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Abstract 

Traffic data obtained in the field usually have some errors. For instance, traffic volume 

data on the various links of a network must be consistent and satisfy flow conservation, 

but this rarely occurs. This paper presents a method for using fuzzy optimization to 

adjust observed values so they meet flow conservation equations and any consistency 

requirements. The novelty lies in the possibility of obtaining the best combination of 

adjusted values, thereby preserving data integrity as much as possible. The proposed 

method allows analysts to manage field data reliability by assigning different ranges to 

each observed value. The paper is divided into two sections: The first section explains 

the theory through a simple example of a case in which the data is equally reliable and a 

case in which the observed data comes from more or less reliable sources, and the 

second one is an actual application of the method in a freeway network in southern 

Spain where data were available but some data were missing. 

 

Keywords: traffic counts, fuzzy logic, transport planning, optimization, data 

consistency, subjective analyst knowledge 
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1. Introduction 

The study of any transport system requires enormous quantities of data and an 

understanding of their dependence on each other. Arguably, volume is the most 

important traffic datum of them all. Field data is generally inconsistent, and therefore 

they need to be processed in a way that will make them consistent before they can be 

used in algorithms for prediction, monitoring and decision-making purposes. The 

methods used to estimate Origin-Destination (O/D) matrices are based on the 

hypothetical availability of precise traffic volume data and reliable preliminary O/D 

data. The input data for most traffic networks, however, are either unavailable or 

contain measurement errors, as in the case of traffic counts and sensor speed 

measurements. In fact, some studies (Zhong et al., 2004) demonstrate that 50% of the 

Permanent Traffic Counts (PTCs) set up on highways contain lost data, making it 

difficult to ignore measurement errors when processing data used to plan, design, 

control and manage traffic (Sharma et al., 1996). The existence of errors makes data 

obtained in the field difficult to manage and to analyze. 

In the past, certain methods were applied to adjust the observed values so they would 

comply with flow conservation laws at each network node, aside from other 

requirements that values need to meet before they can be used as input data in traffic 

planning algorithms. The methods used were manual value adjustment, least square 

adjustment and the maximum likelihood method (Kikuchi et al., 2000). Recently, new 

methods of value adjustment based on fuzzy logic have been developed to preserve data 

integrity as much as possible. The methods are: fuzzy regression, fuzzy optimization 

and necessity-interval-regression method (Kikuchi et al., 2000). A number of important 

publications on fuzzy logic have been submitted over the past twenty years, although 

most of them are based on the fields of deduction and control in situations of complex 
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behavior. Papis and Mamdani (1977) were the first to apply fuzzy logic to transport; 

specifically, to traffic signal controllers.  

Lost data processing is another frequent issue. When available input data exist at all, 

they often contain errors due to the sensors´ operating faults (Kwon et al., 2008). From 

a formal viewpoint, the problem of debugging input data in order to avoid inconsistency 

and of assigning values to missing data has generally been analyzed by an area of 

Statistics (Data Editing and Imputation). Most efforts have focused on processing 

„Missing values‟, and on detecting and debugging. Inconsistencies have been avoided 

by using redundant or related information. Some classical techniques are: imputation by 

mean, median, regression or hot-deck (Chambers, 2001; Laaksonen, 1999). Recently, 

some new techniques based on Artificial Intelligence and on neural networks, in 

particular, are being developed (Silva-Ramírez, 2007; Tussel, 2002). Certain authors 

(Kaczmarek, 2005; Marzano et al., 2008; Rudy et al., 2008) have submitted methods 

based on the characteristics of erroneous traffic data in urban networks, supplemented 

with the latest data imputation models (Lee et al., 1998; Geng and Wu, 2008). Other 

methods based on weighted least squares regression also exist, such as the methods 

submitted by Kwon et al. (2008). 

The aim of this article is to submit a method whereby field data could be pre-processed 

to make them consistent while preserving their integrity as much as possible, and which 

would include their reliability as perceived subjectively by the analyst. The method is 

based on fuzzy logic and is intended to optimize the solution obtained. The result would 

be a reliable solution that comes close to the observed values, thereby resolving 

measurement errors in traffic counts. The method also allows field data to be processed 

when there are lost values. 

(Place Fig. 1 about here) 
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2. Description of the problem 

A simple freeway network is used to explain the method. Consider the situation shown 

in Fig. 1, in which real consistent data are available (Table 1, column 2). The data are 

used to simulate a scenario with non consistent data: traffic counts from the database are 

randomized within ±25% of their values at all intersections to simulate a case in which 

data is not consistent (Table 1, column 3). Next, the randomly obtained data in the 

database are considered to be field data; i.e., the observed values (OV). 

(Place Table. 1 about here) 

Theoretically, in any transport network such as the one shown in Fig. 1, the total 

“incoming volumes” should be equal to the total “outgoing volumes” at any node in the 

network and in any flow direction in such a way that the law of conservation of flow is 

satisfied. In the simulated scenario, (Table 1, column 3), however, it is found that:  

x3+x5≠y5+y6 

x1+x2≠y1 +y4 

y1+y2 ≠ z1+z4  

y3+y5 ≠ z5+z6 

y2+y6 ≠ w10+w11+w12 

y3+y4 ≠ w1+w5+w7 

Actually, this is usually the case, particularly when the network is large. Pentrice (1987) 

stated that data inconsistency is inevitable even in a well-controlled survey, but volume 

count consistency at different links is critical to ensuring the integrity of the results of 

any of the ITS-related algorithms. 

When the network becomes larger, the possibility of inconsistency in traffic volume 

counts increases, so flow conservation is more difficult. The concern in this paper is 

how to adjust the individual observed volumes to a set of new values that satisfy the 
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flow conservation principle at any point in the network. Furthermore, the adjustment 

should be such that the integrity of the observed values is preserved as much as 

possible. To this end, a fuzzy optimization method is used to obtain adjusted values that 

comply with the law of flow conservation and that resemble consistent real data as 

closely as possible. In this example, the integrity of the results obtained can be verified 

with the available real consistent data.  

 

3. The bilevel fuzzy optimization method 

The search for the “best” set of adjusted values is an optimization process that aims to 

find a set of values close to the observed ones that verifies the conservation of flow 

principle.  

The proposed method is based on the following concept: Each observed value is 

considered an approximate value represented by a fuzzy number, defined by a 

membership function. If the value is x, it is interpreted as “approximately x”. The true 

value is considered to lie near x. The method attempts to find an adjusted value as close 

to the observed value as possible while satisfying the conservation of flow at every 

point in the network. This is accomplished by applying the concept of fuzzy 

optimization developed in fuzzy set theory.  

Given a set of observed values, there are an infinite number of combinations of adjusted 

values, each of which satisfies the set of flow conservation equations. For a given 

combination, the membership grade )(x'h ix i
 of each adjusted value (x‟i) in the 

corresponding fuzzy set (xi) is calculated. Three methods of optimization could be used:  

a. by Maximizing the Minimum )(x'h ix i
 for all i,  

b. by Maximizing the Sum of )(x'h ix i
, and, 
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c. by maximizing the Minimum )(x'h ix i
 for all i at one level and, after this has been 

achieved, by applying a second level of optimization by Maximizing the Sum of 

)(x'h ix i
. Thus, the combination with the highest sum is selected from among all the 

combinations that could maximize the lowest membership grade. The value with the 

least membership grade is taken into consideration, and also all the other observed 

data. 

In case (a) (MM method), the lowest membership grade for the combination is recorded. 

By comparing the lowest membership grades among all the combinations of traffic 

volumes, the one that has the highest value is chosen as the best combination of a set of 

adjusted values. This method was already introduced by Kikuchi and Miljkovic (1999).  

On the other hand, in the objective function sum of )(x'h ix i
‟s (case (b)) (MS method) 

for a given combination, the membership grade of each adjusted value in the 

corresponding fuzzy set is calculated. The sum of the membership grades among all the 

combinations of traffic volumes is recorded, and the one that has the highest sum of 

membership grades is chosen as the best combination of a set of adjusted values. 

The third possibility is a two step way of optimization or Bilevel Optimization method 

(BO method). In step one, case a), the lowest membership grade is maximized. In step 

two, the membership grades that would produce the largest possible max(min(hi)) and 

that would seek to increase the value of all of the hi at the same time (which would 

achieve the sum of both) are summed up and maximized. 

The MM method can attend to a set of data which its minimum membership grade is 

maximized but the problem is that an infinite number of combinations could satisfy this 

condition and the MM method randomly chooses one of them. The BO method chooses 

a set that while it satisfies that condition; it optimizes the rest of the values, maximizing 
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the membership grade of all the data, so the BO method uses both ways of optimization 

in order to improve the solution. 

The mathematical steps involved in addressing the optimization problem are: 

1. Use fuzzy numbers to represent observed values 

2. Formulate the objective and constraints 

3. Solve as a mixed linear programming problem 

The process is explained step by step by using the simple highway network shown in 

Fig. 1. 

3.1. Using fuzzy numbers to represent observed values 

The observed values are “fuzzified” and are considered a fuzzy set with a triangular 

membership function. 

(Place Fig. 2 about here) 

Fig. 2 shows the shape of the membership function with the centre value xi and a range 

[xi-xi, xi+xi], where  is a constant higher than 0. The triangular membership 

function is not a prerequisite but, in the absence of any other information, this is a 

reasonable assumption, and such assumption is often used in fuzzy set theory 

(Zimmermann, 2001).  

The selection of the constant  depends on the judgement of the analyst with respect to 

the adjusted value‟s acceptable deviation from the observed value. This value allows the 

analyst to enter the reliability of each datum (i.e. the more reliable data will have a 

lower value of  than if they were less reliable). If only one value of  is used for all 

data, the scope of the range has little effect on the final adjusted values, once it is broad 

enough for a feasible set of solutions to be found.  
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The membership function is defined for the left- and right-hand sides of the triangle. For 

an observed value of xi and the assumed range [xi-xi, xi+xi], the general expression of 

the membership functions is: 
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 (1) 

 

In this formula - < xi-xi  xi  xi+xi <, the triangular fuzzy number xi is presented 

by (xi-xi, xi, xi+xi). 

For the sake of simplicity, a symmetric triangle is used in this paper for the membership 

function. However, the left and right-hand limits can be set separately. To solve this 

example problem, it is assumed that the value xi is the observed value and that the value 

of  > 0. So the value of  is the spread of triangular fuzzy number xi. The narrower the 

spread area, the less fuzzy the evaluation data will be, hence more precise. To the 

contrary, fuzziness is higher and thus more vague and ambiguous when the spread area 

increases (Tzeu-Chen Han, 2008). 

Some authors have researched calibration of the membership function extensively. The 

classical approach to calibration has been the intuitive trial and error process, in which 

the analyst modifies the shapes of the membership functions little by little until the 

predicted output approximately fits the output data obtained from the real world 

(Chakroborty and Kikuchi, 2003). However, this process is time consuming. Other 

authors have developed a systematic way of carrying out the trial and error process 

(Wang and Mendel, 1992a, 1992b, 1992c; Homaifar and McCormick, 1995). The 

purpose of calibration is to modify the membership functions of the Fuzzy Inference 
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System (FIS) so that the outcome predicted by the model is equal (or nearly equal) to 

the outcome obtained in the real world. Therefore, Chakroborty and Kikuchi (2003) 

presented a method in which  a representation framework allows the FIS parameters to 

be modified in relation to the bases. FIS outputs are dictated by the parameters that 

define the membership functions of the fuzzy sets appearing in the antecedents and the 

consequents of the rules and the algebraic operators used for the logical connectives and 

to determine the final inferred value. They have developed a procedure that calibrates 

the membership function of the fuzzy sets by transforming the inference system into an 

Artificial Neural Network format. They have applied this procedure to the complex 

control task of car-following, but this procedure has not been applied yet to an urban 

transport system or a large-scale civil infrastructure system. 

3.2. Formulating the objective function and its constraints 

In a fuzzy number representation of observed values, fuzzy optimization techniques 

would be used to search for the adjusted values. The mathematical formulation of the 

three proposed methods used to solve the problem would be as follows: 

A. MM method: 

Max(h) where h is min(hi)  (2) 

Subject to 

o Constraints related to the membership functions: 

h)x'(h i

L

xi
  h)x'(h i

R

xi
  hh i   for i=1, k (3) 

which means there are 2k+k constraints (where k is the number of control points) 

o Constraints related to the conservation of flow at each control point. The constraints 

are defined by reviewing the flow pattern at each node in Fig. 1 as follows: 

x‟3+x‟5= y‟5+y‟6 

x‟1+x‟2= y‟1 +y‟4 
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y‟1+y‟2 = z‟1+z‟4 (4) 

y‟3+y‟5 = z‟5+z‟6 

y‟2+y‟6 = w‟10+w‟11+w‟12 

y‟3+y‟4 = w‟1+w‟5+w‟7 

x‟i, y‟i, z‟i, w‟i ≥ 0 for all i 

Where 

x‟i, y‟i, z‟i, w‟i integer unknown adjusted values 

xi, yi, zi, wi fuzzy set corresponding to the observed value xi 

)(x'h ix i
 membership grade of x‟i in the fuzzy set xi, the same treatment 

for yi, zi and wi  

h an operational parameter that represents the smallest 

membership grade among all )(x'h ix i
‟s. Where h)x'(h i

L

xi
  and 

h)x'(h i

R

xi
 , respectively, show the expressions for the left- and 

right-hand sides of the triangle. 

B. MS method: 

Max(g) where g is sum(hi) (5) 

Subject to the same constraints as in the MM method, with regard to the membership 

functions (eq. 3) and to the conservation of flow at each control point (eq. 4). 

C. BO method: 

Step 1: The problem is solved using the MM method (eq. 2), and we obtain a value of 

h=h*. 

Step 2: The problem is solved using the MS method (eq. 5) subject to the same 

constraints with regard to the conservation of flow at each control point (eq. 4) as in the 

MM or MS method, and to the following constraints related to the membership 

functions: 
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*h)x'(h i

L

xi
  *h)x'(h i

R

xi
  *hh i   for i=1, k (6) 

The total number of unknowns in Step 2 is reduced by one compared to Step 1.  

If only Max(h) is performed (case A), there may be several imputations for the observed 

data that produce the same value for h (Tussel, 2002; Silva-Ramírez, 2007). Therefore, 

they would be the same from the objective function point of view, whereas, in fact, 

some are better than others. The combination (0.9, 0.9, 0.9), for instance, would have 

the same value as (0.9, 1, 1), whereas the latter is better than the former. On the other 

hand, if the objective function were just Max(g) (case B), some values would show a 

hi=0.00, despite the fact that almost all the rest are 1.00, which is of no interest. The 

bilevel optimization process (case C) allows the combination where the remaining 

membership degrees are the highest ones to be chosen from among all the combinations 

where the lowest value of h is maximized. 

3.3. Solving as a mixed linear programming problem 

Since every x‟i must be an integer number and hi are real numbers, this is a mixed linear 

programming formulation. A mixed linear programming algorithm is formulated for the 

problem to maximize the membership grade of the adjusted values.  

In Fig. 1, the mixed linear programming algorithm consists of 90 (3x30 observed 

volumes) inequality constraints related to membership functions and six equations 

related to flow conservation. 

3.4. Introduction of data reliability 

The selection of the value of  depends on the judgement of the analyst with respect to 

the adjusted value‟s acceptable deviation from the observed value.  

In a complex transport network, there may be permanent traffic count stations where 

count data are fairly reliable, and other nodes where counting is sporadic, as well as 

points where traffic volumes have not been measured. Therefore, to define the  
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parameter coherently, the method must allow the analyst to assign different values to 

the  parameter in order to define the membership functions of each observed value. 

The values will depend on whether the parameter belongs to a set of data that are highly 

reliable (permanent traffic count station), averagely reliable (sporadic count) or highly 

unreliable (lost data). 

3.5. Example network 

As shown in Fig.1, the example consists in analysing a network of 4 intersections, of 

which three have 6 movements and one has twelve.  

In this example, the real consistent data are known (RV) (Table 1 column 2). The data 

are used to simulate a scenario with non consistent data. The simulated data are 

considered the OV (Table 1 column 3). 

In this example, it is considered that traffic count station W is a permanent station, so 

the values have maximum reliability and their  parameter is the lowest, =0.3. The 

reliability of stations Y and Z is lower so  takes a value of 0.5 (sporadic count stations) 

and, finally, the data from traffic count station X is supposed to be the least reliable one, 

so  is assigned a value of 0.65.  

3.6. Results 

In this case, since real data were available, three indicators could be used to verify the 

goodness of the adjustment of each one of the three optimization methods used (MM, 

MS and BO methods): 

 The first indicator is the lowest value of h, which indicates the membership 

grade of the worst adjusted value (the degree of compatibility between the 

adjusted value and the observed value). If the value of h is near zero, then the 

adjusted value is close to the right or left end of the base of the membership 

function; if the value of h is near 1, then the adjusted value is close to the 
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observed value. Therefore, the solution where the lowest value of h is maximum 

is chosen as the best solution from the point of view of this parameter.  

 The second indicator is the sum of hi. The bestsolution is where the sum of hi is 

maximum, because the adjusted values are closer to the observed values and 

integrity is more preserved. 

 The last indicator, for which the consistent real data are available, is the average 

of the differences between the real consistent values and the adjusted values. 

The results for the three methods are given in Table 1, where the adjusted values (AV) 

and the value of the membership grade (h) for each observed value are shown. The 

membership grade of the individual AV is computed by entering the adjusted value (x‟i) 

in the respective membership function, )(x'h ix i
. The table also shows the effect of 

using different  values, depending on the reliability of the observed volumes at each 

intersection. 

Column 1 of Table 1 shows each movement in nodes W, X, Y and Z. Column 2 shows  

the consistent RV used to obtain the OV that show inconsistencies by randomizing the 

values within ±25%. 

Columns 4, 6 and 8 in Table 1 shows the AV, the corresponding values of h (hi) and the 

difference () between RV and AV in absolute value, using the MM method, MS 

method and BO method respectively for an  parameter of 0.4 in all cases: 

o MM method‟s results are shown in column 4. The lowest value of h in column 4 

(h=0.56) indicates the membership grade of the worst adjusted value. In this case 

hi is 24.04. 

o In column 6, MS method‟s results show that whereas most of the adjusted values get 

h=1.00, other values show lower h and h could even be 0.00, in order to manage the 

highest hi. The lowest value of h is reached for y1 (h=0.13). This situation, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

15 

therefore, is not desirable either, since it allows a set of values with some h very 

close to 0.00 to be considered, providing the sum is the maximum. In this case, hi 

is 27.93. 

o The BO method‟s results are shown in column 8. If columns 4 and 8 are compared, 

it can be seen that the minimum value of h remains the same (h=0.56). However, 

there has been an increase in hi, which has gone from 24.04 (MM method) to 25.89 

(BO method). Thus, this new method allows a combination where the remaining 

membership degrees are the highest ones to be chosen from among all the 

combinations with the lowest value of h.  

As explained above, introducing the analyst‟s knowledge of the different precisions of 

the data he is working with improves the results of the adjustment. This is shown in 

columns 5, 7 and 9 in Table 1 where the AV, hi and  are calculated, using the three 

methods for different  parameters depending on the reliability of the data. The  

values used in this example have been 0.65 for “X”, 0.5 for “Y” and “Z” and 0.3 for 

“W”.  

As in the case of the same α for every observed value, for any  parameter, the MM and 

the BO methods obtain the same and a higher value of h minimum (h=0.61) than the 

MS method (h=0.25). However, the latter method obtains a higher value of hi (28.26 

versus 24.92 for the MM method and 25.98 for the BO method).  

The results shown in column 5 are better than those shown in column 4. This is because 

the minimum value of h and hi were higher and the value of average  was lower. 

Similar results are obtained by comparing columns 6-7 and 8-9 for the MS and the BO 

methods. This confirms the advantage of distinguishing between reliable data and less 

reliable data or, in other words, of introducing the subjective perception of the analyst. 
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The last row in Table 1 shows the average of  for each of the three methods used. It 

can be seen that the lowest value (6.97) is obtained for the BO method with different 

values of α, in comparison to the values of the MM method (7.13) and the MS method 

(10.70) with different values of α. This shows that the AV obtained with the BO method 

are closer to the real values than with the other two methods, so this is the method that 

best preserves the integrity of data. 

4. Real intersections in Andalucía motorway´s network 

Next, the three methods are used to adjust the traffic volumes of a series of adjacent 

intersections in Andalusia‟s freeway network (see Fig. 3 and Fig. 4) for which real and 

therefore inconsistent data are available. In this example, the parameter  is omitted, 

and only two parameters have been used to verify the goodness of the adjustment: the 

lowest value of h and the sum of hi.  

(Place Fig. 3 about here) 

(Place Fig. 4 about here) 

The network has five intersections, of which three have six movements (intersections V, 

X and Z), while the other two have twelve potential movements (intersections W and 

Y). Data is available for all potential movements except for v1, v2, v3, v4, y6, y7, and y8, 

whose values were lost. A special membership function with h=1.00 always (→) 

was assigned to the lost values so that any adjusted value that met the boundary 

conditions would always have a membership grade of 1.00 (Fig. 5). Table 2 shows that 

for movements v1, v2, v3, v4, y6, y7 and y8, the value of h associated to the AV is always 

1.00 for the three methods studied and for the hypothesis of equal or different . 

(Place Fig. 5 about here) 

(Place Table 2 about here) 

Columns 3, 5 and 7 in Table 2 show the AV and hi using the three methods for =0.1. 
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On the other hand, columns 4, 6 and 8 in Table 2 show the AV and hi using the three 

methods for different  parameters depending on the reliability of the data. The  

values used in this example were 0.2 for “W”, 0.3 for “Z”, and 0.1 for the rest.  

As in the previous example, for any  parameter, the MM and the BO methods obtain 

the same and a higher value of minimum h (h=0.29) than the MS method (h=0.00). 

However, MS method obtains a higher value of hi (40.14 versus 26.16 for the MM 

method and 35.97 for the BO method). Thus, the results demonstrate that the BO 

method, while keeping the highest minimum of h, attains the best sum of hi, so the best 

solution is chosen from among all the possibilities that satisfy the condition of 

maximizing the minimum h. Furthermore, introducing the analyst‟s knowledge of the 

different precisions of the data he is working with improves the results of the 

adjustment.  

 

5. Summary and conclusions 

The consistency of the observed traffic data is a concern because in nearly all cases 

traffic data contain some errors. The degree to which consistency must be satisfied 

depends on the purpose of the analysis. Processing observed data for consistency is 

crucial in an analysis where data interrelationships are important. 

This paper proposes another step forward in using fuzzy logic optimization to obtain 

adjusted values. Two examples are given to present and explain the theoretical 

formulation and computational procedure. The proposed approach is robust enough to 

deal with other typical data discrepancies in transport situations. It preserves the 

integrity of observed data as much as possible, and allows the analyst to distinguish 

between reliable and less reliable data.  

The approach is able to: 
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o Preserve the integrity of the observed data as much as possible. There are increasing 

concerns about data imputation and Base Data Integrity. The principle of Base Data 

Integrity is an important theme discussed by the American Society for Testing and 

Materials (ASTM, 1991) and the American Association of State Highway and 

Transportation Officials (AASHTO, 1992). The principle says that traffic 

measurements must be retained without modification and adjustment. Missing 

values should not be imputed in the base data. However, this does not prohibit 

imputing data at the analysis stage. In some cases, traffic counts with missing values 

could be the only data available for certain purposes and data imputation is 

necessary for further analysis. In accordance with the principle of Truth-in Data, 

AASHTO Guidelines (AASHTO, 1992) also recommends highway agencies to 

document the procedures for editing traffic data. For traffic counts with missing 

values, highway agencies usually either retake the counts or estimate the missing 

values. Estimating missing values is known as data imputation. 

o Ensure flow consistency at any point in the network; the final estimate satisfies the 

law of flow conservation. 

o Handle a large complicated network of any size and shape. The aim is to be able to 

solve any real problem, as shown in example 2. 

o Handle data reliability; traffic-responsive control systems require reliable real-time 

information on the prevailing traffic counts to make sensible control decisions. This 

requisite is met by using the α parameter to define a different range for the 

membership function associated to each observed value. 

o Limit the adjusted value within a tolerable deviation from the observed value, but 

allowing one tolerance for each value to be defined; this is achieved by using fuzzy 

logic and the definition of the α parameter. 
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o Be solved in a short computation time. The triangular membership function allows 

solving the problem using mixed linear programming. 

The method is flexible so that it can handle cases in which data are questionable, some 

of the observed values are known and fixed (=0), and there are considerable 

discrepancies in the observed data. The base of the membership function within which a 

feasible set of solutions is searched should be established according to the acceptable 

difference between adjusted and observed values. 

Finally, the method is applicable to many other transportation problems in which 

consistency is important.  
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Figures legends 

Fig. 1. Simple freeway network used to explain the method 

Fig. 2. Triangular membership function 

Fig. 3. Real intersections in Andalusia‟s freeway network (South of Spain) 

Fig. 4. Movements in every node of the real network 

Fig. 5. Missing values‟ membership function 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 

Tables legends 

Table 1. Example 1: base data, randomized inconsistent data, adjusted data, and results 

for different  ranges 

Table 2. Real intersection in the South of Spain: real base data with missing values, 

adjusted data, and results for different  ranges 
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Fig. 1. Simple freeway network used to explain the method 
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Fig. 2. Triangular membership function 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 

 

 

 
 

Fig. 3. Real intersections in Andalusia’s freeway network (South of Spain)
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Fig. 4. Movements in every node of the real network 
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Fig. 5. Missing values’ membership function 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

a=0.4 a* a=0.4 a* a=0.4 a*

AV hi D AV hi D AV hi D AV hi D AV hi D AV hi D

w1 135 113 128 0.68 7 126 0.63 9 113 1.00 22 113 1.00 22 128 0.68 7 126 0.63 9

w2 30 37 39 0.87 9 40 0.91 10 37 1.00 7 37 1.00 7 37 1.00 7 37 1.00 7

w3 43 42 42 1.00 1 44 0.92 1 42 1.00 1 42 1.00 1 42 1.00 1 42 1.00 1

w4 104 96 95 0.97 9 97 0.97 7 96 1.00 8 96 1.00 8 95 0.97 9 97 0.97 7

w5 148 134 152 0.67 4 150 0.61 2 134 1.00 14 134 1.00 14 152 0.67 4 150 0.61 2

w6 19 18 21 0.59 2 20 0.82 1 18 1.00 1 18 1.00 1 18 1.00 1 18 1.00 1

w7 28 27 30 0.73 2 30 0.64 2 27 1.00 1 27 1.00 1 30 0.73 2 30 0.64 2

w8 35 37 40 0.80 5 40 0.91 5 37 1.00 2 37 1.00 2 37 1.00 2 37 1.00 2

w9 22 18 21 0.59 1 20 0.82 2 18 1.00 4 18 1.00 4 18 1.00 4 18 1.00 4

w10 102 78 77 0.97 25 79 0.96 23 78 1.00 24 78 1.00 24 77 0.97 25 79 0.96 23

w11 175 171 172 0.99 3 169 0.96 6 171 1.00 4 171 1.00 4 172 0.99 3 170 0.98 5

w12 3 4 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1

x1 265 215 253 0.57 12 255 0.71 10 220 0.94 45 220 0.96 45 253 0.57 12 253 0.73 12

x2 54 53 62 0.59 8 61 0.77 7 53 1.00 1 53 1.00 1 62 0.59 8 61 0.77 7

x3 105 116 109 0.85 4 111 0.93 6 116 1.00 11 116 1.00 11 109 0.85 4 111 0.93 6

x4 110 132 130 0.96 20 133 0.99 23 132 1.00 22 132 1.00 22 130 0.96 20 133 0.99 23

x5 200 177 168 0.88 32 168 0.92 32 161 0.78 39 161 0.86 39 168 0.88 32 168 0.92 32

x6 58 51 48 0.86 10 52 0.97 6 51 1.00 7 51 1.00 7 50 0.95 8 51 1.00 7

y1 26 31 26 0.61 0 28 0.79 2 20 0.13 6 20 0.25 6 26 0.61 0 26 0.66 0

y2 20 17 15 0.71 5 14 0.62 6 17 1.00 3 17 1.00 3 15 0.71 5 15 0.75 5

y3 18 21 21 1.00 3 18 0.70 0 21 1.00 3 21 1.00 3 21 1.00 3 18 0.70 0

y4 293 353 289 0.56 4 288 0.61 5 253 0.31 40 253 0.40 40 289 0.56 4 288 0.61 5

y5 45 39 39 1.00 6 41 0.89 4 41 0.87 4 41 0.89 4 39 1.00 6 41 0.89 4

y6 260 226 238 0.87 22 238 0.89 22 236 0.89 24 236 0.91 24 238 0.87 22 238 0.89 22

z1 33 26 29 0.72 4 29 0.75 4 26 1.00 7 26 1.00 7 29 0.72 4 29 0.75 4

z2 22 17 20 0.57 2 20 0.87 2 17 1.00 5 17 1.00 5 17 1.00 5 17 1.00 5

z3 25 27 29 0.82 4 31 0.92 6 27 1.00 2 27 1.00 2 27 1.00 2 27 1.00 2

z4 13 11 12 0.78 1 13 0.61 0 11 1.00 2 11 1.00 2 12 0.78 1 12 0.81 1

z5 28 33 32 0.93 4 31 0.87 3 33 1.00 5 33 1.00 5 32 0.93 4 31 0.87 3

z6 35 29 28 0.92 7 28 0.93 7 29 1.00 6 29 1.00 6 28 0.92 7 28 0.93 7

Note: RV (Real Value); OV (Observed Value); AV (Adjusted Value); D (difference between RV and AV in absolute value)

* a=0.65 for xi; a=0.5 for yi and zi; a=0.3 for wi

7.23 7.13 10.70 10.70

0.56 0.61

24.92 27.93 28.26

7.10 6.97

25.89g=sum hi

h=min hi

Average D

24.04 25.98

0.56 0.61 0.13 0.25

BO method 
RV OV

MM method MM method MS method MS method BO method 

 
 

Table 1. Example 1: base data, randomized inconsistent data, adjusted data, and results for 

different a ranges 

Table
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28 
29 
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31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
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46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

(1) (2)

AV hi AV hi AV hi AV hi AV hi AV hi

v1
#

- 11091 1.00 10819 1.00 10703 1.00 10704 1.00 10951 1.00 10893 1.00

v2
#

- 1764 1.00 1758 1.00 1743 1.00 1743 1.00 1497 1.00 1555 1.00

v3
#

- 11085 1.00 11014 1.00 11240 1.00 11240 1.00 10994 1.00 10847 1.00

v4
#

- 10288 1.00 10307 1.00 10329 1.00 10329 1.00 10575 1.00 10517 1.00

v5 10865 10727 0.87 10809 0.95 10865 1.00 10865 1.00 10618 0.77 10865 1.00

v6 1207 1174 0.73 1201 0.95 1207 1.00 1207 1.00 1207 1.00 1207 1.00

w1 5427 5669 0.56 5491 0.94 5427 1.00 5427 1.00 5445 0.97 5445 0.98

w2 2714 2905 0.30 2719 0.99 2714 1.00 2714 1.00 2714 1.00 2714 1.00

w3 3135 2914 0.30 3023 0.82 3135 1.00 3135 1.00 3135 1.00 3135 1.00

w4 3123 3258 0.57 3179 0.91 3123 1.00 3124 1.00 3123 1.00 3123 1.00

w5 3735 3764 0.92 3773 0.95 3735 1.00 3735 1.00 3735 1.00 3735 1.00

w6 5601 5313 0.49 5311 0.74 5600 1.00 5600 1.00 5354 0.56 5207 0.65

w7 695 744 0.30 695 1.00 695 1.00 695 1.00 695 1.00 695 1.00

w8 3112 3182 0.78 3131 0.97 3112 1.00 3112 1.00 3112 1.00 3112 1.00

w9 3880 3928 0.88 3907 0.97 3896 0.96 3896 0.98 3880 1.00 3880 1.00

w10 505 470 0.31 502 0.97 505 1.00 505 1.00 505 1.00 505 1.00

w11 310 289 0.32 307 0.95 310 1.00 310 1.00 310 1.00 310 1.00

w12 904 841 0.30 913 0.97 904 1.00 904 1.00 904 1.00 904 1.00

x1 4935 4588 0.30 4711 0.54 4812 0.75 4812 0.75 4800 0.73 4709 0.54

x2 4725 5021 0.38 4788 0.87 4848 0.74 4848 0.74 4719 0.99 4715 0.98

x3 7236 6739 0.31 6905 0.54 7236 1.00 7236 1.00 6990 0.66 6905 0.54

x4 1809 1777 0.82 1736 0.60 1809 1.00 1809 1.00 1809 1.00 1747 0.66

x5 4197 4394 0.53 4335 0.67 4197 1.00 4197 1.00 4344 0.65 4348 0.64

x6 3350 3306 0.87 3197 0.54 3350 1.00 3350 1.00 3351 1.00 3197 0.54

y1 1230 1176 0.56 1236 0.97 1230 1.00 1230 1.00 1230 1.00 1230 1.00

y2 3700 3662 0.90 3717 0.95 3700 1.00 3700 1.00 3700 1.00 3700 1.00

y3 4255 4555 0.29 4307 0.88 4257 1.00 4257 1.00 4555 0.29 4255 1.00

y4 1410 1509 0.30 1441 0.78 1410 1.00 1410 1.00 1509 0.30 1410 1.00

y5 2140 2076 0.70 2094 0.79 2140 1.00 2140 1.00 1990 0.30 2140 1.00

y6
#

- 2320 1.00 2332 1.00 2369 1.00 2369 1.00 2369 1.00 2369 1.00

y7
#

- 658 1.00 611 1.00 521 1.00 521 1.00 671 1.00 521 1.00

y8
#

- 1527 1.00 1494 1.00 1691 1.00 1691 1.00 1679 1.00 1526 1.00

y9 1150 1069 0.30 1131 0.83 1150 1.00 1150 1.00 1150 1.00 1150 1.00

y10 310 289 0.32 324 0.65 310 1.00 310 1.00 310 1.00 310 1.00

y11 1013 1044 0.69 1023 0.91 1013 1.00 1013 1.00 1013 1.00 1013 1.00

y12 1410 1509 0.30 1442 0.77 1410 1.00 1410 1.00 1509 0.30 1410 1.00

z1 4960 4975 0.97 4968 0.99 4962 1.00 4962 1.00 4962 1.00 4962 1.00

z2 2120 2051 0.67 2104 0.97 2120 1.00 2120 1.00 2120 1.00 2120 1.00

z3 1207 1122 0.30 1092 0.68 1207 1.00 1207 1.00 1122 0.30 1087 0.67

z4 10865 10930 0.94 10973 0.97 10865 1.00 10865 1.00 10950 0.92 10985 0.96

z5 9660 9850 0.80 9906 0.92 9952 0.70 9952 0.90 9705 0.95 9952 0.90

z6 6940 6451 0.30 6098 0.60 5870 0.00 5870 0.49 6451 0.30 5988 0.54

g=sum hi

h=min hi

Note: OV (Observed Value); AV (Adjusted Value)

* a=0.2 for wi; a=0.3 for zi; a=0.1 for rest of cases
#  

v1, v2, v3, v4, y6, y7 and y8 are missing values

0.29 0.54

26.16 36.50

0.29 0.54 0.00 0.49

40.14 40.85

OV

MM method a=0.1 MM method a*

(7) (8)

MS method a=0.1 MS method a* BO method a=0.1 BO method a*

(3) (4) (5) (6)

35.97 38.61

 
 

Table 2. Real intersection in the South of Spain: real base data with missing values, adjusted 

data, and results for different a ranges 




