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ABSTRACT: Capacitive devices are customarily used as probes to measure the level of noble liquids
in detectors operated for neutrino studies and dark matter searches. In this work we describe the use
of a high-temperature superconducting material as an alternative to control the level of a cryogenic
noble liquid. Lab measurements indicate that the superconductor shows a linear behaviour, a high
degree of stability and offers a very accurate determination of the liquid volume. This device is
therefore a competitive instrument and shows several advantages over conventional level meters.
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1. Introduction

Research on fundamental physics can largely benefit from theuse of instruments based on noble
liquids, since they show several appealing features as detecting medium (1). In fact, during the
last years we have witnessed an increase on the interest and use of devices having liquefied noble
gases as their sensitive material (2). This innovative technique has a wide scope of application
that spans from calorimeters for collider physics (3; 4; 5) to TPCs used for the study of neutrino
properties (6) or direct dark matter searches (7; 8; 9). To guarantee optimal and well-controlled
running conditions, these detectors must be complemented with auxiliary instrumentation to gauge
the temperature, pressure, purity and level of the liquid (10; 11). Accurate measurements of the
liquid height can be accomplished using different sorts of level meters (12; 13). Following the
work done in (14), we propose the use of a high-temperature superconducting material (SC) as an
alternative to measure the level of a detector filled with liquid argon. The SC we have tested cannot
be used in detectors that use xenon as the sensitive material, given the higher boiling point of this
noble gas. For neon detectors a different sort of SC must be used to monitor the level.

In the following sections we describe the experimental setup, the performance of the level
meter and the advantages it shows with respect to devices previously discussed in the literature.

2. Experimental setup

In Figure 1 we show the different elements of the experimental setup. They are:

• Cryostat We use a vacuum-insulated AGIL-2 from Air Liquide (15) as external vessel. It is
a cylindrical two-liter stainless-steel dewar, whose top is closed by a cork lid. Once the
9 cm vessel is filled with liquid nitrogen, the measured evaporation rate, mainly through
the porous cork, amounts to∼10 mm/hour. This is small enough to perform long time
data-taking runs. However the fact that the top lid does not guarantee an optimal thermal
insulation from the outside represents a clear disadvantage. In Section 3, we show that as
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Figure 1. Schematic drawing of the setup used for the superconductor (SC) characterization. The reference
capacity level meter, the temperature probe and the superconductor are aligned together at the level of the
dotted line and immersed in a liquid nitrogen bath. The SC data are obtained by measuring between points
A and B the resistance or the voltage. This last measurement requires the input of an external current.

the liquid nitrogen evaporates, the gradient of temperatures between the liquid surface and
the top of the dewar is high enough to alter the behaviour of the SC. This spoils the accuracy
of the level measurement in case long (≥ 3 cm) SC are used. This unwanted effect will be
sensibly reduced in case a cryostat with a better thermal insulation is used (16).

• The Coated Conductor The superconducting level meter is a flexible THEVA DyBCO-tape (17).
This coated conductor (CC) shows a layered structure (see top panel of Figure 2). The main
substrate is made of a thin (90 microns thick) high-strengthHastelloy C 276 steel tape. A
double MgO layer follows. The first one is an orientation layer deposited by inclined sub-
strate deposition with a thickness of 3.7 microns; the second one is a high temperature cap
layer of 0.3 microns. A 1.6 micron superconducting DyBCO layer is finally deposited by
electron beam evaporation.

We have tested six SC level meters. Each of them is a stripe∼8.5 cm long and 1 cm width
(see top of Figure 3). From the mechanical point of view, thisdevice is simpler than the
capacitive level meter used as reference (see below). We have analyzed the chemical com-
position and spatial uniformity of the SC using a Scanning Electron Microscope (HITACHI
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Figure 2. Top: Scheme of the coated conductor composition (Hastelloytape substrate, MgO buffered tape
and superconducting DyBCO layer -SC-). Some silver spots ontop of it were added to allow copper cable
welding for signal readout. Bottom: Magnified picture of a coated conductor sample taken with the Scanning
Electron Microscope SEM/EDS technique. The light grey region corresponds to the DyBCO layer whereas
the dark grey part below it is the MgO substrate.

S-3000N) coupled to an Energy Dispersive X-Ray Spectrometer (BRUKER XFlash 3001).
The idea was to look for irregularities, fractures or any other sort of damage that could cause
a potential failure of the SC. This scanning technique allows to examine and analyze sam-
ples at magnifications up to×300,000. The picture shown in the bottom panel of Figure 2
was taken from the top of the level meter and close to one of theborders. It covers an area
of about 1 mm2. The three CC layers are clearly visible. Figure 4 shows an example of
line scan analysis done on the superconducting surface. A chemical study of the substance
reveals that, as expected, the Dy-Ba-Cu-O lines are dominant. The high magnification sur-
face topography taken along the surfaces of the six manufactured SC level meters revealed a
good uniformity in chemical composition and the absence of irregularities or fractures in the
micro-structure.
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Figure 3. Top: Picture of a finished DyBCO coated conductor ready for testing. The two external copper
cables are connected to a stable current source ensuring a constant intensity flux. The two internal ones are
used for voltage readout or a direct measurement of the resistance. Bottom: Detail of the copper–indium–
silver soldered joints.

To assess its performance, the SC level meter is carefully aligned to a multi-parallel-plate
capacitor (previously calibrated and used as reference level meter) and a temperature probe.
Those elements are immersed in a liquid nitrogen (LN2) bath (∼ -195 ◦C). The level of
liquid nitrogen is inferred from the resistance value RSC of the SC layer, which increases
when the LN2 level decreases. This requires two electrical connectionson the SC (A and B
in Figure 3) in case a multimeter is used to directly read RSC, and two more connections if
it is obtained from the ratio of the measured voltage when a constant current runs between
pins C and D. In the latter case, the SC is fed by a power supply (CPX200 from TTi (18)).
To guarantee an optimal and stable electrical contact between the measurement instruments
and the superconducting layer, four 0.5×0.5 cm2 silver coated squares were deposited at
symmetric positions on the SC edges (see bottom of Figure 3).Copper cables were finally
soldered to the silver surface using indium (silver doped at3%).

All our tests have been performed using liquid nitrogen (boiling point: 77 K). The SC still
retains its superconducting nature at temperatures as highas the argon boiling point (87 K).
Therefore similar results will be obtained in case we use liquid argon. Moreover, the stripes
appear to be robust and suitable for use in cryogenic detectors since we observed that the
SC structure was unaltered after being operated in subsequent cycles of extreme temperature
changes.

• Reference level meter The level of liquid nitrogen inside the dewar is continuously monitored
with a capacitive level meter (19). This custom-made deviceis a multi-parallel-plate ca-
pacitor composed of 10 Invar plates 40 mm (wide)× 60 mm (high) and 1 mm thick (see
Figure 5). The plates, spaced by 1.4 mm, are glued to a Macor supporting structure. They
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Figure 4. Line scan on the CC DyBCO surface.The counting rate per element and the corresponding relative
abundance normalized to the molecular weight are shown.

Figure 5. Picture of the reference multi-parallel-plate capacity level meter. The Invar plates (alternately
connected) are supported by a Macor frame.

work as anode and cathode alternatively. The chosen structure aims at decreasing the errors
in level measurement by increasing the capacitance signal.Since the dielectric constant of
the liquid (εLN2 = 1.434) and gas (can be considered as 1) are different, the capacity changes
linearly as a function of the area immersed inside the liquid(see top Figure 9).

The level meter is connected to a FLUKE 189 (20) multimeter tomeasure the capacity in
intervals of five seconds. The capacity variation from initial conditions (level meter fully
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immersed in liquid nitrogen) to the final state (level meter in air) amounts to 44±1 pF. Com-
bining the data from several runs, we obtain an average precision for the level measurement
of 350±50 microns (21).

• Sensors and data readout Temperature variations inside the cryostat were monitoredwith a
FLUKE 289 multimeter which uses a 80BK Integrated DMM Temperature Probe. This
Type-K probe allows to measure temperatures down to -200◦C with 0.1 ◦C resolution. A
second FLUKE 189 digital multimeter allows to measure the SCresistance and the level-
meter capacity, as well. A KEITHLEY electrometer (mod. 6514(22)) measures the voltage
between the SC pins while the external power supply is on. Allthese data are stored in a
hard drive. Off-line analyses will allow to obtain the resistance of the SC in two different
ways (see next Section).

3. Measurements and results

The working principle of the SC level meter is well known: While immersed in liquid nitrogen, the
coated conductor retains its superconducting nature. As soon as it goes above -183.0± 0.5◦C, the
resistance increases causing the loss of the superconducting properties. Therefore a measurement
of the SC resistance can be translated into a measurement of the liquid level inside the vessel. In
this work, the SC resistance is measured using two differentapproaches:

• Digital Multimeter (DM) mode:the digital multimeter is connected to the internal A–B pins
and the resistance RAB read directly (0.001Ω resolution).

• External Current (EC) mode:an external power supply is connected to pins C–D so that a
constant current (ICD) runs through the SC layer. The voltage between pins A–B (VAB) is
measured with an electrometer and the effective resistancecomputed (VAB/ICD). Measure-
ments were taken for three different values of the current: 10, 50 and 100 mA. The measured
ICD was stable with fluctuations below the 2 per mil level (see Figure 6). For a current of 50
mA, we observed a maximum resistance of 4Ω at the end of each data taking period.

The calibration of the SC level meter (namely, the conversion of the measured SC resistance
into units of length) is done by means of a reference level meter. We believe this is a necessary step
to be done prior to the installation of the SC in its final location. These two elements, together with
a temperature probe, are carefully aligned (dotted line in Figure 1) and fixed to a frame to avoid
displacements during the measurement. The three devices are read continuously in time slots of 5
seconds. Typical runs extend for about 10 hours, the time needed to evaporate a∼9 cm column of
liquid nitrogen.

The behaviour of the reference capacitive level meter is well understood (see Figure 7): it
shows two flat regions corresponding to the fully immersed condition (leftmost part of the time
axis) and dry state (rightmost part of the abscissa). The central region corresponds to the liquid
nitrogen evaporation phase. The change in capacity is linear, thus providing a direct, stable and
precise indication of the liquid level.
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Figure 7. Behaviour of the reference level meter (6–0 cm range) as a function of the temperature change.

The temperature probe also shows a smooth behaviour, increasing from∼-194◦C to∼-160◦C.
The increased rate at high temperature (about 5.7◦C/cm) and the observed fluctuations with time
are due to the poor thermal insulation offered by the cork lid.

The characterization of the six manufactured SC level meters was carried out immersing each
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Measurement Resolution (µm)

DM mode 300
ECmode (ICD= 10 mA) 370
ECmode (ICD= 50 mA) 280
ECmode (ICD= 100 mA) 365

Table 1. Expected SC level meter resolutions for the different measurement methods described in the text.

of them tens of times in liquid nitrogen. Figure 8 shows a zoomof the top region of the experimental
setup. The upper panel corresponds to the SC level meter. Itsresistance remains stable and very
low (∼0.18Ω) while fully immersed in the liquid. It suddenly increases as the SC zone below pin
A dries and warms up above the minimum superconductivity temperature. The delay with respect
to the behaviour of the reference level meter has to do with the gradient of temperatures above
the surface of the liquid nitrogen. The SC resistance only changes once its temperature is above
-183◦C. From the average of several measurements the offset amongthe two level meters amounts
to 3.9±0.3 mm. How the offset depends on the temperature gradient isbeing investigated and will
be reported elsewhere (16).

Figure 9 shows how the resistance of the SC level meter increases linearly for a long period of
time (∼4 h). In our range of interest, the measured resistance growsup to 0.5Ω. The capacitive
level meter shows a similar behaviour. The combination of the data from the two level meters
allows to obtain a calibration for the SC (see Figure 10). Theroot mean square (RMS) from the
line fit to the data gives the precision for the level measurement. For the run depicted in the figure
it amounts to approximately 250µm.

Run by run the reproducibility is good as can be seen from Figure 11. However when the
gradient of temperatures inside the dewar is very high, the linear behaviour is lost. This seriously
limits the range of applicability of our measurements. The poor thermal insulation forces us to
restrict ourselves to just one third of the total length of the SC level meter. We hope that optimized
experimental conditions will allow the use of longer SC level meters.

Despite the problems introduced by the high gradients of temperatures we have found, our
results are encouraging. Restricting ourselves to a lengthof up to 2.5 cm, the outcomes are similar
regardless of the sort of measurement performed (eitherDM or EC mode). For theEC mode, the
computed resolutions do not exhibit a strong dependence with the intensity of the input current,
as can be seen from Table 1, where we show the expected resolutions for data taken inDM mode
and three different intensities (10, 50 and 100 mA) for theECmode. The resolution is taken as the
RMS from the line fit done to all the runs corresponding to a particular mode of measurement. The
expected resolutions go from 280µm up to 370µm, and therefore are similar to the ones obtained
with the capacitive level meter.

4. Conclusions

We have shown that superconducting materials are a promising alternative to standard capacitive
devices used to measure the level of cryogenic liquids. Witha simple experimental setup, we have
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Figure 8. Superconductor, reference level meter and temperature data corresponding to a liquid level near
the top region used for alignment purposes. The superconductor measurement was taken onEC mode at
ICD= 50 mA.

observed that the SC level meter is stable and linear in the range of a few centimeters. The measure-
ments show a good reproducibility and the estimated precision is below 0.5 mm. We are confident
that longer level meters will behave linearly when tested under conditions with better thermal insu-
lation. Compared to capacitive level meters, superconducting ones have several advantages: they
are cheaper, mechanically easier to mount and very simple electronics is needed to read them out.
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