that every tripotent e in E is von Neumann
regular and its generalised inverse coincides with it. We refer to [9,15,29,30] for basics facts and results on von Neumann
regularity. It is shown in [29, Lemma 3.2] (see also the proof of [9, Theorem 3.4]) that for each von Neumann regular ele-
ment a ∈ E , there exists a tripotent e ∈ E satisfying that a is a symmetric and invertible element in the JB∗-algebra E2(e).
Moreover, e coincides with the range tripotent of a. It is also known that an element a in E is von Neumann regular if and
only if it is von Neumann regular in any JB∗-subtriple F containing a (compare [27]).

We shall make use of the triple functional calculus. We recall that if x is an element in a JB∗-triple then the JB∗-subtriple
generated by the element x is JB∗-triple isomorphic (and hence isometric) to C0(Sp(x)), where Sp(x) is the triple spectrum
of x. To avoid possible confusion below, given a function f ∈ C0(Sp(x)), f (x) shall have its usual meaning when Ex is
regarded as an abelian C∗-algebra and ft(x) shall denote the same element of Ex when the latter is regarded as a JB∗-
subtriple of E . Thus, for any odd polynomial, P (λ) = ∑n

k=0 αkλ
2k+1, we have Pt(x) = ∑n

k=0 αkx[2k+1].

Lemma 3. Let a and b be two orthogonal elements in a JB∗-triple E.

(a) a and b are tripotents whenever a + b is.
(b) a and b are von Neumann regular whenever a + b is.

Proof. (a) Let us suppose that a + b is a tripotent, that is (a + b)[3] = a + b. Since a ⊥ b it follows that

a[3] + b[3] = (a + b)[3] = a + b.



224 M. Burgos et al. / J. Math. Anal. Appl. 348 (2008) 220–233
Lemma 1 assures that

a[3] = a, b[3] = b.

(b) By Lemma 1, Ea and Eb are orthogonal subtriples of E , and hence, the JB∗-subtriple of E generated by {a,b} coincides
with the direct sum Ea ⊕∞ Eb. The subtriple Ea+b is a JB∗-subtriple of Ea ⊕∞ Eb.

The von Neumann regularity of a+b in E and hence in Ea ⊕ Eb assures the existence of an element c ∈ Ea ⊕ Eb satisfying
that Q (c)(a + b) = c and Q (a + b)(c) = a + b. Since c = c1 + c2, with c1 ∈ Ea and c2 ∈ Eb , it follows, via Lemma 1, that
Q (c1)(a) = c1, Q (a)(c1) = a, Q (b)(c2) = b and Q (c2)(b) = c2, which give the desired statement. �
3. Orthogonality preserving operators between JB∗-triples

In this section we shall study orthogonality preserving operators between JB∗-triples. In a first step we shall focus
our attention on orthogonality preserving operators from a C∗-algebra to a JB∗-triple. We shall generalise several results
on orthogonality preserving operators between C∗-algebras obtained by M. Wolff [37], N.C. Wong [38] and M.A. Chebotar,
W.-F. Ke, P.H. Lee and N.C. Wong [11]. New trends in the study of “orthogonal” sesquilinear forms on C∗-algebras (see
[20,21]) and orthogonally additive polynomials on C∗-algebras (compare [33]) will allow us to introduce new techniques
in the study of orthogonality preserving operators between JB∗-triples. The results obtained in [11,37,38] will follow as a
consequence.

Let A be a C∗-algebra. A sesquilinear form Φ : A × A → C is called orthogonal if Φ(a,b) = 0, whenever a ⊥ b in Asa .
S. Goldstein proved in [20] that for every orthogonal sesquilinear form Φ , there exist functionals ϕ,ψ ∈ A∗ satisfying that
Φ(x, y) = ϕ(xy∗) + ψ(y∗x), for all x, y ∈ A.

Proposition 4. Let T : A → E be an orthogonality preserving operator from a C∗-algebra to a JB∗-triple. Then for each z in E (or in E∗∗)
the equality

{
T ∗∗(x), T ∗∗(y), z

} = {
T ∗∗(y), T ∗∗(x), z

}
holds for every x, y ∈ A∗∗ satisfying [x, y∗] = 0 and x ◦ y∗ = x∗ ◦ y.

Proof. Let us fix z ∈ E∗∗ and let V : A × A → E∗∗ be the sesquilinear operator defined by

V (x, y) := {
T (x), T (y), z

}
.

For each ϕ ∈ E∗ , Vϕ(x, y) will stand for ϕV (x, y).
Since T is orthogonality preserving, for each x ⊥ y in A, we have T (x) ⊥ T (y) in E . Since E is a JB∗-subtriple of E∗∗ it

follows that T (x) ⊥ T (y) in E∗∗ . We then have L(T (x), T (y))(c) = 0 for all c ∈ E∗∗ , and thus Vϕ(x, y) = ϕ{T (x), T (y), z} = 0.
This shows that Vϕ : A × A → C is an orthogonal sesquilinear form on A.

Theorem 1.10 in [20] (see also [21, Theorem 3.1]) assures the existence of two functionals ω1,ω2 ∈ A∗ satisfying that

Vϕ(x, y) = ω1
(
xy∗) + ω2

(
y∗x

)
,

for all x, y ∈ A. Denoting φ = ω1 + ω2 and ψ = ω1 − ω2, we have

Vϕ(x, y) = φ
(
x ◦ y∗) + ψ

([
x, y∗]),

for all x, y ∈ A, where ◦ and [. , .] denote the usual Jordan and Lie product of A, respectively (concretely, a ◦ b := 1
2 (ab + ba),

[a,b] := 1
2 (ab − ba)). Since the product of A∗∗ and the triple product of E∗∗ are separately weak∗-continuous, the weak∗-

denseness of A in A∗∗ assures that

ϕ
{

T ∗∗(x), T ∗∗(y), z
} = Vϕ(x, y) = φ

(
x ◦ y∗) + ψ

([
x, y∗]), (1)

for all x, y ∈ A∗∗.
It follows from (1) that

ϕ
{

T ∗∗(x), T ∗∗(y), z
} = Vϕ(x, y) = Vϕ(y, x) = ϕ

{
T ∗∗(y), T ∗∗(x), z

}
, (2)

whenever [x, y∗] = 0 and x ◦ y∗ = x∗ ◦ y. Since ϕ was arbitrarily chosen in E∗ , the Hahn–Banach theorem together with
equality (2) give the desired statement. �

If X is a complex Banach space, then an X-valued n-homogeneous polynomial on A is a continuous X-valued mapping
P : A → X, for which there exists a continuous n-linear operator T : A × · · · × A → X satisfying that P (x) = T (x, . . . , x), for
every x in X . An n-homogeneous polynomial P on A is said to be orthogonally additive (respectively orthogonally additive
on Asa) if P (x + y) = P (x) + P (y) for all x, y ∈ A (respectively x, y ∈ Asa) with x ⊥ y.
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In [33, Theorem 2.8 and Corollary 3.1] C. Palazuelos, A.M. Peralta and I. Villanueva showed that whenever P : A → X is
an n-homogeneous polynomial satisfying that P is orthogonally additive on Asa , then there exists an operator F : A → X
satisfying that P (x) = F (xn), for all x in A.

Our next theorem will generalise [38, Theorem 3.2], [37, Lemma 3.3] and [11, Theorem 4.3] to the setting of orthogonality
preserving operators from a C∗-algebra to a JB∗-triple.

We firstly recall that two elements a and b in a JB∗-algebra J are said to operator commute in J if the multiplication
operators Ma and Mb commute, where Ma is defined by Ma(x) := a ◦ x. That is, a and b operator commute if and only if
(a ◦ x) ◦ b = a ◦ (x ◦ b) for all x in J . Self-adjoint elements a and b in J generate a JB∗-subalgebra that can be realised as
a JC∗-subalgebra of some B(H) [40] and, in this realisation, a and b commute in the usual sense whenever they operator
commute in J [36, Proposition 1]. Similarly, two elements a and b of J sa operator commute if and only if a2 ◦ b = {a,b,a}
(i.e., a2 ◦ b = 2(a ◦ b) ◦ a − a2 ◦ b). If b ∈ J we use {b}′ to denote the set of elements in J that operator commute with b.
(This corresponds to the usual notation in von Neumann algebras).

The arguments given in the above paragraph allow us to establish the following result.

Lemma 5. Let J be a JB∗-algebra. Suppose that a,b ∈ J sa operator commute, then a ◦ b and b operator commute.

We can now state the main result of this section.

Theorem 6. Let A be a C∗-algebra, E a JB∗-triple and T : A → E an orthogonality preserving operator satisfying that T ∗∗(1) = d is
a von Neumann regular element in E∗∗ . Then T (A) ⊆ E∗∗

2 (r(d)), T (A) ⊆ {d}′ and there exists a Jordan ∗-homomorphism S : A →
E∗∗

2 (r(d)), satisfying that T = L(d, r(d))S.

Proof. Since d = T ∗∗(1) is von Neumann regular in E∗∗ , then d is positive and invertible in E∗∗
2 (r(d)). Let b denote the

inverse of d in E∗∗
2 (r(d)). It is also known that L(d,b) = L(b,d) = L(r(d), r(d)) and r(d) = r(b) (compare [29, Lemma 3.2]).

Proposition 4 guarantees that
{

T ∗∗(a), T ∗∗(1),b
} = {

T ∗∗(1), T ∗∗(a),b
}
,

for every a ∈ A∗∗
sa . In particular, the identity

L
(
r(d), r(d)

)(
T ∗∗(a)

) = {
T ∗∗(a),d,b

} = {
d, T ∗∗(a),b

} (∈ E∗∗
2

(
r(d)

))
(3)

holds for all a ∈ A∗∗
sa . This implies that

T (Asa) ⊆ E∗∗
2

(
r(d)

) ⊕ E∗∗
0

(
r(d)

)
. (4)

Consider now the mapping P3 : A → E , P3(x) = {T (x), T (x∗), T (x)}. It is clear that P3 is a 3-homogeneous polynomial
on A. Since T is orthogonality preserving, P3 is orthogonally additive on Asa . By [33, Corollary 3.1] there exists an operator
F3 : A → E satisfying that

P3(x) = F3
(
x3),

for all x in A. If S3 : A × A × A → E is the (unique) symmetric 3-linear operator associated to P3, we have

F3
(〈x, y, z〉) = S3(x, y, z) = 〈

T (x), T (y), T (z)
〉
, (5)

for all x, y, z ∈ Asa . The separate weak∗-continuity of the triple product together with the weak∗ density of Asa in A∗∗
sa

assure that the above equality (5) remains valid for all x, y, z ∈ A∗∗
sa . Therefore, taking x = a∗ = a ∈ A and y = z = 1 in (5),

we deduce that

F3(a) = 〈
T (a),d,d

〉 = 2

3

{
T (a),d,d

} + 1

3

{
d, T (a),d

}
.

Thus, for each a ∈ Asa we have
{

T (a), T (a), T (a)
} = F3

(
a3) = 〈

d,d, T
(
a3)〉. (6)

Now, (4), (6) and the Peirce arithmetic show that

T (Asa) ⊆ E∗∗
2

(
r(d)

) ∩ E. (7)

The law x 
→ P2(x) = {T (x), T (x∗),b}, defines a 2-homogeneous polynomial P2 : A → E∗∗, which is orthogonally additive
on Asa . Corollary 3.1 in [33] implies the existence of an operator F2 : A → E satisfying that

1

2

({
T ∗∗(x), T ∗∗(y∗),b

} + {
T ∗∗(y), T ∗∗(x∗),b

}) = F ∗∗
2 (x ◦ y), (8)

for all x, y ∈ A∗∗ .
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Expressions (3) and (7), imply that

T (a) = {
T (a),d,b

} = {
d, T (a),b

}
, (9)

for all a in Asa, and hence it follows from (8) that

F2(x) = {
T (x),d,b

} = {
T (x),b,d

} = {
d, T

(
x∗),b

} = T (x),

for all x ∈ A.
E∗∗

2 (r(d)) is a JB∗-algebra with Jordan product and involution given by x • y = {x, r(d), y} and x� = {r(d), x, r(d)} =
Q (r(d))(x), respectively. The triple product in E∗∗

2 (r(d)) is also determined by the expression

{x, y, z} = (
x • y�

) • z + (
z • y�

) • x − (x • z) • y�.

Since d is invertible in E∗∗
2 (r(d)), with inverse b, Q (d,b) = Q (r(d)). Thus Eq. (9) gives T (a)� = T (a), for all a ∈ Asa .

Having the above facts in mind, then Eq. (8) and T = F2 guarantee that

T (x ◦ y) = (
T (x) • T (y)

) • b. (10)

For each a ∈ Asa , Proposition 4 also implies that

{
T (a), T ∗∗(1),d

} = {
T ∗∗(1), T (a),d

}
,

and hence

(d • d) • T (a) = {
T (a),d,d

} = {
d, T (a),d

} = 2
(
d • T (a)

) • d − (d • d) • T (a),

which assures that T (a) and d operator commute in the JB∗-algebra E∗∗
2 (r(d)). Thus T (A) ⊆ {d}′ . Noticing that b is the

inverse of d in E∗∗
2 (r(d)), then T (A) ⊆ {d}′ implies that T (A) ⊆ {b}′ .

Finally, (10) and Lemma 5 guarantee that

b • T (x ◦ y) = ((
T (x) • T (y)

) • b
) • b = Mb Mb MT (x)

(
T (y)

) = Mb MT (x)Mb
(
T (y)

) = ((
T (y) • b

) • T (x)
) • b

= Mb MT (y)•b
(
T (x)

) = MT (y)•b Mb
(
T (x)

) = (
T (x) • b

) • (
T (y) • b

)
,

which assures that S = Mb T = L(b, r(b))T : A → E∗∗
2 (r(d)) is a Jordan ∗-homomorphism and T = Md S = L(d, r(d))S . �

Recalling that every tripotent e in a JB∗-triple is von Neumann regular with r(e) = e, Theorem 6 gives the following
generalisation of [38, Theorem 3.2].

Corollary 7. Let A be a C∗-algebra, E a JB∗-triple and T : A → E an orthogonality preserving operator satisfying that T ∗∗(1) = e is a
tripotent element in E∗∗ . Then T is a triple homomorphism. More concretely, T (A) ⊆ E∗∗

2 (e) ∩ E and when E∗∗
2 (e) is considered as a

JB∗-algebra, then T ∗∗ : A∗∗ → E∗∗
2 (e) is a unital Jordan ∗-homomorphism.

The main result of [38] follows now as a corollary of the above theorem.

Corollary 8. Let T : A → B be an operator between two C∗-algebras. Then T is a triple homomorphism if and only if T is orthogonality
preserving and T ∗∗(1) is a tripotent (partial isometry).

We shall now consider orthogonality preserving operators from a JB∗-algebra to a JB∗-triple.
The notions of compact, open and closed tripotents (respectively projections) in JB∗-triple biduals (respectively JB∗-

algebra biduals) studied and developed in [16,17] will allow us to extend the above Theorem 6 to orthogonally operators
from a JB∗-algebra to a JB∗-triple.

At this point we need to recall the definition of the Strong∗-topology on von Neumann algebras and JBW∗-triples. The
Strong∗-topology in a JBW∗-triple was introduced by T.J. Barton and Y. Friedman in [5] and is defined in the following way:
Given a JBW∗-triple W , a norm-one element ϕ in W∗ and a norm-one element z in W such that ϕ(z) = 1, it follows
from [5, Proposition 1.2] that the law

(x, y) 
→ ϕ{x, y, z}
defines a positive sesquilinear form on W . Moreover, for every norm-one element w satisfying ϕ(w) = 1, we have

ϕ{x, y, z} = ϕ{x, y, w}, for all x, y ∈ W . The law x 
→ ‖x‖ϕ := (ϕ{x, x, z}) 1
2 , defines a prehilbertian seminorm on W . The

Strong∗-topology (noted by S∗(W , W∗)) is the topology on W generated by the family {‖ · ‖ϕ : ϕ ∈ W∗, ‖ϕ‖ = 1}. When
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a von Neumann algebra M is regarded as a JBW∗-triple, then S∗(M, M∗) coincides with the so-called “C∗-algebra Strong∗-
topology” of M , namely the topology on M generated by the family of seminorms of the form x 
→ √

ξ(xx∗ + x∗x), where ξ

is any positive functional in M∗ (compare [35, Proposition 3]).
The Strong∗-topology is compatible with the duality (W , W∗) (see [5, Theorem 3.2]). Many other properties of the

Strong∗-topology have been revealed in [34,35]. In particular, the triple product of every JBW∗-triple is jointly Strong∗-
continuous on bounded sets (see [34,35]).

The next result is partially based on a generalised Urysohn’s lemma for JB∗-triples and JB∗-algebras established in [17,
Theorem 1.10].

Lemma 9. Let J be a JB∗-algebra. Suppose that x is a positive element in J . Let r(x) ∈ J∗∗ be the range (tripotent) projection of x. Then
there exist two sequences (yn) ⊆ J and (pn) ⊆ J∗∗ satisfying that

S∗( J∗∗, J∗) − lim
n

yn = r(x) = S∗( J∗∗, J∗) − lim
n

pn,

for each natural n, pn is a closed projection in J∗∗ , (1 − pn) ⊥ yn and there exists a net (zn
λ) ∈ J∗∗

2 (1 − pn) ∩ J with S∗( J∗∗, J∗) −
limλ zn

λ = 1 − pn.

Proof. Let x ∈ J with x � 0. We may assume ‖x‖ = 1. Let J x denote the JB∗-subalgebra of J generated by x. It is known
that J x is JB∗-algebra isomorphic (and hence isometric) to C0(Ω) for some locally compact Hausdorff space Ω contained in
[0,1], such that Ω ∪ {0} is compact. Moreover, if we denote by Ψ the JB∗-algebra isomorphism from J x onto C0(Ω), then
Ψ (x)(t) = t (t ∈ Ω) (cf. [22, 3.2.4]).

For each natural n � 2, define pn := χ
Ω∩[ 1

2n ,1] . yn ∈ J x is defined by

yn(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if 2
n � t � 1,

0 if 0 � t � 1
n ,

affine if 1
n � t � 2

n .

It is clear that S∗( J∗∗, J∗) − lim yn = r(x) = S∗( J∗∗, J∗) − lim pn .
Since pn is a closed projection, J∗∗

0 (pn) ∩ J = J∗∗
2 (1 − pn) ∩ J is S∗( J∗∗, J∗)-dense in J∗∗

2 (1 − pn) = J∗∗
0 (pn) (compare

[16, §2]). Thus there exists a net (zn
λ) ∈ J∗∗

2 (1 − pn) ∩ J satisfying that S∗( J∗∗, J∗) − limλ zn
λ = 1 − pn . �

The corresponding version of Theorem 6 for operators from a JB∗-algebra to a JB∗-triple can be established now.

Theorem 10. Let J be a JB∗-algebra, E a JB∗-triple and T : J → E an orthogonality preserving operator satisfying that T ∗∗(1) = d is
a von Neumann regular element in E∗∗ . Then T ( J ) ⊆ E∗∗

2 (r(d)) ∩ E, T ( J ) ⊆ {d}′ and there exists a Jordan ∗-homomorphism S : J →
E∗∗

2 (r(d)), satisfying that T = L(d, r(d))S.

Proof. Let b denote the inverse of d in E∗∗
2 (r(d)) and let us take a norm-one positive element x in J . J x will denote the

JB∗-subalgebra of J generated by x. We have already commented that J x is JB∗-algebra isomorphic to an abelian C∗-algebra.
The unit element of J∗∗

x coincides with r(x).
By Lemma 9 above there exist two sequences (yn) ⊆ J and (pn) ⊆ J∗∗ satisfying that

S∗( J∗∗, J∗) − lim
n

yn = r(x) = S∗( J∗∗, J∗) − lim
n

pn,

for each natural n, pn is a closed projection in J∗∗ , (1 − pn) ⊥ yn and there exists a net (zn
λ) ∈ J∗∗

2 (1 − pn) ∩ J with
S∗( J∗∗, J∗) − limλ zn

λ = 1 − pn.

Fix a natural n. Since T is orthogonality preserving, we have T (yn) ⊥ T (zn
λ) (∀λ), i.e., L(T (yn), T (zn

λ))(z) = 0 for all
z ∈ E∗∗ . Since T ∗∗ is S∗( J∗∗, J∗)-to-S∗(E∗∗, E∗)-continuous (compare [34, §4] or [35, Corollary 3]), taking limit in λ, we
have

L
(
T ∗∗(yn), T ∗∗(1 − pn)

)
(z) = 0

(∀z ∈ E∗∗).
When we take limit in n → ∞, we deduce that

L
(
T ∗∗(r(x)

)
, T ∗∗(1 − r(x)

))
(z) = 0

(∀z ∈ E∗∗).
That is, T ∗∗(r(x)) and T ∗∗(1 − r(x)) are orthogonal. Since

d = T ∗∗(1) = T ∗∗(r(x)
) + T ∗∗(1 − r(x)

)
is von Neumann regular, it follows, via Lemma 3(a), that dx = T ∗∗(r(x)) and T ∗∗(1 − r(x)) are von Neumann regular in E∗∗ .
We further have r(dx) � r(d) = r(T ∗∗(1)) (compare Lemma 1).
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The mapping T | J x : J x → E is orthogonality preserving and its bitranspose sends the unit of J∗∗
x to a von Neumann

regular element in E∗∗ . Theorem 6 assures that

T ( J x) ⊆ E∗∗
2

(
r(dx)

) ⊆ E∗∗
2

(
r(d)

)
,

T
(
( J x)sa

) ⊆ (
E∗∗

2

(
r(dx)

))
sa ⊆ (

E∗∗
2

(
r(d)

))
sa, T (x) ∈ {dx}′,

Sx = Mbx T | J x = L
(
bx, r(bx)

)
T | J x : J x → E∗∗

2

(
r(dx)

) ⊆ E∗∗
2

(
r(d)

)
is a Jordan ∗-homomorphism and

T | J x = L
(
dx, r(dx)

)
Sx = L

(
d, r(d)

)
Sx,

where bx denotes the generalised inverse of dx .
We claim that S = L(b, r(b))T : J → E∗∗

2 (r(d)) is a Jordan ∗-homomorphism. Indeed, let • and � denote the Jordan product
and the involution of E∗∗

2 (r(d)), respectively. For each positive x ∈ J , we have

S(x)� = {
r(d), S(x), r(d)

} = {
r(dx), Sx(x), r(dx)

} = Sx(x) = S(x)

and

S
(
x2) = Sx

(
x2) = {

Sx(x), r(dx), Sx(x)
} = Sx(x) • Sx(x) = S(x) • S(x).

Every x ∈ J sa can be written in the form x = x+ − x− , where x+ and x− are two orthogonal positive elements in J . Since
T is orthogonality preserving, T (x+) ⊥ T (x−). The weak∗-continuity of T ∗∗, together with Lemma 1, give dx+ = T ∗∗(r(x+)) ⊥
T ∗∗(r(x−)) = dx− . For σ ∈ {±1}, we have

S
(
xσ

) = Sxσ
(
xσ

) ∈ E∗∗
2

(
r
(
dxσ

))
,

and hence S(x+) ⊥ S(x−) (compare Lemma 1). Therefore

S
(
x2) = S

((
x+)2) + S

((
x−)2) = S

(
x+) • S

(
x+) + S

(
x−) • S

(
x−) = S(x) • S(x),

which shows that S is a Jordan ∗-homomorphism.
Finally, the equality T = L(d, r(d))S, can be easily checked. �

Corollary 11. Let J be a JB∗-algebra, E a JB∗-triple and T : J → E an orthogonality preserving operator satisfying that T ∗∗(1) = e is
a tripotent element in E∗∗ . Then T is a triple homomorphism. More concretely, T ( J ) ⊆ E∗∗

2 (e) ∩ E and when E∗∗
2 (e) is considered as a

JB∗-algebra, then T ∗∗ : J∗∗ → E∗∗
2 (e) is a unital Jordan ∗-homomorphism.

The following corollary is a generalisation of [37, Lemma 3.3] to the setting of JB∗-algebras. Here the operator is not
assumed to be symmetric. We observe that [37, Lemma 3.3] is established for symmetric operators between C∗-algebras.

Corollary 12. Let T : J1 → J2 be an operator between two JB∗-algebras (respectively two C∗-algebras). Suppose that T is orthogonality
preserving and T ∗∗ is unital, then T is a Jordan ∗-homomorphism.

Remark 13. It should be noticed that Theorem 6 and Corollary 7 (respectively Theorem 10 and Corollary 11) remain true
when T is assumed to be orthogonality preserving only on the self-adjoint part of the C∗-algebra A (respectively of the
JB∗-algebra J ). In fact, the proofs of the above results remain valid under the weaker hypothesis of T (a) ⊥ T (b) whenever
a ⊥ b and a = a∗ , b = b∗ .

The following corollary also follows from Theorem 10 above.

Corollary 14. Let T : E → F be an orthogonality preserving operator between two JB∗-triples. Let x be a norm-one element in E.

(a) If T ∗∗(r(x)) is a tripotent, then T |E(x) : E(x) → F is a triple homomorphism.
(b) If T ∗∗(r(x)) = d is von Neumann regular, then T (E(x)) ⊆ E∗∗

2 (r(d))∩ E, T (E(x)) ⊆ {d}′ and there exists a Jordan ∗-homomorphism
S : E(x) → E∗∗

2 (r(d)), satisfying that T |E(x) = L(d, r(d))S.

Remark 15. Let E be a JB∗-triple. We call a subset S ⊂ E orthogonal if 0 /∈ S and x ⊥ y, for every x �= y in S . Denote by
r = r(E) the minimal cardinal number satisfying card(S) � r, for every orthogonal subset S ⊂ E and call it the rank of E .
The existence of JB∗-triples having rank one points out that Corollary 14 above is, in some sense, an optimal result for
orthogonality preserving operators between JB∗-triples. More concretely, every complex Hilbert space H is a rank one JB∗-
triple with respect to the triple product 2{x, y, z} = (x/y)z+(z/y)x, where (./.) denotes the inner product of H . This implies
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that every operator T from H to another JB∗-triple F is orthogonality preserving. In this case, every norm-one element e ∈ H

is a tripotent. However, the matrix

(
1 0 0
0 0 3
0 2 0

)
represents an operator T : �3

2 → �3
2, which is not a triple homomorphism but for

e = (1,0,0), T (e) = e is a tripotent.

4. Operators between C∗-algebras

When particularised to orthogonality preserving operators between C∗-algebras, the techniques developed in the previous
section will allow us to get some generalisations of the results obtained by M. Wolff [37, Theorem 2.3], N.C. Wong [38,
Theorem 3.2] and M.A. Chebotar, W.-F. Ke, P.H. Lee and N.C. Wong [11, Theorems 4.3, 4.6 and 4.7]. When A and B are
two C∗-algebras, we shall describe the orthogonality preserving operators T : A → B . Compared with those previous results
established in [11,37,38], and the previous section, here the operator T is not assumed to be self-adjoint and T ∗∗(1) need
not be invertible, nor normal, nor a partial isometry nor von Neumann regular. The use of the triple spectral resolution will
play an important role and an advantage in our results.

When a C∗-algebra, A, is considered as a JB∗-triple, then tripotents and partial isometries in A coincide. Given a tripo-
tent e in A, then we have A2(e) = ee∗ Ae∗e, A0(e) = (1 − ee∗)A(1 − e∗e), and A1(e) = ee∗ A(1 − e∗e) ⊕ (1 − ee∗)Ae∗e.

The following technical result will provide us the necessary tools for the main theorem of this section.

Proposition 16. Let h be an element in a C∗-algebra A. Then the following statements hold:

(a) Sp(h) = Sp(h∗).
(b) r(h) = r(h∗)∗ .
(c) If z is any element in A satisfying that zh∗ and z∗h are self-adjoint elements in A, then z lies in A∗∗

2 (r(h)) ⊕ A∗∗
0 (r(h)). Moreover,

for each f ∈ C0(Sp(h)), the following relations hold

ft
(
h∗)z = z∗ ft(h) and ft(h)z∗ = zft

(
h∗).

In particular

r
(
h∗)z = z∗r(h) and r(h)z∗ = zr

(
h∗).

Proof. (a) Since the mapping x 
→ x∗ is a conjugate-linear JB∗-triple isomorphism on A, the triple spectrum is preserved by
the canonical involution of A.

(b) Let c ∈ A satisfy cc∗c = c[3] = h. Then c∗cc∗ = h∗ , which according to our terminology, means (h[ 1
3 ])∗ = (h∗)[ 1

3 ] . It
follows, by mathematical induction, that

(
h[ 1

3n ])∗ = (
h∗)[ 1

3n ]
, ∀n ∈ N.

Taking weak∗-limits in the above expression we have r(h)∗ = r(h∗).
(c) Take an element z ∈ A, satisfying that zh∗, z∗h ∈ Asa (i.e., hz∗ = zh∗ and h∗z = z∗h). It can be easily seen, by mathe-

matical induction, that
(
h∗)[2n−1]

z = z∗h[2n−1] and h[2n−1]z∗ = z
(
h∗)[2n−1]

,

for all n ∈ N. The above relations guarantee that, for each odd polynomial P (λ) we have

Pt
(
h∗)z = z∗ Pt(h) and Pt(h)z∗ = zPt

(
h∗).

We can easily check, by the classical Stone–Weierstrass theorem, that

ft
(
h∗)z = z∗ ft(h) and ft(h)z∗ = zft

(
h∗), (11)

for all f ∈ C0(Sp(h)).
Let us fix an arbitrary natural n. Taking f (t) := 3n√

t (t ∈ Sp(h)), Eq. (11) assures that

(
h∗)[ 1

3n ]
z = z∗h[ 1

3n ] and h[ 1
3n ]z∗ = z

(
h∗)[ 1

3n ]
.

When in the above expressions we take weak∗-limits, or S∗(A∗∗, A∗)-limits, for n → ∞, we have

r
(
h∗)z = z∗r(h) and r(h)z∗ = zr

(
h∗).

Now, from (b) and the above commutativity relations, we show that

r(h)r(h)∗z = r(h)r
(
h∗)z = r(h)z∗r(h) = zr

(
h∗)r(h) = zr(h)∗r(h),

which proves the first statement in (c). �
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We can now establish the main result of this section.

Theorem 17. Let T : A → B be an operator between two C∗-algebras. For h = T ∗∗(1) the following assertions are equivalent:

(a) T is orthogonality preserving.
(b) There exists a triple homomorphism S : A → B∗∗ satisfying h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗, and

T (z) = L
(
h, r(h)

)(
S(z)

) = 1

2

(
hr(h)∗ S(z) + S(z)r(h)∗h

) = hr(h)∗ S(z) = S(z)r(h)∗h,

for all z ∈ A.

Proof. (a) ⇒ (b). The symbol B∗∗
h will stand for the JB∗-subtriple of B∗∗ generated by h. There is no loss of generality in

assuming ‖h‖ = 1. We define a sesquilinear operator V : A × A → B by

V (x, y) := T (x)T (y)∗.

For each ϕ ∈ B∗ , Vϕ(x, y) will stand for ϕV (x, y).
Since T is orthogonality preserving, for all x ⊥ y in A, we have T (x)T (y)∗ = 0, which implies that Vϕ : A × A → C is an

orthogonal sesquilinear form on A.
Similar arguments to those applied in the proof of Proposition 4 will imply that

T ∗∗(x)
(
T ∗∗(y)

)∗ = V (x, y) = V (y, x) = T ∗∗(y)
(
T ∗∗(x)

)∗
,

for all x, y ∈ A∗∗ with [x, y∗] = 0 and x ◦ y∗ = x∗ ◦ y. In particular, for each x ∈ Asa we have

T (x)h∗ = hT (x)∗. (12)

When the above argument is applied to the sesquilinear operator W : A × A → A, W (x, y) := T (y)∗T (x), we deduce that

h∗T (x) = T (x)∗h, (13)

for all x ∈ Asa .
Proposition 16(c) together with (12) and (13) now imply that

T (Asa) ⊆ B∗∗
2

(
r(h)

) ⊕ B∗∗
0

(
r(h)

)
,

ft
(
h∗)T (x) = T (x)∗ ft(h), ft(h)T (x)∗ = T (x) ft

(
h∗),

r(h)∗T (x) = T (x)∗r(h), and r(h)T (x)∗ = T (x)r(h)∗,

for every x ∈ Asa, and f ∈ C0(Sp(h)). Consequently, by linearity,

T (A) ⊆ B∗∗
2

(
r(h)

) ⊕ B∗∗
0

(
r(h)

)
, (14)

ft
(
h∗)T (z) = T

(
z∗)∗

ft(h), ft(h)T
(
z∗)∗ = T (z) ft

(
h∗), (15)

r(h)∗T (z) = T
(
z∗)∗

r(h), and r(h)T
(
z∗)∗ = T (z)r(h)∗, (16)

for every z ∈ A, and f ∈ C0(Sp(h)).
The law x 
→ T (x)T (x∗)∗T (x), defines an orthogonally additive 3-homogeneous polynomial from A to B . Corollary 3.1

in [33] assures the existence of an operator F3 : A → B satisfying that

T (x)[3] = T (x)T (x)∗T (x) = F
(
x3), (17)

for all x ∈ Asa . It can be easily checked that

F (x) = 1

3

(
2
{

h,h, T (x)
} + {

h, T (x),h
})

, (18)

for all x ∈ Asa. Now, it follows from Peirce arithmetic and (14) that

(
P2

(
r(h)

)(
T (x)

))[3] + (
P0

(
r(h)

)(
T (x)

))[3] = T (x)[3] = 1

3

(
2
{

h,h, T
(
x3)} + {

h, T
(
x3),h

}) ∈ B∗∗
2

(
r(h)

)
,

for all x ∈ Asa. Therefore, P0(r(h))(T (A)) = {0}, and hence

T (A) ⊆ B∗∗
2

(
r(h)

)
. (19)
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For each natural n, let en (respectively fn) be the closed tripotent (partial isometry) in A∗∗
h whose representation in

C0(Sp(h))∗∗ is the characteristic function χ
(Sp(h)∩[ 1

n ,1]) (respectively χ
(Sp(h∗)∩[ 1

n ,1])). We notice that (en) and ( fn) converge to

r(h) and r(h∗), respectively, in the S∗(B∗∗, B∗)-topology of B∗∗ . We also have e∗
n = fn .

The separate weak∗-continuity of the product of B∗∗ , together with (15), show that

fn T (z) = T
(
z∗)∗

en and en T
(
z∗)∗ = T (z) fn, (20)

for all n ∈ N. Therefore, the mapping

Tn : A → B∗∗

Tn(z) = {
en, en, T (z)

} = ene∗
n T (z) = T (z)e∗

nen = en T
(
z∗)∗

en

is orthogonality preserving. Since T ∗∗
n (1) = {en, en,h} = hn is a von Neumann regular element in B∗∗ , with generalised

inverse denoted by bn , Theorem 6 implies that Tn = L(hn, r(hn)) ◦ Sn, where

Sn = L
(
bn, r(hn)

) ◦ Tn : A → B∗∗

is a triple homomorphism and r(hn) = en . In particular ‖Sn‖ � 1, for all n ∈ N.
Let us take a free ultrafilter U on N. By the Banach–Alaoglu theorem, any bounded set in B∗∗ is relatively weak∗-compact

and hence the law z 
→ S(z) := w∗ − limU Sn(z) defines an operator S : A → B∗∗ .
Let us observe that, by (20) and (16), we have

Sn(z) = L(bn, en)Tn(z) = 1

2

(
bne∗

n L(en, en)T (z) + L(en, en)T (z)e∗
nbn

) = 1

2

(
bne∗

nene∗
n T (z) + T (z)e∗

nene∗
nbn

)

= 1

2

(
bne∗

n T (z) + T (z)e∗
nbn

) = bne∗
n T (z) = T (z)e∗

nbn (z ∈ A).

Therefore, we deduce, by orthogonality, that

L
(
h, r(h)

)
Sn(z) = 1

2

(
hr(h)∗bne∗

n T (z) + T (z)e∗
nbnr(h)∗h

) = 1

2

(
he∗

nbne∗
n T (z) + T (z)e∗

nbne∗
nh

) = {
h, {en,bn, en}, T (z)

}
= L(h,bn)

(
T (z)

) = L(hn,bn)
(
T (z)

) = L(en, en)
(
T (z)

) = Tn(z) (z ∈ A).

Now, by the separate weak∗-continuity of the triple product of B∗∗ we deduce, from the above equality, that

L
(
h, r(h)

)
S(z) = w∗ − lim

U
ene∗

n T (z) = T (z).

It can be also seen from the above formulae that h∗ Sm(z) = Sm(z∗)∗h, hSm(z∗)∗ = Sm(z)h∗, for all m ∈ N, z ∈ A, which in
turn gives h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗, for all z ∈ A.

We claim that S preserves orthogonality. Indeed, let x ⊥ y in A. In this case T (x) ⊥ T (y) because T is orthogonality
preserving. It follows from the equality Sn(z) = bne∗

n T (z) = T (z)e∗
nbn , that

Sn(x)Sm(y)∗ = bne∗
n T (x)T (y)∗emb∗

m = 0

and

Sm(y)∗ Sn(x) = b∗
mem T (y)∗T (x)e∗

nbn = 0,

for every n,m ∈ N. Taking w∗ − limn,U in the above expressions, we deduce that

S(x)Sm(y)∗ = 0 = Sm(y)∗ S(x),

for all m ∈ N, which, by the same reasons, gives

S(x)S(y)∗ = 0 = S(y)∗ S(x).

Finally, since S is orthogonality preserving and

S(1) = w∗ − lim
U

Sn(z) = w∗ − lim
U

hn = r(h)

is a tripotent, Corollary 8 guarantees that S is a triple homomorphism.
(b) ⇒ (a). By hypothesis h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗, for all z ∈ A. Applying Proposition 16(c), we get

(h∗)[
1

3n ] S(z) = S(z∗)∗(h)
[ 1

3n ]
, and (h)

[ 1
3n ] S(z∗)∗ = S(z)(h∗)[

1
3n ]

. It follows from the separate weak∗-continuity of the prod-
uct and Proposition 16(b), that
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r(h)∗ S(z) = r
(
h∗)S(z) = S

(
z∗)∗

r(h),

r(h)S
(
z∗)∗ = S(z)r

(
h∗) = S(z)r(h)∗.

Since S is a triple homomorphism, the above commutativity relations show that

T (z) = L
(
h, r(h)

)(
S(z)

) = hr(h)∗ S(z) = S(z)r(h)∗h (z ∈ A)

is orthogonality preserving. �
Let T : E → F be an operator between two JB∗-triples. We shall say that T preserves zero-triple-products if {T (x), T (y),

T (z)} = 0 whenever {x, y, z} = 0. We recall that an operator T between two C∗-algebras is said to be zero-products preserving
if T (x)T (y) = 0 whenever xy = 0.

It is clear that when T is symmetric (i.e., T (x∗) = T (x)∗), then T is orthogonality preserving on Asa if and only if T pre-
serves zero-products on Asa . However, not every orthogonality preserving operator sends zero-products to zero-products.

Consider for example T : M2(C) → M2(C), T (x) = ux, where u =
(

0 −1
1 0

)
. Clearly T is a triple homomorphism and hence

orthogonality preserving, but taking x =
(

0 1
0 1

)
, y =

(
1 −1
0 0

)
, we have xy = yx = 0 and T (x)T (y) �= 0.

Any operator between two JB∗-triples is orthogonality preserving whenever it preserves zero-triple-products. Indeed,
let T : E → F be an operator between two JB∗-triples. Suppose that T preserves zero-triple-products. If x ⊥ y in E then
L(x, x)(y) = {x, x, y} = 0 and hence L(T (x), T (x))(T (y)) = 0. Lemma 1 shows that T (x) ⊥ T (y).

If T is an orthogonality preserving operator between two C∗-algebras, then Theorem 17 implies that T preserves zero-
triple-products. We therefore have

Corollary 18. Let T : A → B be an operator between two C∗-algebras. Then T is orthogonality preserving if and only if T preserves
zero-triple-products.

Remark 19. The following description of all zero-products preserving operators between C∗-algebras was established in [11,
Theorem 4.7].

Let T be an operator from a unital C∗-algebra A to a C∗-algebra B . Suppose that T preserves zero-products and T (1)

is a normal element. Then there exists a sequence of continuous Jordan homomorphisms Jn : A → B∗∗ such that T (1) Jn(z)
converges strongly to T (z), for all z ∈ A.

The sequence Jn given by the above result need not be, in general bounded (compare [11, Example 4.8]). The same
example given in the just quoted reference assures the existence of a zero-products preserving operator T between two
unital C∗-algebras A and B satisfying that T cannot be written in the form T = T (1) J for any Jordan homomorphism J .

Roughly speaking, the above Corollary 18 confirms that the appropriate structure to characterise the orthogonality pre-
serving operators between C∗-algebras is the natural structure of JB∗-triple associated to each one of them.

5. Operators preserving cubes of self-adjoint elements

This section is inspired by the following statement placed by N.C. Wong in [38, Proof of Theorem 3.2]: if T : A → B is a
self-adjoint operator between two C∗-algebras, then T is a triple homomorphism if and only if T (a3) = T (a)3, for all a = a∗
in A. There is no direct argument to show, algebraically, that the identities T ((a ± b)3) = (T (a) ± T (b))3 (∀a,b ∈ Asa) imply
that T (aba) = T (a)T (b)T (a) (∀a,b ∈ Asa), and hence T is a triple homomorphism. However, the following theorem shows
that the above statement is true even in a more general setting.

Theorem 20. Let J be a JB∗-algebra, E be a JB∗-triple and let T : J → E be an operator. The following assertions are equivalent:

(a) T is a triple homomorphism.
(b) T (a3) = T (a)[3], for all a ∈ J sa.
(c) T is orthogonality preserving on J sa and T ∗∗(1) is a tripotent.

Proof. The implication (a) ⇒ (b) is obvious, while (c) ⇒ (a) follows by Corollary 11 (see also Remark 13).
We shall prove (b) ⇒ (c). We assume that T (a3) = T (a)[3], for all a ∈ J sa . We claim that, for each a ∈ J sa , T ∗∗(r(a)) =

r(T (a)). Indeed, having in mind the uniqueness of the cubic root of an element in a JB∗-triple, it follows that, for each

a ∈ J sa , T (a[ 1
3 ])[3] = T (a), which implies T (a[ 1

3 ]) = T (a)[ 1
3 ] . By mathematical induction we have T (a[ 1

3n ]
) = T (a)

[ 1
3n ]

, ∀n ∈ N.

Since T ∗∗ is Strong∗-continuous and r(a) = S∗(E∗∗, E∗) − lim a[ 1
3n ] , we deduce the desired conclusion.

Let a ⊥ b in J sa . By Lemma 1 we have that b ⊥ Ja , which in particular implies that b ⊥ a[ 1
3n ] , ∀n ∈ N, and consequently

b3 ± (
a[ 1

3n ])3 = (
b ± a[ 1

3n ])3
(see Lemma 1).



M. Burgos et al. / J. Math. Anal. Appl. 348 (2008) 220–233 233
Therefore, by our assumptions T (b)[3] ± (T (a[ 1
3n ]

))[3] = (T (b) ± T (a[ 1
3n ]

))[3] . Now, the joint Strong∗-continuity of the triple
product (on bounded sets) allows us to prove that T (b)[3] ± (T (r(a)))[3] = (T (b) ± T (r(a)))[3].

Another application of Lemmas 2 and 1 gives T (a) ⊥ T (b), which shows that T is orthogonality preserving on J sa .
Finally, since 1 is always an open projection in J∗∗, there exists a net (xλ) ⊂ J sa satisfying that S∗( J∗∗, J∗)− limλ xλ = 1.

It follows that T ∗∗(1) = S∗(E∗∗, E∗) − lim T (x3
λ) = S∗(E∗∗, E∗) − lim(T (xλ))

[3] = T ∗∗(1)[3] . �
Corollary 21. Let T : A → B be a symmetric operator between two C∗-algebras. The following assertions are equivalent:

(a) T is a triple homomorphism.
(b) T |Asa : Asa → Bsa is a (real) triple homomorphism.

(c) T (a3) = T (a)3, for all a ∈ Asa.
(d) T is orthogonality preserving (on Asa) and T ∗∗(1) is a tripotent.
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We obtain a complete characterization of all orthogonality preserving operators from a
JB*-algebra to a JB*-triple. If T : J → E is a bounded linear operator from a JB*-
algebra (respectively, a C*-algebra) to a JB*-triple and h denotes the element T ∗∗(1),
then T is orthogonality preserving, if and only if, T preserves zero-triple-products, if and
only if, there exists a Jordan *-homomorphism S : J → E∗∗2 (r(h)) such that S(x) and
h operator commute and T (x) = h •

r(h) S(x), for every x ∈ J , where r(h) is the range
tripotent of h, E∗∗2 (r(h)) is the Peirce-2 subspace associated to r(h) and •

r(h) is the
natural product making E∗∗2 (r(h)) a JB*-algebra.

This characterization culminates the description of all orthogonality preserving op-
erators between C*-algebras and JB*-algebras and generalizes all the previously known
results in this line of study.

Keywords: Orthogonality preserving operators; orthogonally additive mappings; C*-
algebras; JB*-algebras; JB*-triples
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1. Introduction

From a historical point of view, the study of orthogonality preserving operators
between C*-algebras started with the paper [1], where W. Arendt initiated the
study of all operators preserving disjoint (or orthogonal) functions between C(K)-
spaces. It was established there that for each orthogonality preserving operator
T : C(K) → C(K), there exist h ∈ C(K) and a mapping ϕ : K → K being
continuous on the set {t ∈ K : h(t) 6= 0} satisfying that

T (f)(t) = h(t)f(ϕ(t)),

for all f ∈ C(k), t ∈ K. K. Jarosz [16] and J.-S. Jeang and N.-C. Wong [17] proved
later that the description remains valid for all orthogonality preserving operators

∗The authors were partially supported by I+D MEC project no. MTM2008-02186, and Junta de
Andalućıa grants FQM0199 and FQM3737.
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between C0(L)-space, where L is a locally compact Hausdorff space.

C(K) and C0(L) spaces are examples of abelian C*-algebras. In fact, the Gelfand
theory assures that every abelian C*-algebra is C*-isomorphic to a C0(L)-space.
Therefore, the just quoted results by Jarosz and Jeang-Wong provide a complete
description of all orthogonality preserving operators between abelian C*-algebras.

In the setting of a general C*-algebra A, two elements a and b in A are said to
be orthogonal (denoted by a ⊥ b) if ab∗ = b∗a = 0. A linear operator T between two
C*-algebras A and B is called orthogonality preserving or disjointness preserving
if T (a) ⊥ T (b), for all a ⊥ b in A. The description of all orthogonality preserving
operators between two C*-algebras raised as an important problem studied by many
authors.

When the problem is considered only for symmetric operators between general
C*-algebras, M. Wolff established a full description in [26]. More precisely, if T :
A → B is a symmetric orthogonality preserving bounded linear operator between
two C*-algebras with A unital, then denoting T (1) = h the following assertions
hold:

a) T (A) is contained in the norm closure of h{h}′ , where {h}′ denotes the commu-
tator of {h}.

b) There exists a Jordan *-homomorphism S : A → B∗∗ such that T (z) = hS(z),
for all z ∈ A.

On every C*-algebra A we can also consider a triple product defined by
{x, y, z} := 1

2 (xy∗z + zy∗x). This triple product has been shown as an important
tool to characterize orthogonal elements in a C*-algebra. In fact, two elements a

and b in A are orthogonal if and only if {a, a, b} = 0 (compare Lemma 1 in [7]).
In particular, every triple homomorphism between two C*-algebras preserves or-
thogonal elements. Theorem 3.2 in [27] shows that a bounded linear operator T

between two C*-algebras is a triple homomorphism if and only if T is orthogonality
preserving and T ∗∗(1) is a partial isometry (tripotent).

There exists a wider class of complex Banach spaces containing all C*-algebras
in which the notion of orthogonality makes sense and extends the concept given for
C*-algebras. We refer to the class of JB*-triples. A JB*-triple is a complex Banach
space E, equipped with a continuous triple product {., ., .} : E × E × E → E,

satisfying suitable algebraic and geometric conditions (see definition in §2). Every
C*-algebra is a JB*-triple for the triple product given above.

Two elements a and b in a JB*-triple E are said to be orthogonal (written a ⊥ b)
if L(a, b) = 0, where L(a, b) is the linear operator on E defined by L(a, b)(x) :=
{a, b, x}. It is known that two elements in a C*-algebra A are orthogonal for the
C*-algebra product if and only if they are orthogonal when A is considered as a
JB*-triple (compare the introduction of §4).

Techniques in JB*-triple theory were revealed as a powerful tool in the descrip-
tion of all orthogonality preserving operators between two C*-algebras established in
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[7]. Concretely, for every operator T between two C*-algebras, denoting h = T ∗∗(1),
the following assertions are equivalent:

a) T is orthogonality preserving.
b) There exists a triple homomorphism S : A → B∗∗ satisfying h∗S(z) = S(z∗)∗h,

hS(z∗)∗ = S(z)h∗, and

T (z) = L(h, r(h))(S(z)) =
1
2

(hr(h)∗S(z) + S(z)r(h)∗h)

= hr(h)∗S(z) = S(z)r(h)∗h,

for all z ∈ A, where r(h) denotes the range tripotent of h.
c) T preserves zero-triple-products (that is, {T (a), T (b), T (c)} = 0 whenever
{a, b, c} = 0).

Reference [7] also contains the following generalization of the main result in [27]:
Let T be an operator from a JB*-algebra J to a JB*-triple E. Then T is a triple
homomorphism if and only if T is orthogonality preserving and T ∗∗(1) is a tripotent.
This result is in fact a consequence of a complete description of all orthogonality
preserving operators from J to E whose second adjoint maps the unit of J∗∗ to
a von Neumann regular element. It seems natural to ask whether the condition of
T ∗∗(1) being von Neumann regular can be omitted.

This paper culminates with the characterization of all orthogonality preserving
operators from a JB*-algebra to a JB*-triple. Theorem 4.1 and Corollary 4.2 show
that for a bounded linear operator T from a JB*-algebra J to a JB*-triple E the
following are equivalent:

a) T is orthogonality preserving.
b) There exists a (unital) Jordan *-homomorphism S : M(J) → E∗∗

2 (r(h)) such
that S(x) and h operator commute and T (x) = h •

r(h) S(x), for every x ∈ J ,
where M(J) is the multiplier algebra of J , r(h) is the range tripotent of h,
E∗∗

2 (r(h)) is the Peirce-2 subspace associated to r(h) and •
r(h) is the natural

product making E∗∗
2 (r(h)) a JB*-algebra.

c) T preserves zero-triple-products.

The proofs presented here are partially based on techniques developed in JB*-
triple theory. The arguments do not depend on those results previously obtained
by Arendt [1], Wolff [26], Wong [27] and Burgos, Fernández-Polo, Garcés, Mart́ınez
and Peralta [7]. We shall actually show that all of them are direct consequences of
the main result here.

A useful tool applied in the proof of the main result of this paper is the charac-
terization of all orthogonally additive n-homogeneous polynomials on a general C*-
algebra. This characterization has been recently obtained in [20]. Section 3 presents
a shorter and simplified proof of this description.
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2. Notation and preliminaries

Given Banach spaces X and Y , L(X,Y ) will denote the space of all bounded linear
mappings from X to Y . We shall write L(X) for the space L(X,X). Throughout
the paper the word “operator” (respectively, multilinear or sesquilinear operator)
will always mean bounded linear mapping (respectively bounded multilinear or
sesquilinear mapping). The dual space of a Banach space X is always denoted by
X∗.

When A is a JB*-algebra or a C*-algebra then, Asa will stand for the set of all
self-adjoint elements in A. We shall make use of standard notation in C*-algebra
and JB*-triple theory.

C*-algebras and JB*-algebras belong to a more general class of Banach spaces
known under the name of JB*-triples. JB*-triples were introduced by W. Kaup in
[19]. A JB*-triple is a complex Banach space E together with a continuous triple
product {., ., .} : E × E × E → E, which is conjugate linear in the middle variable
and symmetric and bilinear in the outer variables satisfying that,

(JB1) L(a, b)L(x, y) = L(x, y)L(a, b)+L(L(a, b)x, y)−L(x, L(b, a)y), where L(a, b)
is the operator on E given by L(a, b)x = {a, b, x} ;

(JB2) L(a, a) is a hermitian operator with non-negative spectrum;
(JB3) ‖L(a, a)‖ = ‖a‖2.

For each x in a JB*-triple E, Q(x) will stand for the conjugate linear operator on
E defined by the law y 7→ Q(x)y = {x, y, x}.

Every C*-algebra is a JB*-triple via the triple product given by

2 {x, y, z} = xy∗z + zy∗x,

and every JB*-algebra is a JB*-triple under the triple product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a unique
isometric predual [4]). It is known that the triple product of a JBW*-triple is sep-
arately weak*-continuous [4]. The second dual of a JB*-triple E is a JBW*-triple
with a product extending that of E (compare [9]).

An element e in a JB*-triple E is said to be a tripotent if {e, e, e} = e. Each
tripotent e in E gives raise to the so-called Peirce decomposition of E associated to
e, that is,

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0, 1, 2, Ei(e) is the i
2 eigenspace of L(e, e). The Peirce decomposition

satisfies certain rules known as Peirce arithmetic:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e),
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if i− j + k ∈ {0, 1, 2} and is zero otherwise. In addition,

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.

The corresponding Peirce projections are denoted by Pi(e) : E → Ei(e), (i =
0, 1, 2). The Peirce space E2(e) is a JB*-algebra with product x•e y := {x, e, y} and
involution x]e := {e, x, e}.

For each element x in a JB*-triple E, we shall denote x[1] := x, x[3] := {x, x, x},
and x[2n+1] :=

{
x, x, x[2n−1]

}
, (n ∈ N). The symbol Ex will stand for the JB*-

subtriple generated by the element x. It is known that Ex is JB*-triple isomorphic
(and hence isometric) to C0(Ω) for some locally compact Hausdorff space Ω con-
tained in (0, ‖x‖], such that Ω ∪ {0} is compact, where C0(Ω) denotes the Banach
space of all complex-valued continuous functions vanishing at 0. It is also known
that if Ψ denotes the triple isomorphism from Ex onto C0(Ω), then Ψ(x)(t) = t

(t ∈ Ω) (cf. Corollary 4.8 in [18], Corollary 1.15 in [19] and [12]).

Therefore, for each x ∈ E, there exists a unique element y ∈ Ex satisfying that
{y, y, y} = x. The element y, denoted by x[ 13 ], is termed the cubic root of x. We

can inductively define, x[ 1
3n ] =

(
x[ 1

3n−1 ]
)[ 13 ]

, n ∈ N. The sequence (x[ 1
3n ]) converges

in the weak*-topology of E∗∗ to a tripotent denoted by r(x) and called the range
tripotent of x. The element r(x) is the smallest tripotent e ∈ E∗∗ satisfying that x

is positive in the JBW*-algebra E∗∗
2 (e) (compare [11], Lemma 3.3).

A subspace I of a JB*-triple E is said to be an inner ideal of E if {I, E, I} ⊆
I. Given an element x in E, let E(x) denote the norm closed inner ideal of E

generated by x. It is known that E(x) coincides with the norm-closure of the set
Q(x)(E) = {x,E, x}. Moreover E(x) is a JB*-subalgebra of E∗∗

2 (r(x)) and contains
x as a positive element (compare page 19 and Proposition 2.1 in [6]).

The symmetrized Jordan triple product in a JB*-triple E is defined by the ex-
pression

< x, y, z >:=
1
3

({x, y, z}+ {y, z, x}+ {z, x, y}) .

Given a C*-algebra (respectively, a JB*-algebra), A, the multiplier algebra of
A, M(A), is the set of all elements x ∈ A∗∗ such that for each elements a ∈ A,
xa and ax (respectively, x ◦ a) also lie in A. We notice that M(A) is a C*-algebra
(respectively, a JB*-algebra) and contains the unit element of A∗∗.

3. Orthogonally additive polynomials on C*-algebras: The role
played by the multiplier algebra

One of the most useful tools used in the study of orthogonality preserving operators
between C*-algebras is the description of all orthogonally additive n-homogeneous
polynomials on a C*-algebra, obtained in [20]. We present here a shorter and sim-
plified proof of the main results established in the just quoted paper.
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Let A be a C*-algebra and let X be a complex Banach space. A mapping f : A →
X is said to be orthogonally additive (respectively, orthogonally additive on Asa) if
for every a, b ∈ A (respectively, a, b ∈ Asa) with a ⊥ b we have f(a+b) = f(a)+f(b).

We shall say that f is additive on elements having zero-product if for every
a, b ∈ A with ab = 0 = ba we have f(a + b) = f(a) + f(b). When f behaves
additively only on self-adjoint elements having zero-product, we shall say that f is
additive on elements having zero-product on Asa.

An X-valued n-homogeneous polynomial between two Banach spaces Y and X

is a continuous X-valued mapping P on Y for which there exists a continuous (and
symmetric) n-linear operator T : Y × · · · × Y −→ X satisfying P (x) = T (x, . . . , x),
for every x in X. The following polarization formula

T (x1, . . . , xn) =
1

2nn!

∑
εi=±1

ε1 · . . . · εn P

(
n∑

i=1

εixi

)
, (3.1)

holds for all x1, . . . , xn ∈ Y .

Given two Banach spaces X and Y , the symbol Pn(X, Y ) will stand for
the Banach space of all n-homogeneous polynomials from X to Y and we write
Pn(X) := Pn(X,K).

D. Pérez and I. Villanueva prove in [23] that for every compact Hausdorff space
K and every orthogonally additive n-homogeneous polynomial P from C(K) to a
Banach space X, there exists an operator T : C(K) → X satisfying that P (f) =
T (fn), for all f ∈ C(K). The proof remains valid when C(K)-spaces are replaced
with C0(L) spaces, where L is a locally compact Hausdorff space.

Let X1, . . . , Xn, and X be Banach spaces, T : X1×· · ·×Xn → X a (continuous)
n-linear operator, and π : {1, . . . , n} → {1, . . . , n} a permutation. It is known that
there exists a unique n-linear extension AB(T )π : X∗∗

1 ×· · ·×X∗∗
n → X∗∗ such that

for every zi ∈ X∗∗
i and every net (xi

αi
) ∈ Xi (1 ≤ i ≤ n), converging to zi in the

weak* topology we have

AB(T )π(z1, . . . , zn) = weak*- lim
απ(1)

· · ·weak*- lim
απ(n)

T (x1
α1

, . . . , xn
αn

).

Moreover, AB(T )π is bounded and has the same norm as T . The extensions
AB(T )π coincide with those constructed by Aron and Berner for polynomials in
[2], and are usually termed the Aron-Berner extensions of T (see also Proposition
3.1 in [22]).

If every operator from Xi to X∗
j is weakly compact (i 6= j), the Aron-Berner

extensions of T defined above do not depend on the chosen permutation π (see [3],
and Theorem 1 in [5]). In particular, this happens when every Xi has Pelczynski’s
property (V ) (if all of the Xi’s satisfy property (V ), then their duals, X∗

i , have no
copies of c0, therefore every operator from Xi to X∗

j is unconditionally converging,
and hence weakly compact by (V ), see [21]). When all the Aron-Berner extensions
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of T coincide, the symbol AB(T ) will stand for any of them. It is also known that,
AB(T ) is symmetric whenever T is.

When P : X → Y is the n-homogeneous polynomial defined by T ,
AB(P ) : X∗∗ → Y ∗∗ will denote the n-homogeneous polynomial whose associated
symmetric n-linear operator is AB(T ).

We should note at this point that every C*-algebra satisfies property (V ) (see
Corollary 6 in [24]).

The original proof presented in [20] relies on the following technical result: for
every symmetric and continuous n-linear form T on a C*-algebra A such that the n-
homogeneous polynomial P (x) = T (x, . . . , x), (∀x ∈ A) is orthogonally additive on
Asa, the (n − 1)-homogeneous polynomial R(x) = AB(T )(1, x, . . . , x), (∀x ∈ A) is
orthogonally additive on Asa, where 1 denotes the unit of A∗∗. The proof exhibited
in this paper avoids the use of the above technical tool. Instead of using the Aron-
Berner extension on the A∗∗×. . .×A∗∗ we shall focus our attention on its restriction
to the Cartesian product M(A)× . . .×M(A), where M(A) denotes the multiplier
algebra of A in A∗∗.

The following result, whose proof is essentially algebraic, is inspired by Propo-
sition 2.4 in [23].

Lemma 3.1. Let P : A → K be an element in Pn(A) and let T : A× · · · ×A → K
be its associate symmetric n-linear operator. Suppose that P is orthogonally additive
on Asa. Then for every 1 < s < n and every a1, . . . , as, b1, . . . , bn−s in Asa such
that, for each i and j, ai and bj are orthogonal we have

T (a1, . . ., as, b1, . . ., bn−s) = 0.

Proof. Let 1 < s < n. We claim that for every a and b in Asa with a ⊥ b we have

T
(
a, s. . ., a, b, (n−s). . . , b

)
= 0. (3.2)

Indeed, the equation

λnT (a, . . ., a) + µnT (b, . . ., b) = λnP (a) + µnP (b) = P (λa + µb)

=
∑

0≤k1,k2≤n

k1+k2=n

n!
k1!k2!

λk1µk2 T
(
a, k1. . ., a, b, k2. . ., b

)
(by the symmetry of T ) ,

holds for every λ and µ in R. Therefore,

∑
0<k1,k2<n

k1+k2=n

n!
k1!k2!

λk1µk2 T
(
a, k1. . ., a, b, k2. . ., b

)
= 0,

for all λ and µ in R, which in particular gives (3.2).
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Let a1, . . . , as, b1, . . . , bn−s in Asa be such that, for each i and j, ai and bj are
orthogonal. Having in mind that whenever we fix s variables of T we have another
symmetric and continuous multilinear form, the polarization formula (3.1) yields

T


a1, . . ., as,

n−s∑

j=1

εjbj , . . . ,
n−s∑

j=1

εjbj




=
1

2s(s)!

∑
σj=±1

σ1 · · ·σs T




s∑

k=1

σkak, . . .,
s∑

k=1

σkak,
n−s∑

j=1

εjbj , . . . ,
n−s∑

j=1

εjbj


 = 0,

(3.3)
where in the last equality we applied (3.2) and the fact that

∑s
k=1 σkak and∑n−s

j=1 εjbj are orthogonal. Finally, the formula (3.3) gives

T (a1, . . ., as, b1, . . ., bn−s)

=
1

2n−s(n− s)!

∑
εi=±1

ε1 · . . . · εn−s T


a1, . . ., as,

n−s∑

j=1

εjbj , . . . ,
n−s∑

j=1

εjbj


 = 0.

Proposition 3.1. Let A be a C*-algebra. Suppose that T : A × . . . × A → C
is a symmetric and continuous n-linear form on A such that the n-homogeneous
polynomial P (x) = T (x, . . . , x), ∀x ∈ A, is orthogonally additive on Asa. Then the
polynomial R : M(A) → C, R(x) := AB(T )(x, . . . , x) is orthogonally additive on
M(A)sa.

Proof. Let a and b be two orthogonal elements in M(A)sa. Since a
1
3 and b

1
3 are

orthogonal, we deduce that, for each pair x, y in A, a
1
3 xa

1
3 and b

1
3 yb

1
3 also are

orthogonal elements in A. The hypothesis of P being orthogonally additive assures,
via Lemma 3.1, that

T (a
1
3 x1a

1
3 + b

1
3 y1b

1
3 , . . . , a

1
3 xna

1
3 + b

1
3 ynb

1
3 ) = T (a

1
3 x1a

1
3 , . . . , a

1
3 xna

1
3 )

+T (b
1
3 y1b

1
3 , . . . , b

1
3 ynb

1
3 ), for all x1, . . . xn, y1, . . . , yn ∈ A. (3.4)

Now, Goldstine’s theorem (cf. Theorem V.4.2.5 in [10]) guarantees that the
closed unit ball of Asa is weak*-dense in the closed unit ball of A∗∗sa. Therefore there
exist two bounded nets (xλ) and (yµ) in Asa, converging in the weak*-topology of
A∗∗ to a

1
3 and b

1
3 , respectively. In our setting the Aron-Berner extension of T is

separately weak*-continuous. Thus, by replacing, in equation (3.4), x1 and y1 with
(xλ) and (yµ), respectively, and taking weak*-limits, we have:

AB(T )(a + b, a
1
3 x2a

1
3 + b

1
3 y2b

1
3 , . . . , a

1
3 xna

1
3 + b

1
3 ynb

1
3 )

= AB(T )(a, a
1
3 x2a

1
3 , . . . , a

1
3 xna

1
3 ) + AB(T )(b, b

1
3 y2b

1
3 , . . . , b

1
3 ynb

1
3 ),
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for all x2, . . . xn, y1, . . . , yn ∈ A. When the above argument is repeated for
x2, y2, . . . , xn, yn we derive

R(a + b) = AB(T )(a + b, , . . . , a + b)

= AB(T )(a, . . . , a) + AB(T )(b, . . . , b) = R(a) + R(b),

which finishes the proof.

We observe that M(A) is always unital, so Proposition 3.1 allows us to apply
the final argument in the proof of Theorem 2.8 in [20] but avoiding some technical
and laborious results needed in its original proof.

Theorem 3.1. [20] Let A be a C*-algebra, n ∈ N and P an n-homogeneous scalar
polynomial on A. The following are equivalent.

(a) There exists ϕ ∈ A∗ such that, for every x ∈ A,

P (x) = ϕ(xn).

(b) P is additive on elements having zero-products.
(c) P is orthogonally additive on Asa.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear. To see that (c) ⇒ (a) we
proceed by induction on n. When n = 1 the result is trivial. We suppose that the
statement is true for n− 1.

Let T : A × . . . × A → C be the unique symmetric and continuous n-linear
form on A associated to P . Proposition 3.1 guarantees that the polynomial AB(P )
associated to AB(T ) is orthogonally additive on M(A)sa.

Let θ be defined by θ(x2, . . . , xn) := AB(T )(1, x2, . . . , xn), (x2, . . . , xn ∈ M(A)).
We claim that the polynomial R associated to θ is orthogonally additive on M(A)sa.

Indeed, let a and b be two orthogonal elements in M(A)sa and let C denote C*-
subalgebra of M(A) generated by a, b and 1. Clearly C is a unital abelian C*-algebra
and P |C is orthogonally additive. Thus, Theorem 2.1 in [23] assures the existence
of a functional ψ

C
∈ C∗ such that

AB(T )|C(y1, . . . , yn) = ψ
C

(y1 . . . yn)

for all y1, . . . , yn ∈ Cx. In particular

R(a + b) = θ(a + b, . . . , a + b) = AB(T )|C(1, a + b, . . . , a + b)

= ψ
C

((a + b)n−1) = ψ
C

(an−1 + bn−1) = ψ
C

(an−1) + ψ
C

(bn−1)

= AB(T )|C(1, a, . . . , b) + AB(T )|C(1, b, . . . , b) = R(a) + R(b),

which proves the claim.
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By the induction hypothesis, there exists ϕ ∈ M(A)∗ such that

R(x) = ϕ(xn−1)

for all x ∈ M(A).

On the other hand, for every x ∈ M(A)sa, let Cx be the abelian C*-subalgebra of
M(A) generated by 1 and x, and let T|Cx

: Cx×. . .×Cx → C be the restriction of T .
Clearly the polynomial associated to T|Cx

also is orthogonally additive. Therefore,
Theorem 2.1 of [23] guarantees the existence of a measure ψx ∈ (Cx)∗ with ‖ψx‖ =
‖T|Cx

‖ such that

T|Cx
(y1, . . . , yn) = ψx(y1 . . . yn)

for all y1, . . . , yn ∈ Cx.

Now, we claim that, for every x ∈ M(A)sa, ψx = ϕ|Cx
. Indeed, let us fix x ∈

M(A)sa and pick a positive element z ∈ Cx. There is no loss of generality in
assuming that ‖z‖ = 1. The positivity of z implies the existence of a positive norm-
one element y ∈ Cx satisfying yn−1 = z.

We therefore have

ψx(z) = ψx(yn−1) = AB(T|Cx
)(1, y, . . . , y) = AB(T )(1, y, . . . , y)

= θ(y, . . . , y) = R(y) = ϕ(yn−1) = ϕ(z).

Since z is an arbitrary positive norm-one element in Cx we deduce, by linearity,
that ψx = ϕ|Cx

.

Thus, for each x ∈ M(A)sa, we have

AB(P )(x) = AB(T )(x, . . . , x) = ψx(xn) = ϕ(xn).

The polarization formula given in (3.1) applies to prove that AB(P )(x) = ϕ(xn)
for all x ∈ M(A).

The following vector-valued version of the above theorem was established in [20],
Corollary 3.1.

Theorem 3.2. [20] Let A be a C*-algebra, X a complex Banach space, n ∈ N and
P : A → X an n-homogeneous polynomial. The following are equivalent.

(a) There exists an operator T : A → X such that, for every x ∈ A,

P (x) = T (xn).

(b) P is additive on elements having zero-products.
(c) P is orthogonally additive on Asa.
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4. Orthogonality preservers between C*-algebras and JB*-algebras

Let J be an arbitrary JB*-algebra. One of the main results stated in [7] describes the
orthogonality preserving operators from J to a JB*-triple whose second transpose
maps the unit in A∗∗ to a tripotent in E∗∗. This section contains most of the
novelties in this paper. We shall present a complete description of all orthogonality
preserving operators from a JB*-algebra to a JB*-triple, without assuming any
additional condition.

We recall that two elements a, b in a JB*-triple are said to be orthogonal (written
a ⊥ b) if L(a, b) = 0. Lemma 1 in [7] shows that a ⊥ b if and only if one of the
following statements holds:

{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b);

E∗∗
2 (r(a)) ⊥ E∗∗

2 (r(b)); r(a) ∈ E∗∗
0 (r(b)); a ∈ E∗∗

0 (r(b));

b ∈ E∗∗
0 (r(a)); Ea ⊥ Eb {b, b, a} = 0.

(4.1)

The Jordan identity (JB1) and the above reformulations assure that

a ⊥ {x, y, z} whenever a is orthogonal to x, y and z. (4.2)

If A is a C*-algebra, it can be checked from the above reformulations, that two
elements a, b in A are orthogonal for the C*-algebra product (i.e. ab∗ = 0 = b∗a) if
and only if they are orthogonal when A is considered as a JB*-triple.

The equivalent reformulations of orthogonality given in (4.1) admit another
equivalent statement in the setting of JB*-algebra when one of the elements is
positive.

Lemma 4.1. Let h and x be elements in a JB*-algebra J with h positive. Then
x ⊥ h if and only if h ◦ x = 0.

Proof. Having in mind that h ◦ x = {1, h, x}, where 1 denotes the unit element in
J∗∗, it is clear that h ◦ x = 0 whenever h ⊥ x. We shall show that x ⊥ h whenever
h ◦ x = 0. Given a positive element h in J , there exists another positive element b

satisfying b2 = h. Since the triple product {b, b, x} coincides with b2 ◦x = h ◦x = 0,
the equivalent reformulations of orthogonality given in (4.1) guarantee that b ⊥ x,
or equivalently, x ∈ J∗∗0 (r(b)). It is not hard to check that for a positive b, the range
tripotents r(b) and r(b2) = r(h) both coincide with the range projection of b in J∗∗

and hence r(b) = r(b2) = r(h). Again, the equivalences stated in (4.1) assure that
x ⊥ h.

Let E and F be JB*-triples. An operator T : E → F is said to be orthogonality
preserving if T (a) ⊥ T (b) whenever a ⊥ b in E. This concept extends the usual
definition of orthogonality preserving linear operator between C*-algebras.
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Lemma 4.2. Let T : J → E be an orthogonality preserving operator from a JB*-
algebra to a JB*-triple, then T ∗∗|M(J) : M(J) → E∗∗ is orthogonality preserving.

Proof. Let a, b ∈ M(J). By (4.1), a[ 13 ] and b[ 13 ] are orthogonal elements in M(J).
Thus, we deduce that for each pair x, y in J , Q(a[ 13 ])x and Q(b[ 13 ])y are two or-
thogonal elements in J . Now, Goldstine’s theorem guarantees that the closed unit
ball of J is weak*-dense in the closed unit ball of J∗∗. Therefore there exist two
bounded nets (xλ) and (yµ) in J , converging in the weak*-topology of J∗∗ to a[ 13 ]

and b[ 13 ], respectively.

Since the triple product of any JBW*-triple is separately weak* con-
tinuous ([4]) and T ∗∗ is weak*-continuous, we deduce that, for each x, y

in J , the net 0 =
{

T (Q(a[ 13 ])xλ), T (Q(a[ 13 ])x), T (Q(b[ 13 ])y)
}

converges to{
T ∗∗(a), T (Q(a[ 13 ])x), T (Q(b[ 13 ])y)

}
in the weak*-topology of E∗∗. Therefore

{
T ∗∗(a), T (Q(a[ 13 ])x), T (Q(b[ 13 ])y)

}
= 0,

for all x, y ∈ J . Similarly,
{

T ∗∗(a), T ∗∗(a), T (Q(b[ 13 ])y)
}

= 0, for all y ∈ J .

Finally, 0 =
{

T ∗∗(a), T ∗∗(a), T (Q(b[ 13 ])yµ)
}
→ {T ∗∗(a), T ∗∗(a), T ∗∗(b)} , in the

weak*-topology of E∗∗, and hence T ∗∗(a) ⊥ T ∗∗(b).

Let A be a C*-algebra and let X be a complex Banach space. A continuous
sesquilinear mapping Φ : A × A → X is said to be orthogonal if Φ(a, b) = 0 for
every a, b ∈ A such that a ⊥ b. By a celebrated result due to S. Goldstein [13] (see
[14] for an alternative proof), for every continuous sesquilinear orthogonal form
V : A×A → C, there exist two functionals ω1, ω2 ∈ A∗ satisfying that

V (x, y) = ω1(xy∗) + ω2(y∗x),

for all x, y ∈ A. Denoting φ = ω1 + ω2 and ψ = ω1 − ω2, we have

V (x, y) = φ(x ◦ y∗) + ψ([x, y∗]),

for all x, y ∈ A, where a ◦ b := 1
2 (ab + ba), [a, b] := 1

2 (ab − ba). In particular,
V (x, y) = V (y, x) whenever [x, y∗] = 0 and x ◦ y∗ = x∗ ◦ y. The following lemma
follows straightforwardly from the above remarks and the Hahn-Banach theorem.

Lemma 4.3. Let A be a C*-algebra, X a Banach space and Φ : A × A → X

a continuous sesquilinear orthogonal operator. Then Φ(x, y) = Φ(y, x) whenever
[x, y∗] = 0 and x ◦ y∗ = x∗ ◦ y.

Let us recall that two elements a and b in a JB*-algebra J are said to operator
commute in J if the multiplication operators Ma and Mb commute, where Ma is
defined by Ma(x) := a ◦ x. That is, a and b operators commute if and only if
(a ◦ x) ◦ b = a ◦ (x ◦ b) for all x in J . Self-adjoint elements a and b in J generate a
JB∗-subalgebra that can be realized as a JC∗-subalgebra of some B(H), [29], and,
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in this identification, a and b commute in the usual sense whenever the operators
commute in J (compare Proposition 1 in [25]). Similarly, two elements a and b of
Jsa operator commute if and only if a2◦b = {a, b, a} (i.e., a2◦b = 2(a◦b)◦a−a2◦b).
If b ∈ J we use {b}′ to denote the set of elements in J that operator commute with
b. (This corresponds to the usual notation in von Neumann algebras.)

Proposition 4.1. Let A be a C*-algebra, E a JB*-triple and T : A → E an
orthogonality preserving operator. Then for h = T ∗∗(1), the following assertions
hold:

a) {T (x), h, h} = {h, T (x∗), h}, for all x ∈ A.
b) T (Asa) ⊂ E∗∗

2 (r(h))sa.

c) For each a ∈ A, T (a) and h operator commute in the JB*-algebra E∗∗
2 (r(h)).

d) When h is a tripotent, then T : A → E∗∗
2 (r(h)) is a Jordan *-homomorphism,

in particular T is a triple homomorphism.

Proof. a) By Lemma 4.2, T ∗∗|M(A) : M(A) → E∗∗ is orthogonality preserv-
ing. Therefore, the assignment (x, y) 7→ {T ∗∗(x), T ∗∗(y), h}, defines a continuous
sesquilinear orthogonal operator on M(A)×M(A). Lemma 4.3, applied to x ∈ Asa

and y = 1 gives {T (x), h, h} = {h, T (x), h}. The desired statement follows by lin-
earity.

b) Let a ∈ Asa. By the Peirce arithmetic and a) we have

{P2(r(h))T (a), h, h}+ {P1(r(h))T (a), h, h} = {T (a), h, h}

= {h, T (a), h} = {h, P2(r(h))T (a), h} ,

which implies that {P1(r(h))T (a), h, h} = 0, and hence P1(r(h))T (a) ⊥ h. The
equivalences in (4.1) imply that P1(r(h))T (a) ∈ E∗∗

0 (r(h)), which gives

T (Asa) ⊆ E∗∗
2 (r(h))⊕ E∗∗

0 (r(h)). (4.3)

Consider now the mapping P3 : M(A) → E∗∗,

P3(x) = {T ∗∗(x), T ∗∗(x∗), T ∗∗(x)} .

It is clear that P3 is a 3-homogeneous polynomial on M(A). Since, by Lemma 4.2,
T ∗∗|M(A) is orthogonality preserving, P3 is orthogonally additive on M(A)sa. By
Corollary 3.1 in [20] or Theorem 3.2, there exists an operator F3 : M(A) → E∗∗

satisfying that

P3(x) = F3(x3),

for all x in M(A). If S3 : M(A)×M(A)×M(A) → E∗∗ is the (unique) symmetric
3-linear operator associated to P3, we have

F3(< x, y, z >) = S3(x, y, z) =< T ∗∗(x), T ∗∗(y), T ∗∗(z) >, (4.4)
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for all x, y, z ∈ M(A)sa. Now, taking a ∈ M(A)sa and y = z = 1 in (4.4), we deduce
that

F3(a) =< T ∗∗(a), h, h >=
2
3
{T ∗∗(a), h, h}+

1
3
{h, T ∗∗(a), h} . (4.5)

Thus, for each a ∈ M(A)sa we have

{T ∗∗(a), T ∗∗(a), T ∗∗(a)} = F3(a3) =< h, h, T ∗∗(a3) > . (4.6)

Now, (4.3), (4.6) and the Peirce arithmetic show that

T (Asa) ⊆ E∗∗
2 (r(h)) ∩ E.

We shall finally prove that T is symmetric for the involution in E∗∗
2 (r(h)). In

order to simplify notation, we shall write r(h) = r. Let us recall that E∗∗
2 (r) is a

JB*-algebra with Jordan product and involution given by x•ry = {x, r, y} and x]r =
{r, x, r} = Q(r)(x), respectively. The triple product in E∗∗

2 (r) is also determined by
the expression

{x, y, z} = (x •r y]r ) •r z + (z •r y]r ) •r x− (x •r z) •r y]r .

Lemma 4.3 applied to the form Φ(x, y) = {T ∗∗(x), T ∗∗(y), z} guarantees that

{T ∗∗(x), h, z} = {h, T ∗∗(x), z}
for every x ∈ M(A)sa and z ∈ E∗∗. Let us fix x = a ∈ Asa. By taking z = r,
the above identity gives h •r T (a)]r = h •r T (a), that is, h •r

T (a)−T (a)]r

2i = 0.
Lemma 4.1 now applies to give

(
T (a)− T (a)]r

) ⊥ h, and hence T (a)− T (a)]r lies
in E∗∗

2 (r) ∩ E∗∗
0 (r) = {0} (compare (4.1)). This implies T (Asa) ⊂ E∗∗

2 (r)sa.

c) It follows by b) that T (Asa) ⊂ E∗∗
2 (r)sa and hence the triple product in

T (Asa) is determined by the Jordan product of E∗∗
2 (r)sa. By a), for each a ∈ Asa,

we have {h, h, T (a)} = {h, T (a), h}. Thus, h2•r T (a) = 2(h•r T (a))•r h−h2•r T (a),
which gives the desired statement.

d) Let us assume that h is a tripotent. In this case h = r(h) = r. Statement
b) assures that T (Asa) ⊂ E∗∗

2 (r)sa. Thus, equation (4.5) guarantees that F3(a) =
{T ∗∗(a), h, h} = {h, T ∗∗(a), h} = T ∗∗(a), for all a ∈ M(A)sa. Now, the formula
established in (4.4) implies that

< T ∗∗(a), T ∗∗(b), T ∗∗(c) >= F3(< a, b, c >) = T ∗∗(< a, b, c >),

for all a, b, c ∈ M(A)sa. Taking c = 1 in the above equation, we have

T ∗∗(a) •r T ∗∗(b) = {T ∗∗(a), T ∗∗(b), r} = T ∗∗({a, b, 1}) = T ∗∗(a ◦ b),

for all a, b ∈ M(A)sa. We have then shown that T ∗∗|M(A) : M(A) → E∗∗
2 (r) is a

unital Jordan *-homomorphism, which proves d).

It should be noticed that the main result in [27] is a direct consequence of
statement d) in the above proposition.
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Let T : J → E be an orthogonality preserving operator from a JB*-algebra to a
JB*-triple and let h denote T ∗∗(1). Lemma 4.2 assures that T ∗∗|M(J) : M(J) → E∗∗

also is orthogonality preserving. Since for each self-adjoint element a ∈ M(J), the
JB*-subalgebra C{1,a} of M(J) generated by a and 1 is JB*-isomorphic to an abelian
C*-algebra (compare Theorem 3.2.4 in [15]), the mapping T ∗∗|C{1,a} : C{1,a} → E∗∗

satisfies the hypothesis of Proposition 4.1 above. Therefore, T ∗∗(a) ∈ E∗∗
2 (r(h))sa,

T ∗∗(a) and h operator commute in the JB*-algebra E∗∗
2 (r(h)) and if h is a tripotent

then, T ∗∗(a2) = T ∗∗(a) •
r(h) T ∗∗(a). We have proved the following result.

Corollary 4.1. Let J be a JB*-algebra, E a JB*-triple and T : J → E an orthog-
onality preserving operator. Then for h = T ∗∗(1), the following assertions hold:

a) {T (x), h, h} = {h, T (x∗), h}, for all x ∈ J .
b) T (Jsa) ⊂ E∗∗

2 (r(h))sa.

c) For each a ∈ J , T (a) and h operator commute in the JB*-algebra E∗∗
2 (r(h)).

d) When h is a tripotent, then T : J → E∗∗
2 (r(h)) is a Jordan *-homomorphism,

in particular T is a triple homomorphism.

The result describing orthogonality preserving operators from a JB*-algebra to
a JB*-triple can be now stated.

Theorem 4.1. Let T : J → E be an operator from a JB*-algebra to a JB*-triple
and let h = T ∗∗(1). The following are equivalent:

a) T is orthogonality preserving.
b) There exists a (unital) Jordan *-homomorphism S : M(J) → E∗∗

2 (r(h)) such
that S(x) and h operator commute and T (x) = h •

r(h) S(x), for every x ∈ J .

Proof. The implication b)⇒ a) is clear.

a) ⇒ b) Let C denote the JB*-subalgebra of E∗∗
2 (r(h)) generated by h and r(h).

Let σ(h) ⊆ (0, ‖h‖] denote the spectrum of h in E∗∗
2 (r(h)). It is known that

σ(h) ∪ {0} is compact and C is JB*-isomorphic to C(σ(h) ∪ {0}), and under this
identification h corresponds to the function t 7→ t (compare Theorem 3.2.4 in
[15]). For each natural n, let pn be the projection in C

w∗
whose representation in

C(σ(h) ∪ {0})∗∗ is the characteristic function χ((σ(h)∪{0})∩[ 1
n ,1]), and let hn =

pn •r(h) h. We notice that (pn) converges to r(h) in the σ(E∗∗, E∗)-topology of
E∗∗.

By Corollary 4.1 T ∗∗(M(J)sa) ⊂ E∗∗
2 (r(h))sa and T ∗∗(M(J)) ⊆ {h}′ . The

separate weak*-continuity of the product of E∗∗
2 (r(h)) implies that y and T ∗∗(x)

operator commute for all y ∈ C
w∗

and x ∈ M(J). In particular, for each nat-
ural n, pn and T ∗∗(x) operator commute, for all x ∈ M(J). Thus, the mapping
Sn : M(J) → E∗∗

2 (r(h)), Sn(x) := h−1
n •

r(h) T ∗∗(x) is an orthogonality preserving
operator between two JB*-algebras satisfying that Sn(1) = pn is a tripotent. Corol-
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lary 4.1 assures that Sn is a Jordan *-homomorphism and hence ‖Sn‖ ≤ 1, for all
n ∈ N.

Let us take a free ultrafilter U on N. By the Banach-Alaoglu Theorem, any
bounded set in E∗∗

2 (r(h)) is relatively weak*-compact and hence the assignment
z 7→ S(z) := w∗ − limU Sn(z) defines an operator S : J → E∗∗

2 (r(h)).

For each natural n, and each x ∈ M(J), h•
r(h)Sn(x) = h•

r(h) (h
−1
n •

r(h)T
∗∗(x)) =

pn •r(h) T ∗∗(x). Since r(h) = w∗ − limn pn, it follows from the separate weak*-
continuity of the Jordan product of E∗∗

2 (r(h)), that h •
r(h) S(x) = T ∗∗(x), for all

x ∈ M(J). We have already seen that h−1
n , h and T ∗∗(x) pairwise operator commute

for every x ∈ M(J). Therefore, Sn(x) and h operator commute for every natural
n. The separate weak*-continuity of the product assures that h and S(x) operator
commute for all x ∈ M(J).

Finally, let a ∈ M(J)sa. For each natural n, Sn(a) ∈ E∗∗
2 (r(h))sa and

Sn(a2) = Sn(a) •
r(h) Sn(a). Being E∗∗

2 (r(h))sa weak*-closed, it is clear that
S(a) ∈ E∗∗

2 (r(h))sa. Let n and m be two natural numbers. Since h−1
n , h−1

m , and
T ∗∗(a) are pairwise operator commuting, we have
Sn(a) •

r(h) Sm(a) = h−1
n •

r(h) h−1
m •

r(h) T ∗∗(a) •
r(h) T ∗∗(a) = Smin(n,m)(a)2

= Smin(n,m)(a2).
For a fixed natural m, taking w∗ − lim

n≥m,U in the above expressions, we deduce
that

S(a) •
r(h) Sm(a) = Sm(a2),

for all m ∈ N. The same argument gives

S(a) •
r(h) S(a) = S(a2).

The description provided by the above Theorem generalizes Theorems 6 and 10
in [7]. Concretely, the just quoted theorems make use of the hypothesis of T ∗∗(1)
being von Neumann regular, and this assumption is completely removed in Theorem
4.1.

We recall that an operator T between two JB*-triples preserves zero-triple-
products if {T (x), T (y), T (z)} = 0 whenever {x, y, z} = 0. While an operator T

between two C*-algebras is said to be zero-products preserving if T (x)T (y) = 0
whenever xy = 0.

The papers [8], [26], and [28] give a complete description of zero-product pre-
serving bounded linear maps between C*-algebras.

The equivalent reformulations of orthogonality stated in (4.1) together with
Theorem 4.1 above, give the following generalization of Corollary 18 in [7].

Corollary 4.2. Let T : J → E be an operator from a JB*-algebra to a JB*-triple.
Then T is orthogonality preserving if and only if T preserves zero-triple-products.

Example 4.1. Let T be a bounded linear operator between two C*-algebras. It was
already noticed in [7] that in the case of T being symmetric (i.e., T (x∗) = T (x)∗),
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then T is orthogonality preserving on Asa if and only if T preserves zero-products on
Asa. However, not every orthogonality preserving operator sends zero-products to
zero-products. Consider, for example, T : M2(C) → M2(C), T (x) = ux, where u =(

0 −1
1 0

)
. Clearly T is a triple homomorphism and hence orthogonality preserving,

but taking x =
(

0 1
0 1

)
, y =

(
1 −1
0 0

)
, we have xy = yx = 0 and T (x)T (y) 6= 0.

Theorem 17 in [7] follows now as a consequence of Theorem 4.1.

Corollary 4.3. Let T : A → B be an operator between two C*-algebras. For h =
T ∗∗(1) the following assertions are equivalent:

a) T is orthogonality preserving.
b) There exists a triple homomorphism S : A → B∗∗ satisfying h∗S(z) = S(z∗)∗h,

hS(z∗)∗ = S(z)h∗, and

T (z) = L(h, r(h))(S(z)) =
1
2

(hr(h)∗S(z) + S(z)r(h)∗h)

= hr(h)∗S(z) = S(z)r(h)∗h,

for all z ∈ A.

Proof. The implication b)⇒ a) is clear.

a) ⇒ b) By Theorem 4.1 there exists a (unital) Jordan *-homomorphism
S : M(A) → B∗∗

2 (r(h)) such that S(x) and h operator commute in B∗∗
2 (r(h)) and

T (x) = h •
r(h) S(x), for every x ∈ A. In order to simplify notation we shall write

r = r(h). Notice that r is a partial isometry in B∗∗, with left and right projections
given by rr∗ and r∗r, respectively. It is well known that B∗∗

2 (r) = rr∗B∗∗r∗r.

It can be easily checked that Lr∗ : B∗∗
2 (r) → B∗∗

2 (r∗r), x 7→ r∗x, is a unital
Jordan *-homomorphism and B∗∗

2 (r∗r) is a C*-subalgebra of B∗∗ because r∗r is a
projection.

Take an element a ∈ Asa. Since S(a) and h operator commute in B∗∗
2 (r(h))sa,

Lr∗(h) = r∗h and Lr∗(S(a)) = r∗S(a) operator commute in B∗∗
sa . Equivalently, r∗h

and r∗S(a) are two commuting elements in B∗∗. Therefore

h∗S(a) = h∗rr∗S(a) = (r∗h)∗(r∗S(a)) = (r∗h)(r∗S(a)) = (r∗S(a))(r∗h)

= (r∗S(a))∗(r∗h) = S(a)∗rr∗h = S(a)∗h,

and similarly hS(a)∗ = S(a)h∗. The proof concludes by a linear argument.

The general description of all orthogonality preserving operators between two
JB*-triples remains open. We can only prove the following local property.
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Corollary 4.4. Let T : E → F be an orthogonality preserving operator between two
JB*-triples. Let x be a norm-one element in E and let h = T ∗∗(r(x)). Then there
exists a Jordan *-homomorphism S : E(x) → F ∗∗2 (r(h)), satisfying that T |E(x) =
L(h, r(h)).
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1. Introduction and preliminaries

Two elements a,b in a C∗-algebra A are said to be orthogonal (denoted by a ⊥ b) if ab∗ = b∗a = 0. A linear mapping
T : A → B between two C∗-algebras is called orthogonality preserving if T (x) ⊥ T (y) whenever x ⊥ y. The mapping T is
biorthogonality preserving whenever the equivalence

x ⊥ y ⇔ T (x) ⊥ T (y)

holds for all x, y in A.
It can easily be seen that every biorthogonality preserving linear surjection, T : A → B between two C∗-algebras is

injective. Indeed, for each x ∈ A, the condition T (x) = 0 implies that T (x) ⊥ T (x), and hence x ⊥ x, which gives x = 0.
The study of orthogonality preserving operators between C*-algebras begins with the work of W. Arendt [3] in the

setting of unital abelian C∗-algebras. His main result establishes that every orthogonality preserving bounded linear mapping
T : C(K ) → C(K ) is of the form

T ( f )(t) = h(t) f
(
ϕ(t)

) (
f ∈ C(K ), t ∈ K

)
,

where h ∈ C(K ) and ϕ : K → K is a mapping which is continuous on {t ∈ K : h(t) �= 0}. Several years later, K. Jarosz [16]
extended the study to the setting of orthogonality preserving (not necessarily bounded) linear mappings between abelian
C∗-algebras.

A linear mapping T : A → B between two C∗-algebras is said to be symmetric if T (x)∗ = T (x∗), equivalently, T maps the
self-adjoint part of A into the self-adjoint part of B .
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The study of orthogonality preservers between general C∗-algebras was started in [31]. M. Wolff proved in [31, Theo-
rem 2.3] that every orthogonality preserving bounded linear and symmetric mapping between two C*-algebras is a multiple
of an appropriate Jordan ∗-homomorphism.

F.J. Fernández-Polo, J. Martínez Moreno and the authors of this note studied and described orthogonality preserving
bounded linear maps between C∗-algebras, JB∗-algebras and JB∗-triples in [7] and [8]. New techniques developed in the
setting of JB∗-algebras and JB∗-triples were a fundamental tool to establish a complete description of all orthogonality
preserving bounded linear (non-necessarily symmetric) maps between two C*-algebras. We recall some background results
before stating the description obtained.

Each C∗-algebra A admits a Jordan triple product defined by the expression {a,b, c} := 1
2 (ab∗c + cb∗a). Fixed points of

the triple product are called partial isometries or tripotents. Every partial isometry e in A induces a decomposition of A in
the form

A = A2(e) ⊕ A1(e) ⊕ A0(e),

where A2(e) := ee∗ Ae∗e, A1(e) := (1 − ee∗)Ae∗e ⊕ ee∗ A(1 − e∗e), and A0(e) := (1 − ee∗)A(1 − e∗e). This decomposition
is termed the Peirce decomposition. The subspace A2(e) also admits a structure of unital JB∗-algebra with product and
involution given by x ◦e y := {x, e, y} and x�e := {e, x, e}, respectively (compare [15]). The element e acts as the unit element
of A2(e) (we refer to [15] and [30] for the basic results on JB- and JB∗-algebras).

Recall that two elements a and b in a JB∗-algebra J are said to operator commute in J if the multiplication operators Ma

and Mb commute, where Ma is defined by Ma(x) := a ◦ x. That is, a and b operator commute if and only if (a ◦ x) ◦ b =
a ◦ (x ◦b) for all x in J . Self-adjoint elements a and b in J generate a JB∗-subalgebra that can be realised as a JC∗-subalgebra
of some B(H) (cf. [32]), and, in this realisation, a and b commute in the usual sense whenever they operator commute
in J [30, Proposition 1]. Similarly, two self-adjoint elements a and b in J operator commute if and only if a2 ◦ b = {a,b,a}
(i.e., a2 ◦ b = 2(a ◦ b) ◦ a − a2 ◦ b). If b ∈ J we use {b}′ to denote the set of elements in J that operator commute with b.
(This corresponds to the usual notation in von Neumann algebras.)

For each element a in a von Neumann algebra W there exists a unique partial isometry r(a) in W such that a = r(a)|a|,
and r(a)∗r(a) is the support projection of |a|, where |a| = (a∗a)

1
2 . It is also known that r(a)a∗r(a) = {r(a),a, r(a)} = a.

We refer to [28, §1.12] for a detailed proof of these results. The element r(a) will be called the range partial isometry of a.
The characterisation of all orthogonality preserving bounded linear maps between C*-algebras reads as follows:

Theorem 1. (See [7, Theorem 17 and Corollary 18].) Let T : A → B be a bounded linear mapping between two C*-algebras. For
h = T ∗∗(1) and r = r(h) the following assertions are equivalent:

a) T is orthogonality preserving.
b) There exists a unique triple homomorphism S : A → B∗∗ satisfying h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗ , and

T (z) = 1

2

(
hr(h)∗S(z) + S(z)r(h)∗h

) = hr(h)∗S(z) = S(z)r(h)∗h,

for all z ∈ A.
c) There exists a unique Jordan ∗-homomorphism S : A → B∗∗

2 (r) satisfying that S∗∗(1) = r, T (A) ⊆ {h}′ and T (z) = h ◦r S(z) for
all z ∈ A.

d) T preserves zero triple products, that is, {T (x), T (y), T (z)} = 0 whenever {x, y, z} = 0.

The problem of automatic continuity of those linear maps preserving zero-products between C∗-algebras has inspired
many papers in the last twenty years. A linear mapping between abelian C∗-algebras is zero-products preserving if and only
if it is orthogonality preserving, however the equivalence doesn’t hold for general C∗-algebras (compare [7, comments before
Corollary 18]). K. Jarosz proved the automatic continuity of every linear bijection preserving zero-products between C(K )

spaces (see [16, Corollary]). In 2003, M.A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong showed that every zero-products
preserving linear bijection from a properly infinite von Neumann algebra into a unital ring is automatically continuous [9,
Theorem 4.2]. In the same year, J. Araujo and K. Jarosz proved that a linear bijection which preserves zero-products in both
directions between algebras L(X), of continuous linear maps on a Banach space X , is automatically continuous and a scalar
multiple of an algebra isomorphism [2]. The same authors conjectured that every linear bijection between two C∗-algebras
preserving zero-products in both directions is automatically continuous (see [2, Conjecture 1]).

In this paper we study the problem of automatic continuity of biorthogonality preserving linear surjections between
C∗-algebras. In Section 2 we prove that every biorthogonality preserving linear surjection between two compact C∗-algebras
is continuous. In Sections 3 and 4, we establish, among many other results, that every biorthogonality preserving linear
surjection between two von Neumann algebras is automatically continuous. It follows as a consequence that a symmetric
linear bijection between two von Neumann algebras preserving zero-products in both directions is automatically continuous.
This provides a partial answer to the conjecture posed by Araujo and Jarosz.
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1.1. Preliminary results

A subspace J of a C∗-algebra A is said to be an inner ideal of A if { J , A, J } ⊆ J . Inner ideals in C*-algebras were
completely described by M. Edwards and G. Rüttimann in [13].

Given a subset M of A, we write M⊥
A for the annihilator of M (in A) defined by

M⊥
A := {y ∈ A: y ⊥ x, ∀x ∈ M}.

When no confusion can arise, we shall write M⊥ instead of M⊥
A . The following properties can be easily checked.

Lemma 2. Let M be a subset of a C∗-algebra A. The following statements hold:

a) M⊥ is a norm closed inner ideal of A. When A is a von Neumann algebra, then M⊥ is weak∗ closed.
b) M ∩ M⊥ = {0}, and M ⊆ M⊥⊥ .
c) S⊥ ⊆ M⊥ whenever M ⊆ S ⊆ A.
d) M⊥ is closed for the product of A.
e) M⊥ is ∗-invariant whenever M is.

The next lemma describes the annihilator of a projection.

Lemma 3. Let p be a projection in a (non-necessarily unital) C∗-algebra A. The following assertions hold:

a) {p}⊥A = (1 − p)A(1 − p), where 1 denotes the unit of A∗∗;
b) {p}⊥⊥

A = p Ap.

Proof. Statement a) follows straightforwardly.
b) It is clear from a) that {p}⊥⊥

A ⊇ p Ap. To show the opposite inclusion, let a ∈ {p}⊥⊥
A . Goldstine’s theorem (cf. The-

orem V.4.2.5 in [12]) guarantees that the closed unit ball of A is weak∗-dense in the closed unit ball of A∗∗ . Thus,
there exists a net (xλ) in the closed unit ball of A, converging in the weak∗-topology of A∗∗ to 1 − p. Noticing that
((1 − p)xλ(1 − p)) ⊂ {p}⊥A , we deduce that

(1 − p)xλ(1 − p)a∗ = a∗(1 − p)xλ(1 − p) = 0, (1)

for all λ. Since the product of A∗∗ is separately weak∗-continuous (compare [28, Theorem 1.7.8]), taking weak∗-limits in (1),
we have (1 − p)a∗ = a∗(1 − p) = 0, which shows that pa = ap = a. �

We shall also need some information about the norm closed inner ideal generated by a single element. Let a be an
element in a C∗-algebra A. Then r(a)A∗∗r(a) ∩ A = r(a)r(a)∗ A∗∗r(a)∗r(a) ∩ A is the smallest norm closed inner ideal in A
containing a and will be denoted by A(a). Further, the weak∗ closure of A(a) coincides with r(a)r(a)∗ A∗∗r(a)∗r(a) (cf. [13,
Lemma 3.7 and Theorem 3.10 and its proof]). Since {a}⊥⊥ is an inner ideal containing a, we deduce that A(a) ⊆ {a}⊥⊥ .

It is well known that ‖λa +μb‖ = max{‖λa‖,‖μb‖}, whenever a ⊥ b and λ,μ ∈ C. For every family (Ai)i of C∗-algebras,
the direct sum

⊕∞ Ai is another C∗-algebra with respect to the pointwise product and involution. In this case, for each
i �= j, Ai and A j are mutually orthogonal C∗-subalgebras of

⊕∞
i Ai .

Proposition 4. Let A1 , A2 and B be C∗-algebras (respectively, von Neumann algebras). Let us suppose that T : A1 ⊕∞ A2 → B is a
biorthogonality preserving linear surjection. Then T (A1) and T (A2) are norm closed (respectively, weak∗ closed) inner ideals of B,
B = T (A1)⊕∞ T (A2), and for j = 1,2, T |A j : A j → T (A j) is a biorthogonality preserving linear surjection. Further, if T is symmetric
then T (A1) and T (A2) are norm closed (respectively, weak∗ closed) ideals of B.

Proof. Let us fix j ∈ {1,2}. Since A j = A⊥⊥
j and T is a biorthogonality preserving linear surjection, we deduce that

T (A j) = T (A⊥⊥
j ) = T (A j)

⊥⊥ . Lemma 2 guarantees that T (A j) is a norm closed inner ideal of B (respectively, a weak∗
closed subalgebra of B whenever A1, A2 and B are von Neumann algebras). The rest of the proof follows from Lemma 2(e)),
and the fact that B coincides with the orthogonal sum of T (A1) and T (A2). �
2. Biorthogonality preservers between dual C*-algebras

A projection p in a C∗-algebra A is said to be minimal if p Ap = Cp. A partial isometry e in A is said to be minimal if ee∗
(equivalently, e∗e) is a minimal projection. The socle of A, soc(A), is defined as the linear span of all minimal projections
in A. The ideal of compact elements in A, K (A), is defined as the norm closure of soc(A). A C∗-algebra is said to be dual or
compact if A = K (A). We refer to [19, §2], [1] and [33] for the basic references on dual C∗-algebras.

The following theorem proves that biorthogonality preserving linear surjections between C∗-algebras send minimal pro-
jections to scalar multiples of minimal partial isometries.
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Theorem 5. Let T : A → B be a biorthogonality preserving linear surjection between two C∗-algebras and let p be a minimal projection
in A. Then ‖T (p)‖−1 T (p) = ep is a minimal partial isometry in B. Further, T satisfies that T (p Ap) = epe∗

p Be∗
pep and T ((1 −

p)A(1 − p)) = (1 − epe∗
p)B(1 − e∗

pep).

Proof. Since T is a biorthogonality preserving linear surjection, the equality

T
(

S⊥
A

) = T (S)⊥B
holds for every subset S of A. For each minimal projection p in A, {T (p)}⊥⊥

B = T ({p}⊥⊥
A ) is a norm closed in-

ner ideal in B . Since {p}⊥⊥
A = p Ap = Cp, it follows that {T (p)}⊥⊥

B is a one-dimensional subspace of B . Having
in mind that {T (p)}⊥⊥

B contains the inner ideal of B generated by T (p), we deduce that B(T (p)) must be one-
dimensional. In particular (r(T (p))r(T (p))∗)B∗∗(r(T (p))∗r(T (p))) = B(T (p))w∗

has dimension one, and hence B(T (p)) =
(r(T (p))r(T (p))∗)B∗∗(r(T (p))∗r(T (p))) = Cr(T (p)). This implies that ‖T (p)‖−1 T (p) = ep is a minimal partial isometry
in B .

The equality T (p Ap) = epe∗
p Be∗

pep has been proved. Finally,

T
(
(1 − p)A(1 − p)

) = T
(
(p Ap)⊥A

) = (
T (p Ap)

)⊥
B = (

epe∗
p Be∗

pep
)⊥

B = (
1 − epe∗

p

)
B
(
1 − e∗

pep
)
. �

Let a and b be two elements in a C∗-algebra A. It is not hard to see that a ⊥ b if and only if r(a) and r(b) are two
orthogonal partial isometries in A∗∗ (compare [7, Lemma 1]).

We shall make use of the following result which is a direct consequence of Theorem 1. The proof is left for the reader.

Corollary 6. Let T : A → B be a bounded linear operator between two von Neumann algebras. For h = T (1) ∈ B and r = r(h) the
following assertions are equivalent:

a) T is a biorthogonality preserving linear surjection.
b) h is invertible and there exists a unique triple isomorphism S : A → B satisfying h∗ S(z) = S(z∗)∗h, hS(z∗)∗ = S(z)h∗ , and

T (z) = 1

2

(
hr(h)∗S(z) + S(z)r(h)∗h

) = hr(h)∗S(z) = S(z)r(h)∗h,

for all z ∈ A.
c) h is positive and invertible in B2(r) and there exists a unique Jordan ∗-isomorphism S : A → B2(r) = B satisfying that S(1) = r,

T (A) ⊆ {h}′ and T (z) = h ◦r S(z) for all z ∈ A.

Further, in any of the previous statements, when A is a factor, then h is a multiple of the unit element in B.

We deal now with dual C∗-algebras.

Remark 7. Given a sequence (μn) ⊂ c0 and a bounded sequence (xn) in a Banach space X , the series
∑

k μkxk needs not be,
in general, convergent in X . However, when (xn) is a bounded sequence of mutually orthogonal elements in a C∗-algebra,
A, the equality∥∥∥∥∥

n∑
k=1

μkxk −
m∑

k=1

μkxk

∥∥∥∥∥ = max
{|μn+1|, . . . , |μm|} sup

n+1�k�m

{‖xk‖
}
,

holds for every n < m in N. It follows that (
∑n

k=1 μkxk) is a Cauchy sequence and hence convergent in A. Alternatively,
noticing that

∑
k xk defines a w.u.C. series in the terminology of [11], the final statement also follows from [11, Theorem V.6].

Lemma 8. Let T : A → B be a biorthogonality preserving linear surjection between two C∗-algebras and let (pn)n be a sequence of
mutually orthogonal minimal projections in A. Then the sequence (‖T (pn)‖) is bounded.

Proof. By Theorem 5, for each natural n, there exist a minimal partial isometry en ∈ B and λn ∈ C \ {0} such that T (pn) =
λnen , and ‖T (en)‖ = λn . Note that, by hypothesis, (en) is a sequence of mutually orthogonal minimal partial isometries in B .

Let (μn) be any sequence in c0. Since the pn ’s are mutually orthogonal, the series
∑

k�1 μk pk converges to an element
in A (compare Remark 7). For each natural n,

∑∞
k�1 μk pk decomposes as the orthogonal sum of μn pn and

∑∞
k �=n μk pk ,

therefore

T

( ∞∑
k�1

μk pk

)
= μnλnen + T

( ∞∑
k �=n

μk pk

)
,
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with μnλnen ⊥ T (
∑∞

k �=n μk pk), which in particular implies

∥∥∥∥∥T

( ∞∑
k�1

μk pk

)∥∥∥∥∥ = max

{
|μn||λn|,

∥∥∥∥∥T

( ∞∑
k �=n

μk pk

)∥∥∥∥∥
}

� |μn||λn|.

This establishes that for each (μn) in c0, (μnλn) is a bounded sequence, which proves the statement. �
Lemma 9. Let T : A → B be a biorthogonality preserving linear surjection between two C∗-algebras, (μn) a sequence in c0 and
let (pn)n be a sequence of mutually orthogonal minimal projections in A. Then the sequence (T (

∑∞
k�n μk pk))n is well defined and

converges in norm to zero.

Proof. By Theorem 5 and Lemma 8 it follows that (T (pn)) is a bounded sequence of mutually orthogonal elements in B .
Let M = sup{‖T (pn)‖: n ∈ N}. For each natural n, Remark 7 assures that the series

∑∞
k�n μk pk converges.

Let us define yn := T (
∑∞

k�n μk pk). We claim that (yn) is a Cauchy sequence in B . Indeed, given n < m in N, we have

‖yn − ym‖ =
∥∥∥∥∥T

(
m−1∑
k�n

μk pk

)∥∥∥∥∥ =
∥∥∥∥∥

m−1∑
k�n

μk T (pk)

∥∥∥∥∥
(∗)

� M max
{|μn|, . . . , |μm−1|

}
, (2)

where at (∗) we apply the fact that (T (pn)) is a sequence of mutually orthogonal elements. Consequently, (yn) converges
in norm to some element y0 in B . Let z0 denote T −1(y0).

Let us fix a natural m. By hypothesis, for each n > m, pm is orthogonal to
∑∞

k�n μk pk . This implies that T (pm) ⊥ yn , for
every n > m, which, in particular, gives T (pm)∗ yn = yn T (pm)∗ = 0, for every n > m. Taking limits when n tends to ∞ we
have T (pm)∗ y0 = y0T (pm)∗ = 0. This shows that y0 = T (z0) ⊥ T (pm), and hence pm ⊥ z0. Since m was arbitrarily chosen
we deduce that, for each natural n, z0 is orthogonal to

∑∞
k�n μk pk . Therefore, (yn) ⊂ {y0}⊥B , and hence y0 belongs to the

norm closure of {y0}⊥B , which implies that y0 = 0. �
Proposition 10. Let T : A → B be a biorthogonality preserving linear surjection between C∗-algebras. Then T |K (A) is continuous if
and only if the set {‖T (p)‖: p minimal projection in A} is bounded.

Proof. The necessity being obvious. Suppose that

M = sup
{∥∥T (p)

∥∥: p minimal projection in A
}

< ∞.

Each nonzero self-adjoint element x in K (A) can be written as a norm convergent (possibly finite) sum x = ∑
n λn pn , where

pn are mutually orthogonal minimal projections in A, and ‖x‖ = sup{|λn|: n ∈ N} (compare [1]). If the series x = ∑
n λn pn

is finite then

∥∥T (x)
∥∥ =

∥∥∥∥∥
m∑

n=1

λn T (pn)

∥∥∥∥∥
(∗)= max

{∥∥λn T (pn)
∥∥: n = 1, . . . ,m

}
� M‖x‖,

where at (∗) we apply the fact that (T (pn)) is a finite set of mutually orthogonal elements in B . When the series x =∑
n λnun is infinite we may assume that (λn) ∈ c0.
It follows from Lemma 9 that the sequence (T (

∑∞
k�n λk pk))n is well defined and converges in norm to zero. We can

find a natural m such that ‖T (
∑∞

k�m λk pk)‖ < M‖x‖. Since the elements λ1 p1, . . . , λm−1 pm−1,
∑∞

k�m λk pk are mutually
orthogonal, we have

∥∥T (x)
∥∥ = max

{∥∥T (λ1 p1)
∥∥, . . . ,

∥∥T (λm−1 pm−1)
∥∥,

∥∥∥∥∥T

( ∞∑
k�m

λk pk

)∥∥∥∥∥
}

� M‖x‖.

We have established that ‖T (x)‖ � M‖x‖, for all x ∈ K (A)sa , and by linearity ‖T (x)‖ � 2M‖x‖, for all x ∈ K (A). �
Theorem 11. Let T : A → B be a biorthogonality preserving linear surjection between two C∗-algebras. Then T |K (A) : K (A) → K (B)

is continuous.

Proof. Theorem 5 implies T (soc(A)) = soc(B) (compare [33, Theorem 5.1]). By Proposition 10 it is enough to show the
boundedness of the set

P = {∥∥T (p)
∥∥: p minimal projection in A

}
.
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Suppose, on the contrary, that P is unbounded. We shall show by induction that there exists a sequence (pn) of mutually
orthogonal minimal projections in A such that ‖T (pn)‖ > n.

The case n = 1 is clear. The induction hypothesis guarantees the existence of mutually orthogonal minimal projections
p1, . . . , pn in A with ‖T (pk)‖ > k for all k ∈ {1, . . . ,n}.

By assumption, there exists a minimal projection q ∈ A satisfying ‖T (q)‖ > max{‖T (p1)‖, . . . ,‖T (pn)‖,n + 1}. We claim
that q must be orthogonal to each p j . Suppose, on the contrary, that for some j, p j and q are not orthogonal. Let C denote
the C*-subalgebra of A generated by q and p j . We conclude from Theorem 1.3 in [27] (see also [26, §3]) that there exist

0 < t < 1 and a ∗-isomorphism Φ : C → M2(C) such that Φ(p j) =
(

1 0
0 0

)
and Φ(q) =

(
t

√
t(1−t)√

t(1−t) 1−t

)
. Since T |C : C ∼=

M2(C) → T (C) is a continuous biorthogonality preserving linear bijection, Theorem 1 (see also Corollary 6) guarantees the
existence of a scalar λ ∈ C\{0} and a triple isomorphism Ψ : C → T (C) such that T (x) = λΨ (x) for all x ∈ C . In this case,
‖T (p j)‖ = |λ|‖Ψ (p j)‖ implies that

∥∥T (p j)
∥∥ <

∥∥T (q)
∥∥ = |λ|∥∥Ψ (q)

∥∥ = |λ|∥∥Ψ (p j)
∥∥ = ∥∥T (p j)

∥∥,

which is a contradiction. Therefore q ⊥ p j , for every j = 1, . . . ,n.
It follows by induction that there exists a sequence (pn) of mutually orthogonal minimal projections in A such that

‖T (pn)‖ > n. The series
∑∞

n=1
1√
n

pn defines an element a in A (compare Remark 7). For each natural m, a decomposes as

the orthogonal sum of 1√
m

pm and
∑∞

n �=m
1√
n

pn , therefore

T (a) = 1√
m

T (pm) + T

( ∞∑
n �=m

1√
n

pn

)
,

with 1√
m

T (pm) ⊥ T (
∑∞

n �=m
1√
n

pn). This argument implies that

∥∥T (a)
∥∥ = max

{
1√
m

∥∥T (pm)
∥∥,

∥∥∥∥∥T

( ∞∑
n �=m

1√
n

pn

)∥∥∥∥∥
}

>
√

m.

Since m was arbitrarily chosen, we have arrived at our desired contradiction. �
The following result is an immediate consequence of the above theorem.

Corollary 12. Let T : A → B be a biorthogonality preserving linear surjection between two dual C∗-algebras. Then T is continuous.

Given a complex Hilbert space H , it is well known that soc(L(H)) coincides with the space of all finite rank operators
on H . The ideal K (L(H)) agrees with the ideal K (H) of all compact operators on H .

Corollary 13. Let T : K (H) → K (H) be a biorthogonality preserving linear surjection, where H is a complex Hilbert space. Then T is
continuous.

3. C∗-algebras linearly spanned by their projections

In a large number of C∗-algebras every element can be expressed as a finite linear combination of projections: the
Bunce–Deddens algebras; the irrotational rotation algebras; simple, unital AF C*-algebras with finitely many extremal states;
UHF C*-algebras; unital, simple C∗-algebras of real rank zero with no tracial states; properly infinite C∗- and von Neumann
algebras; von Neumann algebras of type II1 . . . (see [21–23,25,20] and the references therein).

Theorem 14. Let T : A → B be an orthogonality preserving linear map between C∗-algebras, where A is unital. Suppose that every
element of A is a finite linear combination of projections, then T is continuous.

Proof. Let p be a projection in A. As p ⊥ (1 − p) then T (p) ⊥ T (1)− T (p), that is T (p)T (1)∗ = T (p)T (p)∗ and T (1)∗T (p) =
T (p)∗T (p). In particular, T (p)T (1)∗ = T (1)T (p)∗ and T (1)∗T (p) = T (p)∗T (1). Since every element in A coincides with a
finite linear combination of projections, it follows that

T (x)T (1)∗ = T (1)T
(
x∗)∗

, (3)

for all x ∈ A.
Let now p,q be two projections in A. The relation qp ⊥ (1 − q)(1 − p) implies that T (qp) ⊥ T (1 − q − p + qp). Therefore

T (qp)T (1)∗ − T (qp)T (q)∗ − T (qp)T (p)∗ + T (qp)T (qp)∗ = 0. (4)
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Similarly, since q(1 − p) ⊥ (1 − q)p, we have T (q − qp) ⊥ T (p − qp), and hence

T (q)T (p)∗ − T (q)T (qp)∗ − T (qp)T (p)∗ + T (qp)T (qp)∗ = 0. (5)

From (4) and (5), we get

T (qp)T (1)∗ − T (qp)T (q)∗ = T (q)T (p)∗ − T (q)T (qp)∗.

Being A linearly spanned by its projections, the last equation yields to

T (qx)T (1)∗ − T (qx)T (q)∗ = T (q)T
(
x∗)∗ − T (q)T

(
qx∗)∗

, (6)

for all x ∈ A, and q = q∗ = q2 ∈ A.
By replacing, in (6), q with 1 − q, we get

T (q − qx)T (1)∗ − T (x − qx)T (1 − q)∗ = T (1 − q)T
(
x∗)∗ − T (1 − q)T

(
x∗ − qx∗)∗

.

Having in mind (3) we obtain

T (x)T (q)∗ − T (qx)T (q)∗ = T (1)T
(
qx∗)∗ − T (q)T

(
qx∗)∗

. (7)

From Eqs. (6) and (7), we deduce that

T (qx)T (1)∗ − T (x)T (q)∗ = T (q)T
(
x∗)∗ − T (1)T

(
qx∗)∗

,

for every x in A and every projection q in A. Again, the last equation and the hypothesis on A prove:

T (yx)T (1)∗ − T (x)T
(

y∗)∗ = T (y)T
(
x∗)∗ − T (1)T

(
y∗x∗)∗

,

for all x, y ∈ A. Since, by (3), T (1)T (y∗x∗)∗ = T (xy)T (1)∗ , we can write the above equation as:

T (yx + xy)T (1)∗ = T (y)T
(
x∗)∗ + T (x)T

(
y∗)∗

, (8)

for all x, y ∈ A.
Let h = T (1). It follows from (8) that

T
(
x2)h∗ = T (x)T

(
x∗)∗

(x ∈ A).

We claim that the linear mapping S : A → B , S(x) := T (x)h∗ , is positive, and hence continuous. Indeed, given a ∈ A+ , there
exists x ∈ Asa such that a = x2. Then S(a) = T (x2)h∗ = T (x)T (x)∗ � 0.

Finally, for any x ∈ Asa ,
∥∥T (x)

∥∥2 = ∥∥T (x)T (x)∗
∥∥ = ∥∥S

(
x2)∥∥ � ‖S‖‖x‖2,

which implies that T is bounded on self-adjoint elements, and thus T is continuous. �
We have actually proved the following:

Proposition 15. Let T : A → B be a linear map between C∗-algebras, where A is unital and every element in A is a finite linear
combination of projections. Suppose that T satisfies one of the following statements:

a) ab∗ = 0 ⇒ T (a)T (b)∗ = 0;
b) b∗a = 0 ⇒ T (b)∗T (a) = 0.

Then T is continuous.

Recall that a unital C∗-algebra is properly infinite if it contains two orthogonal projections equivalent to the identity (i.e.
it contains two isometries with mutually orthogonal range projections). Zero product preserving linear mappings from a
properly infinite von Neumann algebra to a unital ring were studied and described in [9, Theorem 4.2]. In this paper we
consider a wider class of C∗-algebras. Let A be a properly infinite C∗-algebra or a von Neumann algebra of type II1. It follows
by [20, Corollary 2.2] (see also [25]) and [14, Theorem 2.2.(a)] that every element in A can be expressed as a finite linear
combination of projections. Our next result follows immediately from Theorem 14.

Corollary 16. Let A be a properly infinite unital C∗-algebra or a von Neumann algebra of type II1 . Every orthogonality preserving linear
map from A to another C∗-algebra is automatically continuous.
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The following corollary is, in some sense, a generalisation of [24, Theorem 2] and [6, Theorem 1].

Corollary 17. Let A be a properly infinite unital C∗-algebra or a von Neumann algebra of type II1 and let T : A → B be a linear map
from A to another C∗-algebra. Suppose that T satisfies one of the following statements:

a) ab∗ = 0 ⇒ T (a)T (b)∗ = 0;
b) b∗a = 0 ⇒ T (b)∗T (a) = 0.

Then T is continuous.

4. Biorthogonality preservers between von Neumann algebras

Let us recall some fundamental results derived from the Murray–von Neumann dimension theory. Two projections p and
q in a von Neumann algebra A are (Murray–von Neumann) equivalent (written p ∼ q) if there exists a partial isometry u ∈ A
with u∗u = p and uu∗ = q. We write q � p when q � p and p ∼ q. A projection p in A is said to be finite if q � p implies
p = q. Otherwise, it is called infinite. A von Neumann algebra is said to be finite or infinite according to the property of
its identity projection. A projection p in A is called abelian if p Ap is a commutative von Neumann algebra (compare [29,
§V.1]).

A von Neumann algebra A is said to be of type I if every nonzero central projection in A majorizes a nonzero abelian
projection. If there is no nonzero finite projection in A, that is, if A is purely infinite, then it is of type III. If A has no
nonzero abelian projection and if every nonzero central projection in A majorizes a nonzero finite projection of A, then it
is of type II. If A is finite and of type II (respectively, type I), then it is said to be of type II1 (respectively, type Ifin). If A
is of type II and has no nonzero central finite projection, then A is said to be of type II∞ . Every von Neumann algebra is
uniquely decomposable into the direct (orthogonal) sum of weak∗ closed ideals of type I, type II1, type II∞ , and type III
(this decomposition is usually called, the Murray–von Neumann decomposition).

Proposition 18. Let T : A → B be a surjective linear mapping from a unital C∗-algebra onto a finite von Neumann algebra. Suppose
that for each invertible element x in A we have {T (x)}⊥ ⊆ T ({x}⊥). Then T is continuous. Further, if A is a von Neumann algebra,
then T (x) = T (1)S(x) (x ∈ A), where S : A → B is a Jordan homomorphism. In particular, every biorthogonality preserving linear
surjection between two von Neumann algebras one of which is finite is continuous.

Proof. Let T : A → B be a surjective linear mapping satisfying the hypothesis. We claim that T preserves invertibility. Let z
be an invertible element in A and let r = r(T (z)) denote the range partial isometry of T (z) in B . In this case

(
1 − rr∗)B

(
1 − r∗r

) = {
T (z)

}⊥ ⊆ T
({z}⊥) = {0}.

Since B is a finite von Neumann algebra, 1 − rr∗ and 1 − r∗r are equivalent projections in B (compare [18, Exercise 6.9.6]).
Thus, there exists a partial isometry w in B such that w w∗ = 1 − rr∗ and w∗w = 1 − r∗r, and hence w w∗B w∗w = {0}.
It follows that 1 − rr∗ = w w∗ = 0 = w∗w = 1 − r∗r.

Since 1 = r∗r (respectively, 1 = rr∗) is the support projection of T (z)∗T (z) (respectively, T (z)T (z)∗), we deduce that
T (z)T (z)∗ and T (z)∗T (z) are invertible elements in B , and therefore T (z) is invertible.

Having in mind that T sends invertible elements to invertible elements, we deduce from [10, Corollary 2.4] (see also [4,
Theorem 5.5.2]) that T is continuous. If A is a von Neumann algebra, then it is well known that T is a Jordan homomor-
phism multiplied by T (1) (cf. [5, Theorem 1.3] or [10, Corollary 2.4]). �

It is obvious that every ∗-isomorphism between two von Neumann algebras preserves the summands appearing in
the Murray–von Neumann decomposition. However, it is not so clear that every Jordan ∗-isomorphism between two von
Neumann algebras also preserves the Murray–von Neumann decomposition. The justification follows from an important
result due to R. Kadison [17]. If T : A → B is a Jordan ∗-isomorphism between von Neumann algebras, then there exist
weak∗ closed ideals A1 and A2 in A and B1 and B2 in B satisfying that A = A1 ⊕∞ A2, B = B1 ⊕∞ B2, T |A1 : A1 → B1
is a ∗-isomorphism, and T |A2 : A2 → B2 is a ∗-anti-isomorphism (see [17, Theorem 10]). It follows that every Jordan
∗-isomorphism preserves the Murray–von Neumann decomposition.

Theorem 19. Every biorthogonality preserving linear surjection between von Neumann algebras is automatically continuous.

Proof. Let T : A → B be a biorthogonality preserving linear surjection between von Neumann algebras.
It is well known that every von Neumann algebra is uniquely decomposed into a direct sum of five algebras of types Ifin ,

I∞ , II1, II∞ and III, respectively, where Ifin is a finite type I von Neumann algebra, II1 is a finite type II von Neumann algebra
and the direct sum of those summands of types I∞ , II∞ and III is a properly infinite von Neumann algebra (compare [29,
Theorem V.1.19]). Therefore, A and B decompose in the form A = AIfin ⊕∞ AII1 ⊕∞ A p∞ , B = B Ifin ⊕∞ BII1 ⊕∞ B p∞ , where
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AIfin and B Ifin are finite type I von Neumann algebras, AII1 and BII1 are type II1 von Neumann algebras, and A p∞ and B p∞
are properly infinite von Neumann algebras.

Corollary 16 guarantees that T |Ap∞ : A p∞ → B and T |AII1
: AII1 → B are continuous linear mappings. In order to simplify

notation we denote A1 = AIfin , A2 = AII1 ⊕∞ A p∞ , B1 = B Ifin , and B2 = BII1 ⊕∞ B p∞ . According to this notation, T |A2 : A2 →
B is continuous. Theorem 1 assures the existence of a Jordan ∗-homomorphism S2 : A2 → B2(r2) satisfying that S2(12) = r2,
T (A2) ⊆ {h2}′ and T (z) = h2 ◦r2 S2(z) for all z ∈ A2, where 12 is the unit of A2 and r2 is the range partial isometry of
T (12) = h2. We notice that, for each z ∈ T (A2), r2r∗

2 z + zr∗
2r2 = 2z, and we therefore have r2r∗

2 z = zr∗
2r2 = z.

Proposition 4 implies that T (A1) and T (A2) are orthogonal weak∗ closed inner ideals of B , whose direct sum is B . Thus,
the unit of B decomposes in the form 1B = v + w , where v ∈ T (A1) and w ∈ T (A2). Since v and w are orthogonal we have
1B = 1B 1∗

B = (v + w)(v∗ + w∗) = v v∗ + w w∗ and 1B = v∗v + w∗w , which shows that v v∗ and w w∗ (respectively, v∗v and
w∗w) are two orthogonal projections in B whose sum is 1B . It follows that v v∗ y = yv∗v = y for every element y in T (A1).

It can be checked that u = v + r2 is a unitary element in B and the mapping

Φ : (B,◦u, �u) → (B,◦,∗), x �→ xu∗

is a Jordan ∗-isomorphism. By noticing that T (A2) is a weak∗ closed inner ideal of B , r2 ∈ T (A2) and B2(r2) is the smallest
weak∗ closed inner ideal containing r2, we have T (A2) = B2(r2). Since B decomposes in the form

B2(v) ⊕∞ B2(r2) = B = T (A1) ⊕∞ T (A2),

we deduce that v ∈ T (A1) ⊆ B2(v), which gives T (A1) = B2(v). We also have

B = Φ
(

B2(v)
) ⊕∞ Φ

(
B2(r2)

) = B2
(

v v∗) ⊕∞ B2
(
r2r∗

2

) = v v∗B v v∗ ⊕∞ r2r∗
2 Br2r∗

2.

The mapping Φ|B2(r2) S2 is a Jordan ∗-isomorphism from A2 onto B2(r2r∗
2). Since B2(r2r∗

2) is a weak∗ closed ideal of B
and every Jordan ∗-isomorphism preserves the Murray–von Neumann decomposition we deduce that

Φ|B2(r2) S2(A2) ⊆ B2 = BII1 ⊕∞ B p∞,

that is, Φ(B2(r2)) ⊆ B2. We can similarly prove that Φ ′(B2(r2)) ⊆ B2, where Φ ′(x) := u∗x. Having in mind that B2 is a
weak∗ closed ideal of B we have

T (A2) = h2 ◦r2 S2(A2) ⊆ 1

2

(
h1r∗

2 S(A2) + S(A2)r
∗
2h2

)

= 1

2

(
h1Φ

′(B2(r2)
) + Φ

(
B2(r2)

)
h2

) ⊆ 1

2
(h1 B2 + B2h2) ⊆ B2.

It follows that T −1(B2) ⊆ A2, and hence T (A2) = B2. Thus

T (A1) = T
(

A⊥⊥
1

) = T
(

A⊥
1

)⊥ = T (A2)
⊥ = B⊥

2 = B1.

Finally, since A1 and B1 are finite type I von Neumann algebras, Proposition 18 proves that T |A1 : A1 → B1 is continuous,
which shows that T enjoys the same property. �
Remark 20. Let A be a properly infinite or a (finite) type II1 von Neumann algebra. Corollary 16 shows that every orthog-
onality preserving linear map from A into a C∗-algebra is continuous. We shall present an example showing that a similar
statement doesn’t hold when A is replaced with a finite type I von Neumann algebra. In other words, the hypothesis of T
being surjective cannot be removed in Theorem 19.

It is well know that a von Neumann algebra A is type I and finite if and only if A decomposes in the form

A =
�∞⊕
i∈I

C
(
Ωi, Mmi (C)

)
,

were the Ωi ’s are hyperstonean compact Hausdorff spaces and (mi) is a family of natural numbers (cf. [29, Theorem V.1.27]).
In particular, every abelian von Neumann algebra is type I and finite.

Let K be an infinite (hyperstonean) compact set. By [16, Example in page 142], there exists a discontinuous orthogonality
preserving linear map ϕ : C(K ) → C. Let T : C(K ) → C(K ) ⊕∞ C be the linear mapping defined by T ( f ) := ( f ,ϕ( f ))
( f ∈ C(K )). It is easy to check that T is discontinuous and biorthogonality preserving but not surjective.

Following [2] and [7], a linear map T between algebras A, B is called separating or zero-product preserving if ab = 0
implies T (a)T (b) = 0, for all a,b in A; it is called biseparating if T −1 : B → A exists and is also separating. J. Araujo and
K. Jarosz conjectured in [2, Conjecture 1] that every biseparating map between C∗-algebras is automatically continuous.
We can now give a partial positive answer to this conjecture.

Let T : A → B be a symmetric linear mapping between two C∗-algebras. Suppose that T is separating. Then for every a,b
in A with a ⊥ b, we have T (a)T (b)∗ = T (a)T (b∗) = 0, because T is separating. We can similarly prove that T (b)∗T (a) = 0,
which shows that T is orthogonality preserving. The following result follows now as a consequence of Theorem 19.
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Corollary 21. Let T : A → B be a biseparating symmetric linear map between von Neumann algebras. Then T is continuous.
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Automatic continuity of biorthogonality preservers between
weakly compact JB∗-triples and atomic JBW ∗-triples

by
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Abstract. We prove that every biorthogonality preserving linear surjection from a
weakly compact JB∗-triple containing no infinite-dimensional rank-one summands onto
another JB∗-triple is automatically continuous. We also show that every biorthogonality
preserving linear surjection between atomic JBW ∗-triples containing no infinite-dimen-
sional rank-one summands is automatically continuous. Consequently, two atomic JBW ∗-
triples containing no rank-one summands are isomorphic if and only if there exists a (not
necessarily continuous) biorthogonality preserving linear surjection between them.

1. Introduction and preliminaries. Studies on the automatic conti-
nuity of linear surjections between C∗-algebras and von Neumann algebras
preserving orthogonality relations in both directions constitute the latest
variant of a problem initiated by W. Arendt in the early eighties.

We recall that two complex-valued continuous functions f and g are
said to be orthogonal whenever they have disjoint supports. A mapping
T between C(K)-spaces is called orthogonality preserving if it maps or-
thogonal functions to orthogonal functions. The main result established by
Arendt states that every orthogonality preserving bounded linear mapping
T : C(K)→ C(K) is of the form

T (f)(t) = h(t)f(ϕ(t)) (f ∈ C(K), t ∈ K),

where h ∈ C(K) and ϕ : K → K is a mapping which is continuous on
{t ∈ K : h(t) 6= 0}.

The hypothesis of T being continuous was relaxed by K. Jarosz in [24].
In fact, Jarosz obtained a complete description of all orthogonality pre-
serving (not necessarily continuous) linear mappings between C(K)-spaces.
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A consequence of his description is that an orthogonality preserving linear
surjection between C(K)-spaces is automatically continuous.

Two elements a, b in a general C∗-algebra A are said to be orthogonal
(denoted by a ⊥ b) if ab∗ = b∗a = 0. When a = a∗ and b = b∗, we have
a ⊥ b if and only if ab = 0. A mapping T between two C∗-algebras A, B is
called orthogonality preserving if T (a) ⊥ T (b) for every a ⊥ b in A. When
T (a) ⊥ T (b) in B if and only if a ⊥ b in A, we say that T is biorthogonality
preserving. Under continuity assumptions, orthogonality preserving bounded
linear operators between C∗-algebras are completely described in [10, §4].
This last paper is a culmination of the studies developed by W. Arendt [2],
K. Jarosz [24], M. Wolff [34], and N.-C. Wong [35], among others, on bounded
orthogonality preserving linear maps between C∗-algebras.

C∗-algebras belong to a wider class of complex Banach spaces in which
orthogonality also makes sense. We refer to the class of (complex) JB∗-
triples (see §2 for definitions). Two elements a, b in a JB∗-triple E are said
to be orthogonal (denoted by a ⊥ b) if L(a, b) = 0, where L(a, b) is the linear
operator in E given by L(a, b)x = {a, b, x}. A linear mapping T : E → F
between two JB∗-triples is called orthogonality preserving if T (x) ⊥ T (y)
whenever x ⊥ y. The mapping T is biorthogonality preserving whenever the
equivalence x ⊥ y ⇔ T (x) ⊥ T (y) holds for all x, y in E.

Most of the novelties introduced in [10] consist in studying orthogonality
preserving bounded linear operators from a C∗-algebra or a JB∗-algebra to a
JB∗-triple to take advantage of the techniques developed in JB∗-triple the-
ory. These techniques were successfully applied in the subsequent paper [11]
to obtain a description of such operators (see §2 for a detailed explanation).

Despite the vast literature on orthogonality preserving bounded linear
operators between C∗-algebras and JB∗-triples, just a few papers have
considered the problem of automatic continuity of biorthogonality preserv-
ing linear surjections between C∗-algebras. Besides Jarosz [24], mentioned
above, M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong proved in
[13, Theorem 4.2] that every zero products preserving linear bijection from
a properly infinite von Neumann algebra into a unital ring is a ring ho-
momorphism followed by left multiplication by the image of the identity.
J. Araujo and K. Jarosz showed that every linear bijection between alge-
bras L(X), of continuous linear maps on a Banach space X, which preserves
zero products in both directions is automatically continuous and a multiple
of an algebra isomorphism [1]. These authors also conjectured that every
linear bijection between two C∗-algebras preserving zero products in both
directions is automatically continuous (see [1, Conjecture 1]).

The authors of this note proved in [12] that every biorthogonality pre-
serving linear surjection between two compact C∗-algebras or between two
von Neumann algebras is automatically continuous. One of the consequences
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of this result is a partial answer to [1, Conjecture 1]. Concretely, every sur-
jective and symmetric linear mapping between von Neumann algebras (or
compact C∗-algebras) which preserves zero products in both directions is
continuous.

In this paper we study the problem of automatic continuity of biorthog-
onality preserving linear surjections between JB∗-triples, extending some
of the results obtained in [12]. Section 2 contains the basic definitions and
results used in the paper. Section 3 is devoted to the structure and prop-
erties of the (orthogonal) annihilator of a subset M in a JB∗-triple, fo-
cusing on the annihilators of single elements. In Section 4 we prove that
every biorthogonality preserving linear surjection from a weakly compact
JB∗-triple containing no infinite-dimensional rank-one summands to a JB∗-
triple is automatically continuous. In Section 5 we show that two atomic
JB∗-triples containing no rank-one summands are isomorphic if and only
if there exists a biorthogonality preserving linear surjection between them,
a result which follows from the automatic continuity of every biorthogonal-
ity preserving linear surjection between atomic JB∗-triples containing no
infinite-dimensional rank-one summands.

2. Notation and preliminaries. Given Banach spaces X and Y ,
L(X,Y ) will denote the space of all bounded linear mappings from X to Y .
The symbol L(X) will stand for the space L(X,X). Throughout the paper
the word “operator” will always mean bounded linear mapping. The dual
space of a Banach space X is denoted by X∗.

JB∗-triples were introduced by W. Kaup in [26]. A JB∗-triple is a com-
plex Banach space E together with a continuous triple product {·, ·, ·} :
E ×E ×E → E, which is conjugate linear in the middle variable and sym-
metric and bilinear in the outer variables, and satisfies:

(a) L(a, b)L(x, y) = L(x, y)L(a, b)+L(L(a, b)x, y)−L(x, L(b, a)y), where
L(a, b) is the operator on E given by L(a, b)x = {a, b, x};

(b) L(a, a) is an hermitian operator with nonnegative spectrum;
(c) ‖L(a, a)‖ = ‖a‖2.

For each x in a JB∗-triple E, Q(x) will stand for the conjugate linear
operator on E defined by the assignment y 7→ Q(x)y = {x, y, x}.

Every C∗-algebra is a JB∗-triple via the triple product given by

2{x, y, z} = xy∗z + zy∗x,

and every JB∗-algebra is a JB∗-triple under the triple product

(2.1) {x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.
The so-called Kaup–Banach–Stone theorem for JB∗-triples states that

a bounded linear surjection between JB∗-triples is an isometry if and only
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if it is a triple isomorphism (cf. [26, Proposition 5.5], [5, Corollary 3.4] or
[18, Theorem 2.2]). It follows, among many other consequences, that when
a JB∗-algebra is a JB∗-triple for a suitable triple product, then the latter
coincides with the one defined in (2.1).

A JBW ∗-triple is a JB∗-triple which is also a dual Banach space (with a
unique isometric predual [3]). It is known that the triple product of a JBW ∗-
triple is separately weak∗ continuous [3]. The second dual of a JB∗-triple E
is a JBW ∗-triple with a product extending the product of E [15].

An element e in a JB∗-triple E is said to be a tripotent if {e, e, e} = e.
Each tripotent e in E gives rise to the decomposition

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0, 1, 2, Ei(e) is the i/2-eigenspace of L(e, e) (cf. [28, Theorem
25]). The natural projection of E onto Ei(e) will be denoted by Pi(e). This
decomposition is termed the Peirce decomposition of E with respect to the
tripotent e. The Peirce decomposition satisfies certain rules known as Peirce
arithmetic:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e)
if i− j + k ∈ {0, 1, 2} and is zero otherwise. In addition,

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.

The Peirce space E2(e) is a JB∗-algebra with product x ◦e y := {x, e, y}
and involution x]e := {e, x, e}.

A tripotent e in E is called complete (resp., unitary) if E0(e) = 0 (resp.,
E2(e) = E). When E2(e) = Ce 6= {0}, we say that e is minimal.

For each element x in a JB∗-triple E, we shall denote x[1] := x, x[3] :=
{x, x, x}, and x[2n+1] := {x, x, x[2n−1]} (n ∈ N). The symbol Ex will stand
for the JB∗-subtriple generated by x. It is known that Ex is JB∗-triple iso-
morphic (and hence isometric) to C0(Ω) for some locally compact Hausdorff
space Ω contained in (0, ‖x‖] such that Ω ∪ {0} is compact, where C0(Ω)
denotes the Banach space of all complex-valued continuous functions van-
ishing at 0. It is also known that there exists a triple isomorphism Ψ from
Ex onto C0(Ω) satisfying Ψ(x)(t) = t (t ∈ Ω) (cf. [25, Corollary 4.8], [26,
Corollary 1.15] and [20]). The set Ω = Sp(x) is called the triple spectrum
of x. Note that C0(Sp(x)) = C(Sp(x)) whenever 0 /∈ Sp(x).

Therefore, for each x ∈ E, there exists a unique element y ∈ Ex such
that {y, y, y} = x. The element y, denoted by x[1/3], is termed the cubic root
of x. We can inductively define x[1/3n] = (x[1/3n−1])[1/3], n ∈ N. The sequence
(x[1/3n]) converges in the weak∗ topology of E∗∗ to a tripotent denoted by
r(x) and called the range tripotent of x. The tripotent r(x) is the smallest
tripotent e ∈ E∗∗ such that x is positive in the JBW ∗-algebra E∗∗2 (e) (cf.
[16, Lemma 3.3]).
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A subspace I of a JB∗-triple E is a triple ideal if {E,E, I}+{E, I,E}⊆I.
By Proposition 1.3 in [7], I is a triple ideal if and only if {E,E, I} ⊆ I. We
shall say that I is an inner ideal of E if {I, E, I} ⊆ I. Given an x in E, let
E(x) denote the norm closed inner ideal of E generated by x. It is known
that E(x) coincides with the norm closure of the set Q(x)(E). Moreover
E(x) is a JB∗-subalgebra of E∗∗2 (r(x)) and contains x as a positive element
(cf. [8]). Every triple ideal is, in particular, an inner ideal.

We recall that two elements a, b in a JB∗-triple E are said to be orthog-
onal (written a ⊥ b) if L(a, b) = 0. Lemma 1 in [10] shows that a ⊥ b if and
only if one of the following nine statements holds:

(2.2)
{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b);
E∗∗2 (r(a)) ⊥ E∗∗2 (r(b)); r(a) ∈ E∗∗0 (r(b)); a ∈ E∗∗0 (r(b));
b ∈ E∗∗0 (r(a)); Ea ⊥ Eb; {b, b, a} = 0.

The Jordan identity and the above reformulations ensure that

(2.3) a ⊥ {x, y, z} whenever a ⊥ x, y, z.

An important class of JB∗-triples is given by the Cartan factors. A
JBW ∗-triple E is called a factor if it contains no proper weak∗ closed ideals.
The Cartan factors are precisely the JBW ∗-triple factors containing a min-
imal tripotent [27]. These can be classified in six different types (see [21]
or [27]).

A Cartan factor of type 1, denoted by In,m, is a JB∗-triple of the form
L(H,H ′), where L(H,H ′) denotes the space of bounded linear operators be-
tween two complex Hilbert spaces H and H ′ of dimensions n,m respectively,
with the triple product defined by {x, y, z} = 1

2(xy∗z + zy∗x).
We recall that given a conjugation j on a complex Hilbert space H, we

can define the linear involution x 7→ xt := jx∗j on L(H). A Cartan factor of
type 2 (respectively, type 3 ), denoted by II n (respectively, III n), is the sub-
triple of L(H) formed by the t-skew-symmetric (respectively, t-symmetric)
operators, where H is an n-dimensional complex Hilbert space. Moreover,
II n and III n are, up to isomorphism, independent of the conjugation j on H.

A Cartan factor of type 4, IV n (also called a complex spin factor), is an
n-dimensional complex Hilbert space provided with a conjugation x 7→ x,
where the triple product and norm are given by

(2.4) {x, y, z} = (x|y)z + (z|y)x− (x|z)y
and ‖x‖2 = (x|x) +

√
(x|x)2 − |(x|x)|2, respectively.

The Cartan factor of type 6 is the 27-dimensional exceptional JB∗-
algebra VI = H3(OC) of all symmetric 3 × 3 matrices with entries in the
complex octonions OC, while the Cartan factor of type 5, V = M1,2(OC), is
the subtriple of H3(OC) consisting of all 1× 2 matrices with entries in OC.



102 M. Burgos et al.

Remark 2.1. Let E be a spin factor with inner product (·|·) and conju-
gation x 7→ x. It is not hard to check (and part of the folklore of JB∗-triple
theory) that an element w in E is a minimal tripotent if and only if (w|w) = 0
and (w|w) = 1/2. For every minimal tripotent w in E we have E2(w) = Cw,
E0(w) = Cw and E1(w) = {x ∈ E : (x|w) = (x|w) = 0}. Therefore, every
minimal tripotent w2 ∈ E satisfying w ⊥ w2 can be written in the form
w2 = λw for some λ ∈ C with |λ| = 1.

3. Biorthogonality preservers. Let M be a subset of a JB∗-triple E.
We write M⊥E for the (orthogonal) annihilator of M defined by

M⊥E := {y ∈ E : y ⊥ x, ∀x ∈M}.

When no confusion can arise, we shall write M⊥ instead of M⊥E .
The next result summarises some basic properties of the annihilator. The

reader is referred to [17, Lemma 3.2] for a detailed proof.

Lemma 3.1. Let M a nonempty subset of a JB∗-triple E.

(a) M⊥ is a norm closed inner ideal of E.
(b) M ∩M⊥ = {0}.
(c) M ⊆M⊥⊥.
(d) If B ⊆ C then C⊥ ⊆ B⊥.
(e) M⊥ is weak∗ closed whenever E is a JBW ∗-triple.

As illustration of the main identity (axiom (a) in the definition of a JB∗-
triple) we shall prove statement (a). For a, a′ in M⊥, b in M , and c, d in E we
have {c, a, {d, a′, b}} = {{c, a, d}, a′, b} − {d, {a, c, a′}, b} + {d, a′, {c, a, b}},
which shows that {a, c, a′} ⊥ b.

Let e be a tripotent in a JB∗-triple E. Clearly, {e} ⊆ E2(e). Therefore,
by Peirce arithmetic and Lemma 3.1,

E2(e)⊥ ⊆ {e}⊥ = E0(e) ⊆ E2(e)⊥,

and hence

(3.1) E2(e)⊥ = {e}⊥ = E0(e).

The next lemma describes the annihilator of an element in an arbitrary JB∗-
triple. Its proof follows directly from the reformulations of orthogonality
in (2.2) (see also [10, Lemma 1]).

Lemma 3.2. Let x be an element in a JB∗-triple E. Then

{x}⊥E = E∗∗0 (r(x)) ∩ E.

Moreover, when E is a JBW ∗-triple we have

{x}⊥E = E0(r(x)).
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Proposition 3.3. Let e be a tripotent in a JB∗-triple E. Then

E2(e)⊕ E1(e) ⊇ {e}⊥⊥E = E0(e)⊥ ⊇ E2(e).

Proof. It follows from (3.1) that {e}⊥⊥ = {e}⊥⊥E = (E0(e))⊥ ⊇ E2(e).
Now select x ∈ (E0(e))⊥. For each i ∈ {0, 1, 2} we write xi = Pi(e)(x), where
Pi(e) denotes the Peirce i-projection with respect to e. Since x ∈ (E0(e))⊥,
x must be orthogonal to x0 and so {x0, x0, x} = 0. This equality, together
with Peirce arithmetic, shows that {x0, x0, x0} + {x0, x0, x1} = 0, which
implies that ‖x0‖3 = ‖{x0, x0, x0}‖ = 0.

Remark 3.4. For a tripotent e in a JB∗-triple E, the equality {e}⊥⊥E =
E0(e)⊥ = E2(e) does not hold in general. Let H1 and H2 be two infinite-
dimensional complex Hilbert spaces and let p be a minimal projection in
L(H1). We define E as the orthogonal sum pL(H1) ⊕∞ L(H2). In this ex-
ample {p}⊥E = L(H2) and {p}⊥⊥E = pL(H1) 6= Cp = E2(p).

However, if E is a Cartan factor and e is a noncomplete tripotent in E,
then the equality {e}⊥⊥ = E0(e)⊥ = E2(e) always holds (cf. Lemma 5.6
in [27]).

Corollary 3.5. Let x be an element in a JB∗-triple E. Then

E(x) ⊆ E∗∗2 (r(x)) ∩ E ⊆ {x}⊥⊥E .

Proof. Clearly, E(x) = Q(x)(E) ⊆ E∗∗2 (r(x)) ∩ E. Pick y in E∗∗2 (r(x))
∩E. Then y ∈ E∗∗2 (r(x)) ⊆ {x}⊥⊥E∗∗ . Since {x}⊥E ⊂ {x}⊥E∗∗ , we conclude that
y ∈ {x}⊥⊥E∗∗ ∩ E ⊆ ({x}⊥E)⊥E∗∗ ∩ E = {x}⊥⊥E .

In the setting of C∗-algebras the following conditions describing the first
and second annihilator of a projection were established in [12, Lemma 3].

Lemma 3.6. Let p be a projection in a (not necessarily unital) C∗-al-
gebra A. The following assertions hold:

(a) {p}⊥A = (1− p)A(1− p), where 1 denotes the unit of A∗∗;
(b) {p}⊥⊥A = pAp.

Let x be an element in a JB∗-triple E. We say that x is weakly compact
(respectively, compact) if the operator Q(x) : E → E is weakly compact (re-
spectively, compact). A JB∗-triple is weakly compact (respectively, compact)
if every element in E is weakly compact (respectively, compact).

Let E be a JB∗-triple. If we denote by K(E) the Banach subspace of
E generated by its minimal tripotents, then K(E) is a (norm closed) triple
ideal of E and it coincides with the set of weakly compact elements of E (see
Proposition 4.7 in [7]). For a Cartan factor C we define the elementary JB∗-
triple of the corresponding type to be K(C). Consequently, the elementary
JB∗-triples Ki (i = 1, . . . , 6) are defined as follows: K1 = K(H,H ′) (the
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compact operators between complex Hilbert spaces H and H ′); Ki = Ci ∩
K(H) for i = 2, 3, and Ki = Ci for i = 4, 5, 6.

It follows from [7, Lemma 3.3 and Theorem 3.4] that a JB∗-triple E is
weakly compact if and only if one of the following statement holds:

(a) K(E∗∗) = K(E).
(b) K(E) = E.
(c) E is a c0-sum of elementary JB∗-triples.

Let E be a JB∗-triple. A subset S ⊆ E is said to be orthogonal if 0 /∈ S
and x ⊥ y for every x 6= y in S. The minimal cardinal number r satisfying
card(S) ≤ r for every orthogonal subset S ⊆ E is called the rank of E (and
will be denoted by r(E)).

For every orthogonal family (ei)i∈I of minimal tripotents in a JBW ∗-
triple E the weak∗ convergent sum e :=

∑
i ei is a tripotent, and we call

(ei)i∈I a frame in E if e is a maximal tripotent in E (i.e., e is a complete
tripotent and dim(E1(e)) ≤ dim(E1(ẽ)) for every complete tripotent ẽ in E).
Every frame is a maximal orthogonal family of minimal tripotents; the con-
verse is not true in general (see [4, §3] for more details).

Proposition 3.7. Let e be a minimal tripotent in a JB∗-triple E. Then
{e}⊥⊥E is a rank-one norm closed inner ideal of E.

Proof. Let F denote {e}⊥⊥E . Since e is a minimal tripotent (i.e. E2(e) =
Ce), the set of states on E2(e), {ϕ ∈ E∗ : ϕ(e) = 1 = ‖ϕ‖}, reduces to one
point ϕ0 in E∗. Proposition 2.4 and Corollary 2.5 in [9] imply that the norm
of E restricted to E1(e) is equivalent to a Hilbertian norm. More precisely,
in the terminology of [9], the norm ‖ · ‖e coincides with the Hilbertian norm
‖ · ‖ϕ0 and is equivalent to the norm of E1(e).

Proposition 3.3 guarantees that F is a norm closed subspace of E2(e)⊕
E1(e) = Ce⊕ E1(e), and hence F is isomorphic to a Hilbert space.

We deduce, by Proposition 4.5(iii) in [7] (and its proof), that F is a finite
orthogonal sum of Cartan factors C1, . . . , Cm which are finite-dimensional,
or infinite-dimensional spin factors, or of the form L(H,H ′) for suitable
complex Hilbert spaces H and H ′ with dim(H ′) < ∞. Since F is an inner
ideal of E (and hence a JB∗-subtriple of E) and e is a minimal tripotent
in E, we can easily check that e is a minimal tripotent in F =

⊕`∞
j=1,...,mCj .

If we write e = e1 + · · ·+ em, where each ej is a tripotent in Cj and ej ⊥ ek
whenever j 6= k, then since Ce1 ⊕ · · · ⊕ Ce1 ⊆ F2(e) = Ce, we deduce that
there exists a unique j0 ∈ {1, . . . ,m} satisfying ej = 0 for all j 6= j0 and
e = ej0 ∈ Cj0 .

For each j 6= j0, we have Cj ⊆ {e}⊥E , and hence⊕`∞

j=1,...,m

Cj = F = {e}⊥⊥ ⊆ C⊥j .
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This implies that Cj ⊥ Cj (or equivalently Cj = 0) for every j 6= j0. We
consequently have F = {e}⊥⊥E = Cj0 .

Finally, if r(F ) ≥ 2, then we deduce, via Proposition 5.8 in [27], that
there exist minimal tripotents e2, . . . , er in F such that e, e2, . . . , er is a frame
in F . For each i ∈ {2, . . . , r}, ei is orthogonal to e and lies in F = {e}⊥⊥E ,
which is impossible.

Let T : E → F be a linear map between two JB∗-triples. We shall
say that T is orthogonality preserving if T (x) ⊥ T (y) whenever x ⊥ y. The
mapping T is said to be biorthogonality preserving whenever the equivalence

x ⊥ y ⇔ T (x) ⊥ T (y)

holds for all x, y in E.
It can be easily seen that every biorthogonality preserving linear mapping

T : E → F between JB∗-triples is injective. Indeed, for each x ∈ E, the
condition T (x) = 0 implies that T (x) ⊥ T (x), and hence x ⊥ x, which gives
x = 0.

Orthogonality preserving bounded linear maps from a JB∗-algebra to a
JB∗-triple were completely described in [11].

Before stating the result, let us recall some basic definitions. Two ele-
ments a and b in a JB∗-algebra J are said to operator commute in J if
the multiplication operators Ma and Mb commute, where Ma is defined
by Ma(x) := a ◦ x. That is, a and b operator commute if and only if
(a ◦ x) ◦ b = a ◦ (x ◦ b) for all x in J . Self-adjoint elements a and b in
J generate a JB∗-subalgebra that can be realised as a JC∗-subalgebra of
some B(H) [36], and, in this realisation, a and b commute in the usual
sense whenever they operator commute in J [33, Proposition 1]. Similarly,
two self-adjoint elements a and b in J operator commute if and only if
a2 ◦ b = {a, a, b} = {a, b, a} (i.e., a2 ◦ b = 2(a ◦ b) ◦ a − a2 ◦ b). If b ∈ J we
use {b}′ to denote the set of elements in J that operator commute with b.
We shall write Z(J) := J ′ for the center of J (this agrees with the usual
notation in von Neumann algebras).

Theorem 3.8 ([11, Theorem 4.1]). Let T : J → E be a bounded linear
mapping from a JB∗-algebra to a JB∗-triple. For h = T ∗∗(1) and r = r(h)
the following assertions are equivalent:

(a) T is orthogonality preserving.
(b) There exists a unique Jordan ∗-homomorphism S : J → E∗∗2 (r) such

that S∗∗(1) = r, S(J) and h operator commute, and T (z) = h◦rS(z)
for all z ∈ J .

(c) T preserves zero triple products, that is, {T (x), T (y), T (z)} = 0
whenever {x, y, z} = 0.
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The above characterisation proves that the bitranspose of an orthogonal-
ity preserving bounded linear mapping from a JB∗-algebra onto a JB∗-triple
is also orthogonality preserving.

The following theorem was essentially proved in [11]. We include here a
sketch of proof for completeness.

Theorem 3.9. Let T : J → E be a surjective linear operator from
a JBW ∗-algebra onto a JBW ∗-triple and let h denote T (1). Then T is
biorthogonality preserving if and only if r(h) is a unitary tripotent in E, h
is an invertible element in the JB∗-algebra E = E2(r(h)), and there exists
a Jordan ∗-isomorphism S : J → E = E2(r(h)) such that S(J) ⊆ {h}′ and
T = h ◦r(h) S. Further, if J is a factor (i.e. Z(J) = C1) then T is a scalar
multiple of a triple isomorphism.

Proof. The sufficiency is clear. We shall prove the necessity. To this end
let T : J → E be a surjective linear operator from a JBW ∗-algebra onto
a JBW ∗-triple and let h = T (1) ∈ E. We have already seen that every
biorthogonality preserving linear mapping between JB∗-triples is injective.
Therefore T is a linear bijection.

From Corollary 4.1(b) in [11] and its proof, we deduce that

T (Jsa) ⊆ E2(r(h))sa, and hence E = T (J) ⊆ E2(r(h)) ⊆ E.
This implies that E = E2(r(h)), which ensures that r(h) is a unitary tripo-
tent in E. Since the range tripotent of h, r(h), is the unit of E2(r(h)), and
h is a positive element in the JBW ∗-algebra E2(r(h)), we can easily check
that h is invertible in E2(r(h)). Furthermore, h1/2 is invertible in E2(r(h))
with inverse h−1/2.

The proof of [11, Theorem 4.1] can be literally applied here to show the
existence of a Jordan ∗-homomorphism S : J → E = E2(r(h)) such that
S(J) ⊆ {h}′ and T = h ◦r(h) S. Since, for each x ∈ J , h and S(x) operator
commute and h1/2 lies in the JB∗-subalgebra of E2(r(h)) generated by h,
we can easily check that S(x) and h1/2 operator commute. Thus,

T = h ◦r(h) S = Uh1/2S,

where Uh1/2 : E2(r(h))→ E2(r(h)) is the linear mapping defined by

Uh1/2(x) = 2(h1/2 ◦r(h) x) ◦r(h) h1/2 − (h1/2 ◦r(h) h1/2) ◦r(h) x.

It is well known that h1/2 is invertible if and only if Uh1/2 is an invertible
operator and, in this case, U−1

h1/2 = Uh−1/2 (cf. [22, Lemma 3.2.10]). There-
fore, S = Uh−1/2T. It follows from the bijectivity of T that S is a Jordan
*-isomorphism.

Finally, when Z(J) = C1, the center of E2(r(h)) also reduces to Cr(h),
and since h is an invertible element in the center of E2(r(h)), we deduce
that T is a scalar multiple of a triple isomorphism.
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Proposition 3.10. Let E1, E2 and F be three JB∗-triples (respectively,
JBW ∗-triples). Let T : E1 ⊕∞ E2 → F be a biorthogonality preserving
linear surjection. Then T (E1) and T (E2) are norm closed (respectively,
weak∗ closed) inner ideals of F , B = T (A1) ⊕∞ T (A2), and for j = 1, 2,
T |Aj : Aj → T (Aj) is a biorthogonality preserving linear surjection.

Proof. Fix j ∈ {1, 2}. Since Ej = E⊥⊥j and T is a biorthogonality pre-
serving linear surjection, we deduce that T (Ej) = T (E⊥⊥j ) = T (Ej)⊥⊥.
Lemma 3.1 guarantees that T (Ej) is a norm closed inner ideal of F (re-
spectively, a weak∗ closed inner ideal of F whenever E1, E2 and F are
JBW ∗-triples). The rest of the assertion follows from Lemma 3.1 and the
fact that F coincides with the orthogonal sum of T (E1) and T (E2).

4. Biorthogonality preservers between weakly compact JB∗-
triples. The following theorem generalises [12, Theorem 5] by proving that
biorthogonality preserving linear surjections between JB∗-triples send min-
imal tripotents to scalar multiples of minimal tripotents.

Theorem 4.1. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples and let e be a minimal tripotent in E.
Then ‖T (e)‖−1T (e) = fe is a minimal tripotent in F . Further, T (E2(e)) =
F2(fe) and T (E0(e)) = F0(fe).

Proof. Since T is a biorthogonality preserving surjection, the equality

T (S⊥E ) = T (S)⊥F
holds for every subset S of E. Lemma 3.1 ensures that for each minimal
tripotent e in E, {T (e)}⊥⊥F = T ({e}⊥⊥E ) is a norm closed inner ideal in F .
By Proposition 3.7, {e}⊥⊥E is a rank-one JB∗-triple, and hence {T (e)}⊥⊥F
cannot contain two nonzero orthogonal elements. Thus, {T (e)}⊥⊥F is a rank-
one JB∗-triple.

The arguments given in the proof of Proposition 3.7 above (see also
Proposition 4.5.(iii) in [7] and its proof or [4, §3]) show that the inner ideal
{T (e)}⊥⊥F is a rank-one Cartan factor, and hence a type 1 Cartan factor of
the form L(H,C), where H is a complex Hilbert space, or a type 2 Cartan
factor II 3 (it is known that II 3 is a JB∗-triple isomorphic to a 3-dimensional
complex Hilbert space). This implies that ‖T (e)‖−1 T (e) = fe is a minimal
tripotent in F and T (e) = λefe for a suitable λe ∈ C \ {0}.

The equality T (E2(e)) = F2(fe) has been proved. Concerning the Peirce
zero subspace we have

T (E0(e)) = T (E2(e)⊥E) = T (E2(e))⊥F = F2(fe)⊥F = F0(fe).

Let H and H ′ be complex Hilbert spaces. Given k ∈ H ′ and h ∈ H, we
define k⊗h in L(H,H ′) by k⊗h(ξ) := (ξ|h)k. Then every minimal tripotent
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in L(H,H ′) can be written in the form k ⊗ h, where h and k are norm-one
elements in H and H ′, respectively. It can be easily seen that two minimal
tripotents k1 ⊗ h1 and k2 ⊗ h2 are orthogonal if and only if h1 ⊥ h2 and
k1 ⊥ k2.

Theorem 4.2. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, where E is a type In,m Cartan factor
with n,m ≥ 2. Then there exists a positive real number λ such that ‖T (e)‖
= λ for every minimal tripotent e in E.

Proof. Let H,H ′ be complex Hilbert spaces such that E = L(H,H ′).
Let e1 := k1 ⊗ h1 and e2 := k2 ⊗ h2 be two minimal tripotents in E. We
write H1 = span({h1, h2}) and H ′1 = span({k1, k2}). The tripotents k1 ⊗ h1

and k2 ⊗ h2 can be identified with elements in L(H1, H
′
1). By Theorem 4.1,

T (e1) = α1f1 and T (e2) = α2f2, where f1 and f2 are two minimal tripotents
in F .

If dim(H1) = dim(H ′1) = 2, then the norm closed inner ideal Ee1,e2 of E
generated by e1 and e2 identifies with L(H1, H

′
1), which is JB∗-isomorphic

to M2(C) and coincides with the inner ideal generated by the orthogonal
minimal tripotents g1 =

(
1 0
0 0

)
and g2 =

(
0 0
0 1

)
, where g1 + g2 is the unit

element in Ee1,e2
∼= M2(C).

By Theorem 4.1, w1 := 1
‖T (g1)‖T (g1) and w2 := 1

‖T (g2)‖T (g2) are orthog-
onal minimal tripotents in F . The element w = w1 +w2 is a rank-2 tripotent
in F and coincides with the range tripotent of the element h = T (g1 +g2) =
‖T (g1)‖w1 + ‖T (g2)‖w2. By Theorem 3.8 (see also [11, Corollary 4.1(b)]),
T (Ee1,e2) ⊆ F2(w). It is not hard to see that h is invertible in F2(w) with
inverse h−1 = 1

‖T (g1)‖w1 + 1
‖T (g2)‖w2.

The inner ideal Ee1,e2 is finite-dimensional, T (Ee1,e2) is norm closed and
T |Ee1,e2 : Ee1,e2 → F is a continuous biorthogonality preserving linear op-
erator. Theorem 3.8 guarantees the existence of a Jordan ∗-homomorphism
S : Ee1,e2 ∼= M2(C) → F2(w) such that S(g1 + g2) = w, S(Ee1,e2) and h
operator commute and

(4.1) T (z) = h ◦w S(z) for all z ∈ Ee1,e2 .

It follows from the operator commutativity of h−1 and S(Ee1,e2) that S(z) =
h−1 ◦w T (z) for all z ∈ Ee1,e2 . The injectivity of T implies that S is a Jordan
*-monomorphism.

Lemma 2.7 in [19] shows that F2(w) = F2(w1+w2) coincides with C⊕`∞C
or with a spin factor. Since 4 = dim(T (Ee1,e2)) ≤ dim(F2(w)), we deduce
that F2(w) is a spin factor with inner product (·|·) and conjugation x 7→ x.
From Remark 2.1, we may assume, without loss of generality, that (w1|w1) =
1/2, (w1|w1) = 0, and w2 = w1.
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Now, we take g3 =
(

0 1
0 0

)
and g4 =

(
0 0
1 0

)
in Ee1,e2 . The elements w3 :=

S(g3) and w4 := S(g4) are orthogonal minimal tripotents in F2(w) with
{wi, wi, wj} = 1

2wj for every (i, j), (j, i) ∈ {1, 2} × {3, 4}. Applying again
Remark 2.1, we may assume that (w3|w3) = 1/2, (w3|w3) = 0, w4 = w3,
and (w3|w1) = (w3|w2) = 0. Applying the definition of the triple product in
a spin factor given in (2.4) we can check that (w1, w3, w2 = w1, w4 = w3) are
four minimal tripotents in F2(w) with w1 ⊥ w2, w3 ⊥ w4, {wi, wi, wj} = 1

2wj
for every (i, j), (j, i) ∈ {1, 2}×{3, 4}, {w1, w3, w2} = −1

2w4, {w3, w2,−w4} =
1
2w1, {w2,−w4, w1} = 1

2w3, and {−w4, w1, w3} = 1
2w2. Thus, denoting by M

the JB∗-subtriple of F2(w) generated by w1, w3, w2, and w4, we have shown
that M is a JB∗-triple isomorphic to M2(C).

Combining (4.1) and (2.4) we get

T (g3) = h ◦w S(g3) = {h,w,w3} =
‖T (g1)‖+ ‖T (g2)‖

2
w3,

T (g4) = h ◦w S(g4) = {h,w,w4} =
‖T (g1)‖+ ‖T (g2)‖

2
w4.

Since T (g1)=‖T (g1)‖w1, T (g2)=‖T (g2)‖w2, and Ee1,e2 is linearly generated
by g1, g2, g3 and g4, we deduce that T (Ee1,e2) ⊆M with 4 = dim(T (Ee1,e2))
≤ dim(M) = 4. Thus, T (Ee1,e2) = M is a JB∗-subtriple of F .

The mapping T |Ee1,e2 : Ee1,e2
∼= M2(C) → T (Ee1,e2) is a continu-

ous biorthogonality preserving linear bijection. Theorem 3.9 implies that
T |Ee1,e2 is a (nonzero) scalar multiple of a triple isomorphism, and hence
‖T (e1)‖ = ‖T (e2)‖.

If dim(H ′1) = 1, then L(H1, H
′
1) is a rank-one JB∗-triple. Since n,m ≥ 2,

we can find a minimal tripotent e in E such that the norm closed inner
ideals of E generated by {e, e1} and {e, e2} both coincide with M2(C). The
arguments in the above paragraph show that ‖T (e1)‖ = ‖T (e)‖ = ‖T (e2)‖.

Finally, the case dim(H1) = 1 follows from the same arguments.

Remark 4.3. Given a sequence (µn) ⊂ c0 and a bounded sequence (xn)
in a Banach space X, the series

∑
k µkxk need not be, in general, convergent

in X. However, when (xn) is a bounded sequence of mutually orthogonal
elements in a JB∗-triple E, the equality∥∥∥ n∑

k=1

µkxk −
m∑
k=1

µkxk

∥∥∥ = max{|µn+1|, . . . , |µm|} sup{‖xn‖}

holds for every n < m in N. It follows that (
∑n

k=1 µkxk) is a Cauchy sequence
and hence converges in E.

The following three results generalise [12, Lemmas 8, 9 and Proposition
10] to the setting of JB∗-triples.
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Lemma 4.4. Let T : E → F be a biorthogonality preserving linear sur-
jection between two JB∗-triples and let (en) be a sequence of mutually or-
thogonal minimal tripotents in E. Then there exist positive constants m ≤M
satisfying m ≤ ‖T (en)‖ ≤M for all n ∈ N.

Proof. We deduce from Theorem 4.1 that, for each natural n, there exist
a minimal tripotent fn and a scalar λn ∈ C \ {0} such that T (en) = λnfn,
where ‖T (en)‖ = λn. Note that T being biorthogonality preserving implies
(fn) is a sequence of mutually orthogonal minimal tripotents in F .

Let (µn) be any sequence in c0. Since the en’s are mutually orthogonal
the series

∑
k≥1 µkek converges to an element in E (cf. Remark 4.3). For

each natural n,
∑

k≥1 µkek decomposes as the orthogonal sum of µnen and∑
k 6=n µkek, therefore

T
(∑
k≥1

µkek

)
= µnλnfn + T

(∑
k 6=n

µkek

)
with µnλnfn ⊥ T

(∑∞
k 6=n µkek

)
, which in particular implies∥∥∥T(∑

k≥1

µkek

)∥∥∥ = max
{
|µn| |λn|,

∥∥∥T(∑
k 6=n

µkek

)∥∥∥} ≥ |µn| |λn|.
This establishes that, for each (µn) in c0, (µnλn) is a bounded sequence,
which in particular implies that (λn) is bounded.

Finally, since T is a biorthogonality preserving linear surjection and
T−1(fn) = λ−1

n en, we can similarly show that (λ−1
n ) is also bounded.

Lemma 4.5. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, (µn) a sequence in c0, and (en) a se-
quence of mutually orthogonal minimal tripotents in E. Then the sequence
(T (
∑

k≥n µkek))n is well defined and converges in norm to zero.

Proof. From Theorem 4.1 and Lemma 4.4 it follows that (T (en)) is a
bounded sequence of mutually orthogonal elements in F . Let M denote a
bound of the above sequence. For each natural n, Remark 4.3 ensures that
the series

∑
k≥n µkek converges.

Define yn := T (
∑

k≥n µkek). We claim that (yn) is a Cauchy sequence
in F . Indeed, given n < m in N, we have

‖yn − ym‖ =
∥∥∥T(m−1∑

k≥n
µkek

)∥∥∥ =
∥∥∥m−1∑
k≥n

µkT (ek)
∥∥∥(4.2)

≤M max{|µn|, . . . , |µm−1|},
where in the last inequality we have used the fact that (T (en)) is a sequence
of mutually orthogonal elements. Consequently, (yn) converges in norm to
some element y0 in F . Let z0 denote T−1(y0).
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Fix a natural m. By hypothesis, for each n > m, em is orthogonal to∑
k≥n µkek. This implies that T (em) ⊥ yn for every n > m, which in partic-

ular implies {T (em), T (em), yn} = 0 for every n > m. Letting n tend to ∞
we have {T (em), T (em), y0} = 0. This shows that y0 = T (z0) is orthogonal
to T (em), and hence em ⊥ z0. Since m was arbitrary, we deduce that z0 is
orthogonal to

∑
k≥n µkek for every n. Therefore, (yn) ⊂ {y0}⊥, and hence

y0 belongs to the norm closure of {y0}⊥, which implies y0 = 0.

Proposition 4.6. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, where E is weakly compact. Then T is
continuous if and only if the set T := {‖T (e)‖ : e a minimal tripotent in E}
is bounded. Moreover, in that case ‖T‖ = sup(T ).

Proof. The necessity being obvious, suppose that

M = sup{‖T (e)‖ : e a minimal tripotent in E} <∞.
Since E is weakly compact, each nonzero element x of E can be written
as a norm convergent (possibly finite) sum x =

∑
n λnun, where un are

mutually orthogonal minimal tripotents of E, and ‖x‖ = sup{|λn| : n ≥ 1}
(cf. Remark 4.6 in [7]). If the series x =

∑
n λnun is finite then

‖T (x)‖ =
∥∥∥ m∑
n=1

λnT (un)
∥∥∥ (∗)

= max{‖λnT (un)‖ : n = 1, . . . ,m} ≤M‖x‖,

where at (∗) we apply the fact that (T (un)) is a finite set of mutually
orthogonal tripotents in F . When the series x =

∑
n λnun is infinite we

may assume that (λn) ∈ c0.
It follows from Lemma 4.5 that the sequence (T (

∑
k≥n λkuk))n is well

defined and converges in norm to zero. We can find a natural m such
that ‖T (

∑
k≥m λkuk)‖ < M‖x‖. Since the elements λ1u1, . . . , λm−1um−1,∑

k≥m λkuk are mutually orthogonal, we have

‖T (x)‖ = max
{
‖T (λ1u1)‖, . . . , ‖T (λm−1um−1)‖,

∥∥∥T(∑
k≥m

λkuk

)∥∥∥}
≤M‖x‖.

Let E be an elementary JB∗-triple of type 1 (that is, an elementary
JB∗-triple such that E∗∗ is a type 1 Cartan factor), and let T : E → F be a
biorthogonality preserving linear surjection from E onto another JB∗-triple.
Then by Theorem 4.2 and Proposition 4.6, T is continuous. Further, we claim
that T is a scalar multiple of a triple isomorphism. Indeed, let us see that
S = (1/λ)T is a triple isomorphism, where λ = ‖T (e)‖ = ‖T‖ for some (and
hence any) minimal tripotent e in E (cf. Theorem 4.2). Let x ∈ E. Then
x =

∑
n λnen for a suitable (λn) ∈ c0 and a family of mutually orthogonal

minimal tripotents (en) in E [7, Remark 4.6]. Then by observing that T is



112 M. Burgos et al.

continuous we have

‖S(x)‖ =
1
λ
‖T (x)‖ =

1
λ

∥∥∥T(∑
n

λnen

)∥∥∥ =
1
λ

∥∥∥∑
n

λnT (en)
∥∥∥

=
1
λ

sup
n
|λn| ‖T (en)‖ =

1
λ

sup
n
|λn|λ = sup

n
|λn| = ‖x‖.

This proves that S is a surjective linear isometry between JB∗-triples, and
hence a triple isomorphism (see [26, Proposition 5.5], [5, Corollary 3.4], [18,
Theorem 2.2]). We have thus proved the following result:

Corollary 4.7. Let T : E → F a biorthogonality preserving linear
surjection from a type 1 elementary JB∗-triple of rank greater than one onto
another JB∗-triple. Then T is a scalar multiple of a triple isomorphism.

Let p and q be two minimal projections in a C∗-algebra A with q 6= p. It
is known that the C∗-subalgebra of A generated by p and q is isometrically
isomorphic to C ⊕∞ C when p and q are orthogonal, and isomorphic to
M2(C) otherwise. More concretely, by [31, Theorem 1.3] (see also [29, §3]),
denoting by Cp,q the C∗-subalgebra of A generated by p and q, we have the
following statements:

(a) If p ⊥ q then there exists an isometric C∗-isomorphism Φ : Cp,q →
C⊕∞ C such that Φ(p) = (1, 0) and Φ(q) = (0, 1).

(b) If p and q are not orthogonal then there exist 0 < t < 1 and an
isometric C∗-isomorphism Φ : Cp,q →M2(C) such that

Φ(p) =
(

1 0
0 0

)
and Φ(q) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

In the setting of JB∗-algebras we have:

Lemma 4.8. Let p and q be two minimal projections in a JB∗-algebra
J with q 6= p and let Jp,q denote the JB∗-subalgebra of J generated by p
and q.

(a) If p ⊥ q then there exists an isometric JB∗-isomorphism Φ : Jp,q →
C⊕∞ C such that Φ(p) = (1, 0) and Φ(q) = (0, 1).

(b) If p and q are not orthogonal then there exist 0 < t < 1 and an
isometric JB∗-isomorphism Φ : C → S2(C) such that

Φ(p) =
(

1 0
0 0

)
and Φ(q) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
,

where S2(C) denotes the type 3 Cartan factor of all symmetric op-
erators on a two-dimensional complex Hilbert space.

Moreover, the JB∗-subtriple of J generated by p and q coincides with Jp,q.
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Proof. Statement (a) is clear. Now assume that p and q are not orthogo-
nal. The Shirshov–Cohn theorem (see [22, Theorem 7.2.5]) ensures that Jp,q
is a JC∗-algebra, that is, a Jordan *-subalgebra of some C∗-algebra A. The
symbol Cp,q will stand for the (associative) C∗-subalgebra of A generated
by p and q. Set

P :=
(

1 0
0 0

)
and Q :=

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

We have already mentioned that there exist 0 < t < 1 and an isometric
C∗-isomorphism Φ : Cp,q →M2(C) such that Φ(p) = P and Φ(q) = Q.

Since Jp,q is a Jordan *-subalgebra of Cp,q, Jp,q can be identified with
the Jordan *-subalgebra of M2(C) generated by the matrices P and Q. It
can be easily checked that

P ◦Q =
(

t 1
2

√
t(1− t)

1
2

√
t(1− t) 0

)
,

2P ◦Q− 2tP =
(

0
√
t(1− t)√

t(1− t) 0

)
,

Q− (2P ◦Q− 2tP )− tP =
(

0 0
0 1− t

)
.

These identities show that Jp,q contains the generators of the JB∗-algebra
S2(C), and hence identifies with S2(C).

In order to prove the last assertion, let Ep,q denote the JB∗-subtriple of J
generated by p and q. As Jp,q is itself a subtriple containing p and q, we have
Ep,q ⊆ Jp,q. If p ⊥ q then it can easily be seen that Ep,q ∼= C ⊕∞ C ∼= Jp,q.
Now assume that p and q are not orthogonal.

From Proposition 5 in [20], Ep,q is a JB∗-triple isometrically isomorphic
to M1,2(C) or S2(C). If Ep,q is a rank-one JB∗-triple, that is, E ∼= M1,2(C),
then P0(p)(q) must be zero. Thus, according to the above representation,
we have 1− t = 0, which is impossible.

A JB∗-algebra which is a weakly compact JB∗-triple will be called
weakly compact or dual (see [6]). Every positive element x in a weakly com-
pact JB∗-algebra J can be written in the form x =

∑
n λnpn for a suitable

(λn) ∈ c0 and a family (pn) of mutually orthogonal minimal projections in J
(see Theorem 3.3 in [6]).

Our next theorem extends [12, Theorem 11].

Theorem 4.9. Let T : J → E be a biorthogonality preserving linear
surjection from a weakly compact JB∗-algebra onto a JB∗-triple. Then T is
continuous and ‖T‖ ≤ 2 sup{‖T (p)‖ : p a minimal projection in J}.
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Proof. Since J is a JB∗-algebra, it is enough to show that T is bounded
on positive norm-one elements. In this case, it suffices to prove that the set

P = {‖T (p)‖ : p a minimal projection in J}

is bounded (cf. the proof of Proposition 4.6).
Suppose, on the contrary, that P is unbounded. We shall show by in-

duction that there exists a sequence (pn) of mutually orthogonal minimal
projections in J such that ‖T (pn)‖ > n.

The case n = 1 is clear. The induction hypothesis guarantees the ex-
istence of mutually orthogonal minimal projections p1, . . . , pn in J with
‖T (pk)‖ > k for all k ∈ {1, . . . , n}.

By assumption, there exists a minimal projection q ∈ J satisfying

‖T (q)‖ > max{‖T (p1)‖, . . . , ‖T (pn)‖, n+ 1}.

We claim that q must be orthogonal to each pj . If that is not the case,
there exists j such that pj and q are not orthogonal. Let C denote the
JB∗-subtriple of J generated by q and pj . We conclude from Lemma 4.8
that C is isomorphic to the JB∗-algebra S2(C).

Let g1 =
(

1 0
0 0

)
and g2 =

(
0 0
0 1

)
. Then g1 + g2 is the unit element in

C ∼= S2(C). By Theorem 4.1, w1 := 1
‖T (g1)‖T (g1) and w2 := 1

‖T (g2)‖T (g2)
are two orthogonal minimal tripotents in E. The element w = w1 + w2 is a
rank-2 tripotent in E and coincides with the range tripotent of the element
h = T (g1 + g2) = ‖T (g1)‖w1 + ‖T (g2)‖w2. Furthermore, h is invertible in
E2(w), and by Theorem 3.8 (see also [11, Corollary 4.1(b)]), T (C) ⊆ E2(w).

The rest of the argument is parallel to the argument in the proof of
Theorem 4.2.

The finite-dimensionality of the JB∗-subtriple C ensures that T (C) is
norm closed and T |C : C ∼= S2(C) → E is a continuous biorthogonality
preserving linear operator. Theorem 3.8 guarantees the existence of a Jordan
∗-homomorphism S : C → E2(w) such that S(g1 + g2) = w, S(C) and h
operator commute and

(4.3) T (z) = h ◦w S(z) for all z ∈ C.

It follows from the operator commutativity of h−1 and S(C) that S(z) =
h−1 ◦w T (z) for all z ∈ C. The injectivity of T implies that S is a Jordan
*-monomorphism.

Lemma 2.7 in [19] shows that E2(w) = E2(w1 + w2) coincides with
C ⊕`∞ C or with a spin factor. Since 3 = dim(T (C)) ≤ dim(E2(w)), we
deduce that E2(w) is a spin factor with inner product (·|·) and conjugation
x 7→ x. We may assume, by Remark 2.1, that (w1|w1) = 1/2, (w1|w1) = 0,
and w2 = w1.
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Now, taking g3 =
(

0 1
1 0

)
∈ C ∼= S2(C), the element w3 := S(g3) is a

tripotent in E2(w) with {wi, wi, w3} = 1
2w3 for every i ∈ {1, 2}. Remark

2.1 implies that (w3|w1) = (w3|w2) = 0. Let M denote the JB∗-subtriple of
E2(w) generated by w1, w2, and w3. The mapping S : C ∼= S2(C)→M is a
Jordan *-isomorphism.

Combining (4.3) and (2.4) we get

T (g3) = h ◦w S(g3) = {h,w,w3} =
‖T (g1)‖+ ‖T (g2)‖

2
w3.

Since T (g1) = ‖T (g1)‖w1, T (g2) = ‖T (g2)‖w2, and C is linearly gener-
ated by g1, g2 and g3, we deduce that T (C) ⊆ M with 3 = dim(T (C)) ≤
dim(M) = 3. Thus, T (C) = M is a JB∗-subtriple of E.

The mapping T |C : C ∼= S2(C) → T (C) is a continuous biorthogonality
preserving linear bijection. Theorem 3.9 guarantees the existence of a scalar
λ ∈ C\{0} and a triple isomorphism Ψ : C → T (C) such that T (x) = λΨ(x)
for all x ∈ C. Since pj and q are projections, ‖Ψ(q)‖ = ‖Ψ(pj)‖ = 1. Hence
‖T (pj)‖ = |λ| and ‖T (q)‖ = |λ|, contradicting the induction hypothesis.
Therefore q ⊥ pj for every j = 1, . . . , n.

It follows by induction that there exists a sequence (pn) of mutually
orthogonal minimal projections in J such that ‖T (pn)‖ > n. The series∑∞

n=1 (1/
√
n)pn defines an element a in J (cf. Remark 4.3). For each natural

m, a decomposes as the orthogonal sum of (1/
√
m)pm and

∑
n6=m (1/

√
n)pn,

therefore

T (a) =
1√
m
T (pm) + T

(∑
n6=m

1√
n
pn

)
,

with orthogonal summands. This argument implies that

‖T (a)‖ = max
{

1√
m
‖T (pm)‖,

∥∥∥∥T(∑
n6=m

1√
n
pn

)∥∥∥∥} >
√
m.

Since m was arbitrary, we have arrived at the desired contradiction.

By Proposition 2 in [23], every Cartan factor of type 1 with dim(H) =
dim(H ′), every Cartan factor of type 2 with dim(H) even or infinite, and
every Cartan factor of type 3 is a JBW ∗-algebra factor for a suitable Jordan
product and involution. In the case of C being a Cartan factor which is also a
JBW ∗-algebra, the corresponding elementary JB∗-triple K(C) is a weakly
compact JB∗-algebra.

Corollary 4.10. Let K be an elementary JB∗-triple of type 1 with
dim(H) = dim(H ′), or of type 2 with dim(H) even or infinite, or of type 3.
Suppose that T : K → E is a biorthogonality preserving linear surjection
from K onto a JB∗-triple. Then T is continuous. Further, since K∗∗ is a



116 M. Burgos et al.

JBW ∗-algebra factor, Theorem 3.9 ensures that T is a scalar multiple of a
triple isomorphism.

Theorem 4.11. Let T : E → F be a biorthogonality preserving linear
surjection between JB∗-triples, where E is weakly compact containing no
infinite-dimensional rank-one summands. Then T is continuous.

Proof. Since E is a weakly compact JB∗-triple, the statement follows
from Proposition 4.6 as soon as we prove that the set

T := {‖T (e)‖ : e a minimal tripotent in E}

is bounded.
We know that E =

⊕c0
α∈Γ Kα, where {Kα : α ∈ Γ} is a family of

elementary JB∗-triples (see Lemma 3.3 in [7]). Now, Lemma 3.1 guarantees
that T (Kα) = T (K⊥⊥α ) = T (Kα)⊥⊥ is a norm closed inner ideal for every
α ∈ Γ .

For each α ∈ Γ , Kα is finite-dimensional, or a type 1 elementary JB∗-
triple of rank greater than one, or a JB∗-algebra. It follows, by Corollary
4.7 and Theorem 4.9, that T |Kα : Kα → T (Kα) is continuous.

Suppose that T is unbounded. Having in mind that every minimal tripo-
tent in E belongs to a unique factor Kα, by Proposition 4.6, there exists
a sequence (en) of mutually orthogonal minimal tripotents in E such that
‖T (en)‖ diverges to +∞. The element z :=

∑∞
n=1 ‖T (en)‖−1/2en lies in

E and hence ‖T (z)‖ < ∞. We fix an arbitrary natural m. Since z −
‖T (em)‖−1/2em and ‖T (em)‖−1/2em are orthogonal, we have

T (z − ‖T (em)‖−1/2em) ⊥ T (‖T (em)‖−1/2em),

and hence

‖T (z)‖ = ‖T (z − ‖T (em)‖−1/2em)) + T (‖T (em)‖−1/2em)‖

= max{‖T (z − ‖T (em)‖−1/2em)‖, ‖T (em)‖−1/2‖T (em)‖} ≥
√
‖T (em)‖,

which contradicts that ‖T (em)‖1/2 → +∞. Therefore T is bounded.

Corollary 4.12. Let T : E → F be a biorthogonality preserving lin-
ear surjection between two JB∗-triples, where K(E) contains no infinite-
dimensional rank-one summands. Then T |K(E) : K(E)→ K(F ) is continu-
ous.

Proof. Pick x ∈ K(E). It can be written in the form x =
∑

n λnun,
where un are mutually orthogonal minimal tripotents of E, and ‖x‖ =
sup{|λn| : n ≥ 1} (cf. Remark 4.6 in [7]). For each natural m we define ym :=
T (
∑

n≥m+1 λnun). Theorem 4.1 guarantees that T (xm) = T (
∑m

n=1 λnun)
defines a sequence in K(F ).
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Since, by Lemma 4.5, ym → 0 in norm, we deduce that T (xm) =
T (x)−ym tends to T (x) in norm. Therefore T (K(E)) = K(F ) and T |K(E) :
K(E) → K(F ) is a biorthogonality preserving linear surjection between
weakly compact JB∗-triples. The result now follows from Theorem 4.11.

Remark 4.13. In Remark 15 of [10] it was already pointed out that
the conclusion of Theorem 4.11 is no longer true if we allow E to have
infinite-dimensional rank-one summands. Indeed, let E = L(H)⊕∞L(H,C),
where H is an infinite-dimensional complex Hilbert space. We can always
find an unbounded bijection S : L(H,C) → L(H,C). Since L(H,C) is a
rank-one JB∗-triple, S is a biorthogonality preserving linear bijection and
the mapping T : E → E given by x + y 7→ x + S(y) has the same proper-
ties.

Corollary 4.14. Two weakly compact JB∗-triples containing no rank-
one summands are isomorphic if and only if there exists a biorthogonality
preserving linear surjection between them.

5. Biorthogonality preservers between atomic JBW ∗-triples.
A JBW ∗-triple E is said to be atomic if it coincides with the weak∗ closed
ideal generated by its minimal tripotents. Every atomic JBW ∗-triple can
be written as an `∞-sum of Cartan factors [21].

The aim of this section is to study when the existence of a biorthogonal-
ity preserving linear surjection between two atomic JBW ∗-triples implies
that they are isomorphic (note that continuity is not assumed). We shall es-
tablish an automatic continuity result for biorthogonality preserving linear
surjections between atomic JBW ∗-triples containing no rank-one factors.

Before dealing with the main result, we survey some results describing
the elements in the predual of a Cartan factor. We make use of the descrip-
tion of the predual of L(H) in terms of the trace class operators (cf. [32,
§II.1]). The results, included here for completeness, are direct consequences
of this description but we do not know an explicit reference.

Let C = L(H,H ′) be a type 1 Cartan factor. Lemma 2.6 in [30] en-
sures that each ϕ in C∗ can be written in the form ϕ :=

∑∞
n=1 λnϕn, where

(λn) is a sequence in `+1 and each ϕn is an extreme point of the closed
unit ball of C∗. More concretely, for each natural n there exist norm-one
elements hn ∈ H and kn ∈ H ′ such that ϕn(x) = (x(hn)|kn) for every
x ∈ C, that is, for each natural n there exists a minimal tripotent en
in C such that P2(en)(x) = ϕn(x)en for every x ∈ C (cf. [20, Proposi-
tion 4]).

We now consider (infinite-dimensional) type 2 and type 3 Cartan factors.
Let j be a conjugation on a complex Hilbert space H, and consider the
linear involution on L(H) defined by x 7→ xt := jx∗j. Let C2 = {x ∈ L(H) :
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xt = −x} and C3 = {x ∈ L(H) : xt = x} be Cartan factors of type 2 and 3,
respectively.

Noticing that L(H) = C2 ⊕ C3, it is easy to see that every element
ϕ in (C2)∗ (respectively, (C3)∗) admits an extension of the form ϕ̃ = ϕπ,
where π denotes the canonical projection of L(H) onto C2 (respectively,
C3). Making use of [32, Lemma 1.5], we can find an element xeϕ ∈ K(H)
satisfying

(5.1) (xeϕ(h)|k) = ϕ̃(h⊗ k) (h, k ∈ H).

Since, for each x ∈ L(H), ϕ̃(x) = 1
2 ϕ̃(x − xt), we can easily check, via

(5.1), that xteϕ = −xeϕ. Therefore xeϕ ∈ K2 = K(C2). From [7, Remark 4.6]
it may be deduced that xeϕ can be (uniquely) written as a norm convergent
(possibly finite) sum xeϕ =

∑
n λnun, where un are mutually orthogonal min-

imal tripotents in K2 and (λn) ∈ c0 (notice that un is a minimal tripotent
in C2 but it need not be minimal in L(H); in any case, either un is mini-
mal in L(H) or it can be written as a convex combination of two minimal
tripotents in L(H)). For each (βn) ∈ c0, z :=

∑
n βnun ∈ K2 and, by (5.1),∑

n λnβn = ϕ̃(z) = ϕ(z) < ∞. Thus, (λn) ∈ `1, and another application
of (5.1) shows that ϕ(x) =

∑
n λnϕn(x) for all x ∈ C2, where ϕn lies in

(C2)∗ and satisfies P2(un)(x) = ϕn(x)un. A similar reasoning remains true
for C3.

We have thus proved:

Proposition 5.1. Let C be an infinite-dimensional Cartan factor of
type 1, 2 or 3. For each ϕ in C∗, there exist a sequence (λn) ∈ `1 and a
sequence (un) of mutually orthogonal minimal tripotents in C such that

‖ϕ‖ =
∞∑
n=1

|λn| and ϕ(x) =
∑
n

λnϕn(x) (x ∈ C),

where for each n ∈ N, ϕn(x)un = P2(un)(x) (x ∈ C).

Let T : E → F be a biorthogonality preserving linear surjection between
atomic JBW ∗-triples, where E contains no rank-one Cartan factors. In this
case K(E) and K(F ) are weakly compact JB∗-triples with K(E)∗∗ = E
and K(F )∗∗ = F . Corollary 4.12 ensures that T |K(E) : K(E) → K(F ) is
continuous. This is not, a priori, enough to guarantee that T is continuous.
In fact, for each nonreflexive Banach space X there exists an unbounded
linear operator S : X∗∗ → X∗∗ such that S|X : X → X is continuous.
The main result of this section establishes that a mapping T as above is
automatically continuous.

Theorem 5.2. Let T : E → F be a biorthogonality preserving linear sur-
jection between atomic JBW ∗-triples, where E contains no rank-one Cartan
factors. Then T is continuous.
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Proof. Corollary 4.12 ensures that T |K(E) : K(E) → K(F ) is continu-
ous. By Lemma 3.3 in [7], K(E) decomposes as a c0-sum of all elementary
triple ideals of E, that is, if E =

⊕`∞ Cα, where each Cα is a Cartan fac-
tor, then K(E) =

⊕c0 K(Cα). By Proposition 3.10, for each α, T (Kα)
(respectively, T (Cα) is a norm closed (respectively, weak∗ closed) inner
ideal of K(F ) (respectively, F ) and K(F ) =

⊕c0 T (K(Cα)) (respectively,
F =

⊕c0 T (Cα)).
For each α, Cα is either finite-dimensional, or an infinite-dimensional

Cartan factor of type 1, 2 or 3. Corollaries 4.7 and 4.10 prove that the
operator T |K(Cα) : K(Cα) → T (K(Cα)) is a scalar multiple of a triple
isomorphism. We claim that, for each α and each ϕα in the predual of
T (Cα), ϕαT is weak∗ continuous. There is no loss of generality in assuming
that Cα is infinite-dimensional.

Each minimal tripotent f in F lies in a unique elementary JB∗-triple
T (K(Cα)). Since T |K(Cα) : K(Cα) → T (K(Cα)) is a scalar multiple of a
triple isomorphism, there exist a nonzero scalar λα and a minimal tripo-
tent e satisfying T−1(f) = λαe, |λα| ≤ ‖(T |K(Cα))−1‖ ≤ ‖(T |K(E))−1‖,
and

(5.2) T (K(Cα)i(e)) = T (K(Cα))i(f)

for every i = 0, 1, 2. Theorem 4.1 shows that T ((Cα)i(e)) = T (Cα)i(f)
for every i = 0, 2. Since K(E) is an ideal of E and e is a minimal tripo-
tent, (Cα)1(e) = E1(e) = K(E)1(e) = K(Cα)1(e). It follows from (5.2)
that

T ((Cα)i(e)) = T ((Cα))i(f)

for every i = 0, 1, 2. Consequently, P2(f)T = λ−1
α P2(e) ∈ (Cα)∗, and |λ−1

α | ≤
‖T |K(Cα)‖ ≤ ‖T |K(E)‖.

Since f was an arbitrary minimal tripotent in F (equivalently, in
T (K(Cα))), Proposition 5.1 ensures that ϕαT ∈ E∗ with ‖ϕαT‖ ≤ ‖T |K(E)‖
for every ϕα ∈ (T (Cα))∗. Therefore, T is bounded with

‖T‖ ≤ ‖T |K(E)‖ ≤ ‖T‖.

Corollary 5.3. Two atomic JBW ∗-triples containing no rank-one sum-
mands are isomorphic if and only if there is a biorthogonality preserving linear
surjection between them.

The conclusion of Theorem 5.2 does not hold for atomic JBW ∗-triples
containing rank-one summands.
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(Communicated by Marius Junge)

Abstract. Let T : E → F be a not necessarily continuous triple homo-
morphism from a (complex) JB∗-triple (respectively, a (real) J∗B-triple) to a
normed Jordan triple. The following statements hold:

(1) T has closed range whenever T is continuous.
(2) T is bounded below if and only if T is a triple monomorphism.

This result generalises classical theorems of I. Kaplansky and S.B. Cleveland
in the setting of C∗-algebras and of A. Bensebah and J. Pérez, L. Rico and
A. Rodŕıguez Palacios in the setting of JB∗-algebras.

1. Introduction

A celebrated result of I. Kaplansky (cf. [13, Theorem 6.2]) establishes that
any algebra norm on a commutative C∗-algebra dominates the C∗-norm. Subse-
quently, S.B. Cleveland (see [8]) generalised this result to the noncommutative case
by showing that every (not necessarily complete nor continuous) algebra norm on
a C∗-algebra generates a topology stronger than the topology of the C∗-norm. In
other words, every not necessarily continuous monomorphism from a C∗-algebra to
an associative normed algebra is bounded below. Alternative proofs to Cleveland’s
result were given by H.G. Dales [9] and A. Rodŕıguez Palacios [22] (see also [16,
Theorem 6.1.16]).

The arguments presented by A. Rodŕıguez Palacios in [22] were adapted by
A. Bensebah [3] and J. Pérez, L. Rico and A. Rodŕıguez Palacios [17] to extend
Kaplansky’s theorem to the more general setting of JB∗-algebras. The results estab-
lished in [3] and [17] show that every not necessarily continuous Jordan monomor-
phism from a JB∗-algebra to a normed Jordan algebra is bounded below. This
result was proved again by S. Hejazian and A. Niknam in [11].

Every C∗-algebra, A, admits a triple product defined by

(1) {a, b, c} :=
1

2
(ab∗c+ cb∗a).

Let us suppose that ‖.‖2 is another (not necessarily complete nor continuous) norm
on A which makes continuous the triple product of A. It is natural to ask whether
this norm generates a topology stronger than the topology of the C∗-norm.

Received by the editors February 23, 2010 and, in revised form, September 20, 2010 and
March 28, 2011.

2010 Mathematics Subject Classification. Primary 46K70, 46L05, 46L10, 46L70; Secondary
17C65.

The authors were partially supported by D.G.I. project No. MTM2008-02186 and Junta de
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Every C∗-algebra, A, equipped with its C∗-norm and the triple product defined
in (1) can be regarded as an element in the wider category of (complex) JB∗-triples
(see §2 for the detailed definitions). The question posed in the above paragraph also
makes sense in the (larger) categories of (complex) JB∗-triples and real J∗B-triples.
In this setting, the problem can be reformulated in the following terms:

Problem (P). Let E be a (complex) JB∗-triple or a (real) J∗B-triple whose
norm is denoted by ‖.‖, and let ‖.‖2 be another (not necessarily complete nor ‖.‖-
continuous) norm on the vector space E which makes continuous the triple product
of E. Does ‖.‖2 generate a topology stronger than the topology generated by the
JB∗-triple norm ‖.‖?

Equivalently, is every (not necessarily continuous) triple monomorphism T from
E to a normed Jordan triple bounded below?

Under the additional hypothesis of T being ‖.‖-continuous (resp., ‖.‖2 being ‖.‖-
continuous), Problem (P) was solved by K. Bouhya and A. Fernández López in the
case of (complex) JB∗-triples [4, Corollary 14].

In this paper we solve Problem (P) without any additional assumptions on the
triple monomorphism T (resp., on ‖.‖2). When particularized to C∗-algebras, our
main result shows that every not necessarily continuous triple monomorphism from
a real or complex C∗-algebra to a normed Jordan triple is bounded below.

Section 2 is devoted to presenting the basic facts and definitions needed in the
paper. We shall also survey the results on the property of minimality of norm
topology in the setting of Banach algebras and Jordan-Banach triples. We shall
adapt the arguments given by K. Bouhya and A. Fernández López [4] to obtain
their result in the setting of real J∗B-triples.

In Section 3 we present our main results (Theorem 17 and Corollary 18). This
section contains a deep study of the separating spaces associated with a triple ho-
momorphism between normed Jordan triples. Among the tools developed here, we
mention a main boundedness theorem type for Jordan-Banach triples (see Theo-
rem 12), which is the Jordan triple version of a classical result in the setting of
Banach algebras due to W.G. Bade and P.C. Curtis [1].

2. Minimality of norm topology for JB
∗
-triples

A normed algebra A has minimality of algebraic norm topology (MOANT) if any
other (not necessarily complete) algebra norm dominated by the given norm yields
an equivalent topology. It is part of the folklore that C∗-algebras have MOANT
(compare [8, Lemma 5.3]).

In this section, we study the minimality of norm topology in the setting of
normed Jordan triples. We recall that a complex (resp., real) normed Jordan triple
is a complex (resp., real) normed space E equipped with a nontrivial, continuous
triple product

E × E × E → E,

(x, y, z) �→ {x, y, z}

which is bilinear and symmetric in the outer variables and conjugate linear (resp.,
linear) in the middle one satisfying the so-called “Jordan Identity”:

L(a, b)L(x, y)− L(x, y)L(a, b) = L(L(a, b)x, y)− L(x, L(b, a)y),
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for all a, b, x, y in E, where L(x, y)z := {x, y, z}. If E is complete with respect to the
norm (i.e. if E is a Banach space), then it is called a complex (resp., real) Jordan-
Banach triple. Every normed Jordan triple can be completed in the usual way
to become a Jordan-Banach triple. Unless specified otherwise, the term “normed
Jordan triple” (resp., “Jordan-Banach triple”) will always mean a real or complex
normed Jordan triple (resp., “Jordan-Banach triple”).

For each Jordan-Banach triple E, the constant N(E) or N(E, ‖.‖) will denote
the supremum of the set {‖ {x, y, z} ‖ : ‖x‖, ‖y‖, ‖z‖ ≤ 1}.

A real (resp., complex) Jordan algebra is a (not necessarily associative) algebra
over the real (resp., complex) field whose product is abelian and satisfies (a◦b)◦a2 =
a ◦ (b ◦ a2). A normed Jordan algebra is a Jordan algebra A equipped with a norm,
‖.‖, satisfying ‖a ◦ b‖ ≤ ‖a‖ ‖b‖, a, b in A. A Jordan-Banach algebra is a normed
Jordan algebra whose norm is complete.

Every real or complex associative Banach algebra (resp., Jordan Banach algebra)
is a real Jordan-Banach triple with respect to the product {a, b, c} = 1

2 (abc+ cba)
(resp., {a, b, c} = (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c) ◦ b).

A JB∗-algebra is a complex Jordan Banach algebra A equipped with an algebra
involution ∗ satisfying that ‖ {a, a∗, a} ‖ = ‖2(a ◦ a∗) ◦ a− a2 ◦ a∗‖ = ‖a‖3, a in A.

Every JB∗-algebra has MOANT (compare [17, Theorem 10]).
We shall say that a normed Jordan triple E has minimality of triple norm topol-

ogy (MOTNT) if any other (not necessarily complete) triple norm dominated by
the norm of E defines an equivalent topology.

Remark 1. Let A be a real or complex associative normed algebra whose norm
is denoted by ‖.‖. The symbol A+ will stand for the normed Jordan algebra A
equipped with the Jordan product a◦b = 1

2 (ab+ba) and the original norm. Let ‖.‖1
be a norm on the space A. Since the Jordan product is ‖.‖1-continuous whenever
the associative product is, we deduce:

(A+, ‖.‖) has MOANT =⇒ (A, ‖.‖) has MOANT.

However, we do not know if the reciprocal statement is, in general, true. By [7,
Proposition 3], there exists an associative normed algebra B such that there exists
a norm ‖.‖1 on B for which the Jordan product is continuous but the associative
product is discontinuous. In particular, (B+, ‖.‖1) doesn’t have MOANT.

When A is simple and has a unit, every norm on A making the Jordan product
continuous also makes continuous the associative product (compare [7, Theorem 3]).
Under this additional hypothesis, we have

(A+, ‖.‖) has MOANT ⇐⇒ (A, ‖.‖) has MOANT.

Suppose that J is a real or complex normed Jordan algebra, whose norm is
denoted by ‖.‖. When J is regarded as a real or complex normed Jordan triple
with respect to the product {a, b, c} = (a◦b)◦c+(c◦b)◦a− (a◦c)◦b, every Jordan
algebra norm on J makes continuous the triple product. Therefore J has MOANT
whenever it has MOTNT.

When J has a unit, the Jordan and the triple product of J are mutually deter-
mined, and hence

(J, ‖.‖) has MOANT ⇐⇒ (J, ‖.‖) has MOTNT.

A (complex) JB∗-triple is a complex Jordan-Banach triple E satisfying the fol-
lowing axioms:
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(JB∗1) For each a in E the map L(a, a) is a hermitian operator on E with nonneg-
ative spectrum.

(JB∗2) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

The following theorem is a celebrated result of I. Kaplansky (see [13, Theo-
rem 6.2] or [23, Theorem 1.2.4]).

Theorem 2. Let A be a commutative C∗-algebra with a norm ‖.‖ and let ‖.‖1 be
another norm on A under which A is a normed algebra. Then ‖a‖ ≤ ‖a‖1, for every
a in A. Further, for any algebra norm, ‖.‖1, on Asa, the inequality ‖a‖ ≤ ‖a‖1
holds for every a in Asa. �

Every C∗-algebra is a JB∗-triple with respect to the product {a, b, c} = 1
2 (ab∗c+

cb∗a). It seems natural to ask whether in the above Theorem 2 the norm ‖.‖1 can
be replaced with another norm ‖.‖2 under which A is a normed Jordan triple.
The complex statement in the following result was established by K. Bouhya and
A. Fernández López in [4, Proposition 13]. A detailed proof is included here for
completeness.

Lemma 3. Let L ⊂ R
+
0 be a subset of nonnegative real numbers satisfying that L∪

{0} is compact. Let C0(L) denote the Banach algebra of all real- or complex-valued
continuous functions on L ∪ {0} vanishing at zero (equipped with the supremum
norm ‖.‖∞). Suppose that ‖.‖2 is a ‖.‖∞-continuous norm on C0(L) under which
C0(L) is a normed Jordan triple. Then ‖.‖2 is equivalent to an algebra norm on
C0(L), and consequently ‖.‖∞ and ‖.‖2 are equivalent norms. More concretely,
writing M = sup{‖x‖2 : ‖x‖∞ ≤ 1} we have ‖a‖∞ ≤ MN(C0(L), ‖.‖2) ‖a‖2, for
all a ∈ C0(L).

Proof. Since ‖.‖2 is ‖.‖∞-continuous, there exists a positive M such that ‖x‖2 ≤
M‖x‖∞, for all x ∈ C0(L).

When L is compact, C0(L) coincides with C(L), the C∗-algebra of all complex-
valued continuous functions on L or with the selfadjoint part of that C∗-algebra.
Let 1 denote the unit element in C(L). Take a, b in C(L). Applying the fact that
‖.‖2 is a triple norm we have

‖a b‖2 = ‖ {a, 1, b} ‖2 ≤ N(C0(L), ‖.‖2) ‖a‖2 ‖1‖2 ‖b‖2
≤ N(C0(L), ‖.‖2) M ‖a‖2 ‖b‖2.

This shows that ‖.‖2 is equivalent to MN(C0(L), ‖.‖2) ‖.‖2, and the latter is an
algebra norm on C0(L).

Suppose that L is not compact. Take a and b in C0(L). For each natural n, let
pn, an and bn be the functions in C0(L) defined by

an(t) :=

⎧⎪⎨
⎪⎩

0, if t ∈ [0, 1
2n ] ∩ L;

affine, if t ∈ [ 1
2n ,

1
n ] ∩ L;

a(t), if t ∈ [ 1n ,∞) ∩ L;

bn(t) :=

⎧⎪⎨
⎪⎩

0, if t ∈ [0, 1
2n ] ∩ L;

affine, if t ∈ [ 1
2n ,

1
n ] ∩ L;

b(t), if t ∈ [ 1n ,∞) ∩ L;

and pn(t) :=

⎧⎪⎨
⎪⎩

0, if t ∈ [0, 1
4n ] ∩ L;

affine, if t ∈ [ 1
4n ,

1
2n ] ∩ L;

1, if t ∈ [ 1
2n ,∞) ∩ L.
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Since an bn = {an, pn, bn} and ‖pn‖∞ ≤ 1, we deduce that

‖an bn‖2 = ‖ {an, pn, bn} ‖2 ≤ N(C0(L), ‖.‖2) ‖an‖2 ‖pn‖2 ‖bn‖2
≤ N(C0(L), ‖.‖2) M ‖an‖2 ‖bn‖2.

Having in mind that ‖an − a‖∞ → 0, ‖bn − b‖∞ → 0, it follows, from the ‖.‖∞-
continuity of the norm ‖.‖2, that

‖a b‖2 ≤ N(C0(L), ‖.‖2) M ‖a‖2 ‖b‖2,
which shows that ‖.‖2 is equivalent to MN(C0(L), ‖.‖2) ‖.‖2, and the latter is an
algebra norm on C0(L). The final statement is a direct consequence of Kaplansky’s
theorem (see Theorem 2). �

Remark 4. Let K be a compact Haussdorff space. Suppose that ‖.‖2 is a norm on
C(K) under which C(K) is a normed Jordan triple (‖.‖∞-continuity of ‖.‖2 is not
assumed). Let us write N = N(C(K), ‖.‖2). Following the argument given in the
proof of Lemma 3, we deduce that

‖a b‖2 = ‖ {a, 1, b} ‖2 ≤ N ‖1‖2 ‖a‖2 ‖b‖2,
for all a, b ∈ C(K), which shows that ‖.‖2 is equivalent to ‖1‖2 N ‖.‖2, and the
latter is an algebra norm on C(K). It follows by Kaplansky’s theorem, that ‖a‖∞ ≤
‖1‖2 N ‖a‖2, for all a ∈ C(K).

S.B. Cleveland applied Kaplansky’s theorem to prove that every continuous
monomorphism from a C∗-algebra to a normed algebra is bounded below (cf. [8,
Lemma 5.3]); equivalently, every C∗-algebra has MOANT. It follows as a con-
sequence of [3, Theorem 1] or [17, Theorem 10] or [11] that JB∗-algebras have
MOANT. In the setting of (complex) JB∗-triples, K. Bouhya and A. Fernández
López proved the following result:

Proposition 5 ([4, Corollary 14]). Let T : E → F be a continuous triple monomor-
phism from a JB∗-triple to a normed complex Jordan triple. Then T is bounded
below. That is, every JB∗-triple has MOTNT. �

We shall complete this section by proving a generalization of the above result to
the setting of (real) J∗B-triples.

We recall that a real JB∗-triple is a norm-closed real subtriple of a complex
JB∗-triple (compare [12]). A J*B-triple is a real Banach space E equipped with
a structure of a real Banach-Jordan triple which satisfies (JB∗2) and the following
additional axioms:

(J∗B1) N(E) = 1;
(J∗B2) σC

L(E)(L(x, x)) ⊂ [0,+∞) for all x ∈ E;

(J∗B3) σC

L(E)(L(x, y)− L(y, x)) ⊂ iR for all x, y ∈ E.

Every closed subtriple of a J∗B-triple is a J∗B-triple (cf. [10, Remark 1.5]). The
class of J∗B-triples includes real (and complex) C∗-algebras and real (and complex)
JB∗-triples. Moreover, in [10, Proposition 1.4] it is shown that complex JB∗-triples
are precisely those complex Jordan-Banach triples whose underlying real Banach
space is a J∗B-triple.

T. Dang and B. Russo established a Gelfand theory for J∗B-triples in [10, The-
orem 3.12]. This Gelfand theory can be refined to show that given an element a in
a J∗B-triple E, there exists a bounded set L ⊆ (0, ‖a‖] with L ∪ {0} compact such
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that the smallest (norm) closed subtriple of E containing a, Ea, is isometrically
isomorphic to

C0(L,R) := {f ∈ C0(L), f(L) ⊆ R},
(see [6, page 14]). The argument given in the proof of Corollary 14 in [4] can be
adapted to prove the following result. The proof is included here for completeness.

Proposition 6. Let T : E → F be a continuous triple monomorphism from a (real)
J∗B-triple to a normed Jordan triple. Then T is bounded below. Equivalently, every
J∗B-triple has MOTNT. �.

Proof. Take an arbitrary element a in E. Let Ea denote the smallest (norm) closed
subtriple of E containing a. By [6, page 14], there exists a subset L ⊆ (0, ‖a‖]
with L ∪ {0} compact satisfying that Ea is isometrically J∗B-triple isomorphic to
C0(L,R), when the latter is equipped with the supremum norm ‖.‖∞. We shall
identify Ea and C0(L,R). The mapping T |Ea

: Ea
∼= C0(L,R) → F is a continuous

triple monomorphism. Therefore the mapping x �→ ‖x‖2 := ‖T (x)‖ defines a ‖.‖∞-
continuous norm on C0(L,R) under which C0(L,R) is a normed Jordan triple.

Noticing that N(Ea, ‖.‖2) ≤ N(F ) and

M = sup{‖x‖2 : x ∈ Ea, ‖x‖∞ ≤ 1} ≤ ‖T‖,

Lemma 3 assures that ‖a‖ ≤ N(F ) ‖T‖ ‖T (a)‖, for every a ∈ E. �

We recall that a subspace I of a normed Jordan triple E is a triple ideal if
{E,E, I}+{E, I, E} ⊆ I. The quotient of a normed Jordan triple by a closed triple
ideal is a normed Jordan triple. It is also known that the quotient of a JB∗-triple
(resp., a J∗B-triple) by a closed triple ideal is a JB∗-triple (resp., a J∗B-triple)
(compare [14]).

Let T : E → F be a continuous triple homomorphism from a (real) J∗B-triple
to a normed Jordan triple. The kernel of T , ker(T ), is a norm-closed triple ideal

of E and the linear mapping T̃ : E/ker(T ) → F given by T̃ (a + ker(T )) = T (a)
is a continuous triple monomorphism from a (real) J∗B-triple to a normed Jordan

triple and T̃ (E) = T (E). Proposition 6 assures that T̃ is bounded below, and hence
it has closed range.

A real JB∗-algebra is a closed ∗-invariant real subalgebra of a (complex) JB∗-
algebra. Real C∗-algebras (i.e., closed ∗-invariant real subalgebras of C∗-algebras),
equipped with the Jordan product a ◦ b = 1

2 (ab + ba), are examples of real JB∗-
algebras.

Corollary 7. Every continuous triple homomorphism from a (real) J∗B-triple to
a normed Jordan triple has closed range. In particular, every continuous triple
homomorphism from a real or complex C∗-algebra to a normed Jordan triple has
closed range. �

Corollary 8. Let A be a real JB∗-algebra and let B be a real Jordan Banach algebra
(or a real Jordan-Banach triple). Then every continuous triple monomorphism from
A to B is bounded below. That is, A has MOTNT and MOANT. �

Corollary 9. Let A be a real or complex C∗-algebra and let B be a real Banach
algebra (or a real Jordan-Banach triple). Then every continuous triple monomor-
phism from A to B is bounded below. That is, A has MOTNT and MOANT. �
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3. Separating spaces for triple homomorphisms

We have seen in the previous section that real and complex C∗-algebras and real
and complex JB∗-algebras have MOTNT and MOANT. Equivalently, if A denotes a
real or complex C∗-algebra (resp., a real or complex JB∗-algebra) every continuous
(triple) monomorphism T from A to a Banach algebra (resp., a Jordan-Banach alge-
bra) is bounded below. C∗-algebras and JB∗-algebras satisfy a stronger property:
when A is a C∗-algebra (resp., a JB∗-algebra) every not necessarily continuous
monomorphism from A to a Banach algebra (resp., a Jordan-Banach algebra) is
bounded below (compare [8, Theorem 5.4] and [3, Theorem 1] or [17, Theorem 10]
or [11]).

The question clearly is whether every not necessarily continuous triple monomor-
phism from a complex JB∗-triple (resp., from a real J∗B-triple) to a normed Jordan
triple is bounded below. In this section we provide a positive answer to this ques-
tion. Following a classical strategy, we shall study the separating ideals associated
with a triple homomorphism.

Under additional geometric assumptions, triple homomorphisms are automati-
cally continuous. More concretely, every triple homomorphism between two JB∗-
triples is automatically continuous (compare [2, Lemma 1]). In this setting the
problem reduces to the question of minimality of triple norm topology treated in
Section 2. However, when the codomain space is not a JB∗-triple, the continuity
of a triple homomorphism does not follow automatically. We shall derive a new
strategy to solve Problem (P) without any additional geometric hypothesis on the
codomain space.

The following definitions and results are inspired by classical ideas developed by
C. Rickart [19], B. Yood [26], W.G. Bade and P.C. Curtis [1] and S.B. Cleveland
[8]. Let T : X → Y be a linear mapping between two normed spaces. Following
[20, page 70], the separating space, σY (T ), of T in Y is defined as the set of all z in
Y for which there exists a sequence (xn) ⊆ X with xn → 0 and T (xn) → z. The
separating space, σX(T ), of T in X is defined by σX(T ) := T−1(σY (T )). For each
element y in Y , Δ(y) is defined as the infimum of the set {‖x‖+‖y−T (x)‖ : x ∈ X}.
The mapping x �→ Δ(x), called the separating function of T , satisfies the following
properties:

a) Δ(y1 + y2) ≤ Δ(y1) + Δ(y2),
b) Δ(λy) = |λ| Δ(y),
c) Δ(y) ≤ ‖y‖ and Δ(T (x)) ≤ ‖x‖,

for every y, y1 and y2 in Y , x in X and λ scalar (compare [20, page 71] or [8,
Proposition 4.2]).

A straightforward application of the closed graph theorem shows that a lin-
ear mapping T between two Banach spaces X and Y is continuous if and only if
σY (T ) = {0} (cf. [8, Proposition 4.5]).

It is not hard to see that σY (T ) = {y ∈ Y : Δ(y) = 0}, while σX(T ) = {x ∈ X :
Δ(T (x)) = 0}. Therefore σX(T ) and σY (T ) are closed linear subspaces of X and
Y, respectively. The assignment

x+ σX(T ) �→ T̃ (x+ σX(T )) = T (x) + σY (T )

defines an injective linear operator from X/σX(T ) to Y/σY (T ). Moreover, T̃ is
continuous whenever X and Y are Banach spaces.
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The separating subspaces of a triple homomorphism enjoy additional algebraic
structure.

Lemma 10. Let T : E → F be a not necessarily continuous triple homomorphism
between two normed Jordan triples. Then σE(T ) is a norm-closed triple ideal of
E and σF (T ) is a norm-closed triple ideal of the norm closure of T (E) in the
completion of F .

Proof. Let us fix z ∈ σF (T ). In this case there exists a sequence (xn) ⊆ E with
xn → 0 and T (xn) → z. Given x, y in E, the sequences ({xn, x, y}) and ({x, xn, y})
are norm-null,

T ({xn, x, y}) = {T (xn), T (x), T (y)} → {z, T (x), T (y)}
and

T ({x, xn, y}) = {T (x), T (xn), T (y)} → {T (x), z, T (y)} .

This shows that σF (T ) is a norm-closed triple ideal of T (E)
‖.‖

.
We have already proved that

{σF (T ), T (E), T (E)} ⊆ σF (T )

and

{T (E), σF (T ), T (E)} ⊆ σF (T ).

This implies that

T ({σE(T ), E,E}) ⊆ {σF (T ), T (E), T (E)} ⊆ σF (T )

and

T ({E, σE(T ), E}) ⊆ {T (E), σF (T ), T (E)} ⊆ σF (T ),

which shows that {σE(T ), E,E} , {E, σE(T ), E} ⊆ σE(T ). �

The following result follows from Lemma 10 and the basic properties of the
separating spaces.

Proposition 11. Let T : E → F be a not necessarily continuous triple homo-

morphism between two Jordan-Banach triples. Then the mapping T̃ : E/σE(T ) →
F/σF (T ), defined by T̃ (a + E/σE(T )) = T (a) + F/σF (T ), is a continuous triple
monomorphism. �

Let E be a normed Jordan triple. Two elements a and b in E are said to be
orthogonal (written a ⊥ b) if L(a, b) = L(b, a) = 0. A direct application of the
Jordan identity yields that, for each x in E,

(2) a ⊥ {b, x, b} whenever a ⊥ b.

The following theorem is a “main boundedness theorem” type result for Jordan-
Banach triples (compare [1, Theorem 2.1]; see also [8, Theorem 3.1]).

Theorem 12. Let T : E → F be a not necessarily continuous triple homomorphism
between Jordan-Banach triples and let (xn), (yn) be two sequences of nonzero ele-
ments in E such that xn ⊥ xm, ym for every n �= m. Then

sup

{
‖T ({xn, xn, yn})‖

‖xn‖2‖yn‖
, n ∈ N

}
< ∞.
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Proof. Suppose that sup
{

‖T ({xn,xn,yn})‖
‖xn‖2‖yn‖ , n ∈ N

}
= ∞. Under this assumption, we

may find a subsequence (ap,q)p,q∈N
of (xn) formed by mutually orthogonal elements

such that
‖T{ap,q, ap,q, bp,q}‖ > 4p8q‖ap,q‖2‖bp,q‖, p, q ∈ N,

where bp,q = ym whenever ap,q = xm. Now, for each p ∈ N, we define

zp =

∞∑
k=1

ap,k
2k‖ap,k‖

.

It is easy to see that, for each natural q, bl,q ⊥ zp whenever l �= p. The equality

{zp, zp, bp,q} =
1

4q‖ap,q‖2
{ap,q, ap,q, bp,q}, q ∈ N,

follows from the (joint) continuity of the triple product and the orthogonality hy-
pothesis. Thus, T (zp) �= 0, ∀p ∈ N.

For each p in N choose n(p) in N with 2n(p) > ‖T (zp)‖2 and define y =∑∞
k=1

bk,n(k)

2k‖bk,n(k)‖ . It follows that

{zp, zp, y} =
1

2p4n(p)‖bp,n(p)‖‖ap,n(p)‖2
{ap,n(p), ap,n(p), bp,n(p)}.

Therefore,

N(F ) ‖T (y)‖‖T (zp)‖2 > ‖T ({zp, zp, y})‖ > 2p2n(p) > 2p‖T (zp)‖2.
This implies thatN(F ) ‖T (y)‖ > 2p for every positive integer p, which is impossible.

�
Given an element a in a normed Jordan triple E, we denote a[1] = a, a[3] =

{a, a, a} and a[2n+1] :=
{
a, a[2n−1], a

}
(∀n ∈ N). The Jordan identity implies that

a[5] =
{
a, a, a[3]

}
, and by induction, a[2n+1] = L(a, a)n(a) for all n ∈ N. The

element a is called nilpotent if a[2n+1] = 0 for some n.
A Jordan-Banach triple E for which the vanishing of {a, a, a} implies that a itself

vanishes is said to be anisotropic. It is easy to check that E is anisotropic if and
only if zero is the unique nilpotent element in E.

Let a and b be two elements in an anisotropic normed Jordan triple E. If
L(a, b) = 0, then, for each x in E, the Jordan identity implies that

{L(b, a)x, L(b, a)x, L(b, a)x} = 0,

and hence L(b, a) = 0. Therefore a ⊥ b if and only if L(a, b) = 0.
In the setting of (complex) JB∗-triples, every element admits 3rd- and 5th- square

roots. In fact, a continuous functional calculus can be derived from the Gelfand
representation for abelian JB∗-triples (cf. [14, §1]). Let a be an element in a JB∗-
triple E. Denoting by Ea the JB*-subtriple generated by the element a, it is known
that Ea is JB*-triple isomorphic (and hence isometric) to C0(L) = C0(L,C) for
some locally compact Hausdorff space L ⊆ (0, ‖a‖], such that L ∪ {0} is compact.
It is also known that there exists a triple isomorphism Ψ from Ea onto C0(L)
satisfying Ψ(a)(t) = t (t ∈ L) (compare [14, Lemma 1.14] or [15, Proposition 3.5]).
Having in mind this identification we can always find a (unique) element z in Ea

such that z[5] = a. The element z will be denoted by a[
1
5 ].

When E is a (real) J∗B-triple, we have already commented that the norm closed
subtriple generated by a single element a is triple isomorphic (and isometric) to
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C0(L,R) := {f ∈ C0(L), f(L) ⊆ R}, for some locally compact subset L ⊆ (0, ‖a‖]
with L ∪ {0} compact. Therefore there exists a (unique) element z = a[

1
5 ] in Ea

such that z[5] = a.
It should be noticed here that, in the setting of J∗B-triples (resp., JB∗-triples)

orthogonality is a “local concept” (compare Lemma 1 in [5] whose proof remains
valid for J∗B-triples). Indeed, two elements a and b in a J∗B-triple E are orthogonal
if and only if one of the following equivalent statements holds:

(a) {a, a, b} = 0, (b) Ea ⊥ Eb, (c) {b, b, a} = 0,

(d) a ⊥ b in a subtriple of E containing both elements.

It can be easily seen that a ⊥ b if and only if a[
1
5 ] ⊥ b[

1
5 ].

Lemma 13. Let T : E → F be a not necessarily continuous triple homomorphism
between two Jordan-Banach triples and let (xn) be a sequence of mutually orthog-
onal norm-one elements in σE(T ). Then, except for a finite number of values of
n, T (xn)

[5] = 0. Further, if E is a JB∗-triple or a (real) J*B-triple or F is an
anisotropic Jordan-Banach triple, then T (xn) = 0, except for finitely many n ∈ N.

Proof. We shall argue by contradiction, supposing that T (xn)
[5] �= 0 for infinitely

many n in N. By passing to a subsequence, we may assume T (xn)
[5] �= 0 for every

n ∈ N. Since (xn) is a sequence in σE(T ), for each n ∈ N, there is a sequence
(an,k)k ⊆ E such that limk an,k = 0 and limk T (an,k) = T (xn). Thus, for each n in
N, limk{xn, an,k, xn} = 0. The continuity of the triple product in F implies that

lim
k

T ({xn, xn, {xn, an,k, xn}})

= lim
k
{T (xn), T (xn), {T (xn), T (an,k), T (xn)}} = T (xn)

[5] �= 0.

We observe that, for each n ∈ N, the set

{k ∈ N : {xn, an,k, xn} �= 0}
is infinite. Passing to a subsequence of (an,k) we may assume that

{xn, an,k, xn} �= 0, ∀(n, k) ∈ N× N.

Therefore,

lim
k

‖T ({xn, xn, {xn, an,k, xn}})‖
‖{xn, an,k, xn}‖

= ∞.

For each positive integer n, pick m(n) such that

(3)
‖T ({xn, xn, {xn, an,m(n), xn}})‖

‖{xn, an,m(n), xn}‖
> n‖xn‖2.

Writing yn = {xn, an,m(n), xn}, it follows by (2) that yn ⊥ xm for n �= m.

The inequality (3) yields ‖T (xn,xn,yn)‖
‖xn‖2‖yn‖ > n, ∀n ∈ N, which contradicts the main

boundeness theorem (compare Theorem 12).
If E is a JB∗-triple (resp., a J∗B-triple), by Lemma 10, σE(T ) is a norm closed

ideal of E and hence a JB∗-triple (resp., a J∗B-triple). Therefore, the sequence of

mutually orthogonal elements (zn) = (x
[ 1
5
]

n ) lies in σE(T ). Since T (zn)
[5] = T (z

[5]
n ) =

T (xn), we have T (xn) = 0 except for finitely many n in N.
Finally, when F is anisotropic the final statement follows straightforwardly. �
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An element e in a normed Jordan triple E is called tripotent if {e, e, e} = e.
Every tripotent e induces a decomposition E = E2(e)⊕E1(e)⊕E0(e) into the cor-

responding Peirce spaces where Ej(e) is the
j
2 eigenspace of L(e, e). Furthermore,

the following Peirce rules are satisfied:

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0,

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e),

where Ei−j+k(e) = 0 whenever i−j+k /∈ {0, 1, 2} (compare [24, Proposition 21.9]).
The projection Pj(e) : E → Ej(e) is called the Peirce-j projection induced by e.

The Peirce-2 subspace, E2(e), associated with a tripotent e is a normed Jordan
∗-algebra with respect to the product and involution defined by x ◦e y := {x, e, y}
and x�e := {e, x, e}, respectively (compare [24, Lemma 21.11]).

Lemma 14. Let T : E → F be a not necessarily continuous triple homomorphism
between two Jordan-Banach triples. Then for each tripotent e in σE(T ) we have
T (e) = 0.

Proof. Suppose that there exists a tripotent e in σE(T ) with T (e) �= 0. The lin-
ear mapping T|E2(e) : E2(e) → F2(T (e)) is a (unital) triple homomorphism be-
tween (unital) Jordan-Banach algebras. Then T is a (unital) Jordan homomor-
phism. Let (xn) be a sequence in E such that xn → 0 and T (xn) → T (e). Then
P2(e)(xn) → 0 and T (P2(e)(xn)) = P2(T (e))(T (xn)) → T (e). Thus, e is an idem-
potent in σE2(e)(T|E2(e)) with T (e) �= 0, which contradicts Theorem 3.12 or Corol-
lary 3.13 in [18]. �
Lemma 15. Let T : E → F be a not necessarily continuous triple monomorphism
from a JB∗-triple (resp., a J∗B-triple) to a Jordan-Banach triple. Then σE(T ) =
0.

Proof. Suppose that σE(T ) �= 0. Then, by Lemma 10, σE(T ) is a norm-closed triple
ideal of E, and hence a JB∗-triple (resp., a J∗B-triple). Suppose that a is a nonzero
element in σE(T ). We have already seen that Ea is isometrically triple isomorphic
to C0(L) for some subset L ⊆ (0, ‖a‖] with L ∪ {0} compact.

We claim that L is finite. Indeed, if L were infinite, we could find, via Urysohn’s
lemma, a sequence of mutually orthogonal norm-one elements (xn)n∈N

⊆ Ea ⊆
σE(T ). Since T is injective we have T (xn) �= 0, ∀n ∈ N, which contradicts Lemma 13.
Therefore L must be finite.

Let t ∈ L. Since L is finite, the function e defined by e(t) = 1 and e(L \ {t}) = 0
lies in C0(L). The element e is a tripotent in Ea ⊆ σE(T ) with T (e) �= 0, which,
by Lemma 14, is impossible. �

The following proposition is a direct consequence of Lemma 15 and Proposi-
tion 11.

Proposition 16. Let T : E → F be a not necessarily continuous triple monomor-
phism from a (complex) JB∗-triple (resp., a (real) J∗B-triple) to a Jordan-Banach

triple. Then the linear mapping T̃ : E → F/σF (T ), T̃ (a) = T (a) + F/σF (T ), is a
continuous triple monomorphism. �
Theorem 17. Let T : E → F be a not necessarily continuous triple monomorphism
from a (complex) JB∗-triple (resp., a (real) J∗B-triple) to a normed Jordan triple.
Then T is bounded below.
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Proof. We may assume, without loss of generality, that F is a Jordan-Banach triple;
otherwise we can replace F with its canonical completion.

Let π denote the canonical projection of F onto F/σF (T ). Proposition 16 as-

sures that the linear mapping T̃ : E → F/σF (T ), x �→ π(T (x)), is a continuous
triple monomorphism. By Propositions 6 and 5, there exists a positive constant M
satisfying

M ‖x‖ ≤ ‖T̃ (x)‖ = ‖π(T (x))‖ ≤ ‖T (x)‖, x ∈ E,

which shows that T is bounded below. �

The following corollary is the desired generalisation of a result due to B. Yood
[25] and S.B. Cleveland [8].

Corollary 18. Let T : E → F be a not necessarily continuous triple monomor-
phism from a (complex) JB∗-triple (resp., a (real) J∗B-triple) to a normed Jordan
triple. Then the norm closure of T (E) in the canonical completion of F decomposes
as the direct sum of T (E) and σF (T ).

Proof. Let b be an element in the norm closure of T (E) in the completion of F . By
assumptions, there exists a sequence (xn) in E such that b = limT (xn).

Since, by Theorem 17, T is bounded below, the sequence (xn) is a Cauchy
sequence in E. Therefore there exists x0 in E satisfying lim xn − x0 = 0 and
limT (xn − x0) = b − T (x0). This shows that b = T (x0) + (b − T (x0)), where
b− T (x0) ∈ σF (T ). Finally, T (E) ∩ σF (T ) = T (σE(T )) = {0}, by Lemma 15. �
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algebra norms on associative algebras, Studia Math. 113, no. 1, 81-100 (1995). MR1315524
(95m:46078)

[8] S.B. Cleveland, Homomorphisms of non-commutative *-algebras, Pacific J. Math. 13, 1097-
1109 (1963). MR0158274 (28:1500)

[9] H.G. Dales, On norms on algebras, Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 61-69
(1989). MR1021998 (90k:46110)

[10] T. Dang, B. Russo, Real Banach Jordan triples, Proc. Amer. Math. Soc. 122, 135-145 (1994).
MR1203981 (94k:46147)

[11] S. Hejazian, A. Niknam, A Kaplansky theorem for JB∗-algebras, Rocky Mountain J. Math.
28, no. 3, 977-982 (1998). MR1657024 (2000a:46117)
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Abstract We establish a complete description of weakly compact orthogonality preserving
operators from a C∗-algebra A (or a JB∗-algebra) to a JB∗-triple E . We prove that any such
operator is the sum of a series of mutually orthogonal triple homomorphisms from A∗∗ to a
certain Peirce-2 subspace of E∗∗ multiplied by a mutually orthogonal norm-null sequence
in E which enjoy certain operator commutativity relations.

1 Introduction

A weighted endomorphism of the C∗-algebra, C(K ), of all complex-valued continuous func-
tions on a compact Hausdorff space K is a linear operator T : C(K ) → C(K ) satisfying
T ( f )(t) = u(t) f (ϕ(t)), where u is an element in C(K ) and ϕ is a continuous mapping
from K to K . The operator T is usually denoted by uCϕ . H. Kamowitz described compact
weighted endomorphisms of C(K ) in [23]. The characterisation established by Kamowitz
assures that a weighted endomorphism, uCϕ, is compact if and only if for each connected
component C of {t ∈ K : u(t) �= 0} there exists an open set V ⊃ C such that ϕ is con-
stant on V . This description essentially says that any such operator is the sum of a series of
one-dimensional weighted endomorphisms. It is well known that every compact homomor-
phism between C(K )-spaces has finite dimensional range; however, when K is infinite, for
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710 F. J. Fernández-Polo et al.

example [0, 1], we can find examples of compact weighted endomorphisms of C(K ) with
infinite dimensional ranges (see Remark 13).

Weighted endomorphisms of C(K ) belong to the class of those continuous linear operators
on C(K ) which are called separating or disjointness preserving or Lamperti operators (com-
pare [2, Example 2.2.1]). We recall that a linear mapping T between two normed algebras is
said to be separating or zero-product preserving if T (a)T (b) = 0 whenever ab = 0. We say
that a linear mapping T between two C∗-algebras is orthogonality preserving if T (a) ⊥ T (b)

whenever a ⊥ b, where two elements a, b in a C∗-algebra are said to be orthogonal (written
a ⊥ b) whenever ab∗ = b∗a = 0. When A and B are two abelian C∗-algebras, a lin-
ear mapping T : A → B is separating if and only if it is orthogonality preserving. Every
homomorphism between two normed algebras is separating. The class of orthogonality pre-
serving operators on C(K ) is strictly bigger than the class of weighted endomorphisms of
C(K ). Actually, a bounded linear operator T : C(K ) → C(K ) is orthogonality preserving
if and only if there exists u in C(K ) and a mapping ϕ : K → K which is continuous on
{t ∈ K : u(t) �= 0} such that T ( f )(t) = (uCϕ)( f )(t) = u(t) f (ϕ(t)) (compare [2, Example
2.2.1]).

Lin and Wong [27] considered weakly compact orthogonality preserving operators
between abelian C∗-algebras (i.e. C0(L)-spaces). Given two locally compact Hausdorff
spaces L1 and L2, Lin and Wong proved that a bounded orthogonality preserving linear
operator from C0(L1) to C0(L2) is weakly compact if and only if it is compact, if and only
if, it can be represented as a (possibly finite) norm convergent countable sum of the form
T = ∑

n δtn ⊗ hn, (i.e. T ( f ) = ∑
n f (tn) hn) where (tn) is a sequence of distinct points in

L1 and (hn) is a norm-null sequence of mutually disjoint functions in C0(L2).
Orthogonality preserving operators between general C∗-algebras have been intensively

studied by many researchers (compare [1,2,6–8,21,35,36] and [9]). The studies on con-
tinuous orthogonality preserving operators between general C∗-algebras culminate with the
following description obtained in [6] and [7] (see §2 for the detailed definitions and concepts).

Theorem 1 ([6, Theorem 17 and Corollary 18] and [7, Theorem 4.1]) Let T : A → E be
a bounded linear mapping from a C∗-algebra (resp., a JB∗-algebra) to a JB∗-triple. For
h = T ∗∗(1) and r = r(h) the following assertions are equivalent.

(a) T is orthogonality preserving.
(b) There exits a (unique) Jordan *-homomorphism S : A → E∗∗

2 (r) such that S∗∗(1) =
r, S(x) and h operator commute and T (x) = h •r S(x), for every x ∈ A.

(c) T preserves zero-triple-products, that is, {T (x), T (y), T (z)} = 0 whenever
{x, y, z} = 0. �

Based on the above description, we shall prove here a complete characterisation of weakly
compact orthogonality preserving operators between general C∗-algebras (or between JB∗-
algebras). The characterisation actually follows from a more general theorem which deter-
mines the general form of a weakly compact orthogonality preserving operator from a C∗-
algebra to a JB∗-triple (see Theorems 8 and 11). More concretely, we prove that for every
weakly compact orthogonality preserving operator T from a C∗-algebra, A, to a JB∗-triple,
E , denoting by r = r(h) the range tripotent of the element h = T ∗∗(1) in E∗∗, there exist
a countable family {In}n∈N of mutually orthogonal weak∗-closed C∗-ideals in A∗∗, a family
{Sn : A∗∗ → E∗∗

2 (r) : n ∈ N} of continuous Jordan ∗-homomorphisms and a sequence (xn)

of mutually orthogonal elements in E satisfying the following statements:

(a) Each In is a finite type I von Neumann factor;
(b) ‖xn‖ → 0 and h = ∑∞

n=1 xn ;
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Weakly compact orthogonality preservers 711

(c) Sn |In is a Jordan ∗-monomorphism, Sn |I ⊥
n

= 0, Sn and Sm have orthogonal ranges for
n �= m;

(d) For each x in A∗∗, xn and Sm(x) operator commute for every n and m; and
(e)

T (x) =
∞∑

n=1

L(xn, r)Sn(x) =
∞∑

n=1

xn •r Sn(x),

for every x ∈ A. Moreover, the Jordan ∗-homomorphism S : A → E∗∗
2 (r) given in Theorem

1, (b), satisfies that S(z) = ∑∞
n=1 Sn(z), for each z in A, where the series converges in the

weak∗ topology of E∗∗
2 (r).

Among the consequences of this result, it follows that for each orthogonality preserving
operator T from a C∗-algebra to a JB∗-triple the following are equivalent:

(a) T is compact;
(b) T is weakly compact;
(c) T admits a compact factorisation through a c0-sum of the form

c0⊕

n∈N

Mmn (C),

where (mn) is a sequence of natural numbers.

These results generalise the previous studies due to Kamowitz [23] and Lin and Wong [27].
Before dealing with our main results, we study in section §3 the structure of weakly

compact triple homomorphisms from a JB∗-triple to a normed Jordan triple. As a corol-
lary, we establish that every weakly compact triple homomorphism from a C∗-algebra to a
normed Jordan triple has finite range, a result which generalises a previous contribution due
to Mathieu [30].

2 Preliminaries

In this preliminary section we review the basic facts and definitions needed in this paper. We
begin by recalling that a complex (resp., real) normed Jordan triple is a complex (resp., real)
normed space E equipped with a continuous triple product

E × E × E → E

(x, y, z) �→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear (resp., linear) in
the middle one satisfying the so-called “Jordan Identity”:

L(a, b)L(x, y) − L(x, y)L(a, b) = L(L(a, b)x, y) − L(x, L(b, a)y),

for all a, b, x, y in E , where L(x, y)z := {x, y, z} (z ∈ E). If E is complete with respect
to the norm (i.e. if E is a Banach space), then it is called a complex (resp., real) Jordan-
Banach triple. Every normed Jordan triple can be completed in the usual way to become
a Jordan-Banach triple. Unless otherwise specified, the term “normed Jordan triple” (resp.,
“Jordan-Banach triple”) will always mean a real or complex normed Jordan triple (resp., a
real or complex Jordan-Banach triple).
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712 F. J. Fernández-Polo et al.

A real (resp., complex) Jordan algebra is a (non-necessarily associative) algebra over the
real (resp., complex) field whose product is abelian and satisfies (a ◦ b) ◦ a2 = a ◦ (b ◦ a2).
A normed Jordan algebra is a Jordan algebra A equipped with a norm, ‖.‖, satisfying ‖a◦b‖ ≤
‖a‖ ‖b‖, a, b ∈ A. A Jordan-Banach algebra is a normed Jordan algebra whose norm is
complete.

Every real or complex associative Banach algebra (resp., Jordan-Banach algebra) is a real
Jordan-Banach triple with respect to the product {a, b, c} = 1

2 (abc + cba) (resp., {a, b, c} =
(a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b).

A linear mapping T between two Jordan triples is said to be a triple homomorphism if
T {a, b, c} = {T (a), T (b), T (c)}.

A JB-algebra is a real Jordan-Banach algebra A in which the norm satisfies the following
two additional conditions for a, b in A:

(a) ‖a2‖ = ‖a‖2;
(b) ‖a2‖ ≤ ‖a2 + b2‖.

A JB∗-algebra is a complex Jordan-Banach algebra A equipped with an algebra involution
∗ satisfying

‖2(a ◦ a∗) ◦ a − a2 ◦ a∗‖ = ‖a‖3,

for every a ∈ A. JB-algebras can be identified with the self adjoint parts of JB∗-algebras (c.f.
[18, §3] or [34]).

C∗- and JB∗-algebras belong to a more general class of (complex) Banach spaces known
under the name of (complex) JB∗-triples. We recall that a complex Jordan-Banach triple E
is said to be a (complex) JB∗-triple if it satisfies the following axioms:

(1) The map L(a, a) : E → E, x �→ {a, a, x} is an hermitian operator with non negative
spectrum for all a in E;

(2) ‖{a, a, a}‖ = ‖a‖3 for all a in E .

Every C∗-algebra (resp., every JB∗-algebra) is a JB∗-triple with respect to {a, b, c} :=
1
2 (ab∗c + cb∗a) (resp., {a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗).

Complex JB∗-triples were introduced by Kaup in the study of Bounded Symmetric
Domains in complex Banach spaces (see [24], [25]). Real JB∗-triples were introduced by
Isidro et al. (c.f. [20]) as norm-closed real subtriples of complex JB∗-triples.

A JBW∗-triple is a JB∗-triple which is also a dual Banach space (with a unique isometric
predual [3]). It is known that the triple product of a JBW∗-triple is separately weak∗ con-
tinuous (c.f. [3] or [29]). The second dual of a JB∗-triple E is a JBW∗-triple with a product
extending the product of E [14].

An element e in a JB∗-triple E is said to be a tripotent if {e, e, e} = e. Each tripotent e in
E gives rise to the following decomposition of E

E = E2(e) ⊕ E1(e) ⊕ E0(e),

where for i = 0, 1, 2, Ei (e) is the i
2 eigenspace of L(e, e) (compare [28, Theorem 25]). This

decomposition is called the Peirce decomposition of E with respect to the tripotent e.
The Peirce space E2(e) is a JB∗-algebra with product and involution defined by x •e y :=

{x, e, y} and x�e := {e, x, e}, respectively.
For each element x in a JB∗-triple E , the symbol Ex will stand for the JB∗-subtriple gen-

erated by the element x . It is known that Ex is JB∗-triple isomorphic (and hence isometric) to
C0(L) for some locally compact Hausdorff space L contained in (0, ‖x‖], such that L ∪{0} is
compact, where C0(L) denotes the Banach space of all complex-valued continuous functions
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Weakly compact orthogonality preservers 713

vanishing at 0. It is also known that if � denotes the triple isomorphism from Ex onto C0(L),

then �(x)(t) = t (t ∈ L) (cf. [24, Corollary 4.8] and [25, Corollary 1.15]).
Consequently, for each x ∈ E , there exists a unique element y ∈ Ex satisfying {y, y, y} =

x . The element y, denoted by x [ 1
3 ], is termed the cubic root of x . We can inductively define,

x [ 1
3n ] =

(

x [ 1
3n−1 ]

)[ 1
3 ]

, n ∈ N. The sequence (x [ 1
3n ]) converges in the weak∗ topology of E∗∗

to a tripotent in E∗∗, denoted by r(x) and called the range tripotent of x . The tripotent r(x)

is the smallest tripotent e ∈ E∗∗ satisfying x is positive in the JBW∗-algebra E∗∗
2 (e) (see,

for example, [15, Lemma 3.3]).
Another central concept in this paper is orthogonality in C∗-algebras and JB∗-triples. Two

elements a, b in a JB∗-triple, E, are said to be orthogonal (written a ⊥ b) if L(a, b) = 0.
Lemma 1 in [6] shows that a ⊥ b if and only if one of the following nine statements holds:

{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b);
E∗∗

2 (r(a)) ⊥ E∗∗
2 (r(b)); r(a) ∈ E∗∗

0 (r(b)); a ∈ E∗∗
0 (r(b));

b ∈ E∗∗
0 (r(a)); Ea ⊥ Eb {b, b, a} = 0.

On every C∗-algebra, A, we can consider its structure of JB∗-triple and its natural struc-
ture of C∗-algebra. It was already remarked in [6] that the two notions of orthogonality in A
coincide, i.e. two elements a, b in A are orthogonal for the C∗-algebra product if and only if
they are orthogonal when A is considered as a JB∗-triple.

Given a subset M in a JB∗-triple E, the annihilator of M , M⊥, is the set

{y ∈ E : y ⊥ x,∀x ∈ M}.
If (xn) is a bounded sequence in a Banach space X , the series

∑
k μk xk need not be,

in general, convergent in X for every (μn) ⊂ c0. Remark 13 in [9] points out that for each
mutually orthogonal bounded sequence (xn) in a JB∗-triple, E , the series

∑
k μk xk converges

in E for every (μn) ⊂ c0.
The last ingredient needed in this paper is the notion of operator commutativity. Two

elements a and b in a JB∗-algebra A are said to operator commute in A if the multiplication
operators Ma and Mb commute, where Ma is defined by Ma(x) := a ◦ x(x ∈ A). That is, a
and b operator commute if and only if (a ◦ x)◦b = a ◦ (x ◦b) for all x in A. Two self-adjoint
elements a and b in A generate a JB∗-subalgebra that can be realised as a JC∗-subalgebra of
some B(H), [34], and, in this realisation, a and b commute in the usual sense whenever they
operator commute in A (see [33, Proposition 1]).

Remark 2 Let a, b be two elements in a JB∗-algebra A with a = a∗. Suppose that a and
b operator commute. Then it is easy to see, via Macdonald’s theorem (cf. [18, Theorem
2.4.13]), that for each z in the JB∗-subalgebra (resp., JB∗-subtriple) of A generated by a, the
elements z and b operator commute. When A is a JBW∗-algebra, the same statement holds
for every z in the JBW∗-subalgebra (resp., JBW∗-subtriple) of A generated by a.

The following technical result will be needed later.

Lemma 3 Let a and b be two orthogonal elements in a JB-algebra A with a ≥ 0. Let h be
an element in A such that h and b operator commute and a ◦ h ≥ 0. Then a ◦ h ⊥ b.

Proof Since a ◦ h ≥ 0, Lemma 4.1 in [7] affirms that a ◦ h ⊥ b if and only if b ◦ (a ◦ h) = 0.
Applying that h and b operator commute we have

b ◦ (a ◦ h) = h ◦ (a ◦ b) = 0,

where in the last equality we apply that a ≥ 0 and a ⊥ b. ��
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3 Weakly compact triple homomorphisms

It is well known that every reflexive C∗-algebra is finite dimensional (compare [31, Propo-
sition 2]). In other words, the identity mapping on a C∗-algebra A is weakly compact if and
only if A is finite dimensional. Actually, an algebraic homomorphism from a C∗-algebra to
a normed algebra is weakly compact if and only if it has finite dimensional range (see [17],
[30]).

Suppose that S : A → B is a Jordan *-isomorphism between two C∗-algebras. In this case,
S∗∗ : A∗∗ → B∗∗ is a Jordan ∗-isomorphism between von Neumann algebras. It follows,
from Kadison’s theorem (see [22, Theorem 10]), that there exist weak∗ closed ideals I1 and I2

in A∗∗ and J1 and J2 in B∗∗ satisfying A∗∗ = I1 ⊕∞ I2, B∗∗ = J1 ⊕∞ J2, S∗∗|I1 : I1 → J1

is an ∗-isomorphism, and S∗∗|I2 : I2 → J2 is an ∗-anti-isomorphism. Thus, S is weakly
compact if and only if it has finite dimensional range.

We shall see that the above conclusion remains true for every triple homomorphism from
a C∗-algebra to a normed Jordan triple (in particular, for every Jordan homomorphism from a
C∗-algebra to a normed algebra). This statement will follow from a result which is valid in a
more general setting.

We recall that a subspace I of a normed Jordan triple E is a triple ideal if {E, E, I } +
{E, I, E} ⊆ I. The quotient of a normed Jordan triple by a closed triple ideal is a normed
Jordan triple. It is also known that the quotient of a JB∗-triple (resp., a J∗B-triple) by a closed
triple ideal is a JB∗-triple (resp., a J∗B-triple) (compare [25]).

The proof of the following theorem combines the argument given by Mathieu [30] with a
recent Kaplansky theorem for real and complex JB∗-triples obtained in [16].

Theorem 4 Let S : E → F be a weakly compact (resp., compact) triple homomorphism
from a real or complex JB∗-triple to a normed Jordan triple. Then E/ ker(S) and S(E) are
reflexive (resp., finite dimensional) Jordan-Banach triples.

Proof The mapping S̃ : E/ ker(S) → S(E), S̃(x + ker(S)) := S(x) is a well-defined
weakly compact triple monomorphism. By Proposition 6 in [16], there exists M > 0 such
that M‖x‖ ≤ ‖S̃(x)‖ ≤ ‖S‖‖x‖, for every x ∈ E . This shows that the mapping S̃−1 :
S(E) → E/ ker(S), S(x) �→ x + ker(S) is a bounded linear operator.

Finally, since the identity mapping I d : S̃−1 ◦ S̃ : E/ ker(S) → E/ ker(S) is weakly
compact, it follows that E/ ker(S) is a reflexive JB∗-triple. The statement follows because
E/ ker(S) and S(E) are isomorphic as normed Jordan (Banach) triples. ��

Now, let E be a real or complex JB∗-triple. A subset S ⊆ E is said to be orthogonal if 0 /∈ S
and x ⊥ y for every x �= y in S. The minimal cardinal number r satisfying card(S) ≤ r for
every orthogonal subset S ⊆ E is called the rank of E .

Given a real or complex JB∗-triple E , a necessary and sufficient requirement for E to be
reflexive is that E has the Radon-Nikodym property, or equivalently, E is isomorphic to a
Hilbert space or E has finite rank ([11, Theorem 6] and [4, Theorems 2.3 and 3.1]).

Corollary 5 Let S : E → F be a continuous triple homomorphism from a real or complex
JB∗-triple to a normed Jordan triple. The following statements are equivalent:

(a) S is weakly compact.
(b) There exists a triple isomorphism from S(E) to a reflexive JB∗-triple.
(c) There exists a triple isomorphism from S(E) to a finite rank JB∗-triple.
(d) S(E) is homeomorphic to a Hilbert space.
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Weakly compact orthogonality preservers 715

(e) E/ ker(S) is a reflexive (or finite rank) JB∗-triple. �

When specialized to the setting of C∗-algebras, the above result reads as follows:

Corollary 6 Every weakly compact triple homomorphism from a C∗-algebra to a normed
Jordan triple has finite dimensional range.

Proof Let S : A → E be a weakly compact triple homomorphism from a C∗-algebra to
a normed Jordan triple. The mapping S∗∗ : A∗∗ → E∗∗ is a weak∗-continuous weakly
compact triple homomorphism with S∗∗(A∗∗) ⊆ E .

Since K = ker(S∗∗) is a weak∗-closed triple ideal of A∗∗, there exists a weak∗-closed
triple ideal J of A∗∗ such that A∗∗ = J ⊕∞ K (compare [19, Theorem 4.2]). In this case the
unit element in A∗∗ decomposes as an orthogonal sum 1 = a + b where a ∈ K and b ∈ J.

It follows that a and b are projections in A∗∗ with az = za = z, for every z ∈ K (resp.,
bz = zb = z,∀z ∈ J ). Thus, K = a A∗∗a and J = bA∗∗b are weak∗-closed C∗-ideals of
A∗∗. Since the identity mapping S∗∗|J ◦ S∗∗|−1

J
: J → J is weakly compact, J is a reflexive

C∗-algebra and hence finite dimensional, which shows that S∗∗(A∗∗) and S(A) are finite
dimensional. ��
Corollary 7 Let S : J → F be a weakly compact triple homomorphism from a JB∗-algebra
to a normed Jordan triple. Then J/ ker(S) is a reflexive JB*-algebra. �

4 Weakly compact orthogonality preserving operators on C∗-algebras

The aim of this section is to establish a complete description of those orthogonality pre-
serving operators between C∗-algebras which enjoy the additional property of being weakly
compact.

We have already commented that continuous linear orthogonality preserving operators
between C∗-algebras (resp., JB∗-algebras) have been recently characterised by Burgos,
Martínez and the authors of this note in [6] and [7]. The characterization obtained in the
just quoted papers was stated in Theorem 1.

An element a in a JB∗-triple E is said to be von Neumann regular if there exists b ∈ E
such that Q(a)(b) = a and Q(b)(a) = b. The element b is called the generalised inverse
of a. We observe that every tripotent e in E is von Neumann regular and its generalised
inverse is e itself. Lemma 3.2 in [26] (see also the proof of [10, Theorem 3.4]) shows that,
for each von Neumann regular element a ∈ E , there exists a tripotent e ∈ E satisfying a is a
symmetric and invertible element in the JB∗-algebra E2(e). Moreover, e coincides with the
range tripotent of a. It is also known that an element a in E is von Neumann regular if and
only if it is von Neumann regular in any JB∗-subtriple containing a.

Given a weak∗-closed subalgebra, B, of a von Neumann algebra A, we shall say that B is
a factor of A if A decomposes as the orthogonal (�∞)-sum of B and another weak∗-closed
ideal of A.

We can now deal with the desired description of weakly compact orthogonality preserving
operators from a C∗-algebra to a JB∗-triple.

Theorem 8 Let A be a C∗-algebra, E a JB∗-triple, T : A → E a weakly compact orthog-
onality preserving operator and let r = r(h) be the range tripotent of the element h =
T ∗∗(1) in E∗∗. Then there exists a countable family {In}n∈N of mutually orthogonal weak∗-
closed C∗-ideals in A∗∗, a family {Sn : A∗∗ → E∗∗

2 (r) : n ∈ N} of continuous Jordan ∗
-homomorphisms and a sequence (xn) of mutually orthogonal elements in E satisfying:
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716 F. J. Fernández-Polo et al.

(a) Each In is a finite type I von Neumann factor;
(b) ‖xn‖ → 0 and h = ∑∞

n=1 xn;
(c) Sn |In is a Jordan ∗-monomorphism, Sn |I ⊥

n
= 0, Sn and Sm have orthogonal ranges for

n �= m;
(d) For each x in A∗∗, xn and Sm(x) operator commute for every n and m; and
(e)

T (x) =
∞∑

n=1

L(xn, r)Sn(x) =
∞∑

n=1

xn •r Sn(x),

for every x ∈ A. Moreover, the Jordan ∗-homomorphism S : A → E∗∗
2 (r) given in

Theorem 1, (b), satisfies that S(z) = ∑∞
n=1 Sn(z), for each z in A, where the series

converges in the weak∗ topology of E∗∗
2 (r).

Proof Let 1 denote the unit of A∗∗, and let S : A → E∗∗
2 (r) be the (unital, i.e. S∗∗(1) = r )

Jordan ∗-homomorphism given by Theorem 1, (b), that is, denoting h = T ∗∗(1) and r = r(h),
it follows that S(x) and h operator commute in E∗∗

2 (r) and T (x) = L(h, r)S = h •r S(x),
for every x ∈ A.

We claim that for each natural n, there exist a finite set Fn ⊂ N, a finite rank projection
qn in A∗∗, a family of mutually orthogonal finite type I von Neumann factors, Mmn,i (C),
in the atomic part of A∗∗, with mn,i ∈ N, and a set {xn,i : i ∈ Fn} of mutually orthogonal
elements in E, satisfying:

(i)
∥
∥T ∗∗ (

1 − ∑n
i=1 qi

)∥
∥ ≤ ‖h‖

n+1 ;
(i i) qn coincides with the unit of the �∞ − sum In := ⊕

i∈Fn
Mmn,i (C);

(i i i) In is a weak∗-closed C∗-ideal of A∗∗;
(iv) If pn,i denotes the unit in Mmn,i (C), we have xn,i = T ∗∗(pn,i ), and, for each i ∈

Fn, ‖xn,i‖ ≤ ‖h‖
n ;

(v) {q1, . . . , qn} and ∪n
k=1{xk,i : i ∈ Fk} are subsets of mutually orthogonal elements in

A∗∗ and E , respectively;
(vi) Sn,i := S|Mmn,i (C) : Mmn,i (C) → E∗∗ is a triple monomorphism and L(xn,i , r)S =

L(xn,i , r)Sn,i .

We shall proceed by induction.
Since T is weakly compact, T ∗∗(A∗∗) ⊆ E , and thus h = T ∗∗(1) lies in E . Let us write

Eh for the JB∗-subtriple of E generated by h. We have already commented that there exists
a locally compact space L such that L ∪ {0} is compact and Eh is JB∗-triple isomorphic to
C0(L), and under this identification h corresponds to the function t �→ t (cf. [24, Corollary
4.8], [25, Corollary 1.15]).

Let e1 be the tripotent in Eh
w∗

whose triple representation in C0(σ (h))∗∗ is the

characteristic function of the set
(
σ(h)∩]‖h‖

2 , ‖h‖]
)

, and let a1 = L(e1, r)h ∈ E∗∗. It

is clear that a1 is a von Neumann regular element in E∗∗ whose generalized inverse will be
denoted by b1.

We define R1 : A → E∗∗ by R1 = L(b1, r)T . We notice that R∗∗
1 (1) = e1 is a tripotent

in E∗∗. Following the argument in the proof of [7, Theorem 4.1] (see also Theorem 6 in [6]),
we deduce that R1 is a triple homomorphism which is clearly weakly compact. R∗∗

1 is again
a weakly compact triple homomorphism whose range lies in E∗∗. Since R∗∗

1 actually is a
weak∗-continuous triple homomorphism, ker(R∗∗

1 ) is a weak∗-closed triple ideal of A∗∗, and
hence there exists a weak∗-closed triple ideal I1 of A∗∗ such that A∗∗ = ker(R1) ⊕∞ I1 and
R∗∗

1 |I1 is a triple monomorphism. Corollary 6 (and its proof) applies now to show that I1 is
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Weakly compact orthogonality preservers 717

a finite dimensional C∗-ideal of A∗∗. Thus, there exists a finite subset F1 = {1, . . . , k1} and
a finite family of mutually orthogonal finite type I von Neumann factors, Mm1,i (C), in the
atomic part of A∗∗, with m1,i ∈ N, such that

I1 =
�∞⊕

i∈F1

Mm1,i (C)

(compare [32, Theorem I.11.2]). For each i ∈ F1, we denote by π1,i the projection of A∗∗
onto Mm1,i (C) and we define p1,i = π1,i (1), q1 = ∑

i∈F1
p1,i and x1,i = T ∗∗(p1,i ). Since

{p1,i }i∈F1 are mutually orthogonal projections and T ∗∗ is orthogonality preserving and E-
valued, the elements in the set {x1,i : i ∈ F1} are mutually orthogonal and lie in E .

Having in mind that, for each x ∈ A and z ∈ Eh
w∗

, T (x) (resp., S(x)) and z operator
commute in E∗∗

2 (r) (compare Remark 2 or [7, §4]), we have

L(a1, r)R1 = L(a1, r)L(b1, r)T = L(e1, r)T

= L(e1, r)L(h, r)S = L(a1, r)S,

which gives

L(a1, r)S(q1) = L(a1, r)R1(q1) = L(a1, r)R1(1)

= L(a1, r)S(1) = L(a1, r)(r) = a1.

Denoting by y1 = ∑
i∈F1

x1,i = T ∗∗(q1) we obtain that

h − y1 = T ∗∗(1 − q1) = h − T ∗∗(q1) = h − L(h, r)S(q1)

= h − L(h − a1, r)S(q1) − L(a1, r)S(q1)

= h − L(h − a1, r)S(q1) − a1

= L(h − a1, r)(r − S(q1)).

Since ‖h − a1‖ ≤ ‖h‖
2 and ‖r − S(q1)‖ ≤ 1 then we obtain

∥
∥T ∗∗ (1 − q1)

∥
∥ = ‖h − y1‖ ≤ ‖h‖

2
.

We shall prove now that S1,i := S|Mm1,i (C) : Mm1,i (C) → E∗∗
2 (r) is a Jordan ∗

-monomorphism. Suppose that S1,i (x) = S(x) = 0, for some x ∈ Mm1,i (C) ⊆ A∗∗. Since

R1(x) = L(b1, r)T (x) = L(b1, r)L(h, r)S(x) = 0

we have x = 0. Now, we notice that, A∗∗ = Mm1,i (C) ⊕∞ Mm1,i (C)⊥, and for each self
adjoint element x in Mm1,i (C)⊥, S(x) ⊥ S(p1,i ). The element h (resp., S(1) = r ) decom-
poses as the orthogonal sum of T ∗∗(p1,i ) = x1,i and T ∗∗(1 − p1,i ) (resp., S(p1,i ) and
S(1 − p1,i )). Therefore S(p1,i ) and h ◦ S(p1,i ) are positive elements in the self-adjoint part
of E∗∗

2 (r). Since h and S(x) operator commute, Lemma 3 implies that

x1,i = T ∗∗(p1,i ) = h •r S(p1,i ) = L(h, r)S(p1,i ) ⊥ S(x).

By linearity x1,i ⊥ S(x), for every x ∈ Mm1,i (C)⊥, and hence r(x1,i ) ⊥ S(x), for every
x ∈ Mm1,i (C)⊥ (compare [6, Lemma 1]). Moreover, r also decomposes as the orthogonal
sum of the range of x1,i and the range of T ∗∗(1− p1,i ), thus L(x1,i , r)S(x) = 0, which gives
L(x1,i , r)S = L(x1,i , r)S1,i .
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718 F. J. Fernández-Polo et al.

Suppose now, in our inductive step, that for each k = 1, . . . , n, the finite rank projection
qk and the familiesFk, {xk,i : i ∈ Fk}, and {Mmk,i (C) : i ∈ Fk}, have been defined satisfying
the corresponding induction hypothesis.

The von Neumann algebra A∗∗ decomposes as the orthogonal sum

A∗∗ = A∗∗
0

(
n∑

i=1

qi

)

⊕ A∗∗
2

(
n∑

i=1

qi

)

,

where, by the induction hypothesis, A∗∗
2

(∑n
i=1 qi

)
coincides with the orthogonal sum of

I1, . . . , In .
Let hn+1 = T ∗∗(1 − ∑n

i=1 qi ). From the induction hypothesis we have

‖hn+1‖ =
∥
∥
∥
∥
∥

T ∗∗
(

1 −
n∑

i=1

qi

)∥
∥
∥
∥
∥

≤ ‖h‖
n + 1

.

Let en+1 be the tripotent in Ehn+1

w∗
whose representation in Ehn+1

w∗ = C0(σ (hn+1))
w∗

is

the characteristic function of the set
(
σ(hn+1)∩] ‖h‖

n+2 , ‖h‖]
)

, and let an+1 = L(en+1, r)h. It

is easy to check that h decomposes as the orthogonal sum of hn+1 and T ∗∗(
∑n

i=1 qi ), which,
in particular, gives an+1 = L(en+1, r)hn+1 = L(en+1, en+1)hn+1.

In case an+1 = 0 we skip to step n + 2. Let us suppose that an+1 �= 0. Since an+1 =
L(en+1, en+1)hn+1, an+1 is a von Neumann regular element in E∗∗ whose generalized inverse
is denoted by bn+1.Let Rn+1 : A → E∗∗ be the operator defined by Rn+1 = L(bn+1, en+1)T .

The same reasoning given in the case n = 1 ascertains that Rn+1 is a weakly compact
triple homomorphism, and hence there exist a finite set Fn+1 = {1, . . . , kn+1}, a fam-
ily of mutually orthogonal finite type I von Neumann factors,

(
Mmn+1,i (C)

)
i∈Fn+1

, in the

atomic part of A∗∗, such that In+1 = ⊕∞
i∈Fn+1

Mmn+1,i (C) is a weak∗-closed C∗-ideal of
A∗∗, A∗∗ = ker(R∗∗

n+1)
⊕∞ In+1, and R∗∗

n+1|In+1 : In+1 → E∗∗ is a triple monomorphism.
For each i ∈ Fn+1, let pn+1,i denote πn+1,i (1), where πn+1,i stands for the canoni-

cal projection of A∗∗ onto Mmn+1,i (C), and xn+1,i = T ∗∗(pn+1,i ). Having in mind that
{pn+1,i }i∈Fn+1 are mutually orthogonal (and T is weakly compact and orthogonality preserv-
ing) we deduce that {xn+1,i }i∈Fn+1 is a set of mutually orthogonal elements in E . We have
already commented that hn+1 ⊥ T ∗∗(qk), for each k = 1, . . . , n. Therefore R∗∗

n+1(Ik) = {0},
for every k = 1, . . . , n, which implies that

�∞⊕

i=1,...,n

Ik = A∗∗
2

(
n∑

k=1

qk

)

⊆ ker(R∗∗
n+1).

Since pn+1,i ≤ 1−∑n
k=1 qk, hn+1 can be written as the orthogonal sum of T ∗∗ (∑

i pn+1,i
)

and T ∗∗ (
1 − ∑n

k=1 qk − ∑
i pn+1,i

)
. By the induction hypothesis,

sup
i∈Fn+1

‖xn+1,i‖ =
∥
∥
∥
∥
∥

T ∗∗
(

∑

i

pn+1,i

)∥
∥
∥
∥
∥

≤ ‖hn+1‖ =
∥
∥
∥
∥
∥

h − T ∗∗
(

n∑

i=1

qi

)∥
∥
∥
∥
∥

≤ ‖h‖
n + 1

.

We define qn+1 = ∑
i∈Fn+1

pn+1,i and yn+1 = T ∗∗(qn+1).
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Since
⊕�∞

i=1,...,n Ik = A∗∗
2 (

∑n
k=1 qk) ⊆ ker(R∗∗

n+1), it is easy to check that L(an+1, r)

Rn+1 = L(an+1, r)S and hence L(an+1, r)S(qn+1) = L(an+1, r)S(1). Therefore,

h − yn+1 = T ∗∗
(

1 −
n+1∑

i=1

qi

)

= T ∗∗
(

1 −
n∑

i=1

qi − qn+1

)

= hn+1 − T ∗∗(qn+1) = hn+1 − L(an+1, r)S(qn+1)

= hn+1 − L(hn+1 − an+1, r)S(qn+1) − L(an+1, r)S(qn+1)

= L(hn+1 − an+1, r)(r − S(qn+1)).

Since ‖hn+1 − an+1‖ ≤ ‖h‖
n+2 and ‖r − S(qn+1)‖ ≤ 1 then we obtain

∥
∥
∥
∥
∥

T ∗∗
(

1 −
n+1∑

i=1

qi

)∥
∥
∥
∥
∥

= ‖h − yn+1‖ ≤ ‖h‖
n + 2

.

By virtue of the aforementioned fact that
⊕�∞

i=1,...,n Ik = A∗∗
2 (

∑n
k=1 qk) ⊆ ker(R∗∗

n+1) ⊥
In+1, it can be easily deduced that qn+1 ⊥ qk,∀k = 1, . . . , n, which guarantees that
I1, . . . , In+1 are mutually orthogonal weak∗-closed ideals of A∗∗ and ∪n+1

k=1{xk,i : i ∈ Fk} is
a set of mutually orthogonal elements in E .

The same argument given in the case n = 1 proves that

Sn+1,i := S|Mmn+1,i (C) : Mmn+1,i (C) → E∗∗
2 (r)

is a triple monomorphism and L(xn+1,i , r)S = L(xn+1,i , r)Sn+1,i . This statement completes
the proof of our claim.

Finally, the properties proved in the claim show that h = ∑∞
n=1

∑
i∈Fn

xn,i . Therefore

T = L(h, r)S =
∞∑

n=1

∑

i∈Fn

L(xn,i , r)S =
∞∑

n=1

∑

i∈Fn

L(xn,i , r)Sn,i .

We shall finally prove that S(z) = ∑∞
n=1 Sn(z), for each z in A. We define S̃ : A∗∗ →

E∗∗
2 (r) by the assignment S̃(z) := ∑∞

n=1
∑

i∈Fn
Sn,i (z), z ∈ A∗∗, where the sum is taken

in the weak∗-topology. It easy to check, from the above properties, that S̃ is a Jordan ∗-
homomorphism and T (x) = L(h, r)S̃(x), for every x ∈ A. The uniqueness of the Jordan
∗-homomorphism given in Theorem 1, (b), shows that S = S̃|A. ��

When we consider weakly compact orthogonality preserving operators between C∗
-algebras we obtain the following description.

Remark 9 Let A and B be two C∗-algebras, T : A → B a weakly compact orthogonality
preserving operator and let r = r(h) be the range tripotent of the element h = T ∗∗(1)

in B∗∗. Then there exists a countable family {In : n ∈ N} of mutually orthogonal weak∗-
closed C∗-ideals in A∗∗, a family {Sn : A∗∗ → B∗∗

2 (r) : n ∈ N} of continuous Jordan ∗
-homomorphisms and a sequence (xn) of mutually orthogonal elements in B satisfying state-
ments (a)-(d) in Theorem 8, and in this particular setting

T (x) =
∞∑

n=1

xn r∗ Sn(x) =
∞∑

n=1

Sn(x) r∗ xn, (e′)

for every x ∈ A (compare the argument given in the proof of [7, Corollary 4.3]).
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Whenever A is an abelian C∗-algebra, every irreducible finite type I von Neumann factor
in A∗∗ is isomorphic to C. Thus, the description of the weakly compact disjointness pre-
serving linear operators between commutative C∗-algebras obtained by Lin and Wong [27]
follows now as consequence of our Theorem 8 (see also Remark 9).

Let T be an orthogonality preserving bounded linear operator between two abelian C∗
-algebras. Lin and Wong proved in [27, Theorem 2.6] that T being compact is equivalent
to T being weakly compact. On the other hand, every compact operator between Banach
spaces factorises compactly through some closed subspace of c0 (compare [13, Exercise 6,
(i i i), Page 15]). Corollary 4.1 in [27] shows that a compact orthogonality preserving operator
between two abelian C∗-algebras actually admits a compact factorisation through the whole
c0. Our next corollary extends these results to the setting of general C∗-algebras.

Corollary 10 Let T be a a continuous orthogonality preserving operator from a C∗-algebra
to a JB∗-triple. The following are equivalent:

(a) T is compact;
(b) T is weakly compact;
(c) T admits a compact factorisation through a c0-sum of the form

c0⊕

n∈N

Mmn (C),

where (mn) is a sequence of natural numbers.

Proof The implication (a)⇒(b) is clear. Since the limit of a norm convergent series of finite
rank operators always defines a compact operator, the proof of (c)⇒ (a) follows straight-
forwardly. We shall prove (b)⇒ (c). Let us suposse that T is weakly compact. Let h =
T ∗∗(1) and let r denote the range tripotent of h in E∗∗. By Theorem 8, there exists an at
most countably family {In} of mutually orthogonal weak∗-closed C∗-ideals in A∗∗, a family
{Sn : A∗∗ → E∗∗

2 (r)} of continuous Jordan ∗-homomorphisms and a set {xn} of mutually
orthogonal elements in E satisfying statements (a) − (e) in the referred Theorem. We may
assume that xn �= 0, for every n in N. Since each In is a finite type I von Neumann factor,
there exists a sequence (mn) in N such that In = Mmn (C),∀n ∈ N.

We define U : A → ⊕c0
n∈N

Mmn (C), by the assignment

z �→
(√‖xn‖πn(z)

)

n
,

where πn is the natural projection of A∗∗ onto In = Mmn (C) and A is identified with a
subspace of A∗∗. We notice that U is a countable sum of finite rank operators, which assures
that U is compact. Let

R :
c0⊕

n∈N

Mmn (C) → E∗∗
2 (r),

be the linear operator defined by R((an)) := ∑∞
n=1 ‖xn‖− 1

2 xn •r Sn(an), for every (an) ∈⊕c0
n∈N

Mmn (C). It is easy to see that T = RU. ��

Given a sequence (mn) in N, the space X := ⊕c0
n∈N

Mmn (C) needs not be, in general,
isomorphic to c0. Actually, these two spaces are isomorphic if and only if (mn) is bounded
(when (mn) is unbounded, the space X∗∗ doesn’t have the Dunford-Pettis property while c∗∗

0
always satisfies this property, compare [12, Theorem 3] or [5]). In the setting of general C∗
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-algebras, we cannot guarantee that a compact orthogonality preserving operator factorises
through the whole c0.

When in the proof of Theorem 8 above, Corollary 6 is replaced with Corollary 7, then the
same arguments given there apply to obtain the following result.

Theorem 11 Let A be a JB∗-algebra, E a JB∗-triple, T : A → E a weakly compact
orthogonality preserving operator and let r = r(h) be the range tripotent of the element
h = T ∗∗(1) in E∗∗. Then there exist a countable family {In}n∈N of mutually orthogonal
weak∗-closed JBW∗-ideals in A∗∗, a family {Sn : A∗∗ → E∗∗

2 (r) : n ∈ N} of continu-
ous Jordan ∗-homomorphisms and a sequence (xn) of mutually orthogonal elements in E
satisfying:

(a) Each In is a reflexive JBW∗-factor;
(b) ‖xn‖ → 0 and h = ∑

n xn;
(c) Sn |In is a Jordan ∗-monomorphism, Sn |I ⊥

n
= 0, Sn and Sm have orthogonal ranges for

n �= m;
(d) For each x in A∗∗, xn and Sm(x) operator commute for every n and m; and
(e)

T (x) =
∞∑

n=1

L(xn, r)Sn(x) =
∞∑

n=1

xn •r Sn(x) = h •r

( ∞∑

n=1

Sn(x)

)

,

for every x ∈ A.

The existence of infinite dimensional reflexive JB∗-algebras shows that the equivalences
established in Corollary 10 do not hold in the setting of JB∗-algebras. For example, the iden-
tity mapping on an infinite dimensional spin factor (see e.g. [18, §6]) is weakly compact and
orthogonality preserving but it is not compact.

The description given in Theorem 8 allows us to characterize the class of C∗-algebras that
admit weakly compact orthogonality preservers.

Corollary 12 Let A be a C∗-algebra (resp., a JB∗-algebra). There exists a weakly com-
pact orthogonality preserving operator from A to a JB∗-triple if, and only if, A admits a
finite dimensional irreducible representation, or equivalently, A∗∗ contains a non-zero finite
dimensional weak∗-closed C∗-ideal (reps., A∗∗ contains a non-zero reflexive weak∗-closed
JB∗-ideal). �

Remark 13 In the third paragraph of the Introduction in [27], the authors claim that “. . .
Kamowitz showed that every compact algebraic endomorphism, and indeed every compact
disjointness preserving operator, of C(K ) is of finite rank. For disjointness preserving oper-
ators on locally compact spaces, however, the theory is much richer”. We would like to note
that the statement concerning compact disjointness preserving or orthogonality preserving
operators is not true. Actually, there are examples of compact weighted endomorphisms of
C(K ) which do not have finite dimensional range. For example, let K := [0, 1]. Choose
a sequence of pairwise disjoint open intervals In ⊂ K together with a continuous map
ϕ : K → K satisfying ϕ(In) ⊂ In and ϕ|In constant for every n. Choose furthermore for
every n a continuous function hn on K with ‖hn‖ = 1/n having compact support in In . Then
for u := ∑

hn the operator T := uCϕ is compact and has every hn in its range.
Or even simpler, let K := N ∪ {∞}, ϕ := idK and define u on K by u(n) := 1/n. Then

every function on K with finite support in N is in the range of uCϕ .
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Generalized Triple Homomorphisms and
Derivations

Jorge J. Garcés and Antonio M. Peralta

Abstract. We introduce generalized triple homomorphisms between Jordan–Banach triple systems as
a concept that extends the notion of generalized homomorphisms between Banach algebras given by
K. Jarosz and B. E. Johnson in 1985 and 1987, respectively. We prove that every generalized triple ho-
momorphism between JB∗-triples is automatically continuous. When particularized to C∗-algebras,
we rediscover one of the main theorems established by Johnson. We will also consider generalized
triple derivations from a Jordan–Banach triple E into a Jordan–Banach triple E-module, proving that
every generalized triple derivation from a JB∗-triple E into itself or into E∗ is automatically continu-
ous.

1 Introduction

During the last seventy years, a multitude of studies have been published proving
that a homomorphism T between Banach algebras (i.e., a linear map with T(ab) =
T(a)T(b) for all a, b) must be, under some additional conditions, continuous (cf. [9],
[10] and [28]). For example, it follows from Gelfand’s original theory that every ho-
momorphism from a Banach algebra to a commutative, semisimple Banach algebra
is automatically continuous. It is well known that every ∗-homomorphism between
C∗-algebras is continuous. It is due to B. E. Johnson that if a unital C∗-algebra has no
closed cofinite ideals (e.g., L(H), where H is an infinite dimensional Hilbert space),
then each homomorphism from it into a Banach algebra is continuous (cf. [19]).

Johnson and K. Jarosz considered generalized homomorphisms (also called ε-multi-
plicative linear maps or ε-isomorphisms) between Banach algebras in [18], [21] and
[20]. Let A and B be Banach algebras. A linear mapping T : A → B is a generalized
homomorphism if there exists ε > 0 satisfying ‖T(ab) − T(a)T(b)‖ ≤ ε‖a‖ ‖b‖,
for every a, b ∈ A. The first result in this line is due to Jarosz, who proved that
every generalized homomorphism from a Banach algebra into a unital abelian C∗-
algebra is necessarily continuous (cf. [18, Proposition 5.5]). Johnson established in
[20, Theorem 4] that a generalized homomorphism T between C∗-algebras is con-
tinuous if and only if the mapping a 7→ T(a∗)∗ − T(a) is continuous. A generalized
∗-homomorphism between Banach ∗-algebras A and B is a generalized homomor-
phism T : A→ B for which the mapping a 7→ T(a∗)∗ − T(a) is continuous.
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Every Banach algebra A can be regarded as an element in the class of Jordan–
Banach triples with respect to the product

(1) {a, b, c} :=
1

2
(abc + cba).

JB∗-triples constitute a subclass of the Jordan–Banach triples which contains all
C∗-algebras and plays a similar role of that played by the latter inside the class of
Banach algebras (see definitions in Section 2). However, according to our knowl-
edge, the automatic continuity of triple homomorphisms between Jordan–Banach
triples (i.e., linear mappings T satisfying T({a, b, c}) = {T(a),T(b),T(c)}, for ev-
ery a, b, c) have not been deeply studied. The forerunners in this line reduce to a
work of T. J. Barton, T. Dang, and G. Horn, where these authors prove the automatic
continuity of every triple homomorphism between JB∗-triples (see [3, Lemma 1]).

In Section 3 we define a generalized triple homomorphism between Jordan–Banach
triples E and F as a linear mapping T : E→ F for which there exists ε > 0 satisfying

‖T({a, b, c})− {T(a),T(b),T(c)} ‖ ≤ ε‖a‖ ‖b‖ ‖c‖,

for all a, b, c in E. We show that every generalized homomorphism between Ba-
nach algebras A and B is a generalized triple homomorphism when A and B are
equipped with the product defined in (1). We further prove that every generalized
∗-homomorphism between Banach ∗-algebras A and B is a generalized triple homo-
morphism when A and B are equipped with the product {a, b, c} := 1

2 (ab∗c + cb∗a)
(see Proposition 1). In this section we also study the basic properties of the separat-
ing space of a generalized triple homomorphism T between Jordan–Banach triples
E and F, proving that the separating space σF(T) is a closed triple ideal of the closed
subtriple of F generated by T(E) (compare Proposition 3).

In Section 4 we establish some theorems of automatic continuity of generalized
triple homomorphisms between Jordan–Banach triples. One of the main results
states that every generalized triple homomorphism between JB∗-triples is automat-
ically continuous (see Theorem 8). Since every generalized ∗-homomorphism be-
tween C∗-algebras is a generalized triple homomorphism, the aforementioned result
of Johnson (see [20, Theorem 4]) follows as a direct consequence. Theorem 14 pro-
vides necessary and sufficient conditions, in terms of the quadratic annihilator of the
separating space, to characterize when a generalized triple homomorphism from a
JB∗-triple to a Jordan–Banach triple is continuous. We also prove that every general-
ized triple homomorphism from a Hilbert space, regarded as a type I Cartan factor,
or from a spin factor into an anisotropic Jordan–Banach triple is automatically con-
tinuous (cf. Lemmas 15 and 16).

In the last section we consider generalized triple derivations from a Jordan–Banach
triple E to a Jordan–Banach triple E-module X. A conjugate linear mapping δ : E →
X is said to be a generalized derivation when there exists ε > 0 satisfying:

‖δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}‖ ≤ ε‖a‖ ‖b‖ ‖c‖,

for every a, b, c in E. In a recent paper, B. Russo and the second author prove that ev-
ery triple derivation from a real or complex JB∗-triple, E, into its dual space E∗ (i.e.,
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a conjugate linear map δ : E→ E∗ satisfying δ{a, b, c} = {δ(a), b, c} + {a, δ(b), c} +
{a, b, δ(c)}) is automatically continuous (compare [25, Corollary 15]). We comple-
ment this result by proving that every generalized triple derivation from a real or
complex JB∗-triple E into itself or into E∗ is automatically continuous (see Theo-
rem 18). When specialized to C∗-algebras, we show that every generalized triple
derivation from a C∗-algebra A to a Jordan–Banach triple A-module is automati-
cally continuous (compare Theorem 22). Our results are not mere generalizations of
those forerunners due to Johnson [20] and A. M. Peralta and Russo [25], the proofs
are completely independent and the theorems presented here are novelties of inde-
pendent interest even in the category of C∗-algebras.

2 Preliminaries

We recall that a complex (resp., real) (normed) Jordan triple is a complex (resp., real)
(normed) space E equipped with a continuous triple product

E × E × E→ E(xyz) 7→ {x, y, z}

that is bilinear and symmetric in the outer variables and conjugate linear (resp., lin-
ear) in the middle one and satisfying the so-called “Jordan Identity”,

L(a, b)L(x, y)− L(x, y)L(a, b) = L
(

L(a, b)x, y
)
− L
(

x, L(b, a)y
)
,

for all a, b, x, y in E, where L(x, y)z := {x, y, z}. If E is complete with respect to the
norm (i.e., if E is a Banach space), then it is called a complex (resp., real) Jordan–
Banach triple. Every normed Jordan triple can be completed in the usual way to
become a Jordan–Banach triple. Unless otherwise stated, the term “normed Jordan
triple” (resp., “Jordan–Banach triple”) will always mean a real or complex normed
Jordan triple (resp., “Jordan–Banach triple”).

For each element a in a Jordan triple E, Q(a) will denote the mapping defined by
Q(a)(x) := {a, x, a}.

Given an element a in a Jordan triple E and a natural number n, we denote a[1] =
a, and a[2n+1] := Q(a)n(a). The Jordan identity implies that a[5] =

{
a, a, a[3]

}
, and

by induction, a[2n+1] = L(a, a)n(a) for all n ∈ N. The element a is called nilpotent if
a[2n+1] = 0 for some n. Jordan triples are power associative, that is,

{
a[k], a[l], a[m]

}
=

a[k+l+m].
A Jordan triple E for which the vanishing of {a, a, a} implies that a itself vanishes

is said to be anisotropic. It is easy to check that E is anisotropic if and only if zero is
the unique nilpotent element in E.

A real (resp., complex) Jordan algebra is a (non-necessarily associative) algebra
over the real (resp., complex) field whose product ◦ is abelian and satisfies (a ◦ b) ◦
a2 = a ◦ (b ◦ a2). A normed Jordan algebra is a Jordan algebra A equipped with a
norm, ‖ · ‖, satisfying ‖a ◦ b‖ ≤ ‖a‖ ‖b‖, a, b ∈ A. A Jordan–Banach algebra is a
normed Jordan algebra whose norm is complete.

Every real or complex associative Banach algebra (resp., Jordan Banach algebra)
is a real Jordan–Banach triple with respect to the product {a, b, c} = 1

2 (abc + cba)
(resp., {a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a− (a ◦ c) ◦ b).
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A JB∗-algebra is a complex Jordan–Banach algebra A equipped with an algebra
involution ∗ satisfying ‖ {a, a∗, a} ‖ = ‖2(a ◦ a∗) ◦ a− a2 ◦ a∗‖ = ‖a‖3, a ∈ A.

A (complex) JB∗-triple is a complex Jordan–Banach triple E satisfying the follow-
ing axioms:

(JB∗ 1) For each a in E the map L(a, a) is an hermitian operator on E with nonnega-
tive spectrum.

(JB∗ 2) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

We recall that a real JB∗-triple is a norm-closed real subtriple of a complex JB∗-triple
(see [17]).

We also recall that a subspace I of a normed Jordan triple E is a triple ideal (resp.,
a subtriple) if {E, E, I}+{E, I, E} ⊆ I (resp., {I, I, I} ⊆ I). The quotient of a normed
Jordan triple by a closed triple ideal is a normed Jordan triple. It is also known that
the quotient of a JB∗-triple (resp., a real JB∗-triple) by a closed triple ideal is a JB∗-
triple (resp., a real JB∗-triple) (compare [22]).

A real JB∗-algebra is a closed ∗-invariant real subalgebra of a (complex) JB∗-
algebra. Real C∗-algebras (i.e., closed ∗-invariant real subalgebras of C∗-algebras)
equipped with the Jordan product a◦b = 1

2 (ab+ba) are examples of real JB∗-algebras.

3 The Separating Space of a Generalized Triple Homomorphism

Let T : E → F be a (not necessarily continuous) linear mapping between normed
Jordan triples. We define Ť : E × E × E→ F by the rule

(a, b, c) 7→ Ť(a, b, c) = T({a, b, c})− {T(a),T(b),T(c)}.

The mapping Ť is symmetric and linear in the outer variables and conjugate linear in
the middle one (trilinear when E is a real Jordan triple). The mapping T is said to be
a generalized triple homomorphism if Ť is (jointly) continuous, equivalently, if there
exists C > 0 such that

‖Ť(a, b, c)‖ = ‖T({a, b, c})− {T(a),T(b),T(c)}‖ ≤ C‖a‖ ‖b‖ ‖c‖.

Let A,B be Banach algebras. We have already mentioned that a linear mapping
T : A→ B is a generalized homomorphism when the bilinear mapping

(a, b)→ T(ab)− T(a)T(b)

is continuous. Every Banach algebra is a Jordan–Banach triple when endowed with
the triple product

(2) 2{a, b, c} = abc + cba.

We will refer to this product as the elemental (Jordan) triple product of A.
A richer structure on the Banach algebra A provides richer ternary products. For

example, when A is a ∗-algebra we can consider the Jordan triple product given by

(3) 2{a, b, c} = ab∗c + cb∗a.
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Let A and B be Banach ∗-algebras. A linear mapping T : A → B is said to be a
generalized ∗-homomorphism if T is a generalized homomorphism and the mapping

a 7→ S(a) = T(a∗)∗ − T(a)

is continuous. Generalized ∗-homomorphisms were already considered by Johnson
in [20, Theorem 4].

Our next result explores the connections between generalized (∗-) homomor-
phisms and generalized triple homomorphisms between Banach (∗-)algebras.

Proposition 1 Let A,B be Banach algebras. Every generalized homomorphism
T : A→ B is a generalized triple homomorphism when A and B are equipped with the
elemental triple product 2{a, b, c} = abc + cba.

When A and B are Banach ∗-algebras and T is a generalized ∗-homomorphism, then
T is a generalized triple homomorphism with respect to the triple product 2{a, b, c} =
ab∗c + cb∗a.

Proof We start proving the first statement. Let T : A → B be a generalized ho-
momorphism between Banach algebras. We will show that T is a generalized triple
homomorphism when A and B are equipped with the triple product (2).

Throughout this proof, T̃ will denote the continuous bilinear mapping from A×A
into B defined by T̃(a, b) := T(ab)− T(a)T(b).

First, let us see that the (real) trilinear mapping (a, b, c) 7→ T(a)T̃(b, c) is con-
tinuous. Applying the uniform boundedness principle we see that a trilinear map-
ping from the cartesian product of three Banach spaces to another Banach space is
(jointly) continuous if, and only if, it is continuous whenever we fix two variables.
Since T̃ is continuous, the desired statement will follow as soon as we prove that the
linear mapping x 7→ T(x)T̃(b, c) is continuous whenever we fix b and c in A. Let (xn)
be a norm-null sequence in A, then

lim
n

T(xn)T̃(b, c) = lim
n

T(xn)T(bc)− T(xn)T(b)T(c)

= lim
n

T̃(xn, b)T(c) + T̃(xnb, c)− T̃(xn, bc) = 0,

which proves the desired continuity.
Now, the identity

T(abc)− T(a)T(b)T(c) = T̃(a, bc) + T(a)T̃(b, c)

implies that the assignment (a, b, c) 7→ T(abc) − T(a)T(b)T(c) defines a (jointly)
continuous trilinear mapping. It follows that the assignment

(a, b, c) 7→ T({a, b, c})− {T(a),T(b),T(c)}

=
1

2

(
T(abc) + T(cba)− T(a)T(b)T(c)− T(c)T(b)T(a)

)
=

1

2

(
T(abc)− T(a)T(b)T(c)

)
+

1

2

(
T(cba)− T(c)T(b)T(a)

)
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defines a continuous trilinear mapping, which gives the first statement.
Let us suppose now that T is a generalized ∗-homomorphism between Banach

∗-algebras A and B. By the first part of the proof, T is a generalized triple homo-
morphism when A and B are equipped with the triple product (2). We have actually
shown that the mapping

(4) (a, b, c) 7→ T(abc)− T(a)T(b)T(c)

is continuous. We will see that T is a generalized triple homomorphism when A
and B are endowed with the product defined in (3).

Let us write S(x) = T(x∗)∗ − T(x). Fix two elements a, c in A. We claim that the
(real) linear mapping

(5) x 7→ T(ax∗c + cx∗a)− T(a)T(x)∗T(c)− T(c)T(x)∗T(a)

is continuous. Clearly, it is enough to check that the restriction to Asa is continuous.
Let x be a self-adjoint element in A, then

T(axc)− T(a)T(x)∗T(c)

= T(axc)− T(a)T(x)T(c)− T(a)T(x)∗T(c) + T(a)T(x)T(c)

= T(axc)− T(a)T(x)T(c)− T(a)
(

T(x)∗ − T(x)
)

T(c),

and hence

T(axc + cxa)− T(a)T(x)∗T(c)− T(c)T(x)∗T(c)

=
(

T(axc + cxa)− T(a)T(x)T(c)− T(c)T(x)T(a)
)

−
(

T(a)S(x)T(c) + T(c)S(x)T(a)
)
,

which proves the claim.
Now, we fix a, b in A and claim that the linear mapping

(6) x 7→ T(ab∗x)− T(a)T(b)∗T(x)

is continuous. To this end, let (xn) be a norm null sequence in A. Then by (4),

lim
n

T(ab∗xn)− T(a)T(b)∗T(xn)

= lim
n

(
T(ab∗xn)− T(a)T(b∗)T(xn)

)
+
(

T(a)T(b∗)T(xn)− T(a)T(b)∗T(xn)
)

= lim
n

(
T(ab∗xn)− T(a)T(b∗)T(xn)

)
+ lim

n
T(a)T̃(x∗n , b)∗ + T(a)T(b)∗S(xn)

− T(a)T̃(b∗, xn)− T(a)S(b∗xn) = 0.
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Similarly, for every b, c in A the linear mapping

(7) x 7→ T(xb∗c)− T(x)T(b)∗T(c)

is continuous.
Combining (5), (6), and (7) with the uniform boundedness principle we deduce

that the (real) trilinear mapping (x, y, x) 7→ T(xy∗z)−T(x)T(y)∗T(z) is jointly con-
tinuous, and hence, T is a generalized triple homomorphism for the product defined
in (3).

The separating space of a linear mapping played an important role in many prob-
lems of automatic continuity (compare [2, 7, 13, 25, 26, 29], among others). Let
T : X → Y be a linear mapping between two normed spaces. We recall that the
separating space, σY (T), of T in Y is defined as the set of all z in Y for which there
exists a sequence (xn) ⊆ X with xn → 0 and T(xn) → z. It is well known that a
linear mapping T between two Banach spaces X and Y is continuous if and only if
σY (T) = {0}.

When T : A → B is a generalized homomorphism between Banach algebras and
z ∈ σY (T) it is clear that T(a)z and zT(a) lie in σY (T), for every a ∈ A. This was
actually noticed and applied by Johnson to show that the separating space of T is
a closed two-sided ideal of the closed subalgebra of B generated by T(A) (compare
[20, Lemma 1]).

We are interested in the properties of the separating space of a generalized triple
homomorphism T between Jordan–Banach triples E and F. Clearly, the image of a
generalized triple homomorphism T : E → F and the image of Ť are both contained
in the subtriple of F generated by T(E). However, T(E) and Ť(E×E×E) need not be
Jordan subtriples of F. Moreover, it is not so easy to check that the separating space
of T is a closed triple ideal of the closed subtriple of F generated by the image of T.
The difficulties in the triple setting grow seriously. For this reason, we will require an
appropriate description of the subtriple of F generated by a subset.

In the following we need the notion of a triple monomial or an odd triple mono-
mial. Let x1, x2, . . . be a sequence of indeterminates. Then a triple monomial is a
term that can be obtained by the following recursive procedure:

(i) Every indeterminate xk is a triple monomial of degree 1.
(ii) If V1, V2, and V3 are triple monomials of degrees d1, d2, and d3 respectively, then

V := {V1,V2,V3} is a triple monomial of degree d1 + d2 + d3, where { · , · , · }
is a “formal triple product” in three variables.

Notice that this procedure is neither commutative nor associative in general, and the
degrees of triple monomials are always odd numbers. If the triple monomial V does
not contain any indeterminate x j with j > n, we also write V = V (x1, . . . , xn).
In that case, for every JB∗-triple E and every a = (a1, . . . , an) ∈ En the element
V (a) = V (a1, . . . , an) ∈ E is well defined—just specialize every xk to ak and the
“formal triple product” to the concrete triple product of E. In this sense V induces
a polynomial map En → E which is denoted by the same symbol (or by VE to avoid
confusion). Now, for each fixed odd integer n ≥ 1, denote by OPn the set of all triple
monomials V of degree n in which every xk with 1 ≤ k ≤ n occurs precisely once.
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Then V = V (x1, . . . , xn) and the induced map VE : En → E is multilinear for every
JB∗-triple E.

The symbol OP
2m+1

(E) will stand for the set of all multilinear mappings of the
form VE, where V runs in OP2m+1, while OP(E) will denote the set of all odd triple
monomials of any degree on E. It should be noted here that when F is another Jordan

triple, each triple monomial V in OP2m+1 induces an element VF in OP
2m+1

(F) by just
replacing the triple product of E in the definition of V with the corresponding triple
product on F.

Lemma 2 Let T : E → F be a generalized triple homomorphism between normed
Jordan triples and m a natural number. Let V be an odd triple monomial of degree

2m + 1, which can be regarded as an element in OP
2m+1

(E) or in OP
2m+1

(F) indistinctly.
Suppose V of the form V = { · ,W, P} (resp.,V = {W, · , P}), and let j = deg(W ).
Then

lim
n→∞

V
(

T(xn),T(a1), . . . ,T(a2m)
)
− T

(
V (xn, a1, . . . , a2m)

)
= 0,

(resp., lim
n→∞

V
(

T(a1), . . . ,T(a j),T(xn),T(a j+1), . . . ,T(a2m)
)

− T
(

V (a1, . . . , a j , xn, a j+1, . . . , a2m)
)

= 0),

for every norm-null sequence (xn) and a1, . . . , a2m in E.

Proof We will proceed by induction on m. Since T is a generalized triple homomor-
phism, the statement trivially holds for every odd triple monomial of degree 3. Now,
let us suppose that the statement is true for odd triple monomials of degree less or
equal than 2m− 1.

Let V be an odd triple monomial of degree 2m+1. We will assume V = { · ,W, P},
the case V = {W, · , P} follows similarly. Pick a norm-null sequence (xn) and
a1, . . . , a2m in E. The odd triple monomials W and P can be written in the form
W = {W1,W2,W3} and P = {P1, P2, P3} for some odd triple monomials Pi ,Wi ,
i = 1, 2, 3. Clearly 1 ≤ deg(Wi), deg(Pi) < 2m− 1.

Applying the Jordan identity we have

V (T(xn),T(a1), . . . ,T(a2m)) = {T(xn),W (T(ai)), P(T(a j))}

=
{

T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, {P1(T(a j1 )), P2(T(a j2 )), P3(T(a j3 ))}
}

=
{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
−

{
P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))

}
+
{

P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}
}
.

(8)

We will treat the summands in the right-hand side independently. We claim that

lim
n

{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )}

)
= 0.

(9)
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Indeed, consider the monomial Q =
{{
· , {W1,W2,W3}, P1

}
, P2, P3

}
. It is clear

that deg(Q) ≤ 2m− 1, and{
T(xn),

{
W1

(
T(ai1 )

)
,W2

(
T(ai2 )

)
,W3

(
T(ai3 )

)}
, P1T

(
(a j1 )

)}
= Q

(
T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )

)
.

(10)

Taking limits in n→∞ and applying the induction hypothesis we get

(11) lim
n

Q
(

T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )
)
− T

(
Q(xn, ai1 , ai2 , ai3 , a j1 )

)
= 0.

Let zn := Q(xn, ai1 , ai2 , ai3 , a j1 ). It follows from the continuity of the triple product
that (zn) is a norm-null sequence in E.

Consider now the monomial Q ′ = { · , P2, P3}. Since deg(Q ′) ≤ 2m − 1 we can
apply the induction hypothesis to prove

lim
n

{
T(zn), P2

(
T(a j2 )

)
, P3

(
T(a j3 )

)}
− T

(
{zn, P2(a j2 ), P3(a j3 )}

)
= lim

n
Q ′
(

T(zn),T
(

(a j2 ),T(a j3 )
))
− T

(
Q ′(zn, a j2 , a j3 )

)
= 0.

(12)

Combining (10), (11), and (12) we have

lim
n

{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )}

)
= lim

n

{
Q(T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )), P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{Q(xn, ai1 , ai2 , ai3 , a j1 ), P2(a j2 ), P3(a j3 )}

)
= lim

n
{T(zn), P2(T(a j1 )), P3(T(a j2 ))} − T

(
{zn, P2(a j1 ), P3(a j2 )}

)
= 0,

which proves the claim (9).
We can similarly prove that

lim
n
{P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))}

− T
(
{P1(a j1 ), {{W1(ai1 ),W2(ai2 ),W3(ai3 )},T(xn), P2(a j2 )}, P3(a j3 )}

)
= 0

(13)

and

lim
n
{P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}}

− T
(
{P1(a j1 ), P2(a j2 ), {T(xn){W1(ai1 ),W2(ai2 ),W3(ai3 )}, P3(a j3 )}}

)
= 0.

(14)
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Finally, from (8), (9), (13), and (14) we obtain

lim
n

V
(

T(xn),T(a1), . . . ,T(a2m)
)
− T

(
V (xn, a1, . . . , a2m)

)
= (from the Jordan identity)

lim
n
{{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))}

− T({{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )})

− {P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))}

+ T({P1(a j1 ), {{W1(ai1 ),W2(ai2 ),W3(ai3 )},T(xn), P2(a j2 )}, P3(a j3 )})

+ {P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}}

− lim
n

T({P1(a j1 ), P2(a j2 ), {T(xn), {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P3(a j3 )}}) = 0,

as we desired.

We recall that two elements a and b in a Jordan–Banach triple E are said to be
orthogonal (written a ⊥ b) if L(a, b) = L(b, a) = 0. A direct application of the
Jordan identity yields that, for each c in E,

a ⊥ {b, c, b} whenever a ⊥ b.

When E is anisotropic, a ⊥ b if and only if L(a, b) = 0. In case E is a real or complex
JB∗-triple, the relation of being orthogonal admits several equivalent reformulations
(cf. [6, Lemma 1]).

Given a subset M of a Jordan–Banach triple, E, we write M⊥
E

for the (orthogonal)
annihilator of M, defined by

M⊥E := {y ∈ E : y ⊥ x,∀x ∈ M}.

When no confusion arises, we will write M⊥ instead of M⊥
E

.
Let E be a Jordan–Banach triple and S ⊆ E. The norm-closed Jordan subtriple

of E generated by S is the smallest norm-closed subtriple of E containing S and will
be denoted by ES. Clearly, ES coincides with the norm-closure of the linear span of
the set

OPE(S) := {V (a1, . . . , a2m+1) : m ∈ N,V ∈ OP2m+1(E), a1, . . . , a2m+1 ∈ S}.

When a is an element in E, we write Ea instead of E{a}.

Proposition 3 Let T : E → F be a generalized triple homomorphism between two
Jordan–Banach triples. Let I and F̃ denote σF(T) and the norm-closed subtriple of F
generated by T(E), respectively. Then we have the following:

(i) I is a (closed) triple ideal of F̃.
(ii) I⊥

F̃
contains all the elements of the form Ť(a, b, c).

Further, if J is a closed triple ideal of F̃ containing I⊥
F̃

, then π ◦ T is a triple homo-

morphism, where π is the quotient map F̃ → F̃/ J ∩ F̃.
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Proof (i) Since I is a closed linear subspace of F, we only have to prove that
{F̃, F̃, I} + {F̃, I, F̃} ⊆ I. Since OPF

(
T(E)

)
is dense in F̃, it is enough to show that

V
(

I,T(E), . . . ,T(E)
)

+ V ′
(

T(E), . . . ,T(E), I,T(E), . . . ,T(E)
)
⊆ I,

where V and V ′ are arbitrary odd triple monomials of the form {W, · , P} and
{ · ,W ′, P ′}, respectively.

Let z be an element in I, then there exists a norm-null sequence (zn) in E such
that z = limn T(zn). Now let V = {W, · , P} and V ′ = { · ,W ′, P ′} be odd triple
monomials of degree 2m1 + 1 and 2m2 + 1, respectively, with j = deg(W ). Let us fix
a1, . . . , a2m1 , b1, . . . , b2m2 in E. By Lemma 2,

V ′
(

z,T(a1), . . . ,T(a2m1 )
)

= lim
n

V ′
(

T(zn),T(a1), . . . , a2m1

)
= lim

n
T
(

V ′(zn, a1, . . . , a2m1 )
)
,

and

V
(

T(b1), . . . ,T(b j), z,T(b j+1), . . . ,T(b2m2 )
)

= lim
n

V
(

T(b1), . . . ,T(b j),T(zn),T(b j+1), . . . ,T(b2m2 )
)

= lim
n

T
(

V (b1, . . . , b j , zn, b j+1, . . . , b2m2 )
)
.

By the continuity of the Jordan triple product xn = V ′(zn, a1, . . . , a2m1 ) and yn =
V (b1, . . . , b j , zn, b j+1, . . . , b2m2 ) are norm-null sequences in E, and thus

V ′
(

z,T(a1), . . . ,T(a2m1 )
)

= lim
n

T(xn) ∈ I

and
V
(

T(b1), . . . ,T(b j), z,T(b j+1), . . . ,T(b2m2 )
)

= lim
n

T(yn) ∈ I.

(ii) In order to see that I⊥
F̃
⊇ Ť(E, E, E), we will show that

L
(

I, Ť(a, b, c)
) ∣∣

F̃
= L
(

Ť(a, b, c), I
) ∣∣

F̃
= 0, ∀a, b, c ∈ E.

Let z = lim T(zn) in I, where (zn) is a norm-null sequence in E, V and odd triple
monomial of degree 2m + 1 and a, b, c, a1, . . . , a2m+1 in E. Then

L
(

z, Ť(a, b, c)
)(

V
(

T(a1), . . . ,T(a2m+1)
))

= lim
n

{
T(zn), Ť(a, b, c),V

(
T(a1), . . . ,T(a2m+1)

)}
= lim

n

{
T(zn),T({a, b, c}),V

(
T(a1), . . . ,T(a2m+1)

)}
−
{

T(zn), {T(a),T(b),T(c)},V
(

T(a1), . . . ,T(a2m+1)
)}

= (by Lemma 2)

= lim
n

T
({

zn, {a, b, c},V (a1, . . . , a2m+1)
})

− T
({

zn, {a, b, c},V (a1, . . . , a2m+1)
})

= 0.
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We can similarly show that L
(

Ť(a, b, c), z
)(

V (a1, . . . , a2m+1)
)

= 0. Therefore, it

follows from the density of OPF

(
T(E)

)
in F̃ and the continuity of the triple product

that L
(

I, Ť(a, b, c)
) ∣∣

F̃
= L
(

Ť(a, b, c), I
) ∣∣

F̃
= 0, which proves (ii).

Finally, to see the last statement we observe that, since I⊥
F̃

contains all the elements

of the form Ť(a, b, c), we have

0 = π
(

Ť(a, b, c)
)

= π
(

T({a, b, c})− {T(a),T(b),T(c)}
)

= π
(

T({a, b, c})
)
− π

(
{T(a),T(b),T(c)}

)
, ∀a, b, c ∈ E,

so π ◦ T is a triple homomorphism.

Let us suppose that, in the hypothesis of Proposition 3 above, F is assumed to
be a JB∗-triple. In this setting two elements a, b in F are orthogonal if and only if
{a, a, b} = 0 (cf. [6, Lemma 1]). Under these assumptions, let z be an element in I
and pick arbitrary a, b, c in E. Since there exists a null sequence (zn) in E such that
z = limn T(zn), by Lemma 2 and the uniform boundedness principle, we have

{z, z, Ť(a, b, c)} = lim
n

{
T(zn),T(zn),T({a, b, c}

}
−
{

T(zn),T(zn), {T(a),T(b),T(c)}
}

= 0,

which implies I⊥F ⊇ I⊥
F̃
⊇ Ť(E, E, E).

4 Automatic Continuity

4.1 Generalized Triple Homomorphisms Between Jordan–Banach Triples

A celebrated result of J. Cuntz states that a linear mapping T : A → X from a
C∗-algebra to a Banach space is continuous if and only if its restriction to any
C∗-subalgebra of A generated by a single hermitian element is continuous (cf. [8]).
Some years before A. M. Sinclair [27] established that a similar automatic continuity
result holds for homomorphism from a C∗-algebra to a Banach algebra. At this point,
the reader should be tempted to ask if a similar statement holds for linear mappings
whose domain is a JB∗-triple (by replacing C∗-subalgebras generated by a single her-
mitian element by JB∗-subtriples generated by a single element). Unfortunately, we
will see next that the answer to this question is negative.

Example 4 A complex Hilbert space H becomes a JB∗-triple when endowed with
the triple product defined by {a, b, c} = 1

2

(
(a|b)c + (c|b)a

)
, where ( · | · ) denotes

the inner product of H. It can be easily seen that every norm-one element e in E
is tripotent (i.e., {e, e, e} = e). Therefore, the JB∗-subtriple of E generated by a
single element a coincides with Ca. This implies that, for each Banach space X, the
restriction of any linear mapping T : H → X to any JB∗-subtriple of H generated
by a single element is continuous. When H is infinite-dimensional, we can easily
find a discontinuous linear mapping from H into a Banach space. We can similarly
consider a JB∗-triple E of infinite dimension with finite rank (e.g., all Ea have finite
dimensions, see [4, Section 3]).
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The above example shows that a simple translation to the setting of JB∗-triples
of the hypotheses assumed by Cuntz in [8] is not enough to guarantee that a linear
mapping from a JB∗-triple to a Banach space is automatically continuous. Finding
an assumption to avoid the previous counterexample, we will replace the subtriple
generated by a single element by the norm-closed inner ideal generated by a single
element. We recall that a subspace J of a JB∗-triple E is said to be an inner ideal if
{ J, E, J} is contained in J. Let a be an element in E and let E(a) denote the norm
closure of {a, E, a} in E. It is known that E(a) coincides with the norm-closed in-
ner ideal of E generated by a (cf. [5, pp. 19–20]). Let us notice that in the previous
Example 4, H(a) = H for every norm-one element a ∈ H.

Let T : E → F be a generalized triple homomorphism between Jordan–Banach
triples and suppose that T is continuous when restricted to any norm-closed inner
ideal generated by a single (norm-one) element. Let z be an element in σF(T). Then
there exists a norm-null sequence (zn) in E such that z = limn T(zn). Pick a norm-
one element a in E. Then

{T(a), z,T(a)} = lim
n
{T(a),T(zn),T(a)} = lim

n
T({a, zn, a})− Ť(a, zn, a)

= lim
n

T|E(a)({a, zn, a})− Ť(a, zn, a) = 0,

since {a, zn, a} is a norm-null sequence in E(a) and Ť and T|E(a) are continuous by
hypothesis. Therefore {T(zn), z,T(zn)} = 0, for every natural n, and hence z[3] =
limn{T(zn), z,T(zn)} = 0, which affirms that all elements in σF(T) are nilpotents.

Definition 5 A Jordan–Banach triple E has Cohen’s factorization property (CFP) if
given a norm-null sequence (an) in E there exist a norm-null sequence (bn) and two
elements x, y in E such that an = {x, bn, y}, ∀n ∈ N.

Every Jordan–Banach algebra with a bounded approximate identity has Cohen’s
factorisation property (compare [1]). In particular, JB and JB∗-algebras have Cohen
factorisation property (see [16, Proposition 3.5.4]). It follows from [5, pp. 19–20]
(see also [12, Lemma 3.2]) that for every norm-one element a in a JB∗-triple E, E(a)
satisfies CFP.

Our next result is an extension of Sinclair’s result [27, Corollary 4.3].

Theorem 6 Let T : E → F be a linear mapping between two Jordan–Banach triples
and suppose that one of the following statements holds:

(i) T is a generalized triple homomorphism and F is anisotropic;
(ii) E has Cohen’s factorisation property.

If the restriction of T to any closed inner ideal generated by a single element is continuous,
then T is continuous.

Proof The proof under hypothesis (i) was already given in the paragraph preceding
Definition 5. Suppose E satisfies CFP. Let (yn) be a norm-null sequence in E and
let a ∈ E. Since T|E(a) is continuous, we have limn T{a, yn, a} = 0. Since a was
arbitrarily chosen, we deduce that

(15) lim
n

T({a, yn, b}) = 0,
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for every a, b ∈ E.
Let us pick z ∈ σF(T) and a norm-null sequence (zn) in E satisfying T(zn) → z.

By hypothesis, there exist a, b in E and a norm-null sequence (yn) ⊆ E such that
zn = {a, yn, b}. In such a case, by (15),

z = lim
n

T(zn) = lim
n

T({a, yn, b}) = 0.

Remark 7 Let T : E → F be a linear mapping between Banach spaces. A useful
property of the separating space σF(T) asserts that for every bounded linear map R
from F to another Banach space Z, the composition RT is continuous if and only if

σF(T) ⊆ ker(R). It is also known that σ(RT) = R(σ(T))
‖ · ‖

(see [28, Lemma 1.3]).

Based on the Commutative Gelfand Theory established by W. Kaup (cf. [22]),
T. J. Barton, T. Dang, and G. Horn proved the automatic continuity of triple homo-
morphisms between JB∗-triples (see [3, Lemma 1]). The natural extension of this
automatic continuity property to the setting of generalized triple homomorphisms is
contained in our next result.

Theorem 8 Every generalized triple homomorphism between JB∗-triples is continu-
ous.

Proof Let T : E → F be a generalized triple homomorphism between JB∗-triples.
The norm closed subtriple of F generated by T(E) will be again denoted by F̃, while
the symbol I will stand for the separating space σF(T). Since F̃ is a norm-closed
subtriple of F, then F̃ is a JB∗-triple itself. Proposition 3 (i) assures that I is a closed
ideal of F̃, and by [25, Lemma 4] I⊥

F̃
is a norm-closed triple ideal of F̃.

The final statement in Proposition 3 guarantees that the linear mapping π ◦ T :
E → F̃/I⊥

F̃
is a triple homomorphism. Since the quotient F̃/I⊥

F̃
is a JB∗-triple, the

triple homomorphism π ◦ T is continuous (cf. [3, Lemma 1]). By Remark 7, we have
I = σF(T) ⊆ ker(π) = I⊥

F̃
, and the latter implies that I = σF(T) = 0.

Since every C∗-algebra, endowed with the triple product given in (3), is a JB∗-
triple, Theorem 8, together with Proposition 1, allows us to rediscover the following
result, which is originally due to Johnson [20, Theorem 4].

Corollary 9 ([20, Theorem 4]) Every generalized ∗-homomorphism between C∗-
algebras is continuous.

Our next goal is to explore the automatic continuity of a generalized triple homo-
morphism from a JB∗-triple to a Jordan–Banach triple. To this end we will require
some additional concepts and tools.

Let E be a real or complex Jordan–Banach triple system. We will say that E is
algebraic if all singly generated (norm-closed) subtriples of E are finite-dimensional.
If in fact there exists m ∈ N such that single-generated subtriples of E have dimension
≤ m, then E is said to be of bounded degree, and the minimum of such an m will be
called the degree or the rank of E. For real and complex JB∗-triples algebraic and
bounded degree are the same (cf. [4, Section 3]).

Our next result owes much to the proof given in [25, Proposition 12] by Russo
and the second author.
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Theorem 10 Let T : E→ X be a linear mapping from a JB∗-triple to a Banach space.
Let JT := {a ∈ E : T ◦ Q(a),T ◦ L(a, a) are continuous}. Suppose that JT has the
following properties:

(i) JT + JT ⊆ JT .
(ii) {E, E, JT} + {E, JT , E} ⊆ JT .
(iii) If I is a norm-closed triple ideal containing JT , then E/I is algebraic of bounded

degree.

Then T is continuous if and only if JT is norm-closed.

Proof When T is continuous, JT coincides with E and nothing has to be proved.
Suppose now that JT is norm-closed. It follows from (i) and (iii) that JT is a norm-
closed triple ideal of E. We claim that the restriction of T to JT is continuous. Indeed,
the assignment (a, b, c) 7→ W (a, b, c) = T({a, b, c}) defines a (real) trilinear map-
ping W : JT × JT × JT → F. From (i) and the definition of JT , W is separately
continuous whenever we fix two variables. An application of the uniform bounded-
ness principle implies that W is jointly continuous. Therefore, there exists a positive
constant M such that ‖T{a, b, c}‖ ≤ M‖a‖ ‖b‖ ‖c‖, for every a, b, c in JT . Since JT

is a JB∗-subtriple of E, for each a in JT there exists b in JT such that b[3] = a. In this
case

‖T(a)‖ = ‖T({b, b, b})‖ ≤ M‖b‖3 = M‖{b, b, b}‖ = M‖a‖,

which shows that T| JT is continuous.
Finally, let us prove that JT = E. By hypothesis (iii), E/ JT is algebraic of bounded

degree m. Thus, for each element a + JT in E/ JT there exist mutually orthogonal
minimal tripotents e1 + JT , . . . , ek + JT in E/ JT and 0 < λ1 ≤ · · · ≤ λk with k ≤ m

such that a + JT =
∑k

j=1 λkek + JT . We will show that e1, . . . , ek ∈ JT , and hence,
a ∈ JT , which proves E = JT .

Let e + JT be a minimal tripotent in E/ JT . Henceforth, π : E → E/ JT will denote
the canonical projection. Take an arbitrary norm-null sequence (an) in E. For each
natural n, there exists a scalar µn ∈ C such that π

(
Q(e)(an)

)
= µn(e + JT). The

continuity of π and the Peirce projection P2(e + JT) assure that µn → 0. It follows
that Q(e)(an)− µne lies in JT and tends to zero in norm. Since, by hypothesis, T| JT is
continuous we have

T
(

Q(e)(an)
)

= T
(

Q(e)(an)− µne
)

+ µnT(e)→ 0.

The arbitrarity of (an) guarantees that T ◦ Q(e) is continuous, or equivalently, e lies
in JT .

The following auxiliary lemmas will be needed later.

Lemma 11 Let E be a real JB∗-triple and J a subset of E satisfying that when-
ever we have two sequences (xn), (yn) in E such that Q(yn)Q(xn) = Q(xn) and
Q(yn)Q(xm) = 0 for n 6= m, then the xn lie in J except (perhaps) for finitely many n.
Suppose I is a norm-closed triple ideal of E containing J then E/I is algebraic of bounded
degree.
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Proof Since I contains J then I also has the property assumed in the hypothesis.
Let us write F = E/I. As noticed in the proof of Corollary 8 in [25] for a = a + I

we have Fa = Ea/(Ea ∩ I).
The commutative JB∗-triple Ea is triple isomorphic to some C0(L) (cf. [22, Sec-

tion 1]). We will identify Ea with C0(L). It is known that Fa+I
∼= C0(Γ) where

Γ = {t ∈ L : b(t) = 0,∀b ∈ Ea ∩ I}.

We claim that Γ is finite. Otherwise, there exists an infinite sequence (tn) in Γ and
a sequence of open disjoint sets {Un}n. By local compactness we can find open sets
Vn,Wn with Vn and Wn compact, such that tn ∈ Vn ⊆ Vn ⊆Wn ⊆Wn ⊆ Un.

By Urysohn’s lemma, for each natural n, we can find fn ∈ C0(L) with tn ∈
supp( fn) ⊆ Wn and gn ∈ C0(L) such that gn ≡ 1 in Wn and vanishing outside Un.
Since fn(tn), gn(tn) 6= 0, ∀n ∈ N, then fn, gn /∈ I, ∀n ∈ N. In this case the sequences
( fn), (gn) verify that Q(gn)Q( fn) = Q( fn) and Q(gn)Q( fm) = 0 for n 6= m, and they
do not lie in I, which is a contradiction.

It follows that Γ is finite and therefore Fa+I is finite dimensional. Since a + I was
arbitrary chosen, the statement of the lemma follows from [4, Theorem 3.8].

Lemma 12 Let T : E → F be a generalized triple homomorphism between real
Jordan–Banach triples, and let (xn), (yn) be sequences of elements in E such that
Q(yn)Q(xn) = Q(xn) and Q(yn)Q(xm) = 0 for n 6= m. Then Q(T(xn))T and TQ(xn)
are continuous for all but a finite number of n.

Proof Let us suppose that Q
(

T(xn)
)

T is discontinuous for infinitely many n in N.

By passing to a subsequence if necessary, we can assume that Q
(

T(xn)
)

T is discon-
tinuous for all n in N. We observe that, since T is a generalized triple homomorphism
the identity

{T(xn),T(b),T(xn)} = T({xn, b, xn})− Ť(xn, b, xn),

holds for every b ∈ E and n ∈ N. It is then clear that Q
(

T(xn)
)

T is continuous if
and only if TQ(xn) is. So, we may assume that TQ(xn) is discontinuous for all n in N.
Choose (an) in E such that ‖an‖ ≤ 2−n‖xn‖−2 and

‖TQ(xn)(an)‖ ≥ 2n
(

1 + ‖T(yn)‖2
)

+ ‖Ť‖ ‖yn‖2.

Let a =
∑

m≥1{xm, am, xm}. Since {yn, a, yn} = {xn, an, xn} we have

2n
(

1 + ‖T(yn)‖2
)

+ ‖Ť‖ ‖yn‖2 ≤ ‖TQ(xn)(an)‖

= ‖TQ(yn)(a)‖ =
∥∥Q
(

T(yn)
)(

T(a)
)

+ Ť(yn, a, yn)
∥∥

≤ ‖T(yn)‖2 ‖T(a)‖ + ‖Ť‖ ‖yn‖2 ‖a‖ ≤
(

1 + ‖T(yn)‖2
)
‖T(a)‖ + ‖Ť‖ ‖yn‖2.

So we have that ‖T(a)‖ ≥ 2n, ∀n ∈ N, which is impossible.
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Let T : E → F be a generalized triple homomorphism between Jordan–Banach
triples. Following the notation employed in Proposition 3, the symbol F̃ will denote
the norm-closed subtriple of F generated by T(E).

According to the notation defined in [25], for each subset B of a Jordan–Banach
triple F, we define its quadratic annihilator, AnnF(B), as the set

{a ∈ F : Q(a)(B) = {a,B, a} = 0}.

The quadratic annihilator will be used later in a more general setting.
If we set J := T−1

(
AnnF

(
σF(T)

))
, it not hard to see, from the basic proper-

ties of the separating space, that J coincides with the set
{

a ∈ E : Q
(

T(a)
)

T is

continuous
}

(compare Remark 7), and since T is a generalized triple homomor-
phism, the latter equals {a ∈ E : TQ(a) is continuous} (compare the proof of
Lemma 12). The following result follows straightforwardly from Lemmas 12 and 11
and the above comments.

Proposition 13 Let T : E → F be a generalized triple homomorphism from a real
JB∗-triple to a Jordan–Banach triple. The following statements hold:

(i) If I is a norm-closed triple ideal containing T−1
(

AnnF

(
σF(T)

))
, then E/I is

algebraic of bounded degree.
(ii) Let K be a triple ideal of E. The linear mapping

x ∈ E 7→ {T(a),T(x),T(a)}

is continuous for all a in K if, and only if, K is contained in T−1
(

AnnF

(
σF(T)

))
.

We can establish now the main result of this section.

Theorem 14 Let T : E → F be a generalized triple homomorphism from a JB∗-triple
to a Jordan–Banach triple and let J = T−1

(
AnnF

(
σF(T)

))
. The following statements

are equivalent:

(i) J is a norm-closed triple ideal of E and{
AnnF

(
σF(T)

)
,AnnF

(
σF(T)

)
, σF(T)

}
= 0.

(ii) T is continuous.

Proof The implication (ii)⇒ (i) is clear. We will prove (i)⇒ (ii). We already know,
by Proposition 13 (ii), that for each element a in J, the linear mapping

x ∈ E 7→ {T(a),T(x),T(a)}

is continuous. Let us fix a, b in J. Since J is a linear subspace of E, then a + b also lies
in J, that is, the mapping x 7→ {T(a + b),T(x),T(a + b)} is continuous. The identity

2{T(a),T(x),T(b)} = {T(a + b),T(x),T(a + b)}

− {T(a),T(x),T(a)} − {T(b),T(x),T(b)},
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guarantees that the mapping x 7→ {T(a),T(x),T(b)} is continuous, or equivalently
(because T is a generalized triple homomorphism), TQ(a, b) is continuous.

Since
{

AnnF

(
σF(T)

)
,AnnF

(
σF(T)

)
, σF(T)

}
= 0, the linear mapping

x ∈ E 7→ {T(a),T(b),T(x)}

is continuous for every a, b ∈ J. Applying that T is a generalized triple homomor-
phism, we deduce that the linear mapping x ∈ E 7→ T({a, b, x}) also is continuous
for every a, b ∈ J. This shows that the trilinear mapping W : E × E × E, given by
(a, b, c) 7→ W (a, b, c) = T({a, b, c}) is continuous whenever we fix two variables
in J. An application of the uniform boundedness principle proves that W | J× J× J is
jointly continuous. Following the argument given in the proof of Theorem 10, we
show that T| J : J → F is continuous.

Proposition 13 (i) implies that E/ J is algebraic of bounded degree. The proof
concludes applying the argument given in the final part of the proof of Theorem 10.

The above Theorem 14 admits a more detailed statement in the particular setting
of some Cartan factors. We recall that a complex Hilbert space H can be regarded as
a type I Cartan factor with its natural norm and the product given by

2 {a, b, c} := (a|b)c + (c|b)a, (a, b, c ∈ H),

where ( · | · ) denotes the inner product of H.

Lemma 15 Let H be a complex Hilbert space regarded as a type I Cartan factor, F an
anisotropic Jordan–Banach triple and T : H → F a generalized triple homomorphism.
Then T is continuous.

Proof Let F̃ denote the norm-closed subtriple of F generated by T(E). It is enough
to prove that T : H → F̃ is continuous. Replacing F with F̃, we may assume, by
Proposition 3, that σF(T) is a norm-closed triple ideal of F and F is generated by T(E).
It follows from our hypothesis that the mapping

Ť(a, b, c) =
1

2

(
(a|b)T(c) + (c|b)T(a)

)
− {T(a),T(b),T(c)} , (a, b, c ∈ H),

is continuous. Let z be an element in σF(T), there exists a norm-null sequence (xn) ⊂
H such that T(xn) → z. If we fix two arbitrary elements a, c in H, by the continuity
of Ť and the triple product of F we have

0 = lim
n

1

2

(
(a|xn)T(c) + (c|xn)T(a)

)
− {T(a),T(xn),T(c)} = −{T(a), z,T(c)} .

It follows from the arbitrariness of a and c that {T(E), σF(T),T(E)} = 0. Similarly,
let V and W be odd triple monomials of degree 2m1 + 1 and 2m2 + 1, respectively,
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and let us fix a1, . . . , a2m1 , b1, . . . , b2m2 in H. By Lemma 2,{
V
(

T(a1), . . . ,T(a2m1+1)
)
, z,W

(
T(b1), . . . ,T(b2m2+1)

)}
= lim

n

{
V
(

T(a1), . . . ,T(a2m1+1)
)
,T(xn),W

(
T(b1), . . . ,T(b2m2+1)

)}
= lim

n
T
(
{V (a1, . . . , a2m1+1), xn,W (b1, . . . , b2m2+1)}

)
= lim

n

1

2

(
V (a1, . . . , a2m1+1)|xn

)
T
(

W (b1, . . . , b2m2+1)
)

+
1

2

(
W (b1, . . . , b2m2+1)|xn

)
T
(

V (a1, . . . , a2m1+1)
)

= 0.

Since we have assumed that F is the Jordan–Banach triple generated by T(E), it fol-
lows by linearity and from the continuity of the product of F that {F, σF(T), F} = 0.
Finally, F being anisotropic implies that σF(T) = 0 and hence T is continuous.

A (complex) spin factor is a complex Hilbert space S provided with a conjugation
(i.e., a conjugate linear isometry of period 2) x 7→ x, triple product

{a, b, c} =
1

2

(
(a|b)c + (c|b)a− (a|c̄)b̄

)
,

and norm given by ‖a‖2 = 1
2 (a|a) + 1

2

√
(a|a)2 − |(a|a)|2, for every a, b, c ∈ S.

Lemma 16 Let S be a (complex) spin factor, F an anisotropic Jordan–Banach triple
and T : S→ F a generalized triple homomorphism. Then T is continuous.

Proof Let S be a spin factor. The corollary in [11, p. 313] and the proof of the
proposition on p. 312 in the just-quoted paper assure that S is the norm closed linear
span of a “spin grid” {ui , vi , u0}i∈Γ, where (ui |u j) = (vi |v j) = (ui |v j) = (ui |vi) =
(u0|ui) = (u0|vi) = 0, ‖ui‖ = 1, ‖vi‖ = 1, ‖u0‖ = 1 or 0, ui = vi , and u0 = u0, for
every i 6= j in Γ. Let S1 (resp., S2) denote the norm-closed subspace of S generated
by {ui : i ∈ Γ} (resp., {vi : i ∈ Γ}). Clearly S = S1 ⊕ S2 ⊕ Cu0. It is easy
to see that S1 and S2 are norm-closed subtriples of S (i.e., {Si , Si , Si} ⊂ Si) and
{a, b, c} = 1

2

(
(a|b)c + (c|b)a

)
, for every a, b, c in Si (i = 1, 2). Therefore S1 and S2

are Hilbert spaces equipped with structure of type I Cartan factors. Lemma 15 shows
that T|Si : Si → F is continuous for every i = 1, 2. Finally, the continuity of the
natural projections of S onto S1, S2 and Cu0 assures that T is continuous.

According to the comments given before Proposition 17 in [25], the proof of
Theorem 10 (and hence the proof of Theorem 14) is only valid for complex JB∗-
triples, the reason being that, in the real setting, a minimal tripotent e in a real JB∗-
triple E need not satisfy that E2(e) = Re. Actually, there exist examples of minimal
tripotents e for which E2(e) is infinite dimensional. The extension of Theorem 14
to the real setting is not a trivial consequence of the result proved in the complex
case and constitutes a result of independent interest which remains open in this pa-
per. However, there exists a subclass of real JB∗-triples for which the statements of
Theorems 10 and 14 remain true. A real JB∗-triple E is called reduced whenever
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E2(e) = Re (equivalently, E−1(e) = 0) for every minimal tripotent e ∈ E. Reduced
real JB∗-triples were considered in [24], [23], [14] and [25]. We note that the proof
of Theorem 14 is valid for reduced real JB∗-triples.

4.2 Generalized Triple Derivations from a JB∗-Triple

Russo and the second author carried out in [25] a pioneer study on automatic con-
tinuity of ternary derivations from a JB∗-triple E into a Jordan–Banach triple E-
module. The concept of Jordan–Banach triple module is introduced in the just-
quoted paper, where it is also established that every triple derivation from a real or
complex JB∗-triple into its dual space or into itself is automatically continuous. It
seems natural, at this stage, to consider generalized triple derivations in the context
of JB∗-triples, studying the automatic continuity of these mappings.

Jordan triple modules over Jordan triples were introduced as appropriate exten-
sions of bimodules over associative algebras and Jordan modules over Jordan alge-
bras (cf. [25]). The concrete definition reads as follows: Let E be a complex (resp.,
real) Jordan triple, a Jordan triple E-module (also called a triple E-module) is a vector
space X equipped with three mappings

{ · , · , · }1 : X × E × E→ X, { · , · , · }2 : E × X × E→ X,

and { · , · , · }3 : E × E × X → X

satisfying the following axioms:

(JTM1) {x, a, b}1 is linear in a and x and conjugate linear in b (resp., trilinear),
{a, b, x}3 is linear in b and x and conjugate linear in a (resp., trilinear) and
{a, x, b}2 is conjugate linear in a, b, x (resp., trilinear).

(JTM2) {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2 for every a, b ∈ E and
x ∈ X.

(JTM3) Denoting by { · , · , · } any of the products { · , · , · }1, { · , · , · }2, and
{ · , · , · }3, the identity

{a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e} + {c, d, {a, b, e}} ,

holds whenever one of the elements a, b, c, d, e is in X and the rest are in E.

When E is a Jordan–Banach triple and X is a triple E-module which is also a Ba-
nach space, we will say that X is a Banach (Jordan) triple E-module when the products
{ · , · , · }1, { · , · , · }2 and { · , · , · }3 are (jointly) continuous. From now on, the
products { · , · , · }1, { · , · , · }2 and { · , · , · }3 will be simply denoted by { · , · , · }.

Every real or complex associative algebra A (resp., Jordan algebra J) is a real Jordan
triple with respect to {a, b, c} := 1

2 (abc + cba), a, b, c ∈ A (resp., {a, b, c} = (a ◦ b) ◦
c + (c ◦ b) ◦ a− (a ◦ c) ◦ b), a, b, c ∈ J). It is not hard to see that every A-bimodule X
is a real triple A-module with respect to the products {a, b, x}3 := 1

2 (abx + xba) and
{a, x, b}2 = 1

2 (axb + bxa), and that every Jordan module X over a Jordan algebra J is
a real triple J-module with respect to the products

{a, b, x}3 := (a ◦ b) ◦ x + (x ◦ b) ◦ a− (a ◦ x) ◦ b and

{a, x, b}2 := (a ◦ x) ◦ b + (b ◦ x) ◦ a− (a ◦ b) ◦ x.
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The dual space, E∗, of a complex (resp., real) Jordan–Banach triple E is a complex
(resp., real) triple E-module with respect to the products:

{a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x}

and

{a, ϕ, b} (x) := ϕ {a, x, b},

∀ϕ ∈ E∗, a, b, x ∈ E (cf. [25]).
Given a triple E-module X over a Jordan triple E, the space E⊕X can be equipped

with a structure of real Jordan triple with respect to the product

{a1 + x1, a2 + x2, a3 + x3} = {a1, a2, a3} + {x1, a2, a3} + {a1, x2, a3} + {a1, a2, x3} .

The Jordan triple E ⊕ X will be called the triple split null extension of E and X.
Let X be a Jordan triple E-module over a Jordan triple E. A triple derivation from

E to X is a conjugate linear map δ : E → X satisfying δ {a, b, c} = {δ(a), b, c} +
{a, δ(b), c} + {a, b, δ(c)}.

Let E be a real (resp., complex) Jordan–Banach triple and let X be a Jordan–Banach
triple E-module. A (conjugate) linear mapping δ : E → X is said to be a generalized
derivation when the mapping δ̌ : E × E × E→ X,

(a, b, c) 7→ δ̌(a, b, c) := δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}

is (jointly) continuous.
Arguing as in [25], we will associate with each generalized derivation from a JB∗-

triple E into a Jordan–Banach triple E-module a generalized triple homomorphism,
in such a a way that the continuity of these two mappings is mutually determined.

Let δ : E → X be a generalized derivation. The symbol E ⊕ X will stand for the
triple split null extension of E and X equipped with the `1-norm. We define the
mapping

Θδ : E→ E ⊕ X,

a 7→ a + δ(a).

It is clear that δ is continuous if and only if Θδ is continuous. Furthermore, the
identity

δ̌(a, b, c) = δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}

= Θδ {a, b, c} − {Θδ(a),Θδ(b),Θδ(c)} = Θ̌δ(a, b, c),

shows that Θδ is a generalized triple homomorphism. According to this notation, we
set ∆ := Θδ(E) = {a + δ(a) : a ∈ E}. Let (E ⊕ X)∆ be the norm closed subtriple of
E⊕X generated by ∆. Since Θδ is a generalized triple homomorphism, by Lemma 3,
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the separating space σE⊕X(Θδ) is a triple ideal of (E ⊕ X)∆. It is not hard to see that
σE⊕X(Θδ) coincides with {0} × σX(δ).

A subspace S of a triple E-module X is said to be a Jordan triple submodule or a
triple submodule if {E, E, S} ⊆ S and {E, S, E} ⊆ S. Every triple ideal J of E is a
Jordan triple E-submodule of E.

Let a + x and b + y be elements in (E⊕X)∆ and z ∈ {0}×σX(δ) = σE⊕X(Θδ). By
the definition of the triple product in E ⊕ X and the just-quoted fact that σE⊕X(Θδ)
is a triple ideal of (E ⊕ X)∆ we have

(16) {a, b, z} = {a + x, b + y, z}

and

(17) {a, z, b} = {a + x, z, b + y}

Since (E ⊕ X)∆ contains ∆, it follows from (16) and (17) that {E, E, σX(δ)} ⊆
σX(δ) and {E, σX(δ), E} ⊆ σX(δ). Since σX(δ) is always a linear subspace, it is also a
triple E-submodule of X.

For each subset A of a triple E-module X, we define its quadratic annihilator,
AnnE(A), as the set {a ∈ E : Q(a)(A) = {a,A, a} = 0}.

We will also make use of the following equality:

AnnE⊕X

(
σE⊕X(Θδ)

)
= AnnE

(
σX(δ)

)
⊕ X.

Remark 17 The quadratic annihilator of a submodule S of a triple module X need
not be, in general, a linear subspace (cf. [25]). However, it is known that when E
is a JB∗-triple and X = E or X = E∗ then, for each submodule S of X, AnnE(S)
is a linear subspace, and hence a norm-closed triple ideal of E (see Lemma 1 and
Proposition 2 in [25]). Further, Proposition 2 (or Remark 3) in [25] shows that, in
this case, {AnnE(S),AnnE(S), S} = 0 in the triple split null extension E ⊕ X.

From now on, we assume that E is a JB∗-triple and X denotes E or E∗. In this
case, Remark 17 and the fact that σX(δ) is a triple E-submodule of X prove that
AnnE

(
σX(δ)

)
is a norm-closed triple ideal of E.

The strategy for obtaining results on automatic continuity for generalized triple
derivations will consist in applying Theorem 14 to the generalized triple homomor-
phism Θδ . In order to do this, we will first check that

J := Θ−1
δ

(
AnnE⊕X

(
σE⊕X(Θδ)

))
is a norm-closed triple ideal of E. It is not hard to see that AnnE⊕X

(
σE⊕X(Θδ)

)
=

AnnE

(
σX(δ)

)
⊕ X and

Θ−1
δ

(
AnnE

(
σX(δ)

)
⊕ X

)
= AnnE

(
σX(δ)

)
.
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This proves that J is a norm-closed triple ideal of E (see Remark 17). On the other
hand, {

AnnE⊕X

(
σE⊕X(Θδ)

)
,AnnE⊕X

(
σE⊕X(Θδ)

)
, σE⊕X(Θδ)

}
=
{

AnnE

(
σX(δ)

)
,AnnE

(
σX(δ)

)
, σX(δ)

}
= 0

(compare the final statement in Remark 17). Theorem 14 proves the continuity of Θδ

and hence the continuity of δ.

Theorem 18 Let E be a real or complex JB∗-triple and δ : E → X a generalized triple
derivation, where X = E or E∗. Then δ is continuous.

The statement concerning real JB∗-triples can be derived from the complex case
applying Remark 14 in [25].

Since every triple derivation is a generalized triple derivation we get the following.

Corollary 19 ([25, Corollary 15]) Let E be a real or complex JB∗-triple and let
δ : E→ X be a triple derivation, where X = E or E∗. Then δ is continuous.

4.3 Generalized Triple Derivations Whose Domain is a C∗-algebra

We have already mentioned that every C∗-algebra belongs to the class of JB∗-triples.
We will conclude this paper by applying some of the previous results to C∗-algebras.
The results obtained this way are interesting by themselves.

Lemma 20 Let T : Asa → X be a linear mapping from the self-adjoint part, Asa, of
an abelian C∗-algebra, A, to a Banach space. Suppose that JT := {a ∈ Asa : TQ(a)
is continuous } is a norm-closed subset of Asa with {a,Asa, a} ∈ JT , for every a ∈ JT .
Then JT is a triple ideal of Asa.

Proof It is easy to see that every norm-closed inner ideal of the selfadjoint part of an
abelian C∗-algebra A is a triple ideal in Asa (norm-closed by assumption). Therefore,
we only have to prove that JT is a linear subspace. To this end, it is enough to show
that a + b ∈ JT whenever a, b ∈ JT .

Let a and b be two elements in Asa. First we observe that, since Asa is abelian,
L(a + b) = Q(a + b). Obviously, the linear mapping Lb : Asa → Asa, c 7→ cb = bc
is continuous. Since Asa is abelian we have L(a2, b) = Q(a)Lb = LbQ(a). Therefore
TL(a2, b) = TQ(a)Lb is continuous for every a ∈ JT , b ∈ Asa.

Let us pick a ∈ JT . We write a in the form a = a1 − a2 where a1, a2 are or-
thogonal positive elements in Asa. Since Q(a)Asa ∈ JT , a3

1 lies in JT , and hence
a6

1Asa = Q(a3
1)Asa ⊆ JT . This implies that JT contains the norm-closed ideal of

Asa generated by a6
1, which guarantees that JT contains a1 and a

1
2
1 . Similarly, we show

that JT contains a2 and a
1
2
2 . Now

TL(a, b) = TL(a1, b)− TL(a2, b) = TL
(

(a
1
2
1 )2, b

)
− TL

(
(a

1
2
2 )2, b

)
,
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and thus TL(a, b) is continuous for every b ∈ Asa. Finally, the equality

TQ(a + b) = TL(a + b) = TL(a, a) + TL(b, b) + 2TL(a, b)

shows that TQ(a + b) is continuous for every a, b ∈ JT .

Proposition 21 Let δ : A→ X be a generalized derivation from an abelian C∗-algebra
to a Jordan–Banach triple A-module. Then δ is continuous.

Proof We will only prove that δ|Asa
is continuous. Let Θδ0 : Asa → Asa ⊕ X be the

generalized triple homomorphism associated to δ0 := δ|Asa . We have already shown
that J = Θ−1

δ0

(
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

))
coincides with AnnAsa

(
σX(δ0)

)
(see the

comments prior to Theorem 18). Therefore, J is the quadratic annihilator of a closed
submodule of X, and hence J is norm closed and satisfies {a,Asa, a} ∈ J, for every
a ∈ J (cf. [25, Section 2.3]).

It is easy to see that J coincides with {a ∈ Asa : Θδ0 Q(a) is continuous}. Now,
Lemma 20 proves that J = Θ−1

δ0

(
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

))
is a norm-closed triple

ideal of Asa, and since A is abelian,{
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

)
,AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

)
, σAsa⊕X(Θδ0 )

}
=
{

AnnAsa

(
σAsa (δ0)

)
,AnnAsa

(
σAsa (δ0)

)
, σAsa (δ0)

}
= 0.

Having in mind that Asa is a reduced real JB∗-triple and the validity of Theorem 14
for reduced real JB∗-triples, we conclude that δ|Asa is continuous.

A celebrated result of J. Cuntz (see [8]) establishes that a linear mapping from a
C∗-algebra A to a Banach space is continuous if and only if its restriction to each
subalgebra of A generated by a single hermitian element is continuous. We finish this
note with a consequence of Cuntz’ theorem and Proposition 21.

Theorem 22 Every generalized triple derivation from a real or complex C∗-algebra A
to a Jordan–Banach triple A-module is continuous.
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We initiate the study of orthogonal forms on a real C∗-algebra. Motivated by
previous contributions, due to Ylinen, Jajte, Paszkiewicz and Goldstein, we prove
that for every continuous orthogonal form V on a commutative real C∗-algebra,
A, there exist functionals ϕ1 and ϕ2 in A∗ satisfying

V (x, y) = ϕ1(xy) + ϕ2(xy∗),

for every x, y in A. We describe the general form of a (not-necessarily con-
tinuous) orthogonality preserving linear map between unital commutative real
C∗-algebras. As a consequence, we show that every orthogonality preserving
linear bijection between unital commutative real C∗-algebras is continuous.

Keywords: Orthogonal form; real C∗-algebra; orthogonality preservers; disjoint-
ness preserver; separating map

AMS Subject Classifications: Primary 46H40; 4J10; Secondary 47B33; 46L40;
46E15; 47B48.

1. Introduction and preliminaries

Elements a and b in a real or complex C∗-algebra, A, are said to be orthogonal (denoted by
a ⊥ b) if ab∗ = b∗a = 0. A bounded bilinear form V : A × A → K is called orthogonal
(resp., orthogonal on self-adjoint elements) whenever V (a, b∗) = 0 for every a ⊥ b in A
(resp., in the self-adjoint part of A). All the forms considered in this paper are assumed to be
continuous. Motivated by the seminal contributions by Ylinen [1] and Jajte and Paszkiewicz
[2], Goldstein proved that every orthogonal form V on a (complex) C∗-algebra, A, is of the
form

V (x, y) = φ(xy) + ψ(xy) (x, y ∈ A),

where φ and ψ are two functionals in A∗ (cf. [3, Theorem 1.10]). A simplified proof of
Goldstein’s theorem was published by Haagerup and Laustsen in [4]. This characterization

*Corresponding author. Email: aperalta@ugr.es

© 2013 Taylor & Francis
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2 J.J. Garcés and A.M. Peralta

has emerged as a very useful tool in the study of bounded linear operators between C∗-
algebras which are orthogonality or disjointness preserving (see, for example, [5,6]).

The first aim of this paper is to study orthogonal forms on the wider class of real C∗-
algebras. Little or nothing is known about the structure of an orthogonal form V on a real
C∗-algebra.At first look, one is tempted to consider the canonical complex bilinear extension
of V to a form on the complexification, AC = A⊕i A, of A and, when the latter is orthogonal,
to apply Goldstein’s theorem. However, the complex bilinear extension of V to AC × AC,
need not be, in general, orthogonal (see Example 2.7). The study of orthogonal forms on real
C∗-algebras requires a completely independent strategy; surprisingly, the resulting forms
will enjoy a different structure to that established by Goldstein in the complex setting.

In section 2, we establish some structure results for orthogonal forms on a general real
C∗-algebra, showing, among other properties, that every orthogonal form on a real C∗-
algebra extends to an orthogonal form on its multiplier algebra (see Proposition 1.3). It is
also proved that, for each orthogonal and symmetric form V on a real C∗-algebra, A, there
exists a functional φ ∈ A∗ satisfying V (a, b) = φ(ab + ba), for every a, b ∈ A with
a = a∗, b∗ = b (cf. Proposition 1.5). In the real setting, the skew-symmetric part of a real
C∗-algebra, A, is not determined by the self-adjoint part of A, so the information about the
behaviour of V on the rest of A is very limited.

Section 3 contains one of the main results of the paper: the characterization of all
orthogonal forms on a commutative real C∗-algebra. Concretely, we prove that a form V
on a commutative real C∗-algebra A is orthogonal if, and only if, there exist functionals ϕ1
and ϕ2 in A∗ satisfying

V (x, y) = ϕ1(xy) + ϕ2(xy∗),

for every x, y ∈ A (see Theorem 2.4). Among the consequences, it follows that the complex
bilinear extension of V to the complexification of A is orthogonal if, and only if, we can
take ϕ2 = 0 in the above representation.

We recall that a mapping T : A → B between real or complex C∗-algebras is said to
be orthogonality or disjointness preserving (also called separating) whenever a ⊥ b in A
implies T (a) ⊥ T (b) in B. The mapping T is bi-orthogonality preserving whenever the
equivalence

a ⊥ b ⇔ T (a) ⊥ T (b)

holds for all a, b in A. As noticed in [7], every bi-orthogonality preserving linear surjection,
T : A → B between two C∗-algebras is injective.

The study of orthogonality preserving operators between C∗-algebras started with the
work of Arendt [8] in the setting of unital abelian C∗-algebras. Subsequent contributions
by Jarosz [9] extended the study to the setting of orthogonality preserving (not necessarily
bounded) linear mappings between abelian C∗-algebras. The first study on orthogonality
preserving symmetric (bounded) linear operators between general (complex) C∗-algebras
is originally due to Wolff (cf. [10]). Orthogonality preserving bounded linear maps between
C∗-algebras, JB∗-algebras and JB∗-triples were completely described in [5,6].The pioneer
works of Beckenstein et al. in [11] and [12] (see also [13]) were applied by Jarosz to prove
that every orthogonality preserving linear bijection between C(K )-spaces is (automatically)
continuous (see [9]). More recently, Burgos and the authors of this note proved in [7] that
every bi-orthogonality preserving linear surjection between two von Neumann algebras (or
between two compact C∗-algebras) is automatically continuous (compare [14,15] for recent
additional generalisations).
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Linear and Multilinear Algebra 3

The main goal of section 4 is to describe the orthogonality preserving linear mappings
between unital commutative real C∗-algebras (see Theorem 3.2).As a consequence, we shall
prove that every orthogonality preserving linear bijection between unital commutative real
C∗-algebras is automatically continuous. We shall exhibit some examples illustrating that
the results in the real setting are completely independent from those established for complex
C∗-algebras. We further give a characterization of those linear mappings between real forms
of C(K )-spaces which are bi-orthogonality preserving.

1.1. Preliminary results

Let us now introduce some basic facts and definitions required later. A real C∗-algebra is
a real Banach *-algebra A which satisfies the standard C∗-identity, ‖a∗a‖ = ‖a‖2, and
which also has the property that 1 + a∗a is invertible in the unitization of A for every
a ∈ A. It is known that a real Banach *-algebra, A, is a real C∗-algebra if, and only if, it is
isometrically *-isomorphic to a norm-closed real *-subalgebra of bounded operators on a
real Hilbert space (cf. [16, Corollary 5.2.11]).

Clearly, every (complex) C∗-algebra is a real C∗-algebra when scalar multiplication is
restricted to the real field. If A is a real C∗-algebra whose algebraic complexification is
denoted by B = A ⊕ i A, then there exists a C∗-norm on B extending the norm of A. It is
further known that there exists an involutive conjugate-linear ∗-automorphism τ on B such
that A = Bτ := {x ∈ B : τ(x) = x} (compare [16, Proposition 5.1.3] or [17, Lemma
4.1.13], and [18, Corollary 15.4]). The dual space of a real or complex C∗-algebra A will
be denoted by A∗. Let τ̃ : B∗ → B∗ denote the map defined by

τ̃ (φ)(b) = φ(τ(b)) (φ ∈ B∗, b ∈ B).

Then τ̃ is a conjugate-linear isometry of period 2 and the mapping

(B∗)τ̃ → A∗

ϕ 	→ ϕ|A

is a surjective linear isometry. We shall identify (B∗)τ̃ and A∗ without making any explicit
mention.

When A is a real or complex C∗-algebra, then Asa and Askew will stand for the set of all
self-adjoint and skew-symmetric elements in A, respectively. We shall make use of standard
notation in C∗-algebra theory.

Given Banach spaces X and Y , L(X, Y ) will denote the space of all bounded linear
mappings from X to Y . We shall write L(X) for the space L(X, X). Throughout the paper,
the word ‘operator’ (respectively, multilinear or sesquilinear operator) will always mean
bounded linear mapping (respectively bounded multilinear or sesquilinear mapping). The
dual space of a Banach space X is always denoted by X∗.

Let us recall that a series
∑

n xn in a Banach space is called weakly unconditionally
Cauchy (w.u.C.) if there exists C > 0 such that for any finite subset F ⊂ N and εn = ±1 we
have

∥∥∥ ∑
n∈F εn xn

∥∥∥ ≤ C . A (linear) operator T : X −→ Y is unconditionally converging

if for every w.u.C. series
∑

n xn in X, the series
∑

n T (xn) is unconditionally convergent
in Y , that is, every subseries of

∑
n T (xn) is norm converging. It is known that T : X → Y

is unconditionally converging if, and only if, for every w.u.C. series
∑

n xn in X, we have
‖T (xn)‖ → 0 (compare, for example, [19, p. 1257]).
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4 J.J. Garcés and A.M. Peralta

Let us also recall that a Banach space X is said to have Pełczyński’s property (V) if, for
every Banach space Y , every unconditionally converging operator T : X → Y is weakly
compact.

The proof of the following elementary lemma is left to the reader.

Lemma 1.1 Let X be a complex Banach space, τ : X → X a conjugate-linear period-2
isometry. Then the real Banach space X τ := {x ∈ X : τ(x) = x} satisfies property (V)
whenever X does.

We shall require, for later use, some results on extensions of multilinear operators. Let
X1, . . . , Xn , and X be Banach spaces, T : X1 × · · · × Xn → X a (continuous) n-linear
operator, and π : {1, . . . , n} → {1, . . . , n} a permutation. It is known that there exists a
unique n-linear extension AB(T )π : X∗∗

1 ×· · ·× X∗∗
n → X∗∗ such that for every zi ∈ X∗∗

i
and every net (xi

αi
) ∈ Xi (1 ≤ i ≤ n), converging to zi in the weak* topology we have

AB(T )π (z1, . . . , zn) = weak* − lim
απ(1)

· · · weak* − lim
απ(n)

T (x1
α1

, . . . , xn
αn

).

Moreover, AB(T )π is bounded and has the same norm as T . The extensions AB(T )π
coincide with those considered by Arens in [20,21] and by Aron and Berner for polyno-
mials in [22]. The n-linear operators AB(T )π are usually called the Arens or Aron-Berner
extensions of T .

Under some additional hypothesis, the Arens extension of a multilinear operator also is
separately weak∗ continuous. Indeed, if every operator from Xi to X∗

j is weakly compact
(i �= j) theArens extensions of T defined above do not depend on the chosen permutation π

and they are all separately weak∗ continuous (see [23], and Theorem 1 in [24]). In particular,
the above requirements always hold when every Xi satisfies Pelczynski’s property (V )

(in such case X∗
i contains no copies of c0, therefore every operator from Xi to X∗

j is
unconditionally converging, and hence weakly compact by property (V ), see [25]). When
all the Arens extensions of T coincide, the symbol AB(T ) = T ∗∗ will denote any of them.

We should note at this point that every C∗-algebra satisfies property (V ) (cf. Corollary 6
in [26]). Since every real C∗-algebra is, in particular, a real form of a (complex) C∗-algebra,
it follows from Lemma 1.1 that every real C∗-algebra satisifes property (V ). We therefore
have:

Lemma 1.2 Let A1, . . . , Ak be real C∗-algebras and let T be a multilinear continuous
operator from A1 × . . . × Ak to a real Banach space X. Then T admits a unique Arens
extension T ∗∗ : A∗∗

1 × . . . × A∗∗
k → X∗∗ which is separately weak∗ continuous.

Given a real or complex C∗-algebra, A, the multiplier algebra of A, M(A), is the set of
all elements x ∈ A∗∗ such that, for each element a ∈ A, xa and ax both lie in A. We notice
that M(A) is a C∗-algebra and contains the unit element of A∗∗. It should be recalled here
that A = M(A) whenever A is unital.

Proposition 1.3 Let A be a real C∗-algebra. Suppose that V : A × A → R is an
orthogonal bounded bilinear form. Then the continuous bilinear form

Ṽ : M(A) × M(A) → R, Ṽ (a, b) := V ∗∗(a, b)

is orthogonal.
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Linear and Multilinear Algebra 5

Proof Let a and b be two orthogonal elements in M(A). Let a[ 1
3 ] (resp., b[ 1

3 ]) denote
the unique element z in M(A) satisfying zz∗z = a (resp., zz∗z = b). We notice that a[ 1

3 ]
and b[ 1

3 ] are orthogonal, so, for each pair x, y in A, a[ 1
3 ]xa[ 1

3 ] and b[ 1
3 ]yb[ 1

3 ] are orthogonal
elements in A. Since V is orthogonal, we have

V (a[ 1
3 ]xa[ 1

3 ], (b[ 1
3 ])∗y(b[ 1

3 ])∗) = 0

for every x, y ∈ A.

Goldstine’s theorem (cf. Theorem V.4.2.5 in [27]) guarantees that the closed unit ball
of A is weak*-dense in the closed unit ball of A∗∗. Therefore, we can pick two bounded
nets (xλ) and (yμ) in A, converging in the weak∗ topology of A∗∗ to (a[ 1

3 ])∗ and b[ 1
3 ],

respectively.

We have already mentioned that V ∗∗ : A∗∗ × A∗∗ → R is separately weak∗ continuous.
Since 0 = V (a[ 1

3 ]xλa[ 1
3 ], (b[ 1

3 ])∗yμ(b[ 1
3 ])∗), for every λ and μ, taking limits, first in λ and

subsequently in μ, we deduce that

V ∗∗(a[ 1
3 ](a[ 1

3 ])∗a[ 1
3 ], (b[ 1

3 ])∗b[ 1
3 ](b[ 1

3 ])∗)) = Ṽ (a, b∗) = 0,

which shows that Ṽ is orthogonal. �
Since the multiplier algebra of a real or complex C∗-algebra always has a unit element,

Proposition 1.3 allows us to restrict our study on orthogonal bilinear forms on a real C∗-
algebra A to the case in which A is unital.

A real von Neumann algebra is a real C∗-algebra which is also a dual Banach space
(cf. [28] or [16, §6.1]). Clearly, the self-adjoint part of a real von Neumann algebra is a
JW-algebra in the terminology employed in [29], so every self-adjoint element in a real von
Neumann algebra W can be approximated in norm by a finite real linear combination of
mutually orthogonal projections in W (cf. [29, Proposition 4.2.3]). We shall explore now
the validity in the real setting of some of the results established by Goldstein in [3].

Lemma 1.4 Let A be a real von Neumann algebra with unit 1. Suppose that V : A× A →
R is a bounded bilinear form. The following are equivalent:

(a) V is orthogonal on Asa;
(b) V (p, q) = 0, whenever p and q are two orthogonal projections in A;
(c) V (a, b) = V (ab, 1) for every a, b ∈ Asa with ab = ba.

If any of the above statements holds and V is symmetric, then defining φ1(x) := V (x, 1)

(x ∈ A), we have V (a, b) = φ1(
ab+ba

2 ), for every a, b ∈ Asa.

Proof Applying the existence of spectral resolutions for self-adjoint elements in a real
von Neumann algebra, the argument given by Goldstein in [3, Proposition 1.2] remains
valid to prove the equivalence of (a), (b) and (c).

Suppose now that V is symmetric. Let a = ∑m
j=1 λ j p j be an algebraic element in Asa ,

where the λ j ’s belong to R and p1, . . . , pm are mutually orthogonal projections in A. Since
V is orthogonal, for every projection p ∈ A, we have

V (p, 1) = V (p, 1 − p) + V (p, p) = V (p, p).
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6 J.J. Garcés and A.M. Peralta

Thus,

V (a, a) =
m∑

j=1

λ2
j V (p j , p j ) =

m∑
j=1

λ2
j V (p j , 1) = V

⎛
⎝ m∑

j=1

λ2
j p j , 1

⎞
⎠ = V (a2, 1).

The (norm) density of algebraic elements in Asa and the continuity of V imply that
V (a, a) = V (a2, 1), for every a ∈ Asa . Finally, applying that V is symmetric we have

V (a2, 1) + V (b2, 1) + V (ab + ba, 1) = V ((a + b)2, 1)

= V (a + b, a + b) = V (a, a) + V (b, b) + 2V (a, b),

for every a, b ∈ Asa , and hence V (a, b) = V
( ab+ba

2 , 1
)
, for all a, b ∈ Asa . �

The above result holds for every monotone σ -complete unital real C∗-algebra A (that
is, each upper bounded, monotone increasing sequence of self-adjoint elements of A has a
least upper bound).

Surprisingly, the final conclusion of the above Lemma can be established for unital real
C∗-algebras with independent basic techniques.

Proposition 1.5 Let A be a unital real C∗-algebra with unit 1. Suppose that V : A×A →
R is an orthogonal, symmetric, bounded, bilinear form. Then defining φ1(x) := V (x, 1)

(x ∈ A), we have V (a, b) = φ1(
ab+ba

2 ), for every a, b ∈ Asa.

Proof Let a be a self-adjoint element in A. The real C∗-subalgebra, C , of A generated
by 1 and a is isometrically isomorphic to the space C(K , R) of all real-valued continuous
functions on a compact Hausdorff space K . The restriction of V to C × C is orthogonal,
therefore, the mapping x 	→ V (x, x) is a 2-homogeneous orthogonally additive polynomial
on C . The main result in [30] implies the existence of a functional ϕa ∈ C∗ such that
V (x, x) = ϕa(x2), for every x ∈ C . It is clear that ϕa(x) = V (x, 1) for every x ∈ C . In
particular

V (a, a) = ϕa(a2) = V (a2, 1).

The argument given at the end of the proof of Lemma 1.4 gives the desired statement. �
The above proposition shows that we can control the form of a symmetric orthogonal

form on the self adjoint part of a (unital) real C∗-algebra. The form on the skew-symmetric
part remains out of control for the moment.

2. Orthogonal forms on abelian real C∗-algebras

Throughout this section, A will denote a unital, abelian, real C∗-algebra whose complex-
ification will be denoted by B. It is clear that B is a unital, abelian C∗-algebra. It is
known that there exists a period-2 conjugate-linear ∗-automorphism τ : B → B such
that A = Bτ := {x ∈ B : τ(x) = x} (cf. [17, 4.1.13] and [18, 15.4] or [16, §5.2]).

By the commutative Gelfand theory, there exists a compact Hausdorff space K such that
B is C∗-isomorphic to the C∗-algebra C(K ) of all complex, valued continuous functions on
K . The Banach–Stone Theorem implies the existence of a homeomorphism σ : K → K
such that σ 2(t) = t , and

τ(a)(t) = a(σ (t)),
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Linear and Multilinear Algebra 7

for all t ∈ K , a ∈ C(K ). Real function algebras of the form C(K )τ have been studied by
its own right and are interesting in some other settings (cf. [31]).

Henceforth, the symbol B will stand for the σ -algebra of all Borel subsets of K , S(K )

will denote the space of B-simple scalar functions defined on K , while the Borel algebra
over K , B(K ), is defined as the completion of S(K ) under the supremum norm. It is
known that B = C(K ) ⊂ B(K ) ⊂ C(K )∗∗. The mapping τ ∗∗ : C(K )∗∗ → C(K )∗∗
is a period-2 conjugate-linear ∗-automorphism on B∗∗ = C(K )∗∗. It is easy to see that
τ ∗∗(B(K )) = B(K ), and hence τ ∗∗|B(K ) : B(K ) → B(K ) defines a period-2 conjugate-
linear∗-automorphism on B(K ). By an abuse of notation, the symbol τ will denote τ , τ ∗∗
and τ ∗∗|B(K ) indistinctly. It is clear that, for each Borel set B ∈ B, τ (χB ) = χ

σ(B)
.

Let a be an element in B(K ). For each ε > 0, there exist complex numbers λ1, . . . , λr

and disjoint Borel sets B1, . . . , Br such that
∥∥∥a − ∑r

k=1 λkχBk

∥∥∥ < ε. When a ∈ A is τ -

symmetric (i.e. τ(a) = a) then, since a = 1
2 (a + τ(a)), we have∥∥∥∥∥a − 1

2

r∑
k=1

λkχBk
+ λkχσ(Bk )

∥∥∥∥∥ ≤ 1

2

∥∥∥∥∥a −
r∑

k=1

λkχBk

∥∥∥∥∥ + 1

2

∥∥∥∥∥a −
r∑

k=1

λkχσ(Bk )

∥∥∥∥∥

≤ 1

2

∥∥∥∥∥a −
r∑

k=1

λkχBk

∥∥∥∥∥ + 1

2

∥∥∥∥∥τ

(
a −

r∑
k=1

λkχBk

)∥∥∥∥∥ < ε.

Consequently, every element in B(K )τ can be approximated in norm by finite linear
combinations of the form

∑
k αkχBk

+ αkχσ(Bk )
, where α1, . . . , αn are complex numbers

and B1, . . . , Bn are mutually disjoint Borel sets. Having in mind that, for each Borel set
B ∈ B and each α ∈ C,

(
αχB + αχ

σ(B)

)∗ = αχB + αχ
σ(B)

, we have
(
αχB + αχ

σ(B)

) + (
αχB + αχ

σ(B)

)∗ = 2
e(α)
(
2χ

σ(B)∩B + χ
σ(B)\B + χB\σ(B)

)

= 2
e(α)
(
2χ

σ(B)∩B + χ
(σ(B)\B)∪σ(σ(B)\B)

)
,

and (
αχB + αχ

σ(B)

) − (
αχB + αχ

σ(B)

)∗ = 2i�m(α)
(
χB\σ(B)

− χ
σ(B)\B

)
.

Suppose now that a ∈ B(K )τ is *-symmetric (i.e. a∗ = a). It follows from the above
that a can be approximated in norm by linear combinations of the form

∑r
k=1 αkχEk

, where
αk ∈ R and E1, . . . , Er are mutually disjoint Borel subsets of K with σ(Ei ) = Ei . Let b be
an element in B(K )τ satisfying b∗ = −b. Similar arguments to those given for *-symmetric
elements, allow us to show that b can be approximated in norm by finite linear combinations
of the form

∑r
k=1 i αk(χEk

− χ
σ(Ek )

), where αk ∈ R and E1, . . . , Er are mutually disjoint
Borel subsets of K with σ(Ei ) ∩ Ei = ∅.

Lemma 2.1 Let A be a unital, abelian, real C∗-algebra whose complexification is denoted
by B = C(K ), for a suitable compact Hausdorff space K . Let τ : B → B be a period-
2 conjugate-linear∗-automorphism satisfying A = Bτ and τ(a)(t) = a(σ (t)), for all
t ∈ K , a ∈ C(K ), where σ : K → K is a period-2 homeomorphism. Then the set
N = {t ∈ K : σ(t) �= t} is an open subset of K , F = {t ∈ K : σ(t) = t} is a closed
subset of K and there exists an open subset O ⊂ K maximal with respect to the property
O ∩ σ(O) = ∅.
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8 J.J. Garcés and A.M. Peralta

Proof That F is closed follows easily from the continuity of σ, and consequently, N =
K/F is open.

Let F be the family of all open subsets O ⊆ K such that O ∩ σ(O) = ∅ ordered by
inclusion. Let S = {Oλ}λ be a totally ordered subset of F . We shall see that O = ⋃

λ Oλ

is an open set which also lies in F, that is, O ∩ σ(O) = ∅.

Let us suppose, on the contrary, that there exists t ∈ O ∩ σ(O) �= ∅. Then there exist
λ, β such that t ∈ Oλ and t ∈ σ(Oβ). Since S is totally ordered, Oλ ⊆ Oβ or Oβ ⊆ Oλ.

We shall assume that Oλ ⊆ Oβ. Then t lies in Oβ ∩ σ(Oβ) = ∅, which is a contradiction.
Finally, Zorn’s Lemma gives the existence of a maximal element O in F . �

It should be noticed here that, in Lemma 2.1, O∪σ(O) = N , an equality which follows
from the maximality of O.

Our next lemma analyses the ‘spectral resolution’ of a *-skew-symmetric element in
B(K )τ .

Lemma 2.2 In the notation of Lemma 2.1, let B(A) = B(K )τ , let a ∈ B(K )τsa, and let b
be an element in B(A)skew. Then the following statements hold:

(a) b|F = 0;
(b) For each ε > 0, there exist mutually disjoint Borel sets B1, . . . , Bm ⊂ O and real

numbers λ1, . . . , λm satisfying
∥∥∥b − ∑m

j=1 i λ j (χB j
− χ

σ(B j )
)

∥∥∥ < ε;
(c) For each ε > 0, there exist mutually disjoint Borel sets C1, . . . , Cm ⊂ K and real

numbers μ1, . . . , μm satisfying σ(C j ) = C j , and
∥∥∥a − ∑m

j=1 μ jχC j

∥∥∥ < ε.

Proof (a) Since b∗ = −b, we have Re(b(t)) = 0,∀t ∈ K . Now, let t ∈ F , applying
σ(t) = t and τ(b) = b we get b(t) = b(σ (t)) = b(t), and hence �m(b(t)) = 0.

Statements (b) and (c) follow from the comments prior to Lemma 2.1 and the maximality
of O in that Lemma. �

It is clear that in a commutative real (or complex) C∗-algebra, A, two elements a, b are
orthogonal if and only if they have zero-product, that is, ab = 0. Therefore, V (a, b∗) =
0 = V (a, b) whenever V : A × A → R is an orthogonal bilinear form on an abelian real
C∗-algebra and a, b are two orthogonal elements in A. We shall make use of this property
without an explicit mention.

We shall keep the notation of Lemma 2.1 throughout the section. Henceforth, for each
C ⊆ O we shall write uC = i (χC − χ

σ(C)
). The symbol u0 will stand for the element uO .

It is easy to check 1 = χF + u0u∗
0, where 1 is the unit element in B(K )τ . By Lemma 2.2

a), for each b ∈ B(K )τskew we have b ⊥ χF , and so b = bu0u∗
0.

Proposition 2.3 Let K be a compact Hausdorff space, τ a period-2 conjugate-linear
isometric ∗-homomorphism on C(K ), A = C(K )τ , and V : A × A → R be an orthogonal
bounded bilinear form whose Arens extension is denoted by V ∗∗ : A∗∗ × A∗∗ → R. Let
σ : K → K be a period-2 homeomorphism satisfying τ(a)(t) = a(σ (t)), for all t ∈ K ,
a ∈ C(K ). Then the following assertions hold for all Borel subsets D, B, C of K with
σ(B) ∩ B = σ(C) ∩ C = ∅ and σ(D) = D:
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Linear and Multilinear Algebra 9

(a) V (χD , uB ) = V (uB , χD ) = 0, whenever D ∩ B = ∅;
(b) V (uB , uC ) = 0, whenever B ∩ C = ∅;
(c) V ((u0 u∗

0 − uC u∗
C
)uB , uC ) = V (uC , (u0 u∗

0 − uC u∗
C
)uB ) = 0.

Proof By an abuse of notation, we write V for V and V ∗∗.
Let K1, K2 be compact subsets of K such that K1, K2 and σ(K2) are mutually disjoint.

By regularity and Urysohn’s Lemma, there exist nets ( fλ)λ , (gγ )γ in C(K )+ such that
χK1

≤ fλ ≤ χK\(K2∪σ(K2))
, χK2

≤ gγ ≤ χK\(K1∪σ(K1)∪σ(K2))
, ( fλ)λ (respectively, (gγ )γ )

converges to χK1
(resp., to χK2

) in the weak∗ topology of C(K )∗∗.
The nets f̃λ = 1

2 ( fλ + τ( fλ)) and g̃γ = i(gγ − τ(gγ )) lie in C(K )τ and converge in
the weak∗ topology of C(K )∗∗ to 1

2 (χK1
+χ

σ(K1)
) and uK2

, respectively. It is also clear that
fλ ⊥ gγ , τ ( fλ) ⊥ gγ , and hence f̃λ ⊥ g̃γ , for every λ, γ.

By the separate weak∗ continuity of V ∗∗ ≡ V , we have

V

(
1

2
(χK1

+ χ
σ(K1)

), uK2

)
= w∗ − lim

λ

(
w∗ − lim

γ
V

(
f̃λ, g̃γ

)) = 0, (1)

and

V

(
uK2

,
1

2
(χK1

+ χ
σ(K1)

)

)
= 0.

We can similarly prove that

V
(

uK1
, uK2

)
= 0, (2)

whenever K1 and K2 are two compact subsets of K such that K1, K2, σ (K1) and σ(K2)

are pairwise disjoint.
(a) Let now D, B be two disjoint Borel subsets of K such that σ(D) = D and B ⊆ O.

By inner regularity, there exist nets of the form (χ
K

D
λ

)λ and (χ
K

B
γ

)γ such that (χ
K

D
λ

)λ and

(χ
K

B
γ

)γ converge in the weak∗ topology of C(K )∗∗ to χD and χB , respectively, where each

K
D

λ ⊆ D and each K
B

γ ⊆ B is a compact subset of K . By the assumptions made on D and

B, we have that K
D

λ ∩ K
B

γ = K
D

λ ∩ σ(K
B

γ ) = ∅ and K
B

γ ⊆ O for all λ and γ. By (1) and
the separate weak∗ continuity of V , we have

V (χD , uB ) = w∗ − lim
λ

⎛
⎝w∗ − lim

γ
V

⎛
⎝χ

K
D
λ

+ χ
σ(K

D
λ

)

2
, u

K
B
γ

⎞
⎠

⎞
⎠ = 0, (3)

and
V (u B , χ

D
) = 0. (4)

A similar argument, but replacing (1) with (2), applies to prove (b).
To prove the last statement, we observe that

(u0 u∗
0 − ucu∗

c)uB = (χO + χ
σ(O) − χC − χ

σ(C)
)uB = (χO\C + χ

σ(O\C)
)uB = u

(O\C)∩B ,

and hence the statement (c) follows from (b). �
We can now establish the description of all orthogonal forms on a commutative real

C∗-algebra.

D
ow

nl
oa

de
d 

by
 [

U
G

R
-B

T
C

A
 G

ra
l U

ni
ve

rs
ita

ri
a]

 a
t 0

5:
36

 1
9 

M
ar

ch
 2

01
3 



10 J.J. Garcés and A.M. Peralta

Theorem 2.4 Let V : A × A → R be a continuous orthogonal form on a commutative
real C∗-algebra, then there exist ϕ1, and ϕ2 in A∗ satisfying

V (x, y) = ϕ1(xy) + ϕ2(xy∗),

for every x, y ∈ A.

Proof We may assume, without loss of generality, that A is unital (compare Proposition
1.3). Let B denote the complexification of A. In this case B identifies with C(K ) for
a suitable compact Hausdorff space K and A = C(K )τ , where τ is a conjugate-linear
period-2 *-homomorphism on C(K ). We shall follow the notation employed in the rest of
this section.

The form V : A × A → R extends to a continuous form V ∗∗ : A∗∗ × A∗∗ → R

which is separately weak∗ continuous (cf. Lemma 1.2). The restriction V ∗∗|B(K )τ ×B(K )τ :
B(K )τ × B(K )τ → R also is a continuous extension of V . We shall prove the statement for
V ∗∗|B(K )τ ×B(K )τ . Henceforth, the symbol V will stand for V , V ∗∗ and V ∗∗|B(K )τ ×B(K )τ

indistinctly.
Let us first take two self-adjoint elements a1, a2 in B(K )τ . By Proposition 1.5,

V (a1, a2) = V (a1a2, 1). (5)

To deal with the skew-symmetric part, let D, B, C be Borel subsets of K with, D =
σ(D) and B, C ⊆ O. From Proposition 2.3 (a), we have

V (χD , uB ) = V (χD , uB (1 − χD + χD )) = V (χD , uB∩(K\D)
) + V (χD , uB χD ) (6)

= V (χD − 1 + 1, uB χD ) = V (−χ
(K\D)

+ 1, u
(B∩D)

) = V (1, uB χD ).

Similarly,
V (uB , χD ) = V (uB χD , 1). (7)

Now, Proposition 2.3 (b) and (c), repeatedly applied give:

V (u B , uC ) = V (uB (χF + u0u∗
0), uC ) = V (uB u0u∗

0, uC )

= V (uB (u0u∗
0 + uC u∗

C
− uC u∗

C
), uC ) = V (uB uC u∗

C
, uC )

= V (uB uC u∗
C
, uC − u0 + u0) = V (u

(B∩C)
,−u

(O\C)
+ u0) = V (u

(B∩C)
, u0)

= V (uB uC (u∗
C

− u∗
0 + u∗

0), u0) = V (uB uC u∗
0, u0).

Thus, we have
V (uB , uC ) = V (uB uC u∗

0, u0), (8)

and similarly
V (uB , uC ) = V (u0 , uB uC u∗

0). (9)

Let al = ∑ml
j=1 μl, jχ

Dl
j
, bl = ∑pl

k=1 λl,ku
Bl

k
(l ∈ {1, 2}) be two simple elements in

B(K )τsa and B(K )τskew, respectively, where λl,k, μl, j ∈R, for each l ∈{1, 2}, {Dl
1, . . . , Dl

ml
}

and {Bl
1, . . . , Bl

pl
} are families of mutually disjoint Borel subsets of K with σ(Dl

j ) = Dl
j

and Bl
i ⊆ O. By (5), (6), (7) and (8), we have

V (a1 + b1, a2 + b2) = V (a1a2, 1) +
m1∑
j=1

p2∑
k=1

μ1, jλ2,k V

(
χ

D1
j
, u

B2
k

)
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Linear and Multilinear Algebra 11

+
p1∑

k=1

m2∑
j=1

μ2, jλ1,k V

(
u

B1
k
, χ

D2
j

)
+

p1∑
k=1

p2∑
k=1

λ2,kλ1,k V

(
u

B1
k
, u

B2
k

)

= V (a1a2, 1) +
m1∑
j=1

p2∑
k=1

μ1, jλ2,k V

(
1, χ

D1
j
u

B2
k

)

+
p1∑

k=1

m2∑
j=1

μ2, jλ1,k V

(
u

B1
k
χ

D2
j
, 1

)
+

p1∑
k=1

p2∑
k=1

λ2,kλ1,k V

(
u

B1
k
u

B2
k
u∗

0, u0

)

= V (a1a2, 1) + V (1, a1b2) + V (b1a2, 1) + V
(
b1b2u∗

0, u0

)

= ψ1(a1a2) + ψ2 (a1b2) + ψ1 (b1a2) + ψ4 (b1b2) ,

where ψ1, ψ2 and ψ4 are the functionals in A∗ defined by ψ1(x) = V (x, 1), ψ2(x) =
V (1, x), and ψ4(x) = V (xu∗

0, u0), respectively. Since, by Proposition 2.2, simple ele-
ments of the above form are norm-dense in B(K )τsa and B(K )τskew, respectively, and V is
continuous, we deduce that

V (a1 + b1, a2 + b2) = ψ1(a1a2) + ψ2 (a1b2) + ψ1 (b1a2) + ψ4 (b1b2) ,

for every a1, a2 ∈ B(K )τsa , b1, b2 ∈ B(K )τskew.

Now, taking φ1 = 1
4 (2ψ1 +ψ2 +ψ4), φ2 = 1

4 (2ψ1 −ψ2 −ψ4), φ3 = 1
4 (ψ2 −ψ4) and

φ4 = 1
4 (ψ4 − ψ2), we get

V (a1 + b1, a2 + b2) = φ1((a1 + b1)(a2 + b2)) + φ2
(
(a1 + b1)(a2 + b2)

∗)
+ φ3

(
(a1 + b1)

∗(a2 + b2)
) + φ4

(
(a1 + b1)

∗(a2 + b2)
∗) ,

for every a1, a2 ∈ B(K )τsa , b1, b2 ∈ B(K )τskew.

Finally, defining ϕ1(x) = φ1(x) + φ4(x∗) and ϕ2(x) = φ2(x) + φ3(x∗) (x ∈ A), we
get the desired statement. �

Remark 2.5 The functionals ϕ1 and ϕ2 appearing in Theorem 2.4 need not be unique. For
example, let (ϕ1, ϕ2) and (φ1, φ2) be two couples of elements in the dual of a commutative
real C∗-algebra A. It is not hard to check that

ϕ1(xy) + ϕ2(xy∗) = φ1(xy) + φ2(xy∗),

for every x, y ∈ A if, and only if, ϕ1 + ϕ2 = φ1 + φ2, (ϕ1 − ϕ2)(z) = (φ1 − φ2)(z) and
(ϕ1−ϕ2)(zw) = (φ1−φ2)(zw), for every z, w ∈ Askew.These conditions are not enough to
guarantee that φi = ϕi . Take, for example, A = R⊕∞

CR, φ1(a, b) = a +
e(b)+�m(b),

φ2(a, b) = 0, ϕ1(a, b) = a
2 + 
e(b) + �m(b), and ϕ2(a, b) = a

2 .

Corollary 2.6 Let V : A× A → R be a continuous orthogonal form on a commutative
real C∗-algebra, then its (unique) Arens extension V ∗∗ : A∗∗ × A∗∗ → R is an orthogonal
form. �

Clearly, the statement of the above Theorem 2.4 does not hold for bilinear forms on a
commutative (complex) C∗-algebra. The real version established in this paper is completely
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12 J.J. Garcés and A.M. Peralta

independent to the result proved by Ylinen for commutative complex C∗-algebras in [1]
and [3]. It seems natural to ask whether the real result follows from the complex one by a
mere argument of complexification. Our next example shows that the (canonical) extension
of an orthogonal form on a commutative real C∗-algebra need not be an orthogonal form
on the complexification.

Example 2.7 Let K = {t1, t2}. We define σ : K → K by σ(t1) = t2. Let A = C(K )τ

be the real C∗-algebra whose complexification is C(K ) and let V : A × A → R, be
the orthogonal form defined by V (x, y) = φt1

(xy∗) = 
e(x(t1)y(t1)) = 
e(x(t1)y(t2)),
where φt1 = 
e(δt1

). In this case, the canonical complex bilinear extension Ṽ : C(K ) ×
C(K ) → C is given by Ṽ (x, y) = φt1

(xτ(y)∗) = x(t1)y(t2) (x, y ∈ C(K )). It is clear that
χt1

⊥ χt2
in C(K ), however Ṽ (χt1

, χt2
) = 1 �= 0, which implies that Ṽ is not orthogonal.

The (complex) bilinear extension of an orthogonal form V on a real C∗-algebra to its
complexification is orthogonal precisely when V satisfies the generic form of an orthogonal
form on a (complex) C∗-algebra given by the main result in [3].

Corollary 2.8 Let V : A× A → R be a continuous orthogonal form on a commutative
real C∗-algebra, let B denote the complexification of A and let Ṽ : B × B → R be the
(complex) bilinear extension of V . Then the form Ṽ is orthogonal if, and only if, V writes
in the form V (x, y) = ϕ1(xy) (x, y ∈ A), where ϕ1 is a functional in A∗.

Proof Let τ be the period-2 ∗-automorphism on B satisfying that Bτ = B and let
τ̃ : B∗ → B∗ be the involution defined by τ̃ (φ)(b) = φ(τ(b)).

Suppose Ṽ is orthogonal. By the main result in [3] (see also [1]), there exists φ ∈ B∗
satisfying Ṽ (x, y) = φ(xy), for every x, y ∈ B. Since Ṽ is an extension of V , we get
V (a, b) = 
eφ(ab) = φ(ab), for every a, b ∈ A. In particular, φ(a) ∈ R, for every a ∈ A
and hence τ̃ (φ) = φ lies in (B∗)τ̃ ≡ A∗.

Let us assume that V writes in the form V (x, y) = ϕ1(xy) (x, y ∈ A), where ϕ1
is a functional in A∗. The functional ϕ1 can be regarded as an element in B∗ satisfying
τ̃ (ϕ1) = ϕ1. It is easy to check that Ṽ (x, y) = ϕ1(xy), for every x, y ∈ B. �

3. Orthogonality preservers between commutative real C∗-algebras

Throughout this section, A1 = C(K1)
τ1 and A2 = C(K2)

τ2 will denote two unital com-
mutative real C∗-algebras, K1 and K2 will be two compact Hausdorff spaces and τi will
denote a conjugate-linear period-2 ∗-automorphism on C(Ki ) given by τi ( f )(t) = f (σi (t))
(t ∈ Ki , f ∈ C(Ki )), where σi : Ki → Ki is a period-2 homeomorphism. We shall write
B1 = C(K1) and B2 = C(K2) for the corresponding complexifications of A1 and A2,
respectively.

By the Banach–Stone theorem, every surjective isometry T : C(K1) → C(K2) is
a composition operator, that is, there exist a unitary element u in C(K2) and a home-
omorphism σ : K2 → K1 such that T ( f )(t) = (uCσ )( f )(t) := u(t) f (σ (t)) (t ∈ K2,
f ∈ C(K1)). This result led to the study of the so-called Banach–Stone theorems in different
classes of Banach spaces containing C(K )-spaces, in which their algebraic and geometric
properties are mutually determined. That is the case of general C∗-algebras (Kadison [32]
and Paterson and Sinclair [33]), JB- and JB∗-algebras (Wright and Youngson [34] and Isidro
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Linear and Multilinear Algebra 13

and Rodríguez [35]), JB∗-triples (Kaup [36] and Dang et al. [37]), real C∗-algebras (Grzesiak
[38], Kulkarni and Arundhathi [39], Kulkarni and Limaye [31] and Chu et al. [40]) and real
JB∗-triples (Isidro et al. [41], Kaup [42] and Fernández-Polo et al. [43]). In what concerns us,
we highlight that any surjective linear isometry T : C(K1)

τ1 → C(K2)
τ2 is a composition

operator given by a homeomorphism φ : K2 → K1 which satisfies σ1 ◦ φ = φ ◦ σ2 (cf.
[38] or [39] or [31, Corollary 5.2.4]).

The class of orthogonality preserving (continuous) operators between C(K )-spaces is
strictly bigger than the class of surjective isometries. Actually, a bounded linear operator
T : C(K1) → C(K2) is orthogonality preserving (equivalently, disjointness preserving)
if, and only if, there exist u in C(K2) and a mapping ϕ : K2 → K1 which is continuous
on {t ∈ K2 : u(t) �= 0} such that T ( f )(t) = (uCϕ)( f )(t) = u(t) f (ϕ(t)) (compare [8,
Example 2.2.1]).

Developing ideas given by Beckenstein et al. in [11] and [12] (see also [13]), Jarosz
showed, in [9], that the above hypothesis of T being continuous can be, in some sense,
relaxed. More concretely, for every orthogonality preserving linear mapping T : C(K1) →
C(K2), there exists a disjoint decomposition K2 = S1 ∪ S2 ∪ S3 (with S2 open, S3 closed),
and a continuous mapping ϕ from S1 ∪ S2 into K1 such that T ( f )(s) = χ(s) f (ϕ(s))
for all s ∈ S1 (where χ is a continuous, bounded, non-vanishing, scalar-valued function
on S1), T ( f )(s) = 0 for all s ∈ S3, ϕ(S2) is finite and, for each s ∈ S2, the mapping
f 	→ T ( f )(s) is not continuous. As a consequence, every orthogonality preserving linear
bijection between C(K )-spaces is (automatically) continuous. More recently, Burgos and
the authors of this note prove, in [7], that every bi-orthogonality preserving linear surjection
between two von Neumann algebras (or between two compact C∗-algebras) is automatically
continuous (compare [14,15] for recent additional generalisations).

The main goal of this section is to describe the orthogonality preserving linear mappings
between C(K )τ -spaces. Among the consequences, we establish that every orthogonality
preserving linear bijection between unital commutative real C∗-algebras is automatically
continuous. We shall provide an example of an orthogonality preserving linear bijection
between C(K )τ -spaces which is not bi-orthogonality preserving and give a characterisation
of bi-orthogonality preserving linear maps.

We shall borrow and adapt some of the ideas developed in those previously mentioned
papers (cf. [9,11,12]). In order to have a good balance between completeness and con-
ciseness, we just give some sketch of the refinements needed in our setting. In any case,
the results presented here are independent innovations and extensions of those proved by
Beckenstein, Narici, and Todd and Jarosz for C(K )-spaces.

Let T : C(K1)
τ1 → C(K2)

τ2 be an orthogonality preserving linear mapping. Keeping
in mind the notation in the previous section, we write Li := Oi ∪ Fi , where Oi and Fi are
the subsets of Ki given by Lemma 2.1. The map sending each f in C(K i)τi to its restriction
to Li is a C∗-isomorphism (and hence a surjective linear isometry) from C(K i)τi onto the
real C∗-algebra Cr (Li ) of all continuous functions f : Li → C taking real values on Fi .
Thus, studying orthogonality preserving linear maps between C(K )τ spaces is equivalent to
study orthogonality preserving linear mappings between the corresponding Cr (L)-spaces.

Henceforth, we consider an orthogonality preserving (not necessarily continuous) linear
map T : Cr (L1) → Cr (L2), where L1 and L2 are two compact Hausdorff spaces and each
Fi is a closed subset of Li . Let us consider the sets

Z1 = {s ∈ L2 : δs T is a non-zero bounded real-linear mapping},
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14 J.J. Garcés and A.M. Peralta

Z3 = {s ∈ L2 : δs T = 0}, and Z2 = L2\(Z1 ∪ Z3).

It is easy to see that Z3 is closed. Following a very usual technique (see, for example,
[9,11,12,44,45]), we can define a continuous support map ϕ : Z1 ∪ Z2 → L1. More
concretely, for each s ∈ Z1 ∪ Z2, we write supp(δs T ) for the set of all t ∈ L1 such that
for each open set U ⊆ L1 with t ∈ U there exists f ∈ Cr (L1) with coz( f ) ⊆ U and
δs(T ( f )) �= 0. Actually, following a standard argument, it can be shown that, for each
s ∈ Z1 ∪ Z2, supp(δs T ) is non-empty and reduces exactly to one point ϕ(s) ∈ L1, and
the assignment s 	→ ϕ(s) defines a continuous map from Z1 ∪ Z2 to L1. Furthermore, the
value of T ( f ) at every s ∈ Z1 depends strictly on the value f (ϕ(s)). More precisely, for
each s ∈ Z1 with ϕ(s) /∈ F1, the value T (g)(s) is the same for every function g ∈ Cr (L1)

with g ≡ i on a neighbourhood of ϕ(s). Thus, defining T (i)(s) := 0 for every s ∈ Z3 ∪ Z2
and for every s ∈ Z1 with ϕ(s) ∈ F1, and T (i)(s) := T (g)(s) for every s ∈ Z1 ∪ Z2 with
ϕ(s) /∈ F1, where g is any element in Cr (L1) with g ≡ i on a neighbourhood of ϕ(s),
we get a (well-defined) mapping T (i) : L2 → C. It should be noticed that ‘T (i)’ is just a
symbol to denoted the above mapping and not an element in the image of T . In this setting,
the identity

T ( f )(s) = T (1)(s) 
e f (ϕ(s)) + T (i)(s) �m f (ϕ(s)),

holds for every s ∈ Z1. Clearly, T (1)(s), T (i)(s) ∈ R, for every s ∈ F2 and |T (1)(s)| +
|T (i)(s)| �= 0, for every s ∈ Z1.

The following property also follows from the definition of ϕ by standard arguments:
Under the above conditions, let s be an element in Z1 ∪ Z2, then

δs T ( f ) = 0 for every f ∈ Cr (L1) with ϕ(s) /∈ coz( f ). (10)

Lemma 3.1 The mapping T (i) is bounded on the set ϕ−1(O1). Furthermore, the inequal-
ity

|T ( f )(s)| ≤ ‖T (1)‖ + sup
s̃∈ϕ−1(O1)

|T (i)(̃s)|

holds for all s ∈ Z1 and all f ∈ Cr (L1) with |
e( f )|, |�m( f )| ≤ 1.

Proof Arguing by contradiction, we suppose that, for each natural n, there exists sn ∈
ϕ−1(O1) such that |T (i)(sn)| > n3. The elements s′

ns can be chosen so that ϕ(sn) �= ϕ(sm)

for n �= m, and consequently we can find a sequence of pairwise disjoint open subsets (Un)of
O1 with ϕ(sn) ∈ Un . It is easily seen that we can define a function g = ∑∞

n=1 i gn ∈ Cr (L1)

with coz(gn) ⊂ Un , 0 ≤ gn ≤ 1
n2 , and gn ≡ 1

n2 on a neighbourhood of sn , for all n. By the
form of g, and since T is orthogonality preserving, we have |T (g)(sn)| = n2|T (i)(sn)| > n
for all n, which is absurd. �

We can easily show now that Z2 is an open subset of L2. With this aim, we consider an
element s0 in Z2. We can pick a function f ∈ Cr (L1) such that ‖ f ‖ ≤ 1 and

|T ( f )(s0)| > 1 + ‖T (1)‖ + sup
s̃∈ϕ−1(O1)

|T (i)(̃s)|.

Since |T ( f )(s)| ≤ ‖T (1)‖ + sup̃s∈ϕ−1(O1)
|T (i)(̃s)| < |T ( f )(s0)| − 1, for every s ∈

Z1 ∪ Z3, we conclude that there exists an open neighbourhood of s0 contained in Z2.
The next theorem resumes the above discussion.
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Linear and Multilinear Algebra 15

Theorem 3.2 In the notation above, let T : Cr (L1) → Cr (L2) be an orthogonality
preserving linear mapping. Then L2 decomposes as the union of three mutually disjoint
subsets Z1, Z2, and Z3, where Z2 is open and Z3 is closed, there exist a continuous support
map ϕ : Z1 ∪ Z2 → L1, and a bounded mapping T (i) : L2 → C which is continuous on
ϕ−1(O1) satisfying:

T (i)(s) ∈ R (∀s ∈ F2), T (i)(s) = 0, (∀s ∈ Z3 ∪ Z2 and ∀s ∈ Z1 with ϕ(s) ∈ F1),

|T (1)(s)| + |T (i)(s)| �= 0, (∀s ∈ Z1), (11)

T ( f )(s) = T (1)(s) 
e f (ϕ(s)) + T (i)(s) �m f (ϕ(s)), (∀s ∈ Z1, f ∈ Cr (L1)), (12)

T ( f )(s) = 0, (∀s ∈ Z3, f ∈ Cr (L1)),

and for each s ∈ L2, the mapping Cr (L1) → C, f 	→ T ( f (s)), is unbounded if, and only
if, s ∈ Z2. Furthermore, the set ϕ(Z2) is finite.

Proof Everything has been substantiated except perhaps the statement concerning the set
ϕ(Z2).Arguing by contradiction, we assume the existence of a sequence (sn) in Z2 such that
ϕ(sn) �= ϕ(sm) for every n �= m. Find a sequence (Un) of mutually disjoint open subsets of
L1 satisfying ϕ(sn) ∈ Un and a sequence ( fn) ⊆ Cr (L1) such that ‖ fn‖ ≤ 1

n , coz( fn) ⊆ Un

and |δsn T ( fn)| > n, for every n ∈ N. The element f = ∑∞
n=1 fn lies in Cr (L1), and for

each natural n0, fn0 ⊥ ∑∞
n=1,n �=n0

fn . Thus, |δsn0
T ( f )| ≥ |δsn0

T ( fn0)| > n0, which is
impossible. �
Remark 3.3 The mapping T (i) : L2 → C has been defined to satisfy T (i)(s) = 0, for all
s ∈ Z3 ∪ Z2 and for all s ∈ Z1 with ϕ(s) ∈ F1. It should be noticed here that the value
T (i)(s) is uniquely determined only when s ∈ Z1 and ϕ(s) /∈ F1. There are some other
choices for the values of T (i)(s) at s ∈ Z3 ∪ Z2 and at s ∈ Z1 with ϕ(s) ∈ F1 under which
conditions (11) and (12) are satisfied.

Remark 3.4 We shall now explore some of the consequences derived from Theorem 3.2.
Let T : Cr (L1) → Cr (L2) be an orthogonality preserving linear mapping.

(a) The set Z3 is empty whenever T is surjective.
(b) Z3 = ∅ implies that Z1 = L2\Z2 is a compact subset of L2.

(c) ϕ(Z2) is a finite set of non-isolated points in L1. Indeed, if ϕ(s0) = t0 is isolated
for some s0 ∈ Z2, then we can find an open set U ⊆ L1 such that U ∩ K1 = {t0}.
Therefore, for each f ∈ Cr (L1) with f (t0) = 0 we have δs0 T ( f ) = 0. Pick an
arbitrary h ∈ Cr (L1). Clearly, χt0

∈ Cr (L1), while iχt0
lies in Cr (L1) if, and only

if, t0 /∈ F1. Therefore,

h0 = 
e(h(t0))χt0
+ �m(h(t0)) iχt0

lies in Cr (L1) and (h − h0)(t0) = 0.
Assume first that t0 /∈ F1. Denoting λ0 = δs0 T (χt0

) and μ0 = δs0 T (iχt0
), we have

δs0 T (h) = δs0 T (h0) = λ0
e(h(t0)) + μ0�m(h(t0)

= λ0 − iμ0

2
δt0(h) + λ0 + iμ0

2
δt0(h).
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16 J.J. Garcés and A.M. Peralta

This shows that δs0 T = λ0−iμ0
2 δt0 + λ0+iμ0

2 δt0 is a continuous mapping from Cr (L1)

to C, which is impossible.
When t0 ∈ F1 we have δs0 T = λ0δt0 is a continuous mapping from Cr (L1) to R,
which is also impossible.

(d) T surjective implies ϕ(Z1 ∩ O2) ⊆ O1. Suppose, on the contrary that there exists
s0 ∈ Z1 ∩ O2 with ϕ(s0) ∈ F1. By (12),

T ( f )(s0) = T (1)(s0)
e f (ϕ(s0)),

for every f ∈ Cr (L1). It follows from the surjectivity of T , together with the condition
s0 ∈ O2, that for every complex number ω there exists a real λ satisfying ω =
T (1)(s0)λ, which is impossible.

(e) Suppose T is surjective and fix s0 ∈ Z1 ∩ O2. The mapping δs0 T is a bounded
real-linear mapping from Cr (L1) onto C. On the other hand, by (12),

δs0 T ( f ) = T (1)(s0)
e f (ϕ(s0)) + T (i)(s0)�m f (ϕ(s0)), (∀ f ∈ Cr (L1)).

Thus, T being surjective implies that the space CR = R × R is linearly spanned
by the elements T (1)(s0) and T (i)(s0). Therefore, for each s0 ∈ Z1 ∩ O2, the set
{T (1)(s0), T (i)(s0)} is a basis of CR = R × R. Consequently, when T is surjective
and s0 ∈ Z1 ∩O2, the condition T ( f )(s0) = 0 implies f (ϕ(s0)) = 0. For any other
s1 ∈ Z1 ∩ O2 with ϕ(s0) = ϕ(s1), we have:

T ( f )(s0) = 0 ⇒ f (ϕ(s0)) = 0 ⇒ T ( f )(s1) = 0.

The fact that Cr (L2) separates points implies that s1 = s0. Thus, ϕ is injective on
Z1 ∩ O2.

We can now state the main result of this section which affirms that every orthogonality
preserving linear bijection between unital commutative real C∗-algebras is (automatically)
continuous.

Theorem 3.5 Every orthogonality preserving linear bijection between unital commuta-
tive (real) C∗-algebras is (automatically) continuous.

Proof Since T is surjective, Z3 = ∅, and hence Z1 = L2\Z2 is a compact subset of
L2. It is also clear that ϕ(L2) is compact. We claim that ϕ(L2) = L1. Otherwise, there
would exist a non-zero function f ∈ Cr (L1) with coz( f ) ⊆ L1\ϕ(L2). Thus, by (10),
T ( f ) = 0, contradicting the injectivity of T . By Remark 3.4 (c), ϕ(Z1) = ϕ(Z1) =
ϕ(L2) = ϕ(Z1) ∪ ϕ(Z2) = L1.

We next see that Z2 = ∅. Otherwise we can take g ∈ Cr (L2) with ∅ �= coz(g) ⊂ Z2.

Let h = T −1(g). Obviously T h(s) = 0 whenever s ∈ Z1. We claim that h(t) = 0, for
every t ∈ ϕ(Z1) \ ϕ(Z2). Let us fix t ∈ ϕ(Z1) \ ϕ(Z2). Since ϕ(Z2) is a finite set there are
disjoint open sets U1, U2 such that t ∈ U1, ϕ(Z2) ⊂ U2. Let f ∈ C(L1, R) be such that
f (t) �= 0 and coz( f ) ⊂ U1. We see that T ( f h) = 0. Indeed, let s ∈ L2 = Z1 ∪ Z2. If s lies
in Z1, then the maps f h and f (ϕ(s))h lie in Cr (L1) and coincide at ϕ(s). Since T is linear
over R and f takes real values, we deduce, by (12), that T ( f h)(s) = f (ϕ(s))T h(s) = 0.

If s ∈ Z2 then, since ϕ(s) /∈ coz( f h), then δs T ( f h) = T ( f h)(s) = 0.
We have shown that T ( f h) = 0. Thus, since T is injective, f h = 0 and therefore

h(t) = 0. We have therefore proved that coz(h) ⊂ ϕ(Z2) which is a finite set. This means
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Linear and Multilinear Algebra 17

that h must be a finite linear combination of characteristic function on points of ϕ(Z2) and
these points must be isolated which is impossible, since by (c) in Remark 3.4 no point in
ϕ(Z2) can be isolated. We have proved that Z2 = ∅. Now the fact that T is continuous
follows easily. �

The above theorem is the first step toward extending, to the real setting, those results
proved in [7,9,14,46–48] for (complex) C∗-algebras.

Orthogonality preserving linear bijections enjoy an interesting additional property.

Proposition 3.6 In the notation of this section, let T : Cr (L1) → Cr (L2) be an
orthogonality preserving linear bijection. Then T −1 preserves invertible elements, that
is, T −1(g) is invertible whenever g is an invertible element in Cr (L2).

Proof Take an invertible element g ∈ Cr (L2). Let f be the unique element in Cr (L1)

satisfying T ( f ) = g. Theorem 3.2 implies that

0 �= g(s) = T ( f )(s) = T (1)(s) 
e f (ϕ(s)) + T (i)(s) �m f (ϕ(s)),

for every s ∈ Z1. This assures that f (ϕ(s)) �= 0, for every s ∈ Z1, and since ϕ(Z1) = L1,

f = T −1(g) must be invertible in Cr (L1). �
In the setting of complex Banach algebras, it follows from the Gleason–Kahane–Żelazko

theorem that a linear transformation φ from a unital, commutative, complex Banach algebra
A into C satisfying φ(1) = 1 and φ(a) �= 0 for every invertible element a in A is
multiplicative, that is, φ(ab) = φ(a)φ(b) (see [49,50]). Although, the Gleason–Kahane–
Żelazko theorem fails for real Banach algebras, Kulkarni found in [51] the following
reformulation: a linear map φ from a real unital Banach algebra A into the complex numbers
is multiplicative if ϕ(1) = 1 and φ(a)2 + φ(b)2 �= 0 for every a, b ∈ A with ab = ba and
a2 +b2 invertible. It is not clear that statement (b) in the above proposition can be improved
to get the hypothesis of Kulkarni’s theorem. The structure of orthogonality preserving linear
mappings between Cr (L)-spaces described in Theorem 3.2 invites us to affirm that they are
not necessarily multiplicative.

3.1. Bi-orthogonality preservers

As a consequence of the description of orthogonality preserving linear maps given in [9], it
can be shown that an orthogonality preserving linear bijection between (complex) C(K )-
spaces is bi-orthogonality preserving. It is natural to ask wether every orthogonality pre-
serving linear bijection between commutative (unital) real C∗-algebras is bi-orthogonality
preserving.

This is known to be true in two cases: first, between spaces CR(K ) of real (and also
complex) valued functions on a compact Hausdorff space K , as it is well known; second,
between spaces of the type CR(K ; R

n) (compare [44, Section 3]). Spaces like those we are
dealing with in this paper need not satisfy this property, that is, there exists an orthogonality
preserving linear bijection T : Cr (L1) → Cr (L2) which is not bi-orthogonality preserving
(and even L1 and L2 are not homeomorphic either).

Example 3.7 Let L1 = {t1, t2, t3} L2 = {s1, s2, s3, s4} with O1 = {t1, t3}, O2 = {s1},
F1 = {t2} and F2 = {s2, s3, s4}. Define ϕ : L2 → L1 by ϕ(si ) = ti , for i = 1, 2, and
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18 J.J. Garcés and A.M. Peralta

ϕ(si ) = t3, for i = 3, 4. It is easy to check that T ( f )(si ) = f (ϕ(si )) if i = 1, 2, and
T ( f )(s3) = 
e f (t3), T ( f )(s4) = �m f (t3) is an orthogonality preserving linear bijection,
but T −1 is not orthogonality preserving.

In the above example, ϕ−1(O1) ∩ F2 is non-empty. Our next result shows that a
topological condition on F2 assures that an orthogonality preserving linear bijection between
unital commutative real C∗-algebras is bi-orthogonality preserving.

Proposition 3.8 In the notation of this section, let T : Cr (L1) → Cr (L2) be an
orthogonality preserving linear bijection (not assumed to be bounded). The following
statements hold:

(a) If T is bi-orthogonality preserving then ϕ : L2 → L1 is a (surjective) homeomor-
phism, ϕ(F2) = F1, and ϕ(O2) = O1. In particular, ϕ−1(O1) ∩ F2 = ∅.

(b) If F2 has empty interior then T is biorthogonality preserving.

Proof (a) If T is bi-orthogonality preserving, it can be easily seen that ϕ : L2 → L1 is a
homeomorphism, and for each s ∈ L2, supp(δϕ(s)T −1) = {s}. By Remark 3.4(d), applied
to T and T −1, we have ϕ(F2) = F1 and ϕ(O2) = O1. Then ϕ−1(O1) ∩ F2 = ∅. So, a) is
clear.

(b) Let us assume that F2 has empty interior. Arguing by contradiction we suppose that
T −1 is not orthogonality preserving. Then there exist f1, f2 ∈ Cr (L1) with f1 f2 �= 0, but
T ( f1) ⊥ T ( f2). Thus U := coz( f1) ∩ coz( f2) is a non-empty open subset of L1. Keeping
again the notation of Theorem 3.2 for T , we recall that, by Theorem 3.5 and Remark 3.4,
Z3 = ∅, Z2 = ∅, ϕ(L2) = L1, ϕ(O2) ⊂ O1, ϕ|O2 is injective, and for each s ∈ O2, and
{T (1)(s), T (i)(s)} is a basis of CR = R × R.

By the form of T , there are no points of ϕ(O2) in U = coz( f1) ∩ coz( f2) (because
for each s ∈ O2, T ( f )(s) �= 0 when f (ϕ(s)) �= 0). Now, let k be a non-zero element
in C(L1, R), with coz(k) ⊆ coz( f1) ∩ coz( f2). By Theorem 3.2 (12), it is clear that
ϕ(coz(T (k))) ⊆ coz(k), and hence, since ϕ(O2) ⊆ O1, coz(T (k)) is a non-empty subset
of F2, against our hypotheses. �

As we have already seen, an orthogonality preserving linear bijection between Cr (L)-
spaces needs not to be biorthogonality preserving. Example 3.7 also shows that, unlike in the
complex case, the existence of an orthogonality preserving linear bijection between Cr (L)-
spaces does not guarantee that the corresponding compacts spaces are homeomorphic.
We next provide a characterization of those (linear) mappings which are bi-orthogonality
preserving. As a consequence, we shall see that if there exists a bi-orthogonality preserving
linear map T : Cr (L1) → Cr (L2) then L1 and L2 are homeomorphic.

Theorem 3.9 Let T : Cr (L1) → Cr (L2) be a mapping. The following statements are
equivalent:

(a) T is a bi-orthogonality preserving linear surjection;
(b) There exists a (surjective) homeomorphism ϕ : L2 → L1 with ϕ(O2) = O1, a

function a1 = γ1 + iγ2 in Cr (L2) with a1(s) �= 0 for all s ∈ L2, and a function
a2 = η1 + iη2 : L2 → C continuous on O2 with the property that

0 < inf
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ ≤ sup
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ < +∞,
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such that

T ( f )(s) = a1(s) 
e f (ϕ(s)) + a2(s) �m f (ϕ(s))

for all s ∈ L2 and f ∈ Cr (L1).

Proof (a) ⇒ (b) Since every bi-orthogonality preserving linear mapping is injective,
we can assume that T : Cr (L1) → Cr (L2) is a bi-orthogonality preserving linear bijection.
We keep the notation given in Theorem 3.2. We have already shown that Z3 = ∅, Z2 = ∅,
ϕ : L2 → L1 is a surjective homeomorphism, ϕ(O2) = O1, and for each s ∈ O2,
{T (1)(s), T (i)(s)} is a basis of CR = R × R (compare Theorem 3.5, Remark 3.4 and
Proposition 3.8). Taking a1 = T (1) = γ1 + iγ2 and a2 = T (i) = η1 + iη2, we only have
to show that

0 < inf
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ ≤ sup
s∈O2

∣∣∣∣det

(
γ1(s) η1(s)
γ2(s) η2(s)

)∣∣∣∣ < +∞.

Let us denote Ms =
(

γ1(s) η1(s)
iγ2(s) iη2(s)

)
. Clearly det(Ms) �= 0, for every s ∈ O2 and

T ( f )(s) = Ms ·
( 
e f (ϕ(s))

�m f (ϕ(s))

)
, for every f ∈ Cr (L1), s ∈ L2. By the boundedness of

T (1) : L2 → C and T (i)|O2 : O2 → C (see Lemma 3.1) there exists M > 0 such that
|det (Ms)| ≤ M for all s ∈ O2.

Applying the above arguments to the mapping T −1 we find a surjective homeomorphism
ψ = ϕ−1 : L1 → L2, a mapping T −1(i) : L1 → L2 and m > 0, such that ψ(O1) =
O2, for each t ∈ O1, {T −1(1)(t), T −1(i)(t)} is a basis of CR = R × R, T −1(g)(t) =
Nt ·

( 
eg(ψ(t))
�mg(ψ(t))

)
(g ∈ Cr (L2), t ∈ L1), |det(Nt )| ≤ m, for all t ∈ O1, where

Nt =
( 
eT −1(1)(t) 
eT −1(i)(t)

i�mT −1(1)(t) i�mT −1(i)(t)

)
. It can be easily seen that, for each s ∈ O2,

Nϕ(s) = M−1
s , which shows that |det (Ms)| ≥ 1

m , for all s ∈ O2.

(b) ⇒ (a) Let T : Cr (L1) :→ Cr (L2) be a mapping satisfying the hypothesis in (b).

Clearly, T is linear, and since ϕ(F2) = F1, T f (s) ∈ R for all s ∈ F2 and f ∈ Cr (L1) (that
is, T ( f ) ∈ Cr (L2)). We can easily check that, under these hypothesis, T is injective and
preserves orthogonality.

We shall now prove that T is surjective. Indeed, for each s ∈ O2

T ( f )(s) =
( 
eg(s)

�mg(s)

)
=

(
γ1(s) η1(s)
iγ2(s) iη2(s)

)
·
( 
e f (ϕ(s))

�m f (ϕ(s))

)

= Ms ·
( 
e f (ϕ(s))

�m f (ϕ(s))

)
,

thus, ( 
e f (ϕ(s))
�m f (ϕ(s))

)
= M−1

s ·
( 
eg(s)

�mg(s)

)
.

We define b1(t) : L1 → C and b2 : O1 → C by b1(t) = γ̃1(t) + i γ̃2(t) and b2 =
η̃1(t) + i η̃2(t) (t ∈ O1), where M−1

ϕ−1(t)
=

(
γ̃1(t) η̃1(t)
i γ̃2(t) i η̃2(t)

)
, and b1(t) = 1

γ1(ϕ
−1(t))

, for

every t ∈ F1. Then S : Cr (L2) → Cr (L1), defined by S(g)(t) = b1(t) 
eg(ϕ−1(t)) +
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20 J.J. Garcés and A.M. Peralta

b2(t) �mg(ϕ−1(t)), is linear, preserves orthogonality and it is easy to check that S = T −1.

It follows that T is bi-orthogonality preserving. �
Let T be a bi-orthogonality preserving linear mapping with associated homeomorphism

ϕ : L2 → L1. Clearly, the operator S : Cr (L1) → Cr (L2), S( f )(s) := f (ϕ(s)) is a
∗-isomorphism. Having in mind that a linear mapping T : A → B between real C∗-algebras
is a ∗-isomorphism if, and only if, the complex linear extension T̃ : A ⊕ i A → B ⊕ i B,
T̃ (a + ib) = T (a) + iT (b) is a ∗-isomorphism, we get the following corollary.

Corollary 3.10 The following statements are equivalent:

(a) There exists a bi-orthogonality preserving linear bijection T : Cr (L1) → Cr (L2);
(b) There exists a C∗-isomorphism S : Cr (L1) → Cr (L2);
(c) There exists a C∗-isomorphism S̃ : C(L1) → C(L2);
(d) L1 and L2 are homeomorphic.
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LOCAL TRIPLE DERIVATIONS ON C∗-ALGEBRAS

MARIA BURGOS, FRANCISCO J. FERNÁNDEZ-POLO, JORGE J. GARCÉS,
AND ANTONIO M. PERALTA

Abstract. We prove that every bounded local triple derivation on a
unital C∗-algebra is a triple derivation. A similar statement is established
in the category of unital JB∗-algebras.

1. Introduction

In a pioneering work, R. Kadison started, in 1990, the study of local
derivations from an associative algebra R into an R-bimodule M (cf. [16]).
We recall that a linear mapping D : R → M is a derivation or an associative
derivation whenever D(ab) = D(a)b + aD(b), for every a, b ∈ R. In words
of Kadison “The defining property of a linear mapping T : R → M to be
a local (associative) derivation is that for each a in R, there is a derivation
Da : R → M such that T (a) = Da(a)”. R. Kadison proved that each
norm-continuous local derivation of a von Neumann algebra W into a dual
W -bimodule is a derivation (cf. [16, Theorem A]). B.E. Johnson extended
the above result proving that every (continuous) local derivations from any
C∗-algebra B into any Banach B-bimodule is a derivation (see [15, Theorem
5.3]). Concerning the hypothesis of continuity in the above result, let us
briefly notice that J.R. Ringrose proved that every (associative) derivation
from a C∗-algebra B to a Banach B-bimodule X is continuous (cf. [24]). In
[15], B.E. Johnson also gave an automatic continuity result, showing that
local derivations on C∗-algebras are continuous even if not assumed a priori
to be so.

The above results motivated a multitude of studies on local derivations on
C∗-algebras. There exists a rich list of references revisiting, rediscovering and
extending Kadison-Johnson theorem in many directions (see, for example,
[4, 8, 9, 10, 18, 19, 20, 25] and [26]).

2000 Mathematics Subject Classification. Primary 47B47, 46L57; Secondary 17C65,
46L05, 46L08 .
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generalised Jordan derivation, unital C∗-algebra.
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C∗-algebras belong to a more general class of Banach spaces, called JB∗-
triples, which is defined in terms of algebraic, topological and geometric
axioms mutually interplaying (see section 2 for more details). Originally
introduced by W. Kaup in the classification of bounded symmetric domains
on arbitrary complex Banach spaces (cf. [17]), JB∗-triples now have their
own importance in Functional Analysis and Geometry of Banach spaces. A
triple or ternary derivation on a JB∗-triple E is a linear mapping δ : E → E

satisfying:

(1) δ {a, b, c} = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)} ,

for every a, b, c ∈ E. In the setting of JB∗-triples, J.T. Barton and Y.
Friedman proved that every triple derivation on a JB∗-triple is continuous
(cf. [1], see also [11]). A local triple derivation on E is a linear map T :
E → E such that for each a in E there exists a triple derivation δa on E

satisfying T (a) = δa(a).

Quite recently, Jordan Banach triple modules over a JB∗-triple and triple
derivations from a JB∗-triple E to a Jordan Banach triple E-module X were
introduced by B. Russo and the fourth author of this note. In [23] these au-
thors provide necessary and sufficient conditions under which a derivation
from E into X is continuous. We refer to [23] and [12] for the basic defi-
nitions and results on JB∗-triples, Jordan Banach triple modules and triple
derivations not included in this note. Following [23], a conjugate linear map-
ping δ : E → X is a triple or ternary derivation whenever it satisfies the
above identity (1). In particular, the dual, E∗, of a JB∗-triple E, is a Jordan
Banach triple E-module and every triple derivation from E into E∗ is con-
tinuous (see [23, Corollary 15]). Furthermore, every triple derivation from a
C∗-algebra B to a Banach triple B-module is automatically continuous [23,
Theorem 20]. A bounded conjugate linear operator T : E → X is said to
be a local triple derivation if for each a ∈ E, there exists a triple derivation
δa : E → X satisfying T (a) = δa(a). Clearly, every triple derivation is a
local triple derivation, while the reciprocal implication is an open problem.

Problem 1. Is every local triple derivation on a JB∗-triple E (or more
generally, every local triple derivation from E into a Jordan Banach triple
E-module) a triple derivation?

In a Conference held in Hong-Kong in April 2012, M. Mackey announced a
result establishing that, for each von Neumann algebra (and more generally,
for every JBW∗-triple, i.e. a JB∗-triple which is also a dual Banach space),
W, every local triple derivation T : W → W is a triple derivation (see
[21, Theorem 5.11]). Actually, the arguments provided by Mackey are also
valid to prove that every local triple derivation on a compact JB∗-triple
is a triple derivation. The proofs and techniques applied by M. Mackey
in this result depend heavily on the particular structure of a JBW∗-triple
and the abundance of tripotent elements in this setting. Mackey’s theorem
is an appropriate version of the aforementioned Kadison’s theorem. The
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corresponding JB∗-triple version of Johnson’s theorem is an open problem.
Part of the above Problem 1 appears in [21, Conjecture 6.2 (C1) and (C3)].

Every C∗-algebraB is a JB∗-triple with product {a, b, c} = 1
2 (ab

∗c+ cb∗a).
Triple and local triple derivations on B make sense in this setting without
any need to appeal to the above general concepts on JB∗-triple setting. The
following C∗-version of the above Problem 1 is interesting by itself.

Problem 2. Is every local triple derivation on a C∗-algebra B a triple
derivation?

In this paper we focus on Problem 2. Our main result shows that every
local triple derivation on a unital C∗-algebra is a triple derivation (Theorem
10). Section 3 contains a similar statement for local triple derivations on a
unital JB∗-algebra. The results presented here connect local triple deriva-
tions on a unital C∗-algebra with generalised derivations, a concept studied
by J. Li and Zh. Pan in [19]. We recall that a linear mapping D from a uni-
tal C∗-algebra A to a (unital) Banach A-bimodule X is called a generalised
derivation whenever the identity

D(ab) = D(a)b+ aD(b)− aD(1)b

holds for every a, b in A. We shall say that D is a generalised Jordan
derivation whenever D(a ◦ b) = D(a) ◦ b + a ◦ D(b) − Ua,bD(1), for ev-

ery a, b in A, where the Jordan product is given by a ◦ b := 1
2(ab + ba) and

Ua,b(x) :=
1
2(axb+ bxa). Every generalised (Jordan) derivation D : A → X

with D(1) = 0 is a (Jordan) derivation. Let A be a C∗-subalgebra of a
C∗-algebra B. Suppose B is unital and A contains the unit, 1, of B. The
C∗-algebra B can be regarded as A-bimodule with respect to its original
product and as a (complex) Jordan Banach triple A-module with respect to
{a, b, c} = 1

2 (ab
∗c+ cb∗a). In a first approach we prove that every (linear)

local triple derivation from A to B is a generalised derivation. The main
result establishes that every local triple derivation on a unital C∗-algebra
is an associative derivation plus an inner triple derivation (see Theorem 10
and Corollary 7).

Although the proofs and results contained in this paper are developed
only with techniques of C∗-algebra theory, at some stage we have opted for
a more general result in the setting of JB∗-triples and to pose Problem 1 in
the more general context.

2. Local triple derivations on unital C
∗
-algebras

We recall that a JB∗-triple is a complex Banach space E equipped with a
continuous triple product {., ., .} : E ×E ×E → E, which is symmetric and
linear in the first and third variables, conjugate linear in the second variable
and satisfies:

(a) The mapping δ(a, b) := L(a, b)−L(b, a) is a triple derivation on E, where
L(a, b) is the operator on E given by L(a, b)x = {a, b, x} ;
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(b) L(a, a) is an hermitian operator with non-negative spectrum;
(c) ‖L(a, a)‖ = ‖a‖2.

Every C∗-algebra is a JB∗-triple with respect {a, b, c} = 1
2(ab

∗c+ cb∗a).

A triple or ternary derivation δ on E is said to be inner if it can be written
as a finite sum of derivations of the form δ(a, b) (a, b ∈ E).

Throughout this section, A will denote a C∗-subalgebra of a unital C∗-
algebra, B, containing the unit of B. The self-adjoint part of a C∗-algebra
B will be denoted by Bsa. The C

∗-algebra B can be regarded as A-bimodule
with respect to its original product and as a (complex) Jordan Banach triple
A-module with respect to {a, b, c} = 1

2 (ab
∗c+ cb∗a). By an abuse of nota-

tion, a linear map δ : A → B is called a triple derivation whenever it sat-
isfies identity (1) (beware that this is not exactly the definition introduced
in [12]). A bounded linear operator T : A → B is a local triple derivation if
for each a in A there exists a (linear) triple derivation δa : A → B satisfying
δa(a) = T (a).

Lemma 3. [11, Lemma 1] Let T : A → B be a local triple derivation. Then
T (1)∗ = −T (1).

Proof. Take a triple derivation δ1 : A → B satisfying T (1) = δ1(1). In this
case,

T (1) = δ1 {1, 1, 1} = 2 {δ1(1), 1, 1} + {1, δ1(1), 1}

= 2δ1(1) + δ1(1)
∗ = 2T (1) + T (1)∗,

which implies that T (1)∗ = −T (1). �
The above lemma was also established in [11, Proof of Lemma 1] and

rediscovered in [21, Lemma 3.1], the proof is included here for completeness
reasons.

We shall deduce now some consequences of the above Lemma 3. In the
setting above, the mapping δ(T (1), 1) = L(T (1), 1)−L(1, T (1)) : A → B is a
triple or ternary derivation and δ(T (1), 1)(1) = {T (1), 1, 1} − {1, T (1), 1} =
T (1)− T (1)∗ = 2T (1). Thus,

(2) T̃ = T −
1

2
δ(T (1), 1) = T − δ

(
1

2
T (1), 1

)

is a local triple derivation and T̃ (1) = T (1)− T (1) = 0.

We can exhibit now some examples of generalised derivations which are
not local triple derivation. A basic example is described as follows: let a be
an element in a C∗-algebra B, the mapping adja : B → B, x 7→ adja(x) :=
ax − xa, is an example of an associative derivation on B. It is easy to see
that the operator Ga : B → B, x 7→ Ga(x) := ax + xa, is an example of a
generalised derivation on B. Since, in the case of B being unital, Ga(1) = 2a,
it follows that Ga is not a local ternary derivation whenever a∗ 6= −a.

The next lemma is established in the general setting of JB∗-triples al-
though we shall only require the corresponding version for C∗-algebras.
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Previously, we recall that elements a, b in a JB∗-triple, E, are said to be
orthogonal (a ⊥ b for short) if L(a, b) = 0. By Lemma 1 in [2] we know that

a ⊥ b ⇔ {a, a, b} = 0 ⇔ {b, b, a} = 0.

When a C∗-algebra B is regarded as a JB∗-triple, it is known that elements
a, b in B are orthogonal if, and only if, ab∗ = 0 = b∗a = 0 (cf. [3, §4]). When
B is commutative, a ⊥ b if, and only if, ab = 0.

Lemma 4. Let E be a JB∗-subtriple of a JB∗-triple F , where the latter is
seen as a Jordan Banach triple E-module with respect to its natural triple
product. Let T : E → F be a local triple derivation. Then the products of
the form {a, T (b), c} vanish for every a, b, c in E with a ⊥ b ⊥ c.

Proof. Let us take a, b, c in E satisfying a ⊥ b ⊥ c, and a triple derivation
δb : E → F such that δb(b) = T (b). The identity

{a, T (b), c} = {a, δb(b), c} = δb {a, b, c} − {δb(a), b, c} − {a, b, δb(c)} = 0,

proves the statement. �
It is due to B.E. Johnson that every bounded Jordan derivation from

a C∗-algebra A to a Banach A-bimodule is an associative derivation (cf.
[14]). It is also known that every Jordan derivation from a C∗-algebra A to
a Banach A-bimodule or to a Jordan Banach A-module is continuous (cf.
[23, §1]). Therefore, every generalised Jordan derivation D from a unital
C∗-algebra A to a Banach A-bimodule with D(1) = 0 is a bounded Jordan
derivation and hence a continuous associative derivation.

We shall explore now the connections between generalised (Jordan) deriva-
tions and triple derivations from A to B. Let δ : A → B be a triple deriva-
tion. By Lemma 3, δ(1)∗ = −δ(1), and hence

δ(a ◦ b) = δ {a, 1, b} = {δ(a), 1, b} + {a, 1, δ(b)} + {a, δ(1), b}

= δ(a) ◦ b+ a ◦ δ(b) + Ua,b(δ(1)
∗) = δ(a) ◦ b+ a ◦ δ(b) − Ua,b(δ(1)),

for every a, b in A, which shows that δ is a generalised Jordan derivation
(compare also [21, Lemma 3.1]).

We shall focus now our attention on local triple derivations on a commu-
tative unital C∗-algebra.

Proposition 5. Let us assume that A is commutative. Then every local
triple derivation T : A → B is a generalised Jordan derivation.

Proof. Let us fix an arbitrary ϕ ∈ B∗ and define Wϕ : A × A × A → C a
mapping given by Wϕ(a, b, c) := ϕ ({a, T (b), c}). Clearly, Wϕ is linear and
symmetric in a and c and conjugate linear in b. Lemma 4 assures that

(3) Wϕ(a, b, c) = ϕ {a, T (b), c} =
1

2
ϕ (aT (b)∗c+ cT (b)∗a) = 0,

whenever a ⊥ b ⊥ c (or equivalently, ab = bc = 0). Fix a, b ∈ A with ab = 0.
The form V (s, t) := Wϕ(a, bs, t) is linear in t and conjugate linear in s and
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V (s, t) = 0 for every s, t ∈ A with st = 0. That is, V an orthogonal form in
the terminology of Goldstein in [6]. It follows from [6, Theorem 1.10] (see
also [7] or [22]) that there exists φ ∈ A∗ satisfying

(4) V (s, t) = φ(s∗t), ∀s, t ∈ A.

It follows from (4) that

(5) Wϕ(a, bs, t) = V (s, t) = V (1, s∗t) = Wϕ(a, b, s
∗t)

for every s, t, a, b ∈ A with ab = 0. Fix s, t ∈ A, the above equation
(5) shows that the form V2(x, y) := Wϕ(x, ys, t) − Wϕ(x, y, s

∗t) is orthog-
onal. Again Goldstein’s theorem shows the existence of φ1 ∈ A∗ satis-
fying V2(x, y) = φ1(xy

∗), for every x, y ∈ A. Consequently, V2(x, y) =
V2(1, x

∗y) = V2(xy
∗, 1), for all x, y ∈ A. We have therefore proved that

Wϕ(x, ys, t)−Wϕ(x, y, s
∗t) = Wϕ(xy

∗, s, t)−Wϕ(xy
∗, 1, s∗t),

or equivalently,

ϕ ({x, T (ys), t} − {x, T (y), s∗t} − {xy∗, T (s), t} + {xy∗, T (1), s∗t}) = 0,

for every x, y, s, t ∈ A, ϕ ∈ B∗. The arbitrariness of ϕ and the Hahn-Banach
theorem give

(6) {x, T (ys), t} = {x, T (y), s∗t}+ {xy∗, T (s), t} − {xy∗, T (1), s∗t} .

Finally, taking x = t = 1, we have

T (ys)∗ = T (y)∗ ◦ s∗ + y∗ ◦ T (s)∗ − Uy∗,s∗ (T (1)
∗) ,

which shows that T is a generalised Jordan derivation. �

Let us make some observations to the proof of the above proposition. The
identity (6) holds for every x, y, s, t in A. Moreover, since, by Goldstine’s
theorem, the unit ball of A is weak∗-dense in the unit ball of A∗∗, by Sakai’s
theorem, the products of A∗∗ and of B∗∗ are separately weak∗-continuous,
and T ∗∗ is weak∗-continuous, the equality

(7) {x, T ∗∗(ys), t} = {x, T ∗∗(y), s∗t}+ {xy∗, T ∗∗(s), t} − {xy∗, T (1), s∗t} .

holds for every x, y, s, t in A∗∗, and hence T ∗∗ also is a generalised Jordan
derivation.

We can prove now a stronger version of Proposition 5 which is a subtle
variant of [16, Sublemma 5] and [19, Proposition 1.1].

Proposition 6. In the hypothesis of Proposition 5, let T : A → B be a local
triple derivation. Then for each a, b, c ∈ A with ab = bc = 0 we have

aT (b)∗c = aT (b∗)∗c = 0.

Proof. Fix a, b, c ∈ A with ab = bc = 0. Let us identify A with some C(K)
for a suitable compact Hausdorff space K. Let p denote the range projection
of b in A∗∗, that is p = χ

S(b)
, where S(b) := {t ∈ K : b(t) 6= 0} is the co-zero

set of b. Observe that ap = 0 = pc and pb = bp = b.
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By (7), we have

(1− p)T (b)∗(1− p) = {1− p, T (b), 1 − p}

= {1− p, T (bp), 1− p} = {1− p, T (b), p(1 − p)}+ {(1− p)b∗, T ∗∗(p), 1− p}

−{(1− p)b∗, T (1), p(1 − p)} = 0.

Therefore, aT (b)∗c = a(1 − p)T (b)∗(1− p)c = 0. �

One of the main results established by J. Li and Zh. Pan in [19, Corollary
2.9] implies that a bounded linear operator T : A → B is a generalised
derivation if, and only if, aT (b)c = 0, whenever ab = bc = 0. Let us
suppose that, in the above hypothesis, A is commutative and T : A → B

is a local triple derivation. Proposition 6 assures that aT (b∗)∗c = 0, for
every ab = bc = 0 in A, and consequently, the mapping x 7→ T (x∗)∗ is a
generalised derivation, and thus,

T (a∗b∗)∗ = T (a∗)∗b+ aT (b∗)∗ − aT (1)∗b,

or equivalently,

T (ba) = T (ab) = bT (a) + T (b)a− bT (1)a,

showing that T is actually a generalised derivation. We have therefore
proved the following:

Corollary 7. Let us assume that A is commutative. Then every local triple

derivation from A to B is a generalised derivation. Moreover, taking T̃ =

T− 1
2δ(T (1), 1) = T−δ

(
1
2T (1), 1

)
, it follows that T̃ is a local triple derivation

with T̃ (1) = 0, and hence T̃ is a (Jordan) derivation. �

The statement concerning T̃ in the above corollary could be also derived
applying the previously mentioned Johnson’s theorem on the equivalence of
Jordan derivations and (associative) derivations (cf. [14, Theorem 6.3]).

Remark 8. The argument given in the proof of Proposition 6 is also valid
to show that, under the same hypothesis, a generalised Jordan derivation
T : A → B satisfies that aT (b)c = 0, for every a, b, c ∈ A with ab = bc =
0. Combining Goldstine’s theorem with the separate weak∗-continuity of
the product of A∗∗ and B∗∗ we guarantee that T ∗∗ is a generalised Jordan
derivation too. Let p denote the range projection of b in A∗∗. In this case

T (b) = T (p ◦ b) = T (p) ◦ b+ p ◦ T (b)− Up,bT (1)

=
1

2

(
bT (p) + T (p)b+ pT (b) + T (b)p − pT (1)b− bT (1)p

)
,

which implies that (1 − p)T (b)(1 − p) = 0, and hence aT (b)c = 0, for every
a, b, c ∈ A with ab = bc = 0. By [19, Corollary 2.9], T is a generalised
derivation. This shows that every generalised Jordan derivation on a unital
C∗-algebra is a generalised derivation.
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Associative derivations from A to B are not far away from triple deriva-
tion. It is not hard to check that, in our setting, a bounded linear operator
δ : A → B is a triple derivation and δ(1) = 0 if, and only if, it is a ∗-
derivation, that is, it is a derivation and δ(a∗) = δ(a)∗.

Lemma 9. Let B be a unital C∗-algebra, and let T : B → B be a bounded
local triple derivation with T (1) = 0. Then T is a symmetric operator, that
is, T (a∗) = T (a)∗, for every a ∈ B.

Proof. Let A denote the abelian C∗-subalgebra generated by a normal ele-
ment a and the unit of B. Since T |A : A → B is a local triple derivation and
T (1) = 0, by Corollary 7 and the subsequent comments, T |A is an associa-
tive derivation. Let u be a unitary element in A. Since T |A is a derivation,
we have 0 = T (1) = T (uu∗) = uT (u∗) + T (u)u∗, so

T (u) = −uT (u∗)u.

Now, having in mind that T is a local triple derivation, there exists a
triple derivation δu such that T (u) = δu(u), we deduce that T (u) = δu(u) =
δu(uu

∗u) = δu{u, u, u} = 2{u, u, T (u)} + {u, T (u), u} = 2T (u) + uT (u)∗u,
which gives

T (u) = −uT (u)∗u.

Combining these two equations we have uT (u∗)u = uT (u)∗u, and hence
T (u∗) = T (u)∗.

Finally, by the Russo-Dye theorem, T (b∗) = T (b)∗, for every b in A. The
arbitrariness of the normal element a implies that T (b)∗ = T (b), for every
b ∈ Bsa, which gives the statement of the lemma. �

We can state now the main result.

Theorem 10. Let B be a unital C∗-algebra. Every local triple derivation
from B to B is a triple derivation.

Proof. Let A denote the abelian C∗-subalgebra generated by a normal ele-
ment a and the unit of B. Since T |A : A → B is a local triple derivation, we
can apply Corollary 7 and the comments following it to assure that T |A is a

triple derivation and T̃ |A =
(
T − 1

2δ(T (1), 1)
)
|A is an associative derivation.

It follows that T̃ (a2) = T̃ (a)a + aT̃ (a). Since a was arbitrarily chosen, we
can affirm that

T̃ ((a+ b)2) = T̃ (a+ b)(a+ b) + (a+ b)T̃ (a+ b),

for every a, b ∈ Bsa, which implies that

T̃ (a ◦ b) = T̃ (a) ◦ b+ a ◦ T̃ (b),

for every a, b ∈ Asa. It is easy to check that T̃ is a Jordan derivation, and
hence an associative derivation by [14, Theorem 6.3]. Now, Lemma 9 assures

that T̃ is a symmetric operator and thus a triple derivation, which concludes
the proof. �
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We shall conclude this section with a result on “automatic continuity”
for generalised derivations. The following construction is inspired by the
results in [5, §4] (see also [23]). Let D : B → X be a generalised Jordan
derivations from a unital C∗-algebra to a Banach B-module. We regard X

as a Jordan Banach triple B-module with the triple products defined by
{x, b, a} = {a, b, x} := (a◦b)◦x(x◦b)◦a− (a◦x)◦b, and {a, x, b} := (a◦x)◦
b(x◦ b)◦a− (a◦ b)◦x, where for each a ∈ B and x ∈ X, a◦x := 1

2(ax+xa).
Fix a, b, c ∈ Bsa. The identity

D({a, b, c}) − {D(a), b, c} − {a,D(b), c} − {a, b,D(c)} =

= −Ua,b(D(1)) ◦ c− Ua◦b,c(D(1)) − Uc,b(D(1)) ◦ a− Uc◦b,a(D(1))

+Ua,c(D(1)) ◦ b+ Uc◦a,b(D(1)),

shows that the mapping Ď|B3
sa

: Bsa × Bsa × Bsa → X, Ď(a, b, c) :=
D({a, b, c})−{D(a), b, c}−{a,D(b), c}−{a, b,D(c)} is a continuous trilinear
operator and hence D is a “generalised triple derivation” in the terminology
employed in [5, §4]. It follows from [5, Proposition 21] (see also [5, Theorem
22]) that D|Bsa

is continuous. The continuity of D follows straightforwardly.

Proposition 11. Every generalised (Jordan) derivation, not assumed a pri-
ori to be continuous, from a unital C∗-algebra B into a Banach B-bimodule
is continuous. �

Despite the automatic continuity of generalised derivations, in the results
included in this section, local triple derivations, generalised derivations and
generalised Jordan derivations are assumed to be continuous, and these as-
sumptions are needed in the arguments. The results established by J. Li and
Zh. Pan in [19, Proposition 1.1 and Corollary 2.9] on generalised derivations
need to assume hypothesis of continuity.

Problem 12. [21, Conjecture 6.2 (C2)] Is every local triple derivation, not
assumed a priori to be continuous, on a C∗-algebra or on a JB∗-triple E

continuous?

3. Local triple derivations on unital JB
∗
-algebras

Every JB∗-algebra J can be equipped with a structure of JB∗-triple with
respect to the product

{a, b, c} := (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

A Jordan derivation on J is a linear mapping d : J → J satisfying d(a◦ b) =
d(a)◦b+a◦d(b), for every a, b ∈ J . Given a Jordan-Banach triple J-module
X, a conjugate linear mapping δ : J → X is said to be a triple derivation
whenever the identity

δ {a, b, c} = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)} ,

holds for every a, b, c ∈ J .
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According to what we did in the setting of C∗-algebras, given a unital
JB∗-algebra J and a JB∗-subalgebra, A, containing the unit of J , J can
be regarded as a Jordan-Banach J-module and a Jordan-Banach triple A-
module with respect to its natural Jordan product and its natural triple
product, respectively. By a little abuse of notation, a linear mapping δ :
A → J satisfying δ {a, b, c} = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)} , for
every a, b, c ∈ A, is said to be a triple derivation. A local triple derivation
from A to J is bounded linear operator T : A → B such that for each a ∈ A

there exists a triple derivation δa : A → J satisfying T (a) = δa(a).

Arguing as in the previous section, we have:

Lemma 13. [11, Lemma 1] Let A be a JB∗-subalgebra of a unital JB∗-
algebra J containing the unit of J , and let T : A → J be a local triple
derivation. Then T (1)∗ = −T (1). �

As in the C∗-setting, the mapping δ(T (1), 1) = L(T (1), 1) − L(1, T (1)) :
A → J is an inner triple or ternary derivation, δ(T (1), 1)(1) = 2T (1), and

T̃ = T − 1
2δ(T (1), 1) is a local triple derivation with T̃ (1) = 0.

Motivated by the definitions made in the associative setting, a linear
mapping D : A → J is a generalised Jordan derivation whenever D(a ◦ b) =
D(a) ◦ b+ a ◦D(b)−Ua,bD(1), for every a, b in A. Every generalised Jordan
derivation D : A → J with D(1) = 0 is a Jordan derivation and every triple
derivation δ : A → J is a generalised Jordan derivation.

The proof of Proposition 5 remains valid in the following sense:

Proposition 14. Let A be the (associative) JB∗-subalgebra of a unital JB∗-
algebra J generated by a self-adjoint element a and the unit of J . Suppose
T : A → J is a local triple derivation, then T is a generalised Jordan
derivation. �

Since the proof of Lemma 9 remains valid in the Jordan setting, the
reasoning given in Corollary 7 and Theorem 10 can be rephrased to prove
the following:

Theorem 15. Let J be a unital JB∗-algebra. Every local triple derivation
from J to J is a triple derivation. �
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