
Deterministic and stochastic

partial di�erential equations

arising in semiconductor theory

and stellar dynamics

Óscar Sánchez Romero





La presente memoria, titulada �Deterministic and stochastic partial dif-

ferential equations arising in semiconductor theory and stellar dynamics�, ha

sido realizada bajo la dirección del Dr. Juan S. Soler Vizcaíno, Catedrático

del Departamento de Matemática Aplicada de la Universidad de Granada,

para obtener el título de Doctor en Ciencias Matemáticas por la Universidad

de Granada.

V.B. Director El Doctorando

Fdo: Juan S. Soler Vizcaíno Fdo: Óscar Sánchez Romero





A mi abuelo Pepe





Agradecimientos

Me gustaría expresar mi más sincero agradecimiento a todos aquellos que

han hecho posible la realización de esta tesis.

Al departamento de Matemática Aplicada de la Universidad de Granada y

a sus miembros, tanto por mostrarme las matemáticas desde una perspectiva

que he hecho mía, como por su acogida durante mi labor.

A los profesores Luis Bonilla, Thierry Goudon y Jean Dolbeault por en-

riquecer mi formación cientí�ca y aportarme distintos puntos de vista gracias

a los trabajos en los que hemos colaborado.

A los profesores Luis Bonilla y Luis Vega por su hospitalidad y dedicación

durante las estancias que he realizado con ellos en la Universidad Carlos III

de Madrid y Universidad del País Vasco, respectivamente.

A los miembros del tribunal de tesis por acceder a formar parte de él.

Quiero hacer especial mención de todas aquellas personas en las que me

he apoyado durante este tiempo.

A mi familia, por permanecer siempre a mi lado. En particular quiero

agradecer a mi abuelo Pepe todo aquello que me inculcó, siempre de la manera

más difícil que hay de enseñar: con el propio ejemplo.

A Sandra, por recordarme sin palabras el porqué de todo este esfuerzo.

A todos los miembros del grupo de investigación al que pertenezco, y

en particular a José Luis, porque siempre hay alguien dispuesto a escuchar

un argumento, aclararme una referencia o sencillamente pasar un rato en

compañía de un amigo.

A Juan, gracias por todo y más.

vii





Contents

Introducción xiii

Dinámica estelar . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Transporte en semiconductores . . . . . . . . . . . . . . . . . . . . xix

Evolución de partículas cuánticas . . . . . . . . . . . . . . . . xxiii

Modelo de Drift-Di�usion . . . . . . . . . . . . . . . . . . . . xxvi

1 Introduction 1

Stellar dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Semiconductor devices . . . . . . . . . . . . . . . . . . . . . . . . . 7

Quantum transport models . . . . . . . . . . . . . . . . . . . . 10

Drift-Di�usion models . . . . . . . . . . . . . . . . . . . . . . 13

2 Asymptotic behaviour for the Vlasov-Poisson System in the

stellar dynamics case 19

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Optimal bounds for the kinetic and potential energies . . . . . . . . 21

A potential energy estimate . . . . . . . . . . . . . . . . . . . 22

An equivalent minimization problem . . . . . . . . . . . . . . 23

Spherical symmetry and regularity of the potential . . . . . . 25

Concentration-compactness method . . . . . . . . . . . . . . . 26

Convergence of a minimizing sequence . . . . . . . . . . . . . 29

Nonlinear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Explicit form of the minimizers . . . . . . . . . . . . . . . . . 31

Nonlinear stability . . . . . . . . . . . . . . . . . . . . . . . . 37

Large time behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Galilean invariance . . . . . . . . . . . . . . . . . . . . . . . . 38

Variance and dispersion estimates . . . . . . . . . . . . . . . . 39

Appendix A: Symmetric nonincreasing rearrangements . . . . . . . 42

Appedix B: Explicit form of the optimal constant . . . . . . . . . . 44

ix



x CONTENTS

3 Orbital stability for polytropic galaxies 47

Introduction and main results . . . . . . . . . . . . . . . . . . . . . 47

Equivalent reduced problems . . . . . . . . . . . . . . . . . . . . . . 52

Analysis of the reduced problem . . . . . . . . . . . . . . . . . . . . 61

Minimizing argument: relative compactness . . . . . . . . . . . . . 69

Appendix: Polytropes and variational approaches . . . . . . . . . . 72

4 Asymptotic decay estimates for the repulsive Schrödinger-

Poisson System 77

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Decay estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix: Attractive case . . . . . . . . . . . . . . . . . . . . . . . 85

5 Long�time dynamics of the Schrödinger�Poisson�Slater sys-

tem 89

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Minimum of the energy in the repulsive case . . . . . . . . . . . . . 92

Minimization problem . . . . . . . . . . . . . . . . . . . . . . 95

Concentration�compactnes argument . . . . . . . . . . 96

Nonzero weak convergence after translations . . . . . . 98

Stationary solutions . . . . . . . . . . . . . . . . . . . . 103

Optimal kinetic energy bounds . . . . . . . . . . . . . 104

Asymptotic behaviour in the repulsive case . . . . . . . . . . . . . . 105

Dispersion equation and Pseudo�Conformal Law . . . . . . . . 105

Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . 108

Minimization of the energy in the attractive case . . . . . . . . . . 114

6 Nonlinear stochastic discrete drift-di�usion theory of charge

�uctuations and domain relocation times in semiconductor

superlattices 117

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Stochastic Discrete Drift-Di�usion Model . . . . . . . . . . . . . . . 119

Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Low-�eld limit for a nonlinear discrete drift-di�usion model

arising in semiconductor superlattices theory 133

Discrete Drift-Di�usion Model . . . . . . . . . . . . . . . . . . . . . 133

DDD Model with Dirichlet boundary conditions . . . . . . . . . . . 134



CONTENTS xi

Dimensionless Equations . . . . . . . . . . . . . . . . . . . . . . . . 136

A priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Continuous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The bias constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xii CONTENTS



Introducción

El contenido de la memoria está orientado al estudio cualitativo de algunas

soluciones de Ecuaciones en Derivadas Parciales (EDP). Más concretamente,

se han tratado aspectos relacionados con la existencia y la estabilidad de

soluciones estacionarias y comportamiento de las soluciones dependientes del

tiempo de EDP originadas en teoría de transporte de carga en semiconduc-

tores y dinámica estelar. Evidentemente, dichos aspectos tienen interés per

se, aunque el propio estudio proporciona las directrices para una posterior

mejora en el modelado de los sistemas originales. Los trabajos que aquí

se presentan buscan esta relación de retroalimentación entre el análisis y el

modelado. En este sentido dos de los sistemas que se han planteado en la

memoria son precisamente versiones modi�cadas de otros modelos que pre-

tenden explicar la fenomenología observada que los originales no re�ejan.

Los sistemas que se estudian tienen en común que representan a un gran

número de partículas que interactuan entre si al moverse (bien sean los elec-

trones que constituyen la corriente eléctrica, o las estrellas de una galaxia).

La descripción de este tipo de sistemas depende de las las leyes físicas que

rigen el sistema y de la escala de observación que se emplee. Así, podemos

considerar un marco cuántico para describir el movimiento de los electrones

y la teoría clásica para describir la dinámica de estrellas. En lo referente a

las escalas de observación los problemas que trataremos en esta memoria son

descripciones tanto microscópicas, cinéticas como hidrodinámicas.

Este capítulo está dedicado a la presentación de los modelos estudiados y

los problemas concretos que hemos tratado. Completamos esta introducción

anunciando los principales resultados obtenidos en cada caso y que desarrol-

laremos a lo largo de la memoria.

Dinámica estelar: el sistema de Vlasov-Poisson

Un sistema estelar es un conjunto acotado de estrellas. El número de ele-

mentos que los constituyen es muy variable, desde un sistema binario de

xiii
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estrellas, cúmulos estelares (de 102 a 106 estrellas) hasta galaxias (de 1010

a 1012 estrellas) o inmensos cúmulos constituidos por miles de galaxias. La

rama de la física teórica que estudia estos sistemas gravitacionales se deno-

mina dinámica estelar.

En general, la dinámica de un conjunto de N partículas (masas puntuales

con masa 1) se puede determinar a partir de las leyes de la física que la rige.

En el caso de electrones o átomos su movimiento puede estar descrito por la

electrodinámica clásica (si se consideran como partículas clásicas) mientras

que en el caso de las estrellas que constituyen una galaxia son las leyes clásicas

de la gravitación (leyes del movimiento y gravitacional de Newton). Si se

considera el conjunto de ecuaciones que determinan estas leyes se tiene lo

que llamaremos en esta memoria una descripción microscópica. En el caso

de los planetas y estrellas es la mecánica celeste la encargada de estudiar estos

sistemas cuando el número de elementos del conjunto dinámico considerado

no es muy grande.

En el caso de que N sea su�cientemente grande se puede adoptar una

descripción estadística del sistema. Ésta considera que la distribución de las

partículas viene dada por una función f(t; x; v) de manera que el número de

partículas que se encuentran en el recinto 
x � R
3 y cuya velocidad está

contenida en 
v � R
3 en el instante de tiempo t viene dado porZ


x�
v
f(t; x; v) dxdv :

Evidentemente, esta función f toma valores no negativos y permite obtener

la densidad de partículas del sistema como

�(x) =

Z
R3
f(t; x; v) dv :

En consecuencia el número total de partículas viene dado porZ
R3�R3

f(t; x; v) dxdv = N:

El objeto de la mecánica estadística es el estudio de estos sistemas mediante

la deducción y análisis de las ecuaciones cinéticas que veri�can las funciones

de distribución.

Si consideramos la descripción cinética de un conjunto cualquiera de

partículas clásicas que interactuan mediante una ley de tipo Coulombiano,

u(r) = =r2, esta viene dada por la ecuación de Boltzman-Poisson (véase

[31]) 8><>:
@tf + v � rxf �rx� � rvf = Q(f; f) ;

�x� = 4�� ; limjxj!1 �(t; x) = 0 :
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El potencial � así descrito es una aproximación de campo medio, es decir

se considera generado por la densidad de partículas � como solución de la

ecuación de Poisson. La constante  toma los valores 1 o �1 dependiendo de
que las fuerzas de interación consideradas sean de tipo atractivo o repulsivo,

respectivamente. Ejemplos típicos de sistemas modelados por esta ecuación

son los sistemas electrodinámicos o gravitacionales. Q es un núcleo binario

que aporta a la dinámica de las partículas el efecto de las posibles colisiones

entre ellas. Para obtener el problema de valores iniciales asociado a este sis-

tema tenemos que complementar las ecuaciones anteriores con una condición

inicial f(t = 0; x; v) = f0(x; v).

Si nos ceñimos al caso particular de las galaxias y grandes cúmulos es-

telares, donde las fuerzas gravitacionales son fuerzas de tipo Coulombiano

atractivas, este sistema se considera una buena aproximación y además se

puede asumir que no hay término de colisiones. En primer lugar el número

de estrellas es lo su�cientemente grande para poder asegurar que los efectos

de las interacciones a corta distancia son despreciables frente a la colectivi-

dad de las interacciones a distancia superior. El razonamiento se basa en que

el tiempo que una partícula ha de permanecer atravesando galaxias para que

los efectos de las interacciones de corta distancia sean apreciables es superior

a la edad del universo. Por lo tanto, el movimiento de cada estrella se puede

ver a través de un campo medio generado por todas las partículas del sistema.

En este caso, la razón entre el tiempo que una estrella emplea en recorrer una

galaxia y la propia edad de la galaxia hace pensar que las posibles colisiones

entre estrellas sean tan pocas que se pueden despreciar ([18, 33]). En el caso

de que se consideren sistemas con menor número de elementos, o de menor

dimensión estas simpli�caciones pueden no ser razonables.

Puesto que no consideramos colisiones el sistema de Boltzman-Poisson se

simpli�ca obteniendo el sistema de Vlasov�Poisson (VP) en el caso gravita-

cional 8>>>>>><>>>>>>:

@tf + v � rxf �rx� � rvf = 0 ;

f(t = 0; x; v) = f0(x; v) ;

�x� = 4�� ; limjxj!1 �(t; x) = 0 :

En los trabajos que se presentan en esta memoria vamos a tratar dos

problemas relacionados con este sistema. En el Capítulo 2 analizamos el

comportamiento de las soluciones del sistema de VP para tiempos largos.

Para ello vamos a emplear tanto argumentos variacionales como invariancias

del sistema. El Capítulo 3 propone un nuevo criterio de estabilidad para

soluciones estacionarias del sistema de VP.

A continuación se citan algunas de las cantidades conservadas por las
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soluciones del sistema de VP con el �n de presentar los resultados que se

obtendrán. Sea f(t; x; v) una solución del sistema de VP. Se de�ne la energía

asociada a f como

E(f) := EKIN(f)� EPOT (f)

donde la energía cinética y potencial vienen descritas respectivamente por

EKIN(f) =
1

2

Z
R6
jvj2 f(t; x; v) dx dv y EPOT (f) =

1

8�

Z
R3
jr�j2 dx :

Para soluciones de VP clásicas se mantiene constante el valor de este funcional

a lo largo de la evolución temporal así como las normas

kf(t; �; �)kLp(R6) =
����Z
R6
jf(t; x; v)jp dx dv

���� 1p p 2 [1;1]

(ver [57, 85]). En el caso particular p = 1 esto nos indica que las soluciones

preservan la masa total del sistema:

M =

Z
R6
f0(x; v) dx dv =

Z
R6
f(t; x; v) dx dv :

Otra cantidad conservada para las soluciones es el momento total

hvi(f) :=
Z
R6
vf(t; x; v) dx dv :

Los resultados que presentamos en el Capítulo 2 están centrados en el

comportamiento de las soluciones dependientes del tiempo. Usualmente para

analizar propiedades cualitativas de dichas soluciones se obtienen estima-

ciones sobre cantidades asociadas a éstas como normas Lp de la función de

densidad o bien las energías potencial y cinética.

El primero de los resultados que obtenemos muestra cotas óptimas para la

energía cinética de una solución. Se puede asegurar que las energías potencial

y cinética de una solución del sistema VP veri�can

(i) EKIN(f) 2
�
K�(E;M); K+(E;M)

�
;

(ii) EPOT (f) 2
�
maxf0; P�(E;M)g; P+(E;M)

�
;

(iii) EPOT (f) 2
�
0;
q
�4EMEKIN(f)

�
;
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para todo instante de tiempo. Estos intervalos están determinados por la

condición inicial de la solución mediante

K�(E;M) = �2EM
 
1� E

2EM
�
s
1� E

EM

!
;

P�(E;M) = �2EM
 
1�

s
1� E

EM

!
;

donde M = kf0kL1(R6), E = E(f0) y EM es el mínimo valor del problema

EM := inf fE(f) ; f 2 �Mg ; (1)

con �M = ff ; f(x; v) � 0 ; kfkL1(R6) = M ; kfkL1(R6) � 1g : Las cotas

así presentadas son óptimas ya que las funciones que minimizan (1) son

soluciones estacionarias del sistema de VP y para estas se tiene que

K�(E;M) = EKIN(f) =
1

2
EPOT (f) = P�(E;M) :

La existencia de soluciones estacionarias indica que no podemos esperar

en general obtener propiedades dispersivas para las soluciones del sistema

de VP en contraste con las soluciones del mismo sistema de VP pero con

potencial repulsivo. En el caso del sistema de Vlasov�Poisson con potencial

repulsivo es conocido que las soluciones veri�can la siguiente cota [58, 85]

k�(t)k
L
5
3 (R3)

� C

t
3
5

; 8t > 0 :

Esta desigualdad trivialmente implica que la densidad de partículas en cada

dominio 
 desciende a lo largo de la evolución temporal.

En nuestro siguiente resultado obtenemos una condición que nos permite

distinguir aquellas soluciones del sistema de VP atractivo en las que es im-

posible deducir cotas del estilo anterior de otras soluciones que son dispersivas

en un sentido estadístico. Para ello combinamos las traslaciones Galileanas

y la ecuación de dispersión que veri�can dichas las soluciones. Para una

condición inicial f0 con masa y energía �nita demostramos que:

i) si f0 es tal que

E(f0) <
hvi2(f0)
2M

; (2)

entonces, existe una constante C > 0, tal que la solución del sistema

de VP asociada a f0 veri�ca

k�f(t; �)k
L
5
3 (R3)

� C ; 8t � 0 :
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ii) Si por el contrario f0 veri�ca la desigualdad opuesta a (2) se tiene que

para un cierto t0 > 0

C1 t
2 �

Z
R6
jx� hxij2f(t; x; v) dx dv � C2 t

2 8 t � t0 > 0 ; (3)

y para cada p 2 [1;1),

k�(t; x)kLp(R3) �
C

t3(p�1)=p
; 8 t > t0 ;

donde hxi = R
R6
xf(t; x; v) dxdv; y Ci, C son constantes positivas.

Obsérvese que aunque la estimaciónes obtenidas en ii) no se correspon-

den con las deducidas para el caso de potencial repulsivo, si que implican

dispersión ya que la varianza de la distribución de densidad crece con orden

t2. Diremos pues que hemos deducido dispersión en sentido estadístico. Es-

tos resultados extienden a los obtenidos en [13] para soluciones esféricamente

simétricas.

Finalmente, la obtención en el primer resultado de soluciones estaciona-

rias de VP como funciones mínimizantes de (1) también permite probar un

criterio de estabilidad no lineal para dicha solución. La única función es-

féricamente simétrica donde se alcanza el mínimo para (1) coincide con una

solución politrópica correspondiente a � = 0. En general la familia de solu-

ciones politrópicas esféricas viene dada por la expresión

�� = �(x; v) = c
�
E0 � jvj2=2� �(jxj)

��
+
; (4)

donde (�)+ es la función parte positiva, � < E0 < 0, �1 < � y c > 0. La

propiedad de estabilidad no lineal para �0 (estabilidad dinámica) se expresa

en términos del funcional distancia

d(g; h) = E(g)� E(h) +
1

4�
kr�g �r�hk2L2(R3) ;

donde �g y �h son las soluciones de la ecuación de Poisson asociadas a las den-

sidades de g y h, respectivamente. Este resultado es consecuencia directa de

los argumentos de minimización desarrollados para resolver (1). Este prob-

lema variacional presenta varias di�cultades técnicas. El funcional energía es

no convexo e invariante por traslaciones en la variable espacial. Por otro lado,

el espacio funcional donde se plantea (1) está doblemente resgringido. Esto

nos ha hecho estudiar el problema mediante argumentos de tipo compaci-

dad por concentración y reordenamientos simétricos. Más concretamente,

adaptamos las las técnicas desarrolladas en [48, 50] para el problema de
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minimización del funcional de Casimir que proporciona un criterio de esta-

bilidad dinámica para soluciones politrópicas con � 2 (0; 3=2). Por lo tanto

nuestro estudio viene a cubrir el caso crítico � = 0 (ver Capítulo 2 para más

detalles). A lo largo de esta memoria trataremos otros problemas de mini-

mización que tienen en común con este que el funcional a minimizar es no

convexo e invariante por un grupo no compacto de simetrías, lo cual conlleva

cierta complejidad técnica en su tratamiento, que se ha solventado mediante

diversos argumentos.

El Capítulo 3 extiende este concepto de estabilidad a un concepto más

fuerte, el de estabilidad orbital, y se aplica a un conjunto más grande de

soluciones, las soluciones politrópicas esféricas para � 2 [0; 7=2). Para ello se

resuelven los problemas de optimización

I
�

M;J
:= inf

n
E(f) ; f 2 �

�

M;J

o
(5)

donde �
�

M;J
= L1

+(R
6 ;M) \ L

1+1=�
+ (R6 ; J) y L

p

+(R
6 ; K) = ff 2 Lp(R6); f �

0 ; kfkLp(R6) = Kg. Los argumentos empleados en este problema varia-

cional nos permiten concluir que las soluciones politrópicas para � 2 [0; 7=2)

son orbitalmente estables. Esencialmente este criterio establece que si una

condición inicial f0, con masa y norma L1+1=� apropiadas, está su�ciente-

mente cerca de �� (sus energías no di�eren mucho) entonces la solución cor-

respondiente estará cerca (en norma L1) de la órbita de �� de�nida por

f��(� � k; �) ; k 2 R
3g. Esta noción de estabilidad orbital es óptima ya

que las invariancias Galileanas del sistema nos indican que efectivamente

hay soluciones que viajan cerca de la órbita de ��. El resultado es conse-

cuencia directa del argumento de minimización empleado para resolver (5).

En este caso reducimos (5) a un problema equivalente para las funciones de

densidad. Combinando resultados para este problema reducido con el pro-

pio argumento de minimización del problema original podemos concluir la

compacidad relativa en L1 de cualquier sucesión minimizante (salvo trasla-

ciones). Este resultado extiende a otros obtenidos en [48, 50] Faltan citas

basados en resultados de minimización para el funcional Casimir o el de e-

nergía en espacios con restricción de masa o restricción de tipo Casimir-masa

respectivamente.

Transporte de carga en semiconductores

El interés del estudio del transporte de carga en materiales semiconductores

radica en su utilización como materia prima para construir dispositivos elec-

trónicos. Desde la invención de los primeros transistores basados en el Ger-
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manio, ha sido el Silicio el material semiconductor que ha predominado en

el campo tecnológico. Sin embargo, en los últimos años se han descubierto

nuevas aplicaciones de los semiconductores, sobre todo como emisores y de-

tectores de luz (células solares, diodos emisores de luz, lasers,...), que han

motivado el estudio de otros materiales como pueden ser el Arsenuro de

Galio (GaAs) o el Arsenuro de Aluminio (AlAs).

Clásicamente los semiconductores se caracterizan por ser materiales peo-

res conductores que los metales sin llegar a ser materiales aislantes (clasi�-

cación que cuantitativamente se re�eja en los valores de las conductividades

típicas). Esta sencilla caracterización se hace actualmente mas compleja. Se

distinguen además entre materiales superconductores y semimetales, donde

estos últimos se diferencian de los semiconductores en que tienen conductivi-

dad algo mayor y a bajas temperaturas siguen manteniendo su carácter de

conductores, mientras que los semiconductores se convierten en aislantes. No

obstante si se pretende hacer un estudio detallado de estos materiales hay

que tener en cuenta factores como la energía de gap, estructura cristalina,

constante de la estructura, existencia de impurezas, etc... [6, 45].

Uno de motivos del éxito de los dispositivos semiconductores es que su

tamaño es muy reducido si lo comparamos con los dispositivos electrónicos

anteriores. De hecho, a lo largo de su evolución su tamaño ha seguido dis-

minuyendo. Por ejemplo, el primer transistor de Germanio tenía un tamaño

característico de 20�m, mientras que los transistores de un procesador ac-

tual Pentium IV tiene un tamaño característico de 0:18�m y la Asociación de

Industrias en Semiconductores (SIA) proyecta que para el �nal de 2009 los

dispositivos emplearán tamaños del orden de 0:05�m. Este proceso de minia-

turización ha dado lugar a que los efectos cuánticos puedan ser relevantes en

el proceso de transporte, ya que con los tamaños anteriores la hipótesis de

transporte clásico se adaptaba bien a la evolución en estos semiconductores

primitivos.

El transporte de un �ujo de electrones a lo largo de un semiconductor

sometido a una diferencia de potencial depende por tanto de numerosos fac-

tores: la naturaleza del propio material, las condiciones del medio (tempera-

tura, fuerzas externas), tamaño del dispositivo, ... Por lo tanto son numerosos

los modelos que han aparecido en la literatura para describir este proceso de

transporte y el empleo de un modelo u otro dependerá de nuestro dispositivo

particular. No obstante hay que destacar que éste es un campo en el que se

sigue trabajando muy activamente [62, 82, 86].

Los principales factores que se tienen que tener en cuenta cuando se mo-

dela el transporte de carga en un semiconductor son:

i) La descripción del movimiento de muchas partículas. Esta puede ser
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una descripción microscópica, cinética o bien hidrodinámica. Por otro

lado, dependiendo de si los efectos cuánticos son o no relevantes se

puede considerar a los electrones como partículas clásicas con carga o

bien como partículas cuánticas.

ii) La in�uencia de la red cristalina. Por ejemplo la periodicidad de la

propia red cristalina implica que el potencial creado por los iones sea

periódico. En este caso, si se desprecian otras interacciones, se deduce

que los electrones se encuentran esencialmente en ciertos estados que

se denominan estados de Bloch.

iii) Las interacciones entre las partículas, bien sean interacciones de tipo

electrostático (interacciones a largo alcance de tipo Coulombiano) o

bien colisiones entre las partículas que se encuentran en el semiconduc-

tor (denominadas genéricamente procesos de scattering).

Evidentemente, los distintos modelos que hay en la literatura responden a

distintas formas de abordar estas cuestiones. Por supuesto, pueden aparecer

otros factores que también in�uyen en el modelado como puede ser la exis-

tencia de impurezas en el semiconductor (dopaje) o bien el efecto de otro tipo

fuerzas externas (como por ejemplo las generadas por un campo magnético).

La consistencia de un modelo proviene de su derivación a partir de primeros

principios. En el caso del movimiento de electrones los primeros principios

los establece la teoría cuántica. Esta considera que un electrón de masa m y

carga elemental q que se mueve en el vacío bajo la acción de un campo eléc-

trico E = E(x; t) viene descrito por la función de onda  : R3 � [0;1]! C

que veri�ca la ecuación de Schrödinger

i~
@ 

@t
= � ~

2m
� � qV (x; t) : (6)

En esta expresión ~ = h=2� es la constante de Planck reducida y V (x; t) el

potencial generado por el campo E = �rV , e i2 = �1. La función de den-

sidad n(x; t) = j (x; t)j2 se interpreta como la distribución de probabilidad

de encontrar al electron, es decir,Z


n(x; t) dx

es la probabilidad de encontrar al electrón en la región 
 en el instante de

tiempo t. Empleando esta teoría se puede describir microscópicamente un gas

de electrones en una red cristalina. Dependiendo de los efectos considerados

en el estudio se obtendrán diversos modelos.
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Figure 1: (Izquierda) Diagrama del per�l de potencial electrostático de una superred
semiconductora SR. (Derecha) Sección transversal de una SR compuesta por capas de Si
(bandas oscuras) y SiO2 (bandas claras) de distintas anchuras.

Este marco teórico se complica cuando los dispositivos semiconductores

que se consideran son más complicados. En esta memoria vamos a presen-

tar dos trabajos relacionados con unos dispositivos denominados superredes

semiconductoras (SR). Éstas están compuestas por la superposición periódica

de capas muy �nas de dos semiconductores distintos cuyas dimensiones la-

terales son mucho mayores que la dimension l de un período. Puesto que

los semiconductores que constituyen el dispositivo son distintos la banda de

conducción de una superred puede verse como una consecución de pozos y

barreras de tamaños d y w respectivamente donde l = d + w. La primera y

última capas se ponen en conexión con los denominados contactos (ver Fig.

1).

Estos dispositivos propuestos por primera vez por L. Esaky en 1969 cons-

tituyen un claro ejemplo de lo que hoy día se conoce como sistemas cuánticos

abiertos caracterizados por ser sistemas en los cuales hay un intercambio de

partículas con el ambiente (en nuestro caso a través de los contactos). La

modelización de estos dispositivos es bastante más complicada puesto que

la corriente de electrones ha de pasar a través de un medio heterogéneo.

Dependiendo pues de las características de la SR el desplazamiento de la

carga se efectuará mediante unos mecanismos u otros.

El tuneleo resonante secuencial es uno de los tipos de transporte típico
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en estos dispositivos. Se denomina tuneleo al mecanismo por el cual los

electrones pasan de unos pozos a otros atravesando la barrera que los sepa-

ra. La teoría estblecida se basa en que los posibles estados de los electrones

que se encuentran en cada pozo son estados estacionarios de la ecuación

de Schrödinger, y por tanto la corriente se puede calcular empleando un

coe�ciente de transmisión del estado donde se encuentran los electrones antes

de pasar la barrera a otro estado en el pozo siguiente. Según algunos autores

esta descripción no es válida cuando se pretenden estudiar estados de no

equilibrio [37]. Por lo tanto, se hacen necesarias descripciones dinámicas del

comportamiento de los electrones en caso de no equilibrio.

En este ambiente se encuadran el resto de los trabajos que presentamos

en esta memoria. Pasamos entonces a describir los problemas planteados y

a mostrar los resultados obtenidos.

Evolución de partículas cuánticas

En este punto presentamos dos trabajos relacionados con el análisis de propie-

dades cualitativas de soluciones de dos sistemas de tipo Sch�rodinger-Poisson

[60, 82]. Este modelo aparece en la literatura para modelizar un gas de

electrones que se mueve en el vacío y se ven afectados por el campo eléctrico

que ellos mismos producen. Pese a su generalidad, en los últimos años han

aparecido diversos trabajos en los que se adapta este modelo a contextos

particulares [91, 61, 81]. El estudio de estas propiedades es relevante para la

fabricación de SR [2, 25, 109].

El primero de los modelos analizados es el propio sistema de Schrödinger-

Poisson (SP) en el espacio tridimensional, que se de�ne como

i~
@ 

@t
= � ~

2

2m
�x + V  ; lim

jxj!1
 (x; t) = 0;

 (x; t = 0) = �(x);

�xV = �n; lim
jxj!1

V (x; t) = 0 :

El sistema de Schrödinger-Poisson se ha cerrado añadiendo condiciones de

frontera en in�nito y una condición inicial.

Aunque es bien conocido que las soluciones de estos sistemas tienen can-

tidades conservadas como la masa o la energía, otras cantidades como el

momento de segundo orden o las normas Lp, donde p > 2, nos pueden in-

dicar dispersión de la función de densidad. Analizaremos el comportamiento

de tales cantidades en el contexto del estado individual (un único electrón)
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modelado por el sistema de SP aunque nuestro análisis puede ser sencilla-

mente extendido al caso mixto (un número �nito electrones). Hay que señalar

que el estudio del comportamiento para tiempos grandes de las soluciones de

este sistema ya ha sido tratado en trabajos anteriores [29, 59], siendo nuestro

objetivo mejorar los resultados allí obtenidos. Obtenemos cotas inferiores

y superiores de las normas Lp(R3) de las soluciones, con 2 < p < 6, que

nos delimitan �elmente el comportamiento que estas tienen. Es decir, para

una condición inicial apropiada se puede demostrar que la solución asociada

veri�ca

C1

jtj
3p�6

2p

� k (�; t)kLp(R3) �
C2

jtj�(p) ; 8 jtj � �; 8 p 2 [2; 6] ;

donde Ci son constantes positivas, � > 0 y

�(p) =

(
1� 2

p
; si p 2 [2; 3];

2
3
� 1

p
si p 2 [3; 6] :

Las cotas superiores mejoran a las ya obtenidas en [29, 59] mientras que las

cotas inferiores que se han obtenido son óptimas. Estas cotas son conse-

cuencia de la ecuación de dispersión que veri�can las soluciones de SP y de

una desigualdad propuesta por P. Lions que relaciona las energías cinética y

potencial con la norma L3 de las funciones.

El segundo de los modelos cuánticos considerados es el de Scrödinger-

Poisson-Slater (SPS) que responde a las ecuaciones

i~
@ 

@t
= � ~

2

2m
�x + V  � CSn

1
3 ; limjxj!1  (x; t) = 0; (7)

 (x; t = 0) = �(x); (8)

�xV = �n; limjxj!1 V (x; t) = 0 : (9)

Este sistema se diferencia de SP en que aparece un nuevo término denominado

corrección de Slater. La constante CS se denomina por tanto constante de

Slater. Los efectos de potencial Coulombiano parecen ser muy fuertes cuando

se compara el comportamiento del sistema de SP con las simulaciones (ver

[89, 111]). Hay distintas opciones para intentar corregir este efecto. El

modelo de SPS aparece como una modi�cación del sistema de SP donde se

corrige el potencial Coulombiano (ver [20] para un análisis detallado).

Al igual que en el caso del sistema SP este sistema presenta cantidades

conservadas como la carga (norma L2(R3)) o la energía, que en este caso

viene de�nida por

E[ ]=

Z
R3

(
~
2

2m
jr (x; t)j2 +

Z
R3

j (x; t)j2j (x0; t)j2
8�jx� x0j dx0� 3CS

4
j (x; t)j 83

)
dx :
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La energía es la suma de la energía cinética, la energía potencial Coulombiana

y la energía potencial proveniente de la corrección de Slater.

El análisis cualitativo de las soluciones del sistema SPS está cláramente

marcado por el balance entre los dos términos de energía potencial. Un he-

cho relevante es que la energía potencial puede tomar valores negativos. Esto

implica importantes diferencias entre el comportamiento de las soluciones del

sistema de SP y el sistema SPS: 1) Existencia de soluciones estacionarias (es

decir soluciones con densidad constante), 2) existen soluciones que no presen-

tan carácter dispersivo (incluso con energía total positiva). Evidentemente,

esto muestra importantes diferencias entre las soluciones de un modelo y

otro. A continuación describimos los principales resultados obtenidos. En

primer lugar planteamos el problema variacional

IM = inffE[ ] ;  2 H1(R3) ; k kL2(R3) =Mg: (10)

Bajo ciertas hipótesis técnicas se puede asegurar que este problema alcanza

un valor mínimo. El funcional energía en este problema de minimización es

también no convexo y presenta invarianza por traslaciones espaciales. En este

caso se proponen dos técnicas distintas para resolver el problema, compacidad

por concentración y compacidad débil no nula. Resolver (10) nos permite

obtener dos interesantes consecuencias.

En primer lugar podemos asegurar la existencia de soluciones estacio-

narias (con densidad invariante) del sistema de SPS de la forma  (x; t) =

e�i�t (x) : Combinando este resultado con la invariancia Galileana se puede

a�rmar que también existen soluciones del sistema SPS (incluso con energía

total positiva) que cuya norma Lp(R3) se mantiene constante en el tiempo.

Estas soluciones por si solas nos indican claramente diferencias cualitativas

con las soluciones del sistema SP.

Estas diferencias quedan re�ejadas en el análisis cualitativo que se hace

de soluciones dependientes del tiempo. En primer lugar se obtienen cotas

óptimas para la energía cinética de las soluciones. Al igual que en el caso del

sistema de VP, se demuestra que la energía de soluciones de SPS su�ciente-

mente regulares está limitada entre los valores

E�
KIN

= �2IM
 
1� E0

2IM
�
s
1� E0

IM

!
; (11)

donde M y E0 son respectivamente la masa y la energía de la solución.

Al igual que en el caso del sistema de VP la invariancia Galileana de las

soluciones del sistema permite deducir un criterio que distingue las funciones

cuyas normas Lp no decaen de aquellas que presentan dispersión en sentido
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estadístico. Entonces dada  una solución del sistema de SPS con condición

inicial � tal que

E[�] <
1

2

jhxij2
k�kL2(R3)

donde hxi :=
Z
R3
x� dx

se sabe que existen constantes positivas C, C 0 y C 00 tales que

k (t)kLp(R3) � C; EPOT [ ] � �C 0 ; 8t � 0; p 2 [
8

3
; 6]:

Si � veri�ca la desigualdad opuesta

E[�] >
1

2

jhxij2
k�kL2(R3)

;

se obtiene la siguiente cota inferior

k (�; t)kLp(R3) �
C 00

t
3p�6

2p

; 8t > � > 0; p 2 [2; 6] ;

y además hay dispersión de la solución en sentido estadísticoZ
R3
j(x� hxi)j2n(x) dx = O(t2) :

En conclusión, se ha demostrado que si se considera la corrección de Slater

en el modelo de Schrödinger�Poisson hay un importante cambio cualitativo

en las soluciones del sistema.

Modelo de Drift-Di�usion para superredes semiconduc-

toras

En esta parte de la tesis se presentan dos trabajos realizados sobre un mode-

lo de Drift-Di�usion para superredes semiconductoras débilmente acopladas.

Estas superredes se caracterizan por tener el tamaño de las barreras mucho

mayor que el inverso del número de onda típico de los electrones que están

dentro de la barrera. En el caso opuesto la superred se denomina fuertemente

acoplada. El principal motivo del comportamiento no lineal del desplaza-

miento de corriente en estos dispositivos es la formación de dominios de

campo eléctrico (regiones en las que el campo toma valores homogéneos). Los

electrones que constituyen la corriente pueden provenir de dopar el sistema

o de excitarlos desde la banda de valencia. Dependiendo de la densidad
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de electrones que hay en la superred se observan distintas modalidades de

soluciones típicas del sistema. Estas soluciones dan lugar a una relación entre

el voltaje aplicado al dispositivo, V , y la corriente de la solución típica que

se obtiene, I, cuya representación se conoce como diagrama I � V . Cuando

la densidad de electrones es su�cientemente pequeña el campo eléctrico es

casi uniforme dentro de todo el dispositivo y el diagrama I � V presenta un

per�l regular. Este tipo de soluciones se hacen inestables cuando la densidad

de carga aumenta. Entonces aparecen soluciones cuyo campo eléctrico esta

constituido por dos dominios conectados por una delgada región frontera

que generalmente esta situada en uno o dos períodos. El diagrama I � V

pasa a estar constituido por un conjunto de ramas entre las que hay una

discontinuidad (ver Capítulo 6). Las discontinuidades en este diagrama co-

rresponden a desplazamientos de la frontera entre los dominios de campo

de manera que pasan de estar centrados en un período a otro adyacente.

Por último para valores intermedios de carga en la superred pueden aparecer

soluciones de tipo oscilatorio [22].

A continuación se presenta el modelo de Drift�Di�usion que hemos adop-

tado en nuestros trabajos para estudiar estos dispositivos. El mecanismo

principal de transporte en superredes débilmente acopladas es el tuneleo re-

sonante secuencial. El desplazamiento de un electrón de un pozo al siguiente

se puede subdividir en tres etapas, scattering, relajación y tuneleo. En el

scattering un electrón situado originalmente en una subbanda excitada de

un pozo pierde energía y cae a la primera subbanda del mismo pozo. Tras

esta pérdida el electrón pasa un tiempo en este nivel básico antes de saltar al

siguiente pozo. El tiempo medio de espera se conoce como relajación. Y por

último el electrón tunelea hacia una subbanda del pozo siguiente y comienza

de nuevo el proceso. En superredes débilmente acopladas el tiempo de scat-

tering es mucho menor que el tiempo de tuneleo (o tiempo de escape) y éste

a su vez es mucho menor que el tiempo de relajación. Por lo tanto, el pro-

ceso dominante en el transporte es el tuneleo resonante donde únicamente

la primera subbanda de cada pozo está ocupada y la corriente de tuneleo es

cuasiestacionaria (la corriente de tuneleo se calcula asumiendo valores cons-

tantes del campo y de la densidad de electrones en los pozos adjuntos a

la barrera). En la situación mas sencilla, el centro de cada pozo cuántico

esta n-dopado y la energía térmica es grande en comparación con la mini-

banda menor. Entonces el transporte en estos dispositivos se puede describir

mediante una ecuación de Drift-Difusión; ver [1, 23, 22, 107]. El modelo con-

sidera un conjunto de N +1 celdas consecutivas, que son pares pozo-barrera,

etiquetadas por el índice i 2 f0; : : : ; Ng. La barrera que separa el contacto

emisor del primer pozo de la SR se considera como la barrera número 0, mien-

tras que la N -ésima barrera separa el N -ésimo pozo del colector. El modelo
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asume que los electrones están concentrados en una sección bidimensional

de la SR situada en el centro de cada pozo. Las variables que describen el

transporte son la densidad de electrones bidimensional ni i = 1; : : : ; N , y

el campo eléctrico medio Fi; i = 0; : : : ; N , en cada celda. Estas cantidades

están relacionadas mediante la siguiente ecuación de Poisson discreta:

Fi � Fi�1 =
e

"
(ni �Nw

D
); i 2 f1; : : : ; Ng: (12)

En (12), Nw

D
representa el dopaje bidimensional en cada pozo, que se supone

constante, mientras que " es la permitividad media en la SR y e = �q es

menos la carga del electrón. Por otro lado, si denotamos por eJi!i+1 la

densidad de corriente de tunel en la barrera que separa los pozos i y i+1, la

densidad de carga que pasa a traves de la i-ésima barrera veri�ca la siguiente

ecuación de continuidad

dni

dt
= Ji�1!i � Ji!i+1; i 2 f1; : : : ; Ng: (13)

A partir de estas expresiones si diferenciamos (12) y sustituimos en (13)

observamos que la cantidad

"

e

dFi

dt
+ Ji!i+1 = J(t); i 2 f0; : : : ; Ng (14)

no depende de la celda que consideremos. Esta relación es conocida como

Ley de Ampere, donde eJ(t) es la densidad de corriente total a través de la

SR (la cual no depende del índice i).

El modelo se completa con una ley constitutiva que de�ne las densidades

de corriente eJi!i+1 como función de los pares (nk; Fk). La densidad de cor-

riente depende de los potenciales electroquímicos en las celdas i y (i + 1) y

del campo eléctrico medio Fi [22, 107]. Los potenciales electroquímicos en

las celdas a su vez son funciones de la densidad de electrones y por tanto

podemos considerar que la corriente de tuneleo eJi!i+1 depende de ni, ni+1 y

Fi [22, 107]. No se ha obtenido una deducción de eJi!i+1 a partir de primeros

principios de manera rigurosa. En la literatura han aparecido algunas aprox-

imaciones, bien a partir de ecuaciones cinéticas cuánticas para las funciones

de Green [107] o bien a partir una version del método WKB para sistemas de

muchas partículas (�transfer Hamiltonian formalism�) [1, 23, 22]. Todas estas

fórmulas implican que la corriente de tuneleo está dada por la diferencial de

un término de convección (�drift�) y otro de difusión (�di�usion�) dada por

Ji!i+1 =
niv(Fi)

`
� D(Fi)(ni+1 � ni)

`2
; i 2 f1; : : : ; N � 1g: (15)
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La velocidad de arrastre y la difusividad vienen de�nidas por v y D, fun-

ciones del campo eléctrico, que dependen de las propiedades físicas de los

materiales que constituyen la SR, ver [22] para más detalles. La naturaleza

especial de los contactos (emisor y colector) se considera en la deducción

de las densidades de tuneleo en dichos contactos. Empleando el formalismo

�tranfer Hamiltonian�, se obtienen las siguientes aproximaciones [23]

J0!1 = j(e)(F0)� n1W
(b)(F0)

`
; (16)

JN!N+1 =
nNW

(f)(FN )

`
: (17)

Estas ecuaciones involucran la densidad de corriente ej(e) y la velocidad hacia

atrás W (b) en el emisor, y la velocidad hacia adelante W (f) en el colector, las

cuales son funciones del campo eléctrico. Todos los coe�cientes v, D, W (b),

W (f) y j(e) toman valores no negativos y son funciones su�cientemente regu-

lares. Per�les típicos de estas funciones se pueden encontrar en el Capítulo

6.

Este sistema de ecuaciones todavía no está cerrado, puesto que hay una

incógnita más que ecuaciones. Generalmente, se emplea una condición sobre

el voltaje al que se somete el dispositivo

`
1X

i=�N
Fi = V; (18)

donde V es el voltaje. Dependiendo de que consideremos el dispositivo

sometido a corriente continua (DC) constante o bien alterna (AC) V será

una constante o bien una función periódica.

Las expresiones (12), (13) y (18) constituyen un sistema cerrado de ecua-

ciones para las incógnitas ni con i 2 f1; : : : ; Ng y Fi con i 2 f0; : : : ; Ng
al que nos referiremos a lo largo de esta memoria como modelo discreto de

Drift-Di�usion (DDD).

Algunas de las variables que se han descrito en el modelo son obser-

vables en el laboratorio. Tanto el voltaje V como la corriente total eJ son

variables perfectamente medibles, lo cual nos permite comparar la evidencia

experimental con la simulación numérica. Es por ésto que nos referiremos al

diagrama I � V frecuentemente en la memoria. Sin embargo, otro tipo de

medidas más complejas (relacionadas con la fotoluminiscencia) han permitido

por ejemplo con�rmar la existencia de dominios de campo en las SR.

El trabajo que se presenta en el Capítulo 6 está motivado por los re-

sultados obtenidos en experimentos de recolocación [92]. Como ya hemos

comentado, cuando la densidad de carga dentro de la SR es su�cientemente

grande aparecen soluciones estacionarias con dos dominios de campo conec-

tados por una barrera localizada en un período. Estas soluciones presentan
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un diagrama I � V constituido por numerosas ramas que presentan discon-

tinuidades entre ellas. El motivo de esta discontinuidad es que las soluciones

que dan lugar a cada una de las ramas tienen la barrera que conecta los

dominios en una celda distinta. De hecho, si a una solución estacionaria para

un determinado valor de voltaje V0 se le aplica un incremento repentino de

voltaje a un valor Vf que está en la siguiente rama del diagrama I � V la

solución inicial evolucionará hasta alcanzar el nuevo estado (estacionario).

Esta evolución implica que la barrera que une los dominios de campo se ha

de desplazar de una celda a la contigua. El tiempo que el sistema emplea en

adaptarse a las nuevas condiciones se denomina tiempo de recolocación. Los

experimentos de recolocación consisten en medir estos tiempos de adaptación

cuando se consideran soluciones que parten de un mismo voltaje inicial V0
y a las que sin embargo se les aplica distintos incrementos de manera que

tienen que alcanzar distintos voltajes �nales Vf que están en la siguiente

rama del diagrama. En las primeras observaciones realizadas al respecto se

comprobó que los tiempos de recolocación eran mayores cuando el voltaje

�nal Vf tomaba valores más cercanos a la discontinuidad entre las ramas que

contienen a V0 y Vf . Además, estos tiempos de recolocación presentaban un

comportamiento estocástico. En este mismo trabajo se presentan las distribu-

ciones de probabilidad de estos tiempos de recolocación para distintos valores

�nales de voltaje. Éstas presentan diferencias cualitativas dependiendo de

que los valores �nales del voltaje estén cerca o lejos de la discontinuidad. En

el Capítulo 6 proponemos y contrastamos numéricamente un modelo estocás-

tico discreto de Drift-Di�usion para explicar estos experimentos. El modelo

estocástico se obtiene a partir del modelo de DDD donde se introducen efec-

tos de ruido de tipo �shot�, originado en los dispositivos semiconductores por

la cuantización de la carga [19]. Dicho modelo ha sido testado numéricame

empleando métodos de simulación numérica para ecuaciones estocásticas,

cuidando especialmente que el ruido numérico no perturbe las conclusiones.

Los resultados numéricos coinciden cualitativamente con los observados

en el laboratorio lo cual nos permite asegurar que las �uctuaciones allí ob-

servadas son debidas a estos efectos aleatorios de tipo �shot�.

El trabajo presentado en el Capítulo 7 está motivado por superredes

donde la densidad de carga presenta valores intermedios. En estos disposi-

tivos se han observado tanto corrientes con oscilaciones autosostenidas como

corrientes estacionarias dependiendo del voltaje aplicado. El modelo de DDD

representa esta fenomenología, y de hecho el límite al continuo (hiperbólico)

del modelo DDD se ha usado en la literatura para explicar el comportamiento

de las soluciones oscilatorias. Dependiendo del voltaje que se considere el

campo eléctrico dentro de la superred toma valores mayores o menores. En

particular para valores bajos de voltaje se obtienen soluciones estacionarias
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con valores bajos de campo. En Capítulo 7 presentamos la deducción rig-

urosa de el límite al continuo (parabólico) del modelo de DDD en un régimen

de campos bajos. Más concretamente hemos probado que las soluciones del

sistema DDD se pueden aproximar por las soluciones de del sistema:8>>>>>>>><>>>>>>>>:

@tn + @xJ(F; n) = 0;

J(F; n) = v(F )n�D(F )@xn

@xF = n�NDR
X
F = V

J(F; n)(X) = W (f)(F )n(X)

J(F; n)(�X) = (j(e)(F )�W (b)(F )n)(�X)

(19)

El tratamiento riguroso de este límite presenta varias di�cultades. En primer

lugar el caracter discontinuo de las soluciones del sistema discreto (se pueden

ver como funciones escalonadas) obliga a considerar las soluciones en espacios

de funciones integrables donde las derivadas son medidas. Por otro lado las

densidades de corriente en los contactos hacen necesarias un tratamiento

particular del límite en estas regiones. Finalmente hemos de señalar que

para poder pasar al límite la condición de voltaje la hemos sustituido en

una primera aproximación por una condición arti�cial sobre el campo en el

emisor y en una etapa posterior hemos empleado este estudio para considerar

el problema original.
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Chapter 1

Introduction

The contents of this thesis are concerned with to the qualitative analysis of

solutions to Partial Di�erential Equations (PDEs). We focus our attention

on problems of existence and stability of steady states as well as asymptotic

behaviour of time dependent solutions of some PDEs arising in semiconductor

charge transport theory and in stellar dynamics. This analysis is interesting

per se, although the knowledge of these properties also provides the guidelines

for a further improvements of the models originally proposed. Our work

follows this feedback relation between the analysis and the modeling. In this

direction, two of the systems proposed here are modi�ed versions motivated

by observed phenomena which cannot be explained by using the original

models.

The analyzed models describe the dynamics of an ensemble of interacting

particles (e.g. electrons in a semiconductor device or stars in a galaxy). This

description depends on the physics of the problem and on the observation

scale employed. Thus, we can consider the electrons in a semiconductor

device as quantum particles meanwhile the stars in a galaxy can be framed

in the classical gravitational theory. The problems dealt with in this thesis

stem from microscopic, kinetic and hydrodynamic descriptions.

In this chapter we introduce the models and the particular problems to

be studied. We also announce our main results.

Stellar dynamics: the Vlasov-Poisson system

A stellar system is a bounded ensemble of stars. The size of the system can

vary from a binary system, stellar clusters (102 to 106 stars) to galaxies (1010

to 1012 stars) or enormous clusters constituted by thousand of galaxies. The

part of the theoretic physics studying the stellar systems is called Stellar

Dynamics.

1



2

In a general case, the dynamics of a set of N particles (point masses with

mass 1) can be determined by the physics of the system. If the particles

are electrons or atoms we can assume a classical description by considering

classical electrodynamics (if we see them as classical particles), meanwhile in

the case of stars constituting a galaxy the classical gravitational laws yield

this description. The set of equations provided by these theories constitutes

which we shall refer as microscopic description. Celestial Mechanics addresses

this sort of problems when the number of stars considered in the stellar

system is small.

If N is high enough we can adopt a statistical description of the system.

This considers the particle distribution given by a function f(t; x; v), provid-

ing the number of particles in a domain 
x 2 R
3 with velocity 
v 2 R

3 at

the time instant t Z

x�
v

f(t; x; v) dxdv :

Obviously, the function f only achieves nonnegative values and allows to

write the particle density of the system as

�(x) =

Z
R3
f(t; x; v) dv :

As consequence, the total number of particles isZ
R3�R3

f(t; x; v) dxdv = N:

The subject of Statistical Mechanics is the study of this kind of systems by

deriving and analyzing the kinetic equations veri�ed by the particle distri-

bution function.

The kinetic description of a set of classical particles interacting by a

Coulombian interaction law, u(r) = =r2, is given by the Boltzmann�Poisson

equation (see [31])8><>:
@tf + v � rxf �rx� � rvf = Q(f; f) ;

�x� = 4�� ; limjxj!1 �(t; x) = 0 ;

where � is a mean��eld approximation potential generated by the particle

density as solution to the Poisson equation. Also, the constant  is 1 or

�1 depending on the interactions considered, attractive or repulsive, respec-

tively. Typical examples of physical systems governed by this equation are

gravitational systems and electro�dynamical systems. Finally, Q is a binary

kernel modeling the e�ect of the interactions between the particles. The ini-

tial value problem associated with this system is obtained by coupling these

equations with an initial condition f(t = 0; x; v) = f0(x; v).
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In the particular case of galaxies and big stellar clusters, where the grav-

itational forces are attractive and Coulombian, the Boltzmann�Poisson sys-

tem constitutes an admissible approach. Furthermore, we can assume that

it is a collisionless system, i.e. Q = 0. The high amount of constituent parti-

cles allows us to consider that any particle moves under the in�uence of the

mean potential generated by all the others. Forces due to nearby stars are

inessential even though gravitational attraction decreases with the square of

the distance. The reason of this is based on a comparison between the relax-

ation time and the age of the universe. The relaxation time is the smallest

time needed to perturb the trajectory of a particle crossing a galaxy by short

range interactions. When the number of particles is high enough the relax-

ation time is much bigger than the age of the universe, which assures that

the mean��eld approximation is admissible. On the other hand, the relation

between the crossing time (time needed by a particle for crossing the galaxy)

and the age of the galaxy allows us to consider that the number of possible

collisions between particles is small enough to neglect their e�ect ([18, 33]). If

we consider systems with a smaller number of constituent particles or smaller

typical length, these assumptions may become nonadmissible.

Under this last assumption the Boltzmann�Poisson system reads in the

following simpler form:8>>>>>><>>>>>>:

@tf + v � rxf �rx� � rvf = 0 ;

f(t = 0; x; v) = f0(x; v) ;

�x� = 4�� ; limjxj!1 �(t; x) = 0 :

This is the gravitational Vlasov�Poisson (VP) system. Two of the chapters of

this thesis are devoted to this system. In Chapter 2 we analyze the behaviour

for large times of the solutions to the VP system. We employ variational

arguments as well as invariances of the system. In Chapter 3 a new stability

criterium for stationary solutions of the (VP) system is proposed.

Let us de�ne some of the time preserved quantities associated with the

VP solutions in order to present the results achieved in both chapters. Let

f(t; x; v) a solution to the VP system. The energy associated with f is given

by

E(f) := EKIN(f)� EPOT (f)

where the kinetic and potential energies are

EKIN(f) =
1

2

Z
R6
jvj2 f(t; x; v) dx dv and EPOT (f) =

1

8�

Z
R3
jr�j2 dx ;
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respectively. This functional is time preserved for classical solutions to the

VP system as well as the norms

kf(t; �; �)kLp(R6) =
����Z
R6
jf(t; x; v)jp dx dv

���� 1p p 2 [1;1]

(see [57, 85]). In case of p = 1, we actually have mass conservation:

M =

Z
R6
f0(x; v) dx dv =

Z
R6
f(t; x; v) dx dv :

Another conserved quantity is the velocity moment

hvi(f) :=
Z
R6
vf(t; x; v) dx dv :

The purpose of Chapter 2 is to study the asymptotic behaviour of the

solutions to the VP system. Typically, qualitative properties of solutions

to this system are derived from estimates of some Lp norm of the density

function or of the potential or kinetic energy.

Our �rst result determines an optimal interval for the kinetic and poten-

tial energies in terms of the total energy, the total mass being �xed. Indeed,

the potential and kinetic energies associated with a VP solution verify

(i) EKIN(f) 2
�
K�(E;M); K+(E;M)

�
;

(ii) EPOT (f) 2
�
maxf0; P�(E;M)g; P+(E;M)

�
;

(iii) EPOT (f) 2
�
0;
q
�4EMEKIN(f)

�
;

for all times (see Theorem 2.1, pag. 22). These intervals depends on the

initial condition, since

K�(E;M) = �2EM
 
1� E

2EM
�
s
1� E

EM

!
;

P�(E;M) = �2EM
 
1�

s
1� E

EM

!
;

where M = kf0kL1(R6), E = E(f0) and EM is the minimum value of

EM := inf fE(f) ; f 2 �Mg ; (1.1)
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with �M = ff ; f(x; v) � 0 ; kfkL1(R6) = M ; kfkL1(R6) � 1g : These
intervals are optimal in the sense that they reduce to a point when we consider

a minimizer of (1.1), which is a stationary solution to the VP system. Indeed,

K�(E;M) = EKIN(f) =
1

2
EPOT (f) = P�(E;M) :

The existence of stationary solutions shows that in general for the gravita-

tional case a dispersive behaviour can not be expected contrary to that what

happens in the plasma physical case (repulsive potential). It is well known

that the solutions to the VP system in the repulsive case verify [58, 85]

k�(t)k
L
5
3 (R3)

� C

t
3
5

; 8t > 0 : (1.2)

Obviously, this inequality says that the number of particles of the system in

any arbitrary bounded domain 
 decreases with time.

Our next result shows a necesary condition for the initial data which al-

lows to distinguish between those solutions to the attractive VP system which

cannot satisfy a decay bound like (1.2) those which satisfy some dispersion

properties (in a statistical sense). The result is based on the Galilean transla-

tions and the dispersion equation veri�ed by those solutions. Let f0 : R
6 ! R

be a nonnegative function with �nite mass and energy. We have

i) If

E(f0) <
hvi2(f0)
2M

(1.3)

holds, then, there exists a constant C > 0, such that the corresponding

solution to the VP system with initial condition f0 veri�es

k�f (t; �)k
L
5
3 (R3)

� C ; 8t � 0 :

ii) Otherwise there exists t0 > 0 such that statistical dispersion occurs:

C1 t
2 �

Z
R6
jx� hxij2f(t; x; v) dx dv � C2t

2 8 t � t0 > 0 : (1.4)

We can then deduce

k�(t; x)kLp(R3) �
C

t3(p�1)=p
; 8 t > t0 ;

where p 2 [1;1), hxi = R
R6
xf(t; x; v) dxdv; ; and Ci, C are positive

constants.
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See Propositions 2.2 and 2.4 (pages 38 and 42) for more details. We

remark that in ii) we get only lower time decreasing estimates for the density

(which do not imply dispersion), although the increasing character of the

variance leads to dispersion in a statistical sense. These results extend those

obtained in [13] for spherically symmetric solutions.

Besides, the construction of stationary solutions to the VP system as min-

imizers of (1.1) allows to prove an stability criterium for that solutions. The

unique spherically symmetric minimizer of (1.1) coincides with a polytropic

solution. The family of spherical polytropic solutions is de�ned by

�� = �(x; v) = c
�
E0 � jvj2=2� �(jxj)

��
+
; (1.5)

where (�)+ is the positive part function, � < E0 < 0, �1 < � and c >

0. The minimum of (1.1) is achieved in �0 with c = 1. The nonlinear

stability criterium (dynamical stability) for this solution is given in terms of

the functional

d(g; h) = E(g)� E(h) +
1

4�
kr�g �r�hk2L2(R3) ;

where �g and �h are solutions to the Poisson equation with densities g and

h, respectively (See Theorem 2.3 pag. 37). The criterium is directly derived

from the minimization arguments developed to solve (1.1). This variational

problem exhibits several technical di�culties. The energy is a nonconvex

functional and is invariant by space translations. Furthermore, the func-

tional space where the minimization problem is proposed has two constraints.

We have studied this problem by concentration�compactness techniques and

symmetric rearrangements. Actually, we adapt the arguments developed in

[48, 50] for the Casimir minimization problem, which provides a similar dy-

namical stability criterium with � 2 (0; 3=2). Then, our work does include

the critical exponent � = 0 (see Chapter 2 for more details). Along this

thesis we deal with some other minimization problems related to (1.1). The

functionals considered are nonconvex and invariant by a noncompact group

of symmetries. This implies certain technical complexity.

Chapter 3 extends the dynamical stability criterium to a stronger one in

terms of the orbital stability, which can be deduced for the wider range of

polytropic solutions with � 2 [0; 7=2). In this case, we have to study the

minimization problem

I
�

M;J
:= inf

n
E(f) ; f 2 �

�

M;J

o
; (1.6)

where �
�

M;J
= L1

+(R
6 ;M)\L1+1=�

+ (R6 ; J) and L
p

+(R
6 ; K) = ff 2 Lp(R6); f �

0 ; kfkLp(R6) = Kg. The minimization arguments used to solve these prob-

lems allow to conclude that polytropic solutions with � 2 [0; 7=2) are orbitally
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stable. This criterium basically claims that if the initial condition f0, with

appropriate mass and L1+1=� norm, is close enough to �� (in terms of the ener-

gies), then the corresponding solution remains close (in L1 norm) to the orbit

of �� de�ned by f��(� � k; �) ; k 2 R
3g. This concept of stability is optimum

thanks to the Galilean invariance of the system, as we shall see in Chapter

3. The stability criterium is a consequence of the variational argument em-

ployed to solve the minimization problem (1.6). Now, we reduce (1.6) to an

equivalent problem for the density functions. Combining the minimization

arguments for the reduced problem with the original one we can conclude the

relative compactness in L1 of any minimizing sequence (up to translations).

This result extends the results obtained in other works [48, 50, 51] based on

minimization problems for the Casimir or energy functionals in spaces with

mass or Casimir�mass constraints, respectively.

Transport in semiconductor devices

The interest of the study of charge transport in semiconductor materials re-

lies on their use to develop electronic devices. Since the �rst built transistors,

based on germanium, has been the Silicon the semiconductor material domi-

nating the technological applications. Nevertheless, a lot of di�erent devices

for special applications have been invented in last decades (solar cell, light�

emitting diodes, lasers, ...). This has motivated the study of other semicon-

ductor materials as the Gallium Arsenide (GaAs) or the Aluminium Arsenide

(AlAs). Historically, the semiconductors are materials with a much higher

conductivity than insulators, but much lower conductivity than metals. This

simple classi�cation is nowadays more complete. Actually, it distinguishes

also between semimetals and superconductors. The di�erence between semi-

conductors and semimetals is that the latter retain their metallic conductivity

at low temperatures while semiconductors are transformed into insulators at

very low temperatures. A more detailed analysis of these materials requires

to consider factors as the gap energy, the crystal structure, lattice constant,

impurities, etc.... [6, 45].

A very important fact for the success of semiconductor devices is that the

device length is very small compared to previous electronic devices. Indeed,

the typical device length is continuously decreasing. The �rst Germanium

transistor had a characteristic length of 20�m and the transistors in a modern

Pentium IV have a characteristic length of 0:18�m. In fact, the Semiconduc-

tor Industry Association (SIA) announced that the devices in 2009 will have

lengths around 0:05�m. This miniaturization process has motivated increas-
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ing interest in the study of quantum e�ects in transport processes. Thus,

the hypothesis of classic transport valid for large enough devices becomes

fruitless for these small devices.

The transport of electrons in a semiconductor generated by the applied

bias depends on several factors: the semiconductor material employed, the

external conditions (temperature, external forces), size of the device, ... As

consequence, a considerable quantity of models has been proposed in the lit-

erature to describe the transport process, and the selection of an appropriate

model depends on the speci�c properties of the device. We remark that there

is a great interest in this �eld [62, 82, 86].

Determinant factors in the modeling of charge transport in a semicon-

ductor device are

i) The description of the dynamics of the electrons. This can be a mi-

croscopic, kinetic of hydrodynamic description. On the other hand,

electrons can be considered like classical or quantum particles depend-

ing on the relevance of the quantum e�ects in the transport mechanism.

ii) The in�uence of the semiconductor crystal lattice. The periodicity of

the semiconductor crystal lattice implies that the potential created by

the ions is also periodic. In this case, if we neglect other interactions,

we can deduce the existence of certain electronic states called Bloch

states.

iii) The interactions between particles. We can consider electrostatic in-

teractions (long�range interactions of Coulombian type) or collisions

between particles (also called scattering processes).

The di�erent models studied in the literature correspond to di�erent answers

to these questions. Of course, other relevant factors may appears in the

modeling such as the existence of impurities in the semiconductor (doping) or

the e�ect of other external forces (for example, an external magnetic �elds).

The consistency of a model comes from its derivation from �rst princi-

ples. In the case of the electron dynamics the �rst principles are dictated by

Quantum Mechanics. A single electron of mass m and charge q moving in

a vacuum under the action of an electric �eld E = E(x; t) is described by

the complex wave function  : R3 � [0;1] ! C , which is governed by the

Schrödinger equation

i~
@ 

@t
= � ~

2m
� � qV (x; t) : (1.7)

Here, ~ is the reduced Plank constant and V (x; t) is the potential related

to the electric �eld E = �rV . The density function n(x; t) = j (x; t)j2 is
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Figure 1.1: (Left) Conduction band diagrams of a semiconductor superlattice (Right)
Transversal cross section of a SL constituted by layers of Si (dark bands) and SiO2 (light
bands) of various thicknesses.

considered as the probability function of �nding the electron, i.e.Z


n(x; t) dx

is the probability of �nding the electron in the domain 
 in the time instant t.

Depending on the e�ects under consideration we will derive di�erent models.

This theoretical framework is more complex when the devices considered

are not simple semiconductor materials under applied bias. Along this thesis

we shall present two works concerning a semiconductor devices, called semi-

conductor superlattices (SL). They are constituted by a periodic array of

layers of two di�erent semiconductors whose lateral dimension is much larger

than the length l of one period. Since two semiconductors have di�erent en-

ergy gaps, the conduction band of a superlattice can be viewed as a periodic

array of potential wells and barriers, of widths d and w respectively, with

l = d+w. The �rst and the last layers are connected to the emitter and the

collector, which constitute the contacts (see Fig. 1.1).

These devices, proposed originally by L. Esaky in 1969, are a typical ex-

ample of open quantum system, which are systems that can exchange locally

conserved particles with its environment. The modeling of these devices is

rather more complicated because the electron �ux is crossing an heteroge-

neous medium. Depending on the characteristics of the SL, the displacement
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of charge can be due to several mechanisms.

Resonant tunneling is a typical mechanism of transport in these devices.

Tunneling is the mechanism by which the electrons go from one well to

the next on crossing the intermediate barrier. For the case of tunneling

structures, the standard theory assumes that the electron states are station-

ary scattering�state solutions of Scrhödinger equations. Thus, the current

can be calculated by using transmission coe�cients between these elemental

states. Some authors claim that this description is not adequate in gen-

eral for nonequilibrium phenomena [37]. Thus, dynamical descriptions of the

electrons in the nonequilibrium case are needed.

Quantum transport models

Here we present two works devoted to the analysis of the asymptotic disper-

sive character of the solutions to systems of Sch�rodinger�Poisson type [60, 82].

The Sch�rodinger�Poisson system models a gas of electrons in vacuum which

are a�ected by the self�consistent electric �eld created by themselves. In

last years, di�erent adaptations of this general model have appeared in the

literature for electron transport under particular contexts [91, 61, 81]. The

study of dispersive properties is relevant for the fabrication of semiconductor

superlattices [2, 25, 109].

The �rst model we have studied is the Schrödinger�Poisson (SP) system

in the 3�dimensional space, de�ned by

i~
@ 

@t
= � ~

2

2m
�x + V  ; lim

jxj!1
 (x; t) = 0;

 (x; t = 0) = �(x);

�xV = �n; lim
jxj!1

V (x; t) = 0 :

This system is closed with appropriate boundary and initial conditions. As it

is well known, although the mass and the energy are preserved, other relevant

quantities like the second order moment of the density or the Lp�norm, p > 2,

have dispersive properties. We analyze the behaviour of such quantities in

the context of a single quantum state modeled by the Schrödinger�Poisson

system. However, our analysis can be easily extended to the mixed�state

case. The study of the solutions to these systems has been done in several

papers [29, 59]. Our main goal in Chapter 4 is to improve the results obtained

in those works. Upper and lower estimates for the Lp(R3) norms of the

solutions, with 2 < p < 6, are obtained. These estimates describe, the

behaviour of those quantities. Under appropriate hypothesis on the initial
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condition, it can be proved that the associated solution to the SP system

veri�es

C1

jtj
3p�6

2p

� k (�; t)kLp(R3) �
C2

jtj�(p) ; 8 jtj � �; 8 p 2 [2; 6] ;

with Ci positive constants, � > 0 and

�(p) =

(
1� 2

p
; if p 2 [2; 3];

2
3
� 1

p
if p 2 [3; 6] :

See Theorem 4.1 (pag. 78) for more details. Upper time decay rates have

been improved with respect to those obtained in [29, 59]. Also, the lower

estimates are optimal. These estimates obtained from the dispersion equation

standing for the VP solutions and an inequality due to P.L. Lions, which links

the kinetic and potential energy with the L3 norm of a solution.

The second quantum model considered here is the Scrödinger�Poisson�

Slater (SPS) system de�ned by

i~
@ 

@t
= � ~

2

2m
�x + V  � CSn

1
3 ; limjxj!1  (x; t) = 0; (1.8)

 (x; t = 0) = �(x); (1.9)

�xV = �n; limjxj!1 V (x; t) = 0 : (1.10)

This system coincides with the Schrödinger�Poisson (SP) system when the

contribution of the last term (the Slater term) is not considered, i.e. CS =

0. Here, CS stands for the Slater constant. The repulsive e�ect of the

Coulomb potential seems to be too strong when we compare the behaviour

of the solutions to the SP system to simulations of superlattice structures

(see [89, 111]). Some di�erent approximations have been studied to overcome

this problem. The SPS model appears as an appropriate adaptation of the

Poisson potential (see [20] for more details).

As for the SP system, the solutions to the SPS system exhibit some

conserved quantities as the charge (L2 norm) or the energy, de�ned by

E[ ] =

Z
R3

(
~
2

2m
jr (x; t)j2 +

Z
R3

j (x; t)j2j (x0; t)j2
8�jx� x0j dx0� 3CS

4
j (x; t)j 83

)
dx :

The energy is constituted by the kinetic energy, the Coulomb potential energy

and the potential energy term corresponding to the Slater correction.

The qualitative analysis of the solutions to the SPS system is determined

by the balance between the potential terms. One important feature of the
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SPS system is that its associated potential energy can reach negative values

depending on the constants of the system (mass, initial energy or Slater

constant). This fact implies some relevant properties of the SPS system in

the repulsive case: 1) the minimum of the total energy operator is negative

for some choices of the physical constants; 2) there are solutions (depending

on the initial energy) that do not exhibit dispersive character; 3) there exist

steady�state solutions, i.e. solutions with constant density; 4) there are

solutions, even with positive energy, which preserve the Lp norm and do not

decay with time. These properties show important qualitative di�erences

between the SPS system and the SP system.

We now rouhly present our main results. Firstly we propose the varia-

tional problem

IM = inffE[ ] ;  2 H1(R3) ; k kL2(R3) =Mg: (1.11)

Under some technical hypotheses we conclude the existence of a minimum for

this problem (see Theorem 5.2 pag. 103). In this case, the energy functional

is nonconvex and invariant by space translations. The minimizing problem

is solved by considering two di�erent techniques: concentration�compactness

and nonzero weak compactness. The existence of minimizers allows us to

obtain two interesting consequences.

We claim the existence of stationary solutions (time independent density)

to the SPS, given by  (x; t) = e�i�t (x) ; � 2 R : By combining this result

with the Galilean invariance we can state the existence of solutions to the

SPS system (even with positive energy) whose Lp(R3) norm remains constant

along the time evolution for p 2 [8=3; 6]. The qualitative behaviour of these

solutions is clearly di�erent to that of the SP solutions.

We also get optimal bounds for the kinetic energy of the solutions, similar

to those obtained for the VP system. We prove that the kinetic energy of

the solutions to the SPS system ranges between the values

E�
KIN

= �2IM
 
1� E0

2IM
�
s
1� E0

IM

!
; (1.12)

whereM and E0 respectively hold for the mass and the energy of the solutions

(see Proposition 5.5, pag. 104).

The Galilean invariance of the solutions allows to deduce a criterium to

distinguish those solutions whose Lp norms do not vanish from those which

are dispersive in a statistical sense. Thus, for any SPS solution  with initial

condition � such that

E[�] <
1

2

jhxij2
k�kL2(R3)

;
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there exists positive constants C, C 0 and C 00 for which

k (t�)kLp(R3) � C; EPOT [ ] � �C 0 ; 8t � 0; p 2 [8=3; 6] :

Here, hxi := R
R3
x� dx. If � satis�es the reverse inequality

E[�] >
1

2

jhxij2
k�kL2(R3)

;

then we get the lower bound

k (�; t)kLp(R3) �
C 00

t
3p�6

2p

; 8t > � > 0; p 2 [2; 6] :

Furthermore, dispersion e�ects are proved in a statistical sense:Z
R3
j(x� hxi)j2n(x) dx = O(t2) :

See Corollary 5.1 pag. 109 for more details. To recap we have shown that

the Slater correction produces relevant changes in the qualitative behaviour

of the solutions.

We observe that the X�-approach to the SP system (see Chapter 5) is

linked with the polytropic solutions to the VP equation by a minimization

problem over the associated energy functionals subject to a �niteness con-

straint on some Lp norm. This gives rise to a Lagrange multiplier, which is

precisely the X� correction to the SP system.

Drift-Di�usion models

The last part of the thesis is concerned with two works based on a Discrete

Drift�Di�usion system, which models charge transport in weakly coupled

semiconductor superlattices. These SL are such that the barrier width is

much larger than the reciprocal of the typical electron wave number inside

the barrier. Nonlinear charge transport phenomena are observed in these de-

vices due to the existence of �eld domains (domains in which the electric �eld

achieves homogeneous values). The electrons constituting the total charge

can be produced by doping or irradiating the SL with appropriate laser inten-

sity. Depending on the charge density inside the SL we can observe di�erent

typical con�gurations. For any value of constant applied voltage, the typical

response of the current in the device can be measured. The relation between

voltage and current constitutes the current�voltage (I � V ) diagram char-

acteristic curve. When the electron density inside the SL is su�ciently low,
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the electric �eld is almost spatially uniform and the I � V curve is smooth.

Provided that the charge inside the SL is large enough, these con�gurations

are unstable and a stationary �eld con�guration having two electric �eld

domains appears. In this case, the I � V exhibits a sow�tooth like pro�le

where di�erent branches appear separated by discontinuities (See Chapter 6).

The discontinuities between the branches are motivated by the displacement

from one SL period to an adjacent one of the wall connecting the electric

�eld domains. Finally, when intermediate values of the charge are adopted

self�sustained oscillations are observed.

We now describe in some detail the Discrete Drift�Di�usion model. In

such weakly coupled semiconductor SL, the dominant mechanism of charge

transport is sequential resonant tunneling. The displacement of one electron

from one well to the adjacent one can be split into three stages: scattering,

relaxation and tunnelling. During the scattering time, an electron originally

in an excited subband tends to lose energy and fall to the �rst subband.

Afterwards, the electron stay in that subband during the relaxation time.

Tunnelling is the mechanism employed by the electron to scape from one

well to the next one. The model assumes that scattering times are shorter

than escape times from quantum wells, the latter being shorter than dielec-

tric relaxation times. Then, the dominant mechanism of vertical transport is

sequential tunneling; only the �rst subband of each well is appreciably occu-

pied and the tunneling current is quasistationary (the well-to-well tunnelling

current density across a barrier is calculated assuming a constant value of

the applied electric �eld and a constant electron density at the wells adjacent

to the barrier). In the simplest situation, the center of each quantum well is

n-doped and the thermal energy is large compared to the energy of the lowest

miniband. Then, electronic transport in these devices can be described by

a Discrete Drift-Di�usion model (see [1, 23, 22, 107]). In such a model, we

consider an array of N + 1 consecutive cells, which are well�barrier pairs,

labelled by the index i 2 f0; : : : ;+Ng. The barrier separating the injecting

contact from the �rst well of the SL is considered as the 0�th barrier, while

the barrier of the N�th SP period separates the N -th well from the collec-

tor. The model assumes that the electrons are singularly concentrated on a

two�dimensional region allocated in the center of the quantum well. The un-

knowns are the two�dimensional electron density ni , i = 1; : : : ; N (number

of electrons per unit area of the superlattice cross section at the center of the

i�th well) and the average electric �eld Fi in each cell, i = 0; : : : ; N . These

quantities are related through the following discrete Poisson equation

Fi � Fi�1 =
e

"
(ni �Nw

D
); i 2 f1; : : : ; Ng: (1.13)
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In (1.13), Nw

D
stands for the two�dimensional doping in the wells, assumed

to be constant, while " is the average permittivity in the SL and e = �q
stands for the electron charge. Notice that the set of relations (1.13) involves

as an additional unknown the electric �eld F0 at the injecting contact. On

the other hand, denoting by eJi!i+1 the tunneling current density through

the barrier separating the cells #i and #(i + 1), the density in the i�th cell

satis�es the following charge continuity equation

dni

dt
= Ji�1!i � Ji!i+1; i 2 f1; : : : ; Ng: (1.14)

Consequently, di�erentiating (1.13) and using (1.14), we notice that the quan-

tity
"

e

dFi

dt
+ Ji!i+1 = J(t); i 2 f0; : : : ; Ng ; (1.15)

does not depend on the considered cell. This is the so�called Ampère's law,

where eJ(t) stands for the total current density through the SL which does

not depend on the index i.

Then, the model is completed by a constitutive law which de�nes the

current density eJi!i+1 by means of the (nk; Fk)'s. The tunneling current

density depends on the electrochemical potentials at cells #i and #(i + 1)

and on the average electric �eld Fi [22, 107]. The electrochemical potentials

that �drive� the tunneling current (a nonzero current is a consequence of

unequal electrochemical potentials at cells #i and #(i + 1)) are functions

of the electron densities and therefore we may consider that the tunneling

current eJi!i+1 depends on ni, ni+1 and Fi [22, 107]. First�principles calcu-

lations of eJi!i+1 are at best sketchy. In the literature, some formulae have

been derived from quantum kinetic equations for the Green's functions [107]

(assuming constant electric �eld across the superlattice, simpli�ed hopping

Hamiltonians and scattering) and from the transfer Hamiltonian formalism

[1, 23, 22] (a many�body version of the WKB method originally proposed by

Bardeen [9]). At high (room) temperature, all these formulae imply that the

tunneling current is given by the di�erence of a drift term and a di�usion

term as follows

Ji!i+1 =
niv(Fi)

`
� D(Fi)(ni+1 � ni)

`2
; i 2 f1; : : : ; N � 1g: (1.16)

The drift velocity and the di�usion coe�cient are de�ned through functions

v and D of the electric �eld, which depend on the physical properties of the

material used in the SL (see [22] for more details). The special nature of the

three�dimensional emitter and collector layers (di�erent from the essentially

two�dimensional quantum wells that form the superlattice) is considered in
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the calculation of the boundary tunneling current. By using the transfer

Hamiltonian formalism, the following approximate expressions can be derived

[23]

J0!�N = j(e)(F�N�1)� n�NW
(b)(F�N�1)

`
; (1.17)

JN!N+1 =
nNW

(f)(FN )

`
: (1.18)

These equations involve the emitter current density ej(e), the emitter back-

ward velocity W (b) and the collector forward velocity W (f), which are given

functions of the electric �eld. All the coe�cients v;D;W (b);W (f); j(e) are

supposed to be nonnegative and satisfy some regularity properties. Typical

graphs for these functions can be found in Chapter 6.

We remark that one equation is still missing since we have one unknown

more than equations. A realistic boundary condition is the so�called voltage

bias condition: the total voltage across the superlattice,

`
NX
i=1

Fi = V; (1.19)

remains equal to a given quantity V .

Relations (1.13), (1.14) and (1.19) form a closed system of equations for

ni with i 2 f1; : : : ; Ng and Fi with i 2 f0; : : : ; Ng, referred to in the sequel

as the Discrete Drift�Di�usion (DDD) model.

The voltage V and the total current eJ are variables that can be measured

in experiments. This allows us to compare the experimental evidence with the

numerical simulations. Furthermore, there exist other indirect experiment

measures (based on photoluminiscense measurements) that have con�rmed

the existence of �eld domains.

The problem studied in Chapter 6 was motivated by recent experimental

evidence obtained in relocation experiments [92, 93]. As we mentioned above,

highly doped weakly coupled semiconductor superlattices typically exhibit a

I � V diagram with many sharp branches due to formation of static electric

�eld domains. The �eld domains are connected by an intermediate wall which

is an accumulation layer, typically alocated in one well. The discontinuities

in the I � V curve are motivated by the displacement of the wall from one

well to other. The relocation experiments consist in the measuring of the

time delay of the system to reach a new stable �eld con�guration at voltage

V1 = V0 +�V when the voltage is suddenly increased from V0. If V0 and V1
are alocated in separated branches, the domain wall has to relocate so that

a stable �eld con�guration appropriate to the new voltage is reached [80]. In

[80] it was claimed that when V0 and V1 are in adjacent branches the time
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delay depends on the distance between V1 and the I � V discontinuity. The

relocation time is bigger as V1 is closer to the jump between the branches.

Other experiments have shown that the relocation time for up jumps (�V >

0) close to the discontinuity in the I-V characteristic is random and have

also investigated its probability distribution function [92, 93]. In Chapter

6 we shall present a stochastic theory of domain relocation in highly doped

SL explaining these experiments. The stochastic model has been derived

from the DDD model, where we take into account shot noise e�ects which

arise in semiconductor devices by the quantization of the charge [19]. We

have tested numerically the model by using numerical methods for stochastic

di�erential equations. The numerical results are in qualitative agreement

with those obtained in experiments, concluding that the �uctuations observed

in relocation experiments are due to shot e�ects.

The problem we deal with in Chapter 7 is focussed on SL where the charge

density inside the device reaches intermediate values. In this case, stationary

responses and self�sustained oscillations are observed depending on the values

of the applied voltage. The DDD model captures this situation. Indeed, the

(hyperbolic) continuum limit has been proposed in the literature to explain

self�sustained oscillations. The electric �eld inside the device depends on the

applied voltage. Low biased SL present low values of the �eld. In Chapter

7 we rigorously study the continuum limit of the DDD model in a low��eld

regime. We have proved that in this regime the solutions can be aproximated

by those of the system8>>>>>>>><>>>>>>>>:

@tn+ @xJ(F; n) = 0;

J(F; n) = v(F )n�D(F )@xn ;

@xF = n�ND ;R
X
F = V ;

J(F; n)(X) =W (f)(F )n(X) ;

J(F; n)(�X) = (j(e)(F )�W (b)(F )n)(�X) :

(1.20)

See Theorem 7.3 pag. 154 for more details. The rigorous treatment of this

limit exhibits several di�culties. The discrete nature of the solutions (steep�

wise functions) to the DDD model forces to consider functional spaces in

which derivatives are measures. The special consideration of the current

densities in the contacts needs a particular analysis of the limit in both

contacts. Finally, we remark that the bias condition has to be replaced in a

�rst approach by an arti�cial Dirichlet type condition on the electric �eld in

the emitter, in order to get appropriate a priori estimates. Then, we recover

the bias condition by a simple argument.
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Chapter 2

Asymptotic behaviour for the

Vlasov-Poisson System in the

stellar dynamics case

Introduction

The purpose of this chapter is to study the asymptotic behaviour of the

solutions of the Vlasov�Poisson system (VP) in the gravitational case8>>>>>><>>>>>>:

@tf + v � rxf �rx� � rvf = 0 ;

f(t = 0; x; v) = f0(x; v) ;

�x� = 4�� ; limjxj!1 �(t; x) = 0 ;

by the mean of an associated variational problem.

We �rst obtain optimal upper and lower bounds of the kinetic and po-

tential energies in terms of the mass and of the minimum of the total energy

functional (Theorem 2.1). These estimates are optimal in the sense that they

coincide in the case of one of the so-called polytropic gas spheres solutions

(Theorem 2.2; see [15] for a study of these solutions by means of the asso-

ciated characteristics system). We reduce the problem to the proof that the

minimum of the energy is realized in a class of bounded functions (see below).

In Section 2, we completely characterize the minimizers, which in turn gives

an optimal constant for an interesting inequality (see Appendix B), and also

proves a nonlinear stability result (Theorem 2.3).

The dispersive character of the solutions of the VP system in the plasma

physical case has been proved by using Lp-estimates of the mass density. As

was pointed out in [58], a di�erent qualitative behaviour can be expected for

19
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the gravitational case, due to the existence of stationary solutions. Section 2

of this paper is devoted to the study of this case. In terms of the orientation

of an inequality which relates the value of the energy, the mass and the

momentum of the initial data, we distinguish two situations: either we can

derive positive lower bounds for the potential and a norm of the mass density,

or we prove that the variance of the density function is of order t2 as in

the plasma physics case. For that purpose, we extensively use the Galilean

invariance of the VP system, and also the pseudo-conformal law as in the

dispersive case.

There is a general interest in understanding the large time behaviour of

time dependent solutions of the VP system, which has given rise to various

approaches in the literature, ranging from the study of the stability of certain

solutions [11, 48, 50] to the analysis of the time evolution of integral quantities

(moments, Lp-norms, . . . ), see e.g. [13]. Our dispersion results extend the

estimates of J. Batt in [13] to the non spherically symmetric case.

The solutions corresponding to polytropic gas spheres are radial and take

the special form

f(x; v) = c(E0 � jvj2=2� �(x))
�

+ jx� vj2k

(see [15, 16, 48] for details). In [48] (see [50, 90] for more recent results) some

of these solutions (the ones corresponding to 0 < � < 3
2
+ k, c > 0, k > �1)

were obtained as minima of a so-called Energy-Casimir functional. Here, we

extend these results and the compactness arguments to the limit case which

formally corresponds to � = 0 and k = 0. Considerations on the total energy

functional are fruitless at a �rst sight, since this functional is not bounded

from below in the functional spaces proposed in [48]. This motivates an extra

restriction (a uniform bound), which is stable under the evolution of the VP

system and corresponds to the standard framework for solving the Cauchy

problem.

We face di�erent kinds of di�culties: lack of compactness due to transla-

tion invariance, and possibility of dichotomy in the large-time dispersive

regime due to the invariance under Galilean translations. The possible

regimes are much richer in the gravitational case than in the plasma physics

case (see for instance [67] for the construction of time-periodic solutions).

This also makes the analysis, for instance of the dispersive regime, much

harder than in the plasma physics case [58, 85, 30].
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Optimal bounds for the kinetic and potential en-

ergies

The goal of this section is to determine an optimal interval for the kinetic and

potential energies in terms of the total energy, the total mass being �xed. We

reduce the question to a minimization problem and prove that it is achieved.

Let f(t; x; v) be a solution of the VP system and de�ne the total energy

associated to f by

E(f) := EKIN(f)�  EPOT (f)

where the kinetic and the potential energies are de�ned respectively by

EKIN(f) =
1

2

Z
R6
jvj2 f(t; x; v) dx dv and EPOT (f) =

1

8�

Z
R3
jr�j2 dx :

In the last expression the potential � associated to f is given by

� = � 

j � j �
Z
R3
f(�; v) dv : (2.1)

For a smooth solution the total energy remains constant along the time evo-

lution of the solution as well as the total mass which is de�ned by

kf(t; �; �)kL1(R6) =
Z
R6
f(t; x; v) dx dv

(see [57, 85]). The transport of the distribution function also preserves uni-

form bounds:

kf(t; �; �)kL1(R6) � kf(0; �; �)kL1(R6) :

For these reasons, it is natural to consider the functional space L1 \L1(R6).

Our main result relates E(f), EKIN(f) and EPOT (f) in this functional space.

It is by the way independent of the VP system itself but of course applies to

any of its solutions. Before, we need some further notations and de�nitions.

For any M > 0, let

�M = ff 2 L1 \ L1(R6) : f(x; v) � 0 ; kfkL1(R6) =M ; kfkL1(R6) � 1g

and consider

EM := inf fE(f) : f 2 �Mg : (2.2)
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In the rest of this paper, we will assume without further notice that  = 1

(gravitational case). For any E � EM , de�ne

K�(E;M) = �2EM
 
1� E

2EM
�
s
1� E

EM

!

P�(E;M) = �2EM
 
1�

s
1� E

EM

!
:

Theorem 2.1. EM is negative, bounded from below and for any f 2 �M ,

with E = E(f), the following properties hold:

(i) EKIN(f) 2
�
K�(E;M); K+(E;M)

�

(ii) EPOT (f) 2
�
maxf0; P�(E;M)g; P+(E;M)

�

(iii) EPOT (f) 2
�
0;
q
�4EMEKIN(f)

�
Moreover, there exist functions which minimize (2.2) and these are stationary

solutions to the VP system for which E = EM and

K�(E;M) = EKIN(f) =
1

2
EPOT (f) = P�(E;M) :

The rest of this section is devoted to the proof of Theorem 2.1, apart the

fact that minimizers are solutions of the VP system, which is going to be an

easy consequence of the explicit form of the minimizers (see Theorem 2.2 in

Section 2).

A potential energy estimate

Lemma 2.1. There exists a positive constant C such that for any nonnega-

tive function f in L1 \ L1(R6) with jvj2 f 2 L1(R6) and � given by 2.1,Z
R3
jr�j2 dx � C kfk7=6L1(R6) kfk

1=3

L1(R6)

�Z
R6
jvj2f(x; v) dx dv

�1=2
: (2.3)

In the rest of this paper, we shall denote by C the best constant in In-

equality 2.3 (see Appendix B for more details).

Proof. From the de�nition of � we haveZ
R3
jr�j2 dx =

Z
R3
(���)� dx = 4 �

Z
R6

�(y)�(x)

jx� yj dx dy
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with �(x) =
R
R3
f(x; v) dv. According to the Hardy-Littlewood-Sobolev in-

equalities, Z
R3
jr�j2 dx � 4�� k�k2

L
6
5 (R3)

for some constant � > 0. Because of Hölder's inequality,

k�kL6=5(R3) � k�k7=12L1(R3)k�k
5=12

L5=3(R3)
:

The L5=3-norm of � can be estimated by the standard interpolation inequalityZ
R3
j�j5=3 dx � C kfk2=3L1(R6)

Z
R6
jvj2 f(x; v) dx dv :

�

An equivalent minimization problem

De�ne

J(f) =
1
2

R
R6
jvj2 f dx dv�

1
8�

R
R6
jr�j2 dx

�2 � EKIN(f)

(EPOT (f))2

and consider the minimization problem

JM = inf fJ(f) : f 2 �Mg :

The strict positive character of JM is a trivial consequence of the Inequality

(2.3). A simple scaling argument proves that the constraint kfkL1(R6) � 1

has to be saturated.

Lemma 2.2. The minimization problems E(f) = EM and J(f) = JM over

the set �M are equivalent in the following sense.

(i) Their respective minima satisfy

4 JM EM = �1 :

(ii) If fM 2 �M is a minimizer of the functional E, then it is also a min-

imizer of the functional J . On the other hand, if J(gM) = JM for

some gM 2 �M , then E(g�
M
) = EM where g�

M
(x; v) := gM(�x; v=�) and

� =
EPOT (gM )

2EKIN (gM )
.
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Proof. The set �M is stable under the action of the scaling f 7! f�(x; v) =

f(�x; v=�) for any � > 0. Since for every f 2 �M ,

E(f�) = �2EKIN(f)� � EPOT (f) ; (2.4)

we can select the value of the parameter � for which the total energy reaches

the minimum over the uniparametric family of functions ff� : � 2 R
+g.

Let

� = �min =
EPOT (f)

2EKIN(f)
:

In that case,

E(f) � E(f�min) = �1

4

(EPOT (f))
2

EKIN(f)
= � 1

4 J(f)
: (2.5)

Note that E(f�min) < 0. Since � 1
4J(f)

� � 1
4JM

, this proves that EM � � 1
4 JM

.

On the other hand, the functional J is invariant under scalings. so we may

rewrite 2.5 as

J(f) = J(f�min) = � 1

4E(f�min)
: (2.6)

Again � 1
4E(f�min )

� � 1
4EM

proves the inequality: JM � � 1
4EM

, so that EM �
� 1

4 JM
because EM < 0. Assertions concerning the minimizers directly follow

from 2.5 and 2.6.

�

The fact that EM is negative, bounded from below, is a straightforward

consequence of Lemma 2.1 and Lemma 2.2. We can now prove Assertions

(i)-(iii) of Theorem 2.1. By de�nition of E(f) and J(f), we have

E := E(f) = EKIN � EPOT and
EKIN(f)

(EPOT (f))2
= J(f) � � 1

4EM
:

This proves Assertion (iii): (EPOT (f))
2 � � 4EM EKIN(f), and

�EPOT (f))
2

4EM
� EPOT (f) � E ; (EKIN � E)2 � � 4EM EKIN ;

from which (i) and (ii) easily follow, using the positivity of EPOT (f). Note

that K�(E;M) is nonnegative, which is the case for P�(E;M) only if E < 0.

The rest of this section is devoted to the proof of the existence of mini-

mizers.
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Corollary 2.1. Let fM be a minimizing function for the functional E on

�M . Then

EPOT (fM) = 2EKIN(fM) = �2EM : (2.7)

Proof. (2.7) is a trivial consequence of the scaling argument 2.4: derive the

identity with respect to � at � = 1. Note that

EM = �EKIN(fM) = �1

2
EPOT (fM) < 0 :

�

Remark. Property 2.7 is shared by any stationary solution f of the VP

system:

EPOT (f) = 2EKIN(f) = �2E(f) :
For a proof, see identity 2.23.

Spherical symmetry and regularity of the potential

We �rst prove by symmetric nonincreasing rearrangements (see Appendix A)

that when minimizing the functional E on �M , we can consider minimizing

sequences having radial nonincreasing mass densities, which provides further

regularity properties of the associated potentials.

Lemma 2.3. Let M > 0. There exists a minimizing sequence (fn)n2N 2 �N
M

of the functional E such that for any n 2 N the mass density �n(x) =R
R3
fn(x; v) dv is a radial nonincreasing function.

Proof. Let (fn)n2N 2 �N
M

be an arbitrary minimizing sequence of the func-

tional E. The symmetric nonincreasing rearrangement f �x
n
2 �M (see Ap-

pendix A) of fn (with respect to the x variable only) also belongs to �M for

any n 2 N, because of (2.27)-(2.28). Using Riesz' theorem (see Theorem 2.4

in Appendix A for a statement) we getZ
R3
jr�j2 dx = 4 �

Z
(R3)4

f(x; v) f(x0; v0)

jx� x0j dx dx0 dv dv0

� 4 �

Z
(R3)4

f �x(x; v) f �x(x0; v0)

jx� x0j dx dx0 dv dv0

�
Z
R3
jr��j2 dx

where � = j�j�1�R
R3
f(�; v) dv and �� = j�j�1�R

R3
f �x(�; v) dv. This and (2.29)

prove that f �x
n

is a minimizing sequence. Properties (2.30)-(2.31) provide the



26

spherically symmetric and nonincreasing character of the sequence of mass

densities associated to f �x
n
. �

The spherically symmetric character of the mass density implies regularity

properties of the potential function � (see Lemma 2 of [48] for a proof) which

go beyond the estimate of Lemma 2.1.

Lemma 2.4. Let � 2 L1(R3) \ L5=3(R3) be a nonnegative and spherically

symmetric function with k�kL1(R3) =M > 0 and de�ne � = �j � j�1 ��. Then
� belongs to W

2;5=3
loc (R3) and there exists a � > 0 such that for any R > 0 we

have Z
jxj<R

jr�j2+� dx � C(M;R)

 Z
jxj<R

�5=3 dx + 1

!

for some C = C(M;R) > 0 which does not depend on �.

A priori estimates, scalings and tools of the concentration-

compactness method

Several of the results of this paragraph are basic tools of the concentration-

compactness method (see [77, 90] for more details in this direction). We start

with a very elementary computation which will be usefull later.

Lemma 2.5. Let � be a radial L1 nonnegative nontrivial function on R3 and

consider the corresponding potential � given by the Poisson equation

�� = 4 � � ; lim
jxj!+1

�(x) = 0 :

Then � is radial, nondecreasing and strictly increasing in the interior of the

support of �. With the notation
R
R3
�(x) dx =: M > 0 and the standard

abuse of notations: r = jxj, �(x) = �(r), �(x) = �(r) for any x 2 R
3 and

M =
R
R3
�(x) dx = 4�

R1
0 r2�(r), the two following estimates hold:

(i) For any r > 0,

�0(r) � M

r2
and � M

r
� �(r) � 0 :

(ii) For any R > 0, Z
jxj�R

jr�(x)j2 dx � 4 �
M2

R
:
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Proof. The Poisson equation written in radial coordinates is

1

r2

�
r2�0

�0
= 4 � �

which gives after one integration

�0(r) =
4 �

r2

Z
r

0
s2 �(s) ds � M

r2
:

An integration from R > 0 to +1 gives (i) while (ii) is obtained by writingZ
jxj�R

jr�(x)j2 dx � 4 �

Z +1

R

r2 (�0(r))
2
dr � 4 �

Z +1

R

M2

r2
dr :

The bound on � readily follows from the expression of �0. �

Our next result is based on a scaling argument.

Lemma 2.6. Let M be a positive real number. Then, the identity

EM =M7=3 E1 (2.8)

holds.

Proof. Let f 2 �1. We scale this function as �f(x; v) = f(M1=3x;M�2=3v),
obtaining

k �fkL1(R6) =M ; k �fkL1(R6) � 1 ; E( �f) =M7=3 E(f) :

This scaling trivially implies (2.8). �

The following result is a splitting estimate (see [48] for similar estimates).

Lemma 2.7. Let f 2 �M be a function such that the mass density �(x) =R
R3
f(x; v) dv is spherically symmetric. Given R > 0, we can write

M � � =

Z
jxj<R

Z
R3
f(x; v) dv dx ;

for some � 2 [0;M ]. Then

E(f)� EM � �
�
7

3

EM

M2
+

1

4 � R

�
(M � �)� : (2.9)

Proof. Let �BR be the characteristic function of BR := fx 2 R
3 : jxj < Rg.

We split the potential function in two parts � = �1 + �2, where �1 and �2
are de�ned by

��1(x) =

Z
R3
�BR(x) f(x; v) dv ; ��2(x) =

Z
R3
(1� �BR(x)) f(x; v) dv :
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In the same line we write E(f) as

E(f) = EKIN(�BRf) + EKIN((1� �BR)f)

� 1

8�

Z
R3
jr�1j2 dx�

1

8�

Z
R3
jr�2j2 dx�

1

4�

Z
R3
r�1 � r�2 dx

= E(�BRf) + E((1� �BR)f)�
1

4�

Z
R3
r�1 � r�2 dx

� EM�� + E� +
1

4�

Z
R3
�2��1 dx :

Using (2.8) we �nd

E(f)� EM �
24 1� �

M

! 7
3

+

 
�

M

! 7
3

� 1

35EM +
1

4�

Z
R3
�2��1 dx : (2.10)

In order to bound the �rst term on the right hand side of (2.10) we take

advantage of the negative value of EM and use the identity

(1� x)
7=3

+ x7=3 � 1 � �7

3
x (1� x) ;

which is valid for all x in [0; 1]. The second term of the right hand side of

(2.10) is nonpositive and bounded by���� 14�
Z
R3
�2��1 dx

���� � k�2kL1(R3)

Z
R6
�BR f dx dv = k�2kL1(R3) (M � �) ;

where k�2kL1(R3) can be calculated by using the spherically symmetric char-

acter of the mass density � =
R
R3
f dv:

�02(r) =
4�

r2

Z
r

0
s2 �(s) (1� �BR(s)) ds � 0 ;

so that �02(r) � 0 on (0; R), which implies that

k�2kL1(R3) = j�2(0)j = j�2(R)j �
�

4 � R

according to Lemma 2.5. Combining the above estimates we obtain 2.9. �

In the next lemma we prove that no vanishing of mass occurs.

Lemma 2.8. LetR0 >
3M2

28� jEM j and consider a minimizing sequence (fn)n2N 2
�N
M
for the functional E. Assume moreover that (fn)n2N is given as in Lemma

2.3. Then

lim sup
n!1

Z
jxj�R0

Z
R3
fn dv dx = 0 :
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Proof. If the statement was not true, there would exist a � 2 (0;M ] and a

subsequence (we keep the same notation for the sake of simplicity) such that

lim
n!1

Z
jxj�R0

Z
R3
fn dv dx = � :

In this case, for every fn, there would exist R(n) > R0 such that

�

2
=

Z
jxj�R(n)

Z
R3
fn dv dx :

Apply now Lemma 2.7 to each fn with R = R(n):

E(fn)� EM � �
 
7EM

3M2
+

1

4�R(n)

! 
M � �

2

!
�

2

� �
�
7EM

3M2
+

1

4�R0

� 
M � �

2

!
�

2
> 0 :

This would clearly be in contradiction with the assumption that the sequence

is a minimizing sequence for the functional E. �

Convergence of a minimizing sequence

Proposition 2.1. Let (fn)n2N 2 �N
M

be a minimizing sequence for the func-

tional E, with radial nonincreasing mass densities. Up to a subsequence,

the sequence converges to a minimizer fM 2 �M such that EM = E(fM),

supp (fM) � BR0
� R

3 where R0 =
3M2

28� jEM j .

Proof. At each step of the proof, we may extract subsequences that we

still index by n, for simplicity. From Lemma 2.1, it is clear that both

EKIN(fn) and EPOT (fn) are bounded sequences. Thanks to Lemma 2.8,

limn!1
R
BR0

R
R3
fn dv dx = M . The sequence (fn)n2N veri�es the hypothesis

of the Dunford-Pettis theorem:

(i) [boundedness] (fn)n2N is bounded in L1(R6),

(ii) [no concentration] for any measurable set A,Z
A

fn dx dv � kfnkL1(R6) jAj � jAj ;

(iii) [no vanishing] for any K1, K2, either K1 < R0 andZ
jxj>K1

Z
jvj>K2

fn dx dv �
Z
R3

Z
jvj>K2

fn dx dv �
1

K2
2

EKIN(fn) ;
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or K1 � R0 and

lim
n!1

Z
jxj>K1

Z
jvj>K2

fn dx dv � lim
n!1

Z
jxj�R0

Z
R3
fn dx dv = 0 :

As a consequence, there exists a function f 2 L1(R6) and a subsequence

which weakly converges in L1(R6) to f . As a consequence, kfkL1(R6) = M

(see [77, 48] for more details). Moreover, f is nonnegative a.e. as a weak limit

of nonnegative functions. The sequence (fn)n2N is bounded in L1(R3) and

thus also converges to f w.r.t. the *-weak L1 topology, up to the extraction

of a further subsequence, so that kfkL1(R3) � 1. Thus f belongs to �M . The

weak convergence in L1(R6) impliesZ
R6
jvj2 f dx dv � lim inf

n!1

Z
R6
jvj2 fn dx dv :

Let �n and � be the solutions to the Poisson equation with mass densi-

ties associated with fn and f respectively. The proof that limn!1 kr�n �
r�kL2(R3) = 0 up to the extraction of a subsequence follows from the splitting

Z
R3
jr�n �r�j2 dx �

Z
BR

jr�n �r�j2 dx + 4 �
M2

R
; (2.11)

which is itself a consequence of Lemma 2.5. Here BR := fx 2 R
3 : jxj <

Rg. From Lemma 2.4 and the Sobolev compact inclusion W 2;5=3(BR) ,!
W 1; 15

4 (BR), we obtain the convergence by choosing R large enough in (2.11).

This proves that E(f) = EM . �

Solutions of the VP system with minimal energy

and nonlinear stability

We characterize the functions with minimal energy and prove that they are

solutions of the VP system. For that purpose, we characterize the mass

density of a minimizer, as was proposed in [90].

Theorem 2.2. Let fM be a minimizing function for the functional E on �M ,

with radial mass density. Then fM is de�ned almost everywhere by

fM (x; v) =

8><>:
1 if 1

2
jvj2 + �fM (x) <

7
3

E(fM )

M
;

0 otherwise ;
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where �fM is the unique radial solution on R
3 of

��fM =
1

3
(4�)2

"
2

�
7

3

EM

M
� �fM

�
+

#3=2
:

It is the unique minimizer with radial mass density and it is also a steady-

state solution to the VP system. Moreover, if f is another minimizing func-

tion, then

f(x; v) = fM(x� �x; v) 8 (x; v) 2 R
6 ;

where �x = 1
M

R
R6
x f(x; v) dx dv.

Here w+ denotes the positive part of w. The existence of a minimum

implies by translation in space the existence of other ones. The fact fM is a

solution to the VP system is a straightforward consequence of the fact that

fM is a function of the microscopic energy: 1
2
jvj2 + �fM (x), namely

fM(x; v) = � 1
2
jvj2+�fM (x)< 7

3

E(fM )

M

(x; v) :

In this section, we �rst prove Theorem 2.2 and then state a nonlinear stability

result for the solutions of the VP system.

Explicit form of the minimizers

For convenience, we split the proof of Theorem 2.2 into three intermediate

results.

Lemma 2.9. Let fM be a minimizing function for the functional E on �M .

Then

fM(x; v) =

8>><>>:
1 for (x; v) such that jvj �

�
3
4�
�M (x)

�1=3
a.e. ;

0 otherwise :

(2.12)

Note that we do not assume that fM has a radial mass density.

Proof. We are going to split the proof of (2.12) into several steeps. First,

we observe that

kfMkL1(R6) = 1 :

If this is not the case, consider the scaling �f(x; v) = �f(�2=3x; ��1=3v), which
gives

k �fkL1(R6) = kfkL1(R6) ; k �fkL1(R6) = � kfkL1(R6) ; E( �f) = �2=3 E(f) :
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By applying this scaling to f = fM with � = kfMk�1L1(R6) > 1, we would get

E( �f) = �
2
3EM < EM (remind that EM < 0), a contradiction.

Using the Euler-Lagrange multipliers method, we are now going to prove

that

fM � 1 a.e. on supp (fM) :

Let � 2 (0; 1) be a �xed real number. Let g(x; v) 2 L1(R6) \ L1(R6) be a

test function such that g � 0 a.e. in R
6 n supp (fM), with compact support

contained inside

(supp (fM) n S�)c �
�
R
6 n supp (fM)

�
[ S� ;

where

S� = f(x; v) 2 R
6 : � � fM(x; v) � 1� �g :

With T :=M �
�
MkgkL1(R6) + kgkL1(R6)

��1
, we have that

g(t) =M
tg + fM

ktg + fMkL1(R6)
2 �M 8 t 2 [0; T ] : (2.13)

The function g depends on t, x and v. However, to emphasize the dependence

in t, we will write it g(t). Identity 2.13 follows from a detailed analysis of

the function tg + fM :

0 ��TkgkL1(R6) + �� tg + fM in S� ;

0 � fM = tg + fM in supp (fM) n S� ;
0 � tg = tg + fM in R

6 n supp (fM) ;

gives the positivity of g(t) and implies

M(1� �) � ktg + fMkL1(R6) = t

Z
R6
g dx dv +M � M(1 + �) :

It is clear that kg(t)kL1(R6) =M and the estimate

kg(t)kL1(S�) �M
TkgkL1(R6) + 1� �

M � TkgkL1(R6)
= 1

ends the proof of 2.13.

To prove that S� is a set of measure 0 for any � > 0, we compute E(g(t))�
EM = E(g(t)) � E(fM) and then derive it with respect to t at t = 0+.

Deriving g(t) with respect to t, we get

g0(t)

M
=

g

ktg + fMkL1(R6)
� (tg + fM )

R
R6
g dx dv

ktg + fMk2L1(R6)
;

g00(t)

M
= �2 g

R
R6
g dx dv

ktg + fMk2L1(R6)
+ 2

(tg + fM)

� R
R6
g dx dv

�2
ktg + fMk3L1(R6)

:
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By a Taylor expansion at t = 0+, there exists a � 2 (0; t) such that

g(t)� fM = t g0(0) +
t2

2
g00(�) = t

�
g � 1

M

� Z
R6
g dx dv

�
fM

�
+
t2

2
g00(�) ;

where

jg00(�)j � C (jfM j+ jgj)
for some constant C > 0 which depends only on fM and g. Using the

decomposition E(g(t))� EM = 1
2
K(t)� 1

8�
P(t) with

K(t) =

Z
R6
jvj2

�
g(t)� fM

�
dx dv

P(t) = 8�

Z
R6
�fM

�
g(t)� fM

�
dx dv �

Z
R3

� ���r�g(t) �r�fM ���2 � dx
we have therefore the following estimates:����Z

R6
jvj2

�
g(t)� fM � t g0(0)

�
dxdv

���� � C t2
Z
R6
jvj2

�
jgj+ fM

�
dxdv = O(t2) ;����Z

R6
�fM

�
g(t)� fM � t g0(0)

�
dxdv

���� � C t2
Z
R6
�fM

�
jgj+ fM

�
dxdv = O(t2) ;Z

R3

���r�g(t)�r�fM ���2dx=Z
R3
jr�g(t)�fM j2dx= t2kr�g0(0)k2L2(R3) +O(t2)=O(t2) :

From (2.7) and the above estimates we deduce

E(g(t))� EM = t

Z
R6

�
1

2
jvj2 + �fM

�
g0(0) dx dv +O(t2)

= t

Z
R6

�
1

2
jvj2 + �fM

�  
g �

�R
R6
g dx dv

M

�
fM

!
dx dv +O(t2)

= t

Z
R6

�
1

2
jvj2 + �fM �

3EM

M

�
g dx dv +O(t2) :

Since fM minimizes E(�) � EM on �M , we have that E(g(t))� EM � 0 for

any t 2 [0; T ] and consequentlyZ
R6

�
1

2
jvj2 + �fM �

3EM

M

�
g dx dv � 0

for every g and �. There are two relevant consequences of this inequality:

(i) From the nonnegative character of g on R
6 n supp (fM) we have

1

2
jvj2 + �fM (x) �

3EM

M
8 (x; v) 2 R

6 n supp (fM) ;

or equivalently�
(x; v) 2 R

6 :
1

2
jvj2 + �fM (x) �

3EM

M

�
� supp (fM) :
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(ii) On the other hand, g has no determined sign on S�. This implies that

1

2
jvj2 + �fM (x) =

3EM

M
8 (x; v) 2 S� \ supp (fM) :

The Lebesgue measure of the set de�ned by the above identity is zero.

The set S� also has zero Lebesgue measure for any � 2 (0; 1).

We conclude that fM � 1 on supp (fM).

It remains to check that (2.12) holds. Since fM minimizes the total energy

functional, it also minimizes fE(f) : f 2 Mg where

M =

�
f 2 �M : f � 1 a.e. on supp(f) ;

Z
R3
f(x; v) dv = �M(x) 8 x 2 R

3

�
:

Since all f 2 M have the same potential energy, EPOT (f) = EPOT (fM). The

problem is therefore reduced to the minimization of fEKIN(f) : f 2 Mg.
Using radial nonincreasing rearrangements with respect to v, for �xed x 2 R

3

(use 2.32 but exchange the roles of x and v), we getZ
R3
jvj2 f �v dv �

Z
R3
jvj2 f dv

with a strict inequality unless f � f �v a.e. Thus

fM � �
jvj�( 3

4�
�M (x))

1=3 in R3 � R
3 a.e.

since, at least in the distributions sense,

�M (x) =

Z
R3
fM(x; v) dv =

Z
R3
f �v
M
(x; v) dv =

4�

3
j supp (fM)(x; �) j3 :

This conclude the proof of (2.12). �

We have now to use the fact that fM is a minimizer to understand the

properties of �M .

Lemma 2.10. Let fM be a minimizing function for the functional E on �M
with radial mass density. Then �M =

R
R3
fM(�; v) dv and �fM = j � j�1 � �M

are related by

�M(x) =

8>><>>:
4�
3

h
2
�
7
3
EM

M
� �fM (x)

�i3=2
if �fM (x) � 7

3
EM

M
;

0 otherwise :

(2.14)
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Proof. Let �(x) 2 L1(R3) \ L5=3(R3) be a nonnegative function such that

k�kL1(R3)=M . We de�ne

f�(x; v) =

8>><>>:
1 for (x; v) 2 R

6 such that jvj �
�

3
4�
�(x)

�1=3
a.e. ;

0 in other case :

We observe that f� 2 �M . Since fM minimizes E on �M and veri�es (2.3)

and (2.12), it also minimizes the problem

minfE(f�) : � 2 ~�Mg ; (2.15)

where

~�M := f� 2 L1(R3) \ L5=3(R3) : �(x) � 0; k�kL1(R3) =Mg :

Easy computations provide

EPOT (f�) =
1

2

Z
R6

�(y) �(x)

jx� yj dx dy ;

EKIN(f�) =
1

2

Z
R3

Z
R3
jvj2f�(x; v) dv dx =

35=3

10 (4�)2=3

Z
R3

�
�(x)

�5=3
dx ;

which implies that (2.15) can be rewritten as

min
n
F (�) : �(x) 2 ~�M

o
(2.16)

where

F (�) :=
35=3

10 (4�)2=3

Z
R3

�
�(x)

�5=3
dx� 1

2

Z
R6

�(y) �(x)

jx� yj dx dy :

The density �M is a minimizer of 2.16 and therefore obeys to the correspond-

ing Euler-Lagrange equations:

1

2

�
3

4�
�M (x)

�2=3
�
Z
R3

�M (y)

jx� yj dy � � = � (2.17)

where � is a real-valued Lagrange multiplier associated to the constraint

k�kL1(R3) =M , and (
� = 0 if �M (x) > 0 ;

� � 0 if �M (x) = 0 :



36

Multiplying 2.17 by �M , integrating and using (2.7), we can obtain the value

of �:

�M =
1

2

�
3

4�

�2=3Z
R3

�
�M(x)

�5=3
dx�

Z
R6

�M(y) �M(x)

jx� yj dx dy ;

=
5

3
EKIN(fM)� 2EPOT (fM) =

7

3
EM ;

which implies that

� =
7

3

EM

M
:

Equation 2.17 now reads

1

2

�
3

4�
�M(x)

�2=3
+ �fM (x) = � on supp (�M)

and the condition �M � 0 is now equivalent to �fM � �. Note that according

to Lemma 2.5, �fM is nondecreasing: as a consequence, �M is monotone de-

creasing (as a radial function) on its support and �fM is monotone increasing.

�

Lemma 2.11. With the notations of Lemma 2.10, �fM is unique and con-

tinuously di�erentiable. Furthermore, if f is another minimum of E on �M ,

then there exists y 2 R
3 such thatZ

R3
f(x; v) dv = �M(x� y) a:e: x 2 R

3 :

Proof. Let us rewrite the Poisson equation for �fM using (2.14) and (2.17):

��fM = 4��M(x) =

8>><>>:
1
3
(4�)2

h
2
�
7
3
EM

M
� �fM

�i3=2
if �fM (x) � 7

3
EM

M
;

0 otherwise :

Since �fM is radially symmetric, this equation can be rewritten for

w(r) =
7

3

EM

M
� �fM (r=

p
c)

as

(r2w0(r))0 + r2w
3=2
+ (r) = 0

with r = jxj and c = 1
3
32
p
2�2. Let R = 3M2

7jEM j
p
c. According to Lemma 2.5

(see the proof: �fM (r) = �M

r
for any r � R=

p
c),

0 = w(R) =
7

3

EM

M
+
M
p
c

R
and w0(R) = � 1p

c
�0
fM

 
Rp
c

!
= �M

p
c

R2
:
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The uniqueness and the regularity of w follow by standard ODE results.

The expression of non radial minimizers is a consequence of (2.12), the

fact that the associated mass densities minimize (2.16), the conservation of

the Lp-norm by radial nonincreasing rearrangements and Riesz' theorem (see

Theorem 2.4 in Appendix A). �

This also concludes the proof of Theorem 2.2. Note that the minimizer

with radial symmetric density was previously found as a solution of the VP

system in [15], but in a di�erent context.

Nonlinear stability for the evolution problem

Using the conservation of mass and energy, we obtain on �M a nonlinear

stability result of the minimal energy solution for the evolution problem. We

follow the strategy of Guo in [48]. Consider for any g, h 2 �M the distance

d de�ned by

d(g; h) = E(g)� E(h) +
1

4�
kr�g �r�hk2L2(R3)

where �g and �h are solutions of the Poisson equation with mass densities

associated to g and h respectively.

Theorem 2.3. For every � > 0, there exists a Æ > 0 such that the following

property holds. If f is a solution of the VP system with an initial condition

f0 2 �M , then

d(f0; fM) � Æ =) d(f �(t); fM) � � 8 t � 0 :

Proof. The result is easily achieved by contradiction since E(f �(t)) �
E(fM) � E(f0)� E(fM)& 0 implies kr�f�(t) �r�fMkL2(R3) & 0. �

Large time behaviour

The Galilean invariance of a classical solution f to the VP system with

initial data f0(x; v) means that for any u 2 R
3 , the solution with initial data

fu0 (x; v) = f0(x; v � u) is given by

fu(t; x; v) = f(t; x� tu; v � u) 8 (t; x; v) 2 (0;+1)� R
3 � R

3 :
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Galilean invariance and asymptotic behaviour

The Galilean translations give rise to a family of solutions with same Lp-norm

and potential energy for every t � 0, parametrized by u 2 R
3 . Nevertheless,

other quantities like the total momentum

hvi(fu) :=
Z
R6
vfu(t; x; v) dx dv = hvi(f) + u kf(t)kL1(R6)

and the total energy

E(fu) = E(f) + u � hvi(f) + 1

2
juj2 kfkL1(R6) : (2.18)

are not invariant under Galilean translations. Note that

hvi2(f) � 2 kfkL1(R6)EKIN(f)
and among the family (fu)u2R3 , the minimum of EKIN(f

u) is reached by

EKIN(f
�u) = EKIN(f)�

hvi2(f)
2 kfkL1(R6)

for �u = � hvi(f)
kfkL1(R6)

:

Also note that u = �u is the unique value of the parameter for which

hvi(fu) = 0 :

This can be summarized by the following statement.

Lemma 2.12. Let f 2 L1(R6) be a distribution function with �nite mass

and energy. If

E(f) <
1

2

hvi2(f)
kfkL1(R6)

; (2.19)

then, with the above notations, the function f �u reaches a negative total en-

ergy value. Otherwise, every element of the parametric family of the Galilean

translation has non-negative energy. In any case, the minimal energy solution

of the parametric family has null momentum.

Since the quantities involved in (2.18) are all time independent, the result

also holds for any t for the solution f(t; �; �) to the VP system with initial

data f0.

Proposition 2.2. Let f0 2 L1 \L1(R6) be a nonnegative distribution func-

tion with �nite mass and energy and verifying (2.19). Then there exists three

constants C1, C2, C3 > 0 such that the solution f of the VP system with

initial data f0 veri�es for any t � 0

C1 � EPOT (f(t; �; �)) � C2 ; (2.20)

k�f(t; �)kL5=3(R3) � C3 : (2.21)
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Proof. According to Lemma 2.1, 2.3,

8 � EPOT (f(t)) � C kf0k7=6L1(R6) kf0k
1=3

L1(R6) (2EKIN)
1=2(f(t))

with the notation f(t) = f(t; �; �)), so that, if E(f0) < 0, then

0 � E(f0) � C E2
POT

(f(t))� EPOT (f(t))

with C = 1
2

�
8�
C

�2 kf0k�7=3L1(R6) kf0k
�2=3
L1(R6). This means that

EPOT (f(t)) 2
�

1

2C

�
1�

q
1 + 4E(f0)C

�
;

1

2C

�
1 +

q
1 + 4E(f0)C

� �
:

Estimate (2.20) holds because there exists a function in the family of the

Galilean translations associated to f0 with negative total energy: it is there-

fore not restrictive to take E(f0) < 0 to evaluate EPOT (f(t)). On the other

hand (2.21) is a direct consequence of the Hardy-Littlewood-Sobolev inequal-

ities (see the proof of Lemma 2.1) with C3=
8� C1p

�
.

�

Variance and dispersion estimates

The solutions to the VP system in the gravitational case have a qualitative

behaviour which strongly di�ers from the behaviour in the plasma physics

case since, for instance, stationary solutions exist. The rest of this section is

devoted to solutions in the gravitational case for which Condition (2.19) is

violated. Our goal is to prove some dispersion estimates. For that purpose,

consider the dispersion operators in space and in velocity de�ned by

<(�x)2> :=

Z
R6
jxj2f(t; x; v) dx dv �

�Z
R6
xf(t; x; v) dx dv

�2
;

and

<(�v)2> :=

Z
R6
jvj2f(t; x; v) dx dv �

�Z
R6
vf(t; x; v) dx dv

�2
:

Up to a mass normalization, the dispersion operator in space coincides with

the statistical variance of the density mass function and, consequently, it is a

measure of the dispersion of such a distribution. If f is a solution of the VP

system, the time evolution of both quantities are related with the total energy

and the momentum by the dispersion equation. Since this property is also

valid for the VP system in plasma physics we will consider both situations.
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Lemma 2.13. Let f be a classical solution of VP with �nite mass, energy

and space dispersion. Then, it veri�es

1

2

d2

dt2
<(�x)2> = E(f) +

1

2
<(�v)2> �1

2
hvi2(f) : (2.22)

Proof. A straightforward calculation using the VP system gives

1

2

d2

dt2

Z
R6
jxj2f(t; x; v) dx dv =

1

2

d

dt

Z
R6
jxj2 (�v � rxf +rx� � rvf) dx dv

=

Z
R6
(v � x) (�v � rxf +rx� � rvf) dx dv

=

Z
R6
jvj2 f dx dv � 1

4�

Z
R3
(x � rx�)�� dx

=

Z
R6
jvj2 f dx dv � 1

8�

Z
R3
jr�j2 dx

= E(f) +
1

2

Z
R6
jvj2f dx dv (2.23)

which is equivalent to 2.22. �

Equation (2.22) is equivalent to a formula proposed by R. Illner and G.

Rein in [58], and B. Perthame in [85]. As a straightforward consequence, the

following pseudo-conformal law holds.

Lemma 2.14. [58, 85] Let f0 2 L1 \ L1(R6) be a nonnegative initial data

with �nite mass, energy and space dispersion. Then a classical solution f to

the VP system with initial data f0 satis�es the following identity:

d

dt

 Z
R6
jx� tvj2f(t; x; v) dx dv � t2

4�

Z
R3
jr�j2 dx

!
= � t

4�

Z
R3
jr�j2 dx :

(2.24)

Proof. For completion, let us give a proof of this identity.Z
R6
jx� t vj2fdxdv =

Z
R6
jxj2f dxdv+ t2

Z
R6
jvj2fdxdv� t d

dt

�Z
R6
jxj2fdxdv

�
Then, the left hand side term of (2.24) can be written as

d

dt

"Z
R6
jxj2fdxdv � t

d

dt

�Z
R6
jxj2fdxdv

�
+t2

Z
R6
jvj2fdxdv � t2

4�

Z
R3
jr�j2dx

#

=
d

dt

"Z
R6
jxj2f dx dv � t

d

dt

�Z
R6
jxj2f dx dv

�
+ 2t2E(f)

#

= �t d
2

dt2

Z
R6
jxj2f dx dv + 4tE(f) = � t

4�

Z
R3
jr�j2 dx
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where in the last equality we have used 2.23. �

Consider now the solutions with positive energy, in the case  = +1.

Proposition 2.3. Let f be a solution of the VP system in the gravitational

case with positive energy corresponding to a nonnegative initial datum f0 2
L1(R6) \ L1(R6) with �nite mass, energy and space dispersion. Then, there

exists positive constants C, C1, C2 such that for some t0 > 0,

C1 t
2 �

Z
R6
jxj2f(t; x; v) dx dv � C2 t

2 8 t � t0 > 0 ; (2.25)

and, for any p 2 [1;1),

k�(t; x)kLp(R3) �
C

t3(p�1)=p
; 8 t > t0 ;

where Ci depend on E(f); kf0kL1(R6); kf0kL1(R6) and C also depends on p.

Proof. We can rewrite 2.23 as

1

2

d2

dt2

�Z
R6
jxj2 f(t; x; v) dx dv

�
= 2E(f) + EPOT (f) :

Combining this and the estimate of Theorem 2.1, we �nd

2E(f) � 1

2

d2

dt2

Z
R6
jxj2 f(t; x; v) dx dv � 2E(f) + C ;

where C depends on E(f), kf0kL1(R6), kf0kL1(R6). This estimate proves (2.25)

by integrating twice in time. As for the estimate on �, we may writeZ
R6
f(t; x; v) dx dv �

Z
R3

Z
jxj�R

f(t; x; v) dx dv +

Z
R3

Z
jxj>R

f(t; x; v) dx dv

�
�
4 �

3
R3

�(p�1)=p
k�(t; �)kLp(R3) +

1

R2

Z
R6
jxj2f(t; x; v) dx dv

� C k�(t; x)k
2p

5p�3

Lp(R3)

�Z
R6
jxj2f(t; x; v) dx dv

�3p�3

5p�3

where in the last line we optimized on R > 0. The conclusion holds because

of the time preservation of the L1(R6)-norm and Estimate (2.25). �

This argument can be used for solutions of the VP system in the plasma

physical case and provides the same type of results: see [30] (with a di�erent

approach). Observe furthermore that Proposition 2.3 does not imply any

dispersion property in the usual sense, as can be shown by considering a

Galilean translation of a stationary solution with positive energy (i.e. for juj
big enough). This motivates the last result of the paper.
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Proposition 2.4. Let f be a solution of the VP system in the gravitational

case with positive energy corresponding to a nonnegative initial datum f0 2
L1(R6) \ L1(R6) with mass kf0kL1(R6) = 1, and �nite energy and space

dispersion. Assume that

E(f0) >
1

2

����Z
R6
v f0(x; v) dx dv

����2 : (2.26)

Then, there exists a t0 > 0 and two positive constants C1, C2 such that

C1 t
2 � <(�x)2> � C2 t

2 8 t � t0 ;

where Ci depend on E(f); kf0kL1(R6) and kf0kL1(R6).

Proof. The space dispersion operator is invariant under Galilean translations

<(�x)2> (fu) = <(�x)2> (f) 8 u 2 R
3 :

With the notations of the beginning of this section, consider the Galilean

translation of f with minimal energy and null momentum. The dispersion

equation (2.22) applied to this function f �u reads as

1

2

d2

dt2
<(�x)2> = E(f �u) +

1

2
<(�v)2> ;

where

E(f �u) = E(f0)�
1

2
j�uj2 ; �u = hvi(f0) = �

Z
R6
v f0(x; v) dx dv ;

so that E(f �u) is positive by (2.26). Since <(�v)2> is positive and bounded

by Lemma 2.3, we deduce

E(f) <
1

2

d2

dt2
<(�x)2> < E(f) + C ;

where C is controlled in terms of E(f) by Theorem 2.1. This ends the proof

by integrating twice in time. �

Appendix A � Symmetric nonincreasing rear-

rangements

This appendix is devoted to the statement of basic properties of symmetric

nonincreasing rearrangements of nonnegative functions. Such a tool has been



Symmetric nonincreasing rearrangements 43

widely used in open quantum problems (see for example [97, 70]). As a special

case, we consider functions of the variables x and v, which are rearranged

with respect to the x variable only (see [74]).

The symmetric rearrangement A� of the set A in R
n , n � 1, is the open

ball in R
n centered at the origin whose volume is that of A. The symmetric

nonincreasing rearrangement of the characteristic function �A of A is then

de�ned by

��
A
:= �A� =

8><>:
1 if 1

n
jSn�1j jxjn � k�AkL1(Rn)

0 otherwise.

Let h : Rn ! C be a Borel measurable function such that k�fjhj>tgkL1(Rn) is
�nite for all t. Here we denote by fjhj > tg the set fx 2 R

n : jh(x)j > tg.
Then

jh(x)j =
Z 1

0
�fjhj>tg(x) dt

holds and we can de�ne the nonincreasing rearrangement of h by

h�(x) :=
Z 1

0
��fjhj>tg(x) dt :

The symmetric nonincreasing rearrangement of a function (x; v) 7! g(x; v) �
0 with respect to the x variable only (i.e. for �xed v) is then de�ned as

g�x(x; v) :=
Z 1

0
��fx2Rn : g(x;v)>tg dt :

Thanks to the Fubini's theorem we can easily adapt to the case of the sym-

metric nonincreasing rearrangement with �xed v the standard properties of

the usual symmetric nonincreasing rearrangements:Z
R2n

g�x(x; v) dx dv =

Z
R2n

g(x; v) dx dv ; (2.27)

kg�xkL1(R2n) = kgkL1(R2n) ; (2.28)Z
R2n

jvj2g�x(x; v) dx dv =

Z
R2n

jvj2g(x; v) dx dv ; (2.29)Z
Rn
g�x(x; v) dv =

Z
Rn
g(x0; v) dv if jxj = jx0j ; (2.30)Z

Rn
g�x(jxj; v) dv �

Z
Rn
g�x(jyj; v) dv if jxj � jyj ; (2.31)Z

Rn
 (jxj) g�x(jxj; v) dv �

Z
Rn
 (jxj) g(x; v) dv ; (2.32)
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where in the last inequality the function r 7!  (r) is nondecreasing. If

moreover  is (strictly) increasing on R+ , then the inequality in 2.32 is strict

almost everywhere in v 2 R
n unless g�x � g almost everywhere on R

n � R
n .

For completion, let us state Riesz' theorem (see [74]):

Theorem 2.4. Let f , g and h be three nonnegative functions on R
n . ThenZ

Rn

Z
Rn
f(x) g(x� y) h(y) dx dy =: I(f; g; h) � I(f �; g�; h�) ; (2.33)

with the convention that I(f �; g�; h�) =1 if I(f; g; h) =1. If g is radially

symmetric and strictly decreasing, i.e. if g(x) > g(y) for any x, y such that

jxj < jyj, equality in (2.33) holds only if f(x) = f �(x�y) and h(x) = h�(x�y)
for some y 2 R

n .

Appendix B: Explicit form of the optimal con-

stant

Let w be the solution of the ODE8><>:
(r2w0)0 + r2w

3=2
+ = 0 r 2 [0;+1)

w(0) = 1 ; w0(0) = 0

(2.34)

Note that w0 � 0 as long as w � 0. Let u be given by w(r) = u(� log r)=r4.

Then it solves the equation: u00 + 7u0 + 12u + u
3=2
+ = 0. A phase diagram

analysis of (u; u0), shows that w has to change sign. Denote by � its �rst

positive zero and de�ne the quantities

A :=

Z
�

0
r2w5=2 dr ;

B :=

Z
�

0
r2w3=2 dr :

The best constant C in Inequality 2.3 of Lemma 2.1 is de�ned as

C�1 = inf

24kfk7=6L1(R6) kfk
1=3

L1(R6)

(
R
R6
jvj2f(x; v) dx dv)1=2R

R3
jr�j2 dx

35
where the in�mum is taken over the set of the functions f 2 L1 \ L1(R6)

such that f � 0, jvj2f 2 L1(R6), f 6� 0.
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Proposition 2.5. With the above notations,

C = 8�M�7=6 (2JM)�1=2 = 8�
(2 jEM j)1=2
M7=6

is independent of M > 0 and takes the value:

C = 32 �2

s
25=2 a7=4A

5 c3=2
;

where a = c2

4

�
3

(4�)2 B

�4=3
and c = 1

3
32
p
2�2.

Proof. The independence in M is a consequence of the scaling invariance

(see Lemma 2.6) and the fact that according to Lemma 2.2, C is achieved by

the minima of the functional E on �M . Without restriction, we can assume

that M = 1. Let f = f1, � = �1 and � = �f1 be the corresponding mass

density and potential. From Theorem 2.2, we get

�� = 4� � =
1

3
(4�)2

"
2

 
�7

6

� C
8�

�2
� �

!
+

#3=2
:

On the other hand, by the proof of Lemma 2.9 and Corollary 2.1, we get

Z
R6
jvj2 f dx dv = 4�

5

Z
R3

�
3

4�
�

�5=3
dx =

1

8�

Z
R3
jr�j2 dx = 2 jEM j :

Thus we obtain

C =
p
8�

�Z
R3
jr�j2 dx

�1=2
:

With the notations of the proof of Lemma 2.11, wa(r) = �7
6

�
C
8�

�2��fM�r=pc�
is a solution of 8><>:

(r2w0
a
(r))0 + r2(wa)

3=2
+ (r) = 0

wa(0) = a ; w0
a
(0) = 0

where a > 0 has to be determined in order that

1 =

Z
R3
� dx =

1

3
(4�)2

Z
�(a)=

p
c

0
r2
�
2wa

�p
c r
��3=2

dr :

Here �(a) denotes the smallest zero of wa. Note that �(r) =
1
3
4� [2wa(

p
c r)]3=2

for r � �(a)=
p
c. The scaling invariance

wa(r) = aw1(a
1=4 r)
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reduces the computation to the case a = 1, w = w1 given by 2.34: on

(0; �(a)=
p
c), �(r) = 1

3
4� [2aw(a1=4

p
c r)]3=2, so that

1 =
1

3
(4�)2

�
2

c

�3=2
a3=4

Z
�

0
r2w3=2 dr =

1

3
(4�)2

�
2

c

�3=2
a3=4B ;

where � = �(1), and allows to express a in terms of B:

a =
c2

4

 
3

(4�)2B

!4=3

:

Similarly, we compute

Z
R3
jr�j2 dx = 1

5
32 �2

Z
R3

�
3

4�
�

�5=3
dx =

1

5
32 �2 4� 25=2 a7=4 c�3=2 A :

This gives the expression of C simply by collecting the estimates. �

Remark. The expression given in Proposition 2.5 is not easy to use. A

numerical computation provides C � 54:62:::. Going back to Lemma 2.1, we

may wonder if the estimate given in the proof is optimal. This is actually not

the case. Let � be the optimal constant in the Hardy-Littlewood-Sobolev

inequality

Z
R3
jr�j2 dx = 4�

Z
R3

�(x) �(y)

jx� yj dx dy � 4�� k�k2L6=5(R3) ;

which, according to [71], is � = 4
3

�
4p
�

�2=3
. Keeping track of the constants

in the interpolation identity, we get the following estimate :

C � 4��

�
5

3
(2�)2=5

�5=6
=

16 �

3

�
20

3

�5=6
� 81:42:::



Chapter 3

Orbital stability for polytropic

galaxies

Introduction and main results

This chapter relies on the analysis of stability properties of stationary solu-

tions, called polytropic spheres, to the VP system in the gravitational case

@tf + vrxf �rx�rvf = 0 ; (3.1)

f(t = 0; x; v) = f 0(x; v); (3.2)

�x� = 4��; lim
jxj!1

�(t; x) = 0 : (3.3)

This topic is of particular interest in stellar dynamics for the understanding

of galaxies and clusters.

The existence of families of stationary solutions to the gravitational VP

system has been previously analyzed in several works, e. g. [15, 56]. Here, we

focus our attention on a particular family, the so called polytropic spherical

systems [56], which are de�ned by

�� = �(x; v) = c
�
E0 � jvj2=2� �(jxj)

��
+
; (3.4)

where (f)+ denotes the positive part of f , � < E0 < 0, �1 < � and c > 0. �

is coupled with � by the Poisson equation (3.3) and satis�es limjxj!0�(jxj) =
E0 � �. The family (3.4) involves four di�erent parameters. However, the

Coulombian constraint implies the existence of a unique polytrope for any

admissible values of �, c and �. Typically, these solutions are indexed by the

exponent �. The functions represented by (3.4) can be seen as a particular

case of the family of generalized polytropic solutions [15, 56]. The existence

of these and other families of solutions were proved in [15] by means of the

associated characteristic system.

47
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A wide literature could be mentioned from the 60's about the stability

properties of these solutions. In [4, 5] Antonov studied the linear stability of

polytropic solutions with 0 < � < 7=2. Later, in [12, 56] the stability for other

values of � was analyzed from a numerical point of view. Several works de-

velop nonlinear dynamical stability criteria Chapter 2, [48, 49, 110] for some

of these solutions via variational arguments based on the Energy�Casimir or

the Energy functionals. In this direction, in [48, 110] the polytropes de�ned

by 0 < � < 3
2
, c = 1 and

R
R3
�� dx =M > 0 were deduced as the minimizers

of the Energy�Casimir functionals

Q�;k(f) =
�

�+ 1

Z
R6
f 1+1=�L�k=� dxdv + E(f) ; (3.5)

where L = jx� vj2 and the Total Energy functional E(f) is de�ned by

E(f) � EKIN(f)� EPOT (f) =
1

2

Z
R6
jvj2f(t; x; v) dx dv � 1

8�

Z
R3
jr�j2 dx :

(3.6)

Here, the �rst term in the right�hand side is the kinetic energy and (minus)

the second term is the potential energy. This result was also proved for

generalized polytropic solutions under the additional assumption that f is

also spherically symmetric. The restriction � < 3=2 was removed in [49] by

minimizing the energy functional in the space

�
�

M
=

(
f : R6 ! R

+
0 ;

�

�+ 1
kfk1+1=�

L1+1=�(R6)
+

�
7

2
� �

�
kfkL1(R6) =M

)
:

However, these results do not determine exactly neither the spherical poly-

trope minimizer nor the set of minimizers. In Chapter 2, the polytrope

corresponding to � = 0; c = 1 ;
R
R3
�0 dx =M was obtained as the minimizer

of

inf
n
E(f) ; f 2 L1

+(R
6 ;M) \ L1+ (R

6 ; 1)
o
; (3.7)

where

L
p

+(R
n ; F ) := fg 2 Lp(Rn) ; g : Rn ! R

+
0 ; kgkLp(Rn) = Fg :

The dynamical stability criteria developed in Chapter 2 and [48, 49, 110]

are established in terms of the functionals

d(f; h) = O(f)� O(h) +
1

4�
kr�f �r�hk2L2(R3) ; (3.8)

where O denotes the functional to minimize, i.e. the Energy�Casimir or

Energy functionals, depending on the variational problem under consid-

eration with respect to � for functions in the space L1
+(R

6 ;M), �
�

M
or
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L1
+(R

6 ;M) \ L1+ (R
6 ; 1), respectively. Also, �f denotes the solution to the

Poisson equation �x�f = 4��f . If �� is a minimizer, the dynamical stabil-

ity criteria stablish that for f 0 as initial condition in the above spaces and

�close to� ��, the solution remains close to the set of minimizers, always in

terms of the distance d. Due to the time invariance of the functional O for the

solutions of the VP system, these criteria establish stability for the potential

energies instead of for the solutions (cf. (3.8)). An alternative stability cri-

terium was obtained in [108] in terms of the L2(R6) norm of the distribution,

although it only covers the case � = 1.

The dynamics of the solutions to the VP system is much richer and the

above criteria give only a partial answer to the stability problem in terms of

the potential. The aim of this work is to extend these stability criteria to

a stronger picture: the orbital stability. This concept has been widely ana-

lyzed in other contexts such as bound states and traveling wave solutions to

nonlinear PDE's, for instance Klein�Gordon and Schrödinger equations (see

[28, 27, 46]). Usually, the solutions of these systems exhibit some invariance

properties up to some non�compact group of symmetries. This gives rise

to the concept of orbit of a solution. The solutions to the VP system are

invariant by space translations. Thus, the orbit of the solution f is described

by ff(t; x + k; v) ; k 2 R
3g. The main idea of orbital stability relies on the

fact that a stationary solution fS is orbitally stable if small perturbations

of fS remain close to the orbit of fS along the evolution (in some sense to

be speci�ed). Furthermore, the criterium is optimal as shown the following

application of the Galilean invariance property: If �� is a solution to the VP

system, then for all u 2 R
3 we have that �u

�
(x; v) = ��(x � tu; v � u) is also

a solution with initial condition ��(x; v � u) (see Chapter 2). By choosing u

small enough (in norm) we obtain initial conditions close to ��, meanwhile

the corresponding solution only travels close (in some distance de�ned in

terms of the minimization problem) to the orbit and not pointwise.

The total energy, as well as the norms kfkLp(R6) with p 2 [1;1], remain

constant along the time evolution for regular solutions. In case of p = 1, we

actually have mass conservation. Literature concerning the stability of such

solutions is based on these conserved properties. For instance, only spherical

polytropes with �1=2 � � � 7=2 have �nite mass, and if � < 7=2 they also

have compact support.

Technically all these minimizing problems exhibit the same di�culty, say

the functional under consideration is invariant under space translations. This

clearly motivates a lack of compactness of any minimizing sequence.

In this work we deal with the variational problem

I
�

M;J
:= inf

n
E(f) ; f 2 �

�

M;J

o
(3.9)
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where �
�

M;J
= L1

+(R
6 ;M) \ L

1+1=�
+ (R6 ; J) : We will prove that the polytropic

gas sphere solutions are orbitally stable in the following sense:

Theorem 3.1 (Orbital Stability). Let � 2 [0; 7=2) and � > 0. Also, let

�� be a spherical polytropic solution given by (3.4) with k��kL1(R6) =M and

k��kL1+1=�(R6) = J . Then, there exists Æ = Æ(�) > 0 such that for every initial

condition f 0 satisfying

i) E(f0)� E(��) � Æ ;

ii) f0 2 �
�

M;J
\ C1

0(R
6),

the associated solution f to (3.1)�(3.3) veri�es

inf
k2R3

kf(t; �; �)� ��(� � k; �)kL1(R6) � � ; 8t 2 (0;1): (3.10)

If � 6= 0 we also have

inf
k2R3

kf(t; �; �)� ��(� � k; �)kL1+1=�(R6) � � ; 8t 2 (0;1) :

One of the main improvements of this result with respect to previous

dynamical criteria for the solutions of the VP system is that the stability for

the solutions is established in terms of the L1(R6) norm, which is the natural

in the VP context. This approach allows to cover the range of polytropes

with � 2 [0; 7=2) Now, the stability criteria are perfectly established for any

polytrope �� in terms of its mass and L1+1=� norm.

Several approaches have been developed in other contexts to study orbital

stability properties. We �rst refer to [27], where variational techniques valid

for Schrödinger�type equations were considered. To prove Theorem 3.1, in

this work we follow the argumental scheme of [27] sketched below:

i) The system of equations is well�posed in a particular functional frame-

work and the solutions satisfy some conservation laws.

ii) Stationary solutions minimize the variational problem

inffO(u) ; u 2 X; R(u) =Mg ; (3.11)

where the functional O as well as the constraints given by R are con-

served quantities of the solutions. We remark that if the functionals O

and R are invariant by a noncompact group of symmetries, then the

set of minimizers of (3.11) is a noncompact set.
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iii) All minimizing sequences for (3.11) are relatively compact up to sym-

metries. In our case, this means that for any minimizing sequence fn,

there exists yn 2 R
3 such that the sequence fn(� � yn; �) is relatively

compact in L1.

Since assumption i) is veri�ed by ��, � 2 [0; 7=2), we shall focus our

attention on proving that ii) and iii) are also satis�ed. In this direction we

have the following result.

Theorem 3.2. For every 0 � � < 7=2, M > 0 and J > 0 there exists a

minimum of (3.9). Furthermore, this minimum is reached in the orbit of the

spheric polytrope �� verifying k��kL1(R6) = M and k��kL1+1�(R6) = J . More

precisely, every minimizing sequence fn is relatively compact in L1(R6) up

to spatial translations, i.e., there exists yn 2 R
3 such that fn(� � yn; �) is

relatively compact in L1(R6). In the case � 2 (0; 7=2), fn(� � yn; �) is also
relatively compact in L

1+ 1
� (R6).

Once we have proved that i)�iii) holds, it is a simple matter to show that

the solutions �� are orbitally stable.

Proof of Theorem 3.1. If the thesis of Theorem 3.1 is not true, there

would exist �0, f
0
n
and tn such that:8>>>>>>><>>>>>>>:

f 0
n
2 �

�

M;J
\ C1

0 (R
6) ;

E(f 0
n
) �! E(��); n!1 ;

8k 2 R
3

8>><>>:
kfn(tn; �; �)� ��(� � k; �)kL1(R6) > �0

or

kfn(tn; �; �)� ��(� � k; �)kL1+1=�(R6) > �0 ;

(3.12)

for � 2 (0; 7=2), and8>><>>:
f 0
n
2 �0

M;J
;

E(f 0
n
) �! E(�0); n!1 ;

8k 2 R
3 kfn(tn; �; �)� �0(� � k; �)kL1(R6) > �0 ;

(3.13)

for � = 0. Now, we use the conservation of the mass and of the Lp norms to

deduce that ffn(tn; �; �)g is a minimizer for (3.9), since

fn(tn; �; �) 2 �
�

M;J
; E(f 0

n
(�; �)) = E(fn(tn; �; �)) �! E(��) :

Then, (3.12) or (3.13) are clearly in contradiction with Theorem 3.2 as we

can extract a subsequence from ffn(tn; �; �)g which is relatively compact up

to translations. �
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Theorem 3.1 establishes the concept of orbital stability for kinetic equa-

tions. The techniques used in [46, 47] to deal with the orbital stability of

stationary solutions to nonlinear wave equations are strongly based on the

analysis of the linearized operators. These arguments mainly consist in con-

sidering an abstract Hamiltonian system which is invariant under a group of

operators and then studying the e�ects of these invariances on the stability

of solitary waves.

The rest of the chapter is devoted to prove Theorem 3.2. The mini-

mization problems (3.9) present several di�culties. First, the energy is a

nonconvex functional. Also, it is invariant by space translations which im-

plies a lack of relative compactness of any minimizing sequence. The space

proposed for the minimization problem, �
�

M;J
= L1

+(R
6 ;M) \ L

1+1=�
+ (R6 ; J),

has two constraints. Our minimizing argument is based into overcome the

above di�culties through a series of equivalent reduced problems. Section

3 explores the relation between the variational problems (3.9) and the pro-

posed equivalent problems for the densities. In fact, we prove that beyond

this equivalence there is a deeper concept which implies that the minimizing

sequences are even connected. This interesting relation between the di�er-

ent minimization problems allows us to give a new minimizing argument for

(3.9). In Section 3 we minimize the reduced problem obtained in the previ-

ous section. The argument developed at this point is related to those used

in [90]. The results obtained for the reduced problem lead to the proof of

Theorem 3.2 in Section 3. Finally, in an Appendix the connection between

the minimization problems associated to the Casimir energies, to the Energy

with mass-Casimir constraint and (3.9) are analyzed.

Let us �nally notice that the concept of solution considered in this work

assumes that the su�cient conditions necessary to claim the well�posedness

(existence and uniqueness) of the problem hold, see for example [14, 79] for

a review.

The results of this chapter are collected in [100].

Equivalent reduced problem

As we pointed out in the introduction, we now propose a variational approach

related to the problems stated in (3.9) in order to prove the orbital stability

of spherical polytropes with 0 � � < 7=2. We actually show the relative

compactness in Lp of any minimizing sequence and that the minimum value

is achieved in a particular polytropic solution (up to translations in both

cases). The method proposed in this work tries to minimize the di�culties
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by considering a sequence of equivalent reduced problems. The equivalence

relations rely on the fact that between the functions f 2 �
�

M;J
with the same

density �(x) =
R
R3
f(x; v) dv there are special functions ~f whose energy is

as small as possible. Besides, ~f can be expressed in terms of � and J by

~f(x; v) = J

0@1
2

 
3�(x)

4�J

!2
3

� jvj2
2

1A0

+

�
8<: J if jvj �

�
3�(x)

4�J

� 1
3

0 elsewhere
; (3.14)

when � = 0, and

~f(x; v) =

  
2�+ 5

2(�+ 1)
C�

2
2�+3 (x)� 3

2(�+ 1)
C

2�+3

3
1

K1;1

jvj2
2

!
+

!�
(3.15)

for � > 0. Here,

C =
J1+1=�R

R3
�(x)

2�+5

2�+3 dx

and K1;1 is a positive constant (to be determined) depending only on � . The

total energy for such a function is given by

E( ~f) = E
�

J
(�) := K

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

� 1

2

Z
R6

�(x)�(y)

jx� yj dxdy ;

where K = 3
5
3

10(4�)
2
3
for � = 0 and K = K1;1 for � > 0. We can now establish

the equivalence between (3.9) and the following reduced problems for the

densities:

inf
n
E
�

J
(�) ; k�kL1(R3) =M; �(x) � 0

o
:

The idea of �nding an equivalent problem was proposed by G. Rein in [90]

in the context of the Energy-Casimir minimization problem. Our argument

is summarized in the next theorem.

Theorem 3.3. The variational problems

R
�

J;M
:= inf

�
E
�

J
(�) ; � 2 L1

+(R
3 ;M) \ L

2�+5

2�+3 (R3)

�
(3.16)

and (3.9) are equivalent in the following sense:

i) Their in�ma values coincide: R
�

J;M
= I

�

J;M
.
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ii) Let ffng be a minimizing sequence for any problem (3.9). Then,

�n(x) =
R
R3
fn(x; v)dv is a minimizing sequence for the correspond-

ing problem (3.16). Moreover, if �n is a minimizing sequence for any

problem (3.16), then the sequence of functions ~fn de�ned by (3.14) or

(3.15) with associated densities �n is a minimizing sequence for the

corresponding problem (3.9).

iii) (3.9) has a minimum if and only if (3.16) also has a minimum. In that

case, the corresponding minimizers verify ii).

The proof of this theorem is an immediate consequence of the following

Proposition 3.1. Let M > 0, J > 0 and � 2 [0; 7
2
). Consider f 2 �

�

M;J
such

that E(f) <1. Then, there exists a positive function ~f verifying

i) f and ~f have the same mass density �,

ii) kfkL1+1=�(R6) = k ~fkL1+1=�(R6) = J ,

iii) E( ~f) � E(f).

Moreover, ~f is de�ned by (3.14) or (3.15) in terms of � and J . We also have

EKIN( ~f) =
3
5
3

10(4�J)
2
3

Z
R3
�(x)

5
3 dx (3.17)

for � = 0 and

Z
R3

~f 1+1=�(x; v) dv = C�(x)
2�+5

2�+3 ; EKIN( ~f) =

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

K1;1

(3.18)

for � 2 (0; 7
2
). Here, C = J

1+1=�R
R3
�(x)

2�+5
2�+3 dx

and K1;1 is a positive constant

depending only on �.

Remark. Proposition 3.1 admits a reverse reading. Let us consider a func-

tion � 2 L1
+(R

3 ;M) \ L
2�+5

2�+3 (R3). Then, the function ~f de�ned by (3.14) or

(3.15), with associated density function �, satis�es:

i) ~f 2 L1
+(R

6 ;M) \ L
1+1=�
+ (R6 ; J) ;

ii) ~f veri�es (3.17)�(3.18) ,



Equivalent reduced problems 55

iii) E( ~f) � E(f) ; 8f 2 L
1+1=�
+ (R6 ; J) such that

R
R3
f dv =

R
R3

~f dv =

�.

Proposition 3.1 requires the study of an auxiliary problem, de�ned in the

following

Lemma 3.1. The minimization problem

KG;H = inf

�
1

2

Z
R3
jvj2z(v) dv ; z 2 L1

+(R
3 ; G) \ L

1+1=�
+ (R3 ; H)

�
(3.19)

has a minimum for 0 � � < 7=2. KG;H veri�es

KG;H =
G

2�+5

3

H
2�+2

3

K1;1 ; for � > 0

and

KG;H =
(3G)

5
3

10(4�H)
2
3

; for � = 0 ;

where K1;1 is de�ned by (3.19) with G = H = 1. This minimum is reached

by a unique function zG;H . If � > 0 and G; H > 0, then zG;H is explicitly

given by

zG;H(v) =

0@0@ 2�+ 5

2(�+ 1)

H
�+1

�

G
� 3

2(�+ 1)

H
�+1

�

2�+3

3

G
2�+5

3

1

K1;1

jvj2
2

1A
+

1A� : (3.20)

In the case � = 0, zG;H is de�ned by

zG;H(v) =

8<: H if jvj �
�

3G
4�H

� 1
3
;

0 elsewhere :
(3.21)

If G = H = 0, (3.19) trivially implies K0;0 = 0 and z0;0 � 0.

The rest of this section is devoted to prove the last two results.

Proof of Proposition 3.1. Integrals involved in (3.17) and (3.18) are well

de�ned in virtue of the following inequalities

Z
R3
j�j

2�+5

2�+3 dx � Ckfk
2�+2

2�+3

L
1+ 1

� (R6)

�Z
R6
jvj2jf(x; v)j dv dx

� 3
2�+3

; (3.22)

which can be proved by usual arguments thanks to the nonnegativity of f .
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A function ~f verifying i), ii) and iii) minimizes the problem

inf fE(l) ; l 2 �g ;

where � =
n
l 2 L

1+1=�
+ (R6 ; J) ;

R
R3
l(x; v) dv = �(x) a:e: x 2 R

3
o
. This prob-

lem is equivalent to study

inf fEKIN(l) ; l 2 �g (3.23)

because the potential energy only depends on the function �.

Let us �rst consider the case � > 0. We de�ne the sets

��;h =

�
l : R6 ! R

+
0 ;

Z
R3
l dv = �(x) ;

Z
R3
l1+1=� dv = h(x) ; a:e: x 2 R

3

�
and

�� = fh 2 L1
+(R

3 ; J1+1=�) ; Supp(�) = Supp(h)g :
Then, � =

S
h2��

��;h. This simple idea provides the equivalence between

(3.23) and the problem

inf

(
inffEKIN(l) ; l 2 ��;hg ; h 2 ��

)
: (3.24)

In order to solve (3.24) we �rst analyze

inffEKIN(l) ; l 2 ��;hg (3.25)

for any �xed but arbitrary h 2 ��. The constraints de�ning ��;h are �xed

for any x 2 R
3 . Then, we propose to study (3.25) by considering the problem

Px = inf

�
1

2

Z
R3
jvj2l(x; v) dv ;

l � 0;

Z
R3
l(x; v) dv = �(x) ;

Z
R3
l(x; v)1+1=� dv = h(x)

�
(3.26)

for almost everywhere x 2 R
3 �xed but arbitrary. Our argument is founded

on the following basic idea: If (3.26) has a minimum Px a.e. x 2 R
3 and this

minimum is achieved by a function lx(v), then (3.25) has also a minimumR
R3
Px dx and it is achieved by the function l(x; v) = lx(v).

We can control the dependence with respect to x in (3.26) because this

problem obeys the general pro�le of (3.19), where we identify l(x; �) = z(�),
G = �(x) and H1+1=� = h(x). Let us observe that the dependence with

respect to x is entirely concentrated on the value of the constants G and H.

Lemma 3.1 gives the existence of a minimizer for (3.26), where zG;H depends
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on G and H. The detailed analysis of this dependence done in the proof of

Lemma 3.1 is motivated by the fact that we have to de�ne hx(�) = zG;H(�)
for G = �(x) and H1+1=� = h(x). Therefore, we have analogous results for

the problem (3.26): If x 2 Supp(�) = Supp(h), then (3.26) has a minimum

Px =
�(x)

2�+5

3

h(x)
2�

3

K1;1 : (3.27)

This minimum is achieved by

l(x; v) = lx(v) =

0@0@ 2�+ 5

2(�+ 1)

h(x)

�(x)
� 3

2(�+ 1)

h(x)
2�+3

3

�(x)
2�+5

3

1

K1;1

jvj2
2

1A
+

1A� :
If x 2 R

3 � Supp(�), then Px = 0. Now, using (3.27), we can rewrite (3.24)

as

inf

8<:
Z
R3

�(x)
2�+5

3

h(x)
2�

3

K1;1 dx ; h 2 ��

9=; : (3.28)

which is directly solvable by using Hölder's inequality in the following way

Z
R3
�(x)

2�+5

2�+3 dx �
0@Z

R3

�(x)
2�+5

3

h(x)
2�

3

dx

1A
3

2�+3

�
�Z

R3
h(x) dx

� 2�

2�+3

;

or equivalently

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

(
R
R3
h(x) dx)

2�

3

�
Z
R3

�(x)
2�+5

3

h(x)
2�

3

dx :

Furthermore, the equality holds if and only if h is proportional to �
2�+5

2�+3 . As

consequence, the mimimun of (3.28) is

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

K1;1

and it is reached when h = C�
2�+5

2�+3 , where

C =
J1+1=�R

R3
�(x)

2�+5

2�+3 dx
:
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We conclude that the in�mum of (3.23) is achieved by ~f , de�ned as

~f(x; v) =

  
2�+ 5

2(�+ 1)
C�

2
2�+3 � 3

2(�+ 1)
C

2�+3

3
1

K1;1

jvj2
2

!
+

!�
;

and the in�mum value is

EKIN( ~f) =

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

K1;1 :

In the case � = 0 our argument becomes easier because both conditions

de�ning � are local in space. By using the previous arguments we deduce in

this case

~f(x; v) = lx(v) = J

0@1
2

 
3�(x)

4�J

! 2
3

� jvj2
2

1A0

+

and

EKIN( ~f) =
3
5
3

10(4�J)
2
3

Z
R3
�(x)

5
3 dx ;

which concludes the proof of Proposition 3.1. �

We now prove Lemma 3.1.

Proof of Lemma 3.1. Set S�(z) = 1
2

R
R3
jvj2z(v) dv and consider KG;H

de�ned by (3.19).

The positivity of KG;H is deduced from the inequality

kgk
2�+5

3

L1(R3) � Ckgk
2�+2

3

L
1+ 1

� (R3)

Z
R3
jxj2g(x) dx ;

which holds for any positive function g. By using the scaling �z(x) = az(bx),

where a = H�+1

G�
and b = (H=G)

�+1

3 , we �nd

KG;H =
G

2�+5

3

H
2�+2

3

K1;1 :

Also, the minimizers for a pair G = 1; H = 1 are related to the minimizers

for G0; H 0 by the same scaling. Thus, we can rewrite (3.19) as

inf

�
1

2

Z
R3
jvj2z(v) dv ; z 2 L1

+(R
3 ; G); kzkL1+1=�(R3) � H

�
(3.29)

since both problems have the same minimum and minimizers (any minimizer

zG;H for (3.29) veri�es kzG;HkL1+1=�(R3) = H).
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Let fzng be a minimizing sequence for (3.29). We have that kznk
L
1+ 1

� (R3)

and
R
R3
jvj2zn(v) dv are uniformly bounded. Therefore, fzng is under the

hypotheses of the Dunford�Pettis theorem:

i) is bounded in L1(R3), because kznkL1(R3) = G;

ii) there is no concentration in any measurable set A, sinceZ
A

zn(v) dv � kznkL1+1=�(R3)jAj�+1 ;

iii) and there is no vanishing, since
R
jvj�R zn(v)dv � 1

R2

R
R3
jvj2zn(v)dv :

Thus, we can extract a subsequence verifying zn * zG;H weakly in L1(R3)

and (
zn * zG;H weakly in L1+1=�(R3) ; for � 2 (0; 7=2) ;

zn * zG;H in the weak-* L1(R3) topology for � = 0 :

Also zG;H 2 L1(R3) \ L1+1=�(R3) and is nonegative because it is obtained as

a weak limit of nonnegative functions. Using the inequalitiesZ
R3
jvj2zG;H(v) dv = lim

R!1

Z
jvj�R

jvj2zG;H(v) dv = lim
R!1

lim
n!1

Z
jvj�R

jvj2zn(v) dv

� lim
R!1

lim
n!1

Z
R3
jvj2zn(v) dv = lim

n!1

Z
R3
jvj2zn(v) dv ;

kzG;Hk
L
1+ 1

� (R3)
� lim inf

n!1
kznk

L
1+ 1

� (R3)
� H

and

kzG;HkL1(R3) � lim inf
n!1

kznkL1(R3) = G ; (3.30)

we have that zG;H veri�es S�(zG;H) � lim infn!1 S�(zn) = KG;H . To con-

clude that zG;H is a minimizer for (3.29), we have to check that kzGkL1(R3) =
G. Let � be a positive constant. Then, there exists R (depending only on �)

such that Z
BR

zG;H = limn!1

Z
BR

zn = G� limn!1

Z
R3�BR

zn

� G� limn!1
1

R2

Z
R3
jvj2zn � G� � : (3.31)

Thus, by using (3.30) and (3.31) we deduce that kzG;HkL1(R3) = G.

Once we know that a minimum of (3.29) (equivalent of (3.19)) exists, we

study some of the properties of the minimizers. Let us prove that zG;H is a
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nonincreasing function. For radial nonincreasing rearrangements z� of z (see
[74]) we have Z

R3
jvj2z�(v)dv �

Z
R3
jvj2z(v)dv ;

with strict inequality unless z � z�. Then, zG;H coincides with its rearranged

function and consequently it is a symmetric nonincreasing function.

The expression of these functions is obtained from the Euler�Lagrange

equation, which for � > 0 reads

1

2
jvj2 + �z

1
�

G;H
+ �� =  ; (3.32)

where �, �,  are the Lagrange multipliers and the function � is de�ned by

�(v) =

(
0 if zG;H(v) > 0 ;

� 0 if zG;H(v) = 0 :

We �rst note that � 6= 0 since otherwise Supp(zG;H) � fv 2 R
3 ; 1

2
jvj2 = g,

which is a set of null measure. Then, we have

zG;H(v) =
1

��

�
 � 1

2
jvj2

��
; for v 2 Supp(zG;H) :

This expression combined with the nonincreasing and nonnegative character

of zG;H implies that � > 0 and Supp(zG;H) � fv 2 R
3 ; 1

2
jvj2 � g. On the

other hand, we have

 � 1

2
jvj2 = ��(v) ; for v 2 R

3 � Supp(zG;H) :

Then, � < 0 (since zG;H is nonincreasing) and

zG;H(v) =
1

��

�
 � 1

2
jvj2

��
+

: (3.33)

By using (3.33) we can compute � and . Multiplying (3.32) by zG;H and

integrating over R3 we �nd

KG;H + �H1+1=� = G :

The use of radial coordinates leads to the following equality

KG;H =
1

2

Z
R3
jvj2zG;H(v)dv =

1

2

4�

��

Z p2�

0
r4(� � 1

2
r2)� dr

=
1

2

4�

��
3

�+ 1

Z p
2

0
r2(� � 1

2
r2)�+1 dr =

1

2

3�

�+ 1

Z
R3
z
1+1=�
G;H

dv

=
3�

2(�+ 1)
H1+1=�:
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From these equations and Lemma 3.1 we have

� =
2(�+ 1)

3
G

2�+5

3 H�(�+1)( 1
�
+ 2

3
)K1;1 and  =

2�+ 5

3
G

2�+2

3 H� (2�+2)

3 K1;1 ;

which proves (3.20).

In the case � = 0 the corresponding Euler�Lagrange equation reads

1

2
jvj2 + �'+ �� = ; (3.34)

where �, �,  are the Lagrange multipliers and the functions ' and � are

de�ned by

'(v) =

(
0 if zG;H(v) < H ;

� 0 if zG;H(v) = H ;
�(v) =

(
0 if zG;H(v) > 0 ;

� 0 if zG;H(v) = 0 :

Then, (3.34) implies that fv 2 R
3 ; 0 < zG;H(v) < Hg has null measure

in R
3 , therefore zG;H = H a:e: Supp(zG;H) : We �nally need to deter-

mine Supp(zG) in order to give an explicit expression for this function. The

symmetric nonincreasing character of zG;H determines that Supp(zG;H) must

coincide with the ball in R
3 with radius

�
3G
4�H

�1=3
, concluding (3.21). �

Analysis of the reduced problem

In this section we study the minimization problem (3.16). We adapt the

techniques employed in [90] to deal with reduced equivalent problems to

those concerning the Energy�Casimir functional. These ideas are based on

concentration�compactness arguments, where scaling techniques are relevant

for proving that loss of mass at in�nity does not occur. In our case we are

able to prove an equivalent minimization and compactness result, although

the scaling arguments with respect to the parameter M are not appropriate

at �rst sight in (3.16). We have

Theorem 3.4. Let us consider M > 0, J > 0 and � 2 [0; 7=2). Let f�ng be

a minimizing sequence for the problem (3.16) determined by �; M and J .

Then, there exists a sequence of shift vectors fang 2 R
3 and a subsequence

of f�ng, again denoted by f�ng, such that for any � > 0 there exists R > 0

such that Z
an+BR

�n(x) dx �M � �; n 2 N ;

�n(�+ an)! �0 strongly in L
1+ 2

2�+3 (R3); n!1;
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and Z
BR

�0 �M � � :

Finally,

r�T�n !r��0 strongly in L2(R3); n!1; (3.35)

and �0 is a minimizer for (3.16). The set of minimizers is determined by

f�0(��y) ; y 2 R
3g, where �0 is the unique spherically symmetric minimizer.

Any minimizer veri�es

�0(x)
2

2�+3 =
3

2�+ 5

J
2(�+1)

2�+3

K
3

2�+3

(�R�

M;J
)
�2�

2�+3

 
7� 2�

3

R
�

M;J

M
� ��0(x)

!
+

(3.36)

and Z
R3
�0(x)

2�+5

2�+3 dx =
(�R�

M;J
)

3
2�+3J

2�+2

2�+3

K
3

2�+3

: (3.37)

The proof of Theorem 3.4 is a consequence of several intermediate results.

The following lemma provides some properties of R
�

M;J
. Let us remark that

using Corollary 3.3 these properties are also satis�ed by I
�

M;J
.

Lemma 3.2. Let � 2 [0; 7=2) and M , J be positive constants. Then, the

in�mum values of (3.9) and (3.16) verify

i) I
�

M;J
= R

�

M;J
=M

7
3
� 2�

3 J
2(�+1)

3 I
�

1;1 ,

ii) �1 < I
�

M;J
= R

�

M;J
< 0 .

Furthermore, if f� is a minimizer for I
�

1;1 then I
�

M;J
is achieved by �f�(x; v) :=

af�(bx; cv), where a = J�+1=M�, b = J
2(�+1)

3 =M
2��1

3 and c = M
��2

3 =J
�+1

3 .

The relation between the minimizers is also satis�ed for R
�

M;J
.

Proof. The proof of i) is based on the scaling �f(x; v) := af(bx; cv). If

a, b and c are de�ned as in Lemma 3.2, then E( �f) = M
7
3
� 2�

3 J
2(�+1)

3 E(f),

k �fkL1(R6) = MkfkL1(R6) and k �fkL1+1=�(R6) = JkfkL1+1=�(R6). i) is deduced

from simple arguments.

To prove ii), let � 2 L1(R3) \ L
2�+5

2�+3 (R3). By the Hölder and Hardy�

Littlewood�Sobolev inequalities we have

k�k
L
6
5 (R3)

� k�k
7�2�

12

L1(R3)k�k
2�+5

12

L
2�+5
2�+3 (R3)

and
1

2

Z
R6

�(x)�(y)

jx� yj dxdy � Ck�k2
L
6
5 (R3)

: (3.38)



Analysis of the reduced problem 63

Combining both estimates we �nd

K

J
2(�+1)

3 M
7�2�

3

k�k4
L
6
5 (R3)

� 1

2C
k�k2

L
6
5 (R3)

� E
�

M;J
(�) (3.39)

for any function � 2 L1
+(R

3 ;M)\L
2�+5

2�+3 (R3) de�ned in problem (3.16). Thus,

we obtain R
�

M;J
> �1 because the left�hand side of (3.39) can be seen as a

second degree polynomial in the variable k�k2
L
6
5 (R3)

. To conclude, we have to

prove R
�

M;J
< 0. Consider the scaled function ��(x) = b3�(bx), where b is a

positive constant. Clearly, �� veri�es k��kL1(R3) = k�kL1(R3) =M and

E
�

J
(��) = b2K

�R
R3
�(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

� 1

2
b

Z
R6

�(x)�(y)

jx� yj dxdy :

By choosing b small enough we �nd a scaled function such that E
�

J
(��) < 0,

which implies R
�

M;J
< 0. This ends the proof. �

The boundedness of any minimizing sequence will be relevant for the

miniminization argument. This is what we state in the following result.

Corollary 3.1. Any minimizing sequence for (3.16) is uniformly bounded in

L
2�+5

2�+3 (R3).

Proof. Let f�ng be a minimizing sequence. (3.39) implies that any mini-

mizing sequence is uniformly bounded in L
6
5 (R3). Then, by using (3.38) we

also deduce that
1

2

Z
R6

�n(x)�n(y)

jx� yj dxdy

is uniformly bounded. Finally, the de�nition of E
�

J
allows to conclude the

proof. �

The proof of Theorem 3.4 is also based on the fact that the minimizing

sequence cannot vanish, as well as on the well�known compactness properties

of the solution of the Poisson equation. Our next result shows an estimate

which will con�rm that the minimizing sequence does not vanish. Also,

Lemma 3.4 concerns the compactness properties of the solution of the Poisson

equation. Although, these results were already proved in [90], we write them

here again for self�consistency (see [90] for more details).
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Lemma 3.3. Let � 2 L1
+(R

3 ;M) \ L
2�+5

2�+3 (R3). Then, for all R > 1 the

inequality

sup

(Z
B(a;R)

�(x) dx ; a 2 R
3

)
�

1

RM

0B@Z
R6

�(x)�(y)

jx� yj dx dy �
M2

R
� C

k�k2
L
2�+5
2�+3 (R3)

R
(7�2�)

(2�+5)

1CA
holds, where C is a constant and B(a; R) denotes the ball centered in a with

radius R.

Corollary 3.2. Let �n be a minimizing sequence for (3.16). Then, there

exist Æ0, R0, n0 2 N and a sequence of shift vectors an 2 R
3 such thatZ

B(an;R)

�n(x) dx � Æ0; n > n0; R > R0 :

Lemma 3.4. Let f�ng be a bounded sequence in L
2�+5

2�+3 (R3) such that

�n * � weakly in L
2�+5

2�+3 (R3) :

We have

i) For any R > 0,

r��B(0;R)�n ! ��B(0;R)� strongly in L(R3) :

Here, �B(0;R)
denotes the characteristic function in the ball B(0;R).

ii) If in addition f�ng is bounded in L1(R3), � 2 L1(R3), and for any � > 0

there exist R > 0 and n0 2 N such thatZ
jxj>R

j�n(x)j dx � �; 8n � n0 ;

then

r��n ! �� strongly in L2(R3) :

Proof of Theorem 3.4. We �rst deal with the existence of a minimimum.

The main idea is to prove that any minimizing sequence f�ng for (3.16) has

a subsequence (up to translations) which is under the hypotheses of Lemma

3.4.
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The boundedness of �n is deduced from Corollary 3.1. Now, we prove

that for all � there exist R and an 2 R
3 ; 8n 2 N , such thatZ

R3�B(an;R)
�n(x) dx � � : (3.40)

Let � 2 L1
+(R

3 ;M) \ L
2�+5

2�+3 (R3). De�ne �i i = 1; 2; 3 as

� = �B(0;R1)� + �B(0;R2)�B(0;R1)� + �R3�B(0;R2)� = �1 + �2 + �3 ;

where �
 is the characteristic function of the set 
. Setting

�i =

R
R3
�i(x)

2�+5

2�+3 dxR
R3
�(x)

2�+5

2�+3 dx
; �i =

R
R3
�i(x) dxR

R3
�(x) dx

and Fi;j =

Z
R6

�i(x)�j(y)

jx� yj dxdy

for i; j = 1; 2; 3, we have

E
�

J
(�) =

3X
i=1

K

�R
R3
�i(x)

2�+5

2�+3 dx

� 2�+3

3

�
�

�

�+1

i J

� 2(�+1)

3

+ 2Fi;i � F1;2 � F2;3 � F1;3

=
3X
i=1

E
�

�

�

�+1
i

J

(�i)� F1;2 � F2;3 � F1;3

�
3X
i=1

R
�

�iM;�

�

�+1
i

J

� F1;2 � F2;3 � F1;3:

Now, from Lemma 3.2

E
�

J
(�) �

0@ 3X
i=1

(�iM)
7
3
� 2�

3

�
�

�

�+1

i J

� 2(�+1)

3

I
�

1;1

1A� F1;2 � F2;3 � F1;3

� M
7
3
� 2�

3 J
2(�+1)

3 I
�

1;1

 
3X
i=1

(�
7
3

i )
1� 2�

7 �
2�

3

i

!
� F1;2 � F2;3 � F1;3 :

By Jensen's inequality we have

E
�

J
(�) � R

�

M;J

 
3X
i=1

�i

! 2�

3
 

3X
i=1

�
7
3

i

!1� 2�

7

� F1;2 � F2;3 � F1;3

� R
�

M;J

 
3X
i=1

�
7
3

i

!1� 2�

7

� F1;2 � F2;3 � F1;3
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and the estimate
3X
i=1

�
7
3

i � 1� 7

3
(�1 + �2)�3 :

Therefore,

E
�

J
(�) � R

�

M;J

�
1� 7

3
(�1 + �2)�3

�1� 2�

7

� F1;2 � F2;3 � F1;3: (3.41)

(3.41) and Lemma 3.2 now yield

R
�

(M;J) � E
�

J
(�) � R

�

M;J

0@1� �
1� 7

3
(�1 + �2)�3

�1� 2�

7

1A+ F1;2 + F2;3 + F1;3 :

The �rst term in the right�hand side of this expression is estimated by using

the inequality

b� � a� � � b��1(b� a);

valid for any a; b > 0 and 0 < � < 1 ([52] Th. 41). In the same way, as

proposed in [90], for R2 > 2R1 we can estimate F1;3 as follows

F1;3 � C=R2:

We also have

F1;2 + F2;3 � Ck�k
2�+5

6

L
2�+5
2�+3 (R3)

kr��2kL2(R3) � Ckr��2kL2(R3) :

Thus, � veri�es

R
�

M;J
�E

�

J
(�) � R

�

M;J

�
7

3
� 2�

3

�
(�1 + �2)�3 +

C

R2

+Ckr��2kL2(R3) : (3.42)

Corollary 3.2 claims the existence of a sequence of shift vectors an 2 R
3 such

that Z
B(0;R)

�n(x� an) dx � Æ0; n > n0; R > R0 ;

for some Æ0, R0, n0 2 N . The sequence ~�n(�) = �n(� � an) also minimizes

(3.16) due to the translation invariance of E
�

J
. From the boundedness of

that sequence in L
2�+5

2�+3 (R3), we get the existence of a weakly convergent

subsequence

~�n(�) = �n(� � an)* �0 weakly in L
2�+5

2�+3 (R3) : (3.43)
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Let � > 0. Now we apply (3.42) to any ~�n with R1 > R0 and �nd

�R�

M;J

7� 2�

3

Æ0

M
�3 �

C

R2

+ Ckr�~�n;2kL2(R3) + E
�

J
(~�n)� R

�

M;J
; (3.44)

for all n > n0 : (3.43) and Lemma 3.4 i) allow to choose R1 su�ciently large

to obtain Ckr�~�n;2kL2(R3) � �=4, 8n > n1 > n0. Now, we �x R1 such that

R2 > 2R1 and R2 > 4C=�. Finally, from the minimizing character of ~�n,

there exists n2 2 N , n2 � n1, such that E
�

J
(~�n) � R

�

(M;J) � �=4 ; 8n > n2.

Hence, we conclude that

7� 2�

3

Æ0

M
�3 � � 8n > n2 ;

which ends the proof of (3.40). The boundedness of ~�n in L
1(R3) and Lemma

3.4 ii) lead to

r�~�n ! ��0 strongly in L2(R3) :

This convergence property joint with (3.43) and the minimizing character of

~�n give that k~�nk
L
2�+5
2�+3 (R3)

decreases towards k�0k
L
2�+5
2�+3 (R3)

as n!1. Then,

~�n converges strongly in L
2�+5

2�+3 (R3) to � and this function is a minimizer.

Once we have the existence of a minimum we analyze the properties of

the minimizers. By scaling arguments we deduce

R
�

M;J
= E

�

J
( ��0) = �K

�R
R3
�0(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

=

Z
R6

�0(x)�0(y)

jx� yj dxdy ; (3.45)

which proves (3.37). Let ��0(x) = b3�0(bx), where b is a positive constant.

Then, ��0 2 L1
+(R

3 ;M) and

E
�

J
( ��0) = b2K

�R
R3
�0(x)

2�+5

2�+3 dx

� 2�+3

3

J
2(�+1)

3

� b
1

2

Z
R6

�0(x)�0(y)

jx� yj dxdy :

Since �0 is a minimizer, (3.45) holds.

The Euler�Lagrange equation for any minimizer �0 is given by

2�+ 5

3

K

J
2�+2

3

�Z
R3
�0(x)

2�+5

2�+3 dx

� 2�

3

�0(x)
2

2�+3 + ��0 + �� = � ; (3.46)

where � and � are the Lagrange multipliers corresponding to the positivity

and the mass constraints respectively, and where

�(x) =

(
0 if �0(x) > 0

� 0 if �0(x) = 0 :
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By multiplying (3.46) by �0 and integrating we �nd

�Z
R3
�n(x)

2�+5

2�+3 dx

� 2�+3

3

+

Z
R6

�0(x)�0(y)

jx� yj dxdy = �M : (3.47)

Combining (3.47) and (3.45) we deduce that � =
�
7�2�
3

�
R
�

M;J

M
< 0. (3.46)

and the fact that limjxj!1 ���0 = 0 imply that Supp(�0) = fx ; � � ��0 � 0g.
As consequence, we deduce (3.36).

Now we will determine the set of minimimizers of (3.16). Riesz's Theorem

(see [74], Theorem 3.7) applies to guarantee that the symmetric rearrange-

ment ��0 of any minimizer �0 is also a minimizer. Now, we prove that there

exists a unique spherically symmetric minimizer for (3.16). By Lemma 3.2,

we can equivalently write (3.36) as

��0(r := jxj) = a
�
b� ���

0
(r)
��+3=2
+

;

where

a =

 
3

2�+ 5

! 2�+3

2

J
(�+1)(2�+3)

3 M
2�(7�2�)

3(2�+3) K�1(�I�1;1)�

and

b =

�
7� 2�

3

�
J

2(�+1)

3 M
4�2�

3 I
�

1;J :

Note that ���0 is radial since �
�
0 is radial. Then, ���0 is a solution to the Poisson

equation (3.3) in radial coordinates

1

r2
(r2���

0
(r)0)0 = a

�
b� ���

0
(r)
��+3=2
+

:

Equivalently, by setting y(r) = (b� ���0(a
�1
2 r)) we obtain

(r2y(r)0)0 = �r2(y(r))�+3=2+ :

Thus, y(r) is the positive part of the solution to the Emden�Folder equa-

tion. The existence and uniqueness of solutions of the initial value problem

associated with this equation are well known. Actually, it is clear that

y(r) = �
2

�+1=2'(�r) ;

where � is de�ned by the initial condition limr!0 y(r) = �. In our case, � is

determined by the mass constraint since

M = 4�

Z
r

��0(r) dr = 4�

Z
r

�
b� ���0(r)

��+3=2
+

dr = 4�a
�1
2

Z
r

�
y(r)

��+3=2
+

dr :
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In particular, uniqueness enssures that ��0 is unique. Therefore, the set of

minimizers of (3.16) is the orbit of the unique spherical symmetric minimizer

because E
�

J
is invariant by translations. This concludes the proof of Theorem

3.4. �

Minimizing argument: relative compactness

In this section we propose a new minimizing argument for the problems set

in (3.9) which allows to establish that any minimizing sequence is relatively

compact in L1(R6) up to spatial translations. This argument is based on the

sequence of equivalent problems introduced in Theorems 3.3 and 3.4

Proof of Theorem 3.2. For simplicity, along the proof we shall denote

all the subsequences with the same name of the original sequence. Let us

consider an arbitrary minimizing sequence fn for the problem (3.9). Then,

Theorem 3.3 states that �n(�) =
R
R3
fn(�; v) dv is a minimizing sequence for

(3.16). Applying Theorem 3.4 to �n we obtain the existence of a subsequence

of fn and an 2 R
3 such that �fn(�; �) = f(� � an; �) and ��n(�) = �(� � an) verify

that there exists R > 0 withZ
BR

��n(x) dx �M � �; n 2 N ; (3.48)

��n * �M;J weakly in L
1+ 2

2�+3 (R3); n!1; (3.49)

for all � > 0, where �M;J is a minimizer of (3.16) such thatZ
BR

�M;J �M � � : (3.50)

In addition, Theorem 3.4 implies

r���n !r��M;J
strongly in L2(R3); n!1 : (3.51)

The sequence �fn is also a minimizing sequence for (3.9) because the Lp norms

and the total energy functional are invariant under space translations. Then,

by using (3.51) we easily deduce that EKIN( �fn) is uniformly bounded in n.

Now, we are in a position to claim that �fn satis�es the hypotheses of the

Dunford�Pettis theorem:

i) f �fngn2N is bounded in L1(R6) :
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ii) Let A 2 R
6 be a measurable set. Then, there is no concentration in A

since Z
A

�fn dxdv � k �fnkL1+1=�(R6)jAj�+1 :

iii) As a consequence of (3.48) there is no vanishing:Z
fjxj>R1g�fjvj>R2g

�fn dxdv �
Z
jxj>R1

��n dx � �(R1) :

Hence, we can assume that there exists a function fM such that

�fn * fM;J weakly in L1(R6) : (3.52)

In order to obtain a relationship between fM;J and �M;J we have to check

that
R
R3
fM;J(�; v) dv = �M;J . Let us consider � 2 L1(R3). Then,����Z

R6
fM;J(x; v)�(x) dxdv �

Z
R3
�M;J(x)�(x) dx

���� �
�
����Z
R6
fM;J(x; v)�(x)�

Z
R6

�fn(x; v)�(x)

����
+

����Z
R3

��n(x)�(x)�
Z
R3
�M;J(x)�(x)

����
� I1 + I2: (3.53)

Clearly, I1 tends to 0 according to the weak convergence of �fn to fM;J . To

prove that I2 is also small, as n goes to 1, we split it into two parts. Let

� > 0 and R be such that (3.48) and (3.50) are veri�ed. Then,

I2 �
�����
Z
jxj�R

��n��
Z
jxj�R

�M;J�

�����+
�����
Z
jxj�R

��n��
Z
jxj�R

�M;J�

�����
Now, an application of (3.49) shows that the �rst term in the right�hand side

of this inequality goes to 0 as n ! 1 while the second one is bounded by

2�k�kL1(R3). These estimates imply that
R
R3
fM;J(�; v) dv = �M;J in L1(R3).

It can be also obtained the existence of a subsequence such that

�fn * fM;J weakly in L
1+ 1

� (R6) ; for � 2 (0; 7=2) ;

�fn
�
* fM;J weak-* in L1(R6) ; for � = 0 : (3.54)

To deduce (3.54) we use the relative compactness arguments in Lp and the

fact that �fn is bounded in L1+1=�. Then, we can extract subsequences of ffng
converging to some function g. Finally, by using the following inequalities����Z

R6
(fM;J � g)'dxdv

���� � ����Z
R6
(fM;J � �fn)'dxdv

����+ ����Z
R6
( �fn � g)'dxdv

����
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for every continuous function ' with compact support, we conclude that

g = fM;J a.e. in R
6 .

Once we have proved (3.54), we may claim that fM;J is a minimum of

(3.9). To this aim, we distinguish two di�erent cases depending on the value

of �:

1) � 2 (0; 7=2): Combining (3.50), (3.52) and (3.54) we get

kfM;JkL1(R6) =M ; EKIN(fM;J) � EKIN( �fn)

and

kfM;JkL1+1=�(R6) � k �fnkL1+1=�(R6) :

These estimates together with (3.51) allow to conclude that fM;J is a mini-

mizer for the problem

inffE(f) ; f 2 L1
+(R

6 ;M); kfkL1+1=�(R6) � Jg :

The scaling property stated in Lemma 3.2 i allows to enssure that the mini-

mum of this problem coincides with the minimum for (3.9), since any mini-

mizer is in L
1+1=�
+ (R3 ; J). In particular we have that

J = lim
n!1

k �fkL1+1=�(R6) = kfM;JkL1+1=�(R6) :

By the uniform convexity of L1+1=� (note that � 2 (0; 7=2)) the above iden-

tity and (3.54) imply the strong convergence in L1+1=� of �fn to fM;J . Conse-

quently, a subsequence of �fn exists such that

�fn(x; v)! fM;J(x; v) a:e: in R
6 : (3.55)

By standard compactness results we can conclude that (3.52) and (3.55) give

the strong convergence in L1 of a subsequence of �fn to fM;J . This justi�es

the notation fM;J and ends this part of the proof.

2) � = 0: Similarly, (3.50), (3.52) and (3.54) imply

kfM;JkL1(R6) =M ; kfM;JkL1(R6) � 1 and EKIN(fM;J) � EKIN( �fn) :

These estimates together with (3.51) imply that fM is a minimizer for (3.7).

Thus, by Proposition 3.1 fM;J is de�ned by (3.14) with associated density

function �M;J . Also, it is well known that fM;J has compact support (see

Chapter 2). Since fM;J � J on its support and k �fnkL1(R6) � J , we have

fM � �fn � 0 on Supp(fM;J) and consequently

kfM;J � �fnkL1(R6) =

Z
Supp(fM;J)

fM;J � �fn dxdv +

Z
R6�Supp(fM;J)

�fn dxdv

= 2M � 2

Z
Supp(fM;J)

�fn dxdv : (3.56)
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This estimate clearly goes to 0 as n ! 1 by using (3.52). This concludes

the proof of Theorem 3.2. �

Remark. In the case � = 0 the relative compactness cannot be deduced in

L1(R3). Let us consider a particular minimizing sequence for the problem

(3.7) de�ned by fn(x; v) = fM;J(
n

n+1
x; n+1

n
v); n 2 N, where fM is a minimum

of (3.7) given by Theorem 3.2. It can be easily proved that fn ! fM;J in

L1(R6) as n!1, while

kfn(x� k; v)� fM;J(x; v)kL1(R6) = 1 ; 8n 2 N; 8k 2 R
3 :

Remark. Combining (3.14), (3.15), Proposition 3.1, Theorem 3.4 and Lemma

3.2 we get that the polytrope �� in �
�

M;J
is given by

�0(x; v) =

(
J if 7

3
M

4
3J

2
3 � ��0(x) � jvj2

2

0 elsewhere
;

for � = 0 and

~��(x; v) =0@ 3

2(�+ 1)

J
(�+1)(3�2�)

3�

M
7�2�

3 (�I�1;1)

1A�  7� 2�

3
M

4�2�

3 J
2(�+1)

3 I
�

1;1 � ���(x)�
jvj2
2

!�
+

for � 2 (0; 7=2). This clearly shows the relation between the parameters c

and E0 appearing in the de�nition of the polytrope with M and J .

Appendix: Polytropes and variational approaches

In this section we will show that the minimizing problem of the energy�

Casimir functional under mass constraints:

C
�

M
:= inf

n
Q�;0(f) ; f 2 L1

+(R
6 ;M)

o
; (3.57)

and the minimization problem of the energy functional under mass�Casimir

constraints

E
�

M
:= inffE(f) ; f 2 �

�

M
g ; (3.58)

can be equivalently reduced to certain problems de�ned by (3.9), where the

parameters M and J are linked. To this aim, we basically use scaling argu-

ments. These simple techniques also help to clarify some other questions:
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� Why the technical constraint � � 3=2 in the Casimir minimization

problem can be avoided by studying the energy minimization problem

with mass�Casimir constraint?

� Why the polytropic solutions depend on two parameters c and E0 �
� (for �xed � 2 [0; 7=2]) while the variational problems proposed in

(3.57), (3.58), (3.7) depend only on one parameter?

� Can be the minimum of (3.58) reached by two functions with di�erent

orbits?

Our next result allows to read the Casimir minimization problem (3.57)

in an equivalent form.

Lemma 3.5. Let � 2 (0; 3=2) and M > 0. Then,

C
�

M
=

 
�

�+ 1

!
J
1+1=�

(�;M) + I
�

M;J(�;M)
; (3.59)

where

J(�;M) =

0@ �3
2(�+ 1)M

7
3
� 2�

3 I
�

1;1

1A
3�

(2��3)(�+1)

:

Furthermore, the minimizers of C
�

M
and I

�

M;J(�;M)
coincide.

Proof. The proof is based on the following identities

C
�

M
= inf

(
�

�+ 1

Z Z
f 1+1=� dxdv + E(f) ; f 2 �

�

M

)
;

= inf

(
inf

(
�

�+ 1
J1+1=� + E(f) ; f 2 �

�

M;J

)
; J 2 R

+

)
;

= inf

(
�

�+ 1
J1+1=� + inf

n
E(f) ; f 2 �

�

M;J

o
; J 2 R

+

)
;

= inf

(
�

�+ 1
J1+1=� + I

�

M;J
; J 2 R

+

)
;

= inf

(
�

�+ 1
J1+1=� +M

7
3
� 2�

3 J
2(�+1)

3 I
�

1;1 ; J 2 R
+

)
: (3.60)

By standard computations, we can prove that the minimum of (3.60) is

reached when J = J(�;M) and, as consequence,

C
�

M
=

�

�+ 1
J
1+1=�

(�;M) + I
�

M;J(�;M)
:
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Then, we have reduced the problem (3.57) to a particular case of (3.9), so

that we can enssure that the minimizers are the same for both problems. �

Remark. In the above sections we have proved that the minimizers for I
�

M;J

exist for 0 � � < 7=2. However, when we are dealing with the Casimir

functional we are only able to �nd such minimizers for � < 3=2, because

(3.60) shows that C
�

M
is bounded from below if and only if this condition

holds. This explains the original restrictions appearing in the literature [48,

90].

In order to avoid the arti�cial restriction � < 3=2, it was proposed in

[49, 51] to �nd the polytropic solutions as minimizers for the energy functional

under the mass-Casimir constraint (3.58). In our next result we prove that

(3.58) is also related to (3.9).

Lemma 3.6. Let � 2 (0; 7=2) and M > 0. Then

E
�

M
= I

�

aM ;bM
;

where aM = 2M
7

and bM =
�
2M(�+1)

7

� �

�+1
. Furthermore, the minimizers for

both problems coincide.

Proof. Trivially, E
�

M
� IaM ;bM

since �aM ;bM
� �

�

M
. In order to prove the

reverse inequality we are going to show that any minimizer for E
�

M
(whose

existence was proved in [49]) is in �
�

aM ;bM
. Let fM be such a minimizer. The

scaled functions �fM(x; v) := afM(bx; cv) 2 �
�

M
lead to

c =
a
1
3

M
1
3 b

 
a

1
�

�

�+ 1
kfMk1+1=�L1+1=�(R6)

+

�
7

2
� �

�
kfMkL1(R6)

! 1
3

;

where a and b are positive constants. The total energy associated with the

scaled function depends on the parameters a and b. Indeed,

E( �fM) =
M

5
3 b2

a
2
3

�
a

1
�

�

�+1
kfMk1+1=�L1+1=�(R6)

+
�
7
2
� �

�
kfMkL1(R6)

� 5
3

EKIN(fM)

� M2b�
a

1
�

�

�+1
kfMk1+1=�L1+1=�(R6)

+
�
7
2
� �

�
kfMkL1(R6)

�2EPOT (fM):

Considering the function h : R+ � R
+ ! R de�ned by h(a; b) := E( �fM) and

the minimizing character of fM we have that h admits a relative minimum

in (a; b) = (1; 1). Then, we �nd

@h

@a
(1; 1) = 0 ;

@h

@b
(1; 1) = 0 :
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By computing both equations we obtain

1

�+ 1
kfMk1+1=�L1+1=�(R6)

=
2M

7
and EPOT (fM) = 2EKIN(fM) ;

which concludes the proof. �

Remark. Notice that (3.58) has a unique minimizer (up to translations).

This completes the results established in [51].

Remark. We also observe that Casimir minimization problems as well as

energy minimization problems in mass�Casimir restricted spaces allow to

study a particular subset of polytropes for which c and E0�� are connected.

The above results and the ideas developed in Chapter 2 to treat with

the stability of the polytropic solution in the case � = 0 have motivated

the analysis of (3.9). From previous results in Chapter 2 and [48, 49], we

can ensure the existence of minimimizers for (3.9). However, we developed in

this chapter a constructive argument to solve these type of problems which is

based on the equivalence between (3.9) and a problem for the corresponding

densities.
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Chapter 4

Asymptotic decay estimates for

the repulsive Schrödinger-Poisson

System

Introduction

The purpose of this chapter is to improve the well�known time decay bounds

for the Lp(R3)-norm, p > 2, of solutions to the Schrödinger�Poisson (SP)

system in the repulsive case. As we announced in the �rst chapter the SP

system for a wave function  : R3 � (0;1) �! C can be written as follows

i~
@ 

@t
= � ~

2

2m
�x + V  ; lim

jxj!1
 (x; t) = 0; (4.1)

 (x; t = 0) = �(x); (4.2)

�xV = �� n; lim
jxj!1

V (x; t) = 0; (4.3)

where n is the charge density and � = 1 (repulsive case) or � = �1 (attractive
case) depending on the type of interaction considered. (4.3) determines the

self�consistent potential V originated by the charge of the particles, which

can be equivalently written in integral form as

V (x; t) =
�

4�

Z
R3

j (x0; t)j2
jx� x0j dx

0:

In the subsequent analysis, the Planck constant and the particle mass, ~

and m respectively, are normalized to unity for the sake of the simplicity.

Throughout this chapter we shall focus on the repulsive case and make some

remarks about the attractive case in the last Appendix.
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The long time behaviour of solutions to the SP system has been treated

in the literature by analyzing the time evolution of k (�; t)kLp(R3) and the

dispersion, i.e. kj � j (�; t)kL2(R3), provided that (1 + jxj)� 2 L2(R3).

For both the single�state and the mixed�state case, time decreasing upper

bounds have been deduced for the Lp(R3) norms of solutions with �nite

dispersion with p 2]2; 6] (See [59, 29]). As consequence, decay upper bounds

can be derived for the Coulombian potential. These estimates were deduced

from the well�known pseudo�conformal law and the nonnegativeness of the

potential energy in [28].

The dispersion equation as well as the fact that the total energy remains

always positive in the repulsive case allow to describe the evolution of the

dispersion of the solutions, which is shown to be a strictly increasing function

of time and behaves like O(t2) (See [97]). We shall refer to this property as

the dispersive character of the solutions.

Let us summarize the results of this chapter. In Section 2 we derive

time decreasing lower bounds for the Lp(R3)-norm of the solutions to the

SP system in the repulsive case, with p 2]2; 6]. Our proof follows from the

dispersive character of the solution. Actually, at this point it di�ers from

the more complex arguments (See [83]). Also, our proof provides some con-

sequences for the attractive case which are not deducible from the previous

techniques developed in [83], see the Appendix for a wider discussion.

In Section 3 we obtain decreasing upper bounds for the Lp(R3)-norms

that improve the previous results in the literature. These bounds are derived

from the pseudo�conformal law and from an equivalent norm induced by the

Coulomb potential energy [78]. These estimates are collected in our main

result:

Theorem 4.1. Let � 2 H1(R3) be the initial condition of the SP system such

that (1+ jxj)� 2 L2(R3), and let  be the associated solution in the repulsive

case. Then, there exist positive constants C1, C2 depending on k�(�)kL2(R3),
kj � j�(�)kL2(R3), the initial total energy E[�] and p, such that

C1

jtj
3p�6

2p

� k (�; t)kLp(R3) �
C2

jtj�(p) ; 8 jtj � �; 8 p 2 [2; 6] ; (4.4)

where � > 0 , �(p) =

(
1� 2

p
; if p 2 [2; 3];

2
3
� 1

p
if p 2 [3; 6] :

Remark. The lower bound obtained in this theorem is optimal. In fact in

the case of small data, it was shown in [55] that the upper bound of solutions
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 such that � 2 H(R3) and kjxj�kL2(R3) is bounded with  > 1
2
is

k (�; t)kLp(R3) �
C

t
3
2
(1� 2

p
)
;

for both cases � = �1, where 2 � p � 1 and C depends on k�kH(R3) +
kjxj�kL2(R3).

Furthermore, from the pseudo�conformal law it can be deduced a �nite

bound for Lq;p norms, where (q; p) is an admissible pair. These functional

spaces, restricted to a �nite time interval, seems to be the natural spaces for

the solutions we are dealing with when the existence problem is studied for

initial data � 2 L2(R3) (See [28, 29]).

Finally in the last Appendix, we make some remarks about the application

of these ideas to the attractive case, proving that the decay properties of the

repulsive case are not possible. In this case there are stationary solutions

(with constant density in time) and also nonstationary solutions with Lp(R3)-

norm bounded from below by a positive constant. The results of this chapter

are collected in [98].

Lower bounds for solutions of the SP system

Lower bounds for solutions of the SP system will be deduced from the dis-

persion equation, which relates the position and momentum dispersion with

the total energy. The total energy E[ ] associated with a smooth solution

 (x; t) 2 H1(R3), de�ned by

E[ ] =

Z
R3

�
1

2
jr (x; t)j2 + 1

8�

Z
R3

j (x; t)j2j (x0; t)j2
jx� x0j dx0

�
dx; (4.5)

is one of the time-invariant quantities due to the symmetry properties of the

system. The �rst term on the right hand-side of (4.5) represents the kinetic

energy, EKIN [ ], while the second term is the Coulomb potential energy

EPOT [ ]. Another important time-preserved quantity is the L2-norm of the

solutions (mass preservation). The dispersion associated with the solutions

hx2i(t) =
Z
R3
jxj2 j (x; t)j2 dx ;

is in general a non-bounded operator in the whole space of solutions, never-

theless R. Illner, F. Zweifel and H. Lange showed in [59] that it is well-de�ned
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for H1(R3) solutions whose initial condition satis�es (1 + jxj)� 2 L2(R3). By

using the dispersion equation

d2

dt2
hx2i = EKIN [ ] + E[ ]; (4.6)

E. Ruiz Arriola and J. Soler [97] proved that the dispersion of a solution to

the SP system (in the attractive or repulsive case) with positive �nite energy

veri�es

C1t
2 � hx2i(t) � C2t

2; (4.7)

where C1; and C2 are positive constants.

From (4.7) we deduce the following lower bound for the Lp(R3)-norms of

the solutions.

Proposition 4.1. Let � 2 H1(R3) the initial condition of the SP system

with positive initial energy E[�] > 0 and �nite dispersion hx2i. Then, the

Lp-norm of the associated solution satis�es

k (�; t)kLp(R3) �
C

t
3p�6

2p

; 8t > � > 0; p 2 [2; 6]; (4.8)

where C is a positive constant depending on k�kL2(R3), E[�] and p.

Proof. The proof is a straightforward consequence of the following estimates

k (�; t)k2L2(R3) =

Z
jxj�R

j (x; t)j2dx+
Z
jxj>R

j (x; t)j2dx

� CR
3p�6

p

 Z
jxj<R

j (x; t)jpdx
! 2

p

+
1

R2

Z
jxj>R

jxj2j (x; t)j2dx

� CR
3p�6

p k (�; t)k2Lp(R3) +
1

R2
hx2i(t): (4.9)

Optimizing in R, we have

k (�; t)k2L2(R3) � C
�
k (�; t)k2Lp(R3)

� 2p

5p�6 hx2i
3p�6

5p�6 (t);

which allows to conclude as a simple consequence of (4.7) and of the mass

preservation property. �
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Decay estimates

Time decay estimates were obtained as consequence of the pseudo�conformal

law [59, 29]

d

dt

�
k(x+ itr) k2L2(R3) + t2

Z
R3
V ndx

�
= t

Z
R3
V n dx; (4.10)

valid for solutions  (x; t) with initial condition � satisfying (1 + jxj)� 2
L2(R3). The pseudo�conformal law was �rst shown mathematically in [41]

for the case of power nonlinearities. To improve these bounds we shall use an

estimate relating the kinetic and potential energy with the k kL3(R3). Indeed,
it was shown by P.L. Lions [78] that there exists a positive constant C1 such

that

Z
R3
juj3 dx � C1

�Z
R3
jruj2 dx

� 1
2

 
1

2

Z
R3

Z
R3

ju(x)j2ju(y)j2
jx� yj dx dy

!1
2

(4.11)

for all u 2 D(R3). The argument used in the proof of (4.11) is based on

the fact that the norm in the dual space of D1;2(R3) = fu 2 L6(R3);ru 2
L2(R3)g, endowed with the norm krukL2(R3), may be written on its dense

subspace L
6
5 (R3) as EPOT [�] up to a constant. The Hölder inequality implies

that the functional Fv(w) =
R
R3
v: �wdx applies v 2 L

6
5 (R3) onto the dual

space of D1;2(R3). Since this is a Hilbert space, the Riesz representation

theorem states the existence of uv 2 D1;2(R3), such that

Fv(w) = huv; wiD1;2(R3) =

Z
R3
ruvr �w dx :

Then, it is known that uv(x) =
1
4�

1
jxj�v. As consequence, for any w 2 D1;2(R3)

we have Z
R3
v: �w dx = huvwiD1;2(R3) � kuvkD1;2(R3)kwkD1;2(R3)

� 1

4�

 Z
R6

v(x)v(y)

jx� yj dxdy
!1

2

� krwkL2(R3) :

This clearly concludes (4.11).

Combining the techniques used in previous works [29, 54, 59] with (4.11),

we have the following Proposition

Proposition 4.2. Let � 2 H1(R3) the initial condition of the SP system

such that (1 + jxj)� 2 L2(R3), and let  be the associated solution in the

repulsive case. Then, there exist (various) positive constants C such that
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(i) 8 jtj � �; 8 p 2 [2; 3] ; k (�; t)kLp(R3) � C

jtj(1�
2
p
)
;

8 jtj � �; 8 p 2 [3; 6] ; k (�; t)kLp(R3) � C

jtj(
2
3
�
1
p
)
;

(ii) 8 jtj � �; 8 p 2 [1; 3
2
] ; kn(�; t)kLp(R3) � C

jtj2(1�
1
p
)
;

8 jtj � �; 8 p 2 [3
2
; 3] ; kn(�; t)kLp(R3) � C

jtj(
4
3
�
1
p
)
;

(iii) 8 jtj � �; 8 p 2 ]3; 6] ; kV (�; t)kLp(R3) � C

t
(1� 3

p
��)

(� = 0 when p = 6) ,

8 jtj � �; 8 p 2 [6;1[ ; kV (�; t)kLp(R3) � C

t
( 2
3
�
1
p
)
;

(iv) 8 jtj � �; 8 p 2 ]3
2
; 2] ; krV (�; t)kLp(R3) � C

t
(2� 3

p
��)

(� = 0 when p = 2),

8 jtj � �; 8 p 2 [2;1[ ; krV (�; t)kLp(R3) � C

t
(1� 1

p
)
,

where � > 0 and C depends on k�(�)kL2(R3), kj � j�(�)kL2(R3) and p.

Proof. By integrating the pseudo-conformal law in [�; t] we �nd

k(�+ itr) (�; t)k2L2(R3) + t2
Z
R3
V (x; t)n(x; t) dx

= C +

Z
t

�

s

Z
R3
V (x; s)n(x; s)dx; (4.12)

where

C = k(�+ i�r) (�; �)k2L2(R3) + �2
Z
R3
V (x; �)n(x; �)dx :

Here, the constant C depends on kx�k2L2(R3) since the integral term in the

right-hand side of (4.12) goes to kx�k2L2(R3) as t ! 0, and � can be cho-

sen small enough. Let g(t) = t2
R
R3
V (x; t)n(x; t) dx = t2

R
R3
jrV (x; t)j2 dx.

Then, from (4.12) it is clear that

g(t) � C +

Z
t

�

g(s)

s
ds: (4.13)

Now, the Gronwall inequality yields

g(t) = t2
Z
R3
jrV (x; t)j2 dx � Ct

�
; (4.14)

for all t � �. De�ne  g(x; t) := exp(� ix2

2t
) (x; t). An easy computation leads

to

itr g(x; t) = exp

 
� ix

2

2t

!
((x+ itr) )(x; t); (4.15)
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for t > 0. Then, the pseudo�conformal law can be rewritten as

t2kr g(�; t)k2L2(R3) + t2
Z
R3
jrV (x; t)j2 dx

= C +

Z
t

�

�
s

Z
R3
jrV (x; s)j2 dx

�
ds; (4.16)

for all positive times. By applying (4.14) to the integral term in the right-

hand side of (4.16) we �nd

kr g(�; t)k2L2(R3) +
Z
R3
jrV (x; t)j2 dx � C

t�
(4.17)

for all t � �. Now, the estimates

kr g(�; t)k2L2(R3) �
C

t�
and

Z
R3
jrV (x; t)j2 dx � C

t�
; 8t � � ; (4.18)

immediately hold. Some additional information can be deduced from (4.11).

According to Young's inequality and to the fact that (4.11) can be extended

to functions in H1(R3) by standard density arguments we can write

1

C1

Z
R3
j j3 dx � 1

2

Z
R3
jr j2 dx + 1

4�

Z
R3

Z
R3

j (x)j2j (y)j2
jx� yj dx dy; (4.19)

where  2 H1(R3) and C1 > 0. Clearly j (x; t)j = j g(x; t)j, so that (4.19)

along with (4.17) apply to guarantee that the solution  (x; t) of the SP

system satis�esZ
R3
j (x; t)j3 dx =

Z
R3
j g(x; t)j3 dx �

C

t
; 8t � �: (4.20)

Now, we estimate the Lp-norm of the solutions in terms of p. If p 2 [2; 3],

the Hölder inequality gives

k (�; t)kLp(R3) � k (�; t)k�L2(R3)k (�; t)k
(1��)
L3(R3) �

C

t(1�
2
p
)
;

where � =
�
6
p
� 2

�
. On the other hand, if p 2 [3; 6] we use the Gagliardo�

Nirenberg inequality to deduce

k (�; t)kLp(R3) = k g(�; t)kLp(R3) � (p)kr g(�; t)kaL2(R3)k g(�; t)k1�aL3(R3)

� (p)

�
C

t
1
2

�a �C
t
1
3

�1�a
� C

t(
2
3
� 1
p
)
; (4.21)
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where p 2 [3; 6] and a =
�
2� 6

p

�
. Here, C only depends on k�kL2(R3). The

proof of (ii) is a consequence of the identity kn(�; t)kLp(R3) = k (�; t)k2L2p.
Then, by the Hardy�Littlewood�Sobolev inequality we get

krV (t)kLp(R3) �

8><>:
C

jtj
4
3
�
2
p

8 p 2]3=2; 3] ;
C

jtj1�
1
p

8 p 2 [3;1[ :

We can improve these estimates thanks to the interpolation inequality and

(4.18)

krV (t)kLp(R3) � krV (t)k�L2(R3)krV (t)k
(1��)
Lq(R3) ;

�

8><>:
C

jtj
�

2
+( 43� 2

q )(1��)
8 p 2]3=2; 2] ;

C

jtj1�
1
p

8 p 2 [2;1[ ;

which allow to conclude (iv) by setting q = 3=2. Finally, (iii) is deduced

from (iv) and the Gagliardo�Nirenberg inequality

kV (�; t)kLp(R3) � CkrV (�; t)k
L

3p
3+p (R3)

:

�

Another interesting consequence of the pseudo�conformal law is the �nite-

ness of k kLq;p for all (q; p) admissible pairs, with p 2 (2; 6).

The spaces L
q;p

T
= Lq([0; T ];Lp(R3)), where T > 0 and (q; p) is an ad-

missible pair, i.e., 2 � p < 6 and q = 4p

3(p�2) , are involved in the existence

arguments for L2(R3) initial data [29]. In fact, the existence of mild solutions

is proved by using a �xed point argument in L
q;p

T
spaces. The next result guar-

antees that the solutions in the repulsive case belong to Lq([�;1);Lp(R3)),

with � > 0 and p 2 (2; 6]. From the existence theory and the next Proposi-

tion we conclude that the solutions belong to Lq(R+
0 ;L

p(R3)) with p 2 (2; 6).

This property implies a global-in-time decay estimate for the Lp(R3) norm

of the solutions.

De�ne

f (t) = k(�+ itr) (�; t)k2L2(R3) + t2
Z
R3
jrV (�; t)j2 dx ; 8t � 0:

In terms of  g, it is clear that

f (t) = t2kr g(�; t)k2L2(R3) + t2
Z
R3
jrV (�; t)j2 dx; 8t > 0:

Since f only reaches positive values in the repulsive case, we have the fol-

lowing
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Proposition 4.3. Let  be a solution of the SP system in the repulsive case

with initial data � 2 H1(R3) such that kx kL2(R3) <1. Then, the following

estimate Z 1

�

k (�; s)kqLp(R3)ds � C (4.22)

holds for all admissible pair (q; p), with p 2 (2; 6], where C is a positive

constant depending on p; k�kL2(R3); kx�kL2(R3) and � > 0.

Proof. Since f > 0, we have

kr g(�; t)k2L2(R3) +
Z
R3
V (�; t)n(�; t) dx > 0; 8t > 0: (4.23)

Notice that (4.10) can be also rewritten as

d

dt

�
tkr g(�; t)k2L2(R3) + 2tEPOT [ ](t)

�
= �kr g(�; t)k2L2(R3); 8t > 0:

Now, integrating between � > 0 and t > � we obtain

tkr g(�; t)k2L2(R3) + 2tEPOT [ ](t) =
f (�)

�
�
Z
t

�

kr g(�; s)k2L2(R3) ds; 8t > �:

(4.24)

Then, using (4.23) to estimate the left-hand side of (4.24) we �nd

Z
t

�

kr g(�; s)k2L2(R3) ds �
f (�)

�
; 8t > �: (4.25)

Finally, since k kLp(R3) = k gkLp(R3) the Gagliardo�Nirenberg inequality al-

lows to conclude the proof. �

Remark. Observe that the proof above is still valid for p = 6. However,

reconstructing the proof of Proposition 4.2 would make (4.22) work only for

p 2 (2; 6).

Appendix: Some remarks on the attractive case

The solutions of the SP system in the attractive case exhibit remarkable

qualitative di�erences when compared to solutions in the repulsive case. The

nonpositivity of the potential energy implies now that the energy reaches

negative values, so that steady states (constant density solutions) with neg-

ative energy exist [70, 97, 78]. The next result shows that analogous time

decreasing bounds cannot be generalized to solutions of the attractive SP
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system. On the other hand, the argument on upper bounds developed in

these sections can be adapted to solutions of the SP system in the attrac-

tive case with positive total energy. However, this proof involves another

time invariant quantity associated with SP solutions: the linear momentum

hpi = 1
i

R
R3
 (x; t)r (x; t) dx.

Proposition 4.4. Let  (x; t) be a SP solution with initial data �(x) such

that

E[�] <
1

2

jhpij2
k�kL2(R3)

: (4.26)

Then, there exist positive constants C and C 0 depending on k�kL2(R3), E[�],
jhpij2 and p such that

k (t)kLp(R3) � C; EPOT [ ] � �C 0 ; 8t � 0; p 2 [
12

5
; 6]: (4.27)

In the case

E[�] � 1

2

jhpij2
k�kL2(R3)

; (4.28)

we have

k (�; t)kLp(R3) �
C 00

t
3p�6

2p

; 8t > � > 0; p 2 [2; 6]; (4.29)

where C 00 is a positive constant depending on k�kL2(R3), E[�], jhpij2 and p.

Proof. To show the relevance of (4.26) and (4.28) we shall use the Galilean

invariance of the system (See [97]). This property ensures that if  (x; t) is a

solution to the SP system with initial data �0, then the solution associated

with initial data �N(x; 0) = eiNx�0(x) is  N (x; t) = eiNx�it
N
2

2  (x � tN; t),

where N 2 R
3 . The solutions  N have the same Lp(R3) norm and the same

potential energy for all N at every time t, while the total energy is

E[�N ] =
1

2
N2k�NkL2(R3) +Nhpi+ E[�0] :

It is a simple matter to observe that for every �0 the Galilean invariance

gives a parametric family of initial data �N such that the time evolution

of the Lp(R3) norm and of the potential energy are the same. Analyzing

a particular member of this family, the Galilean transformation allows to

deduce the behaviour of these quantities for the whole family.

By a simple optimization argument one can easily check that (4.26) im-

plies the existence of initial data with negative energy in the family, while if

(4.28) holds, then the energy of the initial data is nonnegative.
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Under assumption (4.28), we can choose initial data with positive energy

belonging to the class of Galilean transforms of �. Since Proposition 4.1 is

still valid for solutions of the SP system with positive energy, it can be easily

deduced that (4.29) is satis�ed.

On the other hand, if � ful�lls (4.26), then we can choose a Galilean trans-

lation �N 0 whose total energy is negative. Now, thanks to the nonpositivity

of the energy we �nd

�krV ( N 0(t))k2L2(R3) < E[�N 0] < 0 ; 8t � 0 :

The Hardy�Littlewood�Sobolev and Hölder inequalities lead to

krV ( N 0)k2L2(R3) � Ck N 0k
2
3

5p�12

p�2

L2(R3) k N 0k
4p

3(p�2)

Lp(R3);

for all  2 L2(R3) \ Lp(R3), with p � 12
5
, where C is a positive constant

which only depends on p. The combination of both inequalities yields

0 < �E[�N 0 ] � krV ( N 0)k2L2(R3) � Ck N 0k
2
3

5p�12

p�2

L2(R3) k N 0k
4p

3(p�2)

Lp(R3): (4.30)

Now, according to the mass preservation and the invariance of the Lp(R3)

norm of the solutions under Galilean translations, (4.27) implies (4.30). �

Thus, there do not exist decreasing upper bounds for solutions to the

SP system in the attractive case. The argument developed by Ozawa and

Hayashi in [83] to derive the upper bounds in the repulsive case strongly uses

the estimates on the solutions given in (4.18). Nevertheless, these properties

cannot be derived in general for the attractive case since they would imply

the existence of decreasing upper bounds.



88



Chapter 5

Long�time dynamics of the

Schrödinger�Poisson�Slater

system

Introduction

The aim of this chapter is to analyze the asymptotic behaviour of solutions

to the Schrödinger�Poisson�Slater (SPS) system in comparisson with the

solutions to the Schrödinger-Poisson (SP) system.

The SPS system is given by:

i~
@ 

@t
= � ~

2

2m
�x + V  � CSn

1
3 ; limjxj!1  (x; t) = 0; (5.1)

 (x; t = 0) = �(x); (5.2)

�xV = �� n; limjxj!1 V (x; t) = 0; (5.3)

where n is the charge density associated to the wave function  , and � = 1

(repulsive case) or � = �1 (attractive case). Here, CS hold for the Slater

constant. The Planck constant and the particle mass m can be normalized

to unity for the sake of simplicity. However, this normalization also modi�es

the Slater constant, whose value is relevant for the subsequent analysis.

The SPS system describes the evolution of an electron ensemble in a

semiconductor crystal. The repulsive e�ect of the Coulomb potential in the

SP system seems to be too strong when we compare the behaviour of the

solutions to simulations of superlattice structures (see [89, 111]). These phe-

nomena are also observed in the context of attractive Coulomb potential.

Some di�erent approximations have been studied to overcome this problem,

obtaining appropriate adaptations of the Poisson potential. The Hartree�

Fock (HF) model has been used to analyze a wide variety of phenomena in

89



90

Quantum-Chemistry and Solid State Physics (see [8, 75, 78]). The time�

dependent HF equation has been analyzed in [38] and [68]. One of the most

interesting corrections to the Poisson potential in the SP system is found by

deriving nonlinear j j� terms from the Fock potential via various limits, in

particular the low density limit, which gives � = 2=3 (see [20]). This kind

of j j� approximations to the Fock term is usually called the X�-approach.

Another motivation for this approximation in Quantum�Chemistry is the

enormous quantity of calculations necessary to evaluate the Fock term, usu-

ally of order N4, N being the number of particles. In this direction, the

X� approach to the Fock correction (Dirac, Slater, . . . ) has been proved

relevant in di�erent contexts. These local approximations to nonlocal in-

teraction terms give excellent results when studying stationary states, for

example in Quantum Chemistry (see [35] and [26, 72, 76] for some deriva-

tions and analysis of these systems). Then, the calculations are reduced from

N4 to N3, even there might be some place for improvements. However, there

is no rigorous foundation of the X�-model in the time-dependent case. In

this direction, following the classical ideas of the thermodynamical limit in

Statistical Mechanics (see [36]) some recent advances are being done from

the continuum and mean��eld limit of the N�quantum�particle system by

C. Bardos et al., see [10].

The aim of this work is to analyze the qualitative di�erences between the

Schrödinger�Poisson�Slater (� = 2
3
) evolution system and the Schrödinger�

Poisson and Hartree�Fock systems. We are mainly interested in the X� case

studied in semiconductor theory, that is � = 2
3
, which is derived from the

Fock term by means of a low density limit, see [20]. This j j2=3 correction is

also known as the Dirac exchange term. Another interesting approach comes

from the limit of heavy atoms, i.e. the high charge of nuclei limit; this leads

to the Thomas-Fermi correction (� = 4=3) of the kinetic energy, see [72, 73].

In this work we do not approximate the kinetic energy term (which is also

called the von Weizsäcker correction). However, the Thomas�Fermi term

can be alternatively seen as a correction of the Fock interaction, that always

appears as a repulsive potential, see [73]. As we will point out later, these

other X��approaches, useful in many scienti�c contexts, can be treated in

our mathematical framework.

One important feature of the SPS system is that its associated potential

energy can reach negative values depending on the constants of the system

(mass, initial energy or Slater constant). This fact implies some relevant

properties of the SPS system in the repulsive case: 1) the minimum of the

total energy operator is negative for some choices of the physical constants;

2) there are solutions (depending on the initial energy) that do not have

dispersive character; 3) there are steady-state solutions, i.e. solutions with
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constant density; 4) there are solutions, even with positive energy, which

preserve the Lp norm and do not decay with the time evolution. These

properties show important qualitative di�erences between the SPS system

and the SP and HF systems, see Chapter 4, [29, 38, 59, 68]. On the other

hand, the X��Slater�model appears as an appropriate correction to the self�

consistent Coulomb potential in semiconductor heterostructures modeling, in

the sense that it covers di�erent phenomenologies observed in this context.

Some of our results hold true under the hypothesis of a relation between

the value of the Slater constant, the mass and the energy of the system.

However, the Slater constant is a characteristic of the component metals in

the semiconductor device as it was pointed out in [53] when interpreting the

exchange�correlation potential of Kohn�Sham type. In this way, our study

covers the whole range of variation for these constants, and the relation

between these constants appears in a natural way and is not a restriction

from a physical point of view. As we have commented before, the main

di�erences with respect to the SP system occur in the repulsive case, where

non dispersive e�ects, stationary and periodic solutions appear. However, the

attractive case is also of interest in applications related to quantum gravity

in the limit of very heavy particles (see for example [84]), thus we analyze

both cases. We focus our study in the single�state case.

In [20], the mixed�state case for the SPS system has been dealt with. In

particular, the well-posedness and regularity of local�in�time and global solu-

tions was analyzed, with L2 or H1 initial data. Also, the basic conservation

laws and the minimal energy solutions in the attractive case were derived

under a variational framework. A di�erent approach for the single-state case

can be seen in [28].

Most of these results are valid for other X��approaches. However, mo-

tivated by the applications in semiconductor theory, we focus our e�orts in

the Slater approach to the Fock term. We will comment along the chapter

on some extensions of the results to other X�-terms or some combination of

them.

Let us summarize the main results and the techniques used in the chapter

in comparison with previous results. Section 2 is devoted to the minimiza-

tion of the energy functional in the repulsive case. This allows us to deduce

the existence of stationary solutions with negative energy as well as optimal

bounds for the kinetic energy. To deal with this nonconvex minimization

problem we can use di�erent techniques introduced in [72, 74, 77]. This

problem was treated in [20] (in the attractive case) by using symmetric de-

creasing rearrangement inequalities, but this tool seems to be fruitless in the

repulsive case. Some minimization problems related to the repulsive case

are studied in references [72] and in [26, 78] for small enough values of the
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mass upon using a perturbative argument. Alternatively, we propose here a

scaling argument which provides e�ective bounds on the mass. In the third

section we analize the long time behaviour of SPS solutions. The balance

between the Coulombian potential and the Slater correction makes power-

less the usual arguments based on the pseudo�conformal law (See Chapter

4). In our analysis we combine this property, or the equivalent dispersion

equation, with the Galilean invariance in order to conclude some Lp(R3) es-

timates. Also, from the dispersion equation (which relates the total energy

to the momentum and position dispersions) it can be deduced that the so-

lution is expansive in the sense that its second order moment increases with

time. Finally, in Section 4 we analyze the asymptotic behaviour of the SPS

solutions under attractive Coulomb forces. Actually, we prove the existence

of stationary solutions in the case of negative energy. The contents of this

chapter are collected in [99].

Minimum of the energy in the repulsive case

The Slater term introduces some qualitative di�erences in the behaviour

of the solutions to the SPS system when compared to solutions to the SP

system. While the SP energy in the repulsive case is always positive, this

can be negative when the Slater contribution is considered. The total energy

operator associated with the solutions to the SPS system has the following

form:

E[ ]=

Z
R3

(
jr (x; t)j2

2
+

Z
R3

�j (x; t)j2j (x0; t)j2
8�jx� x0j dx0� 3CS

4
j (x; t)j 83

)
dx: (5.4)

E is an invariant of motion (i.e., E is preserved along the time evolution)

provided that  is such that E[ ] is well�de�ned (see [20]). We refer to the

�rst term in the right�hand side of (5.4) as the kinetic energy EKIN( ), while

the sum of the last two terms is the potential energy EPOT ( ). In (5.4), the

expression of the Coulombian potential has been identi�ed as

1

2

Z
R3
V (x)n(x) dx =

�

2

Z
R3
jrV (x)j2 dx:

However, in the repulsive case � = 1, we can prove that the potential energy

is always negative for some choice of the Slater constant in terms of the mass

of the system. The following result corroborates this feature.

Lemma 5.1. If the L2(R3) norm of the initial data � associated with the
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SPS system veri�es

k�kL2(R3) �
�
3CS

2C

� 3
4

;

where CS is the Slater constant and C is a positive constant determined by

1

C
= Inf

8>><>>:
k (�; t)k

8
3

L
8
3 (R3)

krV ( )(�; t)k2L2(R3)
;  2 L 8

3 (R3) \ L2(R3); k (�; t)kL2 = 1

9>>=>>; ;
then the potential energy of the solutions is negative along the time evolution.

Proof. This result is based on the following inequality, valid for all  2
L2(R3) \ L 8

3 (R3):

krV ( )(�; t)k2L2(R3) � Ck (�; t)k
4
3

L2(R3)k (�; t)k
8
3

L
8
3 (R3)

: (5.5)

Let us prove (5.5). From the de�nition of V and the Hölder inequality we

have

krV k2L2(R3) =

Z
R3
jrV j2 dx =

����Z
R3
V�V dx

���� = ����Z
R3
V n dx

����
� kV kL12(R3)knk

L
12
11 (R3)

: (5.6)

Then, according to the interpolation inequality for Lp spaces we can estimate

kn(�; t)k
L
12
11 (R3)

= k (�; t)k2
L
24
11 (R3)

� k (�; t)k
4
3

L2(R3)k (�; t)k
2
3

L
8
3 (R3)

: (5.7)

To obtain an analogous estimate for kV kL12 , we apply the Hardy-Littlewood-
Sobolev inequality to �nd

kV kL12(R3) = C 0
j j2 � 1

jxj


L12(R3)

� C 0kj j2k
L
4
3 (R3)

= C 0k k2
L
8
3 (R3)

: (5.8)

Finally, inequality (5.5) holds by substituting (5.7) and (5.8) in (5.6).

Applying (5.5) to solutions  of the SPS system and using that the L2�

norm of the initial data is preserved along the time evolution, we conclude

the proof by writing

EPOT ( )(t) �
�
C

2
k (�; t)k

4
3

L2(R3) �
3

4
CS

�
k (�; t)k

8
3

L
8
3 (R3)

:

�
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Remark. The inequality (5.5) as well as an upper bound for the sharp

constant C were found by Lieb and Oxford in [75]. In our context, this

bound takes the value C = 1:092
2�

= 0:1737.

Furthermore, since the potential energy associated with the initial data

can be negative in the repulsive case we can �nd initial conditions for which

the total energy is also negative, as proved in the following

Proposition 5.1. There exist initial data � 2 H1(R3) for which the total

energy in the repulsive case is negative.

Proof. Let  2 H1(R3) such that the associated potential energy is negative

(this may happen by virtue of Lemma 5.1). Then, there is � > 0 small

enough such that the total energy of  �(x) = �
3
2 (�x),

E[ �] =

Z
R3

(
�2

2
jr (x)j2 + �

 Z
R3

j (x)j2j (x0)j2
8�jx� x0j dx0� 3CS

4
j (x)j 83

!)
dx

= �2EKIN( ) + �EPOT ( ); (5.9)

is nonpositive. Then, by choosing � =  � as initial condition, the energy

associated with this problem is nonpositive. �

Remark. The same thing occurs when other X� terms are considered. The

total energy functional also reaches negative values when couplings of the

Coulombian potential with power nonlinearities j j� � 2 (0; 4=3] are con-

sidered. Combinations of some of these terms could be also possible in their

attractive or repulsive versions. However, some other kind of problems appear

in the minimization argument, as we will mention in the next subsection.

Proposition 5.1 allows to remark some important di�erences between the

asymptotic behaviour of solutions to our system and those to the SP system.

For the repulsive SP system it was proved (see [29],[59]) that the Lp norms

of the solutions tend asymptotically in time to zero for p 2]2; 6]. However,

when we analyze the evolution of solutions to the repulsive SPS system whose

initial data has negative energy, we observe that the L
8
3 norm of the wave

function  cannot go to zero as t!1. This is because the total energy of the

system is preserved and the Slater term is the only nonpositive contribution

to the total energy.

One of the relevant points in the analysis of this problem is the existence

of a global minimum of the energy functional in H1(R3) under the constraint

k kL2(R3) = M . This problem has no solution for the repulsive SP system

because the in�mum of the energy is always 0, which is not a minimum except
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for the case M = 0. In the following section we prove the existence of such

a minimum for the SPS problem, for solutions with su�ciently small L2(R3)

norm.

Minimization problem

In this section we study the following minimization problem associated with

the total energy of the repulsive SPS system

IM = inf
n
E[ ];  2 H1(R3); k kL2(R3) =M

o
; (5.10)

where M > 0 and E[ ] is de�ned by (5.4). The main result of this sec-

tion claims that this functional reaches a minimum value, which allows us

to deduce two interesting consequences. The �rst one is the existence of

stationary pro�les, which are periodic-in-time solutions to the SPS system

preserving the density. We also note that this kind of solutions does not ex-

ist for the repulsive SP system. The second consequence is the derivation of

optimal bounds for the kinetic energy of solutions for which the total energy

is well-de�ned.

Let us prove the results that ensure the existence of a minimum of (5.10).

Firstly we observe that the energy operator is bounded from below in terms

of the problem (5.10). From the Gagliardo�Nirenberg inequality we get

k kLp(R3) � kr kaL2(R3)k k1�aL2(R3);

where p = 8
3
and a = 3

�
1
2
� 1

p

�
= 3

8
. This can be rewritten equivalently as

k k
8
3

L
8
3 (R3)


8
3k k

5
3

L2(R3)

� kr kL2(R3); (5.11)

which holds for all  (�; t) 2 H1(R3). Using (5.11) and the fact that in this

case the Coulombian potential term is nonnegative we obtain

E[ ] �
0@RR3 j (x)j 83dx


8
3M

5
3

1A2

� 3

2
CS

Z
R3
j (x)j 83dx: (5.12)

The right-hand side of (5.12) can be seen as a second order polynomial ax2+

bx in
R
R3
j j 83dx, where

a =
�


8
3M

5
3

��2
and b = �3

2
CS:
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Thus, we immediately conclude that the total energy is bounded from below.

Furthermore, we can deduce the boundedness in H1(R3) of any minimizing

sequence, which plays an important role in our argument to obtain the min-

imum of the functional.

The technical di�culties arising in this nonconvex minimization problem

come from the invariance of the total energy functional by the non-compact

group of translations. The possible loss of compactness due to that invari-

ance has to be detected by the techniques used in the proofs. In this way, two

methods are proposed in the previous literature to analize the class of prob-

lems (5.10): the concentration�compactness method [77] and the method

of the nonzero weak convergence after translations [74]. In fact, we can

prove that every minimizing sequence is in essence relatively compact pro-

vided that a certain sub-additivity property is strict. This condition implies

that a minimizing sequence is concentrated in a bounded domain. Recently,

this lack of compactness has been analyzed in [39] for the Sobolev embed-

ding. Since an important part of the intermediate steps are common to both

(concentration�compactness and nonzero weak convergence after translations

in Sobolev spaces) techniques, we will comment the application of them.

Concentration�compactnes argument

We can use the following formulation of the concentration�compactness prin-

ciple adapted to our situation.

Proposition 5.2. For every M > 0, the following inequality

IM � I� + IM�� ; 8� 2 (0;M); (5.13)

holds. Furthermore, every minimizing sequence of (5.10) is relatively compact

in H1(R3) (up to a translation) if and only if

IM < I� + IM�� ; 8� 2 (0;M): (5.14)

Proof. The proof is a consequence of Lemma III.1 and Lemma I.1 in [77].

In order to make the memory self-consistent, we adapt these results to our

notation. The general framework for minimization problems proposed by P.

L. Lions allows us to establish the condition (5.13). Consider a minimizing

sequence fung of (5.10). Since this sequence is bounded in H1(R3) with

jjunjj2L2(R3) = M , then there exists a subsequence nk 2 N for which either

compactness or vanishing or dichotomy occurs (Lemma III.1 [77]). In order to
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prove compactness let us prove that vanishing and dichotomy cannot occur.

The strict sub�additivity condition (5.14) prevents the subsequence from

dichotomy. This property is stated as follows: there exists � 2]0;M [ such

that for every " > 0, there exist k0 � 1 and u1
k
, u2

k
bounded in H1(R3)

satisfying8>>>>><>>>>>:

kunk � (u1
k
+ u2

k
)kLp(R3) � Æp(�)! 0; �! 0+ ; 2 � p < 6;

jR
R3
ju1
k
j2 dx� �j � "; jR

R3
ju2
k
j2 dx� (M � �)j � ";

dist(Supp u1
k
; Supp u2

k
)!1; k!1;

lim infk
R
R3
fjrunkj2 � jru1kj2 � jru2kj2g dx � 0;

for k � k0. Indeed, if dichotomy occurs we easily deduce that

IM � I� + IM��;

which yields a contradiction. On the other hand, if strict sub�additivity does

not occur, then a minimizing sequence can be constructed without convergent

subsequences (see [77] for details). Vanishing occurs when

lim
k!1

sup
y2R3

Z
y+BR

junk(x)j2 dx = 0; 8R <1; BR = fx 2 R
3 ; jxj < Rg:

It can be proved that the subsequence does not vanish as follows from the

fact that IM < 0 and from the following result (Lemma I.1 [77] with q = 2,

p = 2 and � = 8=3):

Lemma 5.2. Let 1 < p � 1 and 1 � q <1 with q 6= 3p

3�p if p < 3. Assume

that un is bounded in Lq([0;1]), run is bounded in Lp(R3) and

sup
y2R3

Z
y+BR

junjq dx!
n
0 for some R > 0 :

Then, un !
n
0 in L�(R3) for � 2 [q; 3p

3�p ]:

Hence, we have proved that any minimizing sequence satis�es the follow-

ing compactness criterium: there exists yk 2 R
3 such that junk(� + yk)j2 is

tight

8" > 0; 9R <1;

Z
yk+BR

junk(x)j2 � M � " :

Setting eun = un(� + yn), we can assume (up to a subsequence) that eun ! eu
weakly in H1(R3) and the compactness property impliesZ

BR

jeuj2 dx �M � ":
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Thus, eun converges strongly in L2(R3) to eu. By using the Gagliardo�Nirenberg
inequality, eun converges strongly to eu in Lp(R3) for 2 � p < 6. This fact al-

lows to assure that eu is a minimum of the problem IM as consequence of

the weak lower semi�continuity of the H1(R3) norm and the convergence

EPOT (eun)! EPOT (eu). Thus, a posteriori we deduceZ
R3
jreunj2 dx!

n

Z
R3
jreuj2 dx;

showing the compactness in H1(R3). �

To obtain the relative compactness of any minizing sequence (up to trans-

lations) has been used the concentration�compactness argument that can be

equivalently replaced by the arguments based on nonzero weak convergence

after translations [74]. The point which is common to both techniques is that

hypothesis (5.14) is required.

Nonzero weak convergence after translations

In this approach, we apply the next two results to any minimizing sequence

fungn2N of (5.10) to guarantee the existence of a nonzero weak convergent

subsequence in H1(R3) up to translations (see [74], Theorem 8.10 and exercise

2.22, for more details):

Lemma 5.3 (Exercise 2.22 [74]). Suppose that 1 � p < q < r � 1 and

that u is a function in Lp(
) \ Lr(
) with kukLp(
) � Cp < 1, kukLr(
) �
Cr <1, and kukLq(
) � Cq > 0. Then, there are constants � > 0 andM > 0,

depending only on p; q; r; Cp; Cq; Cr, such that Meas(fx : ju(x)j > �g) >
M .

Theorem 5.1 (Theorem 8.10 [74]). Let 1 < p <1 and let fungn2N be a

bounded sequence of functions in H1(R3). Suposse that for some � > 0 the

set En := fx : jun(x)j > �g satis�es Meas(En) > Æ > 0 for some Æ and all

n 2 N . Then, there is a sequence of vectors yn 2 R
3 such that the translated

sequence ~un(x) := u(x + yn) has a subsequence that converges weakly in

H1(R3) to a nonzero function.

Any function un veri�es the hypothesis of Lemma 5.3 with p = 2, q = 8=3,

p = 6, Cp = M and Cq = (�4IM=3CS)
8
3 , Cr being a constant which comes

from the boundedness of fungn2N in H1(R3). Then, the whole sequence

satis�es the hypotheses of Theorem 5.1. As consequence, there exist vectors

yn such that a subsequence of un veri�es

~un := un(�+ yj)! ~u weakly in H1(R3); k~ukH1(R3) > 0 : (5.15)
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In order to deduce that ~u is a minimizer of (5.10) we have to prove that

EPOT (~u) � lim infEPOT (~un) :

To this aim, it is enough to observe that no charge escapes to in�nity, i.e.

k~ukL2(R3) =M , because this would imply the convergence ~un ! ~u in L2(R3)

and EPOT (~un) ! EPOT (~u). The inequality (5.14) plays a crucial role at

this point. If k~ukL2(R3) = � < M , then it can be proved that ~un is under the

dichotomy hypothesis. Indeed, there exists R > 0 such that
R
BR
j~uj2 dx = ��

�=2, for � > 0. On the other hand, let Rn be such that
R
BRn

j~unj2 dx = �+�=2.

The sequence fRngn2N ! 1 as n ! 1 (otherwise, this would contradict

(5.15)). We de�ne ~u1
n
:= ~un�BR and ~u2

n
:= ~un�R3�BRn , where n 2 N and �


denotes the characteristic function of the set 
. Then, we have that f~ung
veri�es 8>>>>><>>>>>:

k~un � (~u1
n
+ ~u2

n
)kLp(R3) � Æp(�)! 0; �! 0+ ; 2 � p < 6 ;

jR
R3
j~u1
n
j2 dx� �j � �; jR

R3
j~u2
n
j2 dx� (M � �)j � �;

dist(Supp ~u1
n
; Supp ~u2

n
) = Rn � R!1; n!1;

lim infk
R
R3
fjr~unj2 � jr~u1

n
j2 � jr~u2

n
j2g dx � 0;

for n � n0. The incompatibility between dichotomy and (5.14) allows to

conclude that k~ukL2(R3) = M as well as the minimizing charater of ~u. This

concludes the proof with the technique of nonzero weak convergence after

translations in Sobolev spaces.

Before deriving the inequality (5.14) in the SPS context, let us introduce

some notations. Let a, b, c be positive constants and consider the operators

TKIN ; TPOT ; T; K : H1(R3) �! R de�ned by

TKIN( ) = a

Z
R3
jr (x)j2 dx ;

TPOT ( ) =

Z
R3

�
b

Z
R3

j (x)j2j (x0)j2
jx� x0j dx0 � c j (x)j 83

�
dx ;

T ( ) = TKIN( ) + TPOT ( ) ; K( ) = �1

4

(TPOT ( ))
2

TKIN( )
:

Then, we have the following

Lemma 5.4. The minimization problems associated with the operators T

and K over the set

BM = f 2 H1(R3); k kL2(R3) =M; TPOT ( ) < 0g
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are equivalent in the following sense

TM � inffT [ ] ; 2 BMg = inffK[ ] ; 2 BMg � KM :

In addition, if  is a function in which T achieves its minimum, then it is

also the minimum for the functional K. On the other hand, if  is a function

in which K achieves its minimum, then the function  � is a minimum for T ,

where  �(x) = �
2
3 (�x) and � =

�TPOT ( )
2TKIN ( )

.

Proof. Let  n 2 BM ; n 2 N , a minimizing sequence for the problem TM , i.e.,

T ( n) ! TM , as n ! 1. The scaling  �(x) = �
3
2 (�x); � > 0, preserves

the properties of BM . Then, for every  2 BM we can study the value of

the parameter � for which the total energy reaches the minimum over the

uniparametric family of functions f � ; � 2 R
+g. From (5.9) and using that

TPOT ( ) < 0 we get �min =
�TPOT ( )
2TKIN ( )

and T ( �min) = �1
4

(TPOT ( ))
2

TKIN ( )
= K( ).

This argument can be applied to every  n; n 2 N , obtaining  �min

n
such that

T ( n) � T ( �min

n
) = K( n):

As consequence, TM � KM .

On the other hand, we now consider a minimizing sequence  n 2 BM ; n 2
N , such that K( n)! KM , as n!1. Again from (5.9) it can be seen that

the operator K is invariant under the scaling  (x)!  �(x) � �
2
3 (�x); � 2

R
+ . This property allows us to choose �n = � TPOT ( n)

2TKIN ( n)
. Then,

T ( �n
n
) = K( n) = K( �n

n
)! KM as n!1;

which implies KM � TM . This concludes the proof. �

As a particular case, we obtain a minimization problem equivalent to

(5.10). Denoting AM =
n
 2 H1(R3) ; k kL2(R3) =M; EPOT [ ] < 0

o
, we

have

IM = inf
n
E[ ] ;  2 H1(R3); k kL2(R3) =M

o
= inf fE[ ];  2 AMg ;

which shows that our problem is equivalent to

inf

(
�1

4

(EPOT ( ))
2

EKIN( )
;  2 AM

)
: (5.16)

Also, note that the set AM is nonempty for any value of M , see [78, 26].

Furthermore we have �EPOT ( M ) = 2EKIN( M), where  M denotes the

minimizer of IM . Consequently,

E( M ) =
1

2
EPOT ( M) = �EKIN( M ): (5.17)
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Using Lemma 5.4 we can prove the following result, which provides the strict

sub�additivity property (5.14).

Proposition 5.3. For all CS > 0 and M > 0 such that

M <

�
7CS

10C

� 3
4

; (5.18)

the sub�additivity condition (5.14) holds. Here, CS denotes the Slater con-

stant and C is the sharp constant in (5.5).

Proof. Assume that M satis�es (5.18). Using the scaling

 (x) �!M4 (M2x);

the set AM can be seen, for each M 2 R
+ , as a transformation of the set

B0M := f 2 H1(R3) ; k kL2(R3) = 1; EM

POT
( ) < 0g;

where

EM

POT
( ) =

M6

8�

Z
R3

Z
R3

j (x)j2j (y)j2
jx� yj dxdy � 3CSM

14
3

4

Z
R3
j (x)j 83 dx :

In the same way, (5.10) can be rewritten as

IM = inf
n
EM

KIN
( ) + EM

POT
( ) ;  2 B0M

o
;

where EM

KIN
( ) = M6

2

R
R3
jr (x)j2 dx. Since EM

POT
( ) < 0 by (5.18) and the

proof of Lemma 5.1, we can take B0M = f 2 H1(R3) ; k kL2(R3) = 1g.
Under this assumption, our minimization problem reads

IM=M
14
3
�p inf

�
M

4
3
+p

2

Z
R3
jr (x)j2 dx + M

4
3
+p

8�

Z
R3

Z
R3

j (x)j2j (y)j2
jx� yj dxdy

�3CSM
p

4

Z
R3
j (x)j 83 dx ;  2 H1(R3); k kL2(R3) = 1

�
;

where p is a positive parameter to be precised. Then, we can apply Lemma

5.4 to show that this problem is equivalent to

IM=M
14
3
�pinf

�
� 1

4

�
1
2
M

4
3
+p
R
R3
jrV ( )j2 dxdy � 3CS

4
Mp
R
R3
j (x)j 83 dx

�2
M

4
3
+p

2

R
R3
jr (x)j2 dx

;  2 H1(R3); k kL2(R3) = 1

�

=M
14
3
�p inf

�
�
�
M

2
3
+
p

2

R
R3
jrV ( )j2dxdy � 3CS

2
M

p

2
� 2

3

R
R3
j (x)j 83dx

�2
8
R
R3
jr (x)j2dx

;  2 H1(R3); k kL2(R3) = 1

�
def
= M

14
3
�pIM1 :
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Now (5.14) can be written as

M
14
3
�p IM1 < �

14
3
�p I�1 + (M � �)

14
3
�p IM��

1 ; 8� 2 (0;M): (5.19)

This inequality is based on the bound

Mk > �k + (M � �)k; 8� 2 (0;M); M 2 R
+ ; 8k > 1 :

We easily deduce

M
14
3
�p IM1 < �

14
3
�p IM1 + (M � �)

14
3
�p IM1 ; 8� 2 (0;M);

for some p 2 (4
3
; 11
3
). To get (5.19) it is enough to show that for all � 2 (0;M),

IM1 � I
�

1 holds. This is true according to the nonincreasing character of the

function

f : � �! �1

8

�
�

2
3
+
p

2

R
R3
jrV ( )j2 dx� 3CS

2
�
p

2
� 2

3

R
R3
j j 83 dx

�2
R
R3
jr j2 dx ;

for � 2 (0;M) and p 2 (4
3
; 11
3
), independently of  . Indeed, given M there

exists p 2 (4
3
; 11
3
) such that

df 

d�
= �1

4

1R
R3
jr j2 dx

�
�

2
3
+
p

2

Z
R3
jrV ( )j2 dx� 3CS

2
�
p

2
� 2

3

Z
R3
j j 83 dx

�
���

2

3
+
p

2

�
�
p

2
� 1

3

Z
R3
jrV ( )j2 dxdy �

�
p

2
� 2

3

�
3CS

2
�
p

2
� 5

3

Z
R3
j j 83 dx

�
is nonpositive for every  2 BM , where we have used (5.5). The optimal

bound is obtained as p approaches 11
3
. Finally, this allows to establish the

inequality IM1 � I
�

1 , which concludes the proof. �

Remark. It is not clear for us if the constant in (5.18) is or not optimal.

Some idea about its optimality could open the discussion on the nonexistence

of minimizers when (5.14) in Proposition 5.2 is violated.

Remark. Note that the Thomas-Fermi correction usually appears with pos-

itive sign (see [73]), which can be seen as a repulsive contribution to the

potential. Then, the addition of this kind of correction simpli�es the min-

imizing argument because combining the repulsive Thomas�Fermi with the

attractive Slater correction allows to convexify the functional, see [72].

Now, a simple application of Propositions 5.2 and 5.3 yields the existence

of a minimum, since every minimizing sequence is bounded in H1(R3) and rel-

atively compact (up to a translation). Furthermore, by standard arguments

(see [70]) the regularity of the minimum can be deduced.
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Theorem 5.2. Under the hypothesis of Proposition 5.3, there exists a min-

imizer  M 2 C1(R3) of (5.10) which satis�es the following Euler-Lagrange

equation associated with the total energy functional E[ ]:

�1

2
� M (x) +

1

4�

Z
R3

j M(x0)j2 M(x)

jx� x0j dx0 � CSj M j
2
3 M(x)

= � M(x) (5.20)

in a distributional sense, for some � < 0.

The following paragraph is devoted to show some consequences of this

result.

Stationary solutions and solutions preserving the Lp norm in the

repulsive case with negative energy

From Theorem 5.2 we can deduce the existence of standing waves  (x; t) =

e�i�t (x) as solutions of the SPS system in the repulsive case. Actually,

these are time-periodic solutions which preserve the density. For this kind

of solutions, the repulsive SPS system is reduced to the time-independent

Schrödinger equation

� = �1

2
� + V  � CSn

1
3 ; lim

jxj!1
 = 0; (5.21)

coupled to the Poisson equation

�V = j j2; lim
jxj!1

V = 0: (5.22)

The system (5.21)-(5.22) can be written as an Euler-Lagrange equation as-

sociated with (5.10) (cf. (5.20)). Then, Theorem 5.2 implies the existence

of solutions  M . Since these functions minimize the total energy operator,

(5.17) holds.

Let us also note that this kind of solutions do not exist for the SP system

in the repulsive case, where every solution is dispersive.

Let us now introduce some other solutions which preserve the Lp norm.

Proposition 5.4. There exist solutions of the SPS system with negative

potential energy and constant Lp norm along the time evolution.

Proof. The proof is based on the Galilean invariance of the system, see

[20]. In fact, this property guarantees that if  (x; t) is a solution to the

SPS system with initial data  0, then the solution corresponding to initial
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data  N(x; 0) = eiNx 0(x), with N 2 R
3 , is  N (x; t) = eiNx�itN

2

 (x �
2tN; t). Now, using the minimal energy solution we can construct the solution

e�i�teiNx�it
N
2

2  M(x � tN); which has initial data eiNx M (x): This solution

preserves the Lp norm, has negative potential energy and its total energy is

E(e�i�teiNx�it
N
2

2  M(x� tN)) =
1

2
N2k MkL2(R3) + IM ;

which obviously exceeds the minimal energy. A similar idea has been used

in [65]. �

Optimal kinetic energy bounds

Minimizing the total energy functional implies, by Lemma 5.4, the minimiza-

tion of the associated functional

T ( ) = �1

4

(EPOT ( ))
2

EKIN( )
:

In the next result we use this fact to deduce optimal bounds for the kinetic

energy of a solution, depending on the initial total energy and the minimum

of the energy functional.

Proposition 5.5. The kinetic energy associated with a solution of the re-

pulsive SPS system in H1(R3), EKIN , ranges between the optimal values

E�
KIN

= �2IM
 
1� E0

2IM
�
s
1� E0

IM

!
; (5.23)

where E0 is the initial energy and IM is the in�mum of the total energy over

the set f 2 H1(R3) ; k kL2(R3) =Mg. Here, M is assumed to satisfy (5.18).

Proof. As before, this is a direct consequence of the equivalence between

the energy minimization problem and (5.16). Since  M minimizes (5.10), we

have

�1

4

(EPOT ( ))
2

EKIN( )
� �1

4

(EPOT ( M))2

EKIN( M )
= �1

4

4 I2
M

�IM
= IM ;

for all  2 H1(R3) such that k kL2(R3) = M . Then, given  (�; t) 2 H1(R3) a

solution of the SPS system we �nd

EPOT ( ) � �2
q
�IM

q
EKIN( ); 8t � 0:
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This yields a relation between the kinetic and the total energy:

E0( ) � �2
q
�IM

q
EKIN( ) + EKIN( ) 8t � 0;

or, using that the potential energy is negative,

E2
KIN

+ (4IM � 2E0)EKIN + E2
0 � 0:

This concludes the proof. �

Asymptotic behaviour in the repulsive case

In this section we study the time evolution of solutions to the SPS system.

The standard arguments used to obtain various bounds on the Lp(R3) norms

of solutions to nonlinear Schrödinger equations are fruitless in our case. This

is due to the fact that the sign of the potential energy depends on the balance

between the Coulombian potential and the Slater correction. Then, we have

to combine these arguments with some other techniques to �nd the Lp(R3)

bounds.

Dispersion equation and Pseudo�Conformal Law

Now we propose an alternative derivation of the well�known Pseudo-Conformal

Law (see Chapter 4, [28], [59]) for the SPS system. The argument is based

on the equivalence between this law and the dispersion equation obtained by

using the quantum formalism.

De�ne the quantum mechanical expectation of f by

hfi(t)def=
Z
R3
 �(x; t)f(x; t) (x; t) dx;

where f could be an integrable vector�valued function or an operator acting

on  (x; t). Two usual examples are the �rst order moment of the density and

the linear momentum

hxi(t) =
Z
R3
 �(x; t) x (x; t) dx ; hpi(t) = 1

i

Z
R3
 �(x; t)r (x; t) dx:

(5.24)

We also introduce the usual quantum Poisson's Bracket formalism de�ned

by

[A;B] = i(AB � BA):
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Using the Hamiltonian operator associated with the Schrödinger equation

H =
1

2
p2 + VTot;

where VTot is de�ned by

VTot( ) =
�

4�

Z
R3

j (x0)j2
jx� x0j dx

0 � CSj (x)j
2
3 ;

the system can be written as

i
@ (x; t)

@t
= H  :

This formalism allows to get an evolution equation for the space dispersion

(�x)2
def
= hx2i(t)�hxi2(t) in terms of the momentum dispersion (�p)2

def
= hp2i(t)�

hpi2(t):
Theorem 5.3. The position and momentum dispersions for a solution  (x; t)

of the SPS system with initial data in � = fu 2 H2(R3) ; xu 2 L2(R3)g satisfy
the following equation

d2

dt2
(�x)2(t) = 2

�
E(t)� 1

2
hpi2(t)

�
+ (�p)2(t);

or equivalently

d2

dt2
hx2i = 2

�
1

2
hp2i+ E(t)

�
; (5.25)

where E(t) denotes the total energy.

Proof. We compute d
2

d2t
hx2i(t) and d

2

d2t
hxi2 by using that for any arbitrary

f , the following indentity

dhfi
dt

(t) = h[H; f ]i(t) + h@f
@t
i(t)

holds. As consequence, we have

d

dt
hxi = h[H; x]i = h[p2; x]i = hpi ;

since VTot( ) and the position operator commute. Now, the preservation of

the position momentum implies

d2

d2t
hxi2 = 2

 
d

dt
hxi

!2

+ 2hxi d
2

d2t
hxi = 2hpi2 : (5.26)
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On the other hand, we have

d

dt
hx2i = h[H; x2]i = h[1

2
p2; x2]i = h(xp+ px)i ; (5.27)

where we combined the antisymmetry property of Poisson's Brakets and

[AB;C] = A[B;C] + [A;C]B :

Now, from (5.27) we �nd

d2

dt2
hx2i = h[H; (xp� px)]i = 2 h[H; xp]i

= 2 hp2 � x � rxVToti = 2 hp2i � 2 hx � rxVToti : (5.28)

The second term in the right�hand side of (5.28) is equal to

hx � rxVTot:i =

Z
R3
xr(V )j j2dx� CS

Z
R3
xr(j j 23 )j j2dx ;

where we can splitZ
R3
xr(j j 23 ) j j2 dx =

1

4

Z
R3
xrj j 83 dx = �3

4

Z
R3
j j 83 dx: (5.29)

Now, we estimateZ
R3
xr(V )j j2 dx = �1

2

Z
R3
V (x)n(x) dx (5.30)

from Z
R3
xr(V )j j2dx = � �

4�

Z
R3

Z
R3
x
x� y

jx� yj3 n(x)n(y) dxdy

= � �

4�

Z
R3

Z
R3
x

1

jx� yj n(x)n(y) dxdy

� �

4�

Z
R3

Z
R3
y
x� y

jx� yj3 n(x)n(y) dxdy

= �
Z
R3
V (x)n(x) dx

+
�

4�

Z
R3

Z
R3
x
x� y

jx� yj3 n(x)n(y) dydx

= �
Z
R3
V (x)n(x) dx�

Z
R3
xr(V )j j2 dx:

Thus, combining (5.28), (5.30) and (5.29) we get

d2

d2t
hx2i = 2

�
hp2i+ 1

2
hV i � 3

4
CShn

2
3 i
�
= 2

�
1

2
hpi+ E(t)

�
;
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which concludes the proof. �

Now, we can show the equivalence between the Pseudo�Conformal Law

and the dispersion equation (more precisely, equation (5.25). This gives rises

to an alternative derivation of the Pseudo�Conformal Law widely studied in

the literature ([28], [59]):

d

dt

�
k(x + itr) k2L2(R3) + t2

Z
R3
V n dx� 3

2
CSt

2
Z
R3
j j 83dx

�
=

t

Z
R3
V n dx� 3

2
CSt

Z
R3
j j 83 dx: (5.31)

To prove this equivalence, we �rst expand

k(x + itr) (t)k2L2(R3) =

Z
R3
fx2j j2 + t2 jr j2 + 2t Imr � � x g dx

= hx2i+ t2 hp2i+ 2t Im

Z
R3
r � � x dx

= hx2i+ t2 hp2i+ 2t � t
d

dt
hx2i ; (5.32)

where Im denotes the imaginary part and where we have considered (5.27).

Therefore, the Pseudo�Conformal Law can be equivalently written as

d

dt

 
hx2i � t

d

dt
hx2i+ t2 hp2i+ 2t2EPOT ( )

!
= 2t EPOT ( );

d

dt

 
hx2i � t

d

dt
hx2i+ 2t2E( )

!
= 2t EPOT ( );

t
d2

dt2
hx2i = �2t EPOT ( ) + 4tE( ) = 2t E( ) + 2t EKIN( ) ;

where we have used the time invariance of the energy. Now, it can be easily

observed the equivalence between (5.31) and (5.25).

We �nally remark that hx2i is in general a nonbounded operator for the

SPS solutions. However, we can prove that if hx2i is bounded for the initial

condition, then this operator is well�de�ned for the corresponding solution.

The proof is an straightforward adaptation of the proof done in [59] for the

SP system.

Asymptotic behaviour

Equation (5.25) allows to deduce (for positive energies) some important con-

sequences about the long time behaviour of the solutions. The �rst one is
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that the solutions tend to expand unboundedly when the energy is positive.

The second consequence is a decay bound for the potential energy.

Proposition 5.6. Let � the initial data of the SPS system such that x� 2
L2(R3) and E(�) > 0. Then, the system expands unboundedly for large

times and the position dispersion hx2i(t) grows like O(t2).

Proof. To deduce this result we consider again the dispersion equation

(5.25), rewritten as

1

2

d2

dt2
hx2i = EKIN + E(t) = 2E(t)� EPOT : (5.33)

Since k�kL2 = M and E(�) � E are time invariant, we can bound the

right-hand side of (5.33) by using (5.23) and obtain

E + E�
KIN

� 1

2

d2

dt2
hx2i � E + E+

KIN
:

By using the lower bound of the Slater potential, we also �nd

E <
1

2

d2

dt2
hx2i � 2E + C(E;M):

If E is positive, then the upper and lower bounds are also positive. This

allows to deduce the result by integrating twice in time. �

As an immediate consequence we can deduce lower bounds for the Lp

norm of the solutions. These lower bounds are either positive constants or

coincide with the usual decay rates of the free Schrödinger equation, depend-

ing on a relation between the total energy, the mass and the linear momentum

(5.24). For simplicity we shall denote < p > ( ) = 1
i

R
R3
 �(x)r (x).

Corollary 5.1. Let  be a SPS solution with initial data � 2 � such that

E[�] <
1

2

j < p > (�)j2
k�kL2(R3)

: (5.34)

Then, there exist positive constants C, C 0 and C 00 depending on k�kL2(R3),
E[�], j < p > (�)j2 and p such that

k (t)kLp(R3) � C; EPOT [ ] � �C 0 ; 8t � 0; p 2 [
8

3
; 6]: (5.35)

In the case

E[�] � 1

2

j < p > (�)j2
k�kL2(R3)

; (5.36)
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the following lower bound

k (�; t)kLp(R3) �
C 00

t
3p�6

2p

; 8t > � > 0; p 2 [2; 6]; (5.37)

holds.

Proof. To show the relevance of (5.34) and (5.36) we shall use again the

Galilean invariance of the system. The solutions  N associated with an initial

condition �N = eiNx�0(x) have the same Lp(R3) norm and the same potential

energy for every N and time t, while the total energy is

E[�N ] =
1

2
N2k�NkL2(R3) +N < p > (�) + E[�0] :

It is a simple matter to observe that for every �0 the Galilean invariance

gives a parametric family of initial data �N for which the time evolution of

the Lp(R3) norm and of the potential energy are the same. The analysis of a

particular member of the family of Galilean transformations allows to deduce

the behaviour of the Lp(R3) norm and of the potential energy for the whole

family.

By a simple optimization argument one can easily check that (5.34) im-

plies the existence of initial data with negative energy in the family, while

the energy of the initial data is nonnegative if (5.36) holds.

Under hypothesis (5.36), the initial data � can be assumed to have pos-

itive energy ( if not, � can be replaced by �N 0 belonging to the class of

Galilean transforms of � with positive energy). We have

k (�; t)k2L2(R3) =

Z
jxj�R

j (x; t)j2dx +
Z
jxj�R

j (x; t)j2dx ;

� CR
3p�6

p k (x; t)k2Lp(R3) +
1

R2
hx2i:

By optimizing over R we obtain

k (�; t)k2L2(R3) � C
�
k (�; t)kLp(R3)

� 4p

5p�6 hx2i
3p�6

5p�6 :

This concludes (5.37) by using Proposition 5.6 and the positivity of the total

energy.

On the other hand, if � ful�lls (5.34), then we can choose a Galilean

translation �N 0 whose total energy is negative. In this case, we �nd

�k N 0(t)k
8
3

L
8
3 (R3)

< E[�N 0] < 0 ; 8t � 0 :
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We conclude (5.37) by using the Hölder inequality, mass preservation and

the invariance of the Lp norm of the solutions under Galilean translations. �

The next result provides a rate�of�decay estimate for the potential energy.

However, the potential energy may be negative as shown before. For instance,

from (5.5) we know that the potential energy is always nonpositive in the

repulsive case.

Proposition 5.7. Let � 2 � the initial data of the SPS system. Then, the

potential energy associated with the solution  (x; t) satis�es the inequality

EPOT ( )(t) �
C�

t
; 8 t � � > 0; (5.38)

where C� is a positive constant depending on �.

Proof. Integrating the pseudo�conformal law from � to t we �nd

k(x + itr) (�; t)k2L2(R3) + t2
Z
R3
jrV (x; t)j2 dx� 3

2
CSt

2
Z
R3
j (x; t)j 83dx

= C +

Z
t

�

�
s

Z
R3
V (x; s)n(x; s)dx� 3

2
CSs

Z
R3
j (x; s)j 83dx

�
ds; (5.39)

where

C= k(x + i�r) (�; �)k2L2(R3) + �2
Z
R3
jrV (x; �)j2dx

�3
2
�2CS

Z
R3
j (x; �)j 83dx (5.40)

and � � 0. Notice that this constant can be chosen positive if � is small

enough because the right-hand side in (5.40) goes to kx�k2L2(R3) as t ! 0.

Let g(t) = t2
R
R3
V ndx� 3

2
CSt

2
R
R3
j j 83dx. Then, from (5.39) we deduce

g(t) � C +

Z
t

�

g(s)

s
ds:

Now Gronwall's lemma yields

g(t) = t2
Z
R3
V ndx� 3

2
CSt

2
Z
R3
j j 83dx � Ct

�
� C�t ; 8t � �;

and we are done with the proof. �

Consider the function

f (t)=k(x + itr) (�; t)k2L2(R3) + t2
Z
R3
jrV (x; t)j2 dx� 3

2
CSt

2
Z
R3
j (x; t)j 83dx:
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From (5.38) we get

f (t) � C +

Z
t

�

C�s

s
ds � C�t:

The evolution of f (more precisely, the evolution of its sign) implies quali-

tative di�erences in the behaviour of the associated solution. The following

result provides a decay estimate for the potential energy in the attractive

case or a weak decay property for some Lp;q�norms of the wave functions.

Corollary 5.2. If there exists t0 2 R
+ such that f (t0) < 0, then f (t) < 0

for all t � t0. Furthermore,

2EPOT ( ) �
 
f (t0)

t0

!
1

t
< 0; 8t � t0:

Otherwise we have Z 1

�

k (s)k
4p

3(p�2)

Lp(R3)ds � C; 8p 2 (2; 6];

where C is a positive constant depending on p; k�kL2 ; kx�kL2 and �.
Proof. The �rst part of the Corollary is deduced by using similar arguments

to those of Proposition 5.7, when taking � = t0.

Setting  g(x; t) := exp(� ix2

2t
) (x; t) we have

itr g(x; t) = exp

 
� ix2

2t

!
(x + itr) ; (5.41)

which implies

f (t) = t2kr gk2L2(R3) + t2
Z
R3
V (x; t)n(x; t) dx� 3

2
CSt

2
Z
R3
j (x; t)j 83dx:

In the case f > 0 we have

kr gk2L2(R3) +
Z
R3
V (x; t)n(x; t) dx� 3

2
CS

Z
R3
j (x; t)j 83dx > 0: (5.42)

On the other hand, we can rewrite (5.31) in the following form

d

dt

�
tkr g(�; t)k2L2(R3) + 2tEPOT ( )(t)

�
= �kr g(�; t)k2L2(R3):

Integrating between � > 0 and t > � yields

tkr g(�; t)k2L2(R3) + 2tEPOT ( )(t) =
f (�)

�
�
Z
t

�

kr g(�; t)k2L2(R3): (5.43)
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Now, the left-hand side of (5.43) can be estimated by using (5.42), which

gives Z
t

�

kr g(�; t)k2L2(R3) �
f (�)

�
:

The proof concludes by noting that the Lp norm of  and  g coincide, then

we can apply the Gagliardo-Nirenberg inequality to  g. �

Let us now prove some decay properties of the solutions in the case of

nonnegative potential energy.

Proposition 5.8. Let � 2 � the initial data of the SPS system and let  

be the corresponding solution. If the potential energy associated with  is

nonnegative along the time evolution, then there exist constants C > 0 which

depend on k�kL2(R3) and kx�kL2(R3) such that

(i) 8 jtj � 1; 8 p 2 [2; 6] ; k (�; t)kLp(R3) � C

jtj
3
2
( 1
2
�
1
p
)
;

(ii) 8 jtj � 1; 8 p 2 [1; 3] ; kn(�; t)kLp(R3) � C

jtj
3
2
(1� 1

p
)
;

(iii) 8 jtj � 1; 8 p 2 ]3;1[ ; kV (�; t)kLp(R3) � C

t
( 1
2
�

3
2p

)
;

(iv) 8 jtj � 1; 8 p 2 ]3
2
;1[ ; krV (�; t)kLp(R3) � C

t
(1� 3

2p
)
:

Proof. The proof follows the steps of Proposition 5.7 and the arguments

given in [29], [59].

Using (5.41) the pseudo�conformal law can be written as

t2kr g(�; t)k2L2(R3) = C +

Z
t

�

�
s

Z
R3
jrV (x; s)j2dx� 3

2
CSs

Z
R3
j (s)j 83dx

�
ds

�t2
Z
R3
jrV (x; t)j2n(x; t)dx+ 3

2
CSt

2
Z
R3
j (x; t)j 83dx:

Then, applying (5.38) and taking into account the nonnegativity of the po-

tential energy we �nd

kr g(�; t)k2L2(R3) �
C 0

t�
;

for all t � �, where C 0 = C 0(C; �) > 0. Now, the Gagliardo�Nirenberg

inequality (applied to  g) allows to get (i) for p 2 [2; 6] and a = 3
�
1
2
� 1

p

�
:

k (�; t)kLp(R3) = k g(�; t)kLp(R3) � (p)kr g(�; t)kaL2(R3)k g(�; t)k1�aL2(R3)

� (p)kr g(�; t)kaL2(R3)k�k1�aL2(R3) �
C 0

t
3
2(

1
2
� 1
p
)
:
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(ii) is a consequence of kn(�; t)kLp(R3) = k (�; t)k2
L2p

, while (iii) can be de-

duced from the Hardy�Littlewood-Sobolev inequality and (ii):

kV (�; t)kLp(R3) � C 0
1r � n(�; t)


Lp(R3)

� C 0kn(�; t)kLq(R3)

� C 0 1

t
3
2
(1� 1

q
)
� C 0 1

t
( 1
2
� 3

2p
)
;

where 1
q
= 1

p
+ 2

3
and q 2]1; 3[. The proof of (iv) is analogous to that of (iii).

�

Minimization of the energy in the attractive case

The aim of this section is to give some results concerning the asymptotic

behaviour in time of solutions to the SPS system under the assumption of

attractive interactions. In this case the energy functional reads

E[ ]=

Z
R3

�
1

2
jr (x; t)j2�

Z
R3

j (x; t)j2j (x0; t)j2
8�jx� x0j dx0� 3

4
CSj (x; t)j

8
3

�
dx:(5.44)

Using the same arguments developed before to bound the energy in the re-

pulsive case and the inequality (5.5), it can be shown that this functional

has a lower bound over the set f 2 H1(R3) ; k kL2(R3) = Mg. In [20] it

was proved the existence of a minimizer  M of the energy functional (5.44)

in H1(R3) under the constraint k kL2(R3) = M; M 2 R
+ . Furthermore, this

minimum was found to be spherically symmetric. The proof given above

can be also adapted to this case, therefore it might give an alternative way

to obtain the existence of a minimum. In this case the restriction on the

L2�norm is not necessary because the potential energy is always negative.

Theorem 5.4. For all M > 0 there exists a minimizer  M 2 C1(R3) of the

problem

minfE[ ]; 2 H1(R3); k kL2(R3) =Mg;
where E[ ] denotes the energy functional (5.44). Also, psiM satis�es the

Euler-Lagrange equation

�1

2
� M � 1

4�

Z
R3

j M (x0; t)j2
jx� x0j dx0  M � CSj M j

2
3 M = � M

in a distributional sense, for some � < 0.
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As an immediate consequence we get the existence of stationary waves of

the form  (x; t) = e�i�t M(x) and we can construct solutions of the same

type than in Proposition 5.4 satisfying (5.17). Also, from the minimization

of the total energy operator we can deduce the same bound for the kinetic

energy as in (5.23).

The dispersion properties (in the positive energy case) as well as the

dispersion and pseudo�conformal laws are also valid in this case. However,

since the potential energy is always negative in the attractive case, the decay

properties of the solutions are no longer veri�ed.

It is also possible to study the asymptotic behaviour of the solutions at

t = 0. Actually, this analysis is a straightforward adaptation of the techniques

developed in [29] and shall be omitted here.
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Chapter 6

Nonlinear stochastic discrete

drift-di�usion theory of charge

�uctuations and domain

relocation times in semiconductor

superlattices

Introduction

The current-voltage (I-V ) characteristics of highly doped weakly coupled

semiconductor superlattices (SL) typically exhibits many sharp branches due

to formation of static electric �eld domains [44]. Two branches are separated

by a discontinuity in the current. The electric �eld pro�le associated to a

given branch consists of two regions of constant electric �eld (domains) sep-

arated by a charge accumulation layer (domain boundary), which is con�ned

to one or several quantum wells. The location of the domain boundary dis-

tinguishes I-V branches: as the voltage increases, the domain boundary is

located closer to the injecting contact and the high �eld domain increases at

the expense of the low �eld one [21]. Branches exhibit hysteresis cycles due to

coexistence of two or more stable electric �eld pro�les at a given value of the

voltage. Many interesting dynamical phenomena are associated to these SL:

(i) response of the SL to sudden changes in bias (which may force relocation

of electric �eld domains [64, 102, 80, 3]), and (ii) self-sustained oscillations

of the current provided temperature is raised or doping is lowered [63, 101].

Motivated by recent experimental evidence [92, 93], we shall present in this

chapter a stochastic theory of domain relocation in highly doped SL.

In relocation experiments [80, 92, 94], a doped SL displaying a multi-

117
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stable I-V characteristic is biased (typically) on the �rst plateau, say in the

middle of a branch. The corresponding �eld con�guration has two domains

separated by a domain wall which is an accumulation layer. Then the voltage

is suddently increased from V0 to V1 = V0 + �V and the time evolution of

the current is recorded. Depending on �V , the domain wall has to relocate

so that a stable �eld con�guration appropriate to the new voltage is reached

[80]. The outcome has been studied numerically using a discrete resonant

tunneling model with Ohmic boundary conditions [3]. For any �V < 0 as

well as for small positive�V , the relocation of the domain wall always occurs

by a direct movement of the charge monopole forming the domain boundary

to its �nal position. This movement may be either upstream or downstream

the electron �ow as needed. However, for su�ciently large �V > 0, a charge

dipole is injected at the emitter contact in addition to the existing monopole,

because the latter cannot move upstream beyond one SL period without en-

countering a stable �eld con�guration [3]. Recent experiments by Rogozia

et al.[94] con�rm this theoretical picture. Other experiments have shown

that the relocation time for up jumps (�V > 0) close to the discontinuity in

the I-V characteristic is random and have also investigated its probability

distribution function [92, 93]. What is causing randomness in the relocation

time? In this work we argue in favor of shot noise.

Shot noise occurring during a transport process is due to �uctuations in

the occupation number of states caused by (i) thermal random initial �uctua-

tions; (ii) the random nature of quantum-mechanical transmission/re�ection

(partition noise). The latter is in turn caused by the discrete nature of the

electric charge.

The rest of the chapter is organized as follows. In Section 6, we derive a

stochastic discrete drift-di�usion model (DDD) from the previously studied

deterministic one (see Chapter 1) considering partition only noise (thermal

noise is negligible in the low temperature limit). The stochastic DDD model

has multiplicative white noise terms obeying Poissonian statistics and it has

been solved numerically by means of a second order scheme proposed by

Platen [66]. The results of numerically solving the stochastic model are re-

ported in Section 6. Our numerical results agree qualitatively with Rogozia

et al experiments [92], thereby enforcing the idea that shot noise is respon-

sible for the observed �uctuations in domain relocation time. Details on the

numerical scheme and comparison to rougher schemes and to the results of

solving the deterministic model with random initial conditions are contained

in the Appendix.
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Stochastic Discrete Drift�Di�usion Model

The DDD model given by Poisson equation

Fi � Fi�1 =
e

"
(ni �Nw

D
); i 2 f1; : : : ; Ng ; (6.1)

Ampere equation

"

e

dFi

dt
+ Ji!i+1 = J(t); i 2 f0; : : : ; Ng (6.2)

and the tunneling current densities de�ned by (1.16), (1.17) and (1.18), has

a conceptual di�culty coming from charge quantization that motivates the

introduction of shot noise terms. The electric charge in each SL period, eniA

(A is the SL cross section), should be a multiple of the electron charge e. This

implies that the true charge �uctuates about the mean value given by the

deterministic DDD model. To analyze charge �uctuations, we may use the

Langevin ideas and add an appropriate stochastic term to the deterministic

current densities. The SL cross section A is very large (a circular cross section

of diameter 120 �m wide as compared to a SL period of l = 13 nm) and the

barrier transmission coe�cient is very small.

Then we may use the classic Poissonian shot noise to model charge �uc-

tuations [19]:

Ji!i+1 =
niv

(f)(Fi)� ni+1v
(b)(Fi)

l
+ J

(r)
i!i+1(t); (6.3)

for i = 1; � � �N�1, where J (r)
i!i+1 represents the random current which satis�es

hJ (r)
i!i+1i = 0;

hJ (r)
i!i+1(t) J

(r)
j!j+1(t

0)i =
ÆijÆ(t� t0) (Al)�1[niv

(f)(Fi) + ni+1v
(b)(Fi)]; (6.4)

and v(b), v(f) are de�ned as follows

v(b)(F ) =
D(F )

l
; v(f)(F ) = v(b)(F ) + v(F ); (6.5)

The logic behind this form of the random tunneling current is as follows.

We consider that uncorrelated electrons are arriving at the ith barrier with

a distribution function of time intervals between arrival times that is Pois-

sonian [19]. Then the shot noise spectrum for the current eJ
(r)
i!i+1A is given
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by the average current, [niv
(f)(Fi) + ni+1v

(b)(Fi)] e
2A=l, which in turn yields

Eq. (6.4). As remarked in Ref. [19], this procedure assumes low transmission

through barriers and it yields an upper bound for the shot noise amplitude. In

addition, the tunneling current is approximated by a discrete drift-di�usion

expression whose transport coe�cients (drift velocity, di�usivity, . . . ) will be

quantitatively di�erent from those of the actual sample used in experiments.

Given the exponential dependence of several quantities, relatively small dif-

ferences in the location of extrema of the drift velocity, etc. may produce

substantial di�erences. Thus, the mathematical model provides quantitative

di�erences in the results but it yields the correct qualitative behavior.

The special nature of the emitter and collector layers is considered in the

boundary conditions, given by (6.2) with i = 0 and i = N and di�erent

constitutive relations for the tunneling currents:

J0!1 = j(f)
e
(F0)�

n1w
(b)(F0)

l
+ J

(r)
0!1 ; (6.6)

JN!N+1 =
nNw

(f)(FN)

l
+ J

(r)
N!N+1 : (6.7)

Here we still have hJ (r)
i!i+1i = 0 for i = 0 and i = N , while the correlations

are:

hJ (r)
0!1(t)J

(r)
0!1(t

0)i = j(f)
e
(F0)l + n1w

(b)(F0)

Al
Æ(t� t0); (6.8)

hJ (r)
N!N+1(t)J

(r)
N!N+1(t

0)i = nNw
(f)(FN )

Al
Æ(t� t0): (6.9)

The drift velocity v, the di�usion coe�cient D, the emitter current density

ej(f)
e

, the emitter backward velocity w(b) and the collector forward velocity

w(f) are functions of the electric �eld depicted in Figs. 6.1 and 6.2.

In addition to the boundary conditions, the Ampere and Poisson equa-

tions should be supplemented as usual with the voltage bias condition,

NX
i=1

Fil = V ; (6.10)

where V denotes voltage. Eqs. (6.1), (6.2), (6.3) to (6.10) form a closed

system of stochastic equations for ni, Fi and J . They constitute the stochastic

DDD model. To analyze this model, it is convenient to render all equations

dimensionless. Let us denote by (FM ; vM) the coordinates of the �rst positive
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maximum of the drift velocity v(F ). We adopt FM , Nw

D
, vM , vM l, eN

w

D
vM=l

and "FM l=(eN
w

D
vM) as units of Fi, ni, v(F ), D(F ), eJ and t, respectively.

According to the parameters of the superlattice previously refered we �nd

FM = 11:60 kV/cm, Nw

D
= 1:5 � 1011 cm �2, vM = 718 cm/s, vM l =

9:33� 10�4 cm2=s and eNw

D
vM=l = 13:27 A/cm2. For a circular sample with

a diameter of 120 �m, the units of current and time are 1.501 mA and 1.021

ns, respectively. Then Eqs. (6.1), (6.2), (6.3) to (6.10) become

Ei � Ei�1 = � (ni � 1) ; (6.11)

J(t) =
dEi

dt
+ nivi �Di(ni+1 � ni) + a

q
ni(vi +Di) +Dini+1 �i(t) ; (6.12)

J(t) =
dE0

dt
+ Je(E0)�We(E0)n1 + a

q
Je(E0) +We(E0)n1 �0(t) ; (6.13)

J(t) =
dEN

dt
+Wc(EN)nN + a

q
Wc(EN )nN �N(t) ; (6.14)

� =
1

N

NX
i=1

Ei: (6.15)

Here we have used the same symbols for dimensional and dimensionless quan-

tities except for the electric �eld and the coe�cient functions in the bound-

ary conditions. The parameters � = eNw

D
=("FM) � 1:772, � = V=(FMNl)

and a =
q
e=("FMA) � 3:232 � 10�4 are the dimensionless doping, the av-

erage electric �eld (bias) and the noise amplitude respectively. �i(t) is a

zero-mean Gaussian white noise with correlation h�i(t)�j(t0)i = ÆijÆ(t � t0)
(�i(t) = �i(tm)=

p
�t, where the �i(tm) are independent identically distributed

(i.i.d.) normalized Gaussian random variables for each discrete time tm and

�t is the dimensionless time step). The rest of the coe�cients in Eqs. (6.11)

to (6.14) are de�ned by

vi � v(Ei) =
v(FMEi)

vM
; Di � D(Ei) =

D(FMEi)

VM l
;

Je(E0) =
j(f)
e
(FME0)l

Nw
D
vM

; We(E0) =
W (b)(FME0)

vM
;

Wc(EN) =
W (f)(FMEN )

vM
: (6.16)

The previous system of equations can be further simpli�ed since the electron

densities ni and the total current density J(t) can be expressed in terms

of the electric �eld and the bias. Di�erentiating Eq. (6.15) with respect to

time, and using Eqs. (6.13) and (6.14), we obtain an expression for the total
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current density J(t):

d�

dt
=

1

N

NX
i=1

dEi

dt
= J � 1

N

N�1X
i=1

[ni(vi +Di)� ni+1Di]

� nNWc(EN)

N
� a

N

N�1X
i=1

q
nivi + (ni + ni+1)Di �i(t)

� a

N

q
nNWc(EN) �N(t) :

Then the total current can be written as

J = J1 + J2 � �; (6.17)

J1 =
d�

dt
+

N�1X
i=1

ni(vi +Di)� ni+1Di

N
+
nNWc(EN)

N
(6.18)

(J2)0 = 0; (6.19)

(J2)i =
a
q
nivi + (ni + ni+1)Di

N
; 1 � i < N; (6.20)

(J2)N =
a
q
nNWc(EN)

N
; (6.21)

� = (�0(t); : : : ; �N(t))
T : (6.22)

We can now insert these equations in the Ampère equations (6.12) to (6.14)

and eliminate ni by using Eq. (6.11) thereby obtaining a stochastic di�erential

equation of the following form:

dE

dt
= H

 
E;

d�

dt

!
+ S(E) � �(t); (6.23)

for the (N + 1)-dimensional vector electric �eld E = (E0; : : : ; EN)
T . Here

S(E) is a (N+1)�(N+1)matrix andH is a (N+1)-dimensional vector having

obvious forms which we do not write explicitly for the sake of conciseness.

The stochastic di�erential equation (6.23) has been numerically solved

by using two di�erent methods: a �rst order Heun scheme (modi�ed Euler

scheme) and the second order scheme proposed by Platen [66]. The second

numerical scheme is rather more costly, but we had to use it to avoid that

numerical errors mask the e�ects due to charge �uctuations. Technical details

on numerical schemes and a comparison of their performances are given in

Appendix 6. The results of our simulations are reported in the next Section.
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Figure 6.3: (Left) Static electric �eld pro�le at V=2:1 V. (Right) Part of the �rst
plateau of the I-V characteristics.

Numerical results

We have numerically investigated the sample of Ref. [63] that was used

in the relocation experiments [80, 92]. It consists of a N = 40-period SL

with 9-nm wide GaAs wells and 4-nm wide AlAs barriers, and 2D doping

Nw

D
= 1:5� 1011 cm�2, at a temperature T = 5 K. We have solved numeri-

cally the nondimensional equations in the units and dimensionless parameters

introduced in Section 6. Figure 6.3 (left) shows a typical static electric �eld

pro�le (with two coexisting domains) and the �rst plateau of the time av-

eraged I-V characteristics (obtained by voltage up sweeping). To ascertain

the in�uence of charge �uctuations in domain relocation, we start by setting

a stationary �eld con�guration corresponding to a voltage V0 = 0:65 V on

the lower branch of Fig. 6.3 (Right). At time t = 0, the voltage increases (in

one time step) to its �nal value Vf on the next I-V branch.

Time traces of the current are depicted in Figures 6.4. Notice that the

vertical scale has been augmented su�ciently to see the �uctuations of the

current, that are typically about 0.02 in size. To compare our numerical

results to experimental ones, we need to characterize the domain relocation

times and their distribution function. After a voltage switch, each realization

of the random solution of Eq. (6.23) gives rise to jumps in the mean current

as depicted in Figures 6.4. We compare the time trace of the current (time

averaged over intervals of �ve time dimensionless units) to the value of the

current in static I-V branches. The �rst time t0 that the current time trace

di�ers less than 5� 10�4 dimensionless units from its �nal stationary value,

we consider that the domain relocation has ended. The distribution of time

delays t0 taken over many realizations is then recorded. For a large voltage
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Figure 6.4: Time trace of the current when the voltage is switched from V0 = 0:65 V
to Vf = 0:737 V (Left) and to Vf = 0:75 V (Right).

switch, the time delay before the current falls from its initial value to its �nal

level is shorter than for a smaller voltage switch; compare Figs. 6.4. The

di�erences between the time delays involved in these two cases (about 40 ns)

are smaller than those recorded in experiments [92]. These di�erences occur

because of overestimation of the �eld FM and the shot noise amplitude by

our theoretical calculations with respect to those of the experimental sample,

as we mentioned before.

In Ref.[80] it was claimed that the time delay depends exponentially on

the di�erence between the �nal value of the stabilized current, I, and the

maximum value of the current (or mimimum value in the case of a down

switch) at the initial branch, Im. Then the relocation time (measured in

units of 1.021 ns) depends exponentially on the current di�erence I � Im,

i.e.,

exp

 
b jI � Imj

IM
+ c

!
: (6.24)

We have observed this dependence in our numerical results too. The dimen-

sionless constants b and c are b = 64:9866 and c = 1:6717. IM = 1:501

mA is the unit of current. In Luo et al's experiments [80], IM = 136�A

(approximately the height of the �rst maximum of the current in the inset

of Fig. 1), b = 10:74 (6 times smaller than the numerically calculated value)

and c = 3:34 (2 times larger than the numerically calculated value). We

thus con�rm the exponential dependence of the relocation time on the cur-

rent di�erence and observe a good qualitative agreement between numerically

and experimentally obtained values. Fig. 6.5(a), shows the mean relocation
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Figure 6.5: (a) Mean relocation time for di�erent �nal voltages. (b) Logarithm of the

mean delay time vs current di�erence between �nal current and the maximum or minimum

current Im of the initial branch.

time obtained in our simulations as a function of Vf . As the �nal voltage ap-

proaches that corresponding to IM , the relocation time increases. Fig. 6.5(b)

depicts the mean relocation time as a function of (I� Im) on a semilogarith-

mic scale for Vf values between 0:737V and 0:735V . The solid line denotes a

linear �t to the data points, that agrees with the exponential law proposed

by Luo et al [80]. These �gures are qualitatively similar to the corresponding

ones depicted from experimental data in Refs.[92] and [80]. Quantitative dif-

ferences are due to the above mentioned discrepancies in FM , the tunneling

current and the shot noise amplitude. Let us remark a posterior theoretical

work [105] deducing exponential dependence for the mean relocation times

in a resonant-tunneling structures where the current-voltage characteristics

exhibit bistability. In [105] the exponential depends on jI � Imj
3
2 instead of

a linear dependence. However the region of validity of this �t is only valid

localy in a region close to the current jump. This induces to think about

di�erent regimes in the exponential approach for this mean relocation times.

Now we focus on the distribution of switching times. Typically, delay

distributions are either close to symmetric Gaussians or they are asymmetric,

depending on how far Vf is from the limit point of the I-V characteristics. We

have �tted our numerical distributions by least squares to either a Gaussian

density:

W (t; �; �) =
1

�
p
2�

exp

 
�(t� �)2

2�2

!
; (6.25)
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Figure 6.6: Time delay distribution for Vf = 0:737 V (Left) and Vf = 0:75 V (Right).
Data from numerical simulations have been �tted to a FPT distribution and to a Gaussian
distribution, respectively .

or to a �rst passage time (FPT) distribution

W (t; y; �) dt =

s
y
2�

�
exp

 
��yz

2

2

!
dz ; (6.26)

where

z =
1q

exp(2�t)� 1
: (6.27)

The parameters of these distributions are � (mean relocation time) and �

(standard deviation) for the Gaussian and y and � for the FPT distribution.

The results of our �tting are depicted in Figures 6.6.

These results agree qualitatively with the experimental ones of Rogozia

et al's [92]. As in Ref. [92], our Figures 6.6 show that for values of the

voltage far away from the current jump the time delay distribution changes

from an asymmetric FPT distribution to a very narrow symmetric Gaussian

distribution as Vf departs from the voltage corresponding to the current

jump. These features have a numerical expression in terms of descriptive

statistics like the mean, the standard deviation or the skewness coe�cient as

shown in the Tables of Appendix 6. The numerically calculated largest and

smallest delay times are also presented.
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Conclusions

We have studied how the shot noise due to charge quantization a�ects the

relocation time of electric �eld domains after a suddent switch of the volt-

age. We �nd that the mean relocation time depends exponentially on the

di�erence between the value of the current at the �nal voltage and the value

of the current at the end of the branch corresponding to the initial voltage.

The distribution function of delay times after a voltage switch changes from

Gaussian to a FPT distribution as the �nal voltage approaches the limit

point of the stationary I-V characteristics. These results are in qualitative

agreement with experiments.

Appendix: Numerical Scheme

This Appendix is devoted to explain some technical details of the simulations.

The Platen second order scheme gives the vector �eld En+1 at discrete time

t +�t as the following function of En at discrete time t [66]:

E
n+1 = E

n +
1

2

 
H

 
�;

d�

dt

!
+H

 
E
n;
d�

dt

!!
�t

+
1

4

N+1X
j=1

" �
S
j(M

j

+) + S
j(M

j

�) + 2Sj(En)
�
�W j

+
N+1X

r=1;r 6=j

�
S
j(Ur

+) + S
j(Ur

�)� 2Sj(En)
�
�W j

#

+
1

4

N+1X
j=1

" �
S
j(M

j

+)� Sj(Mj

�)
� n

(�W j)2 ��t
o

+
N+1X

r=1;r 6=j

�
S
j(Ur

+)� Sj(Ur

�)
� n

�W j�W r + Vr;j
o #

:

Here Sj(�) is the j�th column of S(�), U� = En � S(En)j
p
�t, and H and

S are evaluated at

� = E
n +H

 
E
n;
d�

dt

!
�t +

N+1X
j=1

S(En)j�W j;

M
j

� = E
n +H

 
E
n;
d�

dt

!
�t� Sj(En)

p
�t:
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�W j are independent gaussian random variables distributed with zero mean

and variance �t, whereas the Vj1;j2 are independent two point random vari-

ables that satisfy

P (Vj1;j2 = ��t) = 1

2
; Vj1;j1 = ��t ; Vj1;j2 = �Vj2;j1 :

We have used a time step of �t = 10�4 (in dimensionless units) of the same

order as the noise amplitude a. The values of the random variables V and W

have been generated through a random number generator improved by using

a seed selector depending on the computer clock and an algorithm which

allows to avoid the sequential correlation usual in this sort of generators [88].

The Platen scheme is second-order weakly convergent in the following sense.

Let g(E) be any su�ciently smooth scalar function (with 2(�+1) continuous

derivatives provided � is the order of the scheme). Let us �x the time instant

at t corresponding to discrete time n. Then

jhg(En)i � hg(E)ij � C(�t)2 ;

for any �t 2 (0; Æ0), where C and Æ0 are positive constants. The Platen nu-

merical scheme is certainly more complicated and costly than even a stochas-

tic Heun (modi�ed Euler) �rst order scheme. We have had to use it to min-

imize the e�ects of numerical noise coming from �oating-point arithmetic

(even our high-precision 64-bit arithmetic) and that inherent in interpolating

our transport coe�cients and contact functions in the boundary conditions.

In fact, in the absence of the noise, both the Heun and the Platen schemes

become the well-known deterministic Heun (improved Euler) scheme, that is

a second-order Runge-Kutta method:

E
n+1 = En +

�t

2

h
H(En) +H

�
E
n +H(En)�t

�i
:

However both schemes di�er in their treatment of the noise: the stochas-

tic Heun method is weakly �rst order whereas the Platen scheme is second

order. The result obtained by using the Platen scheme exhibits less dis-

persion than that reached by the Heun method, as shown in Table 6. An

appropriate treatment of the noise term avoids the presence of arti�cial nu-

merical e�ects. The e�ects of the numerical perturbations can be illustrated

as follows. Let us use the deterministic Heun scheme with random initial

conditions corresponding to disturbances of the stationary �eld pro�le at

voltage V0 and suddenly switch to voltage Vf . The domain relocation times

have been measured and they give rise to the distributions of Figures 6.7.
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Figure 6.7: Time delay distribution for Vf = 0:737 (left) and Vf = 0:75 (right)
calculated with a deterministic Heun scheme and random initial conditions.

Heun / Platen Vf = 0:737 Vf = 0:75 Vf = 0:737 Vf = 0:75

Lower Limit (ns) 77:692 43:775 77:827 43:942

Upper Limit (ns) 128:048 45:633 115:025 44:960

Mean (ns) 87:863 44:564 87:635 44:541

Standard Dev. (ns) 6:803 0:299 6:339 0:167

Skewness coe�. 1:840 0:131 1:4237 �0:2791

Table 6.1: Descriptive statistics of the relocation time distributions obtained with the

Heun and Platen scheme.

We have compared the mean, standard deviation and skewness coe�cient,

which measures the asymmetry of a distribution, of these distributions to

those corresponding to the use of the stochastic Heun and Platen schemes;

see Tables 6 and 6.2. Notice that the mean relocation times are similar, while

the numerical viscosity contributes to scatter the results. The shot noise does

not change the mean values given by the deterministic model, but the disper-

sion measured by the standard deviation increases due to numerical e�ects

(larger in the Heun scheme). The use of a numerical scheme that reduces

these e�ects is then clearly justi�ed.
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Vf = 0:737 Vf = 0:75

Mean (ns) 88:916 44:579

Standard Deviation (ns) 1:773 0:045

Skewness coe�. 0:912 0:255

Table 6.2: Descriptive statistics of the relocation time distributions obtained with per-

tubed initial conditions.
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Chapter 7

Low-�eld limit for a nonlinear

discrete drift-di�usion model

arising in semiconductor

superlattices theory

Introduction

This chapter is concerned with a weakly coupled SL whose electron den-

sity inside the device reaches intermediate values. Depending on the charge

density (produced by doping or irradiating the SL) and the applied voltage,

di�erent qualitative responses of the current can be obtained [22]. At inter-

mediate values of the charge density, stationary responses and self�sustained

oscillations are observed depending on the values of the voltage. The solu-

tions corresponding to low voltages are stationary and typically develop low

electric �elds. We propose to study this regime by identifying some small

parameter h > 0 by means of physically relevant dimensionless quantities

appearing in the Discrete Drift�Di�usion model introduced in Chapter 1.

Having set up this discrete problem, we proceed to prove that the solution

converges, in an appropriate weak setting, to a continuous Poisson�Drift�

Di�usion problem with �eld�dependent mobilities in the limit. This leads to

a parabolic limit equation.

The methodology proposed uses an auxiliar problem to deal with the

DDD model. In a �rst approach, we deduce rigorously the limit for the

DDD model replacing the bias condition by an arti�cial Dirichlet boundary

condition at the emitter. At the end, we recover the bias condition by a

simple argument. This chapter is structured as follows: In Section 2 we

present the DDD model with a Dirichlet boundary condition and study its
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well�posedness. In Section 3 we derive the dimensionless equations for which

the analysis is actually performed and we state our main convergence result

for the DDD model. Section 4 is devoted to prove this result. Finally, Section

5 sketches the proof of the continuum limit for the DDD system with the bias

condition.

DDD Model with Dirichlet boundary conditions

Let us consider a SL constituted by 2N + 1 consecutive periods, which are

well�barrier pairs, labelled by the index i 2 f�N; : : : ;+Ng. Then, the

barrier in contact with the emitter is considered as the (�N � 1)�th barrier,

while the last barrier of the N�th SL period separates the N�th well from

the collector. The DDD model considers that the two�dimensional electron

density ni and the average electric �eld Fi are goberned by the discrete

Poisson equation

Fi � Fi�1 =
e

"
(ni �Nw

D
); i 2 f�N; : : : ; Ng ; (7.1)

and the continuity equation

dni

dt
= Ji�1!i � Ji!i+1; i 2 f�N; : : : ; Ng ; (7.2)

being eJi!i+1 the tunneling current density through the barrier de�ned by

(1.16), (1.17) and (1.18). We remark that one equation is still missing since

we have one unknown more than equations. Notice that the set of rela-

tions (7.1) involves as an additional unknown the electric �eld F�N�1 at the
injecting contact.

There are several ways to close mathematically the system. As we men-

tioned in Chapters 1 and 6, the most realistic boundary condition is the

so�called voltage bias condition:

`
NX

i=�N
Fi = V; (7.3)

where V is a given quantity and ` is the period length. However, we will

replace it in a �rst approach by a new condition adapted to the analysis of

the asymptotic limit. A mathematically convenient recipe is to prescribe the

electric �eld at the emitter:

F�N�1(t) = F�(t): (7.4)
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Here, the right�hand side of (7.4) is a given function F� : R+ ! R. In what

follows we essentially deal with the Dirichlet�like boundary condition (7.4)

for the electric �eld. We will come back to the voltage bias condition (7.3)

at the end of the chapter.

Relations (7.1), (7.2) and (7.4) form a closed system of equations for ni
and Fi with i 2 f�N; : : : ; Ng, referred to along this chapter as the Discrete

Drift�Di�usion (DDD) model. These equations involve the drift�velocity

v, the di�usion coe�cient D, the emitter current density ej(e), the emitter

backward velocity W (b) and the collector forward velocity W (f), which are

given functions of the electric �eld. All the coe�cients v; D; W (b); W (f); j(e)

are supposed to be nonnegative and to satisfy some regularity properties (see

Chapter 6, where typical pro�les of these coe�cients are depicted).

We remark that the electric �eld in the cell #i can be expressed as a

function of the incoming �eld F� and the density in the previous cells as

follows

Fi(t) = F�(t)+
e

"

iX
j=�N

(nj(t)�ND); i 2 f�N; : : : ; Ng; 8t 2 [0; T ]: (7.5)

Consequently, we can rewrite the initial value problem associated to the DDD

model in terms of the densities

d~n

dt
= g(t; ~n(t)) ; ~n(0) = ~n0 ; (7.6)

where ~n(t) = (n�N ; : : : ; nN)
T 2 R

2N+1 , g : R2N+1 ! R
2N+1 is a smooth

function and ~n0 2 R
2N+1 is the initial condition. Next theorem stablishes

the well�posedness of the DDD model.

Theorem 7.1. Let n0
i
� 0 for i 2 f�N; : : : ; Ng be the initial data for the

DDD system. Let F� be a C1 function of time. Let also v;D;W (b;f); j(e) be C1

nonnegative functions. Then, there exists a unique global solution associated

with the initial value problem (7.6). The solution veri�es ni(t) � 0 for all

i 2 f�N; : : : ; Ng, t � 0.

Proof. Local existence and uniqueness follows by a direct application of the

Cauchy-Lipschitz theorem for ODE, since the function g inherits the regular-

ity properties of the coe�cients. The estimates proved in the next section,

especially in Lemma 7.1, provides also a uniform bound on the solution which

prevents from �nite time blow up. Consequently, the solution is globally de-

�ned. There only remains to justify the nonnegativeness of the solution. To

this end, it is convenient to rewrite (7.2) as a di�erence between a gain term



136

and a loss term

dni

dt
=

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

v(Fi�1)

`
ni�1 +

D(Fi)

`2
ni+1 +

D(Fi�1)

`2
ni�1 �

�
v(Fi)

`
+

D(Fi)

`2
+

D(Fi�1)

`2

�
ni

for i 2 f�N + 1; : : : ; N � 1g;
D(F�N )

`2
n�N+1 + j(e)(F�N�1)�

�
v(F�N )

`
+

D(F�N )

`2
+

W (b)(F�N�1)

`

�
n�N

for i = �N;
v(FN�1)

`
nN�1 +

D(FN�1)

`2
nN�1 �

�
D(FN�1)

`2
+

W (f)(FN )

`

�
nN

for i = N:

Let t � 0 such that ni(t) � 0 for any i 2 f�N; : : : ; Ng. Suppose nj(t) = 0

for some j 2 f�N; : : : ; Ng. Thus, we notice that its time derivative
dnj

dt
(t) is

nonnegative and, hence, we deduce the nonnegative character of the solution

along the time evolution. �

Dimensionless Equations

The aim of this section is to write the system in dimensionless form. Hence,

we will identify some dimensionless physical parameters. Next, we choose

suitabily (low��eld asymptotics) the ordering of these parameters in terms

of a quantity h > 0 intended to tend to 0. Studying the limit h ! 0 we

obtain a nonlinear continuous drift�di�usion model. This approach relating

discrete to continuous models is reminiscent of hydrodynamic limits in kinetic

theory (see [42]). Actually, it has been used for models of phase transition

for example in [32].

Let us introduce time and length units, respectively denoted by T , L.
They correspond to observation scales. We also need characteristic values

for the electron density and for the electric �eld, respectively denoted by

N and F . For instance, it is quite natural to de�ne N from the doping

pro�le Nw

D
and F from the emitter �eld F�. Then, using the convention that

overlined quantities are dimensionless, we set8>>>>>>><>>>>>>>:

N ni(t) = ni(T t); N ND = Nw

D
;

F Fi(t) = Fi(T t); F F�(t) = F�(T t);
L
T v(F ) = v(FF ); L

T W (b;f)(F ) =W (b;f)(FF );
L2

T D(F ) = D(FF ); "F
e

1

T j(e)(F ) = j(e)(FF ):

Note that the emitter current density has been scaled with respect to the

density "

e
F instead of with respect to N (the other choice is also possible;
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the proof adapts immediately and the emitter current density disappears as

h! 0 in that case). Therefore, we are led to the continuity equations in the

following dimensionless form

dni

dt
=
L
`

�
v(F i�1)ni�1�v(F i)ni�

L
`
D(F i�1)(ni�1�ni)+

L
`
D(F i)(ni�ni+1)

�
;

for i 2 f�N + 1; : : : ; N � 1g and

dn�N
dt

=
L
`

�
`

L
"F
�N j

(e)
(F�N�1)� n�NW

(b)
(F�N�1)

�v(F�N)n�N �
L
`
D(F�N)(n�N � n�N+1)

�
;

dnN

dt
=

L
`

�
v(FN�1)nN�1 +

L
`
D(FN�1)(nN�1 � nN)� n�NW

(f)
(FN)

�
:

On the other hand, the Poisson equations reads

"F
eN (F i � F i�1) = (ni �ND) ;

for i 2 f�N; : : : ; Ng.
In these expressions, we indentify two dimensionless parameters

� =
eN
"F ; � =

L
`
:

We motivate the limit performed in this chapter by considering a par-

ticular example. Fig. 7.1 (left) shows the drift velocity in comparison with

the di�usion coe�cient for a 9nm/4nm GaAs/AlAs SL at 50K (with well

dopping Nw

D
= 0:5 1011cm�2 and contact doping ND = 2 1018cm�3). Also,

Fig. 7.1 (right) shows the electric �eld distribution of static solutions for a

40 periods 9nm/4nm GaAs/AlAs SL with di�erent voltage values obtained

by using the DDD model. There exist two possibilities to dealt with the high

�eld limit. The continuum limit consists of doing � ! 0. We can observe

that for solutions with high electric �elds the conditions v(F ) � D(F )=` or

v(F ) >> D(F )=` are valid. Thus, the appropriate scales in this regime lead

to O(`) = O(L), which gives rise to the hyperbolic limit studied in previous

works. In the opposite regime (low �eld), the relation

v(F ) << D(F )=`

holds. This motivates us to choose typical scales such that

O(�v) = O( �D=`) :
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with F h

�Nh�1 = F� given. Remark that, coming back to (7.5), we also have

F h

i
(t) = F�(t) + h

iX
j=�Nh

(nh
j
(t)�ND) ; i 2 f�Nh; : : : ; Nhg: (7.9)

Here, we used the following de�nition for the tunneling currents8>>>>><>>>>>:
Jh
i!i+1 = nh

i
vh
i
� 1

h
D(F h

i
)(nh

i+1 � nh
i
); i 2 f�Nh; : : : ; Nh � 1g;

Jh�Nh�1!�Nh = j(e)(F�)� nh�NhW
(b)(F�);

Jh
Nh!Nh+1 = nNhW (f)(F h

Nh):

The idea is to investigate the limit as h! 0.

To this end, we set I = (�X;+X) = (�Nhh;Nhh) and we associate to the

unknowns (nh�Nh; : : : ; n
h

Nh�1) 2 R
2Nh

and (F h

�Nh; : : : ; F
h

Nh�1) 2 R
2Nh

, the

stepwise constant functions nh(t; x) and F h(t; x) de�ned almost everywhere

on [0;1]� I by saying

nh(t; x) = nh
i
(t); F h(t; x) = F h

i
(t); ih < x < (i+1)h; i 2 f�Nh; : : : ; Nh�1g:

Note that it is not relevant to de�ne these functions on the negligible set of

points fih; i 2 f�Nh; : : : ; Nhgg; note also that F�; n
h

Nh ; F
h

Nh
seem to play

no role in these de�nitions. However, they will be used in the de�nition of

traces in the limit h! 0. As a consequence of these de�nitions, we shall use

that sums of nh
i
or F h

i
can be considered as integrals: for example, for any

function  : R ! R we have

Z +X

�X
 (nh) dx = h

Nh�1X
i=�Nh

 (nh
i
) ;

because nh
i
is constant on ih < x < (i + 1)h. Then, passing to a continuous

variable, it is tempting to interpret �nite di�erences as di�erential quotients.

Following this rough idea, we formally guess that the limiting problem corre-

sponding to h! 0 consists of the following nonlinear drift�di�usion equation8>>>>>>>>>>><>>>>>>>>>>>:

@tn + @xJ(F; n) = 0; in (0; T )� I;

J(F; n) = v(F )n�D(F )@xn

@xF = n�ND in (0; T )� I;

F (�X) = F� on (0; T )

J(F; n)(X) = W (f)(F )n(X) on (0; T );

J(F; n)(�X) = (j(e)(F )�W (b)(F )n)(�X) on (0; T );

n(t = 0; x) = n0(x) on I:

(7.10)

Thus, the main result of the work is the following.
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Theorem 7.2. Let v;D;W (b;f); j(e) : R ! R be continuous and nonnegative

functions. Suppose that D(F ) > 0 and W (b;f)(F ) > 0 for any F 2 R. Let

F� 2 C1(R+). Let nh;0 = (n
h;0

�Nh; : : : ; n
h;0

Nh) 2 R
2Nh+1 the initial data for the

rescaled problem. We suppose that n
h;0
i � 0 satisfy

sup
h>0

�
h

N
hX

i=�Nh

jnh;0i j2
�
� C0 <1: (7.11)

Let (nh; F h) be the associated solution of (7.7), (7.8). Then, up to a subse-

quence, we have(
nh ! n strongly in L2((0; T )� I) and in C0([0; T ]; L2(I)� weak);

F h ! F uniformly in [0; T ]� I:

Furthermore the limits satisfy n 2 L2([0; T ]; H1(I)), F 2 C0([0; T ]� I) and

solve the nonlinear problem (7.10) in the sense that

d

dt

Z
X

�X
n� dx =

Z
X

�X
J(F; n)�0 dx+W (f)(F )n�(X)+(j(e)(F )�W (b)(F )n)�(�X)

holds in D0(0; T ) for any test function � 2 C1(I), coupled to the Poisson

equation

@xF = n�ND; F (�X) = F�

considered also in the sense of the distributions.

This kind of nonlinear parabolic equation, coupled to the Poisson equa-

tion, have been investigated by Liang [69]. Actually, in [69] the di�usion

coe�cient is constant and the boundary conditions are slightly di�erent. In

the convergence proof, we only need to assume the continuity of the coef-

�cients; however, using locally Lipschitz properties of them, we can prove

the uniqueness of solution for (7.10), see Appendix 7. Consequently, assum-

ing the convergence of the initial data, in Theorem 7.2 the entire sequence

converges.

A priori Estimates

This section is devoted to the derivation of the crucial estimates on the

solutions (nh; F h) that will lead us to rigorously perform the limit h ! 0.

We assume that the initial data n
h;0
i � 0 satis�es (7.11). This implies that

the L1[�X;X] norm is bounded as follows

h
NhX

i=�Nh

n
h;0
i �

�
h

NhX
i=�Nh

jnh;0i j2
�1=2 q

(2Nh + 1)h
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is bounded independently of h 2 (0; 1). We recall that

8><>:
D;W (b;f); j(e); v 2 C0(R);

v(F ) � 0; j(e) � 0;

W (b;f)(F ) > 0; D(F ) > 0:

(7.12)

We split our argument into several steps. We shall use the convention

that CT stands for a constant possibly depending on T , and on the data

F�; j
(e);W (b;f), or on the estimates (7.11), but which does not depend on h.

Also, we denote as usual by M(I) the set of Radon measures on the open

interval I. Elements of M(I) identify with distributions � on I satisfying

jh�; 'ij � Ck'kL1(I) 8' 2 C1
c
(I) for some C > 0 being independent of the

support of the test function (see e.g. [95]). As usual we denote by BV(I)

the set of bounded variation functions, i.e. functions which are in L1(I) and

such that their distributional derivative belongs to M(I).

Lemma 7.1 (L1 estimate of the density.). The sequence nh is bounded

in L1(0; T ; L1(I)).

Proof. Summing up the equations in (7.7) we obtain

h
d

dt

N
hX

i=�Nh

nh
i

=
N
hX

i=�Nh

(Jh
i�1!i

� Jh
i!i+1) = Jh�Nh�1!�Nh � Jh

Nh!Nh+1

= j(e)(F�)� nh�NhW
(b)(F�)� nh

NhW
(f)(F h

Nh):

Therefore, integrating with respect to time and using nh
i
� 0 and W (b;f) � 0,

we �nd

h
N
hX

i=�Nh

nh
i
(t) +

Z
t

0
nh�NhW

(b)(F�(s)) ds+
Z
t

0
nh
NhW

(f)(F h

Nh)(s) ds

= h
NhX

i=�Nh

n
h;0
i +

Z
t

0
j(e)(F�(s)) ds � C0 + kj(e)(F�)kL1(0;T ) � CT ;

(7.13)

which concludes the proof. �

Lemma 7.2 ( Estimating the electric field.). The sequence F h is

bounded in L1((0; T )� I) and in L1(0; T ; BV (I)), while F h

Nh
is bounded in

L1(0; T ).

Proof. We combine the estimate in Lemma 7.1 with the identity (7.9) to
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yield

jF h

i
(t)j =

����F�(t) + h
iX

j=�Nh

(nh
j
(t)�ND)

����
� jF�(t)j+ h

iX
j=�Nh

nh
j
(t) + h(i +Nh + 1)ND

� jF�(t)j+ h
N
hX

j=�Nh

nh
j
(t) + (2X + h)ND � CT ;

which proves that F h is bounded in L1((0; T )� I) and implies the estimate

on F h

Nh .

Next, let � 2 C10 (I) a test function. We have

h@xF h; �i = �
Z
X

�X
F h(t; x)�0(x) dx = �

N
h�1X

i=�Nh

F h

i

Z (i+1)h

ih

�0(x) dx

=
Nh�1X
i=�Nh

F h

i
(�(ih)� �((i+ 1)h))

=
NhX

i=�Nh

�
(F h

i
� F h

i�1) �(ih)
�
+ F h

�Nh�1�(�Nhh)� F h

Nh�(N
hh)

= h
N
hX

i=�Nh

�
(nh

i
�ND) �(ih)

�
+ F��(�X)� F h

Nh�(X);

where we have used (7.8). Hence, by using the above bounds we deduce that

the following estimate

jh@xF h; �ij � k�kL1(I)

�
h

NhX
i=�Nh

nh
i
+ (2X + h)ND

�
� k�kL1(I) CT ;

holds. This proves that @xF
h is bounded in L1(0; T ;M(I)). �

Remark 1. Since the functions W (b;f) and D are continuous and positive in

R, the uniform bound on F h

i
guarantees that8>>>>>><>>>>>>:

inf
h>0;i2f�Nh;:::;Nhg;0�t�T

D(F h

i
(t)) � Æ > 0;

inf
h>0;0�t�T

W (f)(F h

Nh(t)) � Æ > 0;

inf
0�t�T

W (b)(F�(t)) � Æ > 0;
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for some Æ > 0. Coming back to (7.13), we deduce that the boundary terms

n�Nh are bounded in L1(0; T ). Similarly, there exists 0 < M <1 such that8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

sup
h>0;i2f�Nh;:::;Nhg;0�t�T

jD(F h

i
)j �M;

sup
h>0;i2f�Nh;:::;Nhg;0�t�T

jv(F h

i
)j �M;

sup
h>0;0�t�T

jW (f)(F h

Nh
)j �M;

sup
h>0;0�t�T

jW (b)(F h

�)j �M;

sup
0�t�T

jj(e)(F�)j �M:

Lemma 7.3 (L2 estimate of the density.). The sequence nh is bounded

in L1(0; T ; L2(I)). The �boundary terms� nh�Nh are bounded in L2(0; T ).

Moreover, we have

Z
T

0

N
h�1X

i=�Nh

jnh
i+1 � nh

i
j2

h
ds � CT :

Proof. Multiplying (7.7) by nh
i
and summing over i, we obtain

h

2

d

dt

N
hX

i=�Nh

jnh
i
j2 =

N
hX

i=�Nh

(Jh
i�1!i

� Jh
i!i+1)n

h

i

=
Nh�1X
i=�Nh

Jh
i!i+1(n

h

i+1 � nh
i
) + Jh�Nh�1!�Nhn

h

�Nh � Jh
Nh!Nh+1n

h

Nh

=
N
h�1X

i=�Nh

�
nh
i
v(F h

i
)� 1

h
D(F h

i
)(nh

i+1 � nh
i
)

�
(nh

i+1 � nh
i
)

+j(e)(F�)n
h

�Nh � jnh�Nh j2W (b)(F�)� jnNh j2W (f)(F h

Nh):

By using Remark 1, we deduce the inequality

h

2

N
hX

i=�Nh

jnh
i
(t)j2 + Æ

Z
t

0

� N
h�1X

i=�Nh

jnh
i+1 � nh

i
j2

h
+ jnh�Nh j2 + jnNhj2

�
ds

� h

2

NhX
i=�Nh

jnh
i
(0)j2 +M

Z
t

0

� Nh�1X
i=�Nh

nh
i
jnh
i+1 � nh

i
j+ nh�Nh

�
ds :

Now, by using the Young inequality we estimate

Z
t

0

Nh�1X
i=�Nh

nh
i
jnh
i+1�nhi j ds �

2Mh

Æ

Z
t

0

NhX
i=�Nh

jnh
i
j2 ds+ Æ

2M

Z
t

0

Nh�1X
i=�Nh

jnh
i+1 � nh

i
j2

h
ds:
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It follows that

h

2

NhX
i=�Nh

jnh
i
(t)j2 + Æ

2

Z
t

0

Nh�1X
i=�Nh

jnh
i+1 � nh

i
j2

h
ds+ Æ

Z
t

0
(jnh�Nhj2 + jnNh j2) ds

� h

2

N
hX

i=�Nh

jnh
i
(0)j2 + 2M2

Æ

Z
t

0

�
h

N
hX

i=�Nh

jnh
i
j2
�
ds+M

Z
t

0
nh�Nh ds:

We conclude the proof by applying the Gronwall inequality and by taking

into account that nh�Nh is bounded in L1(0; T ) (see Remark 1). �

In order to study the limit in boundary terms we consider the next state-

ment.

Lemma 7.4 ( H1 estimate of the electric field at the boundary.).

The sequence F h

Nh is bounded in H1(0; T ).

Proof. We have proved that F h

Nh is bounded in L1(0; T ). There remains to

bound its time derivative in L2(0; T ). This is a consequence of (7.9) together

with the estimates in Lemma 7.2 and 7.3. Indeed, we get (see the argument

given in Lemma 7.1)

���� ddtF h

Nh(t)

���� =

���� ddtF� +
d

dt

�
h

N
hX

i=�Nh

(nh
i
�ND)

�����
=

���� ddtF� + j(e)(F�)� nh�NhW
(b)(F�)� nh

NhW
(f)(F h

Nh)

����
=

 ddtF�

L1(0;T )

+M(1 + nh�Nh + nh
Nh):

By Lemma 7.3 the right hand side is bounded in L2(0; T ), which ends the

proof. �

Lemma 7.5 (BV estimate of the density.). The sequence nh is bounded

in L2(0; T ; BV (I)).

Proof. Once the L2 estimate on nh is known, we derive some bounds for
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@xn
h. Consider � 2 C10 (I). We have

jh@xnh; �ij =

������
Z
X

�X
nh�0 dx

����� =
�������

Nh�1X
i=�Nh

nh
i

Z (i+1)h

ih

�0 dx

������
=

�������
N
h�1X

i=�Nh

nh
i
(�((i+ 1)h)� �(ih))

������
=

������
N
hX

i=�Nh+1

(nh
i
� nh

i�1) �(ih) + nh�Nh�(�Nhh)� nhNh�(Nhh)

������
�

0@h NhX
i=�Nh+1

j�(ih)j2
1A1=20@1

h

NhX
i=�Nh+1

jnh
i
� nh

i�1j2
1A1=2

� k�kL1(I) (2X)1=2

0@ Nh�1X
i=�Nh

jnh
i+1 � nh

i
j2

h

1A1=2

: (7.14)

Lemma 7.3 implies that the L2(0; T ) norm of the right�hand side of (7.14)

is bounded uniformly with respect to h. Hence, we conclude that @xn
h is in

L2(0; T ;M(I)). �

Lemma 7.6 (Estimating the time derivative.). The sequences @tn
h

and @tF
h are bounded in L2(0; T ;M(I))+L2(0; T ;W�1;1(I)) and in L2(0; T ;M(I)),

respectively.

Proof. Let � 2 C10 (I) and denote

�h
i
=

Z (i+1)h

ih

�(x) dx ;

for i 2 f�Nh; : : : ; Nh � 1g. Since the support of � is included in I, we can

extend �h
i
by 0 for i � Nh. We shall use the following basic estimates( j�h

i
j � h k�kL1(I);

j�h
i+1 � �h

i
j � h2 Ck�0kL1(I):

Now we estimate the time derivative of the electric �eld by using the Ampère

equations (1.15). We have

h@tF h; �i =
N
h�1X

i=�Nh

d

dt
F h

i

Z (i+1)h

ih

�(x) dx

= Jh
Nh�1X
i=�Nh

�h
i
�

Nh�1X
i=�Nh

Jh
i!i+1�

h

i
= I1 + I2;

(7.15)
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where Jh(t) stands for the total current density, which is de�ned by the

(�Nh � 1)th Ampère equation

Jh(t) =
d

dt
F� + Jh�Nh�1!�Nh =

d

dt
F� + j(e)(F�)�W (b)(F�)n

h

�Nh :

By Lemma 7.3, this quantity is bounded in L2(0; T ). Therefore, the �rst

term of the right�hand side of (7.15) is bounded by

jI1j � k'kL1(I) 2hN
h jJhj = k'kL1(I) 2X jJhj;

which belongs to a bounded set in L2(0; T ). Next, I2 is estimated as follows

jI2j �
���� N

h�1X
i=�Nh

nh
i
v(F h

i
) �h

i

����+ ���� N
h�1X

i=�Nh

1

h
D(F h

i
)(nh

i
� nh

i+1) �
h

i

����
�M k�kL1(I) h

0@ Nh�1X
i=�Nh

nh
i
+

Nh�1X
i=�Nh

jnh
i
� nh

i+1j
h

1A
�M k�kL1(I)

0B@h Nh�1X
i=�Nh

nh
i
+

vuuut2hNh

Nh�1X
i=�Nh

jnh
i
� nh

i+1j2
h

1CA :
We conclude that @tF

h is bounded in L2(0; T ;M1(I)).

Similarly, we deal with the time derivative of nh. We have

jh@tnh; 'ij =
���� N

h�1X
i=�Nh

dnh
i

dt

Z (i+1)h

ih

�(x) dx

���� = ����1h
N
h�1X

i=�Nh

(Jh
i�1!i

� Jh
i!i+1) �

h

i

����
=

1

h

���� N
h�1X

i=�Nh

Jh
i!i+1 (�

h

i+1 � �h
i
) + Jh�Nh�1!�Nh�

h

�Nh � Jh
Nh�1!Nh�

h

Nh

����
� 1

h

���� N
h�1X

i=�Nh

v(F h

i
)nh

i
(�h

i+1 � �h
i
)

����
+

1

h2

���� N
h�1X

i=�Nh

D(F h

i
)(nh

i
� nh

i+1)(�
h

i+1 � �h
i
)

����
+
1

h
jj(e)(F�)� nh�NhW

(b)(F�)j j�h�Nhj

� C h2 k�0kL1(I)

0@M
h

Nh�1X
i=�Nh

nh
i
+
M

h2

Nh�1X
i=�Nh

jnh
i
� nh

i+1j
1A

+h k�kL1(I)

M

h
(1 + nh�Nh)

� C k�0kL1(I)

0B@h N
h�1X

i=�Nh

nh
i
+

vuuut2hNh

N
h�1X

i=�Nh

jnh
i
� nh

i+1j2
h

1CA
+k�kL1(I) M(1 + nh�Nh) ;
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which proves the estimate on @tn
h. �

Continuous Model

Let us combine the estimates discussed in the previous section with the fol-

lowing classical compactness result (see e.g. [7], [103]):

Proposition 7.1. Consider Banach spaces B;X and Y . We suppose that

X � B � Y , the �rst embedding being compact. Let C be a bounded set in

Lp(0; T ;X), 1 � p � 1. Assume that @tC = f@tf; f 2 Cg is a bounded set

in Lr(0; T ;Y ). Then, C is relatively compact in Lp(0; T ;B) if 1 � p <1 and

r � 1, or in C0([0; T ];B) if p =1 and r > 1.

Hence, from the previous estimates we have, possibly at the cost of ex-

tracting subsequences, that8>>><>>>:
nh ! n strongly in L2((0; T )� I) and in C0([0; T ];L2(I)� weak);

@xn
h * @xn weakly�� in L2(0; T ;M(I));

F h ! F strongly in C0([0; T ];Lp(I)) for any 1 � p <1;

(7.16)

as h goes to 0. Notice in particular that the convergence of traces in time

makes sense and

nh(t; x)jt=0 = nh;0(x)* n0(x) = n(t; x)jt=0 ; weakly in L2(I)

holds, with nh;0(x) = nh
i
for ih < x < (i + 1)h, i 2 f�Nh; : : : ; Nh � 1g. In

other words, we recover the initial condition in the limit h! 0. Finally, we

can also assure from Lemmas 7.3 and 7.4 the following properties(
nh�Nh * n� ; weakly in L2(0; T );

F h

Nh ! F+ ; uniformly in C0([0; T ]):
(7.17)

We �rst get the continuous Poisson equation.

Proposition 7.2. The electric �eld limit F and the density limit n satisfy

the continuous Poisson equation

@xF = n�ND; Fjx=�X = F�

in a weak sense.
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Remark 2. The Poisson relation with n 2 L2((0; T ) � I), implies, by

Sobolev's imbedding, that F is in L2(0; T ; C0(I)) so that the traces of F

are well-de�ned.

Proof. Let � 2 C1(I) and �h
i
= �(ih), for i 2 f�Nh; : : : ; Nhg. We denote

by �h the associated stepwise constant function. For the sake of simplic-

ity it will be convenient to introduce also the stepwise constant function

rh(�)(x) =
�
h

i+1��hi
h

, for x 2 (ih; (i+ 1)h). Multiplying (7.8) by �h
i
, we get

h
NhX

i=�Nh

F h

i
� F h

i�1
h

�h
i

= h
NhX

i=�Nh

(nh
i
�ND) �

h

i

=

Z
X

�X
(nh �ND) �

h dx + h (nh
Nh �ND) �(X)

= h
Nh�1X
i=�Nh

F h

i

�h
i
� �h

i+1

h
+ F h

Nh�(X)� F��(�X)

= �
Z
X

�X
F h rh(�) dx+ F h

Nh�(X)� F��(�X):

Since rh(�) converges uniformly to �0(x) on I, we haveZ
X

�X
(nh �ND) �

h dx! �
Z
X

�X
F �0(x) dx+ F+�(X)� F��(�X)

as h! 0.

We conclude that @xF = n � ND 2 L2((0; T ) � I) and, by the Sobolev

embedding, F lies in L2(0; T ; C0(I)) and the traces of F are well-de�ned and

are given by F (t;�X) = F�(t). �

Let us now show that the limit n is more regular that nh is. In fact, we

will prove that n 2 L2(0; T ; H1(I)), which guarantees that n 2 L2(0; T ; C0(I))

due to the Sobolev embedding, so that the traces of the limit n with respect

to the space variable are also well-de�ned.

Proposition 7.3. The density limit n of nh belongs to L2(0; T ; H1(I)).

Proof. Let � 2 C1
c
(I). We have seen in the proof of Lemma 7.5 that the

following estimate

kh@xnh; �ikL2(0;T ) � CT

0@h N
hX

i=�Nh+1

j�(ih)j2
1A1=2

= CT k�hkL2(I)

holds. We also check readily that �h tends to � in L2(I). Hence, letting

h! 0 leads to

kh@xn; �ikL2(0;T ) � CT k�kL2(I):
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By a density argument the estimate can be extended for any function � 2
L2(I). We conclude that @xn 2 L2((0; T )� I). �

Convergence properties stronger than (7.16) will be necessary due to the

nonlinear term. The idea is that the estimate in Lemma 7.3 is close to a

L2(0; T ; H1(I)) estimate on nh. To this end we introduce the following P1

approximation: for x 2 (ih; (i+ 1)h), i 2 f�Nh; : : : ; Nh � 1g, we set8>>><>>>:
mh(t; x) =

nh
i+1 � nh

i

h
(x� ih) + nh

i
;

Gh(t; x) =
F h

i+1 � F h

i

h
(x� ih) + F h

i
:

(7.18)

Then, the sequences (mh; Gh) are close to the original quantities (nh; F h) and

enjoy better compactness properties:

Lemma 7.7. The following estimates are veri�ed8<: knh �mhkL2((0;T )�I) � CT h;

kF h �GhkL1((0;T )�I) � CT
p
h:

Furthermore,
�
mh

�
h>0

is relatively compact in L2(0; T ; C0(I)) and
�
Gh

�
h>0

is relatively compact in C0([0; T ]� I).

Proof. By taking into account the de�nition of the P1 approximations, we

have

mh(t; x)� nh(t; x) =
nh
i+1 � nh

i

h
(x� ih)

in the interval (ih; (i+1)h), i 2 f�Nh; : : : ; Nh�1g. Hence, by using Lemma

7.3 we get

kmh � nhk2L2((0;T )�I) =

Z
T

0

Nh�1X
i=�Nh

����nhi+1 � nh
i

h

����2 Z (i+1)h

ih

(x� ih)2 dx ds

=
h2

3

Z
T

0

N
h�1X

i=�Nh

jnh
i+1 � nh

i
j2

h
ds � CT h

2 :

On the other hand, (7.8) yields

jGh(t; x)� F h(t; x)j =

����F h

i+1 � F h

i

h
(x� ih)

����
= jnh

i+1 �NDj (x� ih) � jnh
i+1 �NDj h;
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for x 2 (ih; (i + 1)h), i 2 f�Nh; : : : ; Nh � 1g. Therefore, Lemma 7.3 allows

to control this quantity as follows

jGh(t; x)� F h(t; x)j �
p
h
p
h (nh

i+1 +ND)

�
p
h

 �
hjnh

i+1j2
�1=2

+
p
hND

!

�
p
h

0@�h N
hX

j=�Nh

jnh
j
j2
�1=2

+
p
hND

1A � CT
p
h:

This proves the �rst part of the result.

Note thatmh and Gh are bounded in L2(0; T ; H1(I)) and L1(0; T ; H1(I)),

respectively. Indeed, we have @xm
h = (nh

i+1�nhi )=h on (ih; (i+1)h) and the

bound for @xm
h in L2 follows directly from Lemma 7.3. For the approximate

electric �eld we have @xG
h = (F h

i+1 � F h

i
)=h = nh

i+1 �ND, so that

k@xGhk2L2(I) =
NhX

i=�Nh

jnh
i+1 �NDj2

Z (i+1)h

ih

dx�2
NhX

i=�Nh

�
jnh
i+1j2 +N2

D

�
h

� 2

�
h

N
hX

i=�Nh

jnh
i+1j2 + (2X + h)N2

D

�
� CT :

Hence, to justify the compactness properties there remains to obtain some

estimates on the time derivatives. We check that (see Appendix 7)

@t(G
h � F h) is bounded in L2(0; T ;M(I));

@t(m
h � nh) is bounded in L2(0; T ;M(I)) + L2(0; T ;W�1;1(I)):

(7.19)

Then, combining this information with Lemma 7.6 we deduce the asserted

compactness by application of Proposition 7.1. �

As a consequence of the compactness property, and identifying limits, we

can assure that8><>:
Gh ! F ; uniformly on [0; T ]� I;

mh ! n ; strongly in L2(0; T ;C0(I));

@xm
h * @xn ; weakly in L2((0; T )� I):

(7.20)

Since Gh is
p
h�close to F h in the L1�norm, we can improve the convergence

in (7.16). Actually, we have

F h ! F ; uniformly on [0; T ]� I: (7.21)
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Notice also in (7.20) that the traces are well-de�ned and the following con-

vergences(
mh(�X) = nh�Nh ! n(�X) = n� ; strongly in L2(0; T );

Gh(�X) = F h

�Nh ! F (�X) = F� ; strongly in L2(0; T );

hold. In particular, the traces of n at �X can be identi�ed with the limits

n� respectively, which were de�ned in (7.17).

In order to pass to the limit in the equation, we write a discrete weak

formulation. Let � 2 C1(I). We denote �h
i
= �(ih) and �h stands for the

associated piecewise constant approximation. Then, we get

h
N
hX

i=�Nh

d

dt
nh
i
�h
i
=

N
hX

i=�Nh

(Jh
i�1!i

� Jh
i!i+1) �

h

i

=
Nh�1X
i=�Nh

Jh
i!i+1 (�

h

i+1 � �h
i
)� Jh

Nh!Nh+1�
h

Nh + Jh�Nh�1!�Nh�
h

�Nh

=
N
h�1X

i=�Nh

v(F h

i
)nh

i
(�h

i+1 � �h
i
)�

N
h�1X

i=�Nh

D(F h

i
)
1

h
(nh

i+1 � nh
i
) (�h

i+1 � �h
i
)

�W (f)(F h

Nh)n
h

Nh�
h

Nh + (j(e)(F�)�W (b)(F�)n
h

�Nh)�
h

�Nh:

(7.22)

Let us rewrite the discrete sums as integrals as follows

d

dt

Z
X

�X
nh �h dx + h

d

dt
nh
Nh �(X)

=

Z
X

�X
v(F h)nh rh� dx�

Z
X

�X
D(F h)@xm

h rh� dx

�W (f)(F h

Nh)n
h

Nh�(X) + (j(e)(F�)�W (b)(F�)n
h

�Nh)�(�X);

(7.23)

following the notation rh�(x) = (�h
i+1 � �h

i
)=h, for x 2 (ih; (i + 1)h). We

can now pass to the limit h! 0.

We check that �h ! � and rh� ! �0 uniformly on I. Let us pass

to the limit in each term of (7.23). Taking into account that nh ! n in

C0([0; T ]; L2(I) � weak), we have
R
X

�X n
h�h dx ! R

X

�X n� dx in C0([0; T ]).

Since nh
Nh is bounded in L2(0; T ), the second term in the left�hand side of

(7.23) vanishes as h ! 0 in D0(0; T ). Next, by using (7.21), v(F h)rh� !
v(F )�0 and D(F h)rh� ! D(F )�0 uniformly on [0; T ] � I. To do that we

combine the strong convergence nh ! n and the weak convergence @xm
h !

@xn in L2((0; T ) � I) so that the integrals in the right�hand side of (7.23)

tend to Z
X

X

v(F )n �0; dx�
Z
X

X

D(F )@xn �
0 dx
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as h ! 0 in D0(0; T ). Finally, for the boundary terms we combine the

convergence properties in (7.17) to �nd as limit as h! 0 the expression

�W (f)(F )n�(X) +
�
j(e)(F )�W (b)(F )n

�
�(�X) :

Therefore, letting h! 0 in (7.23) we have

d

dt

Z
X

X

n �; dx =

Z
X

X

v(F )n �0; dx�
Z
X

X

D(F )@xn�
0 dx

+W (f)(F )n�(X) +
�
j(e)(F )�W (b)(F )n

�
�(�X)

in D0(0; T ). This ends the proof of Theorem 7.2.

The bias constraint

In this Section we reconsider the bias condition (7.3) as an alternative to the

prescription of the emitter electric �eld (7.4). The arguments are exactly

those of the previous section and we only point out the main di�erences in

the proof. In rescaled form the condition is

h
NhX

i=�Nh

F h

i
= V; (7.24)

which is added to the system (7.7), (7.8). This scaling means that the ratio
LF
V has order 1, V being a characteristic value for the total voltage. Of

course, the L1 estimate in Lemma 7.1 still holds, provided that j(e) is a

bounded function. Then, the keypoint in the previous analysis is to establish

a uniform estimate (with respect to h) on the electric �eld F h

�Nh�1.

Lemma 7.8. The quantity F h

�Nh�1 is bounded in L1((0; T )).

Proof. Let us sum the relations (7.9). We get

h
NhX

i=�Nh

F h

i
= V = h

NhX
i=�Nh

�
F h

�Nh�1 + h
iX

j=�Nh

(nh
j
�ND)

�

= (2Nh + 1)h F h

�Nh�1 + h2
N
hX

j=�Nh

�
(nh

j
�ND)

N
hX

i=j

1

�

= (2Nh + 1)h F h

�Nh�1 + h2
NhX

j=�Nh

(nh
j
�ND)(N

h � j + 1):
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Consequently, the electric �eld at the emitter is given by

F h

�Nh�1 =
V

(2Nh + 1)h
� h

2Nh + 1

N
hX

j=�Nh

(nh
j
�ND)(N

h � j + 1): (7.25)

It follows that

jF h

�Nh�1j �
jV j

(2Nh + 1)h
+

h2

(2Nh + 1)h

NhX
j=�Nh

jnh
j
�NDj jNh � j + 1j

� jV j
2X

+
h

(2Nh + 1)h

�
h

N
hX

j=�Nh

nh
j
+ (2Nh + 1)hND

�
(2Nh + 1)

� jV j
2X

+ h
N
hX

j=�Nh

nh
j
+ (2X + h)ND:

This leads to the estimate of F h

�Nh�1 in L1((0; T )). �

Once we have this estimate, we can justify the bounds in Lemma 7.2 and

Lemma 7.3. We also need some control on the time derivative of F h

�Nh�1.

Lemma 7.9. The quantity F h

�Nh�1 is bounded in H1((0; T )).

Proof. Di�erentiating (7.25), we �nd

d

dt
F h

�Nh�1 =
h

2Nh + 1

NhX
i=�Nh

� iX
j=�Nh

d

dt
nh
j

�

=
1

2Nh + 1

N
hX

i=�Nh

� iX
j=�Nh

(Jh
j�1!j

� Jh
j!j+1)

�

=
1

2Nh + 1

N
hX

i=�Nh

(Jh�Nh�1!�Nh � Jh
i!i+1)

= Jh�Nh�1!�Nh �
1

2Nh + 1
JNh!Nh+1

+
1

2Nh + 1

N
h�1X

i=�Nh

�
v(F h

i
)nh

i
�D(F h

i
)
nh
i+1 � nh

i

h

�
:

Using the bounds of Lemma 7.8 and Lemma 7.2, we can bound v(F h

i
), D(F h

i
),

j(e)(F h

�Nh�1), W
(b)(F h

�Nh�1) and W
(f)(F h

Nh) by some constant 0 < M < 1.
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Hence, we deduce that���� ddtF h

�Nh�1

���� � M(1 + nh�Nh + nh
Nh)

+
M

(2Nh + 1)h

�
h

N
hX

i=�Nh

nh
i
+

N
hX

i=�Nh

jnh
i+1 � nh

i
j
�

� M(1 + nh�Nh + nh
Nh) +

M

2X
h

N
hX

i=�Nh

nh
i

+
Mp
2X

� NhX
i=�Nh

jnh
i+1 � nh

i
j2

h

�1=2
:

We conclude by applying the estimates of Lemma 7.3. �

By using these estimates, we can reproduce mutatis mutandis the argu-

ments of the previous section. We conclude with the following result.

Theorem 7.3. Assume that j(e) is a bounded function. Then, the conclu-

sions of Theorem 1 are still valid by replacing the condition (7.4) by (7.24).

Accordingly, in the limit problem the electric �eld satis�es the Poisson equa-

tion @xF = n�ND coupled to the constraint
R
X

�X F dx = V:

Appendix A: Proof of (7.19)

We write mh = �h + nh, Gh = �h + F h. Recall that �h;�h are de�ned on

(0; T )� (ih; (i + 1)h), i 2 f�Nh; : : : ; Nh � 1g, by

�h(t; x) =
1

h
(nh

i+1 � nh
i
); �h(t; x) =

1

h
(F h

i+1 � F h

i
) = nh

i+1 �ND ;

where we have used (7.8) in the second relation. As in the proof of Lemma 7.6,

we consider a test function � 2 C10 (I) and set �h
i
=
R (i+1)h
ih

(x � ih)�(x) dx,

which veri�es j�h
i
j � k�kL1(I)h

2=2. We have

h@t�h; �i =
Nh�1X
i=�Nh

dnh
i+1

dt

Z
ih

(i + 1)h(x� ih)�(x) dx

=
N
h�1X

i=�Nh

1

h
(Jh

i!i+1 � Jh
i+1!i+2) �

h

i

=
Nh�1X
i=�Nh

Jh
i!i+1

1

h
(�h

i
� �h

i�1)�
1

h
Jh
Nh!Nh+1�

h

Nh�1 :
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We can bound this expression as follows

jh@t�h; �ij � k�kL1(I)h

0@ Nh�1X
i=�Nh

jv(F h

i
)nh

i
+

1

h
D(F h

i
)(nh

i+1 � nh
i
)j
1A

+k�kL1(I)h jW (f)(F h

Nh)n
h

Nh j

� k�kL1(I) M

0@h N
h�1X

i=�Nh

nh
i
+

� N
h�1X

i=�Nh

jnh
i+1 � nh

i
j2

h

�1=2 p
2X + nh

Nh

1A :
Thus, from Lemma 7.3 we deduce that @t�

h is bounded in L2(0; T ;M(I)).

We proceed with �h in a similar way. Indeed, we can write

h@t�h; �i =
1

h

N
h�1X

i=�Nh

�
dnh

i+1

dt
� dnh

i

dt

� Z
ih

(i+ 1)h(x� ih)�(x) dx

=
1

h2

Nh�1X
i=�Nh

(�Jh
i+1!i+2 + 2Jh

i!i+1 � Jh
i�1!i

) �h
i

=
1

h2

Nh�1X
i=�Nh

Jh
i!i+1 (��hi+1 + 2�h

i
� �h

i�1)

� 1

h2
Jh
Nh!Nh+1�

h

Nh�1 �
1

h2
Jh�Nh�1!�Nh�

h

�Nh:

(7.26)

The boundary terms in (7.26) are bounded by

M(1 + nh�Nh + nh
Nh)k�kL1(I);

which belongs to a bounded set of L2(0; T ). Next, we have the bound

1

h2
j � �h

i+1 + 2�h
i
� �h

i�1j � Ck�0kL1(I) h:

Therefore, the sum in the right�hand side of (7.26) can be estimated by

Ck�0kL1(I) h
Nh�1X
i=�Nh

jJh
i!i+1j � CMk�0kL1(I)

0@h Nh�1X
i=�Nh

nh
i

+

� N
h�1X

i=�Nh

jnh
i+1 � nh

i
j2

h

�1=2 p
2X

1A ;
as we did in the previous proof for �h. We conclude that @t�

h is bounded in

L2(0; T ;M(I)) + L2(0; T ;W�1;1(I)). This ends the proof of (7.19).
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Appendix B: Uniqueness for the limiting prob-

lem

In this section, we show the uniqueness of the solution of (7.10). Let us con-

sider two solutions (n1; F1) and (n2; F2) of (7.10) with ni 2 C0([0; T ]; L2(I))\
L2(0; T ; H1(I)). For the di�erence, we have

@t(n1�n2)+@xJ(F1; n1�n2)+@x
�
(v(F1)�v(F2))n2�(D(F1)�D(F2))@xn2

�
= 0;

where J(F; n) = v(F )n�D(F )@xn. The boundary conditions read8><>:
J(F1; n1 � n2)(X) =W (f)(F1)(n1 � n2) + (W (f)(F1)�W (f)(F2))n2;

J(F1; n1 � n2)(X) = j(e)(F1)� j(e)(F2)�W (b)(F1)(n1 � n2)

�(W (b)(F1)�W (b)(F2))n2:

Thus, we are only left with the task of evaluating

d

dt

Z
X

�X

jn1 � n2j2
2

dx +

Z
X

�X
D(F1)j@x(n1 � n2)j2 dx

=

Z
X

�X
v(F1)(n1 � n2)@x(n1 � n2) dx

+

Z
X

�X
(v(F1)� v(F2))n2@x(n1 � n2) dx

�
Z
X

�X
(D(F1)�D(F2))@xn2@x(n1 � n2) dx (7.27)

+J(F1; n1 � n2)(n1 � n2)(�X)� J(F1; n1 � n2)(n1 � n2)(X):

Denote by A;B;C;D and E the �ve terms in the right hand side of (7.27).

Recall that Fi belongs to L
1, so that the coe�cients are lying in a bounded

set. Also denote by � a Lipschitz constant for the functions v;D; j(e) and

W (b;f) in the range of values of F1 and F2. Let � > 0 be a parameter to be

precised later on. By using the Cauchy-Schwarz and Young inequalities, we

can estimate

jAj � C�

Z
X

�X
jn1 � n2j2 dx+ �

Z
X

�X
j@x(n1 � n2)j2 dx:

Next, we have

jBj � �kF1 � F2kL1(I)

Z
X

�X
jn2j j@x(n1 � n2)j dx

� C��
2

Z
X

�X
jn2j2 dx kF1 � F2k2L1(I) + �

Z
X

�X
j@x(n1 � n2)j2 dx:
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The Poisson equations yield to

(F1 � F2)(t; x) = F�;1 � F�;2 +
Z
x

�X
(n1 � n2)(t; y) dy;

which provides the bound

kF1 � F2k2L1(I) � 2jF�;1 � F�;2j2 + 4X

Z
X

�X
jn1 � n2j2 dx:

Hence, we get (changing the value of C�...)

jBj � C�

Z
X

�X
jn2j2dx

�
jF�;1�F�;2j2+

Z
X

�X
jn1�n2j2 dx

�
+�

Z
X

�X
j@x(n1�n2)j2dx:

A similar reasoning for C leads to

jCj � C�

Z
X

�X
j@xn2j2dx

�
jF�;1�F�;2j2+

Z
X

�X
jn1�n2j2dx

�
+�

Z
X

�X
j@x(n1�n2)j2dx:

For the boundary terms, we get rid of the terms �W (b;f)(F1)jn1�n2j2 which
are nonnegative and get

D+E � �

�
(1+ n2) jF1�F2j jn1� n2j(�X) +n2 jF1�F2j jn1� n2j(+X)

�
:

Then, we use the Sobolev embedding to control the traces of n1 � n2 with

the H1 norm. Finally, we obtain

D + E � C�(1 + jn2(�X)j2 + jn2(X)j2)
�
jF�;1 � F�;2j2 +

Z
X

�X
jn1 � n2j2

�
+�

� Z
X

�X
jn1 � n2j2 dx +

Z
X

�X
j@x(n1 � n2)j2 dx

�
:

Having disposed of these preliminaries, recall that D(F1) is bounded from

below by some Æ > 0. Then, we put all the pieces together and choose

� = �(Æ) appropriately so that we �nally �nd

d

dt

Z
X

�X
jn1 � n2j2 dx +

Æ

2

Z
X

�X
j@x(n1 � n2)j2 dx

� f(t)

Z
X

�X
jn1 � n2j2 dx+ g(t)jF�;1 � F�;2j2;

where the nonnegative functions f; g 2 L1(0; T ) depend on �, Æ and
R
X

�X(n
2
2+

j@xn2j2) dx. The Gronwall Lemma provides the inequalityZ
X

�X
jn1 � n2j2(t; x) dx

� e
R
t

0
f(s) ds

� Z
X

�X
jn1 � n2j2(0; x) dx+

Z
t

0
g(s)jF�;1 � F�;2j2(s) ds

�
:
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This proves the continuity of the solution with respect to the data and,

consequently, the uniqueness of the solution. We skip the adaptation of the

proof to the bias condition.
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