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University of Granada, 18071, Spain

Nearly all neuronal information processing and interneuronal commu-
nication in the brain involves action potentials, or spikes, which drive
the short-term synaptic dynamics of neurons, but also their long-term dy-
namics, via synaptic plasticity. In many brain structures, action potential
activity is considered to be sparse. This sparseness of activity has been
exploited to reduce the computational cost of large-scale network sim-
ulations, through the development of event-driven simulation schemes.
However, existing event-driven simulations schemes use extremely sim-
plified neuronal models. Here, we implement and evaluate critically an
event-driven algorithm (ED-LUT) that uses precalculated look-up tables
to characterize synaptic and neuronal dynamics. This approach enables
the use of more complex (and realistic) neuronal models or data in repre-
senting the neurons, while retaining the advantage of high-speed simu-
lation. We demonstrate the method’s application for neurons containing
exponential synaptic conductances, thereby implementing shunting in-
hibition, a phenomenon that is critical to cellular computation. We also
introduce an improved two-stage event-queue algorithm, which allows
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the simulations to scale efficiently to highly connected networks with
arbitrary propagation delays. Finally, the scheme readily accommodates
implementation of synaptic plasticity mechanisms that depend on spike
timing, enabling future simulations to explore issues of long-term learn-
ing and adaptation in large-scale networks.

1 Introduction

Most natural neurons communicate by means of individual spikes. Infor-
mation is encoded and transmitted in these spikes, and nearly all of the
computation is driven by these events. This includes both short-term com-
putation (synaptic integration) and long-term adaptation (synaptic plastic-
ity). In many brain regions, spiking activity is considered to be sparse. This,
coupled with the computational cost of large-scale network simulations,
has given rise to the event-driven simulation schemes. In these approaches,
instead of iteratively calculating all the neuron variables along the time di-
mension, the neuronal state is updated only when a new event is received.

Various procedures have been proposed to update the neuronal state in
this discontinuous way (Watts, 1994; Delorme, Gautrais, van Rullen, &
Thorpe, 1999; Delorme & Thorpe, 2003; Mattia & Del Giudice, 2000;
Reutimann, Giugliano, & Fusi, 2003). In the most widespread family of
methods, the neuron’s state variable (membrane potential) is updated ac-
cording to a simple recurrence relation that can be described in closed form.
The relation is applied on reception of each spike and depends only on the
membrane potential following the previous spike, the time elapsed, and the
nature of the input (strength, sign):

Vm,t = f (Vm,t−�t,�t, J ), (1.1)

where Vm is the membrane potential, �t is elapsed time (since the last spike),
and J represents the effect of the input (excitatory or inhibitory weight).

This method can describe integrate-and-fire neurons and is used, for
instance, in SpikeNET (Delorme et al., 1999; Delorme & Thorpe, 2003).
Such algorithms can include both additive and multiplicative synapses
(i.e., synaptic conductances), as well as short-term and long-term synaptic
plasticity. However, the algorithms are restricted to synaptic mechanisms
whose effects are instantaneous and to neuronal models, which can only
spike immediately upon receiving input. These conditions obviously re-
strict the complexity (realism) of the neuronal and synaptic models that can
be used.

Implementing more complex neuronal dynamics in event-driven
schemes is not straightforward. As discussed by Mattia and Del
Giudice (2000), incorporating more complex models requires extending the
event-driven framework to handle predicted spikes that can be modified if
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intervening inputs are received; the authors propose one approach to this
issue. However, in order to preserve the benefits of computational speed,
it must, in addition, be possible to update the neuron state variables dis-
continuously and also predict when future spikes would occur (in the ab-
sence of further input). Except for the simplest neuron models, these are
nontrivial calculations, and only partial solutions to these problems exist.
Makino (2003) proposed an efficient Newton-Raphson approach to pre-
dicting threshold crossings in spike-response model neurons. However, the
method does not help in calculating the neuron’s state variables discontinu-
ously and has been applied only to spike-response models involving sums
of exponentials or trigonometric functions. As we shall show below, it is
sometimes difficult to represent neuronal models effectively in this form. A
standard optimization in high-performance code is to replace costly func-
tion evaluations with lookup tables of precalculated function values. This
is the approach that was adopted by Reutimann et al. (2003) in order to
simulate the effect of large numbers of random synaptic inputs. They re-
placed the online solution of a partial differential equation with a simple
consultation of a precalculated table.

Motivated by the need to simulate a large network of “realistic” neu-
rons (explained below), we decided to carry the lookup table approach to
its logical extreme: to characterize all neuron dynamics off-line, enabling
the event-driven simulation to proceed using only table lookups, avoiding
all function evaluations. We term this method ED-LUT (for event-driven-
lookup table). As mentioned by Reutimann et al. (2003), the lookup tables
required for this approach can become unmanageably large when the model
complexity requires more than a handful of state variables. Although we
have found no way to avoid this scaling issue, we have been able to opti-
mize the calculation and storage of the table data such that quite rich and
complex neuronal models can nevertheless be effectively simulated in this
way.

The initial motivation for these simulations was a large-scale real-time
model of the cerebellum. This structure contains very large numbers of
granule cells, which are thought to be only sparsely active. An event-driven
scheme would therefore offer a significant performance benefit. However,
an important feature of the cellular computations of cerebellar granule
cells is reported to be shunting inhibition (Mitchell & Silver, 2003), which
requires noninstantaneous synaptic conductances. These cannot be readily
represented in any of the event-driven schemes based on simple recurrence
relations. For this reason, we chose to implement the ED-LUT method. Note
that noninstantaneous conductances may be important generally, not just
in the cerebellum (Eckhorn et al., 1988; Eckhorn, Reitböck, Arndt, & Dicke,
1990).

The axons of granule cells, the parallel fibers, traverse large numbers of
Purkinje cells sequentially, giving rise to a continuum of propagation de-
lays. This spread of propagation delays has long been hypothesized to
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underlie the precise timing abilities attributed to the cerebellum
(Braitenberg & Atwood, 1958). Large divergences and arbitrary delays are
features of many other brain regions, and it has been shown that propa-
gation and synaptic delays are critical parameters in network oscillations
(Brunel & Hakim, 1999). Previous implementations of event queues were
not optimized for handling large synaptic divergences with arbitrary de-
lays. Mattia and Del Giudice (2000) implemented distinct fixed-time event
queues (i.e., one per delay), which, though optimally quick, would become
quite cumbersome to manage when large numbers of distinct delays are
required by the network topology. Reutimann et al. (2003) and Makino
(2003) used a single ordered event structure in which all spikes are consid-
ered independent. However, for neurons with large synaptic divergences,
unnecessary operations are performed on this structure, since the arrival
order of spikes emitted by a given neuron is known. We introduce a two-
stage event queue that exploits this knowledge to handle efficiently large
synaptic divergences with arbitrary delays.

We demonstrate our implementation of the ED-LUT method for a model
of a single-compartment neuron receiving exponential synaptic conduc-
tances (with different time constants for excitation and inhibition). In par-
ticular, we describe how to calculate and optimize the lookup tables and the
implementation of the two-stage event queue. We then evaluate the perfor-
mance of the implementation in terms of accuracy and speed and compare
it with other simulation methods.

2 Overview of the ED-LUT Computation Scheme

The ED-LUT simulation scheme is based on the structures shown in
Figure 1. A simulation is initialized by defining the network and its in-
terconnections (including latency information), giving rise to the neuron
list and interconnection list structures. In addition, several lookup tables
that completely characterize the neuronal and synaptic dynamics are calcu-
lated: the exponential decay of the synaptic conductances; a table that can
be used to predict if and when the next spike of a cell would be emitted, in
the absence of further input; and a table defining the membrane potential
(Vm) as a function of the combination of state variables at a given point in the
past (in our simulations, this table gives Vm as a function of the synaptic con-
ductances and the membrane potential, all at the time of the last event, and
the time elapsed since that last event). If different neuron types are included
in the network, they will require their own characterization lookup tables
with different parameters defining their specific dynamics. Each neuron in
the network stores its state variables at the time of the last event, as well as
the time of that event. If short- or long-term synaptic dynamics are to be
modeled, additional state variables are stored per neuron or per synapse.

When the simulation runs, events (spikes) are ordered using the event
heap (and the interconnection list—see below) in order to be processed in
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Figure 1: Main structures of the ED-LUT simulator. Input spikes are stored in
an input queue and are sequentially inserted into the spike heap. The network
definition process produces a neuron list and an interconnection list, which are
consulted by the simulation engine. Event processing is done by accessing the
neuron characterization tables to retrieve updated neuronal states and forecast
spike firing times.

chronological order. The response of each cell to spikes it receives is deter-
mined with reference to the lookup tables, and any new spikes generated
are inserted into the event heap. External input to the network can be fed
directly into the event heap. Two types of events are distinguished: firing
events, the times when a neuron emits a spike, and propagated events, the
times when these spikes reach their target neurons. In general, each firing
event leads to many propagated events through the synaptic connection
tree. Because our synaptic and neuronal dynamics allow the neurons to
fire after inputs have been received, the firing events are only predictions.
The arrival of new events can modify these predictions. For this reason,
the event handler must check the validity of each firing event in the heap
before it is processed.

3 Two-Stage Event Handling

Events (spikes) must be treated in chronological order in order to preserve
the causality of the simulation. The event-handling algorithm must there-
fore be capable of maintaining the temporal order of spikes. In addition,
as our neuronal model allows delayed firing (after inputs), the algorithm
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must cope with the fact that predicted firing times may be modified by
intervening inputs.

Mattia and Del Guidice (2000) used a fixed structure (called a synaptic
matrix) for storing synaptic delays. This is suited only for handling a fixed
number of latencies. In contrast, our simulation needed to support arbitrary
synaptic delays. This required that each spike transmitted between two
cells is represented internally by two events. The first one (the firing event)
is marked with the time instant when the source neuron fires the spike.
The second one (the propagated event) is marked with the time instant
when the spike reaches the target neuron. Most neurons have large synaptic
divergences. In these cases, for each firing event, the simulation scheme
produces one propagated event per output connection.

The algorithm efficiency of event-driven schemes depends on the size of
the event data structure, so performance will be optimal under conditions
that limit load (low connectivity, low activity). However, large synaptic
divergences (with many different propagation delays) are an important
feature of most brain regions. Previous implementations of event-driven
schemes have used a single event heap, into which all spikes are inserted
and reordered (Reutimann et al., 2003; Makino, 2003). However, treating
each spike as a fully arbitrary event leads to the event data structure’s
becoming larger than necessary, because the order of spike emission by a
given neuron is always known (it is defined in the interconnection list).

We have designed an algorithm that exploits this knowledge by using a
multistage event-handling process. Our approach is based on a spike data
structure that functions as an interface between the source neuron events
and target neurons. We use a heap data structure (priority queue) to store the
spikes (see appendix A for a brief motivation). The output connection list of
each neuron (which indicates its target cells) is sorted by propagation delay.
When a source neuron fires, only the event corresponding to the lowest-
latency connection is inserted into the spike heap. This event is linked to the
other output spikes of this source neuron. When the first spike is processed
and removed from the heap, the next event in the output connection list
is inserted into the spike heap, taking into account the connection delay.
Since the output connection list of each neuron is sorted by latency, the next
connection carrying a spike can easily be found. This process is repeated
until the last event in the list is processed. In this way, the system can handle
large connection divergences efficiently. Further detail on the performance
of this optimization is reported in appendix A.

Each neuron stores two time labels. One indicates the time the neuron
was last updated. This happens on reception of each input. As described in
Figure 2, when a neuron is affected by an event, the time label of this neuron
is updated to tsim if it is an input spike (propagated event) or to tsim + trefrac
if it is an output spike (firing event), to prevent it from firing again during
the refractory period. This is important because when the characterization
tables are consulted, the time label indicates the time that has elapsed since
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While tsim < tend 
{ 
Extract the event with a shortest latency in the spike heap 

 
If it is a firing event 

If it is still a valid event and the neuron is not under a refractory 
period 

Update the neuron state: Vm, gexc, ginh to the postfiring state. 
Prevent this neuron from firing during the refractory period. 
(Once this is done, update the neuron time label to tsim + trefrac).
Predict if the source neuron will fire again with the current 
neuron state. 
If the neuron will fire: 

Insert a new firing event into the spike heap. 
Insert the propagated event with the shortest latency (looking 
at the output connection list).  

 
If it is a propagated event 

Update the target neuron state: Vm, gexc, ginh looking at the 
characterization tables, before the event is computed. 
Modify the conductances (gexc, ginh) using the connection weight 
(Gexc,i, Ginh,i) for the new spike. 
Update the neuron time label to tsim. 
Predict if the target neuron will fire. 
If it fires: 

Insert the firing event into the spike heap with the predicted 
time. 

Insert only the next propagated event with the next shortest latency 
(looking at the output connection delay table). 

} 

Figure 2: Simulation algorithm. This pseudocode describes the simulation en-
gine. It processes all the events of the spike heap in chronological order.

the last update. The other time label maintains the up-to-date firing time
prediction. This is used to check the validity of events extracted from the
central event heap.

The basic computation scheme consists of a processing loop, in each
iteration of which the next event (i.e., with the shortest latency) is taken
from the spike heap. This event is extracted from the spike heap structure,
the target neuron variables are updated (in the neuron list structure), and if
the affected neurons generate them, new events are inserted into the spike
heap. Also, if the processed event is a propagated event, the next spike
from the output connection list of the neuron is inserted into the heap. This
computation scheme is summarized in Figure 2. It should be noted that
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Eexc EinhErest 

gexc ginh grest Vm

Figure 3: Equivalent electrical circuit of a model neuron. gexc and ginh are the
excitatory and inhibitory synaptic conductances, while grest is the resting con-
ductance, which returns the membrane potential to its resting state (Erest) in the
absence of input stimuli.

events are inserted into the heap in correct temporal sequence, but only the
spike with the shortest latency is ever extracted. Events that are superseded
by intervening inputs in the neuron concerned are left in the event heap.
They are discarded upon extraction if invalid (this is checked against the
up-to-date firing prediction stored in the neuron).

4 Neuronal and Synaptic Models

We model neurons as single compartments receiving exponential excita-
tory and inhibitory synaptic conductances with different time constants.
The basic electrical components of the neuron model are shown in Figure 3.
The neuron is described by the following parameters: (1) membrane capac-
itance, Cm, (2) the reversal potentials of the synaptic conductances, Eexc and
Einh, (3) the time constants of the synaptic conductances, τexc and τinh, and
(4) the resting conductance and its reversal potential, grest and Erest, respec-
tively. The membrane time constant is defined as τm = Cm/grest. The neuron
state variables are the membrane potential (Vm), the excitatory conductance
(gexc), and the inhibitory conductance (ginh). The synaptic conductances gexc
and ginh depend on the inputs received from the excitatory and inhibitory
synapses, respectively.

The decision was made to model synaptic conductances as exponential:

gexc(t) =
{

0 , t < t0
Gexc · e−(t−t0)/τexc , t ≥ t0

ginh(t) =
{

0 , t < t0
Ginh · e−(t−t0)/τinh , t ≥ t0

, (4.1)
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Figure 4: A postsynaptic neuron receives two consecutive input spikes (top).
The evolution of the synaptic conductance is the middle plot. The two excitatory
postsynaptic potentials (EPSPs) caused by the two input spikes are shown in
the bottom plot. In the solid line plots, the synaptic conductance transient is
represented by a double-exponential expression (one exponential for the rising
phase, one for the decay phase). In the dashed line plot, the synaptic conductance
is approximated by a single-exponential expression. The EPSPs produced with
the different conductance waveforms are almost identical.

where Gexc and Ginh represent the peak individual synaptic conductances
and gexc and ginh represent the total synaptic conductance of the neuron. This
exponential representation has numerous advantages. First, it is an effective
representation of realistic synaptic conductances. Thus, the improvement in
accuracy from the next most complex representation, a double-exponential
function, is hardly worthwhile when considering the membrane potential
waveform (see Figure 4).

Second, the exponential conductance requires only a single state variable,
because different synaptic inputs can simply be summed recursively when
updating the total conductance:

gexc(t) = Gexc,j + e
−(tcurrentspike−tpreviousspike)

gexc previous(t). (4.2)

(Gexc,j is the weight of synapse j; a similar relation holds for inhibitory
synapses). Most other representations would require additional state
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Table 1: Excitatory and Inhibitory Synaptic Characteristics, Based on the Cere-
bellar Granule Cell.

Excitatory
synapse

Maximum conductance
(Gexc max) nS, 0–7.5

Time constant
(τexc) ms, 0.5

Reversal potential
(Eexc) mV, 0

Inhibitory
synapse

Maximum conductance
(Ginh max) nS: 0–29.8

Time constant
(τinh) ms: 10

Reversal potential
(Einh) mV: −80

Note: The first column is an estimation of the maximum cell conductance (summed over
all synapses on the cell). The conductances of individual synapses (Gexc and Ginh) are
not included in this table, as they depend on the connection strengths and are therefore
provided through the network definition process and synaptic plasticity.

variables or storage of spike time lists, so the exponential representation
is particularly efficient in terms of memory use.

In our simulations, the synaptic parameters have been chosen to rep-
resent excitatory AMPA-receptor-mediated conductances and inhibitory
GABAergic conductances of cerebellar granule cells (Silver, Colquhoun,
Cull-Candy, & Edmonds, 1996; Nusser, Cull-Candy, & Farrant, 1997; Tia,
Wang, Kotchabhakdi, & Vicini, 1996; Rossi & Hamann, 1998). These are
summarized in Table 1. Note that different synaptic connections in differ-
ent cells might have quite distinct parameters; extreme examples in the
cerebellum include the climbing fiber input to Purkinje cells and the mossy
fiber input to unipolar brush cell synapses.

The differential equation 4.2 describes the membrane potential evolution
(for t ≥ t0) in terms of the excitatory and inhibitory conductances at t0,
combined with the resting conductance,

Cm
dVm

dt
= gexc(t0)e−(t−t0)/τexc (Eexc − Vm)

+ ginh (t0) e−(t−t0)/τinh (Einh − Vm) + Grest (Erest − Vm) , (4.3)

where the conductances gexc(t0) and ginh(t0) integrate all the contributions
received through individual synapses. Each time a new spike is received, the
total excitatory and inhibitory conductances are updated as per expression
4.2. Equation 4.3 is amenable to numerical integration. In this way, we can
calculate Vm, gexc, ginh, and firing time t f for given time intervals after the
previous input spike. t f is the time when the membrane potential would
reach the firing threshold (Vth) in the absence of further stimuli (if indeed
the neuron would fire).

5 Table Calculation and Optimization Strategies

The expressions given in section 3 are used to generate the lookup tables
that characterize each cell type, with each cell model requiring four tables:
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Figure 5: fg(�t), the percentage conductance remaining after a time (�t) has
elapsed since the last spike was received. This is a lookup table for the normal-
ized exponential function. The time constant of the excitatory synaptic conduc-
tance gexc (shown here) was 0.5 ms and for ginh(t), 10 ms. Since the curve exhibits
no abrupt changes in the time interval [0, 0.0375] seconds, only 64 values were
used.

� Conductances: gexc(�t) and ginh(�t) are one-dimensional tables that
contain the fractional conductance values as functions of the time �t
elapsed since the previous spike.

� Firing time: t f (Vm,t0 , gexc,t0 , ginh,t0 ) is a three-dimensional table repre-
senting the firing time prediction in the absence of further stimuli.

� Membrane potential: Vm (Vm,t0 , gexc,t0 , ginh,t0 , �t) is a four-
dimensional table that stores the membrane potential as a function of
the variables at the last time that the neuron state was updated and
the elapsed time �t.

Figures 5, 6, and 7 show some examples of the contents of these
tables for a model of the cerebellar granule cell with the following para-
meters: Cm = 2pF, τexc = 0.5 ms, τinh = 10 ms, grest = 0.2 nS, Eexc = 0 V,
Einh = −80 mV, Erest = −70 mV, and Vth = −70 mV.

The sizes of the lookup tables do not significantly affect the processing
speed, assuming they reside in main memory (i.e., they are too large for
processor cache but small enough not to be swapped to disk). However,
their size and structure obviously influence the accuracy with which the
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Figure 6: Firing time (t f ) plotted against gexc and initial Vm. t f decreases as the
excitatory conductance increases and as Vm,t0 approaches threshold. ginh = 0.

neural characteristic functions are represented. The achievable table sizes (in
particular, the membrane potential table) are limited by memory resources.
However, it is possible to optimize storage requirements by adapting the
way in which their various dimensions are sampled. Such optimization
can be quite effective, because some of the table functions change rapidly
only over small domains. We evaluate two strategies: multiresolution sam-
pling and logarithmic compression along certain axes. Different approaches
for the membrane potential function Vm (Vm,t0 , gexc,t0 , ginh,t0 ,�t), the largest
table, with respect to the inhibitory conductance (ginh,t0 ) are illustrated in
Figure 8. It can be seen that a logarithmic sampling strategy in the conduc-
tance dimensions is an effective choice for improving the accuracy of the
representation of neural dynamics. For the following simulation, we have
used logarithmic sampling in the ginh and gexc dimensions of the Vm table
(as illustrated in Figure 8C).

Storage requirements and calculation time are dominated by the largest
table—that for Vm. We shall show in the next section that a table con-
taining about 1 million data points (dimension sizes: �t = 64, gexc = 16,

ginh = 16, Vm,to = 64) gives reasonable accuracy. In order to populate this
table, we solve numerically equation 4.3. This was done using a Runge-
Kutta method with Richardson extrapolation and adaptive step size con-
trol. On a standard 1.8 GHz Pentium platform, calculation of this table takes
about 12 s. The firing time table had the same dimensions for gexc, ginh, and
Vm,to. As stated previously, the individual conductance lookup tables had
64 elements each.
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Figure 7: Membrane potential Vm
(
Vm,t0 , gexc,t0 , ginh,t0 , �t

)
plotted as a function

of (A) Vm,t0 and �t(gexc = ginh = 0); (B) gexc,t0 and �t (ginh = 0, Vm,t0 = Erest =
−70 mV). The zoom in the �t axis of plot B highlights the fact that the membrane
potential change after receiving a spike is not instantaneous.

In principle, these tables could also be based on electrophysiological
recordings. Since one of the dimensions of the tables is the time, the
experimenter would need to set up only the initial values of gexc, ginh,
and Vm and then record the membrane potential evolution following this
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initial condition. With our standard table size, the experimenter would need
to measure neuronal behavior for 64 × 16 × 16 (Gexc, Ginh, Vm) triplets. If
neural behavior is recorded in sweeps of 0.5 second (at least 10 membrane
time constants), only 136 minutes of recording would be required, which is
feasible (see below for ways to optimize these recordings). Characterization
tables of higher resolution would require longer recording times, but such
tables could be built up by pooling or averaging recordings from several
cells. Moreover, since the membrane potential functions are quite smooth,
interpolation techniques would allow the use of smaller, easier-to-compile
tables.

In order to control the synaptic conductances (gexc and ginh), it would
be necessary to use the dynamic clamp method (Prinz, Abbott, & Marder,
2004). With this technique, it is possible to replay accurately the required
excitatory and inhibitory conductances. It would not be feasible to con-
trol real synaptic conductances, though prior determination of their prop-
erties would be used to design the dynamic clamp protocols. Dynamic
clamp would most accurately represent synaptic conductances in small,
electrically compact neurons (such as the cerebellar granule cells mod-
eled here). Synaptic noise might distort the recordings, in which case it
could be blocked pharmacologically. Any deleterious effects of dialyaz-
ing the cell via the patch pipette could be prevented by using the perfo-
rated patch technique (Horn & Marty, 1988), which increases the lifetime
of the recording and ensures that the neuron maintains its physiological
characteristics.

6 Simulation Accuracy

An illustrative simulation is shown in Figure 9. A single cell with the char-
acteristics of a cerebellar granule cell receives excitatory and inhibitory
spikes (upper plots). We can see how the membrane conductances change
abruptly due to the presynaptic spikes. The conductance tables emulate the
excitatory AMPA-receptor-mediated and the inhibitory GABAergic synap-
tic inputs (the inhibitory inputs have a longer time constant). The conduc-
tance transients (excitatory and inhibitory) are also shown. The bottom plot
shows a comparison between the event-driven simulation scheme, which
updates the membrane potential at each input spike (these updates are

Figure 8: Each panel shows 16 Vm relaxations with different values of ginh,t0 .
The sampled conductance interval is ginh,t0 ∈ [0,20]nS. (A) Linear approach:
[0,20]nS was sampled with a constant intersample distance. (B) Multiresolution
approach: two intervals [0,0.35]nS and [0.4,20]nS with eight traces each were
used. (C) Logarithmic approach: ginh,t0 was sampled logarithmically.
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Figure 9: Single neuron simulation. Excitatory and inhibitory spikes are indi-
cated on the upper plots. Excitatory and inhibitory conductance transients are
plotted in the middle plots. The bottom plot is a comparison between the neural
model simulated with iterative numerical calculation (continuous trace) and the
event-driven scheme, in which the membrane potential is updated only when
an input spike is received (marked with an x).

marked with an x) and the results of an iterative numerical calculation
(Euler method with a time step of 0.5 µs). This plot also includes the output
spikes produced when the membrane potential reaches the firing thresh-
old. The output spikes are not coincident with input events, although
this is obscured by the timescale of the figure. It is important to note
that the output spikes produced by the event-driven scheme are coinci-
dent with those of the Euler simulation (they superimpose in the bottom
plot). Each time a neuron receives an input spike, both its membrane po-
tential and the predicted firing time of the cell are updated. This occurs
only rarely, as the spacing of the events in the event-driven simulation
illustrates.

It is difficult to estimate the appropriate size of the tables for a given
accuracy. One of the goals of this simulation scheme is to be able to simulate
accurately large populations of neurons, faithfully reproducing phenomena
such as temporal coding and synchronization processes. Therefore, we are
interested in reproducing the exact timing of the spikes emitted. In order
to evaluate this, we need a way to quantify the difference between two
spike trains. We used the van Rossum (2001) distance between two spike
trains. This is related to the distance introduced by Victor and Purpura
(1996, 1997), but is easier to calculate, with expression 6.1 and has a more
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natural physiological interpretation (van Rossum, 2001):

D2( f, g)tc = 1
tc

∫ ∞

0
[ f (t) − g(t)]2 dt (6.1)

f (t) =
M∑
i

H(t − ti )e−(t−ti )/tc . (6.2)

In expression 6.2, H is the Heaviside step function (H(x) = 0 if x < 0
and H(x) = 1 if x ≥ 0) and M is the number of events in the spike train. In
expression 6.1, the distance D is calculated as the integration of the differ-
ence between f and g, which are spike-driven functions with exponential
terms, as indicated in expression 6.2. Note that the resulting distance and,
indeed, its interpretation, depends on the exponential decay constant, tc
in expression 6.2, whose choice is arbitrary (van Rossum, 2001). We used
tc = 10 ms. The distance also depends on the number of spikes in the trains.
For this reason, we have chosen to report a crudely normalized version
D2( f, g)tc/M. Two trains differing only by the addition or removal of a sin-
gle spike have a normalized distance of (1/2M). Two trains differing only by
the relative displacement of one spike by δt have a normalized distance of
(1 − exp(−|δt|/tc))/M.

In order to evaluate the accuracy of the ED-LUT method and evaluate the
influence of table size, we computed the neural model using iterative calcu-
lations and the ED-LUT method and then calculated the distance between
the output spike trains produced by the two methods.

Figure 10 illustrates how the accuracy of the event-driven approach de-
pends on the synaptic weights of each spike in an example using a Poisson
input spike train. We plot as a function of synaptic weight the normalized
van Rossum distance between the output spike trains calculated with the
Euler method and obtained with ED-LUT. Spikes with very low weights
do not generate output events (in either the event-driven scheme or the nu-
merical computation one). Conversely, spikes with very large weights will
always generate output events. Therefore, the deviation between the event-
driven and the numerical approach will be low in both cases. However,
there is an interval of weights in which the errors are appreciable, because
the membrane potential spends more time near threshold and small errors
can cause the neuron to fire or not to fire erroneously. In general, however,
a neuron will have a spread of synaptic weights and is unlikely to show
such a pronounced error peak. Action potential variability in subthresh-
old states is also seen in biological recordings (Stern, Kincaid, & Wilson,
1997); therefore, a certain level of error may be affordable at a network
scale.

The accuracy of the event-driven scheme depends on the sampling reso-
lution of the different axes in the tables. We varied the resolution of various
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Figure 10: The accuracy of the event-driven simulation depends on the weights
of the synapses, with maximal error (normalized van Rossum distance) occur-
ring over a small interval of critical conductances. All synaptic weights were
equal.

parameters and quantified the normalized van Rossum distance of the spike
trains produced, with respect to the “correct” output train obtained from
an iterative solution. The axes of the Vm and t f table were varied together,
but the conductance lookup tables were not modified. Effective synaptic
weights were drawn at random from an interval of [0.5, 2] nS, thus cover-
ing the critical interval illustrated in Figure 10. From Figure 11 we see that
the accuracy of �t and gexc is critical, but the accuracy of the event-driven
scheme becomes more stable when table dimensions are above 1000 K
samples. Therefore, we consider appropriate resolution values are the fol-
lowing: 16 values for gexc,t0 and ginh,t0 , 64 values for �t, and 64 values for
Vm,t0 . These dimensions will be used henceforth.

Illustrative output spike trains for different table sizes, as well as the
reference train, are shown in Figure 12. The spike trains obtained with
the iterative method and the event-driven scheme are very similar for the
large table with increased resolution in �t. A spurious spike difference is
observed in the other simulations. Doubling the resolution in dimensions
other than �t does not increase the accuracy in this particular simulation.
We can also see how the spike train obtained with the small tables is signif-
icantly different. This is consistent with the accuracy study results shown
in Figure 11.
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Figure 11: The accuracy of the event-driven approach depends on the resolution
of the different dimensions and therefore on the table sizes. To evaluate the
influence of table size on accuracy, we ran the simulations with different table
sizes. For this purpose, we chose an initial Vm table of 1000 K samples (64 values
for �t, 16 values for gexc,t0 , 16 values for ginh,t0 , and 64 values for Vm,t0 ). We
then halved the size of individual dimensions, obtaining tables of size 500 K
samples and 250 K samples from the original table of 1000 K samples. Finally,
we doubled the sampling density of individual dimensions to obtain the largest
tables of 2000 K samples. For each accuracy estimation, we used an input train
of 100 excitatory and 33 inhibitory spikes generating 26 output spikes (when
simulated with iterative methods and very high temporal resolution).

7 Simulation Performance and Comparisons with Other Methods

With ED-LUT as described, the simulation time is essentially independent
of the network size, depending principally on the rate of events that need to
be processed. In other words, the simulation time depends on the network
activity, as illustrated in Figure 13.

This implementation allows, for instance, the simulation of 8 · 104 neu-
rons in real time with an average firing rate of 10 Hz on a 1.8 GHz Pentium
IV platform. This implies the computation at a rate of 8 · 105 spikes per sec-
ond as illustrated in Figure 13. Large numbers of synaptic connections of
single neurons are efficiently managed by the two-stage strategy described
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Figure 12: Output spike trains for different table sizes. The first two plots rep-
resent the excitatory and inhibitory spikes. The E plots are the output events
obtained with numerical iterative methods with different time step resolutions
(Euler method with 0.5 µs and with 2 µs). The other plots represent the outputs
generated with the event-driven scheme using different table sizes: small (S) of
500 K elements, medium (M) of 1000 K elements, and large (L) of 2000 K ele-
ments. The subscripts indicate which dimension resolution has been doubled
(or halved) from the medium (M) size table.

in Figure 2. The size of the event queue is affordable, even in simulations
with neurons with several thousands of synapses each.

The number of synapses that the simulation engine is able to handle
is limited by memory resources. Each neuron requires 60 bytes and each
synapse 52 bytes. Therefore, a simulation of 8 · 105 neurons consumes about
46 MB and a total of 62 · 106 connections consumes about 3 GB.

In order to illustrate the potential of the ED-LUT method, we have com-
pared the performance of this computation scheme with other methods (see
Table 2). We have implemented three alternative strategies:

� Time-driven iterative algorithm with a fixed time step (TD-FTS). We
have used the Runge-Kutta method with a fixed time step.

� Time-driven iterative algorithm with variable time step (TD-VTS). We
use the Runge-Kutta method with step doubling and the Richardson
extrapolation technique (Cartwright & Piro, 1992). In this case, the
computational accuracy is controlled by defining the error tolerance.
In this scheme, the iterative computations are done with time step
sizes that depend on the smoothness of the function. If a calculation
leads to an error estimation above the error tolerance, the time step
is reduced. If the error estimation is below this threshold, the time
step is doubled. This scheme is expected to be fast when only smooth
changes occur in the neuronal states (between input spikes). Although
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Figure 13: The time taken to simulate 1 second of network activity on a Pentium
IV (1.8 GHz) platform. Global activity represents the total number of spikes per
second in the network. The network size did not have a significant impact on the
time required. The time was almost linear with respect to network activity. The
horizontal grid represents the real-time simulation limit—1 second of simulation
requiring 1 second of computation.

this method is time driven, its computation speed depends on the cell
input in the sense that the simulation passes quickly through time
intervals without input activity, and when an input spike is received,
the computation approach reduces the time step to simulate accurately
the transient behavior of the cell. A similar simulation scheme with
either global or independent variable time step integration has been
adopted in NEURON (Hines & Carnevale, 2001; Lytton & Hines, 2005).

� Pseudoanalytical approximation (PAA) method. In this case we have
approximated the solution of the differential equations that govern
the cell. In this way we can adopt an event-driven scheme similar to
that proposed in Makino (2003) and Mattia and Del Giudice (2000),
in which the neuron behavior is described with analytical expres-
sions. As in Makino (2003), the membrane potential is calculated with
the analytical expression, and the firing time is calculated using an
iterative method based on Newton-Raphson. Since the differential
equations defining the cell behavior of our model have no analytical
solution, we need to approximate a four-dimensional function. Even
using advanced mathematical tools, this represents a hard task. The
accuracy of this approach depends significantly on how good this
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Table 2: Performance Evaluation of Different Methods: Accuracy versus Com-
puting Time Trade-Off.

Normalized van
Rossum Distance

Computing
Time (s)

Time step (s)
Time driven with 56 · 10−5 0.061 0.286

fixed time step 43 · 10−5 0.033 0.363
(TD-FTS) 34 · 10−5 0.017 0.462

Error tolerance
Time driven with 68 · 10−5 0.061 0.209

variable time step 18 · 10−5 0.032 0.275
(TD-VTS) 2 · 10−5 0.017 0.440

Pseudoanalytical
approximation 0.131 0.142
method (PAA)

Table size (106 samples)
Lookup-table-based 1.05 0.061 0.0066

event-driven 6.29 0.032 0.0074
scheme (ED-LUT) 39.32 0.017 0.0085

Note: We have focused on the computation of a single neuron with an input spike train
composed of 100 seconds of excitatory and inhibitory input spikes (average input rate
200 Hz) and 100 seconds of only excitatory input spikes (average input rate 10 Hz).
Both spike trains had a standard deviation of 0.2 in the input rate and random weights
(uniform distribution) in the interval [0,0.8] nS for the excitatory inputs and [0,1] nS for
the inhibitory inputs.

approximation is. In order to illustrate the complexity of the complete
cell behavior, it is worth mentioning that the expression used was
composed of 15 exponential functions. As shown in Table 2, even this
complex approximation does not provide sufficient accuracy, but we
have nevertheless used it in order to estimate the computation time
of this event-driven scheme.

� Event driven based on lookup tables (ED-LUT). This is our approach,
in which the transient response of the cell and the firing time of the
predicted events are computed off-line and stored in lookup tables.
During the simulations, each neuronal state update is performed by
taking the appropriate value from these supporting tables.

In order to determine the accuracy of the results, we obtained the “cor-
rect” output spike train using a time-driven scheme with a very short time
step. The accuracy of each method was then estimated by calculating the
van Rossum distance (van Rossum, 2001) between the obtained result and
“correct” spike train.

In all methods except the pseudoanalytical approach, the accuracy versus
computation time trade-off is managed with a single parameter (time step
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in TD-FTS, error tolerance in TD-VTS, and table size in ED-LUT). We have
chosen three values for these parameters that facilitate the comparison
between different methods (i.e., values that lead to similar accuracy values).
It is worth mentioning that all methods except the time-driven with fixed
time step require a computation time that depends on the activity of the
network.

Table 2 illustrates several points:

� The computing time using tables (ED-LUT) of very different sizes is
only slightly affected by the memory resource management units.

� The event-driven method based on analytical expressions is more than
an order of magnitude slower than ED-LUT (and has greater error).
This is caused by the complexity of the analytical expression and the
calculation of the firing time using the membrane potential expression
and applying the Newton-Raphson method.

� The ED-LUT method is about 50 times faster than the time-driven
schemes (with an input average activity of 105 Hz).

8 Discussion

We have implemented an event-driven network simulation scheme based
on precalculated neural characterization tables. The use of such tables offers
flexibility in the design of cell models while enabling rapid simulations of
large-scale networks. The main limitation of the technique arises from the
size of the tables for more complex neuronal models.

The aim of our method is to enable simulation of neural structures of
reasonable size, based on cells whose characteristics cannot be described by
simple analytical expressions. This is achieved by defining the neural dy-
namics using precalculated traces of their internal variables. The proposed
scheme efficiently splits the computational load into two different stages:

� Off-line neuronal model characterization. This preliminary stage re-
quires a systematic numerical calculation of the cell model in different
conditions to scan its dynamics. The goal of this stage is to build up
the neural characterization tables. This can be done by means of a
large numerical calculation and the use of detailed neural simulators
such as NEURON (Hines & Carnevale, 1997) or GENESIS (Bower &
Beeman, 1998). In principle, this could even be done by compiling
electrophysiological recordings (as described in section 6).

� Online event-driven simulation. The computation of the simulation
process jumps from one event to the next, updating the neuron states
according to precalculated neuron characterization tables and effi-
ciently managing newly produced events.
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The proposed scheme represents a simulation tool that is intermedi-
ate between the very detailed simulators, such as NEURON (Hines &
Carnevale, 1997) or GENESIS (Bower & Beeman, 1998), and the event-driven
simulation schemes based on simple analytically described cell dynamics
(Delorme et al., 1999; Delorme & Thorpe, 2003). The proposed scheme is
able to capture cell dynamics from detailed simulators and accelerate the
simulation of large-scale neural structures. The approach as implemented
here allows the simulation of 8 · 104 neurons with up to 6 · 107 connections
in real time with an average firing rate of 10 Hz on a 1.8 GHz Pentium IV
platform.

It is difficult to make a precise performance comparison between our
method and previous event-driven methods, since they are based on dif-
ferent neuron models. Nevertheless, we have evaluated different computa-
tional strategies to illustrate the potential of our approach (see section 7).
Mattia and Del Giudice (2000) used a cell model whose dynamics are de-
fined by simple analytical expressions, and Reutimann et al. (2003) extended
this approach by including stochastic dynamic. They avoided numerical
methods by using precalculated lookup tables. In this case, provided that the
reordering event structure is kept of reasonable size (in those approaches,
large, divergent connection trees may overload the spike reordering struc-
ture), the computation speed of these schemes is likely to be comparable to
our approach, since the evaluation of a simple analytical expression and a
lookup table consultation consume approximately the same time.

The method has been applied to simulations containing one-
compartment cell models with exponential synaptic conductances (with dif-
ferent time constants) approximating excitatory AMPA receptor-mediated
and GABAergic inhibitory synaptic inputs. The inclusion of new mecha-
nisms, such as voltage-dependent channels, is possible. However it would
require the inclusion of new neural variables and thus new table dimen-
sions. Although very complex models may eventually require lookup tables
that exceed current memory capacities, we have shown how even a modest
number of table dimensions can suffice to represent quite realistic neu-
ronal models. We have also evaluated several strategies for compressing
the tables in order to accommodate more complex models. Furthermore, in
appendix C, the proposed table-based methodology is used to simulate the
Hodgkin and Huxley model (1952).

The event-driven scheme could be used for multicompartment neuron
models, although each compartment imposes a requirement for additional
(one to three) dimensions in the largest lookup table. There are two ways
in which multicompartment neurons may be partially or approximately
represented in this scheme. After preliminary studies, using suitable sam-
pling schemes in order to achieve reasonable accuracy with a restricted
table size, we can manage lookup tables of reasonable accuracy with more
than seven dimensions. Therefore, we can add two extra dimensions to
enable two-compartment simulations. Quite rich cellular behavior could
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be supplied by this extension. More concretely, we plan the addition of a
second electrical compartment containing an inhibitory conductance. This
new compartment will represent the soma of a neuron, while the original
compartment (containing both excitatory and inhibitory conductances) will
represent the dendrites. The somatic voltage and inhibitory conductance
require two additional dimensions in the lookup table. With this model, it
would be possible to separate somatic and dendritic processing, as occurs
in hippocampal and cortical pyramidal cells, and implement the differen-
tial functions of somatic and dendritic inhibition (Pouille & Scanziani, 2001,
2004) (note that most neurons do not receive excitation to the soma).

If individual dendrites can be active and have independent computa-
tional functions (this is currently an open question), it may be possible to
approximate the dendrites and soma of a neuron as a kind of two-layer
network (Poirazi, Brannon, & Mel, 2003), in which dendrites are actually
represented in a manner similar to individual cells, with spikes that are
routed to the soma (another cell) in the standard manner.

We have embedded spike-driven synaptic plasticity mechanisms (see
appendix B) in the event-driven simulation scheme. For this purpose, we
have implemented learning rules approximated by exponential terms that
can be computed recursively using an intermediate variable. Short-term
dynamics (Mattia & Del Guidice, 2000) are also easy to include in the simu-
lations. They are considered important in the support of internal stimulus
representation (Amit, 1995; Amit & Brunel, 1997a, 1997b) and learning.

In summary, we have implemented, optimized, and evaluated an event-
driven network simulation scheme based on prior characterization of all
neuronal dynamics, allowing simulation of large networks to proceed ex-
tremely rapidly by replacing all function evaluations with table lookups.
Although very complex neuronal models would require unreasonably large
lookup tables, we have shown that careful optimization nevertheless per-
mits quite rich cellular models to be used. We believe ED-LUT will provide
a useful addition to available simulation tools.

This software package is currently being evaluated in the context of real-
time simulations in four labs in different institutions. We plan to extend its
use to other labs in the near future. The software is available on request from
the authors. Using this method, neural systems of reasonable complexity
are already being simulated in real time, in experiments related to robot
control by bio-inspired processing schemes (Boucheny, Carrillo, Ros, &
Coenen, 2005).

Appendix A: Event Data Structure

Complex data structures, such as balanced trees, can be used for this pur-
pose, offering good performance for both sorted and random-order input
streams. To prevent performance degradation, they optimize their structure
after each insertion or deletion. However, this rebalancing process adds



2984 E. Ros, R. Carrillo, E. Ortigosa, B. Barbour, and R. Agı́s

more complexity and additional computational overhead (Karlton, Fuller,
Scroggs, & Kaehler, 1976). Insertion and deletion of elements in these struc-
tures have a computational cost of O(log(N)), where N is the number of
events in the structure.

Another candidate data structure is the “skip list” (Pugh, 1990), but in
this instance, the cost of the worst case may not be O(log(N)) because the
insertion of an input stream can produce an unbalanced structure. Con-
sequently, the search time for a new insertion may be longer than in the
balanced trees. This structure offers optimal performance in searching spe-
cific elements. However, this is not needed in our computation scheme as
we need to extract only the first element (i.e., the next spike).

Finally, the heap data structure (priority queue) (Aho, Hopcroft, &
Ullman, 1974; Chowdhury & Kaykobad, 2001; Cormen, Lierson, & Rivest,
1990) offers a stable computational cost of O(log(N)) in inserting and delet-
ing elements. This is the best option as it does not require more memory
resources than the stored data. This is because it can be implemented as an
array, while the “balanced trees” and “skip lists” need further pointers or
additional memory resources.

For all of these methods, the basic operation of inserting an event costs
roughly O(log(N)), where N is the number of events in the event data
structure. Clearly, the smaller the data structure, the less time such insertions
will take. We explain in section 3 the two-stage event handling process we
have implemented in order to minimze event heap size while allowing
arbitrary divergences and latencies. Compared to a method using a single-
event data structure, we would expect the event insertions to be O(log(c))
quicker, where c is the average divergence (connectivity). In Figure 14, we
compare the use of one- and two-stage event handling within our simulation
scheme. Although event heap operations represent only part of the total
computation time, there is a clear benefit to using the two-stage process.
For divergences of up to 10,000, typical for recurrent cortical networks, a
better than twofold improvement of total computation time is observed.

Appendix B: Spike-Timing-Dependent Synaptic Plasticity

We have implemented Hebbian-like (Hebb, 1949) spike-driven learning
mechanisms (spike-timing-dependent plasticity, STDP). The implementa-
tion of such leaning rules is suitable because the simulation scheme is based
on the time labels of the different events. Spike-time-dependent learning
rules require comparison of the times of presynaptic spikes (propagated
events) with postsynaptic spikes (firing event). In principle, this requires
the trace of the processed presynaptic spikes during a time interval to be
kept in order for them to be accessible if postsynaptic spikes occur. Different
definite expressions can be used for the learning rule (Gerstner & Kistler,
2002). The weight change function has been approximated with exponential
expressions (see equation B.1) to accommodate the experimental results of
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Figure 14: Total computation time for processing an event (top) and size of the
event heap (bottom) for one-stage (dashed plot) and two-stage (continuous plot)
as functions of synaptic divergence.

Bi and Poo (1998). The computation of this learning rule, by means of ex-
ponential terms, facilitates its implementation in a recursive way, avoiding
the need to keep track of previous spikes:

f (s) =
{

apree−bpres i f s < 0
apostebposts i f s > 0 , (B.1)

where s = tpost − tpre represents the temporal delay between the postsy-
naptic spike and the presynaptic one. The aim function (Bi & Poo, 1998)
can be calculated with expression B.1 using the following parameters
(apre = 0.935, bpre = −0.075, apost = −0.326, bpost = −0.036). They have been
approximated using the Trust-region method (Conn, Gould, & Toint, 2000).

The learning rules are applied each time a cell both receives and fires
a spike. Each time a spike from cell i reaches a neuron j , the connection
weight (wij) is changed according to expression B.2, taking into account the
time since the last action potential (AP) in the postsynaptic neuron. This
time is represented by s in expression B.1:

wij ← wij + �wij
where
�wij = wij f (s).

(B.2)



2986 E. Ros, R. Carrillo, E. Ortigosa, B. Barbour, and R. Agı́s

Other postsynaptic spikes are not taken into account for the sake of sim-
plicity, but they can be included if necessary.

Each time cell j fires a spike, the learning rule of expression B.3 is applied,
taking into account all the presynaptic spikes received in a certain interval:

wij ← wij + �wij
where
�wij = ∑

k
wij f (sk).

(B.3)

In order to avoid keeping track of all the presynaptic spikes during the
learning window, we can rearrange the sum of expression B.3, since the
learning rule can be expressed in terms of exponentials B.1.

Each time the neuron fires a spike, the learning rule is applied in each
input connection, taking into account the previous spikes received through
these inputs. Therefore, each weight changes according to expression B.4:

wij ← wij +
N∑

k=1

wij f (sk) = wij

(
1 +

N∑
k=1

apreebpresk

)
, (B.4)

where k is iterated over all N presynaptic spikes from cell i received by the
neuron j in a time window. This expression can be rearranged as follows:

wij ← wij + wij
(
1 + apre

(
ebpres1

(
1 + ebpres2

(
. . .

(
1 + ebpresN

)))))
wij ← wij + wij

(
1 + apre

(
ebpres1 + ebpres1+bpres2 + . . . + ebpres1+...+bpresN

))
.(B.5)

This expression can be calculated recursively, accumulating all the multi-
plicative terms in an intermediate variable Aij, as indicated in expression
B.6. s is the time difference between the action potential of cell j and the
last presynaptic spike received from cell i :

Aij ← 1 + Aijebpres . (B.6)

The learning rule is applied recursively as indicated in expression B.7,
incorporating the last presynaptic spike. Note that the term Aij accumulates
the effect of all previous presynaptic spikes:

wij ← wij + �wij
where
�wij = wijapre

(
ebpres Aij

)
.

(B.7)
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Table 3: Hodgkin and Huxley Model (1952).

dVm
dt = (

I − gK · n4 · (Vm − VK ) − gNs · m3 · h · (Vm − VNa) − gl (Vm − Vl )
)/

Cm

dn
dt = φ · (αn · (1 − n) − βn · n) ; dm

dt = φ · (αm · (1 − m) − βm · m) ;
dh
dt = φ · (αh · (1 − h) − βh · h)

αn = 0.01·Vm+0.1
exp(0.1·Vm+1)−1 ; αm = 0.1·Vm+2.5

exp(0.1·Vm+2.5)−1 ; αh = 0.07 · exp (0.05 · Vm)

βn = 0.125 · exp (Vm/80) ; βm = 4 exp (Vm/18) ; βh = 1
exp(0.1·Vm+3)+1

φ = 3(T−6.3)/10

I = −gexc · (Vm − Eexc) − ginh · (
Vm − Einh

)
dgexc

dt = − gexc
τexc

; dginh
dt = − ginh

τinh

Note: The first expression describes the membrane potential evolution. The differ-
ential equations of n, m, and h govern the ionic currents. The last two expressions of
the table describe the input-driven currents and synaptic conductances. The param-
eters are the following: Cm = 1µ F/cm2, gK = 1 mS/cm2, gNa = 120 mS/cm2, gl =
0.3 mS/cm2, VNa = −115 mV, VK = 12 mV, Vl = −10.613 mV, and T = 6.3oC . The
parameters of the synaptic conductances are the following: Eexc = −65 mV, Einh =
15 mV, τexc = 0.5 ms, and τinh = 10 ms.

Appendix C: Hodgkin and Huxley Model

In order to further validate the simulation scheme, we have also compiled
into tables the Hodgkin and Huxley model (1952) and evaluated the accu-
racy obtained with the proposed table-based methodology. Table 3 shows
the differential expressions that define the neural model. We have also in-
cluded expressions for synaptic conductances.

Interfacing the explicit representation of the action potential to the event-
handling architecture, which is based on idealized instantaneous action
potentials, raises a couple of technical issues. The first is the choice of the
precise time point during the action potential that should correspond to
the idealized (propagated) event. This choice is arbitrary; we chose the
peak of the action potential. The second issue arises from the interaction
of this precise time point with discretization errors during updates close
to the peak of the action potential. As illustrated in Figure 15, a simple-
minded implementation can cause the duplication (or by an analogous
mechanism, omission) of action potentials, a significant error. This can
happen when an update is triggered by an input arriving just after the
peak of the action potential (and thus after the propagated event). Dis-
cretization errors can cause the prediction of the peak in the immediate
future, equivalent to a very slight shift to the right of the action poten-
tial waveform. Since we have identified the propagated event with the
peak, a duplicate action potential would be emitted. The frequency of such
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Figure 15: Discretization errors could allow an update shortly following an
action potential peak to predict the peak of the action potential in the immediate
future, leading to the emission of an erroneous duplicate spike. (The errors have
been magnified for illustrative purposes.)

errors depends on the discretization errors and thus the accuracy (size) of
the lookup tables and on the frequency of inputs near the action potential
peaks. These errors are likely to be quite rare, but as we now explain, they
can be prevented.

We now describe one possible solution (which we have implemented) to
this problem (see Figure 16). We define a “firing threshold” (θ f ; in practice,
−10 mV). This is quite distinct from the physiological threshold, which is
much more negative. If the membrane potential exceeds θ f , we consider
that an action potential will be propagated under all conditions. We exploit
this assumption by always predicting a propagated event if the membrane
potential is greater than θ f after the update, even if the “present” is after
the action potential peak (in this case, emission is immediate). This proce-
dure ensures that no action potentials are omitted, leaving the problem of
duplicates.

We also define a postemission time window. This extends from the time
of emission (usually the action potential peak) to the time the membrane



Event-Driven Stimulation Scheme for Spiking Neural Networks 2989

Figure 16: Prevention of erroneous spike omission and duplication. Once the
neuron exceeds θ f , a propagated event is ensured. In this range, updates that
cause the action potential peak to be skipped cause immediate emission. This
prevents action potential omission. Once the action potential is emitted (usually
at t f ), the time t f end is stored, and no predicted action potential emissions before
this time are accepted. This ensures that no spikes are propagated more than
once.

potential crosses another threshold voltage, θ f end . This time, t f end , is stored
in the source neuron when the action potential is emitted. Whenever new
inputs are processed, any predicted output event times are compared with
t f end and only those predicted after t f end are accepted. This procedure
eliminates the problem of duplicate action potentials.

In order to preserve the generality of this implementation, we chose to de-
fine these windows around the action potential peak by voltage level cross-
ings. In this way, the implementation will adapt automatically to changes
of action potential waveform (possibly resulting from parameter changes).
This choice entailed the construction of an additional large lookup table.
Simpler implementations based on fixed time windows could avoid this
requirement. However, the cost of the extra table was easily borne.
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Figure 17: Single neuron event-driven simulation of the Hodgkin and Huxley
model. Note that in order to facilitate the comparison of the plots with the ones
of the integrate-and-fire model (see Figure 9) the variable (V) has been calculated
using the following expression V = (−Vm − Vrest)/1000 with Vrest = 65 mV.

We have compiled the model into the following tables:
� One table of seven dimensions for the membrane potential, Vm =

f (�t, gexc 0, ginh 0, n0, m0, h0, V0).
� Three tables of seven dimensions for the variables driv-

ing ionic currents, n = f (�t, gexc 0, ginh 0, n0, m0, h0, V0), m =
f (�t, gexc 0, ginh 0, n0, m0, h0, V0), h = f (�t, gexc 0, ginh 0, n0, m0, h0, V0).

� Two tables of two dimensions for the conductances, gexc =
f (�t, gexc 0), ginh = f (�t, ginh 0).

� Two tables of six dimensions for the firing prediction, t f =
f (gexc, ginh, n0, m0, h0, V0) and t f end = f (gexc, ginh, n0, m0, h0, V0). With
θ f = −0.01 V and θ f end = −0.04 V.

An accurate simulation of this model (as shown in Figure 17) requires
approximately 6.15 Msamples (24.6 MB using 4-byte floating point data
representation) for each seven-dimension table. We use a different number
of samples for each dimension: �t(25), gexc 0(6), ginh 0(6), n0(8), m0(8), h0(8),
and V0(14). The table calculation and compilation stage of this model re-
quires approximately 4 minutes on a Pentium IV 1.8 Ghz.

Figure 17 shows an illustrative simulation of the Hodgkin and Huxley
model using the table-based event-driven scheme. Note that the simulation
engine is able to accurately jump from one marked instant (bottom plot) to
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the next one (according to either input or generated events). The membrane
potential evolution shown in the bottom plot has been calculated using a
numerical method (continuous plot) and the marks (placed onto the con-
tinuous trace) have been calculated using the event-driven approach. We
have also included the generated events using numerical calculation (ver-
tical continuous lines) and those generated by the table-based event-driven
approach (vertical dashed lines).

In order to evaluate the model accuracy, we have adopted the same
methodology described in section 5. We have simulated a single cell receiv-
ing an input spike train using numerical calculation to obtain a reference
output spike train. Then we have used the proposed table-based event-
driven approach to generate another output spike train. As in section 7,
the accuracy measurement is obtained calculating the van Rossum (2001)
distance between the reference and the event-driven output spike trains.
We have used a randomly generated test input spike train of average rate
300 Hz with a standard deviation of 0.7 and a uniform synaptic weight
distribution in the interval [0.1,1] mS/cm2. Using the table sizes mentioned
above, the van Rossum distance (with a time constant of 10 ms and the
normalization mentioned in section 6) between the reference spike train
and that obtained with the proposed method is 0.057 (in the same range
as the Rossum distances obtained when comparing other simpler neural
models in Table 2). In fact, in order to obtain a similar accuracy using Euler
numerical calculation, a time step shorter than 65 µs is required.
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