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de los ordenadores (!y haćıa alguno también!). A todos los demás que pasaron
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(escarabajo, ¿será este invierno?). Muchas gracias a los tres, os quiero!!

I would also like to thank Dr. Jason Evans and the UNSW for giving me the

opportunity to continue researching in what I am passionate about and meet a

new country.





Perhaps some day in the dim future it will be possible to advance the

computations faster than the weather advances and at a cost less than

the saving to mankind due to the information gained. But that is a

dream.

Lewis F. Richardson, 1922





Abstract

Global projections of climate indicate that substantial changes might occur

in the future as a consequence of global warming. Such changes would have im-

portant environmental, social and economical implications. However, the climate

response to global warming strongly varies from region to region and thus it re-

quires to be studied at scales that General Circulation Models (GCMs) cannot

resolve.

In this Thesis, the Weather Research and Forecasting (WRF) model was se-

lected to downscale GCMs information and generate physically-consistent high-

resolution projections of climate change scenarios over the Iberian Peninsula (IP).

A set of climate simulations over the IP were performed at 10-km resolution to ex-

plore the impact of global warming on precipitation and temperature at regional

scales. At this spatial resolution, the model is able to incorporate the effects of

topographical features that are know be key factors in the spatial distribution

of the climate regimes and the areas within the IP that might be subjected to

different changes can be identified.

Particular attention was paid to the model configuration and its evaluation

with respect to the present climate. Initially, eight decadal (1990-1999) simula-

tions were completed to conduct a sensitivity test and determine which combina-

tion of physics options better describe the Iberian climate features. The model

outputs were compared with observations using an objective multi-step region-

alization technique to circumvent the spatial scale disparity between the model

estimates and the site-specific observations. No combination was found to out-

performs the others under all circumstances and not all the physics schemes were

found to be equally decisive. In fact, a compromise solution had to be selected

bearing in mind factors such as the performance with respect to the different

variables in the different regions, or the benefit gained with higher-complexity

schemes.

The model evaluation consisted in the assessment of the model ability to simu-

late present climate in terms of precipitation and temperature using the Spain02

gridded dataset to compare with. Three different present climate (1970-1999)



simulations driven by three boundary data (ERA-40, ECHAM5 and CCSM3.0)

covering the entire IP were completed to elucidate whether the model is suitable

to study the Iberian climate. The validation reveals that, in spite of some non-

negligible errors, the model is able to reproduce most of the main features of the

Iberian precipitation and temperature. In particular, WRF shows particularly

good agreement with the observations in terms of the probability distributions

and the upper-percentiles.

Finally, the high-resolution climate change projections were obtained from

an ensemble of future climate (2070-2099) simulations over the IP. In particu-

lar, three emissions scenarios (B1, A1B and A2) and two GCMs (ECHAM5 and

CCSM3.0) were employed to reduce the uncertainty associated to the boundary

conditions. The model estimates for temperature and precipitation were com-

pared with those from the present climate simulations and the projected changes

were analyzed. Not only the long-term means were examined, but also the high-

order statistics, including different extreme indices to characterize the tails of the

distributions.

The high-resolution projections of climate change scenarios over the Iberian

Peninsula suggests that substantial decreases in mean precipitation might be

expected over IP, but their magnitude is projected to be unevenly distributed

across the IP. However, the precipitation extremes events might not be overall

expected to change significantly. On the other hand, temperature increases are

very likely to occur over the entire IP, particularly for maximum temperature

extremes. The most affected areas by precipitation changes are projected to be

the mountainous regions, whereas those affected by temperature increases cover

large areas in the interior of the IP.

This Thesis represents a valuable contribution to the understanding of global

warming repercussions on the Iberian climate. The spatial resolution employed in

the simulations enabled the generation of climate change projections with a degree

of detail that is unprecedented in the Iberian Peninsula. Furthermore, this study

provides a comprehensive description of the projected changes at very different

timescales, including the extreme events, which might be of greater impact than

the mean climatic changes.
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Chapter 1

Introduction

The main objective of this Thesis is to create high-resolution projections of

climate change scenarios in the Iberian Peninsula and determine the impact of

Global Warming on its climate. In order to achieve this goal, large-scale informa-

tion is downscaled using a mesoscale model. Potential changes in both the mean

and extreme values of precipitation and temperature are analyzed and discussed.

Additionally, an appropriate configuration of the model for the particular region

of interest is put forward, including a suitable combination of parameterizations.

A brief introduction to the problem will shed light on the obstacles and chal-

lenges that are found in the process of generating high-resolution climate change

information as well as place this study within the context of the state-of-the-art

research.

1.1 The Climate Change at human scales

We are already used to see pictures of glaciers that have reduced their exten-

sion dramatically, deserts that before were wetlands or striking images of floods

in very diverse places. Probably as a consequence of them, the population is be-

coming aware of the impact that potential changes in climate might have in their

lives, the media are increasingly devoting attention to the issue and governments

all over the world are placing the mitigation and adaptation policies at the top

of their agendas. However, these images do not constitute any scientific evidence

that climate change is coming about, they are not statistically significant and

they cannot even be regarded as a confirmation of a change. Indeed, consistent

and statistically significant information is rather necessary to reach any robust

conclusion on the matter. Despite the fact that there are still uncertainties as-
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sociated to sources and mechanisms of climate change, studies in the past years

have permitted to affirm that the atmosphere has been modified by humans and

the effects have been observed in a range of variables (IPCC, 2007). In fact,

the scientists widely agree that a change in the climate is occurring and human

activity is at least partly responsible for it. Nevertheless, more information at

finer scales and preciser knowledge of certain processes in the atmosphere are yet

necessary to completely understand what is going on.

The climate change can overall be explained in terms of a global energy bal-

ance that is being altered through changes in the atmospheric concentration of

greenhouse gases and aerosols, natural variations of solar radiation and modifica-

tion of the surface albedo. These factors do not contribute to the radiative forcing

in the same direction, but all together displace the radiation balance towards in-

coming positive values, leading to global warming. However, the information

about global changes is somehow incomplete if the impact on ecosystems and

population is not examined. But this has to be approached from a regional point

of view. The primary question that arises out of this issue is whether the climate

response to global warming varies from region to region.

Bearing in mind that the earth’s climate diversity is extraordinary, it might

also be expected that the projected changes in climate will vary across the globe.

For example, the alteration of general circulation can produce increases in pre-

cipitation over certain areas whereas others might suffer from rainfall diminution

(Fig. 1.1), as it is predicted to happen in Europe, where the strengthening of the

North Atlantic Oscillation (NAO) positive phase induces a poleward displace-

ment of the storm tracks. Furthermore, local features such as the orographic

forcing, the latitude or the distance to oceans are predominant factors in defining

the climate and its evolution under climate change conditions, since they might

enhance or diminish global warming effects. For instance, the oceans thermal in-

ertia might cause that the interiors of continents warm more than coastal areas.

But even more, many characteristics of climate are essentially local and unevenly

distributed, like extreme events, that usually depend on feedbacks between pro-

cesses taking place at regional scales. Therefore, estimations of climate change

projections at regional scales are crucial to determine its repercussion for both

the environment and human life.

General Circulation Models (GCMs) are currently the prime source of infor-

mation for future climate projections and they are extremely useful to provide

comprehensive knowledge of large-scale climate and general circulation. However

they are still unable to capture local features of climate and produce detailed



1.2 Downscaling: looking closer the climate change 3

Figure 1.1: Precipitation changes projected (in %) for the period 2090-2099 with
respect to 1980-1999 and based on the SRES A1B scenario. December to February
means on the left and June to August means on the right. Obtained from IPCC AR4.
Figure SPM.7.

information about climate change impact on regional scales due to their coarse

resolution (∼ 1.0◦ by 1.0◦) and their inadequate model physics to reproduce small-

scale phenomena (although recent GCMs are being run at finer resolutions and

employing improved parameterizations). Furthermore, GCMs grid points cannot

be interpreted as representative of the place where they are located (von Storch

et al., 1993) since the grid-box averages are often very different from local climate

within the area (Good and Lowe, 2006) and therefore, it is inadequate to infer

fine-scale results from those of large-area average (Christensen et al., 2007a). As a

consequence, some decisive aspects of climate change, such as the extreme events,

are absolutely impossible to address with current GCMs. An increase in GCMs

resolution shoots up computational costs, but climate modeling is already one the

research fields that consume more computational resources and many of the most

powerful machines in the world are dedicated to climate simulations. Therefore,

computational costs associated to spatial resolution increase in GCMs are still

prohibitive and alternative approaches, encompassed in the term downscaling,

have been put forward.

1.2 Downscaling: looking closer the climate change

Since General Circulations fail to describe local features of climate, dowsncal-

ing was proposed to overcome the problem of increasing resolution at reasonable

computational costs. Different types of downscaling have been suggested in the

last decades, but they can be roughly classified in two groups, statistical (or

experimental) and dynamical.
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Statistical downscaling (von Storch et al., 1993; Wilby et al., 1999) is based on

robust empirical relationships between large-scale variables (predictors) and local

variables (predictands). These relationships are determined using observational

records and are then projected to the future, retrieving local scale information

from GCMs. This technique has been widely employed with remarkable results

(Boé et al., 2007; Huth, 1999; von Storch et al., 1993; Wilby and Wigley, 1997)

and the computational costs associated are considerably low. However, since

the relationships refer to particular locations, no information can be obtained

beyond the places where the observations are available. Furthermore, finding

an appropriate relationship is not straightforward and sometimes it is not even

possible to determine a solid connection between large-scale and local variables.

On the other hand, dynamical downscaling lies in finding an approximate

solution to the equations of the atmosphere using a physical model at higher

resolutions than the GCM, but imposing some restrictions. Different methods

within the dynamical downscaling technique can be mentioned: 1) Those that still

employ a GCM but increasing the resolution over a particular region by stretching

the grid (Déqué and Piedelievre, 1995) or reorienting the grid pole (Wang et al.,

1999), or during a particular short-time period (time slice technique, Cubasch

et al., 1995), and 2) those that use Regional Climate Models (Giorgi and Mearns,

1999; McGregor, 1997).

The Regional Climate Models (RCMs) work by increasing GCMs resolution

in a limited region of interest, numerically solving the simplifed governing equa-

tions over a finer grid with parameterizations adapted to the new spatial scale.

This results in a detailed description of the orography (Fig. 1.2) and thus the

processes at regional scales are likely to be captured by the model. Since RCMs

are confined to a particular area, they somehow need to ‘know what is happening

outside’ and hence they require the boundary conditions to be specified, which

are usually obtained from GCM outputs or observational analysis. Moreover,

GCMs employ a single configuration for the entire globe that is not necessarily

the most appropriate for every region, whereas RCMs also permit to adapt their

configuration to the region under survey, which might represent a considerable

improvement over the GCMs.

It has been traditionally argued in favor of dynamical downscaling that it

is physically consistent and thus can be used to project future climates, while

statistical downscaling is exclusively based on empirical relationships that might

not take place in the future. Nevertheless, this statement does not take into

account that physical models are also supported by parameterizations, which
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Figure 1.2: Examples of topography from a GCM model, WRF at 10 km and an image
from Satellite.

are semi-empirical approximations of reality, and thereby prone to changes in

the future. Both statistical and dynamical methods have their own advantages

and shortcomings, and their choice depends directly on the study that will be

conducted. Statistical downscaling can be applied not only to meteorological

variables but also to other variables such as the river flow levels or the annual

crops. However, the statistical downscaling results are constrained to predictands

and locations with available measurements. Conversely, dynamical downscaling

is able to provide a number of climate variables all through the domains, but at

elevated computational costs. A positive consequence of having a broad range of

variables at our disposal is their potential use as input data to local-scale models

such as the hydrological ones, which constitutes an additional benefit for climate

studies.

This study aims at meteorological variables over a wide area and results are de-

sired in the entire region, including places with no observational records. Further

research regarding river flow levels are also planned for the future. Therefore, dy-

namical downscaling using a Regional Climate Model has been selected to create

high-resolution climate change scenarios projections over the Iberian Peninsula

(IP).
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1.3 The Iberian Peninsula

This survey presents a series of high-resolution climate change projections in

the Iberian Peninsula1. This region was selected due to obvious personal reasons:

it is the place we live in and therefore any potential change in the climate would

directly impact our lives. But there are also several objective motivations.

In order to put the motivations into context, the main features of Iberian

region and its climate are described. The IP is located between 36◦N-44◦N and

3◦E-10◦W (Fig. 1.3) and it is characterized by high intra-annual variability, which

is typical of the midlatitudes. The large-scale precipitation is mainly modulated

by the position of the Azores anticyclone that acts as a blocking structure in the

summer, preventing the low pressure systems from reaching the IP, and bringing

hot and dry weather. In fact, almost no rainfall is recorded during these months

in the southern half of the Peninsula. Conversely, from autumn to spring, the

Azores high moves toward the tropics accompanied by a southward displacement

of the jet-stream letting the low pressure systems get into the IP, resulting in wet-

ter conditions. Besides the large-scale precipitation, convective processes are also

important (particularly along the east coast) and produce very confined down-

pours that characterize the rainfall in this area. The region is surrounded by

the Atlantic Ocean to the west, the European continent to the northeast, the

Mediterranean Sea to the east and the Sahara desert to the south. Depending

on the origin of the air masses, their temperature and water content vary dra-

matically, which represents an important component of local variability not only

for precipitation but also for temperature. The wide range of values that tem-

perature reaches in the IP is indeed a distinct attribute of its climate. Surface

extremes in the interior and in the main river basins yield very high temperatures

during the summer (among the highest in Europe), whereas very low records are

registered in the elevated mountainous areas in the winter.

Topographical features are also crucial in the configuration of climate di-

visions, since different high mountain ranges are distributed across the region

working as barriers and passageways determining local climates (see Fig. 1.4 as

a reference of the main topographical features). Actually, the IP comprises a

1To be precise, the Thesis focuses on Peninsular Spain and Balearic Islands. The terms
Spain and IP are here used in the same way to refer this region for the sake of brevity. The
Canary Islands are omitted because their inclusion would imply much larger domains and thus
unaffordable computational costs. Although the model is here evaluated only over the Spanish
territory of the IP and hence the model performance over Portugal is not examined, the climate
change projections maps show the results for Portugal too. These results are not analyzed in
the text and their validity is definitely limited.
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Figure 1.3: Location of the region of interest: the IP (at the center) and the surround-
ing areas

very complex orography with small but crucial geographical features such as the

Strait of Gibraltar or localized mountainous systems that are completely missed

in GCMs. These topographical elements exert strong influence on the climate

patterns in the region and their appropriate inclusion in the model is pivotal

to adequately describe the climate. The use of RCMs at high resolutions can

thus provide an full picture of both the local climate and the impact of climate

change on the region. A complex-topography region also represents an ideal sce-

nario to test the model capabilities under unfavorable conditions and constitutes

a challenge in terms of the model validity.

Furthermore, the IP is located in the western Mediterranean Sea, a region that

is expected to be among those most affected by climate change in the globe in

terms of both precipitation and summer temperature (Christensen et al., 2007a;
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Figure 1.4: Main topographical features of the Iberian Peninsula

Giorgi, 2006a). These changes have been proven to depend not only on the

atmospheric circulation but also can be attributed to land-surface processes (van

Ulden et al., 2007), that in principle should be much better described at higher

resolutions.

Moreover, tourism and agriculture are the two main pillars of the economy

of the Iberian countries and they directly hinge on weather conditions. On that

account, a detailed and accurate assessment of possible future changes, which can

be obtained using RCMs, is essential to design efficient adaptation policies.

1.4 Overview of regional climate modeling research and

challenges

The simulation of the atmosphere by numerical methods is by no means a

new idea. In the early 20th Century, Vilhem Bjerknes (1862-1951) proposed

a set of equations to describe the atmosphere. Bjerknes was convinced that

meteorology could become an exact science if two conditions were fulfilled: 1) a

sufficiently accurate knowledge of the state of the atmosphere at the initial time

and 2) a sufficiently accurate knowledge of the laws according to which one state
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of the atmosphere develops from another. His major contribution refers to the

latter, proposing the so-called primitive equations to describe the atmosphere.

Unfortunately, they constitute a non-linear system of partial differential equations

that is yet to be analytically resolved and only numerical approximation of the

solution are at our disposal.

Richardson (1922) attempted the first numerical approximation of the solution

by hand and remained completely disappointed with the results, however his work

was absolutely remarkable. It was only in the second half of the century that

the first realistic solutions were obtained thanks to computer development. The

earliest simulations just spread over few hours addressing the problem of weather

forecasting and the technique was hence called Numerical Weather Prediction

(NWP).

A regional climate simulation is at its core a prolonged numerical weather pre-

diction. Nevertheless, the community skepticism about long-term simulations due

to possible errors generated at the boundaries and the computational limitations

initially hindered longer simulations. The first regional simulation that was run in

climate mode’ was performed in the late 1980s (Dickinson et al., 1989). Although

it could not be formally considered a climate run because it barely spanned some

days, the authors already stressed the importance of longer integrations so that

the model becomes independent of the initial conditions. Afterwards, some other

one-month simulations were completed (Giorgi, 1990; Giorgi and Bates, 1989) to

evaluate the impact of initial values on different parameters. Regardless of the

period they covered, these experiments laid the foundations of nested regional

modeling techniques derived from numerical weather prediction.

The earliest runs extending longer periods were the perpetual January simu-

lations (McGregor and Walsh, 1993), that consisted of several-month integrations

maintaining a January typical forcing. Seasonal-varying simulations that covered

various years started in the mid 1990s (Déqué and Piedelievre, 1995; Giorgi et al.,

1994; Jones et al., 1995) and continued all through the decade increasing both

the period studied and the resolution (Jones et al., 1997; Laprise et al., 1998;

McGregor et al., 1998; Räisänen et al., 1999). Not only the resolution was im-

proved in the successive simulations, but also the formulation of the models was

gaining in complexity and they were progressively including processes that were

omitted before. Computational development also contributed in a decisive way to

increase the model complexity and multiply the number of simulations that were

carried out over diverse regions and with different purposes in mind (Beniston

et al., 2007; Castro et al., 2005; Correia et al., 2008; Jiménez et al., 2010; Solman
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et al., 2008).

In the recent years, two remarkable projects focused on determining climate

change impact on Europe using regional climate models, the PRUDENCE project

(Christensen et al., 2007c) and the ENSEMBLES project (van der Linden and

Mithchell, 2009), produced very valuable results. Other projects such as the

CLARIS project (Boulanger et al., 2010), the RMIP (Fu et al., 2005) or the

NARCCAP (Mearns et al., 2005) have concentrated on different regions. An

ambitious project called CORDEX1 is currently in progress and its objective is to

coordinate downscaling experiments all over the globe, including both statistical

and dynamical methodologies.

The reader interested in regional climate modeling is referred to Giorgi (2006b)

as an excellent review that details both the status and the perspectives of the

topic.

Despite the development of the models and the extraordinary evolution of the

computing power, the models have to be evaluated to ascertain their potentials,

which still remains a major challenge for regional modelers. Prior to make any

use of RCMs for high-resolution projections, it is crucial that model estimates

are validated with observational data so uncertainties can be elucidated. Vali-

dation process permits not only to assess the model reliability at regional scales,

but also to determine the value-added information with respect to GCMs. In

fact, the model evaluation is considered now as a compulsory step before future

projections are analyzed and several works are about this subject (Antic et al.,

2006; Christensen et al., 2007b; Evans and McCabe, 2010; Kusaka et al., 2010).

However, validation methodologies improvement was pointed out in IPCC TAR

(Giorgi et al., 2001) as an important target for future climate research and re-

mains open to discussion until today.

The major problem is related to the scale disparity between model estimates

(grid average) and site-specific measurements that hamper any direct comparison,

since they do not represent exactly the same. This subject is known as the repre-

sentation error and embodies an important challenge in the model evaluation. In

order to overcome this problem, different strategies have been put forward such

as the use of gridded observations. Nonetheless, the existing gridded observations

are frequently created using networks that are to sparse over certain areas and

therefore other methodologies have been proposed. According to Göber et al.

(2008), the most appropriate way of validating the model in these cases is to

perform a sort of upscaling of both the model estimates and the observations

1Available information in http://wcrp.ipsl.jussieu.fr/RCD CORDEX.html
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in order to reduce them to the same spatial scale. For instance, regionalization

procedures have been suggested within the framework of RCM evaluation for dif-

ferent variables (Caldwell et al., 2009; Jiménez et al., 2008; Kostopoulou et al.,

2009). The lack of consensual and systematic methodologies calls for objective

techniques to asses the models competence and hence produce reliable climate

change projections.

The evaluation is also closely related to an appropriate configuration of the

model. Modern RCMs provide a large number of options to adapt the integrations

to particular applications or regions. The exploration of different configurations

and their performance is too often disregarded. For example the spread of the

results produced with the same model using varied physics schemes can be as large

as if completely different models are employed. Therefore, a thorough sensitivity

test to model configuration is of paramount importance to make the most of our

model.

The comprehension of sources and impacts of climate change has been cap-

turing scientific attention in the last decades and regional modeling has become

a useful tool to go into these aspects in more depth, being currently at the fore-

front of climate research. Regional projections have been recently carried out for

many regions (Anav et al., 2010; Caldwell et al., 2009; Nuñez et al., 2008; Paeth

et al., 2009; Salathé Jr et al., 2010), but there are still areas that remain to be

explored or require additional studies due to their peculiarities. Indeed, the IPCC

AR4 (Christensen et al., 2007a) indicated that downscaled projections adapted

to specific needs are necessary and that further insight in climate features deter-

mined by topography is required because it is yet unclear how climate change

will manifest at fine spatial scales.

1.5 Objectives and structure of the Thesis

This Thesis aims to generate high-resolution projections of climate change sce-

narios over the Iberian Peninsula to characterize possible future changes in both

temperature and precipitation. To that purpose, GCMs outputs are dynamically

downscaled using a mesoscale model to provide information at fine scales that

otherwise cannot be explored.

In order to produce reliable projections of climate change, the model has to

be adapted to the region under survey and thus an appropriate configuration

suited to the region peculiarities has to be selected. To complete such a task, the

sensitivity of the model results to different parameterizations is examined form
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a climate point of view. Namely, a set of several-year simulations are employed

to determine which combination of physics schemes better describes the climate

features of the IP. To be specific, a subregion (southern Spain) has been chosen to

conduct these sensitivity tests bearing in mind its particular complexity in terms

of topography and climate variability.

Determining which configuration suits better the study characteristics (e.g.

region, timescales, variables) is a remarkable challenge. The issue has been ad-

dressed through different timescales and using an observational dataset to com-

pare with the model outputs. Such a comparison is hampered by certain obstacles

that are attempted to overcome through a regionalization methodology.

The classification of climate regimes into divisions has been usually done via

subjective procedures. A methodology that removes as much as possible the

subjectivity associated to regionalization is here proposed. The delimitation of

affinity areas is extremely useful not only for regional climate modeling but for

many other fields (e.g. agriculture, stockbreeding, studies of wildlife habitats and

migration, renewable energies).

Furthermore, the reliability of future projections are highly dependent on

the model ability to reproduce present climate. Simulations that span climate

reference periods (30 years) have been completed to assess the model agreement

with present climate precipitation and temperature. A in-depth analysis of the

model is carried out to evaluate its potentials to describe not only long-term

means but also daily values or high-order statistics such as the extreme events.

These different stages make possible to generate high-resolution projections

of climate change scenarios over the IP that help address possible changes in

the annual, seasonal and monthly means. In addition, the probability of occur-

rence of particular events in the future is also analyzed. Long-term information

can be inferred from GCMs up to a certain degree, but the projections of daily

events, and more specifically the extreme events, require further tools such as the

dynamical downscaling.

The main purpose of this Thesis is to provide climate change information at

both spatial and temporal scales that are crucial to explore the impact of global

warming on the people and the environment. The timescales that are explored

will shed light on changes in both the mean climate and low frequency events

(i.e., heavy rainfall, droughts, heat waves). The fine spatial scales enables the

study of regional climate by describing small features of the region with major

influence in the local circulation.

The outline of this Thesis is as follows: Chapter 2 details the principles of
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dynamical downscaling and features of the mesoscale model adopted here. In

Chapter 3, the observational datasets are described together with the regionaliza-

tion methodology. Chapter 4 describes the configuration of the mesoscale model

chosen to perform the climate runs. Chapter 5 is devoted to the model sensi-

tivity tests and the appropriate combination of physics schemes for this study.

The model ability to reproduce present climate features, namely the model eval-

uation is analyzed in Chapter 6. Chapter 7 provides a discussion on the future

climate simulation results and the projected changes for temperature and precip-

itation. Finally, the last chapter summarizes the most remarkable results and the

main conclusions of this study. Appendix A describes the mathematical details

of the Principal Components Analysis. Appendix B provides the definition of the

statistical parameters used in throughout the text.





Chapter 2

Dynamical Downscaling: the

Mesoscale Model

Outside are playing fields, houses, mountains and lakes, for
it was thought that those who compute the weather should
breathe of it freely

Weather Prediction by Numerical Processes
Lewis Fry Richardson

Dynamical downscaling by way of a RCM has been adopted to produce high-

resolution climate change information over the IP. In particular, the Weather

Research and Forecasting (WRF) model has been selected to perform the climate

runs. This Chapter explains the fundamentals of dynamical downscaling and

then describes the WRF model.

2.1 Dynamical Downscaling using a Mesoscale Model

A mesoscale model is a numerical system that provides an approximate solu-

tion to the simplified primitive equations. The model estimates are limited to a

region defined by the domain and thus the lateral boundary conditions (LBCs)

must be specified at its borders, because otherwise the equations are not resolv-

able. This procedure is called nesting and is the starting point of dynamical

downscaling by way of a regional model.

The underlying idea of dynamical downscaling using a mesoscale model is

certainly not new. The problem of weather prediction was already addressed

by solving the governing equations of the atmosphere with satisfactory results.
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Nonetheless, the use of mesoscale models for long-term simulations entails some

conceptual issues that must be examined in order to design the climate experi-

ments adequately and hence produce reliable climate change projections.

2.1.1 Conceptual issues

In principle, a model that produces good results for short-range forecasts

should also perform accurately for longer periods. However, the question is not

that simple since the strategy of nesting a RCM within large-scale data is not

mathematically well-posed. Namely, it does not exist a unique solution because

the right conditions cannot be exactly determined. Ideally, we should have at our

disposal a continuous and perfect set of boundary data to solve the equations, so

that the problem would be closed and well-posed. Unfortunately, both the equa-

tions and the boundary conditions are discretized in the framework of regional

modeling. Thereby, the information used to drive a regional model is incomplete

and thus the problem is under-specified. To avoid the incompleteness of informa-

tion, the approach is that of providing a larger number of variables that make the

problem to be over-specified. If the boundary data would be error-free, then the

over-specification would not be a major obstacle, because all conditions would

still point to the same unique solution. But this is not true. Boundary condition

datasets are subject to errors and hence they are not completely consistent.

Over-specification might thus be an added source of errors in the form of

spurious waves that propagate into the domain (Staniforth, 1997). If the LBCs

are over-specified and imposed in a ‘hard’ manner, there might be discrepancies at

the domain borders that are reflected back and interfere with the model dynamics.

For long-term simulations, this noise might swamp the whole domain and become

increasingly important. Davies (1976) suggested a buffer zone at the domain

borders where the model results are relaxed towards the driving fields and thus

the discrepancies are damped. This technique successfully deals with the problem

at small scales, but it does not handle larger scales correctly and long waves do

reflect and alter the circulation.

An efficient solution has been proposed to manage spurious long waves and

involves the adjustment of the model results all over the domain but only at larger

scales, typically over 1000 km. The so-called spectral nudging (von Storch et al.,

2000; Waldron et al., 1996) reduces the nesting errors and also make regional

climate modeling a real downscaling procedure rather than a boundary value

problem (Rummukainen, 2010). Furthermore spectral nudging provides interest-
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ing consistency between large-scale defined by the GCM (or the observational

reanalysis) and the regional-scale produced by the mesoscale model.

An additional aspect of dynamical downscaling that has to be considered

carefully is the domain design. The domain size and location have been proven

to have an effect on the model results that is not negligible at all (Jones et al.,

1995; Leduc and Laprise, 2009; Liang et al., 2001; Seth and Giorgi, 1998). The

quality of the observational analysis and the performance of the GCMs are not

equal all over the globe, and thus depending on the placement of the domain,

the accuracy of the boundary data varies. Furthermore, the domains borders

should not be placed over major topographical features such as mountain ranges

because they are described at different level of detail by the RCM and the GCM,

and undesired artifacts can be originated. The size of the domain is a matter

of discussion too. It should be large enough to allow the model to develop its

own internal variability but not too extensive as to deviate in excess from the

boundary data, since it might produce imbalances. The domain size is also strictly

connected to computational costs and thereby it must be accommodated to the

available resources.

Although the domain design implies some caveats, such as the location of

the borders over homogeneous areas, spectral nudging also helps to lessen the

dependence of the model on the size, location and geometry of the domains

(Mı́guez-Macho et al., 2004). Despite the advantages of spectral nudging, it is still

argued that the nudged RCMs are not able to develop their own dynamics and

might be excessively forced by non-perfect boundary data. Therefore, whether

to use spectral nudging is still controversial and the decision often depends on

the particular application and the modeler criterium. Applying a weak nudging

is a good approach to take advantage of the technique and retain RCMs internal

variability.

The boundary data also deserves attention since they represent the response

of the climate system to large scale forcing and thus provide the framework for

RCMs. If the driving data do not adequately describe the main features of general

circulation then it cannot be expected that the regional model corrects those

errors, although some correction might be actually attained. On that account,

the potential deficiencies of the boundary conditions is a prime driver of dynamical

downscaling biases. Nonetheless, not only the quality of the LBCs is determining,

but also the LBCs updating frequency and the difference between GCM and RCM

resolutions play an important role.

Nesting formulation requires boundary conditions at every time step, but the
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GCMs or observational analysis are only available at certain frequencies. An com-

mon practice is that of interpolate the LBCs in time to feed the regional model.

Consequently, the updating frequency must be high enough to roughly reproduce

the daily cycle and also capture the large-scale systems that impinge the RCM

domain. Denis et al. (2002) addressed both the frequency and resolution differ-

ence issues. They showed that a 6-hour frequency suffices to correctly drive the

model and no significant benefit was gained with higher frequencies. Regarding

the resolution ‘jump’, they came to the conclusion that the resolution difference

ratio should not exceed a value of 10 or else spatial inconsistencies could arises at

the borders. For larger ratios, multiple nesting technique is recommended. Mul-

tiple nesting consists in using two or more domains arranged in a sort of cascade

with increasing spatial resolution. Therefore, the inner domains obtains its LBC

from the immediately coarser domain rather than directly from the GCM (Fig.

2.1).

Figure 2.1: Example of multiple nesting composed by two RCM domains (finer square
grids of black dots) of 10 and 30 km respectively, and a ∼ 1.4◦by 1.4◦GCM grid (coarse
mesh of red dots).
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No matter the resolution of a model, there are always processes that occur at

sub-grid scales and have to be somehow included in the formulation. They are

resolved using semi-empirical approximations called parameterizations that could

be considered models themselves. The consistency in the parameterizations be-

tween the GCM and the RCM used to be a matter of dispute. The use of different

schemes might cause imbalances at the borders because the sub-grid phenomena

are represented dissimilarly. However, it can also been argued that even the same

parameterization schemes perform very differently at varying resolutions, as it

happens to convective schemes. In fact, one of the RCMs advantages is the pos-

sibility to use physics packages optimized to a particular region and resolution.

In any case, the parameterization compatibility issue has been revealed to be less

crucial than it was thought (Déqué et al., 2007).

Finally, the evolution of the model climatology is the result of a dynamical

equilibrium between the boundary conditions and the model dynamics. In addi-

tion, regional climate modeling aims to study the climate signal regardless of the

initial conditions. Despite the fact that the climate system is essentially chaotic

and thus minor perturbations in the initial state might lead to different final

states, long-term simulations have been proven to be insensitive to those pertur-

bations after approximately fifteen days (Giorgi and Bi, 2000). The time required

by the model to achieve an equilibrium and forget about the initial conditions is

called spin-up. The choice of an appropriate length of the spin-up depends on

the applications that the model will be used to, since different variables have very

different inertias (i.e atmospheric fields reach a balance after few days whereas

soil variables usually needs up to months to attain an equilibrium). If compu-

tational resources permits so, an extended and conservative spin-up period is

then preferable, particularly when GCMs are employed as boundary conditions

because many of them do not provide enough soil variables and the model has to

be initialized with external datasets (see below in the model configuration, Sec.

4.2.2).

2.1.2 Dynamical downscaling uncertainties

Climate change studies are affected by a number of uncertainties that consti-

tute a important limitation because there is no way to tell which projection is

more probable. In global models, the major sources of uncertainties are related

to the emissions scenarios, the model formulation and the natural variability of

the climate. Other sources are also decisive but hardly to determine such as the
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non-linearity of the climate system, the unexplored feedbacks, the long-term re-

sponses or unpredictable phenomena (e.g., vulcanoes). The downscaling of GCM

information using a RCM introduces an additional source related to the tech-

nique itself. Namely, different model formulations, parameterizations or nesting

methodologies might produce different results. Regional climate models are thus

afflicted by both their own uncertainties and those inherited from GCMs, but

they cannot be considered separately since the uncertainties overlap rather than

simply add up.

The anthropogenic emissions of GHGs are the initial source of uncertain-

ties. The growth of population, the society and economy development, and the

technological advances are key factors in the evolution of the emissions. The

anthropogenic emissions result in variations in the atmospheric GHG concentra-

tions, which in turn produce a radiative forcing that alters the radiative balance

in the Earth. For that reason, all these factors might be regarded as important

and highly unpredictable climate drivers. Climate change studies have over-

come their unpredictability by contemplating various plausible future evolutions

of these factors (e.g., population, economic policies, energy sources) embodied in

the emissions scenarios(Nakicenovic et al., 2000).

The GCMs are formulated differently and none of them provides better results

under any circumstances, and hence there do not seem to be a model that is more

reliable than the others. They all have their own strengths and shortcomings. The

approach to reduce the uncertainty associated to the GCM formulation is to use

different GCMs to constraint the regional models in order to cover a wider range

of possible projections.

The third uncertainty has to do with the number of simulated years. Climate

change projections span over a finite sample of years. Bearing in mind that the

atmosphere is essentially chaotic and thus highly variable, a supplementary degree

of uncertainty is added due to sampling limitations.

Finally, the downscaling technique introduces another uncertainty source. The

RCM formulation affects the accuracy of the outputs just as for GCMs. The de-

sign of the experiment (spatial setup, model configuration, time coverage) also

has an important impact on results. To progressively reduce this source of un-

certainty, new simulations should be performed using various configurations over

regions of different characteristics..

The sets of different simulations aimed at covering possible uncertainties are

usually known as ensembles. They might include different scenarios, GCMs,

RCMs or various configurations of the same regional model (physical ensemble).
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The broader range of combinations are explored, the better the uncertainties

can be identified and eventually reduced. However, computational costs now

precludes the examination of the complete matrix of possible combinations and

thus a representative selection must be made.

Far from being only a limitation, the number of uncertainty sources in climate

change studies are a great incentive to produce further simulations that might

reveal what are the most important sources and then would help to provide new

and more reliable insight into the issue of climate change at regional scales.

2.1.3 Downscaling ability of RCMs

Despite the imperfections exposed, the RCMs have been revealed to be an

extremely useful tool to provide climate information at scales that are crucial to

nature and human life. They are able to produce added-value information with

respect to the boundary data (Antic et al., 2006; Laprise, 2008) and improve

climate simulations at the regional scale (Caldwell et al., 2009; Wang et al., 2004),

evidencing RCMs downscaling ability. For instance, the experiment designed

by Denis et al. (2002) employed high-resolution boundary conditions that were

filtered to remove the small scale features and showed that the RCM was able

to recreate those features even if they were not present in the boundary data

anymore.

The regional models are able to describe in detail fine-scale characteristics

of the region that are known to affect the climate such as the land-use or the

vegetation (Ge et al., 2007; Hong et al., 2009; Sánchez et al., 2007), but also

topographical features that might alter local circulation (e.g., intricate coastlines,

steep mountain ranges, inland waters).

The affordable computational requirements of RCMs and the fact that their

results are not restricted to places with available observations have made RCMs

very widespread. As a result, the large number of institutions involved in cli-

mate modeling has contributed to a rapid development of the models. In spite

of the large modeling community, the model evaluations are still necessary to

assess their capabilities, particularly under troublesome conditions such as re-

gions affected by very local processes induced by complex topography. In view of

the benefits of employing RCMs as a supplementary tool to address the climate

change problem, several studies have called for further simulations in order to

produce regional climate change information (Christensen et al., 2007a; Giorgi,

2005; Rummukainen, 2010).
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2.2 The Weather Research and Forecasting Model

In this Thesis, the Weather Research and Forecasting (WRF) model version

3.1.1 was selected to perform the climate runs1. The following description of

the model should provide enough arguments to support our decision of selecting

WRF among the several models at the researchers disposal.

The WRF model (Skamarock et al., 2008) is a mesoscale numerical weather

prediction system develop for both operational forecast and atmospheric research

needs. The WRF model is the result of a collaborative partnership that includes

over 150 organizations and universities in the United States and abroad, such as

the National Center for Atmospheric Research (NCAR) or the National Oceanic

and Atmospheric Administration (NOAA).

Two different dynamical cores have been implemented in the model: the Non-

Hydrostatic Mesoscale Model (NMM), which was primarily design for weather

forecasting purposes; and the Advance Research WRF (ARW), created to be

suitable for a wide range of applications at varying time and spatial scales. Ac-

cording to the main objective of this Thesis, the latter has been adopted and will

be referred from now on as simply WRF.

The most remarkable characteristics of the model are:

A fully-compressible non-hydrostatic formulation A non-hydrostatic ver-

sion of the equations includes the vertical accelerations effect on pressure calcu-

lations, which might be very important under unstable conditions. The fully-

compressible feature means that acoustic waves are also considered. Owing to

sound speed, acoustic waves are extremely expensive to include in the model.

Using the incompressibility assumption ∇ · u = 0 instead of the mass continuity

equation filters all the acoustic modes and allows for larger time steps. As a

consequence, the computational costs are dramatically reduced.

Acoustic waves are in principle of no interest to meteorology and indeed Davies

et al. (2003) analyzed the performance of different simplifications of the Euler

equations and concluded that the incompressibility assumption might be accept-

able under particular conditions, but questioned their validity for regional climate

1The fifth-generation Penn State/NCAR Mesoscale Model (MM5, Grell et al., 1995), which
is the WRF natural predecessor was initially used to conduct some preliminary simulations.
Although it might be argued that they are not exactly the same model, they share many of the
basic features. Hence, a valuable experience was gathered with the initial simulations that could
not be deprecated in the design of WRF runs. Despite the migration from MM5 to WRF is far
from being trivial, the fact that MM5 is progressively being abandoned and the improvements
added to WRF encourage us to take this step.
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applications.

Accordingly, WRF includes the fully-compressible equations in its formula-

tion. In order to avoid that the calculation of acoustic waves hamper the model

in excess, it also includes time-splitting (Klemp et al., 2007; Staniforth, 1997)

that conserve both mass and first-order flux quantities.

Flexibility in the domain configuration Several domains can be nested in

multiple nesting levels with two-way or one-way interaction. Moving nesting is

also allowed so that, for example, hurricane tracking is possible. Both regional

or global runs are possible too.

Following-terrain vertical coordinates The vertical coordinates are mass-

based following terrain that range from 1.0 at the model bottom to 0.0 at the

top: ARW η coordinantes (See Figure 2.2).

η = (ph − pht)/µ, where µ = phs − pht (2.1)

η
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0.2

0
Pht = constant

Phs

Figure 2.2: ARW η vertical coordinate

ph is the hydrostatic component of

the pressure, and phs and pht represent

the values along the surface and top

boundaries, respectively. This way, the

vertical grid is denser near the ground

and gets coarser upwards. It also has

the advantage that all levels are hori-

zontally continuous, following the ter-

rain but smoothing the perturbations

in the upper levels.

Map projections A number of map

projections are available to accurately

describe different regions of the globe

(Polar stereographic for near-pole ar-

eas, Lambert-Conformal for the mid-

latitudes areas, Mercator for the near-

equator areas and latitude-longitude cylindrical for very large regions).
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Horizontal discretization The variables are located in a grid using the Arakawa-

C grid staggering. Most scalars are defined on the grid center (mass points) and

vectors (and also geopotential) in the grid walls (Fig. 2.3).
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Figure 7.3: Arakawa-C grid staggering for a portion of a parent domain and an imbedded nest
domain with a 3:1 grid size ratio. The solid lines denote coarse grid cell boundaries, and the
dashed lines are the boundaries for each fine grid cell. The horizontal components of velocity
(“U” and “V”) are defined along the normal cell face, and the thermodynamic variables (“θ”)
are defined at the center of the grid cell (each square). The bold typeface variables along the
interface between the coarse and the fine grid define the locations where the specified lateral
boundaries for the nest are in effect.

59

Figure 2.3: Arakawa-C grid staggering for two nested domains. The horizontal com-
ponents of velocity (U and V) are defined along the normal cell face, and the thermo-
dynamic variables (θ) are defined at the center of the grid cell. From Skamarock et al.
(2008)

Time integration Runge-Kutta 2nd and 3rd order time integration options.

Equations form Scalar-conserving flux form for prognostic equations.

Boundary conditions Lateral boundary conditions specified using a relax-

ation zone to prevent boundary artifacts over the studied area.

Nudging Observational and grid nudging, including spectral nudging. Nudging

technique consists in adjusting the model outputs towards a separate set of data

to improve them. Observational nudging uses in situ measurements whereas grid

(or analysis) nudging uses upper-level and surface data gridded information.

Parameterizations A broad choice of parameterization schemes for land-surface,

planetary boundary layer, radiation, microphysics and cumulus convection.
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The WRF model system is freely available online1 and has been designed to

be portable and efficient in several platforms, included parallel environments that

use MPI (Message Passing Interface). These two factors have permitted a fast

growth of the users community which has played a part in the model improvement

via the addition of new parameterizations, the coupledom with other models and

the modification of the code with new applications in mind.

A description of the WRF flowchart and structure is presented next. After-

wards, the model formulation and some additional features are detailed. The final

part of this chapter overviews the physical parameterizations that were adopted

in this study.

2.2.1 The WRF structure

The WRF model permits to study two different kinds of simulations: those

with an ideal initialization and those using real data. The WRF core is not

altered by selecting one initialization or another, but the data pre-processing

is different. Ideal cases comprise simulations of very particular conditions and

simplified orography, usually when individual processes in the atmosphere are to

be examined (i.e., Large Eddy Simulations, sea breeze, flow over a hill). On the

other hand, real-mode simulations require different atmospheric and terrain data

to study an actual event on a given area. In our case, provided that the study

focuses on the climate over a particular region in the globe, the real mode is

selected.

The WRF software (real mode) is organized in three main modules that must

be run successively: the WRF Preprocessing System, the data initialization mod-

ule (real program) and the ARW solver. The complete flow chart is depicted in

Figure 2.4, including not only the mentioned modules but also other additional

software that are optional and refer to data post-processing.

WRF Preprocessing System

The role of the WRF Preprocessing System (WPS) is to prepare both geo-

graphical information and gridded meteorological data so that they can be fed

into the data initialization module. It consists of a set of three programs:

• geogrid: It basically defines all features of the domains and interpolates the

geographical data to the model grids and creates the physical environment.

1http://www.mmm.ucar.edu/wrf/users
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Figure 2.4: WRF flow chart

• ungrib: It reads the GRIB-formatted files with meteorological data and

converts them to an intermediate format readable by the metgrid.

• metgrid: It horizontally interpolates the fields extracted by ungrib to the

grids defined by geogrid.

The WPS also permits to specify how the domains are defined (i.e., projection,

geographical data), determine the period that will be simulated or the interpola-

tion method and the masks that are used for each variable (i.e land-mask applied

to variables that are defined only over the sea). An in-depth description of WPS

can be found in the ARW User’s Guide1.

The data initialization module

The data initialization module real.exe is actually part of WRF system,

although it is explained separately because they represent different stages in the

1http://www.mmm.ucar.edu/wrf/users/docs/user guide V3/contents.html

http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/ARWUsersGuideV3.pdf
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modeling process. The real.exe program performs the vertical interpolation

from original data levels to the model vertical levels and creates the initial- and

boundary-condition files. In case nudging is desired, it will also create the appro-

priate files for that purpose. Some other tasks are carried out by real.exe too,

such as soil vertical interpolations and land-use mask checks.

The ARW solver

The ARW solver is the dynamic core itself (wrf.exe) and the responsible

for resolving the equations of the atmosphere. It produces the history files that

contain the results and extra output files such as the restarts files that are used

to split long simulations into shorter ones. The formulation of the model that

constitutes the foundations of the ARW solver is described next.

2.2.2 The WRF formulation

An atmospheric model is founded in 3 basic principles of conservation:

1. Conservation of Momentum expressed through a version of Navier-

Stokes equations that describe inviscid fluid dynamics.

2. Conservation of Mass in the form of the continuity equation.

3. Conservation of Heat (or Energy) derived from the 1st Thermodynamic

principle.

The equations associated to this set of principles are called the Euler equa-

tions. Additional equations can be included to conserve water or other atmo-

spheric species (i.e., gases or aerosols). This set constitutes the fundamental

equations of the atmosphere and represent a non-linear system of partial differ-

ential equations with no analytical solution. An approximation has then to be

performed using a numerical method, namely an atmospheric model. However,

the space in a mesoscale numerical system is discrete and hence the equations

must be further adapted to this new environment embodied in the model grid.

Different approximations, most of them based on scale analysis, have been

suggested over the years to facilitate the integration of the equations or attain

computational stability (i.e., incompressibility, hydrostatic balance, anelastic as-

sumption) but current numerical methods and computational resources have per-

mitted to attempt the solution of the complete set of equations (not consider-

ing the simplifications required for discretization). The resolution of the fully-
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compressible non-hydrostatic equations, and thus the inclusion of the acoustic

modes, represents a considerable challenge, but it represents better the different

waves in the atmosphere (Davies et al., 2003). As a consequence, the model

can also be successfully run at a wide range of spatial scales from planetary to

mesoscale, which is one of the final objectives of WRF.

The ARW dynamic solver integrates the fully-compressible, non-hydrostatic

Euler equations in their conservative flux form and written using the η vertical

coordinates. To be precise, the perturbation form of these equations is actually

solved in the ARW, basically to reduce truncation errors. Two supplementary

diagnostic equations are added to the system: a diagnostic relation for inverse

density and the equation of state. For further details the reader is encouraged to

look through Skamarock et al. (2008).

The basic prognostic variables obtained from the equations are the horizontal

wind velocities (u and v), the vertical wind velocity (w), the perturbation po-

tential temperature, the perturbation geopotential and the perturbation surface

pressure1. However, a much larger number of variables are calculated out of these

and written in the output files.

The indispensable variables to run the model at both the surface and several

vertical level are the horizontal winds, the temperature, the relative humidity and

the geopotential, plus the mean sea level pressure. If a soil model is used, then

initial conditions for soil moisture and soil temperature are also required at various

depth levels. Additionally, the use of time-varying sea surface temperature2 is

also important for climate simulations.

A time-split integration scheme is used to perform the temporal discretization

consisting of a third-order Runge-Kutta (RK3) scheme for the slow modes and the

high-frequency acoustic modes are integrated over smaller time steps. This ap-

proach, described in Wicker and Skamarock (2002) and in Klemp et al. (2007) for

flux-form equations, permits to integrate the fully-compressible non-hydrostatic

equations at reasonable computational costs and maintaining numerical stability.

The space is discretized by the ARW dynamic core using an Arakawa C-grid

staggering. The spatial discretization, along with other factors, entails an is-

sue that is probably currently regarded as one of the major challenges in the

atmosphere numerical modeling: the parameterizations. Since parameteriza-

1The perturbation of a variable is used instead of its absolute value, which consists in
providing a value with respect to a base state.

2Surrogates of sea surface temperature are sometimes employed with an appropriate land-
sea masking, such as the skintemp.
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tions represents an entire field in numerical modeling, a separate section has been

dedicated ahead.

2.3 The WRF parameterizations

In the atmosphere, there are processes that take place at spatial scales below

the model grid distance and thus are not explicitly resolved by the equations.

They are included in the model using parameterizations, which are semi-empirical

approximations of reality. Although the only pure physics in the model are the

fundamental equations, the parameterizations are also called the model physics or

the physics schemes. The processes that are described by parameterizations occur

at small scales, but they are as decisive as the large scale defined by the equations

and thus cannot be neglected. Stensrud (2007) highlighted the importance of the

model physics in the paragraph below:

“Arguably, the most important components of any numerical weather

prediction model are the the parameterization schemes. They deter-

mine the amount of energy that reaches the Earth’s surface; determine

the evolution of the planetary boundary layer; decide when subgrid-

scale clouds and convection develop and produce rainfall; and deter-

mine the influence of subgrid-scale orography on the atmosphere. The

analysis and understanding of parameterization schemes is a key as-

pect of numerical weather prediction.”

The parameterizations describe a broad range of sub-grid scale processes im-

posing certain assumptions and at different levels of complexity. Bearing in mind

that the mesoscale models might be used for a large number of applications and

at very different spatial resolutions, each of the potentially parameterized pro-

cesses might be described using different approaches depending on the simulation

characteristics. Furthermore, the parameterization schemes do not work inde-

pendently and they usually interact. Therefore not only the physics packages

themselves play an important role, but also their feedbacks should be considered.

An appropriate selection of the physics schemes according to the region of inter-

est, the resolution and the application is not a trivial task, and the choice might

have a major impact on our results.

In Figure 2.5, the parameterized processes in WRF and their interactions

are illustrated. Next, among the different available options to represents the

processes, those examined in Thesis are enumerated and briefly described.
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Figure 2.5: Simple representation of sub-grid scale processes parameterized in WRF
and their direct interactions

2.3.1 Radiation

The radiation scheme represents both the atmospheric heating due to radiative

flux divergence and the surface radiation for the ground heat budget.

The NCAR Community Atmosphere Model (CAM 3.0) has been selected to

parameterize radiation processes at sub-grid scales for both longwave and short-

wave (Collins et al., 2004). It is recommended for regional climate simulations

because it has an ozone distribution that varies during the simulation according to

monthly zonal-mean climatological data. The scheme also interacts with resolved

clouds and cloud fractions. Furthermore, it handles optical properties of several

aerosol types and trace gases. In fact, the main asset to choose the CAM3.0

scheme is the possibility to update GHG atmospheric concentrations depending

on the SRES scenarios in order to introduce their effects on the parameterized

radiation. The code had to be slightly modified to this purpose (CLWRF, Fita

and Fernández, 2010).
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2.3.2 Microphysics

Microphysics is responsible for the cloud microphysical processes that drive the

cloud particle formation, growth and dissipation. It handles explicitly resolved

water vapor, clouds and precipitation processes. The available options mostly

differ in the number of phase changes of water and the number of interactions

between clouds and precipitation particles (Stensrud, 2007). The selection of

microphysical schemes mainly depends upon the phenomena to be simulated and

the computational resources. Several choices are available in WRF, of which two

are explored in this Thesis.

WRF Single-Moment 3-class (WSM3) (Hong et al., 2004). It is a bulk1

single-moment scheme that predicts 3 different categories of hydrometer: vapor,

cloud water and rain above 0◦C, and includes ice processes below 0◦C (vapor,

cloud ice and snow). It is a fairly simple and computational efficient scheme for

the inclusion of ice processes but neither the gradual melting nor the supercooled

water are considered.

Thompson et al. scheme (Thompson et al., 2004). It is a 7-class scheme

including graupel. It is a bulk single-moment scheme with double-moment for ice

since the number concentration is also calculated for a more robust representation

of the particle size distribution.

The use of mixed-phase schemes is not normally recommendable for grid sizes

over 10 km because it adds substantial computational costs with basically no

gain, because updrafts that lead to riming processes are not resolved. Since

the resolution selected for our simulations is exactly that threshold, these two

schemes are selected to explore the suitability of a complex scheme with respect

to a simpler one under the conditions of our study.

2.3.3 Cumulus

The cumulus schemes represent the effects of convective and shallow clouds

within a grid cell. They describe the vertical fluxes due to unresolved updrafts

and downdrafts as well as the compensating motion outside the clouds. The

cumulus schemes also provide the convective component of rainfall caused by

1In contrast with bin schemes that classifies the particles sizes in a number of fixed cate-
gories, bulk schemes describe the particle size distribution using a predefined functional form.
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convective eddies that are not captured by the model. There is an evident need in

developing convection adequately in both time and space, because it is a key factor

in describing heavy rainfall. Therefore, a suitable cumulus scheme is of major

importance since precipitation extreme events in this region are directly affected

by an accurate description of convective processes. Furthermore, convection is

also determinant predicting large-scale atmospheric circulations correctly, because

it redistributes heat and moisture, affects radiation and overturns the atmosphere

(deep convection). Two schemes have been tested in this study1:

Kain-Fritsch (KF, Kain, 2004; Kain and Fritsch, 1990). It is a mass-flux

scheme with both deep and shallow convection that uses a simple cloud model

with moist updrafts and downdrafts. The cloud base mass flux is determined by

the amount of CAPE (Convective Available Potential Energy) in the environment

that has to be removed (CAPE removal time scale closure). Entrainment and

detrainment are included in the scheme. It also includes cloud, rain, ice and snow

detrainment.

Betts-Miller-Janjic (BMJ, Betts, 1986; Betts and Miller, 1986; Janjic, 1994,

1990). It is a deep-layer control, adjustment scheme that includes both deep

and shallow profiles. Rather than explicitly describe updraft and downdraft, the

scheme is based on profile adjustments towards a mixing line’ that represents the

quasi-equilibrium thermodynamic structure that the environment tends to as a

consequence of convection.

For resolutions higher than 5 km, cumulus schemes should be switched off

because the model can resolve the convective eddies itself. On the other hand,

for coarser resolutions (5-10 km) it is not clear to what extent the convection

is explicitly resolved and thus whether cumulus schemes should be used, even if

they are helpful in the activation of convection. In our case, 10-km resolution,

cumulus schemes are always switched on.

2.3.4 Planetary Boundary Layer (PBL)

The land surface fluxes and the turbulence that occurs in the Planetary

Boundary Layer (PBL) are crucial factors in the evolution of the atmosphere,

1Actually three schemes were analyzed since Grell3D was also employed in some preliminary
studies. However, this scheme was clearly outperformed by the other parameterization options
and it was thus discarded.
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because their impact might propagate to the whole atmospheric column. Besides,

they usually provide the conditions for certain sensible phenomena to occur, such

as the deep convection. An appropriate description of the turbulence permits to

distribute heat, moist and momentum all over the atmosphere, not only in the

PBL. Since the PBL is directly influenced by the surface and considering that

the variety of surfaces in the Earth is huge, resolving the turbulence adequately

in a wide range of conditions is undoubtably a challenge.

A important problem in the description of the PBL is that of the closure, which

is associated to non-linear characteristics of turbulence. Namely the number

of unknowns in the set of equations for turbulent flow remains always larger

than the number of equations. Consequently, the complete description of the

turbulence requires an infinite set of equations (Stull, 1988). The problem of

turbulence closure is solved by truncation, selecting a number of equations and

calculate the remaining unknowns by semi-empirical relations in terms of the

known variables. Depending on the number of terms retained, the order of the

approximation is different. The first way of classifying the parameterizations

of the PBL is precisely related to the order. Therefore, the 1st-order closure

means that there are equations for the state variables (u, v, w, T, q) –or the

first moments– and the covariance terms are parameterized. Second-order closure

implies that there are equations for the state variables and their covariance terms,

but the triple correlation terms are parameterized. In addition, there are also non-

integer schemes, such as the half-order or the one-and-a-half-order closure, which

means that the variables are truncated at different orders.

Another division that can be made refers to their local or non-local nature.

When the unknown terms are parameterized according to local parameters, that

is, at the same level or neighbor levels, then the scheme is local. In order to

incorporate the contribution of the large-scale eddies to the total flux, parameters

dependent on the whole vertical profile in the PBL are used and the scheme is

called non-local. Non-local schemes tend to perform better, reproducing more

accurately the structure and the depth of the PBL as well as the wind profiles

within it. However, local schemes tend to produce less mixing than non-local

schemes and thus might be more suitable for stable conditions such as the night

time. Some schemes switch between non-local and local approaches depending

upon the stability of the PBL.

Three different schemes have been analyzed in this Thesis:

Yonsei University (YSU) PBL (Hong and Lim, 2006) It is a first-order
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non-local diffusion scheme developed from Medium Range Forecast (MRF) PBL

scheme (Hong and Pan, 1996) that includes countergradient flux terms to account

for large eddy transport and PBL top entrainment. The YSU uses a critical bulk

Richardson number of zero to determine the PBL top and so it is dependent

on the buoyancy profile. In fact, it defines the PBL top as the height that a

surface parcel can rise through a well-mixed layer. Afterwards, the profile of

eddy viscosity is prescribed according to the PBL depth estimation. The MM5

similarity scheme was selected to parameterize the surface layer when using YSU

PBL .

Mellor-Yamada-Janjic (MYJ) PBL (Janjic, 1990, 2002; Mellor and Ya-

mada, 1982). It is a 1.5-order local closure scheme, which means that is a sim-

plified second-order closure scheme. The scheme is based on the prediction of

generation, transport and dissipation of Turbulent Kinetic Energy (TKE). Then

it uses the value of TKE to calculate the eddy viscosities and finally diffuses the

different variables in the vertical. As required by the MYJ PBL scheme, it is used

in combination with the Eta similarity scheme for the surface layer.

Asymmetrical Convective Model version 2 (ACM2) PBL (Pleim, 2007).

The ACM2 PBL scheme is a non-local closure model (originally based on Black-

adar) that includes a first-order local eddy diffusion component. The scheme is

able to smoothly change from a combination of local and non-local transport un-

der unstable conditions to an exclusively local behavior in stable conditions. The

ACM2 is then suited to reproduce rapid upwards (thermals) in convective con-

ditions but also to simulate correctly stable situations. As for the YSU scheme,

the MM5 similarity option was chose for the surface layer.

Many parameters in the PBL schemes are determined empirically over homoge-

neous surface and particular environmental conditions, but very few evaluations

of these schemes over complex terrain or under a wide range of conditions have

been performed. Therefore, the PBL schemes should be carefully tested before

using them because they have been examined only for very particular situations.

2.3.5 Land surface

The land-surface models (LSMs) are responsible for the initialization of the

state of the ground and account for the surface forcing in the atmosphere. They
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provide the fluxes that determine the lower boundary condition for PBL schemes

by describing the ground temperature, the soil moisture and temperature profiles,

the canopy effects and the snow cover. The use of an appropriate sophisticated

model that updates these variables is crucial from a climate point of view. In this

study, the Noah LSM is adopted (Chen and Dudhia, 2001) mainly due to its

widespread use in long-term simulations. The Noah LSM is a 4-layer (0-10 cm,

10-40 cm, 40-100 cm and 100-200 cm) soil model that estimates soil temperature

and moisture, and snow cover. It includes root zone, evapotranspiration, soil

drainage and runoff that depend on vegetation categories, monthly vegetation

fraction and soil texture.





Chapter 3

Observational data and

regionalization

And the wind is making speeches
And the rain sounds like a round of applause

Time
Tom Waits

In Chapter 2, the dynamical downscaling fundamentals were described and

the most important steps in the generation of future projections were mentioned.

Namely, the model has firstly to be suited to adequately represent present cli-

mate over the region under study. Once the model is adapted and a suitable

configuration is selected, it has to be validated and the model reliability has to

be addressed. If the model results are satisfactory and they reproduce the main

features of climate, the future projections are finally performed.

The first two steps, the appropriate model configuration and the model valida-

tion, are carried out by examining whether the model is able to represent current

climate. To that purpose, observational datasets are used to compare with the

model estimates in the so-called model evaluation. Despite the importance of this

stage of dynamical downscaling, there is no consensus in the evaluation method-

ologies and it still remains a major challenge for climate modelers.

This Chapter is devoted to describe the different datasets that were used to

compare with model results, the problems that arise from direct comparison with

observations and the approaches to overcome these problems.
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3.1 The representation error

The main problem associated to the model evaluation is that the increase of

RCMs resolution is much faster than the development of climate observation net-

works and very few regions are covered by dense observational systems. Besides,

in areas where the network density is adequate, the evaluation is traditionally

performed by direct comparison between model estimates and in situ observa-

tions, although this is not a like-with-like comparison (Rivington et al., 2008).

The site-specific measurements describe a particular location and hence they are

affected by very specific factors, they characterize a single point in the space.

Conversely, the space in a RCM is discretized and a model grid point represents

the mean features of its grid cell (e.g. land/water proportion, elevation, surface

properties, orientation), thus the model outputs at that point represent a kind of

grid-cell average.

In regions where topography is rather homogeneous, it is reasonable to expect

that the grid point values are fairly representative of the entire cell. Neverthe-

less, current regional climate simulations are performed at resolutions that range

from 10 to 50 km and the topographical diversity within a cell might be wide in

complex-terrain areas. If the topographical features of a particular station are at

the extremes of the grid cell diversity then the model outputs and the observations

might differ substantially, not only because the model is performing inadequately

but also due to the scale disparity in what they represent. The difference between

model outputs and observations coming from this scale disparity is usually known

as the representation error. The representation error is yet inevitable because it

could only be removed if the grid-cell and observation scales would be equivalent.

This means that the order of the model spatial resolution needs to be increased up

to a few meters or even higher, which is absolutely unaffordable from a regional

climate modeling viewpoint.

Figure 3.1 schematically illustrates this problem considering only the topo-

graphical error source. The differences between the stations altitude and the grid

cell elevation is negligible at some locations, whereas at some other these differ-

ences are very significant. It must be noted that although the slope represented

in Figure 3.1 might seem unrealistic, it actually takes place in several locations

across the IP (Mulhacén, 3478m, ∼35 km to the sea; Torre de Cerredo, 2648m,

<30 km to the sea).

Obviously, the deviations from observations have their origin at the model de-

ficiencies too, but the representation error should not be disregarded in the model
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evaluation. As said before, it is almost impossible to completely eliminate the

representation error, but in order to circumvent the problem, different approaches

have been put forward. For example, techniques such as the adjustment of model

outputs have been proposed, either through a lapse rate depending on elevation

differences between the site and the model grid point (Moberg and Jones, 2004) or

using a downscaling factor calculated from deviations between observational time

series and model estimates (Rivington et al., 2008). However, the comparability

of these adjusted outputs with observations still remains unproven, particularly

when the correction significantly modifies the model results (e.g. large altitude

differences between the station and the nearest grid point).

Figure 3.1: Simplified example of the representation error due to topographical com-
plexity. The irregular surface is the elevation in a 20-km by 20-km region. The red
horizontal planes represent the elevation of 4 different grid cells for a model running at
10-km resolution. Red dots represent the location of various ideal stations.

Otherwise, a sort of observation upscaling has been suggested as the most

appropriate way to validate the model (Göber et al., 2008). For example, Osborn

and Hulme (1998) grouped the information via an aggregation of the stations

time series in order to compare GCMs outputs with in situ observations. An
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interesting alternative that is being increasingly used and also consist in the

upscaling of information is the classification of site-specific observations through

different regionalization techniques to compare results by climate divisions rather

than at single stations.

In the last years, a number of gridded observational datasets have been cre-

ated precisely to enable comparison with model outputs (CRU TS 1.2, Mitchell

et al. 2004; E-OBS, Haylock et al. 2008). The observational gridded datasets and

the model estimates usually have a similar spatial scale and are thus comparable.

Unfortunately, most available gridded analyses are often created with observa-

tional networks that are very sparse in certain areas like Spain and hence might

be prone to substantial errors, particularly in terms of extreme events. More-

over, some gridded datasets only provide information on monthly timescales and

higher frequencies cannot be explored with them. As a consequence, their use to

validate the models over these regions is certainly restricted.

The observational datasets employed in the evaluation of WRF over Spain

are described in the next section, including in situ measurements and a recently

released daily gridded dataset that used an unprecedented density of observations

(particularly outstanding for precipitation).

3.2 Observational data

Two sets of observational data are used in this study as a backdrop to evaluate

the model outputs, an observational network and a gridded dataset.

3.2.1 Observational measurements

The site-specific observational dataset comes from a network limited to the

Comunidad Autónoma de Andalućıa in the south of Spain, and hereinafter re-

ferred as the SubClim dataset.

The SubClim dataset

The SubClim dataset presents a remarkable density of stations over a limited

region in southern Spain, specifically in Andalusia. The dataset was provided

by the Subsistema de Climatoloǵıa Ambiental from the regional government of

Andalusia (Junta de Andalućıa). Due to its high spatial density, it is particularly

useful to examine the performance of the various WRF configurations.



3.2 Observational data 41

The dataset consist of homogeneous and quality-controlled daily temperature

time series from 152 stations and daily rainfall series form 438 gauges across

Andalusia (Fig. 3.2) that covers the 1990-1999 period. The quality control ini-

tially consisted in a basic check for wrong values (Tmax<Tmin, Precipitation<0

mm/day). Then the methodology followed by Hidalgo-Muñoz et al. (2011) was

adopted here. The inconsistently high or low values were carefully examined. In

particular, the suspicious peaks were analyzed in detail and they were confirmed

using the information provided by both the nearby stations and the historical

records appeared in public documents (e.g., newspapers). All those measure-

ments that were clearly invalid were set to missing values. For the homogeneity

testing, the guidance provided by the ETCCDI was applied using the RHtestV2

software1.

The dataset originally comprised 1821 precipitation series and 850 tempera-

ture series. After the quality controls, the series were filtered on the basis of a

10% threshold of missing values for the selected 10-year period. The choice of this

time lapse was made with the aim to include as much variability as possible (i.e.,

particularly wet/dry periods) so that the selected model configuration performs

adequately under different atmospheric conditions. But the available number of

observations decreases with longer periods and the computational costs associ-

ated to long WRF simulations are high; therefore, a 10-year period was considered

appropriate to meet both physical and practical requirements.

3.2.2 Gridded observations

In addition to the aforementioned observational network, the Spain02 daily

observational gridded dataset version 2.1 (Herrera et al., 2010b) is here adopted

to evaluate the WRF model ability to represent the present climate (1970-1999)

in terms of precipitation, Tmax and Tmin.

The Spain02 dataset was created using 2756 quality-controlled stations (∼
250 for temperature), which amounts to an extraordinary dense network for the

precipitation dataset. Spain02 is a regular 0.2◦ (∼ 20 km) daily gridded dataset

that spans a 54-year period (1950-2003) and covers Peninsular Spain and the

Balearic Islands (Fig. 3.3). The precipitation grid was built using a two step

kriging (binary for precipitation outcomes and ordinary for amounts), whereas

for temperature, thin plane splines are fitted to the monthly data considering ele-

vation and an ordinary krigin was latter applied to the residuals. Further details

1http://cccma.seos.uvic.ca/ETCCDI/index.shtml

http://cccma.seos.uvic.ca/ETCCDI/index.shtml
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Figure 3.2: Spatial coverage and distribution of precipitation (black circles) and tem-
perature (red stars) stations used in this study that conforms the Subsistema Clima
dataset.

on the methodology can be found in the webpage of the Santander Meteorology

Group1, from University of Cantabria.
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Figure 3.3: Spatial coverage of Spain02
gridded dataset.

As a result of the technique

adopted to generate the dataset, the

final product is a sort of weighted aver-

ages of the variables over the grid cells,

which replace the local measurements

provided by the stations. Therefore,

both Spain02 and the model outputs

are representative of the grid boxes

and thus are comparable because their

scales are similar.

It should be noted that Spain02 is

not a pure observational dataset and,

besides the instrumental errors of the

measurements, it might be subject to

errors that come from the methodology employed to create it. Nonetheless, the

quality of the grid has already been addressed by the authors not only in terms

of capturing long-term means but also the upper percentiles. A discussion of the

1http://www.meteo.unican.es/en/research/datamining

http://www.meteo.unican.es/en/research/datamining
http://www.meteo.unican.es/en/research/datamining
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Spain02 performance for precipitation is detailed in Herrera et al. (2010b). In

the case of temperature, the dataset was subjected to a simple quality-control

test that helped to identify some problems in the minimum temperatures over

the Balearic Islands. Consequently, Spain02 was not used to conduct the WRF

evaluation over this region in terms of temperature.

Finally, it is worth emphasizing that despite the fact that Spain02 and WRF

grids have similar spatial scales, they are not identical and thus the representa-

tion error is not completely removed, although considerably reduced. Although

both the gridded dataset and the WRF outputs should be ideally defined over

grid points with identical characteristics (e.g. same elevation), differences be-

tween the model grid and Spain02 should not be significant in this case, and the

model estimates will be simply projected onto the Spain02 grid. Nonetheless, the

existence of the representation error should be kept in mind when interpreting

the evaluation results, because it might explain minor deviations.

On the whole, Spain02 can be regarded as a remarkable effort to create a

gridded daily observational dataset. The density of stations employed to create

the precipitation grid is outstanding, and for temperature, it exceeds by far the

number of observations used in the previous gridded datasets over the region. The

spatial density together with the time frequency makes Spain02 an extraordinarily

valuable tool that enables the model evaluation because it provides observational

information at scales that are comparable to that of the regional model estimates.

3.3 The regionalization

In the beginning of this Chapter, it was already pointed the necessity to reduce

both observations and model estimates to a similar scale so that they are compa-

rable. Regionalization procedures have been put forward within the framework

of RCM evaluation for different variables (Caldwell et al., 2009; Jiménez et al.,

2008; Kostopoulou et al., 2009). The convenience of using regionalization to com-

pare model outputs and observations have been highlighted by different authors

(Bunkers et al., 1996; Reid and Turner, 2001) because it filters the very-local

effects to which the stations are subject.

Regionalization as a mean to identify areas with similar climate characteris-

tics is certainly not a new idea. Classification of stations into climate divisions

have been a common practice since the early 20th century because it provides a

general overview of the region under survey and permits to create comprehen-

sive information for many purposes (e.g. examine correspondences between far
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away locations, study and understand wildlife distribution or decide what to grow

in the farmlands). Original methods, such as the Köppen (Köppen, 1923) and

the Thornthwaite (Thornthwaite, 1931) classifications, were based on a priori

criteria, namely on precipitation and temperature thresholds1. They have the

advantage that provided some information from a particular station, its classifi-

cation into a climate division is straightforward. In spite of their simplicity and

direct applicability, they are formulated in a fairly subjective way and several

methods have been recently proposed using objective procedures (Bärring, 1987;

Fovell, 1997; Gerstengarbe et al., 1999; Romero et al., 1999b; Unal et al., 2003).

Among these objective methodologies, Clustering Analysis (CA, Kalkstein

et al., 1987) and Principal Components Analysis (PCA, Preisendorfer, 1988) are

probably the most widespread to classify stations into regional divisions (Fovell

and Fovell, 1993; Lund and Li, 2009; Richman and Lamb, 1985). Both procedures

have their own advantages and shortcomings in relation to climate regionalization,

as detailed below for the PCA and two different CA algorithms:

1. PCA or Empirical Orthogonal Function analysis is an orthogonal trans-

formation that reduces an original dataset containing a large number of

possibly correlated variables to a dataset usually containing many fewer un-

correlated variables (See Appendix A for the mathematical details). These

new variables are linear combinations of the original ones and are called

principal components. They are chosen in such a way that they represent

the maximum possible fraction of the variability contained in the original

data. A significant reduction of the variables is attained when they are

substantially correlated and the original dataset contains redundant infor-

mation, which is typically the case of atmospheric variables.

PCA is very useful to manage large multivariate datasets and makes pos-

sible to explore both spatial and temporal structures and variations of the

fields being analyzed. Regarding regionalization, the PCA major potential

is its ability to reduce information redundancy and keeps only the most im-

portant variability modes. It thus helps to generate a more comprehensive

division. However, the fuzzy nature of the PCA results make it difficult

to determine definite regional boundaries. It must be said that fuzzy re-

gionalization is physically more consistent bearing in mind that particular

stations might contain characteristics from two or more regions. Nonethe-

1Thornthwaite (1948) also proposed a later improvement of his climate classification using
potential evapotranspiration besides precipitation and temperature.
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less, the thresholds to establish whether to include or not a station within

a region are virtually impossible to determine if only the PCA results are

obtained and thus is not practical from a regionalization point of view.

2. Hierarchical agglomerative CA methods successively merge clusters

based on a similarity measure. They all start from as many single-element

cluster as initial objects and merge them in new cluster until one large

cluster accommodating all stations is finally achieved. The main differ-

ence between hierarchical CAs lies in the similarity measure employed to

determine the distance between clusters.

As the cluster are progressively merged, several solutions that vary in the

number of clusters are proposed. Let us imagine that there are n initial ob-

jects. Then the agglomerative CA suggests solutions from n single-element

clusters to 1 all-inclusive cluster. These two solutions are obviously useless

because they do not provide any information. However, there should be

an optimal configuration that groups the objects into a reduced number

of clusters that provides information about the objects affinity. The opti-

mal configuration is selected using statistical tests that measure the cluster

internal cohesion and external isolation at every step.

The main drawback of these CA methodologies is that they do not allow

for clusters recombination. Namely, the formulation prevents exchange of

objects between clusters once they have been merged and therefore, in the

ultimate solution, there might be certain objects that are misplaced because

they do not belong to the most appropriate cluster.

3. Non-hierarchical CA algorithms such as k-means groups n objects into

K groups. By contrast with hierarchical CA, which do not allow for object

reallocation once it its assigned to a particular group, k-means is precisely

based on reassignment.

However, the k-means requires some previous knowledge of the data struc-

ture and the number of clusters must be specified in advanced. Furthermore,

an initial guess of the groups is also required, which can be calculated as a

random division of the n objects into K groups or can be provided explicitly

according to some previous measure of the similarity between objects. The

latter is usually preferable to determine the initial approximation because

the final results tend to be much more consistent.
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Regardless of the method employed to define the initial configuration, the

strategy consists in:

(a) Calculate the centroids of the initial clusters as the means of the vectors

that represent each object and conform each of groups.

(b) Compute the squared Euclidean distance between the the vector xi

and each of the clusters. Other distances might be used too in place

of the squared Euclidean one, but this is the most widespread.

(c) Two possible situations can take place here. If the xi vector already

belongs to the closest cluster, then continue by repeating the previous

step with xi+1. Otherwise, assign the xi vector to the closest one and

repeat the calculation of the centroids.

The algorithm only stops when a cycle through all the n elements is com-

pleted without performing any reallocation.

The problem is that in most of the cases, the appropriate number of cluster

is not know in advanced, not to mention their centroids. Therefore, this

methodology is not always suitable to determine an appropriate configura-

tion by itself and has to be used in combination with others.

In this Thesis, a multi-step methodology is proposed consisting in the consec-

utive application of PCA and two CA algorithms, overcoming the problems that

each method presents. The procedure permits to carry out the subsequent steps

using the results from each analysis, removing most of the subjectivity associated

to decisions such as the number of regions or their centroids.

3.3.1 A multi-step regionalization technique

The multi-step regionalization technique first stage is a S-Mode PCA to an-

alyze the covariance matrix of daily values. There are two main PCA decom-

position modes: The spatial mode (S-mode) and the time mode (T-mode). The

differences between both methods yields in the dimension we focus on. Namely,

the S-mode permits to identify time series with spatial coherence and thus is

useful to find spatial clusters or teleconnections, whereas the T-mode searches

for similar days (or other time lapses) and helps to find synoptic or flow patterns

(Compagnucci and Richman, 2008).

The majority of algorithms to conduct a PCA require that the times series

are complete and no missing values are allowed. As a consequence, the stations
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that present missing values must be filled somehow. Some simple approaches

consist in using climatological values of the series to fill the missing values (e.g.

monthly means), which might be acceptable for monthly precipitation or even

daily mean temperature, but it is definitely inappropriate for daily precipitation

or temperature extremes (Tmax and Tmin). In this study, the strategy to fill the

missing values lies in a multiple linear regression with the five most correlated

stations. For each time series, a linear combination of the five most correlated

stations is computed to generate a ‘reconstructed time series’ using the correlation

coefficient to weight them. The missing values of each station are then filled with

the corresponding reconstructed series. In the case of daily precipitation, the

multilinear regression introduces a small and undesired offset in the reconstructed

series that is removed. The offset consists in clearly identifiable constant values

that never exceeds the threshold of 1 mm/day and appear in place of rainless

situations. They Figure 3.4 show two random examples of the original and the

reconstructed precipitation from the Subsistema Clima. In these examples, one-

year periods with no missing values for two different stations were selected to

emphasize the suitability of the methodology, which presents high accuracy in

capturing the precipitation on a daily scale.

It must be stressed that the filled series are only employed in the definition of

the regions because the PCA algorithm here adopted requires complete informa-

tion, but no completion of the series is performed to evaluate the model and the

original series are maintained.

Once the missing values are replaced, the S-Mode PCA is computed, the

principal modes of variability are retained and possible information redundancy

is removed (Fovell, 1997). The North Rule of Thumb based on the eigenvalue

degeneration (North et al., 1982) is adopted to determine the significant PCs.

The resulting PCs are varimax rotated to increase spatial coherence. Afterwards,

the stations are classified via a two-step CA (Milligan, 1980). In particular, the

rotated normalized loadings are processed with an agglomerative method to set

the appropriate number of clusters and their starting seeds. A non-hierarchical

k-means algorithm follows the agglomerative CA to conform the final regionaliza-

tion. This strategy takes advantage of both methods and reduces their respective

imperfections.

Hierarchical algorithms merge clusters in new ones based on the principle of

maximizing intra-cluster similarity and minimizing inter-cluster likeness. There-

fore, two parameters have to be selected in order to define the clusters: a simi-

larity measure and a method to assign objects membership to clusters according
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Figure 3.4: Two examples of the original and reconstructed series from Subsistema
Clima dataset for a one-year period using a multi-linear regression method. The series
represent two different locations and two different years that were selected randomly.
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to this measure. The simplest and most extended squared Euclidean distance

in the space of the rotated loadings was chosen to measure the similarity be-

tween objects and clusters. Previous works (Gong and Richman, 1995; Kalkstein

et al., 1987) advocated the Average Linkage algorithm to configure the clusters

in the framework of climate regionalization because it does not tend to create

similar-size groups nor huge “hungry” clusters as other methods do. The Aver-

age Linkage calculates the distance between two clusters (r and s) through the

average distance in each cluster as expressed below:

d(r, s) =
1

nrns

nr∑
i=0

ns∑
j=0

dist(xri, xsj) (3.1)

and combines the two most similar clusters (least distant). The number of

clusters is then reduced by 1 and the distance matrix is calculated again. This

processes stops when all objects are merged in a single large cluster.

Therefore, the agglomerative CAs propose a number of configurations that

ranges from as many single-element clusters as stations to an only cluster that

includes all the stations. The suitability of a particular configuration can be

measured through statistical parameters of which the pseudo-F seems to perform

better (Milligan and Cooper, 1985). The pseudo-F test (Calinski and Harabasz,

1974) represents the ratio between the within- and the among-cluster similarity

which varies as the clusters are merged. When the pseudo-F reach a local max-

imum, it indicates that the configuration of clusters is more robust and thus it

permits to define an optimal number of divisions. However, the pseudo-F test

does not always provide a single solution and further aspects must be considered.

Moreover, the test sometimes is not useful at all to determine an adequate con-

figuration because it simply decreases with the number of clusters and it is not

worth of consideration in such situations. The pseudo-F test can be expressed as:

Pseudo-F(k) =
T −

∑
k SSEk∑

k SSEk

k − 1

n− k
(3.2)

Where T is the total sum of squares,
∑

k SSEk is sum of squares within the

clusters, k is the number of clusters and n is the number of stations. Therefore,

the T −
∑

k SSEk and
∑

k SSEk represent the among- and within-cluster sum of

squares respectively.
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Next, the clusters centroids are calculated using the original data that was

fed into the S-Mode PCA. Non-hierarchical CAs, such as the k-means, need the

number of clusters to be specified and usually the initial seeds too. If not specified,

the algorithm normally starts by defining random seeds, although the final results

are directly affected by this initial configuration. The starting seeds required

by the hierarchical k-means CA are here determined using the aforementioned

centroids. Consequently the number of clusters is set by the pseudo-F test. The

k-means CA checks which of the clusters is more suitable for each of the stations

and relocates them accordingly, enhancing the regionalization consistency.

The interested reader is referred to Timm (2002) as an excellent overview of

Clustering Analysis and Multivariate Analysis.

The regionalization is here performed to determine regions in terms of pre-

cipitation and temperature because these are two main variables that are later

employed in the model evaluation. Although previous works (Fovell and Fovell,

1993; Unal et al., 2003) attempted to establish climate divisions using simulta-

neously precipitation and temperature, standardization problems and the rare

coincidence of temperature and precipitation stations encouraged us to process

them independently. The steps described above are common to both variables

and thus the approaches to process them are very similar. However, some mi-

nor modifications were introduced in the data preparation (e.g precipitation was

screened) due to obvious differences in the characteristics of the variables.

Precipitation preprocessing Precipitation in a wide area of Spain is con-

centrated in short rain events and the annual cycle is characterized by very dry

summers. In order to avoid an excessive influence of this feature in the regional-

ization, a filter is applied and those days that were dry at most of the locations

are removed. This approach of screening precipitation to reduce the influence

of totally dry periods was initially suggested by Romero et al. (1999a) to define

rainfall affinity areas in a region that extended over the southern and eastern

Spain. It consisted in retaining only those days when precipitation was larger

over a certain threshold in at least a number of stations. In particular, they

selected a precipitation of 5 mm/day over at least 5% of the stations.

In this Thesis, two different precipitation observational datasets that cover

Andalusia and Spain are used. The SubClim stations are spread all over Andalu-

sia, a region very similar to that studied by Romero et al. (1999a) and hence the

thresholds are kept to 5 mm/day and 5% of the stations. In the case of Spain02

that covers the IP, the rainfall regimes are more heterogeneous and therefore a
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less restrictive threshold in the daily precipitation is selected (1 mm/day). Alter-

native thresholds for both the daily precipitation and the percentage of locations

were examined with differences in the number of the days retained but almost

negligible modifications of the climate divisions were observed. Indeed, only the

boundaries of the regions were slightly displaced1.

Temperature preprocessing Unlike precipitation, temperature was not

screened and the full-length series are used to characterize the regions. The

observational datasets actually include both Tmax and Tmin, and therefore both

are considered in generation of climate divisions. Tmax and Tmin are initially

processed separately because they are not equally affected by the same factors

(i.e. stratification vs. turbulence, surface fluxes, elevation). For example, the

Tmax at two stations might present a similar evolution and magnitude, but the

Tmin might differ considerably. Therefore, the PCA must be computed indepen-

dently for Tmax and Tmin to avoid masking the information provided by one of

the temperature extremes by the other.

The PCA results, namely the rotated significant components are then merged.

If Tmin is characterized by m principal components and Tmax by n, hence the

new space containing all of them would have m by n dimensions, in which each

station is represented by m by n components. The squared Euclidean distance

that is used in the agglomerative CA is then calculated over this m-by-n dimen-

sional space. As a result, a single regionalization that includes the attributes of

both Tmax and Tmin, is obtained.

3.3.2 Regionalization of the SubClim dataset

The SubClim dataset contains precipitation, Tmax and Tmin. These three

variables will then yield two independent regionalizations (one for temperature

and one for precipitation).

The multiple regression method detailed above is adopted to fill the missing

values for both temperature and precipitation series. For the latter, the 438 daily

time series that had at least 90% of valid measurements over the 10-year period

1The thresholds are fairly arbitrary, but the different possibilities were tested evidence the
method resistance. Variations in both thresholds ranged from 3 to 6% of the locations and 3
to 6 mm/day. Romero et al. (1999a) tested larger variations in the number of stations that
met the rainy condition (15% and 30%). The patterns of the different regionalization were
very similar when these changes are introduced and thus it can be affirmed that the method is
considerably stable.
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(1990-1999) are screened. Only those days when at least 5% of the stations

registered precipitation larger than 5 mm are considered in the PCA.

The covariance S-mode PCA computed over this reduced precipitation dataset

produces 5 significant principal modes that explained approximately 58% of the

variance. These 5 significant components are rotated and the hierarchical algo-

rithm is applied. The pseudo-F test is calculated and it indicates that a five-

cluster organization is appropriate for the Andalusian precipitation, as shown in

Figure 3.5. Other configurations with higher number of clusters are also suggested

by the test (7,12 and 17) but the aim is to obtain a regionalization as simple as

possible and thus the five-division regionalization was chosen.
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Figure 3.5: Pseudo-F calculated for precipitation from Subsistema Clima dataset. A
local maximum indicates a suitable number of cluster. Red circles highlight the recom-
mended configurations.

The screened precipitation is used to calculate the centroids of the clusters

that will act as seeds to initialize the k-means. The k-means redistribute the

stations in these clusters accommodating each one in the most suitable region.

The final regionalization for precipitation over Andalusia is shown in Figure

3.6a. The structure of climate divisions is coherent with topography and the

main features of the dominating circulation. An evident zonal partitioning can

be observed, which accounts for the gradual influence of fronts coming from the

Atlantic Ocean and systems generated in the Mediterranean Sea. Moreover, to-

pography effects can be seen in the boundaries of regions N, S and E, delimited by
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the Baetic System. The eastern precipitation regime is clearly distinguished form

the other Andalusian rainfall patterns; indeed this semi-arid area with markedly

convective character and differentiated dynamical precipitation is accurately sin-

gled out by the regionalization technique. An almost identical regionalization

was obtained in one of the solutions proposed by (Romero et al., 1999b) ex-

cept for minor differences probably caused by the inclusion of the whole Spanish

Mediterranean coast in their study.

Regarding temperature, 5 significant components are obtained for Tmax and

3 for Tmin that explain about 95% and 91% of the variance, respectively. The

normalized loadings of these components were varimax rotated, merged and fed

into the Average Linkage clustering based on a 8-D distance that includes both

Tmax and Tmin rotated loadings. The pseudo-F test suggests a 4-cluster division

as the simplest among those recommended. The centroids of the different regions

are then calculated using Tmin and Tmax, and they are used as seeds in the

k-means CA to obtain the definitive regionalization.

The configuration of the divisions is mainly driven by the elevation, which

is the key factor in determining the temperature. This causes that the regions

are considerably scattered and the boundaries are not as defined as they were

for precipitation. Figure 3.6b illustrates the 4 different regions: a coastal (CO)

region, a highlands (HL) region that includes stations at high altitudes ranging

from 760 to 1350 m, stations located in the lower Guadalquivir basin conform the

lowlands (LL), and the midlands (ML) region comprises those internal stations

that are situated in the mountains but at lower elevations than HL. However the

regions are labelled in terms of the altitude for the sake of readability, there are

other factors such as the distance to the sea or the slope orientation that affects

the regionalization. Therefore, the names assigned to each region do not strictly

refer to the elevation of the single station, which would be a rather simplistic

assumption, but to the overall elevation of the regions.

Summarizing, 438 rain gauges are divided into 5 regions and 152 temperature

stations are classified in 4 regions (Fig. 3.6).

3.3.3 Regionalization of Spain02

Despite the fact that Spain02 is a gridded observational dataset and thus

regionalization is not necessary to compare the model estimates, it facilitates the

comparison in terms of certain parameters. For example, the regionalization is

used to calculate and illustrate the monthly annual cycle or the percentiles of
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Figure 3.6: Regions obtained with the multi-step methodology for: a) Precipitation:
west (W - blue), central (C - green), north (N - yellow), south (S - orange) and east
(E - red); b) Temperature: coast (CO - red), highlands (HL - yellow), midlands (ML -
green) and lowlands (LL - blue).

daily values because a single plot for every grid point is evidently impractical.

The procedure to prepare data for regionalization is analogous to SubClim

dataset, although some differences are introduced.

In terms of precipitation, the Spain02 is initially screened to eliminate those

days that were dry over the entire region with a criterion (1 mm/day in at least

5% of the locations) that slightly differs from that used in Andalusia. The fil-

tered dataset is processed by a S-Mode PCA over the covariance matrix and the

North Rule of Thumb indicates that 13 components are significant. The com-

ponents retained explained about 61% of the total precipitation variance. The

agglomerative CA and the subsequent pseudo-F test recommended 5, 7, 10 and

14 climate divisions as appropriate configurations. Two factors made us to prefer

the 10-cluster option: 1) the coherence with the previous regionalization that

divided precipitation in Andalusia (a much smaller area) into 5 regions, and 2)

the pseudo-F absolute maximum attained with this configuration with respect to

the other solutions. The k-means slightly moved the boundaries to yield the final

climate division shown in Figure 3.7.

The regionalization obtained for Spanish precipitation agrees with the rain-

fall regimes distribution and the topography. The regions are broadly distributed

from west to east representing the gradual influence of the fronts with origin

in the Atlantic Ocean and the Mediterranean Sea. Furthermore, the areas are

differentiated from north to south too, which explains the gradient in total pre-

cipitation amounts. It is also interesting to note that the mountain ranges in
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the IP are in general oriented zonally and several divisions from north to south

correspond to their location. Outside the IP, an additional region represents the

Balearic Islands.
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Figure 3.7: Regions obtained with the multi-step technique for the Spain02 precipita-
tion: northwest (NW), Cantabrian Coast (CA), north central (NC), northeast (NE),
islands (IS), east central (EC), interior (IN), southwest (SW), southern interior (SI),
southeast (SE).

Regarding temperature, the same procedure that was adopted for the SubClim

dataset is here applied. A S-Mode PCA is initially computed over the covariance

matrix for both temperature extremes. The North Rule of Thumb suggested 12

principal components for Tmax that explained about 97% of the variance and

15 components for Tmin that also explained about 97% of the variance. Then,

the agglomerative CA is applied to the squared Euclidean distance over the 27-D

space of the rotated loadings and the pseudo-F test is carried out, which yields a

local maximum at 8. The original Tmax and Tmin are processed with a k-means

algorithm using the agglomerative CA results to define the appropriate number

of clusters and the starting seeds. The final regionalization obtained from the
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k-means non-hierarchical clustering is composed of 8 regions that characterize

Spanish temperature regimes (Fig 3.8).
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Figure 3.8: Regions obtained with the multi-step technique for the Spain02 temper-
ature: Mediterranean Coast (ME), Guadalquivir Basin (GU), southwest (SW), east
interior (EI), plateau (PL), high mountains (HI), north interior (NI) and Atlantic
coast (AT).

The regionalization is mostly driven by elevation and distance to the sea. Two

coastal regions, in the Mediterranean (ME) and in the Atlantic Ocean (AT) group

the stations close to the sea. The stations located in the Guadalquivir river basin

are included in the GU region. The area comprised between the Central System

and the Sierra Morena, which includes the Tejo and Guadiana river basins is

represented by the southwest (SW) region. The NI region is made up of locations

in the nothern interior. The Northern Central Plateau forms the PL region that

extends almost until the Mediterranean coast. The Ebro river basin and some

areas in the eastern interior are included in the EI region. Finally ,the HI region

defines the regimes associated to high-mountain climate and is spread across the
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IP, from an isolated grid point in the southern Baetic Systems to the Pyrenees

or the Cantabrian range.





Chapter 4

The WRF configuration

The greatest challenge to any thinker is stating the problem
in a way that will allow a solution.

Bertrand Russell

One of the principal stages in the generation of future climate change projec-

tions through dynamical downscaling is the regional model setup. This chapter

details the configuration of WRF to perform the present and future simulations.

The domain design, the static fields used by the model, the running options and

the driving data are herein described. These parameters where selected according

to preliminary tests that qualitatively helped to design the experiments. Addi-

tional features of the model configuration that required in-depth analyses such

as the parameterizations, are addressed in the next Chapter (5).

4.1 The domains design

The domains basically specify the area to be simulated, which is usually de-

termined in advance by the region under survey. However, several factors must

be considered in the domain design.

Number of domains and feedback

It is already well-known that a large resolution difference between the driving

data and the RCM might have an important impact on the results (Denis et al.,

2003). Given this fact, a usual approach is that of using an intermediate coarser

domain where to nest the finer domain in order to reduce the disparity. As for
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WRF, the grid distance ratio between the parent and nested domains is typically

3/1. Therefore, a 10-km resolution domain is usually nested in a 30-km domain.

If the scale disparity between the coarse domain and the boundary conditions

data is still large, then an additional domain could be added.

In the preliminary tests1, different approaches using three-domain (90-, 30-

and 10-km resolutions) and two-domain (30- and 10-km resolutions) configuration

where analyzed and the two-domain option seemed to produce similar or even

better results in terms correlation, RMSE and Bias with respect to observations.

The resolution was chosen upon the available computational resources and the

purpose of producing high-resolution projections. A climate run at 10-km (or

even coarser) is currently considered a state-of-the-art high-resolution climate

simulation (Caldwell et al., 2009; Evans and McCabe, 2010; Rummukainen, 2010).

Not only the number of domains must be explored but the communication be-

tween them as well. Essentially, there are two possible communication techniques

between the domains, namely the one-way and the two-way nesting. The differ-

ence between them derives from whether there is feedback or not. In the one-way

nesting, the boundary conditions are fixed at the borders of the coarser domain

that in turn passes this information to the finer domain. On the other hand, in

the two-way nesting the information generated within the finer domain is also

passed into the coarser domain and therefore there is a feedback between the two

domains. The two-way nesting might be highly beneficial in short-term simula-

tions, but in the case of long-term simulations it might cause instabilities. Indeed,

WRF 3.1.1 is unstable in the long term when using two-way nesting because very

large vertical velocities occur in the relaxation zone where the information is

shared. In addition, the ability of the one-way technique to reproduce fine scale

features of atmospheric fields have already been demonstrated by several authors

(Denis et al., 2002; Dimitrijevic and Laprise, 2005; Harris and Durran, 2010).

In this scenario and bearing in mind that this is probably the most widespread

approach in climate simulations(Antic et al., 2006; Borge et al., 2008; Bukovsky

and Karoly, 2011; Frei et al., 2006; Moberg and Jones, 2004; Salathé Jr et al.,

2008), the one-way procedure was chosen.

Domains position

Another subject that should be considered carefully is that of locating the

domain borders adequately. The aforementioned resolution disparity between

1These are the preliminary tests that were performed using MM5 (see Sec. 2.2).
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the driving data and the model itself suggest that orographic inhomogeneities

should be placed far from the domain borders to avoid the generation of artifacts.

However, it is not always possible to design a domain with the borders located

over completely homogeneous areas and the mountainous regions are sometimes

inevitable. Whenever this happens, different positions of the border should be

examined to reject configurations that might induce too large errors. Moreover,

the atmospheric dynamical features of the region must also be taken into account

when deciding the domain location. For example, the IP is directly affected by

the frontal systems that are generated in the Atlantic Ocean and hence a large

portion of it should be included in the coarser domain. Nonetheless, the initial

simulations indicated that a significant part of the western Mediterranean must

also be included in the parent domain to correctly capture the mechanisms that

produce precipitation in the eastern Spain.

All these factors led us to define two domains using one-way nesting at 30

and 10-km resolution respectively, and located as illustrated in Figure 4.1. The

coarser domain consists of 130 by 120 grid points, equivalent to 3900 km (W-E)

by 3600 km (S-N), and the nested one comprises 135 by 135 grid points, which

amounts to 1350 km (W-E) by 1350 km (S-N).

The vertical grid

In addition to the horizontal configuration of the domains that is described

above, the vertical grid has also to be defined. The soil is divided in four levels

where the soil variables are defined (0-7, 7-28, 28-100 and 100-255 cm). Over the

ground, both domains have 35 levels in the vertical with the top of the atmosphere

located at 50hPa. Since WRF uses a η vertical coordinate system (see Sec. 2.2)

the vertical resolution depends on the surface pressure and thus varies with time

and space. Nonetheless, Figure 4.2 shows the position of the levels calculated

using the base state pressure as a reference.

The static fields

Besides the boundary conditions that WRF needs to run, different static fields

are also used as input to define the domain. These fields mainly describe the to-

pography, the soil type and the land use. In the simulations performed here,

the U.S. Geological Survey (USGS) dataset is selected to define the topography

(GTOPO30, Gesch et al., 1999) and the land-use category. The USGS dataset

has 24 land-use categories and a 30” resolution (∼ 1 km) that is converted to
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Figure 4.1: The WRF domains configuration for present and future climate simula-
tions. The red lines delimit the coarser (30-km) and the finer (10-km) domains.

the model grid resolution by means of interpolation. Each of the 24 categories is

characterized by a number of properties (e.g., albedo, roughness length, emissiv-

ity).

Apart from the aforementioned static fields, the Sea Surface Temperature

(SST), the vegetation fraction and the albedo are also ingested by the model and

usually kept constant during short-term simulations. However, in climate runs

it is recommendable to enable the option that makes these fields to vary. The

SST is then obtained from the driving data and updated with the same frequency

as the boundary conditions, whereas the albedo and the vegetation fraction are

characterized by monthly values.
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Figure 4.2: Position in pressure coordinates of the η vertical levels using the base
state pressure as a reference.

4.2 The boundary conditions

The driving data are a crucial component in dynamical downscaling because

they are the prime source of information. Indeed, the WRF model downscales the

low-resolution climate information that the boundary conditions provide. Under

these circumstances, the future climate projections should be produced using

different data sources to generate a sort of ensembles to reduce the uncertainty

by covering a wide range of possibilities. The boundary conditions can be divided

into two main groups, the observational reanalyses that describe current climate

to evaluate the model and the GCMs that simulate the Earth climate under

present and potential future conditions.

4.2.1 The observational reanalyses

The observational reanalyses are also known within the RCMs framework as

‘perfect boundary conditions’ because they embody the better global representa-

tion of present climate in the form of a mesh. A reanalysis of the observations is

an objective combination of instrumental measurements and a numerical model

to generate a synthesized estimate of the state of the atmosphere (from reanal-

http://reanalyses.org/
http://reanalyses.org/
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yses.org). Using reanalysis to feed the regional model, it is driven as close as

possible to the actual evolution of recent-past climate. Two of the most promi-

nent examples of global reanalyses are the National Centers for Environmental

Prediction (NCEP)/NCAR Reanalysis Project (NNRP, Kalnay et al., 1996) and

the ERA-40 Reanalysis (Uppala et al., 2005).

Despite the fact that this kind of driving data are usually referred as ‘perfect

boundary conditions’, it is obvious that the reanalysis are not free of errors, and

hence their reliability has to be examined. An striking example of this topic is

related to NNRP skin temperature over the westernmost Mediterranean.

The boundary data reliability: the Alboran Sea example

The skin temperature is defined as the temperature of the surface at radiative

equilibrium and it is often used in the place of SST1. The sea points where the

skin temperature works as SST are identified by a land-sea mask. However,

the NNRP land-sea mask is deficient in the south of Spain due to its coarse

resolution (about 2.5◦ by 2.5◦) as shown in Figure 4.3a. The Alboran Sea is then

represented as a inland sea with SST values that are substantially lower than in

the surrounding sea. This produces unrealistic gradients and large deviations in

the skin temperature (up to 5◦C) that WRF uses as lower boundary conditions,

as highlighted with black ellipses in Figures 4.3b and 4.3c. As a consequence, 2m

temperature along the coast might be poorly simulated and precipitation might be

also affected because lower SST values hinder convective processes. This feature

of the NNRP reanalysis obviously discourage us from using it to drive the WRF

model, although it does not mean that the same applies for other regions in the

globe.

The ERA-40 reanalysis

The ERA-40 dataset from the European Centre for Medium-range Weather

Forecasting (ECMWF) has been chosen because they are fairly accurate in the

surroundings of the IP and due to their widespread in dynamical downscaling

1The skin temperature is identical to the SST over sea points but it is defined also over
land points, which prevents some stability problems that arise from the misinterpretation that
WRF makes of the missing values if they are not precisely masked. If the land-sea mask is not
accurate enough, it might include land points as sea points and the SST will not be defined over
them. Actually, a missing value (∼ 10−31) is assigned to these points that WRF understand as a
real value which causes, besides the unrealistic results, severe problems of numerical instability

http://reanalyses.org/
http://reanalyses.org/
http://reanalyses.org/
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Figure 4.3: (a) The NNRP land-sea mask and two different snapshot of skin temper-
ature from NNRP-WRF boundary conditions in: (b) January 1st 1990 at 00h and (c)
September 1st 1990 at 18h.

studies over Europe (Christensen et al., 2007c; Fernández et al., 2007; Heikkilä et al.,

2010; Rauscher et al., 2010; van der Linden and Mithchell, 2009).

ERA-40 is a reanalysis of meteorological observations that spans from Septem-

ber 1957 to August 2002 with a 1.125◦ by 1.125◦ spatial resolution. The obser-

vations incorporated in ERA-40 come from many different sources that include

satellites, radiosondes, aircrafts, ocean-buoys and other surface platforms. It has

60 vertical levels of which 15 are selected to drive WRF (50, 70, 100, 150, 200, 250,

300, 400, 500, 600, 700, 775, 850, 925, 1000 hPa). The variables used to create

the boundary conditions in the vertical levels are temperature, geopotential, U

and V winds, and relative humidity. Additionally, a number of surface variables

were used as well: 2m temperature, 10m U and W winds, dew point temperature,

mean sea level pressure (PSML), skin temperature and sea ice. Finally, the soil

temperature and moisture are also employed at four levels (0-7, 7-28, 28-100 and

100-255 cm).

It has already been mentioned that the skin temperature is often used in-

stead of SST and an accurate land-sea mask must be provided to identify sea

points. However, the default ERA-40 land-sea mask seem to be defective and

some land/sea points are wrong. Thereby, when the WPS look up the land-sea

mask to interpolate skin temperature over sea points, there are some areas where

it generates spurious values near the coast. In Figure 4.4, both the default ERA-

40 land-sea mask (a) and the ERA-40 skin temperature for a particular time are

shown. The coastline is clearly visible in certain regions and comparing with the
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land-sea mask map, the inconsistencies are manifest (black circles).

Figure 4.4: (a) The ERA-40 skin temperature in December 1st 1989 at 00h and (b)
the ERA-40 default land-sea mask.

Nevertheless, the SST field is only defined over sea points and therefore, the

land points appear as missing values and hence the land-sea mask is already incor-

porated in the data. Retrieving those missing values, a SST-derive land-sea mask

can be obtained (Fig. 4.5). The alternative land-sea mask seems to be much more

consistent that the default one and the effects of such a change can be observed in

Figure 4.6, where the skin temperature is interpolated using the default ERA-40

mask (a) and the ERA-40 SST-derived mask (b). Although there are still areas

with values that might be spurious (Ligurian Sea), remarkable improvements are

noticeable in the western coast of the IP, in the Strait of Gibraltar, in the Strait

of Bonifacio and in the south of Brittany.

Once the problem concerning the land-sea mask is fixed, the ERA-40 is used

to describe the large-scale features of the atmosphere and hence to specify the

boundary conditions for the simulations of present climate.

4.2.2 The General Circulation Models

The GCMs are numerical models that simulate the Earth system. Their

complexity varies depending on the components of the Earth system that are

included. The atmospheric or oceanic models represent only a facet of the entire

system, namely the general circulation of the atmosphere or the ocean. Moderns

GCM, also known as AOGCMs, tend to incorporate increasingly more processes
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Figure 4.5: ERA-40 land-sea mask obtained from SST.

martes 24 de mayo de 2011

275 280 285 290270265
Skin temperature (K)

b)a)

Figure 4.6: Skin temperature interpolated using (a) the default ERA-40 land-sea mask
and (b) the ERA-40 SST-derived land-sea mask.
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in their formulation and now most of them represent a coupled system where

ocean, atmosphere, land surface, cryosphere and biosphere interact.

GCMs are currently the primary generators of climate change information.

The Earth System is forced towards potential future changes (GHGs and aerosols

concentration, land use, solar activity) and the climate responses are examined.

The GCMs outline the climate evolution of the Earth as a whole and set up

the framework where regional models produce high-resolution climate change

information. Therefore, they are a cornerstone of dynamical downscaling.

The global models are certainly not perfect and thus their ability to capture

climate features over a particular region has to be analyzed. The errors that

GCMs might be prone to are inherited by RCMs in dynamical downscaling and

hence both the GCM and the RCM performance can be assessed by the exami-

nation of the RCM outputs. The only method to examine such a performance is

to carry out present climate simulations and compare the estimates with obser-

vations. This way, it is possible to delimit the uncertainties associated to future

climate projections.

Nonetheless, the fact that WRF shows a good agreement with present climate

when driven by a particular GCM does not completely guarantee that future cli-

mate will be simulated as adequately. Consequently, it is recommendable that

different boundary conditions are used to drive the model, so that different pos-

sible evolutions of the climate are studied. This includes not only various GCMs

but different emission scenarios as well.

In this Thesis, two global models included in the last IPCC AR4 (Solomon

et al., 2007) and widely used by the dynamical downscaling community are em-

ployed: The Max Planck Institute ECHAM5/MPI-OM coupled model (Jungclaus

et al., 2006; Roeckner et al., 2003) and the CCSM model (Collins et al., 2006)

from NCAR. This models were chose on the basis of two main assets: (1) The

outputs are available and the required variables to run WRF are provided at a

satisfactory frequency and spatial resolution, and (2) they work reasonably well

for the IP. The ECHAM5/MPI model is able to correctly capture both tempera-

ture and precipitation over the IP. The CCSM model presents some deficiencies

in capturing precipitation in this region, but reproduces temperature fields very

well (Errasti et al., 2010; Nieto and Rodŕıguez-Puebla, 2006). In addition, three

different emission scenarios from those proposed by the IPCC (SRES scenarios,

Nakicenovic et al., 2000). Both the GCMs details in their use as boundary con-

ditions and the emission scenarios are briefly described below.
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Max Planck Institute ECHAM5/MPI-OM model

The fifth-generation ECHAM model coupled with the Max Planck Institute

Ocean Model (MPI-OM, Marsland et al., 2003) is adopted here1 and from now on

will be referred as simply ECHAM5. The ECHAM5 model is based on the global

forecast models developed at the ECMWF. Besides the approximation of the

Navier-Stokes equations for the atmosphere, several factors and components of

the climate system are considered in the model, such as the atmospheric radiation

processes, water cycle, vegetation or orbital variations.

The ECHAM5 model outputs were provided by the Deutches Klimarechen-

zentrum (DKRZ) through the CERA portal2 upon registration. A large number

of variables are available of which the following were selected to drive the model:

geopotential height (GPH), relative humidity (RELHUM), temperature (STP),

zonal wind velocity (U) and meridional wind velocity (V) at 16 vertical levels; and

2m temperature (TEMP2), surface temperature (TSURF), 10m zonal wind veloc-

ity (U10), 10m meridional wind velocity (V10), surface pressure (APS), mean sea

level pressure (MSLP) and near surface dew point temperature (DEW2) at the

lower vertical level3. The model has 31 vertical levels of which 17 pressure levels

are provided by DRKZ. All levels except for the top 10hPa level were retained to

generate the boundary conditions. These vertical levels are located at: 1000, 925,

850, 775, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50 and 30hPA. In the

horizontal, ECHAM5 in the version included in the IPCC AR4 has a T63 spectral

resolution, which corresponds to an horizontal grid spacing of 1.9◦(approximately

210 km in the N-S direction and 150 km in the W-E direction at mid-latitudes).

The original ECHAM5 relative humidity had to be adapted. The relative

humidity is stored as parts per unit instead of the usual percent. However, WPS

interprets the relative humidity in the traditional way and so ECHAM5 records

had to be multiplied by 100, otherwise WRF is forced towards very low humidity

values producing unrealistic results.

Moreover, the ECHAM5 dataset include soil temperature at five layers but

lacks soil moisture, which is also necessary to run the Noah LSM. Therefore,

a detour had to be made to overcome this obstacle. The Noah Land Surface

1There are available model results from different runs that basically differ in the forcing and
the initial conditions. In this Thesis, the simulation that incorporates all forcing (anthropogenic
plus natural) and starting from the pre-industrial control run was selected (run1 all) to simulate
present conditions.

2http://cera-www.dkrz.de/CERA/
3The acronyms in bracket correspond to those used within the ECHAM5 model.

http://www.dkrz.de/dkrz_old-en?set_language=en
http://cera-www.dkrz.de/CERA/
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Model (LSM) just needs this information in first time step and after some slight

modifications of the WPS code, it was possible to create the boundary conditions

providing only the initial state of the soil. The procedure to obtain the initial

conditions was that of retrieving both soil moisture and temperature from ERA-

40 data and create a sort of climatological state of the soil. For example, if the

model run starts on June 1st at 00h, a 30-year average (1970-1999) of the ERA-40

soil variables during May and June was calculated and used as initial conditions.

Then the model runs for a several-month period to ‘forget’ about these initial

conditions and permit the LSM to reach its own equilibrium. Only after the

spin-up period of several months the results are retained.

The NCAR CCSM.0 model

The Community Climate System Model version 3 (CCSM) is a coupled cli-

mate model with components representing the atmosphere, ocean, sea ice and

land surface connected by a flux coupler (Collins et al., 2006). The model was

run at different horizontal resolutions but the version selected here has a T85

spectral resolution, which is equal to about 1.4◦ resolution (approximately 110

km in the N-S direction and 150 km in the W-E direction at mid-latitudes). The

vertical dimension is divided into 26 levels of which 17 (1000, 925, 850, 700, 600,

500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 and 10hPa) were used to gener-

ate the boundary conditions. The variables obtained at each of these levels are

temperature (TT), zonal wind velocity (UU), meridional wind velocity (VV), rel-

ative humidity (RH) and geopotential height (GHT). Additionally, the variables

sea ice (SEAICE), surface pressure (PSFC), mean sea-level pressure (PMSL),

temperature (TT), zonal wind velocity (UU), meridional wind velocity (VV),

relative humidity (RH), skin temperature (SKINTEMP) and sea surface temper-

ature (SST) were defined at the lowest level1. As for ECHAM5, the CCMS3

lacks soil variables that are required to run the Noah LSM. Therefore the same

methodology mentioned for ECHAM5 to generate the initial soil conditions was

followed here.

The model outputs2 are provided by the Earth System Grid (ESG) in their

website3 after registration.

1The acronyms in bracket correspond to those used within the CCSM model.
2As for ECHAM5, outputs from several runs are available for CCSM. For present climate

simulations the b30.030e run was chosen. Whereas for future climate simulations the b30.040e,
b30.041e and b30.042e runs were opted for.

3www.earthsystemgrid.org

http://www.earthsystemgrid.org
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The emissions scenarios from SRES

Three different emission scenarios from SRES (Nakicenovic et al., 2000) were

selected aimed at covering a wide range of possible future evolutions of the human

activity that might influence the climate. The SRES scenarios are assumptions

about possible future population growth, economic activity, energy resources,

society developments and technological advances that might have a substantial

impact on climate. It was already mentioned in Sec. 2.1.2 that GHG emissions

are the first element in the causal chain of climate change and thus those factors

that directly affect the GHG emissions can be regarded as prime drivers of global

warming. It is not among the objectives of this Thesis to explore the uncertainties

associated to future scenarios, but they are such a paramount component of

climate change studies that a brief description of them is essential.

The SRES scenarios are classified into four families depending on the develop-

ment pathways of the aforementioned factors. Figure 4.7 schematically illustrates

the classification of scenarios. Two main parameters are used to define the fam-

ilies: (1) the global vs. regional development that generates an homogeneous or

heterogeneous world, and (2) the evolution towards a more economical or environ-

mental development. These four families are subdivided into different scenarios

that amount for a total of 40 different possible situations.

A1

B1

A2

B2

Global
(homogeneous

world)

Regional
(heterogeneous

world)

More Environmental

More Economical

B: Balanced
FI: Fossil intensive
T: non-fossil

Figure 4.7: Schematic representation of the 4 SRES scenarios families with the crite-
ria to classify them. The global and regional character refers to the evolution towards
an homogeneous or heterogeneous world, whereas the environmental or economical na-
ture indicates the direction of developments. A subset of A2 family is also shown and
includes three different divisions according to the energy sources (A1B, A1FI and A1T).
From IPCC AR4.
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For the six illustrative SRES emissions scenarios, projected
emissions of indirect greenhouse gases (NOx, CO, VOC),
together with changes in CH4, are projected to change the
global mean abundance of the tropospheric hydroxyl radical
(OH), by −20% to +6% over the next century. Because of the
importance of OH in tropospheric chemistry, comparable, but
opposite sign, changes occur in the atmospheric lifetimes of
the greenhouse gases CH4 and HFCs. This impact depends in
large part on the magnitude of and the balance between NOx
and CO emissions. Changes in tropospheric O3 of –12 to +62%
are calculated from 2000 until 2100. The largest increase
predicted for the 21st century is for scenarios A1FI and A2
and would be more than twice as large as that experienced
since the Pre-industrial Era. These O3 increases are attributable
to the concurrent and large increases in anthropogenic NOx
and CH4 emissions.

The large growth in emissions of greenhouse gases and other
pollutants as projected in some of the six illustrative SRES
scenarios for the 21st century will degrade the global
environment in ways beyond climate change. Changes
projected in the SRES A2 and A1FI scenarios would degrade
air quality over much of the globe by increasing background
levels of tropospheric O3. In northern mid-latitudes during
summer, the zonal average of O3 increases near the surface
are about 30 ppb or more, raising background levels to about
80 ppb, threatening the attainment of current air quality
standards over most metropolitan and even rural regions and
compromising crop and forest productivity. This problem
reaches across continental boundaries and couples emissions
of NOx on a hemispheric scale.

Except for sulphate and black carbon, models show an 
approximately linear dependence of the abundance of
aerosols on emissions. The processes that determine the
removal rate for black carbon differ substantially between the
models, leading to major uncertainty in the future projections
of black carbon. Emissions of natural aerosols such as sea
salt, dust, and gas phase precursors of aerosols such as
terpenes, sulphur dioxide (SO2), and dimethyl sulphide
oxidation may increase as a result of changes in climate and
atmospheric chemistry.

The six illustrative SRES scenarios cover nearly the full range
of forcing that results from the full set of SRES scenarios.
Estimated total historical anthropogenic radiative forcing
from 1765 to 1990 followed by forcing resulting from the six
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Figure 18: Atmospheric concentrations of CO2, CH4 and N2O resulting

from the six SRES scenarios and from the IS92a scenario computed

with current methodology. [Based on Figures 3.12 and 4.14]

Figure 4.8: Evolution of the atmospheric
concentration of CO2, CH4 and N2O during
the 21st Century according to six different
SRES scenarios and the old IS92a scenario
(Leggett et al., 1992). From IPCC, 2001.

The IPCC AR4 focuses on six pos-

sible scenarios (B1, A1T, B2, A1B,

A2 and A1FI) and devotes particular

attention to three of them (B1, A1B

and A2). The emissions associated to

each scenario are translated into GHG

concentrations that in turn are inter-

preted as a radiative forcing. In order

to provide a picture of these six sce-

narios, the evolution of GHG concen-

tration in the atmosphere all through

the 21st Century is shown in Figure

4.8. The corresponding radiative forc-

ings from 1850 to 2100 are depicted in

4.9a and the anthropogenic global sur-

face temperature changes are shown in

Figure 4.9b for the six SRES scenarios.

Some additional scenarios from previ-

ous IPCC reports (Leggett et al., 1992)

are also included in Figure 4.9.

In line with the IPCC AR4, the sce-

narios selected in this study are B1,

A1B and A2. These scenarios are not

only those that IPCC AR4 explore in

detail, but also the most widespread

in the regional climate modeling com-

munity and therefore, their selection

makes possible to compare our re-

sults with other regional climate pro-

jections. Furthermore, this set of sce-

narios cover a range of future possibilities for the end of this century: a low-

emission (B1), an intermediate-emission (A1B) and a high-emission (A2) scenar-

ios.

The B1 scenario describes a future world of global population that peaks in

the mid-century and decreases thereafter. The economy presents rapid changes

towards a service and information economy, with reductions in material intensity

and the introduction of clean and resource-efficient technologies.
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9.3.3 Range of Temperature Response to SRES Emission 
Scenarios

This section investigates the range of future global mean tempera-
ture changes resulting from the thirty-five final SRES emissions
scenarios with complete greenhouse gas emissions (Nakićenović et
al., 2000). This range is compared to the expected range of
uncertainty due to the differences in the response of several
AOGCMs. Forcing uncertainties are not considered in these
calculations. As well as envelope results that incorporate all the
SRES scenarios, six specific SRES scenarios are considered. These
are the four illustrative marker scenarios A1B, A2, B1 and B2 and
two further illustrative scenarios from the A1 family representing
different energy technology options; A1FI and A1T (see Section
9.3.1.3 and Box 9.1). For comparison, results are also shown for
some of the IS92 scenarios. As discussed in Section 9.3.1.3 some
AOGCMs have run experiments with some or all of the four draft
marker scenarios. In order to investigate the temperature change
implications of the full range of the final SRES scenarios, a simple
climate model is used as a tool to simulate the AOGCM results
(Wigley and Raper, 1992; Raper et al., 1996, 2001a). The tuning of
the simple model to emulate the different AOGCM results is
described in Appendix 9.1. The original SRES MiniCAM (Mini
Climate Assessment Model from the Pacific Northwest National
Laboratory, USA) scenarios did not contain emissions for the
reactive gases CO, NMVOCs, and NOx (Nakićenović et al., 2000).
To facilitate the calculations, the MiniCAM modelling team
provided emissions paths for these gases.

For the six illustrative SRES scenarios, anthropogenic
emissions are shown for CO2 in Chapter 3, Figure 3.12, tabulated
for CH4 and N2O in Appendix II and shown in Nakićenović et al.
(2000), and shown for SO2 in Chapter 5, Figure 5.13. It is evident
that these scenarios encompass a wide range of emissions. Note
in particular the much lower future sulphur dioxide emissions for
the six SRES scenarios compared with the IS92a scenario. 

The calculation of radiative forcing from the SRES emission
scenarios for the temperature projections presented here follows
closely that described in Chapters 3, 4, 5 and 6, with some
exceptions as described below. Further details of the forcing for
the collective procedures (MAGICC model) are given by Wigley
(2000). Atmospheric concentrations of the greenhouse gases are
calculated from the emissions using gas cycle models. For CO2,
the model of Wigley (1993) is used and as described therein, the
CO2 fertilisation factor is adjusted to give a balanced 1980s mean
budget. To be consistent with Chapter 3, climate feedbacks are
included and the model has been tuned to give results that are
similar to those of the Bern-CC and ISAM models for a climate
sensitivity of 2.5oC (Chapter 3, Figure 3.12). The strength of the
climate feedbacks on the carbon cycle are very uncertain, but
models show they are in the direction of greater temperature
change giving greater atmospheric CO2 concentration. The
climate feedbacks in the Bern-CC model are greater than those of
the ISAM model and the feedback strength used here is about
half as big as that in the ISAM model. The gas cycle models for
CH4 and N2O and the other trace gases are identical to those used
in Chapter 4. The concentrations for the main greenhouse gases
for the six SRES scenarios are shown in Chapter 4, Figure 4.14. 

Except for the treatment of organic carbon (OC), black
carbon (BC) and indirect aerosol forcing, the method of calcula-
tion for the radiative forcing follows closely that described in
Chapter 6 and includes tropospheric ozone, halocarbons, and
stratospheric ozone. For OC and BC this report’s best estimate
forcing values for the present day given in Chapter 6, Table 6.11
are used. As pointed out in Chapter 5, past and future emissions of
OC and BC are uncertain. Here fossil OC and BC direct aerosol
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Figure 9.13: Simple model results. (a) Estimated historical anthro-
pogenic radiative forcing followed by radiative forcing for the four
illustrative SRES marker scenarios and for two additional scenarios
from the A1 family illustrating different energy technology options.
The blue shading shows the envelope of forcing that encompasses the
full set of thirty-five SRES scenarios. The method of calculation
closely follows Chapter 6 except where explained in the text. The
values are based on the radiative forcing for a doubling of CO2 from
seven AOGCMs as given in Appendix 9.1, Table 9.A1. The IS92a,
IS92c and IS92e forcing is also shown following the same method of
calculation. (b) Historical anthropogenic global mean temperature
change and future changes for the six illustrative SRES scenarios using
a simple climate model tuned to seven AOGCMs. Also for comparison,
following the same method, results are shown for IS92a. The dark blue
shading represents the envelope of the full set of thirty-five SRES
scenarios using the simple model ensemble mean results. The light
blue envelope is based on the GFDL_R15_a and DOE PCM parameter
settings. The bars show the range of simple model results in 2100 for
the seven AOGCM model tunings.

Figure 4.9: (a) Evolution of the radiative forcing under six different SRES scenarios
(and three old IS92 scenarios, Leggett et al. 1992). (b) Multi-model averages of the
anthropogenic global mean temperature change for the different scenarios. From IPCC,
2001.
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The A1B scenario belongs to the A1 family. The A1 family describes a world

with the same population trajectory as in the B1 family, but with very rapid

economic growth. It also predicts a rapid introduction of new and more efficient

technologies. In terms of global distribution, it describes a substantial reduction

over time in regional differences a convergence among regions of the globe. Re-

garding the energy sources, the A1B scenario corresponds to a balance across al

sources.

The A2 scenario describes a very heterogeneous world with preservation of

local identities and self-reliance. Global population increases continuously, eco-

nomic development is regionally oriented and economic growth and technological

change are more fragmented and slower than in the other storylines.

The description of the scenarios is obtained from IPCC 2007. For further

details on the emission scenarios the interested reader is referred to the original

report (SRES, Nakicenovic et al., 2000).

4.2.3 Spectral nudging and buffer zone

In addition to the driving data sources, other variables concerning the bound-

ary data are configurable in the WRF model.

In order to resolve the ill-posedness of the boundary conditions specification

(see Sec. 2.1.1) and reduce the impact of the domain design in the results, the

spectral nudging is proposed. Spectral nudging adjusts the RCM to keep the

large scale consistent with the driving data. The use of spectral nudging is still

somehow controversial and many studies have discussed its value (Alexandru

et al., 2008; Heikkilä et al., 2010; Mı́guez-Macho et al., 2004; Radu et al., 2008;

Zahn et al., 2008). Most of them agree that although spectral nudging might

be beneficial, the adjusted scales must be chosen carefully because too strong

nudging could hamper the development of the model internal variability. That

being the case, a relatively weak spectral nudging is adopted over the coarser

domain of our simulations. In particular, the wavenumber chosen was 3, which

corresponds to adjust only waves larger than 1300 km. The spectral nudging

switched off in the PBL and only the levels above are adjusted with a frequency

of 24 h. All variables (U, V, T and PH –geopotential perturbation–) are nudged

except for moisture. Humidity is not nudged following Mı́guez-Macho et al. (2005)

because its spatial gradients can be very pronounced and thus might be missed

by coarse resolution reanalyses.

Aside from the spectral nudging, the problems derived from the specification
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of the boundaries are also prevented using a buffer zone instead of fixing the

boundary conditions in a ‘hard’ manner. The model outputs are relaxed towards

the boundaries over the buffer zone to damp any possible discrepancies between

the model and the driving data. Here the boundaries are fixed at the outer grid

points and the buffer zone extends 5 grid points.

The boundary conditions are updated with a frequency of 6 hours and they

are linearly interpolated in time to feed the model at intermediate time steps.

Denis et al. (2003) found that a 6-hour updating frequency was enough to drive a

run with domain characteristics (45-km resolution, 100 by 100 grid points) that

were similar to our coarser domain. Higher frequencies did not seem to provide

further benefits and lower frequencies did not capture accurately the systems

trajectories. On top of that, most reanalysis and GCMs are only available at

a 6-hour frequency and thus the WRF boundary conditions were updated with

that frequency.

4.3 Time configuration and spin-up

In order to allow the model reach an equilibrium between the external forcing

and the internal dynamics, a 7-month spin-up is adopted. Although previous

studies (Fernández, 2004; Giorgi and Mearns, 1999) have proven that initial val-

ues have minor effects on results after approximately one week , a longer spin-up

period was chosen here to ensure that not only atmospheric fields become rea-

sonably independent of the initial condition but soil variables as well, which

normally require several months to do so. Bearing in mind that soil information

in GCM-driven simulations is obtained from a surrogate created out of ERA-40,

the selection of a several-month spin-up is even more important to remove the

initial condition influence on the model results.

This study analyzes simulations that span 10 and 30 years. The shorter

simulations are employed to determine an appropriate configuration of the model,

whereas the 30-year ones (climate runs) are used to describe present and future

climate. Both simulations include the 7-month spin-up, however, the climate

runs are design differently to optimize computational resources. In principle,

the simulations should be run continuously to preserve the consistence of the

integrations in time. However, this implies that a given year can only be simulated

if the previous one has already been completed. This approach is rather inefficient

from a computational point of view. An alternative procedure is here adopted to

reduce the time required to complete the 30-simulations and consists in splitting
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the climate runs into decadal simulations that are performed simultaneously.

Each decadal simulation is then started using a 7-month spin-up to ensure

independency from initial conditions and reduce the impact of model restarting.

Figure 4.10 illustrates the design of the simulations in terms of time configuration

for the climate runs. Additionally, Figure 4.11 illustrates the surface and soil

temperature provided by two different runs: (1) A simulation that was started

10 years before and thus it is considered as ‘continuous’, and (2) a simulation

that was started at that particular moment. It can be observed that after the 7-

month period they both yield nearly identical values for the surface temperature

and even the very deep soil temperature (100-200 cm) show a good agreement.

This figure indicates that the selected spin-up length is adequate to reach internal

equilibrium even in terms of soil variables1, but also that the strategy to split the

simulations and efficiently use the computational resources has minor effects on

results.

June 1st 1969 June 1st 1979 June 1st 1989

Jan 1st 1970 Jan 1st 1980 Jan 1st 1990

30 years (1970-1999)

Figure 4.10: Time diagram of the 30-year integrations. The period is divided into
three 10-years simulations with a 7-month spin-up (grey). The decadal runs are then
integrated simultaneously. This example refers to present climate simulations. Future
climate simulations are analogous but for the period 2070-2099.

4.4 Other parameters

Besides the aforementioned parameters, many other options are provided by

WRF and are briefly commented here.

• The equations of the atmosphere are discretized in both space and time.

The temporal discretization is determined by the time step, which is an

important factor to reproduce the evolution of the atmosphere, especially

1The atmospheric fields are not shown, but they usually require much shorter spin-ups to
reach the dynamical equilibrium
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Figure 4.11: Surface and soil temperatures obtained from a continuous run (black)
and the restarted run (red) during the spin-up period. This is a random point in the IP
located at 39.14◦N-3.31◦W

when it changes rapidly. The recommended time step for the selected hori-

zontal resolution1 is here employed and was 180 and 60 s in the coarser and

finer domains respectively.

• The WRF formulation is design to run the model in parallel computers.

The simulations of this study were entirely performed in the Sun Fire

X2200/X4600 Cluster (UGRGRID) with 1264 cores. All simulations were

configured to use 64 processors.

• The model outputs were stored at a 6-hour frequency (00, 06, 12 and 18

h). In a supplementary file, precipitation is stored at 7 h on a daily basis

to compare with observations.

• The CLWRF (Fita and Fernández, 2010) version of WRF 3.1.1 was here

used. In CLWRF, the concentration of some gases (CO2, N2O, CH4, CFC-

11 and CFC-12) is modified according to the emission scenario and the

information is passed to the CAM radiation model instead of using the pre-

scribed A1B concentrations. Additionally, it enables a temperature check

at every time step to calculate the Tmax and Tmin at daily timescales.

1The recommended time step is, in seconds, 6 times the horizontal resolution in km.
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One of the major strengths of WRF concerns the parameterizations. A wide

range of physics options is available in WRF and makes it extremely flexible in

this respect. As a result, WRF sensitivity to parameterization schemes must be

address and the model has to be tuned for the particular purpose of the survey.

The physics choice is of such importance that a separate Chapter (5) is dedicated

to that subject in order to find a suitable combination of schemes for this study.



Chapter 5

WRF parameterization tests

Big whirls have little whirls, that feed on their
velocity; And little whirls have lesser whirls, and so
on to viscosity.

Lewis Fry Richardson

This chapter continues the issue of WRF configuration that was previously

raised. Although most of the parameters concerning WRF configuration were

reviewed in Chapter 4, there is still an aspect that remained unaddressed and

requires special attention: the physics parameterizations. Physics parameteriza-

tions comprise all processes occurring at scales that remain unresolved by the

model discretized equations. One of the major strengths of WRF is precisely the

wide range of available parameterization options that makes possible to adapt

the model to specific conditions. Nevertheless, the model results using different

combinations of physics packages might vary considerably and thus the perfor-

mance of various configurations has to be explored to choose an appropriate one

for our purposes. This Chapter is devoted to analyze the model precipitation and

temperature estimates using different parameterizations in order to assess their

validity and select a suitable configuration1.

5.1 Sensitivity tests for climate studies

A large number of studies have dealt with the selection of an appropriate

configuration of WRF physics for varying conditions and applications (Deb et al.,

1The results presented in this Chapter are part of a study published in Journal of Climate
(Argüeso et al., 2011)
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2008; Gallus Jr and Bresch, 2006; Hong et al., 2009; Hu et al., 2010; Jankov et al.,

2005; Kain et al., 2006; Kwun et al., 2009; Li and Pu, 2009; Nolan et al., 2009;

Ruiz et al., 2010), but due to computational costs, little effort has been devoted

to this topic for long-term runs and analyzing different parameterized processes

(Bukovsky and Karoly, 2009). Indeed, regional climate modeling has too often

disregarded the issue of an appropriate model configuration specifically suited for

the region and the time scale under survey.

Surveys on the model response to different parameterizations have usually

been performed using few-day runs and thus the conclusions are restricted to

that particular situation. For example, if the model is examined for the sum-

mer months, there is no saying about the model performance during the winter

because the processes that take place in these seasons are completely different.

In order to determine an adequate model configuration from a climate point of

view, that is to say a model configuration that compares well with the observa-

tions in general and not only under certain atmospheric conditions, the analysis

simulations that span several years is crucial.

Despite the fact that the choice of the parameterizations is too often made

with no physical foundations and using the default configuration, it might have a

dramatic impact on the model results. It is worth mentioning to this respect that

most of the physics schemes are semi-empirical approximations that have been

tuned to very particular environments and they have rarely been evaluated in

complex terrain or under highly variable conditions, as it happens with the PBL

(Stensrud, 2007). Hence, the assumption that the combination of schemes might

not have a substantial effect on the results is at least dangerous, especially over

regions where subgrid scale processes play an important role. That is the case of

the IP and consequently, the evaluation of different WRF schemes represents a

paramount stage in the generation of reliable future projections.

Ideally, all possible combinations of physics options should be tested because

the accuracy of the model cannot be uniquely attributed to a single parameter-

ization but rather to the combination of them, since feedbacks are usually as

important as the schemes themselves. However, bearing in mind the number of

possibilities, this still remains an utopia due to current computational limitations.

An alternative approach is that of choosing a number of schemes that are different

in formulation and complexity, and combine them to generate a representative

sample.
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Table 5.1: Combination of parameterization schemes for sensitivity tests

Cumulus PBL Microphysics ID
BMJ MYJ WSM3 BM3
BMJ MYJ Thompson et al. BMT
BMJ ACM2 WSM3 BA3
BMJ ACM2 Thompson et al. BAT
BMJ YSU WSM3 BY3
BMJ YSU Thompson et al. BYT
KF MYJ WSM3 KM3
KF MYJ Thompson et al. KMT

5.1.1 Description of the simulations

Eight combinations of physics options are here analyzed in detail (Table 5.1).

The eight simulations were identical except for the parameterizations. As already

mentioned, the physics packages were chosen with the aim to include options with

enough differences in their formulation as to consider the set of simulations to

be a representative sample. The land surface model is here fixed to Noah-LSM

and the radiation to CAM3.0 (see Sec. 2.3). Besides the combinations here pre-

sented, additional parameterization were tested in the preliminary tests but they

were discarded at the first stages of the study because they either produced very

similar results to other simulations (WRF single moment 5-class) or were clearly

outperformed by other schemes (Grell 3D cumulus and five-layer soil model).

The model outputs are compared with the SubClim dataset to determine

which configuration is more appropriate. The SubClim dataset presents two ad-

vantages that made us opt for it to conduct this analysis, (1) the inclusion of

both temperature extremes and precipitation, and (2) the remarkable density

of stations1. The density of the observational network is actually a key factor

that enables a thoroughly evaluation of the parameterizations. In return, the

examination is performed only over the area covered by the observational dataset

(Andalusia - southern Spain).

Although it might be argued that this analysis cannot be projected to the

entire IP, an examination of the model performance over southern Spain can be

regarded as a fair approximation. Southern Spain is far from being an homoge-

1The SubClim dataset was actually the only available dataset that had an acceptable density
when these simulations were performed. The Spain02 dataset became available only in the end
of 2010.
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neous region and it contains very different climate regimes as can be observed in

the Spain02 regionalizations (Figs. 3.7 and 3.8). For instance, southern Spain

includes a wide range of precipitation regimes (from one of Spanish wettest in

Grazalema to the driest in Almeŕıa) and most of the processes producing precip-

itation in the IP such as the Atlantic frontal systems, the orographic rainfall or

the typically Mediterranean convective phenomena. The temperature conditions

are also varied because there are stations at very different elevations spread all

over Andalusia (7 out of the 8 temperature regions of Spain02 have representation

in southern Spain). Fernández et al. (2007) found that southern Spain presents

a noteworthy diversity in terms of the optimal physics configuration. Hence, it

can be affirmed that a physics configuration that compares well with the SubClim

dataset performs adequately under a broad variety of conditions.

Figure 5.1: The WRF domains configuration for the parameterization tests simula-
tions. The red lines delimit the coarser (30-km) and the finer (10-km) domains.

The simulations completed to conduct this examination were design in accor-

dance with the description of the previous chapter with the exception that the
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nested domain covers a slightly smaller region. The coarser domain is exactly the

same (Fig. 5.1). The aim of these simulations is to represent the present climate

as accurately as possible and thus they were driven by ERA-40 reanalysis. The

eight runs span a 10-year period (1990-1999), which constitutes a sufficiently long

interval to capture the main climate features of the region at affordable compu-

tational costs. The period was selected to coincide with the time lapse covered

by the SubClim dataset. As described in the Section 4.3, a 7-month spin-up was

selected and thus the simulations actually start on June 1st 1989, although only

the results from January 1st 1990 are retained.

5.1.2 Description of the analysis

The eight model configurations are evaluated in terms of precipitation, Tmax

and Tmin. The analysis is carried out at different time scales to assess the

model capability to capture mean values and high-order statistics. Most of the

comparisons are conducted region by region (Fig. 3.6) in order to overcome

the aforementioned representation error, except for some parameters that were

calculated station by station to examine their spatial distribution. Whenever the

comparison is directly performed with site-specific measurements, the intention is

not to draw conclusions at particular locations but to provide an overview of the

broad spatial distribution of the model capabilities. This comparison provides

very helpful information to physically interpret the error sources and identify

possible spatial differences between the configurations, but it must be observed

carefully because it is only a qualitative picture of the model performance.

The examination begins with analysis of the annual monthly cycle that is

calculated at every region. Each station is represented in WRF by the nearest grid

point and the grid points are grouped into the same regions that were obtained for

the observations. The model outputs and observations are then spatially averaged

over the regions to generate the annual cycle that corresponds to each region. The

appropriate simulation of the annual cycle is essential because it is without doubt

the prime characteristic that describes the local climate. The study of the annual

cycle also makes possible to highlight the seasons when the largest differences

between WRF and observations occurs and maybe clarify which processes are

more troublesome to simulate.

Besides the annual cycle, the correlation, root-mean-squared error (RMSE)

and mean absolute error (MAE) are computed between the model and the obser-

vational temperature time series at monthly scales. By contrast, the correlation,
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relative RMSE and bias are analyzed for the precipitation ones. Different param-

eters are calculated for each variable in accordance with the values they take. A

good agreement between simulated and observed monthly time series indicates

that the model is able to capture inter-annual variability and the timing.

Coarse resolution models (GCMs) already provide an acceptable estimation of

the monthly values when the large scale has a strong influence on them. Indeed,

the major benefit of dynamical downscaling is the spatial resolution refinement,

which has a noticeable impact on the distribution and magnitude of extremes

(Bell et al., 2004; Frei et al., 2003; Giorgi, 2006b). The arise of regional climate

models was precisely motivated by the necessity to reproduce the climate at

higher detail and capture events that go unnoticed to GCMs. Therefore, it is

crucial to evaluate the model ability in this respect. To this purpose different

percentiles are calculated to ascertain whether WRF is able to represent the

observed probability distribution function (PDF) of events. The evaluation in

terms of the PDF completely disregards the timing of particular events, which

is a great advantage if the model performance is to be assessed from a climate

point of view. In climate studies, we are not interested in capturing the intensity

and timing of a given event, but rather the frequency of particular events during

a long period.

The parameters described above are also calculated for ERA-40 reanalysis

to stress the improvement introduced by WRF with respect to the boundary-

condition data.

A detailed description of how the statistical parameters used in this Thesis

are calculated is provided in Appendix B.

5.2 Precipitation

Precipitation is known to be one of the most complicated variables to sim-

ulate because it is affected by several processes, of which many take place at

subgrid scales. Therefore, it can be expected that precipitation results are highly

dependent on the chosen parameterizations.

5.2.1 Monthly values of precipitation

Monthly time series

Accumulated monthly precipitation was calculated for every station and its

nearest grid point, and then spatially averaged to obtain the monthly series for
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each region. The correlation coefficient, relative RMSE and bias between WRF

and observational series are shown in Figure 5.2. The same parameters are shown

for ERA-40 so that the improvement associated with WRF can be evaluated. A

clear distinction is evident between the eastern and the rest of Andalusia. In fact,

all three parameters values are within a satisfactory range in all regions except

for the E division. A remarkable monthly correlation is attained in most of the

cases (0.90-1.00), but moderate values are obtained in the E region (0.65-0.76)

and for some simulations that employed the KF cumulus scheme over regions N

and S.
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Figure 5.2: Correlation coefficient, relative RMSE and bias calculated for WRF (col-
ors) and ERA-40 (grey) monthly precipitation with respect to observations in the various
regions.

As the correlation, the relative RMSE is acceptable for every region, excluding

the East, where it reaches values as large as 92% of the average monthly precip-

itation. On the other hand, the best combination for each of the other regions

never exceeds 50% of the average monthly rainfall.

The differences between WRF and observed monthly mean precipitation dis-

played in terms of the bias manifest a tendency to underestimate total precipi-

tation in the western regions (W and C) and overestimate in the east (regions

E and S). This might be due to a misrepresentation of the orography because

the narrow mountain ranges are flattened by the model resolution and thus the

associated ‘rain shadow’ might be weakened. This results in a precipitation dis-
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placement towards the East, with too many Atlantic fronts reaching the eastern

areas creating a positive rainfall bias accompanied by negative biases in central

Andalusia. Even though this seems to be the main factor that explains the biases

distribution, the Mediterranean processes might not be accurately reproduced by

the model and their influence should not be neglected.

Concerning WRF performance with respect to its boundary conditions,

monthly ERA-40 time series are higher correlated with observations than WRF

(except for W region) whereas both the bias and the RMSE are substantially

worse. Actually, a clear improvement is attained with WRF, reducing by about

half the error corresponding to ERA-40 in most of the regions. The E region

embodies again the exception, where although the bias is evidently reduced in

absolute value and has opposite sign, relative RMSE values are similar for both

the model results and reanalysis. This feature, plus the low correlation, indicates

that WRF might not be able to capture the timing as it would be desired, but it

is able to noticeably refine reanalysis estimations of total precipitation over the

E region.

The E region, and more generally the Mediterranean coast, is widely know for

its singularity regarding precipitation since the marked convective nature of rain

in semi-arid climates complicates the accurate description of total precipitation

amount and location (Amengual et al., 2007). Indeed, not only WRF but also

ERA40 shows a pronounced difference in correlation for the E region in compar-

ison with other areas, which is reasonable bearing in mind that precipitation is a

pure model result in ERA-40.

It might be surprising that ERA-40 is characterized by a systematic underes-

timation, whereas the WRF tendency is not so clear. However, it should be noted

that the boundary conditions are specified only at the borders (except for the very

large waves that are adjusted with spectral nudging). Hence, WRF is able to de-

velop its own mesoscale dynamics which can produce precipitation regimes that

vary from that prescribed by ERA-40, not only regarding distribution but the

overall precipitation amounts as well. Therefore, it is here evidenced that even if

the regional model is prone to partly inherit errors from the boundary conditions,

it is also capable of reducing them and producing more accurate results in spite

of the boundary data imperfections.

The analysis of the monthly time series led us to conclude that the simulations

using BMJ cumulus scheme tend to perform generally better, particularly those

with the ACM2 and YSU PBL schemes. The configurations that use MYJ PBL

always generate drier conditions, whereas those using ACM2 provides wetter ones
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in general. The WRF biases should be interpreted together with the ERA-40 bi-

ases because otherwise they might be misleading. For example, in the E region, it

could seem that MYJ scheme produce better results but considering the ERA-40

bias with respect to other regions, this statement is not that obvious. Altogether,

the explored parameters are not sufficient by themselves to single out an optimal

parameterization and thus additional features must be regarded.

Annual cycle

The annual cycle with monthly means was also calculated for the ten-year

period in order to examine the WRF performance in different seasons. The WRF

model broadly captures the annual cycle (Fig. 5.3), including features that are

not represented by the boundary conditions. For instance, the November relative

minimum is missed in the ERA-40 annual cycle but reproduced by WRF to

varying degrees. Andalusian precipitation is characterized by a summer minimum

in August with basically no rain events and a maximum during December and

January, which are also well represented by WRF.

Conversely, spring rainfall seems to be systematically exaggerated by WRF in

regions N and S, whereas autumn precipitation is underestimated in most of the

regions. Precipitation in the eastern region is remarkably overestimated, primar-

ily in April May and to a lesser extent, in September; the latter can be attributed

to an excess of soil moisture due to a positive deviation in August precipitation

that might enhance evaporation and thus convective rainfall after the summer.

In fact, summer deviations in precipitation only take place in the E region, where

September deviations are especially marked. On the other hand, spring errors

cannot be univocally attributed to a single source and different causes might con-

tribute to these deviations (i.e., a misrepresentation of topography, an enhance-

ment of land-surface thermal contrast or a deficient simulation of Mediterranean

cyclogenesis that produce a large fraction of the East coast precipitation). This

is actually not a WRF-exclusive feature but a common deficiency in RCMs over

the IP (Herrera et al., 2010b).

Despite the high monthly correlations for ERA-40 precipitation, Figure 5.3

shows that the ERA-40 annual cycle is too flat and WRF actually provides a

sharper depiction of it. This indicates that WRF is introducing interesting details

in terms of monthly precipitation for climate studies. The combination BMJ-

ACM2 (BA3 and BAT) appears to be the most accurate in reproducing the

annual cycle, especially in regions C and W, where WRF estimates almost overlap
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Figure 5.3: Annual cycle of monthly precipitation for the different regions: observa-
tions (black), ERA-40 reanalysis data (grey dashed) and WRF simulations (colors).

the observational curve. However, these configurations substantially overestimate

precipitation in certain months over N and E regions.

5.2.2 Daily values of precipitation

The daily precipitation is examined through the percentiles (50th, 60th, 70th,

75th, 80th, 90th, 95th and 99th) of daily events that are computed taking only into

account the rainy days defined by a 0.1mm/day threshold1. The daily percentiles

are calculated considering all the events at all the stations within a region. To

illustrate the WRF and ERA-40 percentiles with respect to the observed ones, a

Q-Q plot is employed (Fig. 5.4), which allows for comparison of the PDF shapes.

1This threshold is adopted in accordance with observations that only register precipitation
when it exceeds this value. Days when rain occurs and take values below this threshold are
considered as dry days.
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The Q-Q plot shows the simulated percentiles versus the observed ones with a line

representing a perfect performance and delimiting over- and underestimation.
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Figure 5.4: Daily precipitation percentiles simulated by WRF (colors) and ERA40
reanalysis (grey) vs. observational percentiles for the different regions. The grey line
indicates a perfect description of the Probability Distribution Function.

In all five regions identified for precipitation, WRF tends to underestimate

rainfall extremes, with the exception of the S region, where the BA3 combination

captures remarkably well all the percentiles calculated, with a slight overestima-

tion. Overall, this configuration provides the most accurate results yielding values

within 10% of the magnitude of the observed events for even the most extreme

conditions (99th percentile). Some other physics combinations (BY3, BAT and

BYT) perform similarly or even slightly better for certain areas or thresholds.

It should be stressed that the cumulus parameterization seems to have a no-

ticeable influence in describing the extremes, whereas microphysics appear to have
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a minor impact on this climate feature with no superiority among the schemes,

apart from WSM3 that produces slightly better results in S and E regions. This

could be expected considering that most extreme events in this area have their

origin in very strong vertical motions, and thus processes described by cumu-

lus packages. Regarding PBL schemes, both the ACM2 and the YSU packages

supply similar results, with minimal differences in favor of ACM2.

A clear enhancement in characterizing extremes has already been revealed

as one of the main advantages of dynamical downscaling (Beniston et al., 2007;

Fowler et al., 2005; Rosenberg et al., 2010; Sánchez et al., 2004) and indeed a

notable improvement is achieved with WRF in terms of percentiles. Despite the

undeniable effect of spatial resolution, the dependence of WRF results upon the

different physics suggests that parameterizations also play an important role in

reproducing precipitation extreme events.

5.2.3 Spatial distribution of precipitation

Besides WRF evaluation using regionalization, an analysis was also conducted

station by station, even though it should be only interpreted qualitatively. By

means of this analysis, orographic impacts and mesoscale dynamic effects on the

modeled climate features can be explored. Rather than the WRF capabilities

at individual stations, which might be affected by the representation error, the

aim of this comparison is to depict the spatial patterns of the model accuracy.

Figure 5.5 displays the spatial distribution of the correlation coefficient of monthly

precipitation, the difference of total annual rainfall and the 95th percentile of daily

precipitation for BA3 (a) and BY3 (b) simulations, and ERA40 (c). These two

simulations were selected as a sample to illustrate the spatial distribution because

the patterns were very similar for all the configurations. Additionally, the 95th

percentile and the total annual precipitation obtained for the observations are

also shown as a frame of reference (d).

Correlations show an evident zonal gradient with higher values in the western

part (0.90-1.00) decreasing to the East with values of about 0.30-0.40 at certain

stations. Annual differences in precipitation give an idea of the areas where rain-

fall is generally over- or underestimated. It is worth mentioning that most of

the stations in the Guadalquivir river basin (regions W and C) presents devia-

tions lower than 12% in the total annual precipitation (grey colors). Figure 5.5

evidences what was suggested before about the precipitation shift eastward as

a consequence of unresolved topography features. A negative difference is thus
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located in the western part because topography was smoothed and precipitation

not induced sufficiently, whereas a positive deviation is found in the easternmost

areas, where the highest mountains force the precipitation that did not fall before.

The spatial distribution of the 95th percentile for daily precipitation is clearly

an improvement over ERA-40, which only resolves a broad gradient towards lower

values in the east. In fact, WRF is able to largely capture topographic effects

on extremes, particularly over mountainous regions (Sierra de Grazalema and

Sierra Nevada, in the South), although their intensity is slightly diminished. This

feature strongly emphasizes the convenience and benefit of using RCM models,

primarily in terms of precipitation extremes, which is one of the main aspects to

be surveyed in climate change studies.

5.3 Temperature

Surface temperature is not as sensitive as precipitation to parameterizations,

but an analysis of the different simulations is desirable in order to assess the con-

figurations validity and identify possible differences among them. In principle,

the scheme that should impact more directly the temperature is the radiation

scheme. Here, only the CAM3.0 package is used, however, preliminary results

indicated that rather than the radiation schemes, which usually describe ade-

quately the radiation processes, what most affects temperature is the use of an

appropriate land surface model1. The PBL scheme might be expected to play

a significant role too, especially for nighttime temperatures because the PBL is

then stratified and stable, and thus more difficult to simulate.

Surface temperatures extremes (Tmax and Tmin) are obtained from WRF

using the CLWRF version (see Sec 4.4) and stored on a daily basis. In order to

refer grid-points and observations to common altitudes, the WRF outputs were

adjusted using a standard environmental lapse rate (6.5 K/km) to account differ-

ences in elevation between the observations and the nearest grid-points. Nonethe-

less, in order to avoid the representation error the stations and grid-points are

also grouped into regions to compare them, because a simple adjustment would

not be enough. The standard environmental lapse rate was chosen according

to a general consensus in regional climate modeling (Giorgi et al., 1998; Jacob

et al., 2007; Mass et al., 2002; Vidale et al., 2003). It has also been proposed

as an alternative to employ a model lapse rate, but Zhang et al. (2009) found

1All this preliminary tests were actually performed with 20 different configurations of MM5
(Argüeso et al., 2009).
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Figure 5.5: Spatial distribution of monthly precipitation correlation, 95th daily precip-
itation percentile and the difference with respect to observed total annual precipiation,
calculated station by station for BA3 (a), BY3 (b) and ERA-40 (c). Observed 95th

daily precipitation percentile and total annual rainfall are shown in panel (d).
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that the differences between using model-derived lapse rates and the standard

environmental one were almost negligible.

5.3.1 Monthly values of temperature

Monthly time series

By analogy with the precipitation treatment, the monthly mean values of daily

Tmax and Tmin are calculated for each station and its nearest WRF grid-point

(applying the standard environmental lapse rate), and then spatially averaged

over the regions to compare them. Figures 5.6 and 5.7 show the correlation

coefficients, the RMSE and the MAE between WRF and observational monthly

means for both Tmax and Tmin, respectively. Results for ERA-40 monthly means

are shown as well.
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Figure 5.6: Correlation coefficient, RMSE and MAE calculated for WRF (colors) and
ERA-40 (grey) monthly mean maximum temperature with respect to observations in the
different temperature regions.

Although correlation coefficient values are almost indistinguishable for WRF

and ERA-40 estimates (within the bounds 0.98-0.99 for Tmax and 0.97-0.99 for

Tmin), both RMSE and MAE show a sharper distinction even among the WRF

simulations. WRF outputs substantially improves the estimation of Tmax over

LL and CO regions with respect to ERA-40 and likewise Tmin errors are clearly
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Figure 5.7: As in Fig 5.6 but for monthly mean minimum temperature.

reduced over LL, HL and CO. In the case of Tmax the RMSE is improved from

about 4◦C to about 2◦C in LL region, and a similar WRF positive contribution is

observed in terms of MAE. Concerning Tmin, HL is the most sensitive region to

the model improvements and RMSE decreases from about 3◦C to less than 2◦C.

In every region, most WRF results outperform ERA-40 monthly means of Tmax

and Tmin with respect to observations.

As for the performance of individual WRF configurations, the combinations

BMJ-YSU appears to be the most appropriate to describe monthly minimum

temperature, whereas the BMJ-MYJ seems to better reproduce monthly mean

maximum temperature. It is worth mentioning that PBL parameterization plays

a significant role in describing surface variables, particularly at night, and thus

it has an important impact on temperature, especially on the minimum values.

In fact, those configurations that use the same PBL scheme usually perform very

similarly (e.g. KF-MYJ and BMJ-MYJ), as can be seen in Figure 5.7. Conversely,

the choice of microphysics has negligible repercussions on temperature estimations

as occurred for precipitation, which is in agreement with conclusions drew by

Fernández et al. (2007) for the IP in this respect.
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Annual cycle

The temperature annual cycle is highly dependent on insolation and thus

presents a smooth pattern with maximum values during the summer months and

minimum during winter ones. The representation of this shape contributes to a

large extent to the high correlation between the model and the observations and

it is not directly associated with parameterizations. Therefore, the differences

among the various simulations are very small as observed in Figure 5.8, which

shows the annual cycle for both Tmin and Tmax monthly means in the different

regions.
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Figure 5.8: Annual cycle for maximum and minimum temperature for the different
temperature regions: observations (black), ERA40 (grey dashed) and WRF simulations
(colors).

In general, the WRF shape of the annual cycles show good agreement with

the observations ones, although some deviations are evident in certain seasons.

Maximum temperature is broadly underestimated, specifically during the sum-

mer. The HL region, where the stations are located higher in elevation, embodies
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this tendency and indeed, the deviations reach about 4◦C in July. The CO region

is an exception since summer maximum temperature is very well captured with

almost no errors. On the other hand, there is no clear propensity in the sign

of the minimum temperature deviations, excluding once more CO where every

WRF configuration presents a cold bias. In compliance with how similarly WRF

configurations reproduce the annual cycle, no obvious decision can be made in

relation to the most suitable physics combinations, although overall, BMJ-MYJ

combination (BM3 and BMT) seems to perform slightly better for Tmax. In

terms of Tmin, the most suitable configuration depends on the region and there

is not a clear better option.

Regarding the comparison with the boundary data conditions, WRF con-

tributes to improve the temperature annual cycle description in a few situations

(e.g. Tmax in LL and CO, Tmin in HL and LL). Nevertheless, the annual cy-

cle is reproduced similarly by ERA40 and WRF in other situations. As already

mentioned, the monthly temperature is directly linked to insolation annual cycle

and thus minor differences are observed among WRF simulations and ERA-40

estimates. An exception is found in places where the surface extremes play an

decisive role, such as the maximum temperatures in the Guadalquivir river basin

(LL), or minimum temperatures for stations at high altitudes (HL) that ERA-40

is unable to represent.

5.3.2 Daily values of temperature

All daily values from each region were considered to calculate eight percentiles

of both maximum and minimum temperature (1st, 5th, 10th and 25th, 75th, 90th,

95th and 99th). Figures 5.9 and 5.10 are two Q-Q plots that represent the per-

centiles from different WRF runs (colors) versus observational percentiles for

Tmax and Tmin respectively, with the grey line indicating a perfect description

of the PDF. Percentiles from ERA-40 temperatures (grey) are shown too.

Minor differences are observed among the explored configurations since tem-

peratures in RCMs mostly depend on the model elevation, the radiation schemes

(that includes the aforementioned insolation) and the SST. All these factors are

identical in all WRF simulations and therefore their temperature estimates even

in terms of extremes, are very similar. Nonetheless, it is still important to an-

alyze WRF temperature results because there might be differences between the

configurations that should be determined.

Both Tmax and Tmin are in general accurately captured by WRF, with
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Figure 5.9: Daily maximum temperature percentiles simulated by WRF (colors) and
ERA40 reanalysis (grey) vs. observational percentiles for the different regions. The
grey line indicates a perfect description of the Probability Distribution Function.

slightly better results for the latter. Estimations of maximum temperature ex-

tremes tend to underestimate the observations, except for the CO region, where

no clear tendency is observed. In fact, in the CO region, WRF produces higher

summer temperature extremes (upper percentiles) probably due to an intensifi-

cation of the land influence to the detriment of the sea influence. The spread of

WRF esimates in minimum temperature is somewhat wider (lower percentiles in

LL and upper percentiles in HL), however these differences are still not notewor-

thy. The reason that explains this spread might be found in the major impact

of PBL schemes in nighttime processes (e.g. stratification and stable layers)

and thus in minimum temperatures, although further analysis of particular days

should be carried out to confirm this possible explanation.

In comparison with ERA-40, dynamical downscaling improves two impor-



98 5. WRF parameterization tests

−10 0 10 20 30
−10

−5

0

5

10

15

20

25

30

.01

.05
.10

.25

.75

.90
.95

.99

LL

Observational percentiles  (°C)

W
R

F 
an

d 
ER

A4
0 

pe
rc

en
til

es
 (°

C
)

−10 0 10 20 30
−10

−5

0

5

10

15

20

25

30

.01

.05
.10

.25

.75

.90
.95

.99

ML

Observational percentiles  (°C)

W
R

F 
an

d 
ER

A4
0 

pe
rc

en
til

es
 (°

C
)

−15 −10 −5 0 5 10 15 20 25
−15

−10

−5

0

5

10

15

20

25

.01

.05
.10

.25

.75

.90
.95

.99

HL

Observational percentiles  (°C)

W
R

F 
an

d 
ER

A4
0 

pe
rc

en
til

es
 (°

C
)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

.01

.05
.10

.25

.75

.90
.95

.99

CO

Observational percentiles  (°C)

W
R

F 
an

d 
ER

A4
0 

pe
rc

en
til

es
 (°

C
)

BM3
BMT

BA3
BAT

BY3
BYT

KM3
KMT

ERA40

Figure 5.10: As in Fig 5.9 but for daily minimum temperature.

tant aspects that were already touched upon in the annual cycle examination.

Firstly, higher extremes of maximum temperature are much better reproduced

in LL region where the surface temperature attain the highest values in all Eu-

rope. Secondly, minimum percentiles are captured more accurately in HL, which

basically comprises locations at high altitudes and thus where the absolute tem-

perature minima are reached in southern Spain. On the other hand, maximum

percentiles in HL are well described in ERA-40, whereas WRF seems to produce

milder extremes. In ML and CO regions only slight improvements are achieved

with WRF.
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5.3.3 Spatial distribution of temperature

In line with the analysis conducted for precipitation, the spatial distribution

of the correlation coefficient and the bias1 for monthly values, together with the

daily Tmax 95th percentile and the daily Tmin 5th percentile are explored for

each WRF simulation. In order to illustrate the spatial distribution of these

parameters, they are calculated station by station. It should be kept in mind

that these examinations produce only qualitative information and their purpose

is to provide a general overview of the model accuracy spatial patterns.

Figures 5.11 and 5.12 show the spatial distribution of the mentioned parame-

ters for BA3 (a) and BY3 (b) WRF simulations, and ERA-40 (c) . Two different

simulations have been selected among the eight configurations to represent the

WRF capabilities. As in the case of precipitation, the spatial patterns of the dif-

ferent WRF runs were very similar and thus the maps for the rest of simulations

are not shown here. In addition, the observed Tmax 95th percentile and the Tmin

5th percentile, and the means throughout the whole period are shown too as a

means to put the results in context.

The temperature correlation spatial patterns are not as definite as they were

for precipitation. Despite the lack of a clear pattern, Tmax inter-annual vari-

ability seems to be better captured in the Guadalquivir river basin and higher

correlation values are observed in this area. Compared to Tmax, Tmin presents

lower correlation values over the entire region. This feature is usually related to

deficiencies in the simulation of the PBL during the night and it was also found

by Zhang et al. (2009) in the US Pacific Northwest. At most stations, WRF Tmin

is correlated over 0.95 with observations, although few stations show values below

that threshold and are thus off the scale (grey), particularly for BA3 and ERA40.

Nonetheless, these stations still present high correlations exceeding 0.90 for both

Tmax and Tmin 2.

Although Figure 5.11 reveals that both WRF configurations are able to cor-

rectly distribute the maximum temperature 95th percentile, the model shows some

limitations in reproducing its magnitude. In general, the percentile values over

the mountains are somehow diminished by the model that substantially differs

1Here the bias is used instead of the MAE because it is calculated station by station and
thus it is not prone to undesired compensation between stations of the same region, as it was
in previous analysis. The bias also make possible to provide a picture of the areas where
temperature tends to be under- or overestimated.

2 Marbella in the central South is the only exception. However, it should be emphasized
that these results are not intended to be analyzed station by station and they must be instead
regarded as a whole
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Figure 5.11: Spatial distribution of monthly mean Tmax correlation coefficient, 95th

daily Tmax percentile and the Tmax bias with respect to observations, calculated station
by station for BA3 (a), BY3 (b) and ERA-40 (c). Observed 95th daily Tmax percentile
and mean Tmax (d).
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Figure 5.12: Spatial distribution of monthly mean Tmin correlation coefficient, 5th

daily Tmin percentile and the Tmin bias with respect to observations, calculated station
by station for BA3 (a), BY3 (b) and ERA-40 (c). Observed 95th daily Tmin percentile
and mean Tmin (d).
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from observations in the eastern areas. The extreme maximum temperatures are

slightly overestimated in the coastal stations whereas WRF produces the best

results in the Guadalquivir river basin. It should be noted that these spatial

patterns observed for Tmax are almost identical in BA3 and BY3 simulations.

Regarding Tmin, the WRF spatial distribution of the 5th percentile compares

well with the observations but again some errors are noticed. For example, the

BY3 tend to produce warmer Tmin extremes across the river basin, whereas BA3

yields colder values in the western areas. The minimum values obtained in the

eastern mountains for the observations are captured by WRF but the magnitude

is lessened. The 5th percentile of Tmin is correctly reproduced by WRF along

the Mediterranean coast.

In terms of the Tmax bias, it does not show a clear spatial distribution pattern

either, except for a marked underestimation over the eastern mountains, and

an overall tendency to underestimate maximum temperatures is here confirmed.

As for Tmin, there appear to be more significant differences among the WRF

simulations, which stresses that the PBL scheme has certain influence on the

minimum temperature under particular conditions. BY3 overestimates minimum

temperature in many locations, whereas BA3 produces smaller deviations and

does not show a clear tendency in the sign. BA3 is generally colder than BY3.

As could be expected from its coarse resolution, ERA-40 scarcely captures the

spatial distribution of extremes. Indeed, WRF brings a remarkable improvement

in their distribution and magnitude thanks to the finer resolution. In compari-

son with ERA-40, WRF reproduces better the maximum extremes in the lower

elevations and minimum values over the mountains, as well as milder Tmin at

the coast and lower Tmax at high altitudes. ERA-40 provides Tmax and Tmin

estimates that are highly correlated with observations, but the percentiles and

the biases indicate that ERA-40 magnitudes are completely inadequate. For ex-

ample, the biases for both Tmax and Tmin exceed 3◦C in absolute terms in a

large number of locations.

5.4 The appropriate combination of parameterizations

The question that arises out of a sensitivity test to parameterizations is

whether there is an optimal configuration for every region and all through the

year. Seldom a configuration outperforms the others for all the locations, for

all the variables and at every timescale. Instead, a configuration that overall

produce satisfactory results should be selected. Because of the large number of
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factors in play, the identification of the most appropriate combination of schemes

is not straightforward and we must prioritize certain aspects. For example, the

differences between WRF simulations in terms of precipitation are more pro-

nounced than for temperature, hence the configuration suggested for precipitation

should prevail over those for temperature. Furthermore, the complete spectrum

of physics options has not been examined and thus it cannot be affirmed that

the most suitable configuration is among the explored ones. Nonetheless, the

analyses presented in this chapter make possible to choose an appropriate con-

figuration and shed light on the importance of certain parameterizations. For

instance, cumulus and PBL schemes have been revealed as chief components in

the description of precipitation in southern Spain whereas the microphysics choice

seemed to be of minor importance. Overall, the combinations BMJ-ACM2 (BA3

and BAT) and BMJ-YSU (BY3 and BYT) compared best with observations.

Schemes that have less impact on results are then chosen using different criteria.

For example, the simplest microphysics scheme (WSM3) is recommended bearing

in mind the computational costs.

Regarding temperature, almost no differences could be noticed between the

varying configurations and only PBL scheme seems to modestly affect Tmin due

to its direct relation to the nocturnal boundary layer simulation. The MYJ

scheme appear to provide slightly better results. However, the BA3 also provides

fairly good results.

Altogether, BA3 seems to be a suitable configuration that describes both

temperature and precipitation with satisfactory confidence and thus it is here

selected to perform the upcoming WRF simulations.

In addition to an appropriate configuration choice, a first approach to ascer-

tain the WRF improvement with respect to the boundary conditions has been

completed here. However, the examination of WRF capabilities over longer pe-

riods is required to assess the added-value information gained with dynamical

downscaling for climate studies. This is further studied in the next chapter, where

30-year simulations are analyzed to provide an insight of the model performance

over a climate period of reference1.

1According to the World Meteorological Organization (WMO) a period of at least 30 years
must be considered to study the climate.





Chapter 6

Present climate (1970-1999): the

model evaluation

Climate is what we expect, weather is what we get.

Mark Twain

The configuration of WRF suited to adequately simulate the processes that

define the Iberian climate has been addressed so far. This chapter tackles the

evaluation of the model in order to assess its capabilities to correctly resolve

temperature and precipitation over climate periods. The model evaluation will

help to identify the uncertainties with respect to observations and it will then be

possible to establish whether the model is adequate for future climate simulations

over Spain. Not only the performance of the model driven by ‘perfect boundary

conditions’ is analyzed, but also the model outputs when GCMs information is

downscaled. The model evaluation focuses on precipitation and temperature at

varying timescales, although SLP is tangentially studied as well to supply with

additional physical interpretation of possible model errors1.

6.1 The present climate evaluation

6.1.1 Why should the model be validated?

In principle, the answer to this question might be regarded as a truism, but

in truth the model validation has been traditionally omitted in climate change

studies and its importance must be emphasized.

1Some of the results presented in this chapter are part of a study submitted to Journal of
Climate (Argüeso et al., -).
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Let us look at the concept behind the future climate projections. Dynamical

downscaling and climate change studies in general rely on the assumption that

an appropriate representation of present climate implies a correct description

of future climate as well. This statement is founded on the idea that GCMs

should represent present and future climate similarly, which is a fairly restrictive

assumption. Unfortunately, present climate is the only available backdrop to

validate our model estimates and verify our hypotheses. The model evaluation

with present climate is not a guarantee that future projections are accurate, but

the future projections will be unquestionably much more trustworthy than if the

model is not validated at all. In fact, how could a future projection be reliable if

we do not even know the model ability to reproduce present climate?

Despite being crucial to produce reliable climate change projections, the val-

idation process has too often been conducted carelessly, or even omitted. A

rigorous validation requires at least 30-year runs (climate runs) to ensure that

the model represents the local climate. Shorter periods have been usually used

to evaluate the model, but they might characterize very particular conditions

instead of the actual climate of the region. In the last few years, computational

resources have enabled the model evaluation over longer periods and it is now a

requisite to generate future projections. Other aspects such as the timescales of

the validation have been usually disregarded which resulted in incomplete evalu-

ations. Both mean values and high-frequencies are important factors that define

the climate and should be equally considered in the assessment of the model

potentials.

6.1.2 Description of present climate simulations

Three different 30-year simulations were completed to evaluate the model ca-

pabilities to reproduce present climate characteristics. All three simulations are

identical in their configuration except for the boundary conditions. The simula-

tions were driven by ERA-40, ECHAM5 and CCSM, and they will be referred

from now on as WRFERA, WRFEH5 and WRFCCSM, respectively. The model

has been configured as described in Chapter 4 and the physics schemes combina-

tion was set to BA3 (see Table 5.1) according to results obtained in Chapter 5.

To make the most of the computational resources, the 30 years are split into three

decadal simulations, each of them including a 7-month spin-up that is discarded

afterwards (see Sec. 4.3).
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6.1.3 Description of the analysis

The present climate runs are evaluated in terms of both precipitation and

temperature using Spain02 version 2.1 dataset. The WRF outputs (land grid-

points only) have been degraded using bilinear interpolation to the regular 0.2◦

Spain02 grid to make them comparable. Several parameters are analyzed by

directly comparing grid-points. They are then grouped into regions to explore

some additional aspects of climate that cannot be easily studied grid by grid

(e.g. annual cycle, percentiles distribution). In Sec. 3.2.2 it was mentioned

that Spain02 v2.1 presents some problems over the Balearic Islands for Tmin

and consequently, this dataset could not be used to evaluate the model over this

region in terms of temperature. Actually, the model temperature evaluation is

confined to the peninsular territory.

The model evaluation must be performed not only studying long-term means

but also high-order statistics, as already emphasized by some authors (IPCC,

2007; Leung et al., 2003). In fact, several studies have focused on RCMs perfor-

mance addressing the issue at different timescales (Caldwell et al., 2009; Evans

and McCabe, 2010; Herrera et al., 2010a; Jacob et al., 2007; Kostopoulou et al.,

2009; Rosenberg et al., 2010). The assessment of the model capabilities from a

multi-temporal approach stems from two main reasons:

1. If only the long-term means are analyzed it might occur that the model

outputs are apparently correct due to incorrect reasons as a results of error

compensation. The analysis of the model at different timescales is hence

preferable to bring to light the errors that might be cancelled out by aver-

aging.

2. Under global warming conditions, not only changes in means have impact on

ecosystems and population, but extreme events do also play a crucial role.

For example, in terms of precipitation, the long-term means directly affect

water availability and slow hydrological processes. However, the occurrence

and intensity of extreme events are directly associated to flood risk and thus

have major impacts in sectors such as agriculture.

The model is then evaluated comparing from annual to daily values with

Spain02 and using a number of statistical parameters (see Appendix B) that

characterize different precipitation and temperature timescales.
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6.2 Precipitation

Precipitation in the IP can be roughly classified in three main regions: the

eastern coast, the northern Cantabrian Coast and the south and interior of the

Iberian Peninsula (Esteban-Parra et al., 1998). In the case of summer precipi-

tation, the latter can be further divided in two regions (northern and southern

interior). A broad northwest to southeast decreasing gradient in precipitation can

be observed, basically due to a combination of topography and the storm track

placement.

The nature of precipitation varies considerably across the region. The east

coast rainfall has a marked convective component that produces few but intense

events that in general result in low annual precipitation (<150 mm/yr in the

southeast). On the other hand, the northwestern region presents a precipitation

regime that is linked to the presence of Atlantic fronts and thus characterized by

more regular precipitation events and high climatological values (exceeding 2000

mm/yr). Furthermore, some localized centers of high precipitation induced by

topography take place in the interior and south, over the mountain systems.

An additional feature of Spanish rainfall is related to its pronounced seasonal

variability, a consequence of the Azores high pressure center seasonal shift. It

induces precipitation maxima during the cold season (from october to march

depending on the different subregions) and a marked minimum during the central

warm months (July-August) with almost no rain events in most of the IP.

These two characteristics, the high spatial diversity and temporal variability,

are here explored.

6.2.1 Annual precipitation

Firstly, the total annual precipitation has been calculated for Spain02 and

the three WRF simulations over the entire 30-year period and a climatological

yearly value is obtained for every grid point. The model capacity to adequately

distribute the precipitation throughout Spain can be determined from the total

annual rainfall and the areas with larger deviations in the total precipitiation

can be identified. The pattern correlation (Walsh and McGregor, 1997), which

is basically a standard Pearson’s correlation over the space, is also computed to

evaluate the similarity of the WRF annual precipitation spatial patterns with

respect to the Spain02.

Figure 6.1 illustrates the climatological annual precipitation for the period

1970-1999. The pattern correlation coefficients are shown in brackets. All three
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simulation present high spatial correlations with Spain02 (0.80-0.83), which sug-

gests that the model is largely able to describe the broad southeast to northwest

gradient and recreate the influence of topographical features on precipitation.

Figure 6.1: Climatological annual precipitation (1970-1999) for the Spain02 dataset
(a) and the WRF simulations nested with ERA40 (b), ECHAM5 (c) and CCSM (d).
In brackets the pattern correlation between the WRF simulations and the observational
dataset Spain02. White areas indicate values above the scale.

Nonetheless, it should be noted that the pattern correlation is insensitive to
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biases and thus it only explains the spatial similarity of the various maps. Indeed,

substantial differences are noted between WRF total amounts of precipitation

despite the the fact that the correlations are very similar among them.

The WRF model compares generally well with observations when driven by

‘perfect boundary conditions’, namely the ERA-40 reanalysis. Some exceptions

can be observed at particular areas such as the northwestern quarter of the IP,

where WRFERA produces moderate overestimations, or the driest region in the

southeast that is clearly reduced by WRF. In line with these two factors, the river

basins and the plateaus that are usually dry in Spain02, are somehow wetter in

WRFERA. Very few regions tend to be drier in the model, but they do exist too

(e.g. southwestern mountains).

Conversely, the GCM-nested simulations generates annual precipitation rates

that significantly differ form observations over specific regions, even though they

are highly correlated (pattern correlation) with observations. On average, WR-

FEH5 tends to produce an excess of rainfall with particularly noticeable devia-

tions in the northwest, although along the eastern coast the model shows a good

agreement with observations. The pattern correlation is as high as for WRFERA

and the major topographical features of precipitation can be easily identified in

WRFEH5 estimates. The WRFCCSM simulation does not show systematic dif-

ferences across the IP but instead it seems to enhance the broad precipitation

gradient (from southeast to northwest). For instance, WRFCCSM produces less

precipitation over the east and south, and too much rainfall over the northwest,

where values are similar to WRFEH5.

To provide further details in these features of the WRF simulations and single

out possible error sources, the seasonal and monthly values are analyzed.

6.2.2 Seasonal precipitation

As a means to examine differences between WRF runs and Spain02 the sea-

sonal and annual relative biases1are calculated. Figure 6.2 depicts the WRF

relative bias with respect to observations at seasonal and annual timescales. The

relative biases stress the differences between the WRF simulations that were al-

ready pointed before, but adds supplementary details on how the model performs

at different moments of the year.

1The relative bias is the difference in the total seasonal/annual precipitation amount divided
by the observed seasonal/annual precipitation and thus the values are given in percentage. See
Appendix B.
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Figure 6.2: WRF seasonal and annual precipitation relative bias (%) with respect to
Spain02. In columns, the WRFERA, WRFEH5 and WRFCCSM runs. In rows, the
seasonal (DJF, MAM, JJA and SON) and the annual biases.
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The WRFERA simulation produces remarkable results in most of Spain in

yearly terms. The total annual deviations stay below 25% of the total precip-

itation in many areas, and only very few locations show biases over the 50%

threshold. This is valid for both positive and negative biases, although the lat-

ter are rare for this WRF simulation (only in the very south). Since the annual

deviations might mask possible errors by compensation, the seasonal biases are

slightly larger than the annual ones. However, the model still produces note-

worthy results at seasonal timescales. Some positive biases, that become more

relevant during the spring, are observed in the northern interior of the peninsula.

Specific areas of localized an intense positive biases are also noticed during the

summer over some mountain ranges, such as Sierra Nevada in the southeast. The

WRFERA performance during autumn is especially outstanding, since the bias

remains below 25% practically over the entire region. Autumn rainfall accounts

for a large part of the total annual precipitation in many places over Spain and

indeed, the low bias obtained for this season together with the aforementioned

compensation are reflected in the annual bias.

Regarding the simulations driven by GCMs, they yield very contrasting results

with respect to the precipitation bias. The WRFEH5 run generally overpredicts

precipitation whereas WRFCCSM tends to underestimate it. Despite the differ-

ences in the deviation sign, it is worth mentioning that the spatial patterns of the

biases are very similar. For instance, both tend to produce positive to neutral

deviations over the northwest and negative to neutral biases along the east and

south coast. The equivalence in these spatial patterns might be interpreted as the

regional model effect on the precipitation distribution according to topography

(Atlantic fronts are usually blocked in their pass through the IP), beyond the

large scale biases introduced by the boundary conditions.

For WRFEH5, the largest deviations are found during the winter and spring,

and are systematically positive. During the summer, negative biases take place

in the south and east. Summer rainfall in these areas has a minor contribution to

total annual precipitation and the errors are not as critical as those corresponding

to the cold season. Autumn differences are broadly low but reach considerable

values in the northern interior.

As for the WRFCCSM, the most noticeable errors arise during summer and

autumn in the form of negative biases. In the winter and spring months, WR-

FCCSM does not show a clear tendency in the deviations and the enhancement

of the precipitation gradient that was suggested before is evidenced here too. As

stated for WRFEH5, summer errors do not have a decisive impact on annual
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precipitation because very little precipitation take place during these months.

Nonetheless, it must also be admitted that a proper representation of summer

rainfall is important in terms of describing hydrological stress and droughts, espe-

cially along the east coast. Furthermore, in this area, extreme events sometimes

take place in the late summer due to high Mediterranean temperatures that en-

hance convective processes, which should also be captured accurately. This is

examined further on when analyzing the extreme events occurrence.

The three WRF simulations are identical in their configuration and they only

differ in the boundary data conditions. Therefore it might be interesting to

examine the large scale to look for possible reasons that explain, at least partially,

the differences between the WRF runs. For example, a particular GCM might

not be able to reproduce Atlantic pressure fields adequately and thus the storm

tracks are not distributed correctly.

For this reason, the modeled and observed SLP fields were also compared

through a PCA. Namely, the EOFs corresponding to the principal components

that explained more variability were examined. The spatial patterns obtained for

all WRF simulations were very similar to the observed ones. However, despite

the fact that this procedure is largely used to validate the GCMs (Casado and

Pastor, 2011), it is not fully appropriate and further analyses are advisable, as

in Errasti et al. (2010). The EOFs identify areas with similar SLP variability,

but misses the magnitude and therefore only characterizes the SLP partially.

So, the seasonal and annual mean Sea Level Pressure (SLP) from the coarser

WRF domain have been calculated and are displayed in Figure 6.3 to provide

supplementary information that might help to identify some error sources.

Prior to analyzing the SLP fields, it must be kept in mind that the SLP

is largely prescribed by the boundary data conditions, specially when spectral

nudging is switched on. Therefore, the pressure patterns are mostly inherited

from the reanalysis and the GCMs. Overall, the GCMs induce SLP patterns that

show very good agreement with WRFERA, describing strikingly well the different

phases along the year. For instance, the distinct zonal distribution during the

winter with higher SLP in the southern areas that evolves into a high-pressure

center located in front of the Portuguese coast during the summer is represented

by all simulations. The large scale dynamics than can be inferred from SLP are

thus reproduced by the GCMs and the main characteristics of mean SLP in the

zone are discernible, such as the summer blocking due to the high-pressure system

in the Atlantic. The winter mean values of SLP over the IP are usually larger

than the summer ones (Ahrens, 1998; Lutgens and Tarbuck, 1998), which is also
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captured by all three simulations.

Although the shape of these configurations are accurately captured by both

GCMs and transferred to WRF, the magnitude of the pressure centers are not al-

ways represented adequately. The WRFEH5 yields mean seasonal SLP fields that

are very similar to those provided by WRFERA, but differences with WRFCCSM

are noteworthy. CCSM tends to create too zonal configurations as observed in

the winter mean SLP. The WRF model driven by CCSM strengthens the SLP

gradient from north to south and thus channels the fronts above the IP. An ex-

aggerated high SLP system is located in northern Africa which prevents many

fronts from reaching the south of the peninsula. During the summer, WRFCCSM

intensifies the Azores high-pressure system that enhances the blocking and results

in very low precipitation rates during this season too.

Not being the only error source, the seasonal mean SLPs explain several fea-

tures of precipitation biases that were observed in Figure 6.2. For example, the

WRFCCSM strengthening of the SLP gradients is accompanied by intensifica-

tion of the southeast-northwest gradient in precipitation over the IP. Likewise,

the WRFCCSM presents significant negative biases during the summer because

the high-pressure center is stronger and extends further to the north.

In the WRFEH5 simulation, it seems that areas with higher SLP values ex-

pand less to the north during winter and spring, but these differences are not

significant enough to explain rainfall deviations by themselves. Although the

pressure gradient are also strengthen by ECHAM5, the correspondence between

SLP and precipitation biases in WRFEH5 is not as clear as for WRFCCSM and

hence there must be other mechanisms in play that might be at the origin of the

precipitation differences with respect to observations.

An additional observation that can be made out of this analysis is that spectral

nudging might be advisable when the large scale is correctly represented by the

boundary conditions, but it might force the simulations towards wrong values

when the boundary data are imperfect, as in the case of CCSM. Regarding the

WRFEH5, its ability to generate accurate large scale features has been proven

and thus the use of spectral nudging can only be beneficial. Since all simulations

must be identical in their configuration, the nudging was also adopted in the

WRFCCSM run for the sake of homogeneity among the experiments. In any

case, the spectral nudging employed in these simulations is very weak and should

not excessively affect the results. However, it still reduces the impact of the

domain design and maintains the consistency between the boundary conditions

and WRF. Nevertheless, an in-depth analysis of the spectral nudging effect on
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Figure 6.3: Mean seasonal SLP fields for WRFERA, WRFEH5 and WRFCCSM
calculated over the period 1970-1999.
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the results would be very interesting, but it remains open to future research due

to obvious computational limitations.

6.2.3 Monthly precipitation

Precipitation in the mid-latitudes is often very variable in time and space, and

therefore the maximum and minimum values can be attained at very different

moments of the year in relatively close locations. Monthly precipitation is here

analyzed to supply with additional information about the model performance in

these terms. The annual cycle for all the Spain02 regions (Fig. 3.7) is explored

to ascertain whether the model is able to reproduce this feature of climate.

The shape of the annual cycle is in general reproduced by the model (Fig 6.4,

although it is worth mentioning that substantial errors are also evident mainly

during the spring.

The WRFCCSM run tends to flatten the annual cycle at most of the regions

and the relative maxima are usually removed. This is particularly marked in

the eastern regions (SE, EC, IS) and results in significative negative biases all

through the year. Overall, precipitation is systematically underestimated in the

last months of the year, whereas no clear tendency is observed during the first

ones. An exception is found for NW and IN, where overestimation is predominant

all through the cold season (October-April). These results are consistent with

seasonal rainfall biases that where pointed out before.

On the other hand, the WRFEH5 is able to reproduce further details of the

precipitation annual cycle, despite the fact that some large deviations are still

observed. Specifically, from December to April, WRFEH5 broadly overestimates

precipitation and there are regions where these deviations are particularly worthy

of attention, such as in regions SW, IN or NE. Conversely, the monthly rainfall

is accurate from May to September in almost all regions. During the last third

of the year, WRFEH5 produces slight overestimations too, but the biases are

not as large as winter and spring ones. In fact, there are regions such as the

SE or SW where autumn and early winter precipitation is correctly simulated

by WRFEH5. This WRF simulation performs singularly well for the IS regions

regarding the annual cycle and indeed deviations are basically negligible in all

months. An interesting feature of WRFEH5 annual cycle is that the spring

maximum is produced in advance and it is brought one month forward.

In contrast to GCM-driven simulations, the WRFERA run provides excellent

results. The shape of the annual cycle is reproduced in most of its details over
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Figure 6.4: Precipitation annual cycle for the period 1970-1999 for the three WRF
simulations (color) and Spain02 (black).
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nearly all Spain. The rainfall from January to May tends to be overestimated,

but from June to December, the WRF model performance is strikingly accurate

and in many regions the WRFERA annual cycle almost overlap with the Spain02

curve. This is a good indicator of the regional model ability to generate precipi-

tation correctly because it is precisely during the summer and the early autumn

that precipitation is mainly controlled by local factors and thus the model param-

eterization has a larger impact on precipitation processes. However, during the

rest of the year, precipitation is strongly driven by large scale (i.e. the boundary

data) and thus the RCM physics, still being important, are not as decisive.

6.2.4 Daily precipitation

Different aspects of daily precipitation are explored. Firstly, the contribution

of daily events of different intensity to total precipitation and the frequency of

occurrence in terms of the percentiles are analyzed. Then, various extreme indices

for both the WRF simulations and the Spain02 dataset are calculated to assess

the model potentials in this respect.

Frequency of events

The standard procedure to determine the probability of a particular event con-

sists in the analysis of the probability density function (PDF). Precipitation PDF

is skewed towards low-intensity events and heavy rainfall are unlikely. Despite the

probability disparity between heavy and light precipitation events, their contri-

bution is equally determinant. Small errors in the simulation of upper-percentile

precipitation events might affect total annual rainfall significantly. Therefore, if

a linear-scale plot is used to represent the PDF of a certain region, errors in the

tail of the distribution might not be noticeable in spite of their importance. An

alternative is that of using logarithmic-scale plots to highlight the heavy events.

Nonetheless, in that case, large errors in light precipitation events are masked

which might led to wrong conclusions because they also have an important con-

tribution to total rainfall.

A plot that takes into consideration these caveats is here proposed and con-

sists in representing the accumulated precipitation caused by events of different

intensity. As a result, a sort of PDF is obtained, but precipitation amounts re-

place the events probability (herein referred as pseudo-PDF). This enable the

analysis of the entire spectrum of events at once, instead of focusing on heavy or

light precipitation separately.
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Figure 6.5 illustrates the amount of annual precipitation grouped by events.

Therefore, each value represents how much precipitation within a year is caused

by events of particular intensity. The last bin accommodates all events exceeding

80 mm/day. These values have been calculated over the entire period (1970-

1999) and comprise all grid-points within a region. The results are then divided

by the number of years (30) and the number of stations included in each region.

Events of intensity below 0.1 mm/day are not considered because observations

only record precipitation over this threshold.

A common deficiency of climate models is that they tend to produce too

much light precipitation and underestimate heavy events (Bukovsky and Karoly,

2011; DeMott et al., 2007; Gutowski Jr et al., 2003). The first statement is here

confirmed, but the second one is not clearly evidenced in our simulations (except

for the high-order statistics that are explored later on).

The overall shape of the pseudo-PDF is well captured by WRF, except in

the eastern regions (SE, EC and IS), where WRF misplaces the maxima. All

simulations assign the maximum contribution to events between 1-5 mm/day,

whereas the observations locate the maximum between 5-10 mm.

The WRF model generally produces too many rainfall events from 0.1 to

15 mm/day, apart from WRFCCSM that only overestimates the contribution of

events below 5 mm/day. Actually, errors in the occurrence of events within the

bins 1-5 mm/day and 5-10 mm/day amount to an important bias contribution,

over 100 mm/year in regions such as IN or NC. Along the east coast this errors

might be especially important in relative terms because the annual rainfall rates

are smaller (SE, EC or IS regions).

The frequency of events that exceed 20 mm/day are accurately described by

WRFERA in the majority of regions with minor underestimations, except in the

NE that are overestimated and in the IS where they are markedly underesti-

mated. The other two simulations present dissimilar performance. WRFCCSM

tend to underestimate extreme events (except for NW region, where all WRF

runs present a clearly distinct behavior), whereas WRFEH5 generally return sat-

isfactory results with moderate overestimation. As for the very extreme events

(>80 mm/day) two features are remarkable: (1) a clear underestimation in the

SE and IS regions and, (2) too many of them in northern regions, particularly for

NW and NE.

These characteristics of simulated precipitation regimes are in accordance with

previous results. Indeed, areas where both WRFERA and WRFEH5 led to posi-

tive seasonal biases show systematic overestimation of almost all types of events.
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Figure 6.5: Annual precipitation amounts explained by events of different intensity
in the 10 Spain02 regions. The amounts have been calculated over the entire period
(1970-1999) and comprising all stations within a region, and divided by the number of
years and the number of stations that constitute each region.
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On the other hand, basically the complete range of events are underestimated by

WRFCCSM over the Mediterranean regions (SE, EC, NE and IS).

This analysis supports the idea that the problem of the precipitation PDF

simulation might not be directly related to WRF deficiencies, but to boundary

data conditions instead. In most of the regions, the WRF simulation that was

nested in ‘perfect boundary conditions’ provided fairly good results in terms of

the precipitation events intensity. However, in the case of WRFCCSM, rainfall

in general is strongly reduced over a large portion of the IP and thus the number

of all kind of events is diminished.

In addition to the pseudo-PDF, the standard probability density function is

calculated using 1 mm/day bins1 and ranging from 0-120 mm/day to compute

the Perkins Skill Score (SS, Perkins et al., 2007)2. Kjellström et al. (2010) found

that the bin size might affect the SS values, particularly when events below 1

mm/day are considered. The SS accounts for the percentage of PDF that is

shared between the observations and the model runs at each grid point. Hence,

the SS ranges from the poorest skill at 0% to a perfect one that would produce

a 100% SS. Figure 6.6 illustrates its spatial distribution over the IP for all three

WRF simulations.

Figure 6.6: Spatial distribution of the precipitation Perkins Skill Score (%) with respect
to Spain02 for WRFERA, WRFEH5 and WRFCCSM simulations.

The PDF area shared by Spain02 and WRF simulations exceeds 80% in most

1Smaller (0.5 mm/day bins) where also employed for the 0-1 mm/day range with no signif-
icant differences in the SS results.

2See Appendix B for a detailed description.
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of the cases, except for WRFCCSM that attain more modest values. Precipitation

in the southern and eastern regions appear to be the most difficult to model in

terms of capturing the PDF, since the lowest values are obtained over these

areas. Conversely, higher values are obtained at the northern regions. It should

be noted that SS results for WRFEH5 are higher than those of WRFERA in

many situations. which represents a noteworthy feature of WRFEH5 simulation,

since ERA-40 is largely based on observations and thus should constitute better

boundary conditions.

Percentiles of precipitation

Finally, the WRF performance regarding daily precipitation is addressed from

the viewpoint of the percentiles. Several percentiles (5th, 50th,55th, 60th, 65th, 70th,

75th, 80th, 85th, 90th, 95th and 99th) are calculated for each simulation and they

are shown in a Q-Q plot. A Q-Q plot displays the modeled percentiles versus

the observed ones and thus the line with slope 1 represents a perfect skill. This

kind of plot is very helpful to characterize very extreme events because emphasize

differences on upper percentiles.

Figure 6.7 comprises 10 different Q-Q plot that represent each of the Spain02

regions. Once again, the largest deviations are found for the Mediterranean re-

gions (SE, EC and IS). The case of the islands is particularly interesting because

although the annual cycle was extraordinarily well reproduced by WRFERA and

WRFEH5, the regional model fails to capture extreme events. This is an illus-

trating example of accurate long-term values due to incorrect reasons as a con-

sequence of errors compensation because light events (0-10 mm/day) over this

area are markedly overestimated (see Fig. 6.5). The peculiarities of the region, a

small area surrounded by the sea, might be one of the causes of these deviations.

The west Mediterranean is characterized by strong convective processes that are

particularly localized. Since the Balearic Islands are relatively small, it is very

likely that the confined downpours are misplaced and thus do not fall over the

islands in the model. Furthermore, it is also probable that errors in the SST

together with deficiencies in the cumulus scheme lessen the convective processes

and prevent the model from capturing these events with all their strength.

Over regions where extreme events are rather generated by large scale, the

Q-Q plots show a good agreement between modeled and observed precipitation

percentiles (IN, CA and NC), which is due to the fact that large-scale systems

carrying significant amounts of water vapor are easier to simulate than localized
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and vertical processes. The results obtained for the NE cannot be attributed to a

good representation of the large scale because rainfall here has a strong convective

component. The adequate simulations of precipitation high percentiles might be

explained by other factors that have not been identified.

The magnitude of the WRF percentiles are consistent with the seasonal and

annual biases and WRF results range from the lightest extreme events produced

by WRFCCSM to the those of higher intensity generated by WRFEH5. Nonethe-

less, in accordance with what was affirmed before about the common deficiencies

in climate models with respect to the PDF, the very extreme events are generally

underestimated.

It must be stressed that these events are particularly difficult to simulate

for regional models, because they are usually produced under very singular or

unstable conditions that the model must capture in detail to produce similar

precipitation rates.

Therefore, the results here presented constitute an important point in favor

of WRF because despite the errors, it makes possible to approach the study

of extreme events, which cannot be addressed with GCMs due to their coarse

resolution, not even from a qualitative point of view.

Precipitation extreme indices

Besides the characterization of precipitation extremes in terms of their in-

tensity, it is also interesting to attend to extreme events from an alternative

perspective. For example, the fraction of total precipitation that is originated by

very extreme events might provide an interesting picture of the rainfall regimes

but cannot be characterized by just analyzing percentiles and probability distri-

butions. The Expert Team on Climate Change Detection and Indices (ETCCDI)

has defined a set of extreme indices that approaches the subject of extremes from

a wider point of view. For instance, the ETCCDI proposes 11 different indices

for precipitation that are described in their webpage1. Five indices are actually

selected from those suggested by ETCCDI. The indices that were singled out are

listed in Table 6.1 together with a brief description of them.

The last two indices, CWD* and CDD*, are actually modified versions of the

original ETCCDI indices, CWD and CDD, that compute the maximum length of

a wet/dry spell over the entire period of study. The modified versions calculate the

annual mean of the maximum number of consecutive wet/dry days and computes

1http://cccma.seos.uvic.ca/ETCCDI/

http://cccma.seos.uvic.ca/ETCCDI/
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Figure 6.7: Precipitation percentiles simulated by three WRF runs vs. Spain02 pre-
cipitation percentiles. The grey line indicates a perfect skill and delimits over- and un-
derestimation of the different percentiles. The vertical lines determine the 50th, 75th,
90th and 95th percentiles as reference. The plot extends to the 99th percentile.
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Table 6.1: Selection of ETCCDI extreme precipitation indices.

Identifier Description Units
R5xday Maximum 5-day (consecutive) precipitation amount mm
R10 Number of days when precipitation exceeds 10 mm days/year
R95T Percentage of total precipitation above the 95th daily

percentile
%

CWD* Annual mean maximum number of consecutive wet days
(> 1 mm)

days/year

CDD* Annual mean maximum number of consecutive dry days
(< 1 mm)

days/year

an annual mean. Although the very extreme character of the original indices

is missed in these new indices, they describe the attributes of the local rainfall

much better and are much more stable. CWD and CDD are too sensitive to small

errors that can split the largest spell in the period. For example, CDD might be

dramatically affected by few light events and might show very large variability

among similar simulations. By contrast, CWD* and CDD* are calculated every

year and thus are more resistant.

Other indices, such as the maximum 1-day precipitation (Rx1day), the number

of days that precipitation exceeds 20 mm (R20) or the simple daily intensity index

(SDII) were also calculated but results are not shown because they do not add

any information to that provide by the previous ones.

The persistence of a certain situation, such as extremely dry conditions, might

have the same or even greater impact on the environment than individual events

and might be as important as the occurrence of heavy rainfall. This is particularly

true in areas within the Iberian Peninsula where precipitation is often concen-

trated in very few rain events. The 5 indices that have been chosen can be divided

into two different classes that describe the high-order statistics (Rx5day, R10 and

R95T) and the persistence of both wet and dry periods (CWD* and CDD*). Fig-

ure 6.8 illustrates these extreme indices for the Spain02 observational dataset as

well as for the three WRF simulations.

The indices that refer to heavy rainfall are in general well represented by

WRFERA in both magnitude and spatial distribution. The GCM-driven simu-

lations also capture the spatial distribution correctly, but they fail to reproduce

the intensity indices with accuracy.

The Rx5day spatial pattern is defined by low values in the interior plateau
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Figure 6.8: Extreme indices proposed by ETCCDI for Spain02, WRFERA, WRFEH5
and WRFCCSM. The different extremes are displayed by rows (Rx5day, R10, R95T,
CWD* and CDD*). White areas indicate off-the-scale values.
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(80-130 mm) and higher ones in the rest of the IP, that are particularly large for

mountainous areas, the northwest and the east coast, where the 5-day maximum

precipitation reaches 544 mm (out of the scale). WRFERA generates a very

similar spatial distribution of Rx5day, but it generally tends to lessen the mag-

nitude of 5-day accumulated precipitation, particularly in areas along the east

coast where differences rise up to 100 mm. Some exceptions are observed in the

mountains located in the northwest half of the IP, where WRFERA intensifies

the index value. The WRFEH5 run tends to enhance the maxima located over

mountain systems whereas WRFCCSM is distinguished by underestimation of

Rx5day in most of Spain, except for the Central System and Galician Massif.

Regarding the days when precipitation exceeds 10 mm (R10), the broad gradi-

ent from the southeast to the northwest is adequately reproduced by WRFERA,

with some local overestimations in the northwest mountains. Both WRFEH5

and WRFCCSM simulations compare very well with the observations in terms

of the spatial pattern but again does not succeed to produce accurate values in

certain areas. For instance, number of days with moderate precipitation is clearly

overestimated in the north, where WRFEH5 produces R10 values that reach 122

days/year. WRFCCSM tends to generate lower R10 than the observations over a

wide area in the east, which is probably caused by the general underprediction of

precipitation, as found in the analysis of the seasonal and annual biases. On the

other hand, except for the aforementioned overestimation in the north, WRFEH5

is able to adequately reproduce the R10 index in nearly all Spanish regions and

the errors in relation to Spain02 seldom exceed 10 days/yr.

In accordance with the description of Spanish precipitation regimes made at

the beginning of section 6.2, heavy rainfall accounts for a large portion of total

precipitation in certain region. For example, the percentage of rainfall explained

by events over the 95th percentile reaches a maximum over the east coast, where

very extreme events explain as much as 30% of total precipitation. All three

simulations recreate this feature of climate, but all of them tend to intensify the

magnitude of this index in almost the entire region. However, apart from positive

deviations in the east coast and the Central System, the three simulations yield

values that fall within an error of 2% with respect to Spain02.

Concerning the indices that refer to persistence (CWD* and CDD*), the

spread among WRF simulations estimates is more perceptible. The most re-

markable difference between WRF and Spain02 is found for the CCSM-driven

simulation in terms of the yearly maximum number of consecutive dry days. The

WRFCCSM produces more than double CDD* in some locations, such as the
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east coast, where it estimates a mean maximum number of consecutive dry days

of 227 days/year versus the 110 days/year observed in Spain02. Nevertheless,

differences in the CWD* are not as dramatic, and WRFCCSM is able to recreate

the values obtained for Spain02, except for slight overestimations in the north-

west and underestimations in the east. The WRFEH5 yields similar results to

WRFCCSM for CWD*, although the overestimation in the northwest is more

pronounced. But it provides much better estimates of CDD*, since the errors

barely exceed 20 days/year. The WRFERA simulation produces acceptable re-

sults in terms of persistence, in spite of slight underestimations of both CDD*

and CWD*. The broad patterns of these two indices adequately captured by all

WRF simulations, although the CDD* gradient from north to south is clearly

smoothed, whereas the opposite happens with the CWD* gradient from north-

west to south east that is intensified. Bearing in mind that RCMs tend to create

too much drizzle events and the peculiarity of CWD* and CDD* that measure the

persistence of particular conditions, the results obtained with WRF are certainly

satisfactory.

6.3 Temperature

The IP is distinguished by a wide range of temperature regimes that are

mainly associated to latitude, elevation and distance to the sea. The four large

masses that surround the IP exert a strong influence on temperature values.

Lowest values are usually linked to continental winds coming form the northeast,

whereas the highest ones are mostly caused by air coming from the Sahara desert

in the south. The Atlantic Ocean and the Mediterranean Sea also modulates and

make temperatures much milder, particularly along the coast.

In fact, large differences are observed in the IP depending on the location

with respect to the sea. Mediterranean coast and to a lesser extent the Atlantic

coast, tend to be temperate during the winter and temperature variability is

relatively small throughout the year. Conversely, most of the IP is dominated by

a continental character that induces large annual and daily variability.

Besides the temporal variability, complex topography in the IP generates an

intricate distribution of temperature regimes with marked differences between

river basins and mountain ridges, not only due to elevation but to orographic

cloudiness as well.

The procedure to assess WRF performance in terms of temperature is analo-

gous to that employed for precipitation and annual, seasonal, monthly and daily
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values are analyzed. The annual and seasonal values of temperature define aspects

of climate that directly affects the species and the crops of the region, because

they broadly describe ranges of temperature. The monthly means of tempera-

ture help to describe the annual cycle. Finally, daily records are useful to delimit

extreme events and possibly identify heat waves and cold spells that have an im-

portant impact on the population, the energy consumption or the environment

(e.g fire risk).

6.3.1 Annual temperature

A first approach to examine temperature results is performed using the annual

mean of both Tmax and Tmin. Annual means for Spain02 temperatures are

calculated over the 30-year period to visualize their general distribution across

the IP and provide a frame of reference. To compare with observations, WRF

annual values are also calculated and the pattern correlation coefficients between

maps are computed to measure the similarity in the spatial distribution. It must

be emphasized once again that pattern correlation do not take into account biases

and only provides information on the spatial variability equivalence between WRF

and Spain02.

Figure 6.9 and 6.10 illustrate the mean over the period 1970-1999 for both

temperature extremes. The pattern correlation are expressed in brackets.

All three simulations show a remarkable agreement with the observations in

terms of the spatial distribution as indicated by the pattern correlation values

and minor differences are observed among the WRF runs. Correlation coefficients

are slightly higher for Tmax (0.94-0.95) than for Tmin (0.89-0.90).

Overall, WRF seems to accurately capture the broad north-south gradient

and the main topographical features that affect temperature. Indeed, the most

important basins and mountain ranges are visible in the spatial distribution of

the annual means. It seems that WRF provides information at higher detail than

Spain02, which might be explained by the finer original resolution of WRF and

the methodology used to generate Spain02 that might produce more homoge-

neous fields. Nonetheless, this remains only a qualitative appreciation because

no evaluation of Spain02 is performed in this study.

Looking closer at annual mean maps, it can be observed that WRF generally

underestimates both Tmax and Tmin all over the IP. Despite the fact that the

temperature spatial patterns are well reproduced, significant errors are manifest

in certain areas. The regional model recreates the maximum temperatures in the
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Figure 6.9: Climatological Tmax annual mean (1970-1999) for the Spain02 dataset
(a) and the WRF simulations nested with ERA40 (b), ECHAM5 (c) and CCSM (d).
In brackets the pattern correlation between the WRF simulations and the observational
dataset Spain02.

Guadalquivir Basin and the minimum values in the most elevated areas in the

north. It also reproduces the mildest temperatures along the Mediterranean coast.

Nonetheless, both temperature extremes are smaller for WRF than for Spain02

in most cases. Deviations between the model and observations are analyzed next
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Figure 6.10: As Figure 6.9 but for Tmin.

on a seasonal scale.

6.3.2 Seasonal temperature

Differences between WRF and Spain02 long-term means of temperatures are

studied with the seasonal bias. Figures 6.11 and 6.12 show the seasonal and

annual bias of WRF simulations with respect to gridded observations.
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Seasonal Tmax means (Fig. 6.11) tend to be systematically underestimated

by WRF when using ERA-40 as boundary conditions. A very similar behavior is

observed for WRFEH5, with deviations that range from -2.0◦C to -1.0◦C in most

of the locations. The WRFCCSM leads to slightly different results and biases

range from -1.0◦C to 1.0◦C over a large portion of the IP. It provides the largest

coverage with bias between -0.5◦C and 0.5 ◦C. Indeed, WRFCCSM does not show

a clear tendency in the seasonal Tmax deviations as the other two simulations

do, and positive and negative bias occur simultaneously.

There is no evident spatial pattern of biases in none of the simulations, al-

though it seems that WRF estimates tend to be better in the valleys whereas the

most negative deviations are found in the mountains. In particular, all simula-

tions produce very significant deviations over some mountainous areas, specially

in the highest ones (Pyrenees and Sierra Nevada, in the Baetic System). Biases

are more pronounced during the spring and summer for WRFERA and WRFEH5.

WRFCCSM embodies the exception once again because there is no season when

biases are clearly more prominent.

Concerning minimum temperature (Fig. 6.11), spatial patterns of biases are

even more heterogeneous and none of the simulations show a plain tendency.

Centers of substantial overestimation alternate with areas of underestimation.

However, there does not seem to be a clear reason that explains their location.

The land-use category assigned to each grid point and differences in elevation

between Spain02 and WRF (degraded to 0.2◦) have been analyzed and they do

not provide any clue with respect to the Tmin biases spatial distribution. In

general, most intense overestimations are placed in mountainous regions whereas

negative deviations mainly occur over the flat areas such as the river basins or

the internal plateaus. Nonetheless, there are a number of exceptions such as the

eastern Galician Massif or the western Pyrenees, where Tmin is underestimated

on average. Except for the summer and for certain localized areas where biases are

larger, the Tmin biases fall in the range from -2.0◦C to 2.0◦C, which is certainly

not negligible.

In contrast to Tmax, there seem to be larger differences among seasons for

Tmin, particularly in the case of WRFCCSM, for which winter Tmin are broadly

overestimated and summer Tmin are overall underestimated. On the other hand,

differences between WRF simulations are almost negligible and indeed, annual

biases are nearly identical for all three runs. The effect of the selected PBL,

that was the same for all simulations, is probably playing an important role,

since Tmin is often reached during the nighttime when the lower atmosphere is
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Figure 6.11: WRF seasonal and annual Tmax bias with respect to Spain02. In
columns, the WRFERA, WRFEH5 and WRFCCSM runs. In rows, the seasonal (DJF,
MAM, JJA and SON) and the annual biases.
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strongly stratified.

As mentioned above, both Tmax and Tmin seasonal biases are far from being

negligible and they must be considered carefully. Nevertheless, temperature errors

in a particular grid-point are mainly affected by bias, which is probably the least

troublesome error since it is potentially correctable. Despite the fact that Spain02

is a gridded daily dataset and thus more comparable to WRF outputs than in

situ observations, it does not yet represent the exactly same scale as WRF (20-

km Spain02 resolution vs. 10-km WRF original resolution). In other words,

although the representation error is considerably reduced by comparing WRF

with Spain02, there are still scale differences between them and the biases cannot

only be attributed to model deficiencies. In addition, Spain02 might be subjected

to interpolation errors because the temperature network was not as dense as for

precipitation, which give rise to areas with very few data.

Assuming that biases are inherent to the WRF, whatever their source is,

they should be constant through the years, and thus a comparison of future and

present estimates would cancel them. As a consequence, projected changes for

future would be unaffected by biases up to a large extent.

6.3.3 Monthly temperature

The temperature at monthly scales is examined through the annual cycle.

The annual cycle is one of the most important features that characterizes the

climate in a region. For precipitation, the location of the maxima and minima

monthly rainfall along the year was analyzed, but in the case of temperature

this is somehow meaningless. Owing to temperature dependency upon the Earth

inclination, the evolution of temperature in the course of the year follows a similar

pattern in the entire northern hemisphere, with a maximum during the summer

and a minimum during the winter. Even a fairly simple model is able to simulate

these variations and here the magnitude of monthly Tmax and Tmin is addressed

instead.

The annual cycle cannot be displayed for all the grid points and the generation

of averaged cycles for the different climate divisions provides a comprehensive

picture of the model performance over the entire region. Accordingly, Figure

6.13 shows the annual cycle for monthly means of Tmax and Tmin over the 8

temperature regions obtained for Spain02 (Fig. 3.8).

The spread of WRF simulations in terms of the annual cycle is almost in-

significant and only in particular regions the differences are slightly appreciable.
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Figure 6.12: As Figure 6.11 but for Tmin.
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Figure 6.13: Tmax and Tmin annual cycle for the period 1970-1999 for the three
WRF simulations (color) and Spain02 (black).
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In general, the Tmin yearly evolution is better captured than the Tmax one. For

instance, WRF produces Tmin monthly means that are vey close to Spain02 val-

ues in the majority of regions, whereas deviations of WRF Tmax monthly means

with respect to observations are much more evident.

In particular, the HI region that encompasses high-altitude areas shows the

largest errors for Tmax annual cycle, which is consistent with the results obtained

for seasonal biases. The deviation in this region is nearly constant during the

year, which indicates that the error source might not be related to atmospheric

processes but to elevation deficiencies. In fact, just as the seasonal biases were

not found to be related to elevation or land-use category factors, the elevation

differences between the model and the Spain02 topography were noticeable for

the HI region and might be a cause of these errors.

The coastal regions (ME and AT) are also affected by significant biases in

Tmax. In the AT regions the biases are larger during the spring and summer and

almost no deviations are found for the autumn and winter. In the case of ME

region, differences between WRF and Spain02 are stable for almost all months,

except for WRFCCSM that appear to perform better during the first half of the

year. Errors in the coastal regions could be partially explained by the fact that

conversion from 10-km resolution to 20-km resolution could include sea points in

the interpolation and enhance the SST contribution to coastal temperatures. In

fact, the influence of the sea is observed in the flattening of the annual cycles

and the diminution of monthly temperature range (difference between Tmax and

Tmin).

By contrast, in two of the major river basins, the Guadalquivir and Ebro

valleys, included in the GU and EI regions respectively, the model shows the

best agreement with observations. This supports the idea that differences in the

elevation of the model and Spain02 might be important, because the river basins

are mostly flat and homogeneous.

6.3.4 Daily temperature

Daily values of Tmax and Tmin are examined by comparing the PDFs and

certain percentiles calculated for WRF simulations and Spain02.

Tmax and Tmin PDFs

Unlike precipitation, daily events of temperature equally contribute to long-

term values and it is possible to analyze the complete spectrum without the
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risk of weighting particular events in excess. Therefore, no consideration on the

magnitude of the events is made and only the probability of an event to occur is

computed.

Figure 6.14 illustrates the PDF for daily Tmax over the 8 temperature regions.

All temperature events corresponding to grid points within a region have been

computed together to calculate the PDF. The negative deviations in the seasonal

means observed before are manifest here too. For instance, in most of the region,

the PDF is displaced towards lower values. Although the shift of the curve, the

shape is overall well reproduced. This is particularly evident for the HI region,

where despite the prominent deviation of the curve, the PDF pattern obtained

for WRFERA is very similar to observations.

In the case of minimum temperature there is also a slight displacement to-

wards lower values in the southern regions (SW, GU, ME) but no clear tendency

for the rest (Fig. 6.15). Errors are more significant in the central part of the

distribution than for Tmax. The Tmin PDFs are actually somehow straightened

and probabilities are diminished for the extremes in most of the regions, whereas

central values probabilities are largely overestimated, particularly for the GCM-

driven simulations. Besides the Tmin variability reduction, the distribution seems

to be somehow skewed towards lower values as observed in regions EI, SW, NI

and especially in PL, which essentially are the regions situated in the central IP.

In theory, temperature probability is distributed according to a gaussian dis-

tribution. However, these two figures show that both Tmax and Tmin tend to

have a bimodal distribution instead. This behavior is generalized for Tmax and

appears to be more marked in the certain regions (ME, GU, SW, PL and EI). As

for Tmin, the bimodal shape also exists but not for all the regions. For instance,

NI, HI and AT PDFs are very close to a gaussian. The bimodal distribution is

associated to marked seasonality with rapid transitions from cold to warm peri-

ods embodied in the two modes. This feature of Iberian temperature is broadly

captured by WRF but tends to be exaggerated (e.g. Tmax in AT and ME, and

Tmin in ME, SW and GU).

Despite the mentioned deviations, both Tmax and Tmin PDFs are fairly

reproduced by WRF, which represents a major advantage with respect to current

climate change information. It is already well-known that global warming signal

will not only be reflected in the means but also in the standard deviations. Bearing

in mind typical GCMs resolution, this is an aspect of climate change that could

not be explored with global models. Nonetheless, this analysis evidences that

WRF is able to supply with valuable and reliable information in this respect.
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Regarding differences among WRF simulations, it is worth mentioning that

GCM-driven simulations tend to generate less Tmin variability than WRFERA

as inferred from the PDF spread. They also seem to be slightly further skewed to

lower values. Nevertheless, these differences are not substantial and GCM-driven

runs also provide satisfactory results in terms of the PDF.

The similarity of two PDFs can be measured using the Perkins Skill Score

(SS). The SS is computed here at each grid point and using 1◦C bins to generate

the PDF (from -25◦C to 50◦C). The SS represents the probability shared by

observed and simulated PDFs (see Appendix B) by specifying the area shared

by both distributions. Figure 6.16 and 6.17 illustrate the SS values all over the

IP calculated for Tmax and Tmin respectively. The SS reach high values for

the entire region (> 75%), except for very limited areas where it drops to values

ranging from 65% to 75% (e.g. northwest).

In general, WRFERA and WRFEH5 produce very similar values in terms of

both Tmax and Tmin, although their spatial distributions are different. Cover-

sely, WRFCCSM temperature probability distribution is much closer to observa-

tions for Tmax. Over a large portion of the IP, WRFCCSM and Spain02 Tmax

SS takes values over the 90% of the total probability, whereas in the case of Tmin,

SS barely exceeds that threshold.

The spatial patterns of SS do not seem to be directly affected by factors such

as topography or distance to the sea and there must be other elements that might

have an important effect on the simulated temperature PDF (e.g. land-use, soil

properties).

Temperature percentiles

An additional way of examining the distribution of the PDF is that of focusing

on the percentiles, and more specifically on the uppermost and lowest quantiles

to explore the distribution tails. A comprehensive analysis of the percentiles can

be performed using the Q-Q plots, where the WRF temperature percentiles are

plotted versus the observations percentiles.

Figures 6.18 and 6.19 contain the Q-Q plots in the different regions for Tmax

and Tmin, respectively. The plot covers nearly entire spectrum of events from

the 0.1st to the 99.9th percentiles. Several percentiles (0.1st, 1st, 5th, 10th, 25th,

50th, 75th, 90th, 95th, 99th and 99.9th) have been calculated to create this plot for

each region.

The model shows an outstanding ability to reproduce the Tmax percentiles.



140 6. Present climate (1970-1999): the model evaluation

−10 0 10 20 30 40 50
0

2

4

6

8
ME

pr
ob

ab
ilit

y 
(%

)

temperature (°C)
−10 0 10 20 30 40 50
0

2

4

6

8
GU

pr
ob

ab
ilit

y 
(%

)

temperature (°C)

−10 0 10 20 30 40 50
0

2

4

6
SW

pr
ob

ab
ilit

y 
(%

)

temperature (°C)
−10 0 10 20 30 40 50
0

2

4

6
PL

pr
ob

ab
ilit

y 
(%

)

temperature (°C)

−10 0 10 20 30 40 50
0

2

4

6
EI

pr
ob

ab
ilit

y 
(%

)

temperature (°C)
−10 0 10 20 30 40 50
0

2

4

6
HI

pr
ob

ab
ilit

y 
(%

)

temperature (°C)

−10 0 10 20 30 40 50
0

2

4

6

8
NI

pr
ob

ab
ilit

y 
(%

)

temperature (°C)
−10 0 10 20 30 40 50
0

5

10
AT

pr
ob

ab
ilit

y 
(%

)

temperature (°C)

Spain02 WRFERA WRFEH5 WRFCCSM

Figure 6.14: Probability Distribution Function for daily Tmax calculated over the
entire period (1970-1999) displayed by regions for WRF simulations (color) and Spain02
(black).
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Figure 6.15: As Fig. 6.14 but for Tmin.



142 6. Present climate (1970-1999): the model evaluation

Figure 6.16: Spatial distribution of the Tmax Perkins Skill Score (%) with respect to
Spain02 for WRFERA, WRFEH5 and WRFCCSM simulations.

Figure 6.17: As Fig. 6.16 but for Tmin.

For instance, the WRF curves are very close to the perfect-skill grey line in most

of the climate divisions. Even the most extreme events are accurately described

in many regions (e.g. GU, EI, NI or SW). Nevertheless, some noticeable devia-

tions are also obtained for other regions such as HI, where Tmax percentiles are

systematically underestimated, or AT, PL and NI, where the upper percentiles

are not accurately captured by WRFERA. By contrast, the WRFCCSM pro-

vides very good results even in the aforementioned areas and reproduces very

well the percentiles at most of the regions, even those events beyond the 99th
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Figure 6.18: Tmax percentiles simulated by three WRF runs versus Spain02 Tmax
percentiles. The grey line indicates a perfect skill and delimits over- and underestima-
tion of the different percentiles. The vertical lines determine the 1st, 5st, 50th, 95th and
99th percentiles as reference. The plot extends from the 0.1st to the 99.9th percentile.
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Figure 6.19: As Fig. 6.18 but for Tmin.
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percentile. Actually, most of the differences between WRFCCSM and Spain02

are smaller than 1.0◦C in absolute terms, except for the HI and AT regions where

the deviations are larger (up to 2.7◦C).

Regarding Tmin, WRF also provides good results, but differences with respect

to Spain02 are more significant. In the regions that include highest locations

(HI and NI), the very low Tmin values are exaggerated by WRF, although the

percentiles are correctly captured from the 5th percentile upwards. For the rest

of the regions, the WRF lowest percentiles are closed to the observed ones and

if anything, WRF tends to overestimate them. Nonetheless, these differences

are insignificant in most cases. In fact, the lowest percentiles (0.1st, 1st and 5th)

fall within a exceptionally good range in many regions (1.0◦C), although some

substantial errors are found in other areas (EI, NI and especially HI). Particularly

accurate are the WRF percentiles over the ME and GU regions, where the curve

nearly follows the perfect-skill line (grey).

With respect to the different WRF simulations, the spread among them for

Tmin percentiles is very small and no run seems to generally provide better

results. WRFERA might capture better very low values at some regions (SW,

PL, EI or AT) but the other percentiles are almost reproduced identically by all

WRF simulations.

Overall, the differences between simulated and observed percentiles are of the

same order of the deviations in the mean values (biases), which speaks very well

of the WRF potentials in describing the upper-percentiles. The ability of WRF to

correctly simulate temperature percentiles is of major importance and represents

one of its most relevant strengths because it enables the study of future climate

from a point of view that could hardly be approached otherwise.

Temperature extreme indices

To further examine the WRF ability to simulate the extreme events, an ex-

cerpt of the set of extreme indices proposed by ETCCDI has been used. The

ETCCDI defines 16 indices that characterize Tmax and Tmin extremes occur-

rence and persistence. Other aspects of temperature extremes are also described

by these indices such as the daily range of temperatures or the length of the

growing season.

The WRF evaluation is limited to a few key indices that can be divided into

two groups: (1) threshold extreme indices that measure the number of days when

temperature is above or below a certain value and (2) those do not rely on prefixed
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thresholds. They are succinctly described in Table 6.2. Additional details on the

indices can be found in the ETCCDI webpage.

Bearing in mind the mean values of maximum temperature in the region,

a supplementary threshold index, hot days (HD), has been included and con-

sists in the average number of days per year when Tmax exceeds 35◦C, which

characterizes the extreme warm conditions during the southern-Iberian summer

much better that the standard summer days (SU, 25◦C), which rather embodies

moderate conditions.

In the table below, two indices are defined using percentiles (WSDI and CSDI).

The percentiles are calculated for each calendar day (e.g. June 6th) and using a

9-day window centered in each calendar day (e.g. June 2th-10th). As a result,

a sort of annual cycle is obtained for the percentiles at each grid point. These

thresholds are calculated for observations over the reference period (1970-1999)1

and used to evaluate the model.

Table 6.2: Selection of ETCCDI temperature extreme indices.

Identifier Description Units
FD Number of frost days (Tmin<0◦C) days/year
ID Number of icing days (Tmax<0◦C) days/year
SU Number of summer days (Tmax>25◦C) days/year
TR Number of tropical nights (Tmin>20◦C) days/year
HD Number of hot days (Tmax>35◦C) days/year
WSDI Warm spell duration index. Annual count of days

with at least 6 consecutive days when Tmax > 90th

percentile of the corresponding calendar day

days

CSDI Cold spell duration index. Annual count of days with
at least 6 consecutive days when Tmin < 10th per-
centile of the corresponding calendar day

days

Temperature extremes, and particularly the percentile-based ones, are very

sensitive to biases. The analysis of temperature extreme events without consid-

ering the biases would yield useless information because the occurrence and per-

sistence of anomalous conditions would be masked by systematic errors. Namely,

whenever the WRF estimate is biased the number of days that exceed both the

1It should be noted that ETCCDI uses the reference period 1961-1990 and 5-day windows
whereas the reference period here is 1970-1999 and the windows span 9 days. Changes in future
extreme indices will be referred to this new reference period too.

http://cccma.seos.uvic.ca/ETCCDI/
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10th and the 90th will be strongly affected, and the number of consecutive warm

or cold days will change dramatically. These differences are not related to the

model ability to reproduce situations that are particularly exceptional, but a

simple displacement towards colder or warmer conditions.

Therefore, in order to study the model ability to simulate the temperature

extremes a bias-correction strategy has been adopted, using the annual Tmax

and Tmin biases at each grid point (Figs. 6.11 and 6.12). It must be admitted

that not all temperatures are equally affected by the same error (annual bias),

but categorizing the errors depending on the temperature magnitude or other

considerations on the model mean deviation with respect to observations would

not be acceptable because the WRF time series would be too much altered.

Namely, further adjustments of the model outputs would fake the WRF ability

to represent extremes and the evaluation could be distorted in favor of the model.

The bias-correction strategy is certainly the least intrusive approach that enables

the generation of meaningful information with respect to extremes.

Moreover, the future projections are compared with the present simulations

to determine possible changes. Namely, the biases are assumed to be constant in

time and thus will be implicitly removed in the analysis of changes.

The ETCCDI extreme indices obtained for Spain02 and WRF simulations are

illustrated in Figures 6.20 and 6.21. The former displays the parameters that

are based on standard thresholds (FD, ID, SU, TR and HD) whereas the latter

includes the rest of indices (WSDI and CSDI).

The bias-corrected results from WRF provide excellent results in terms of

threshold temperature extremes indices. In fact, the model-obtained indices show

an exceptional agreement with those from Spain02 (Fig. 6.20). Not only the

spatial pattern is accurately captured by WRF, but the magnitude of these indices

are very close to the observed values.

The number of both ID and TR is very low over a large portion of the IP. In

the southern and coastal areas the ID index does not go beyond 0.2 days/year,

whereas only in the southwest, the Ebro valley and along the Mediterranean coast

the TR index is over 10.0 days/year. Conversely, the spatial variety of FD and

SU indices is much wider. The HD index reach as much as 57.0 days/year at

points in the Guadalquivir river basin. In general, the number of very hot days

is considerably high over significant areas in the southwest. These features of

temperature extreme indices are remarkably reproduced by all WRF simulations

and none of them seems to outperform the others.

The outstanding performance of WRF in terms of temperature extremes once
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Figure 6.20: ETCCDI temperature extreme indices (in rows) based on thresholds
for Spain02 and WRF simulations (in columns) for present climate (1970-1999). The
customized Hot days (HD) index is also shown. All indices refer to the average number
of days per year that exceed a threshold.

the outputs are bias-corrected manifest that although the WRF estimates are

prone to errors with respect to observations, they are often caused by a simple

shift of the series towards colder or warmer values, which means that they are

potentially correctable to obtain very accurate simulations.

Nonetheless, there are other extreme indices, especially those referring to per-

sistence that are not represented as adequately as the threshold extreme indices.
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Figure 6.21: Persistence (WSDI and CSDI) ETCCDI extreme indices for Spain02 and
WRF simulations for present climate (1970-1999).White and Black areas represent out
of the scale values.

Figure 6.21 displays the two indices that measure the frequency of cold and warm

spells (CSDI and WSDI, respectively) . Although the spatial patterns for WRF

and Spain02 do not match, the magnitude of CSDI and WSDI are of the same

order in all maps. It should be noted that both CSDI and WSDI do not refer to

extreme absolute values. In other words, warm spells do not necessary take place

during the summer and anomalous warm conditions in the winter might count as

warms spells too. The same occurs for CSDI. Therefore, these indices do not say

anything about the season when the spells take place. Instead, they characterize

particularly warm or cold periods with respect to the temperature percentiles at

that moment of the year. The persistence indices are a sort of cumulative extreme

conditions and thus are extremely difficult to simulate because they are highly

affected by deficiencies in the model timing with respect to observations (which

is clearly a minor problem from a climate point of view), since the percentiles

are calculated using Spain02, and also because frequent small errors might cause

great deviations in their estimation. This was already observed for precipitation

and is here confirmed for temperature.

6.4 Estimation of errors and correction

In principle, the climate change projections provide information about the

changes that might be expected. Namely, the future climate simulations are

compared with the present ones and only the differences are analyzed. This
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approach is usually called the ‘delta-change’ method and is basically based on the

assumption that the biases in the present and future simulations will cancel each

other (Räisänen, 2007; Rummukainen, 2010), because the GCMs are assumed to

more reliably simulate relative changes rather than absolute values (Hay et al.,

2000). The ‘delta-changes’ normally ends by adding these changes to the observed

variables.

However, the studies concerned about the impact of climate change are usu-

ally carried out using impact models, which cannot be run with the information

contained in the observations. They normally require a large set of variables that

has to be available over the entire domain. In that case, the outputs of the mod-

els are employed to feed the models and thus they must be corrected (Dosio and

Paruolo, 2011; Piani et al., 2010; Rosenberg et al., 2010).

It is not the purpose of this Thesis to evaluate the impact of climate change,

but rather to provide information at fine scales of the projected changes. Nonethe-

less, the climate change projections here presented might be used in the assess-

ment of the impact and therefore the caveats and issues related to the outputs

correction must be reviewed.

The estimation of the model errors and their projection into the future is

certainly not a trivial task. Besides the model deviations with respect to the

present climate, the future projections are prone to a number of uncertainties,

as detailed in Sec. 2.1.2. The model evaluation should enable the determination

of margins of confidence by calculating the errors between simulated an actual

present climate conditions. It would make possible to correct the model outputs,

but it would not be enough to ensure that the corrected future outputs are valid.

To be rigorous, even the observations that are used to validate the model are

subjected to errors that should also be accounted.

In any case, different approaches to the correction of biases have been proposed

(Ainslie and Jackson, 2010; Boé et al., 2007; Terink et al., 2010) aimed at different

applications. In fact, the procedure to correct the model outputs also depends on

the variable (e.g., temperature, precipitation, wind) and the studied impact (e.g.,

river flows, crops, fire and flood risk). The methodologies range from a simple

bias correction to adjustments of the PDF.

Temperature tends to be distributed normally, although not exactly, and hence

the correction is easier to perform. Actually, a straightforward bias correction

based on differences in the mean values was applied to Tmax and Tmin in the

analysis of extreme events (Sec. 6.3.4) with satisfactory results. Such a correction

was adopted because of its simplicity and its reasonably good results. However,
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precipitation distribution is much more complex and the bias correction must be

more elaborate. Common approaches use a correction factor that varies depend-

ing on the parts of the distribution that are explored (Ines and Hansen, 2006) or

adjusting the PDF to a theoretical distribution (Piani et al., 2010). Nonetheless,

they are fairly complex and impose additional assumptions that might be too

restrictive within the climate change framework. For that reason and bearing in

mind the objectives of this Thesis, precipitation was not corrected here.

However, along these pages, a number of uncertainties have been identified

and the errors of the model have been highlighted. Therefore, the information

required to perform the model outputs corrections is supplied and future research

on the field of climate change impact could take advantage of the validation here

conducted.

6.5 Conclusions from WRF evaluation

The results obtained from the model evaluation are summarized in this section.

A number of temporal scales have been analyzed to determine whether WRF is

able to reproduce present climate over the Iberian Peninsula.

A primary benefit of using RCMs to produce climate change information

is that their resolution should allow a good simulation of variability and high-

order statistics. Even though the boundary data have not been evaluated in

this chapter, considering their very coarse resolution and results for the limited

region of southern Spain (see Chapter 5), it cannot be expected that GCMs

capture events that are usually very localized and short, especially in the case of

precipitation.

By all means, the major advantage of using WRF is the possibility to study

the climate at scales that GCMs were not design to. The WRF model provides

information at such degree of detail that it is possible to assess not only possible

future changes in the means but in the distribution tails as well. Despite the fact

that WRF estimates produce non-negligible errors with respect to observations

over certain regions or time scales, it is overall able to generate features of climate

that are missed in global models and thus represent an extremely valuable tool

to study the regional implications of climate change.

Precipitation is fairly well captured at all timescales with the exception of

some seasonal biases found over particular regions principally during the spring.

The analysis of the outer domain SLP revealed that these deficiencies are largely

induced by boundary data misrepresentation of large-scale circulation as a result
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of a wrong location and intensity of the main pressure centers. Nonetheless, the

regional model also contributes to seasonal deviations since the spatial patterns

of the biases are very similar between the GCM-driven simulation in spite of their

differences in the SLP. As already noticed for other models, WRF tends to pro-

duce too much light-to-moderate precipitation whereas the heavy rainfall events

are slightly underestimated. The most remarkable features of WRF performance

are its ability to correctly distribute precipitation all over the IP and the good

skill shown with respect to the extreme indices. The former indicates that WRF

is efficient at differentiating the climate regimes within the region and incorporate

the effect of small topographical features that GCMs are unable to capture. The

latter is a sign of the model ability to reproduce events that are usually short and

localized.

Regarding temperature, the model errors with respect observations are mostly

characterized by systematic deviations, as observed in the seasonal analysis. The

biases in temperature are potentially correctable and are the less troublesome

errors to deal with. Leaving aside these biases, temperature is accurately simu-

lated at all timescales. The factors that determine the temperature distribution

across the IP do affect WRF temperature spatial distribution too. Indeed, coastal

areas, mountains and river valleys are evidently distinguished in the model tem-

perature outputs. WRF simulates the temperature PDF very well and produces

most of the distribution features, such as the bimodality at certain regions. But

undoubtedly, the most striking aspect of the model performance in relation to

temperature refers to the percentiles and the extreme indices. They are excep-

tionally well reproduced by WRF in nearly all situations considering that these

are the very furthest part of the distribution tail. This is a crucial benefit with

respect GCMs because it allows the study of the extreme events, a facet of climate

that has been barely explored and still remains to be carefully addressed.

The spread between WRF simulations is generally larger for precipitation

than for temperature, for which all runs perform almost equally. Precipitation is

much more sensible to the model configuration and thus minor differences in the

boundary data might bring about significant divergence in precipitation amounts.

The WRFERA run provides remarkably good estimates for both variables which

suggests that WRF is able to reproduce the Iberian climate if it is driven by the

appropriate boundary data. For the other two cases, WRFEH5 and WRFCCSM,

despite the fact that the boundary conditions are far from being perfect, the

model performance is acceptable for long-term means and noteworthy with regard

to upper-percentiles.
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Despite the limitations documented in this chapter, the WRF adequacy to

simulate climate over the IP has been addressed and it has been proven that it

is a remarkably useful tool to create high-resolution climate change projections

over this area.





Chapter 7

Future climate (2070-2099): the

projected changes

The scientist does not study nature because it is useful; he
studies it because he delights in it, and he delights in it
because it is beautiful. If nature were not beautiful, it
would not be worth knowing, and if nature were not worth
knowing, life would not be worth living.

J. H. Poincaré

This Chapter is devoted to analyze and discuss the high-resolution WRF

projections of climate change scenarios over the IP. The changes resulting from the

increase of GHGs concentration in the atmosphere are here examined at regional

scales in terms of precipitation and temperature. The procedure is analogous to

that followed for the present climate evaluation in Chapter 6.

To put WRF results in context, an introductory section describes the IPCC

projected changes for the Mediterranean area. Some details about the WRF fu-

ture climate simulations and a description of the analysis conducted to determine

the changes are included in this preliminary section. Afterwards, precipitation

and temperature changes projected by WRF are presented to thoroughly address

the global warming impact on Iberian climate.
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7.1 Introduction to projected changes for the IP

7.1.1 Overview of IPCC projections for the Mediterranean Area

Before analyzing the WRF outputs for future Iberian climate, let us summa-

rize the IPCC AR4 (Christensen et al., 2007a) projections for the Mediterranean

area to set a backdrop to compare with. As stated in the IPCC AR4, warming in

Europe is projected to continue at a rate somewhat greater that its global mean.

In the Mediterranean, warming is expected to be larger during the summer, when

variability –from seasonal to daily– is also likely to increase due to reduced soil

moisture and increased land-sea temperature contrast. Highest maximum tem-

peratures seem to increase more than the median daily maximum temperature.

Conversely, a more moderate warming is projected over south-western Europe

during the winter. Regarding extreme events, heat waves are very likely to in-

crease in frequency, intensity and duration, and the number of frost days is very

likely to decrease.

The Mediterranean area will be very likely affected by significant decreases in

precipitation. The most consistent and largest decreases (in percentage) occur

in summer. Nonetheless most models project decreases in precipitation for the

rest of the seasons as well. The decrease in precipitation together with enhanced

evaporation during the spring and early summer is very likely to lead to reduced

summer soil moisture in the Mediterranean region (Douville et al., 2002; Wang,

2005), which might constitute a positive feedback for summer warming.

The projected changes with regard to precipitation extremes over the Mediter-

ranean region do not seem to show a clear tendency. Extreme short-term events

may either increase due to the increased water vapor content in the atmosphere or

decrease due to a decrease number of precipitation days which could make heavy

precipitation less common. Long-term extreme events, which includes anomalous

months or years, are expected to follow the changes in mean precipitation more

closely than are those in short-term extremes.

However, the IPCC also asserts that there are still significant quantitative

uncertainties with regard to the projected changes over this region, particularly

for precipitation. The high-resolution WRF simulations might help to provide

further insight to this respect and quantify the changes at finer scales over the

IP.



7.1 Introduction to projected changes for the IP 157

7.1.2 Description of the future climate simulations

A set of high-resolution 30-year simulations have been completed with WRF to

characterize future climate (2070-2099). A range of possible scenarios is here cov-

ered to include different possible pathways in the evolution of the climate system.

In particular, three different SRES scenarios (B1, A1B and A2) with different

rates of GHGs emissions are considered. In addition, two GCMs (ECHAM5 and

CCSM) have been selected to drive the regional model to explore changes with

different boundary conditions in order to take into consideration their associated

uncertainties.

Although WRF configuration has already been described in Chapter 4, a brief

summary of model setup is presented to recall the most relevant parameters:

• Two one-way nested domains are employed to describe the region under

survey. The finer domain covers a region that extends 1350 km by 1350

km at a spatial resolution of 10 km with the purpose of generating high-

resolution climate change information.

• The vertical is divided in 35 levels distributed in such a way that resolution

is higher near the surface and decreases towards the top of the atmosphere,

located at 50 hPa.

• A weak spectral nudging is switched on in the outer domain and only for

the scales larger than 1300 km (wavenumber 3). All input variables are

nudged above the PBL except for relative humidity that was not nudged at

all.

• The parameterization configuration BA3 (BMJ for the cumulus, ACM2 for

the PBL and WSM3 for the microphysics, see Table 5.1 for the full list

of explored combinations) with Noah LSM and CAM3.0 radiation schemes

was adopted.

The set of future simulations is composed of 6 different runs (3 SRES scenar-

ions x 2 GCMs). The nomenclature to refer each of the simulations used in this

chapter is shown in Table 7.1

7.1.3 Description of the analysis

Just like for the present climate simulations, the future climate is examined

through precipitation, Tmin and Tmax estimates from WRF. The strategy to
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Table 7.1: Acronyms of the GCM-driven simulations

Driving Data ECHAM5 CCSM

20th Century WRFEH5 WRFCCSM
B1 Scenario WEB1 WCB1
A1B Scenario WEA1B WCA1B
A2 Scenario WEA2 WCA2

assess the changes in these variables consists in comparing each of the GCM-

driven future simulations with the corresponding present climate run, using the

so-called ‘delta-change’ method. As detailed before, the delta-change method is

based on the assumption that biases in present and future simulations should

cancel each other, giving rise to smaller error in the relative changes than in the

present climate simulations (Hay et al., 2000; Räisänen, 2007).

As in previous analysis of WRF outputs, it is much more practical to group

the outputs by regions to show certain results such as the changes in the annual

cycle. Grouping the outputs by regions facilitates readability and makes possible

to supply with an overall picture of the results. The regions used in this chapter

are identical to those used in the model evaluation that were generated with the

Spain02 dataset. A nearest-neighbor interpolation from Spain02 grid to WRF

grid (land grid points only) is applied to define the regions over the latter .

A number of parameters are calculated to study potential changes in both

long-term means and daily values. It should be noted that these parameters have

been computed for the entire IP, including Portugal, and the Balearic Islands.

Bearing in mind that due to data availability the evaluation of the model was

limited to Peninsular Spain (and the Balearic Islands for precipitation), results for

the rest of the region should be interpreted with caution because the model ability

to represent climate features of these areas has not been determined. Nonetheless,

the model performance is likely to be similar over Spanish IP and Portugal, and

hence it has been decided to show WRF projected changes over the whole IP

to enable, at least, a qualitative analysis. In any case, WRF results are only

discussed over those areas where it has been evaluated even if WRF estimates

are shown over a larger region.
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7.2 Precipitation Changes

Precipitation plays a paramount role in the development and preservation of

the natural environment in a region. Furthermore, there is basically no facet of

human activity that is immune to changes in precipitation and water availabil-

ity. Potential changes in rainfall frequency and intensity would be particularly

dramatic over regions where the economy is strongly based on agriculture and

tourism such as the IP.

It is thus evident that among the effects of global warming, the quantification

of precipitation changes is a priority to estimate the impact of climate change over

the IP. The IP is already under an intense hydrological stress and indeed, water

management is one of the main sticking points in national politics. Therefore,

an exhaustive study of future precipitation changes is crucial to design efficient

mitigation and adaptation measures.

7.2.1 Changes in annual mean precipitation

All simulations project a substantial decrease in annual mean precipitation

for the period 2070-2099 with respect to 1970-1999 over nearly the entire IP un-

der all three scenarios (Fig. 7.1). Very few exceptions are found in the central

Mediterranean coast, where slight increases that barely exceed 10% are projected

by WEB1 and WCA1B. Figure 7.1 also shows the areas where these changes

are significative using a two-sided Student’s t-test (see Wilks, 2006 for details)

with margin of confidence of 95%. Contrary to the usual criterion of indicating

significative areas with black dots, it has been here chosen the opposite to en-

hance clarity and a black dot flags a grid-point where the null hypothesis (means

are equal) cannot be rejected, and thus the projected change is not statistically

significative.

Simulations driven by both GCMs show a similar response to GHGs atmo-

spheric concentration and precipitation presents a progressively larger decrease

as the GHGs concentration increases. The ECHAM5-driven simulations yield

−18% for the B1, −20% for the A1B and −27% for the A2 on average over the

IP. Whereas simulations constrained by CCSM indicates that precipitation di-

minishes −23% for B1, −31% for A1B and −42% for A2 on average over the

IP. Therefore, annual mean precipitation decrease is projected to change within

a range of −18% to −42% from the most moderate WEB1 to the most severe

WCA2.

Focusing on the regional scales of the changes, there are noticeable differences
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Figure 7.1: Projected changes for annual mean precipitation over the IP. In rows
are displayed the three different SRES scenarios (B1, A1B and A2). In columns, the
simulations driven by ECHAM5 and CCSM. The changes are expressed in percent-
age: difference between future and present annual mean precipitation with respect to
the present annual mean. Areas with black dots indicate that changes are not signi-
ficative according to a two-sided Student’s t-test with a 95% of confidence. Please note
that, contrary to what is usual, black dots indicate non-significative changes instead of
significative ones.
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within the IP. The most affected regions by a decrease in precipitation are the

mountain areas and more specifically, the Baetic System in the south, where

rainfall decrease is expected to range from about −30% to about −65%. This

region is systematically (all 6 simulations) projected to be the most affected

by climate change in terms of precipitation. For the rest of the mountainous

areas (Cantabrian Range, Central System, Iberian System and Sierra Morena)

precipitation decrease is also noteworthy (over −30% in most of the runs).

On the other hand, minor decreases or even a slight increase is found for the

east coast in all simulations, although the extension of these areas varies from run

to run. It should be also noted that according to the Student’s t-test, most of these

projected changes over the Mediterranean coast are not statistically significative

(black dots). Other areas where changes are not significative are found in the

Northern Central Plateau and at the south of the Central System for ECHAM5-

driven simulations (WEB1 and WEA1B) and regions in the southwest and central

IP for simulations constrained by CCSM (WCB1).

There are also regions where dissimilarities between different scenarios or driv-

ing data are almost negligible, such as the Ebro Valley, the Balearic Islands or the

Atlantic coast. In fact, some projections over these areas are not significative in

many simulations (western Atlantic coast in WEB1 and WEA1B; Ebro Valley in

WCB1 and WCA1B; and the Balearic Islands in all simulations nested in CCSM)

The annual mean projected changes provide an interesting overview of the

future climate, but further detail is desirable. The seasonal changes are analyzed

to examine the behavior of precipitation in different moments of the year. It is

also important to address seasonal changes bearing in mind that the region is

subject to strong variability along the year and precipitation in different seasons

are likely to evolve diversely under climate change conditions.

7.2.2 Changes in seasonal precipitation

Precipitation changes have been calculated individually for all four seasons.

Figures 7.2 and 7.3 illustrate precipitation changes at seasonal timescales. A con-

trasting behavior is manifest among the different seasons for all simulations. In

line with the IPCC projections for the Mediterranean area (Sec. 7.1.1), precip-

itation decreases are generally more pronounced during the summer, whereas in

winter both minor decreases and marked increases exist. In particular, all simu-

lations predict increases during the winter in areas along the east coast that even

exceed 100% (out the scale) in very localized regions: northeast (WCB1) and
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central east coast (WCA1B). ECHAM5-driven simulations also project positive

changes during this season in large areas over the IP, although these increases

exceed 10% only in certain regions. Specifically, in the Mediterranean coast for all

three simulations constrained by ECHAM5 and in the Northern Central Plateau

for WEA1B and WEA2. On the other hand, WRF simulations systematically

project decreases during the winter for the southeastern and northern mountains.

They are particularly prominent in the Cantabrian Range for the simulations

driven by ECHAM5 (up to −30%) and over the Baetic System for those nested

in CCSM (between −40% and −60%).

In Figures 7.2 and 7.3 the statistical significance of the changes is also il-

lustrated. Black dots delimit areas where the changes have been found to be

non-significative by means of a Student’s t-test (95% confidence). The most

striking feature of the test results is that during the winter, very few simulations

yield significative changes over a considerable area. Indeed, a large portion of the

changes projected for the winter by all simulations are not significative, except for

WCA1B and WCA2 that produce significative decreases of winter rainfall over the

southern half of the IP and over the Cantabrian Range. In the case of ECHAM5-

driven simulations changes in winter precipitation are significative only in certain

mountainous areas (Cantabrian Range, confined spots in the Iberian, Central and

Baetic Systems, and also in the Northern Central Plateau for WEA1B).

For the rest of the seasons, decreases in precipitation are generalized over the

entire IP, apart from some slight increases certain regions in the Mediterranean

coast (WEB1, WEA1B, WCB1 and WCA1B) and in the Guadalquivir valley

during the summer (WEA1B).

On average over the IP, precipitation changes during the spring range from

−24% (WEB1) to−58% (WCA2). Downscaled information from ECHAM5 yields

a clear gradient from south to north in the spring rainfall changes, although in the

western Atlantic coast, in the Northern Central Plateau and in the Mediterranean

coast, the changes are not always significative. In the case of CCMS-driven

simulations, major decreases are expected along the east coast, particularly in the

northern half. The t-test applied at seasonal scales suggests that these changes

are partly significative and partly not. In the very northern Mediterranean coast,

the projections are significative, whereas in the central and southern part, the

t-test indicates that they are not. In the remaining areas, spring changes are

mostly significative according t-test for all WRF simulations.

Projected changes in the summer vary from−32% (WEA1B) to−71% (WCA2)

on average. Nonetheless, in the southmost half of the IP, the t-test suggests that
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Figure 7.2: Projected changes for seasonal mean precipitation over the IP for simula-
tions nested in ECHAM5. In rows are displayed the seasons, whereas in columns, the
different scenarios. The changes are expressed in percentage: difference between future
and present seasonal means precipitation with respect to the present seasonal means.
Black dots indicate that changes are not significative according to a Student’s t-test at
95% of confidence.
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Figure 7.3: As Fig. 7.2 but for simulations nested in CCSM.
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many of the changes are not significative, especially in the case of simulations

nested in ECHAM5. In any case, projections over this region are not consistent

among the 6 simulations and both small increases and decreases are projected.

Furthermore, summer precipitation in the south of the IP is often very low and

comes from very short thunderstorms. Small errors o changes in the number

of precipitation events result in large percentage differences for summer rainfall.

Possible changes in short events will be further address in the analysis of daily

precipitation. Diminution in summer precipitation is particularly marked for

CCSM-driven simulations and even under the B1 scenario changes larger than

−60% are projected in certain regions in the south. Over the northern half,

changes are significative and are greater than 30% in most of the cases.

In autumn, spatially averaged changes are between −23% (WEA1B) and

−50% (WCA2). All changes are generally significative under the A2 scenario

(WEA2 and WCA2), except for small regions in the east coast. Under the other

two scenarios, the are large areas with non-significant changes mainly located

along the east coast, in the Ebro valley and over some western mountains. The

ECHAM5-driven runs project larger changes over the mountainous areas (Baetic

System, Central System and Cantabrian Range). In particular, over the southern

mountains, changes range from about −40% for the B1 scenario to more than

−60% for the A2 scenario. The CCSM-driven simulations predict decreases even

larger for the Baetic System, reaching up to −75% in the A2 scenario. Changes

that barely exceed −20% are expected for the rest of the IP according to most of

the WRF simulations (except WCA2).

Although summer decreases are more substantial in percentage terms, changes

in spring and autumn rainfall have a larger impact on the annual mean due to

their contribution to total precipitation. In fact, the spatial pattern of annual

mean changes are very similar to those obtained for spring and autumn. Nonethe-

less, summer changes should not be disregarded because substantial decrease in

summer precipitation might have remarkable impacts on natural environment,

particularly in terms of fire risk and plants hydrological stress, and also on hu-

mans due to urban atmosphere pollution.

7.2.3 Changes in monthly precipitation

In order to ascertain possible changes in the future precipitation annual cy-

cle, rainfall is analyzed on a monthly timescale. Figures 7.4 and 7.5 illustrate

the annual cycle of monthly precipitation changes for the different regions ac-
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cording to WRF future simulations. A Student’s t-test at 95% of confidence has

been adopted to determine if changes are statistically significative. Months when

changes for a particular simulation are significative are flagged with a square in

the plots.

The broad pattern of monthly changes suggest that the annual cycle shape is

not expected to change substantially. If anything, monthly changes will enhance

the contrast in precipitation rates between warm and cold months, increasing

intra-annual variability. However, precipitation is expected to decrease in all

months for most of the regions and most of the simulations.

In accordance with results from the previous section, summer months are ex-

pected to suffer from larger precipitation decreases (in percentage terms) in most

of the regions. More generally, rainfall during the period from April to September

tend to decrease more than for the rest of the months, despite some exceptions.

Indeed, winter precipitation changes are not expected to be significative in most

regions, apart from CA and NC for some ECHAM5-driven simulations, and SI,

CA and NC for some CCSM-driven simulations. Winter changes seldom exceed

30% (with both positive and negative sign), except for the SI and IS regions.

For instance, in the islands, positive changes in January range from 36% to 60%

(non-significative) for the CCSM-driven runs, although it must be noted that

precipitation annual cycle was poorly captured by WRFCCSM in this region. In

fact, WRFCCSM dramatically underestimated precipitation in the islands and

thus CCSM-drive simulation results in this region should be interpreted with

caution.

In general, in the regions where both large and local scale have an important

contribution to total precipitation (NE, SE, EC and IS) the changes are more

variable through the year and indeed, consecutive months might be subject to

completely different behavior of precipitation evolution. On the other hand, in

areas where precipitation mainly comes from the large scale (NW, CA and NC)

monthly variability of the changes is not that prominent, although differences

among months are still noticeable.

A remarkable feature of the annual cycle of precipitation changes is the sys-

tematic drop in precipitation changes from April to May in the CCSM-drive sim-

ulations, and from March to April in the ECHAM5 driven simulations. Bearing

in mind that WRFEH5 showed a tendency to bring the maximum of precipitation

on month forward during the spring (Fig. 6.4), and considering that the spring

maximum is attained in May (April in WRFEH5), this suggest that the spring

maximum is projected to clearly diminish in all WRF simulations. For instance,
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Figure 7.4: Projected changes in the precipitation annual cycle from the ECHAM5-
driven simulations. The changes are expressed as percentage with respect to present
climate simulation WRFEH5 and are referred to Spain02 regions. For the period 2070-
2099 vs. 1970-1999. Squares indicate months when changes are significative according
to a Student’s t-test (95% confidence).
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Figure 7.5: As Fig. 7.4 but for simulations nested in CCSM.
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largest decreases are projected for May (up to −80% under the A2 scenario in

the southern regions) in the runs forced by CCSM. Conversely, this behavior does

not apply for the autumn maximum in October.

Results obtained from the changes in monthly precipitation through the year

emphasize that, despite some isolated increases, precipitation is projected to de-

crease in all the regions and almost for all the months (exceptions found primarily

in December, January and February). The largest decreases are broadly projected

under the A2 scenario, whereas only slight differences can be observed between

B1 and A1B scenarios.

7.2.4 Changes in daily precipitation

Besides the projected changes in precipitation long-term means (annual, sea-

sonal and monthly), the distribution in daily events is also explored. Different

approaches are adopted to characterize daily precipitation. The probability dis-

tribution is assessed using pseudo-PDF plots, the changes in percentiles are exam-

ined through the Q-Q plots and finally a number of extreme indices are calculated

to determine differences between the periods 2070-2099 and 1970-1999.

Frequency of events

Figures 7.6 and 7.7 are the pseudo-PDF plots for future simulations and shows

the total annual precipitation accumulated in events of different intensity for

ECHAM5- and CCSM-driven simulations respectively. The problem of the scale

when representing precipitation PDF is solved with the pseudo-PDF and the

analysis of the complete spectrum of events can be performed at once (see Sec.

6.2.4). The pseudo-PDF makes possible to study which are the events that are

more likely to change in the future and characterize the future daily rainfall.

The pseudo-PDFs calculated for all WRF simulations suggest that most of

the annual decreases are a result of less medium-intensity events. According

to WRF projections, an important decrease in precipitation events from 1 to

30 mm should be expected (up to approximately 50% in SW for WCA2). On

the other hand, the total precipitation that extremes events account for is not

projected to substantially change in absolute terms (mm/year), but due to the

generalized reduction in annual precipitation, their probability is likely to increase

significantly. Namely, the total precipitation is projected to decrease, but the

same number of extreme evens will occur, which results in a displacement of the

probability distribution towards heavier precipitation.
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Figure 7.6: Pseudo-PDF shows the Annual precipitation amounts explained by events
of different intensity displayed by Spain02 regions. Grey histogram express the present
climate simulation (1970-1999) and the circles represent future simulations (2070-
2099).
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Figure 7.7: As Fig. 7.6 but for simulations driven by CCSM
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The rainfall regimes are thus projected to be characterized by less precipi-

tation produced in fewer number of events but with higher probability for the

downpours. This behavior is common to all regions with differences only in the

decrease of occurrence for medium-intensity events.

An interesting feature of changes in the events probability is that despite the

fact that WRFCCSM and WRFEH5 produced different probability distributions,

the projected changes are fairly similar in relative terms (with respect to the cor-

responding present climate simulations). These similarities stress the consistency

in the decrease of certain precipitation events (from 1 to 30 mm) and the ro-

bustness of the displacement of probability distribution towards heavy rainfall

in the future. Nonetheless, CCSM- and ECHAM5-driven simulations differ in

some aspects, such as the changes in the very extreme events. Future projections

forced by ECHAM5 produced an increase in the very extreme events (>80 mm)

over certain regions, whereas those constrained by CCSM systematically show a

decreasing tendency.

The pseudo-PDF plot is useful to examine the distribution of precipitation

in different rainfall events, but changes in the magnitude of the extreme events

cannot be addressed with this approach. To study extreme events, the upper

percentiles must be explored.

Percentiles of precipitation

In addition to the study of extreme precipitation in terms of their contribution

to total annual precipitation, changes in the magnitude of the upper percentiles

must also be analyzed. Different percentiles (5th, 50th,55th, 60th, 65th, 70th, 75th,

80th, 85th, 90th, 95th and 99th) have been calculated for both future and present

simulations. They are compared in a Q-Q plot to determine changes in the future

precipitation percentiles.

The Q-Q plots for precipitation regions are shown in Figures 7.8 and 7.9 for

the simulations forced by the two different GCMs, respectively.

In the model evaluation, it was obtained that the WRFEH5 simulation pro-

duced the best results in terms of precipitation percentiles in all the regions (Fig.

6.7), even better than the simulation driven by ‘perfect boundary conditions’

(WRFERA) in many regions, and thus the results from ECHAM5-driven simu-

lations should be given more consideration.

An increase in the most extreme events of daily precipitation is projected by

simulations nested in ECHAM5 in most regions, except for CA and NC, where
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Figure 7.8: Precipitation percentiles simulated by three ECHAM5-driven WRF future
runs (2070-2099) vs. WRFEH5 (1970-1999) precipitation percentiles. The grey line in-
dicates a perfect skill and delimits over- and underestimation of the different percentiles.
The vertical lines determine the 50th, 75th, 90th and 95th percentiles as reference. The
plot extends to the 99th percentile.
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Figure 7.9: As Fig. 7.8 but for CCSM.
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a slight decreases might be expected. Substantial changes are only projected for

events above the 95th percentile, since below that threshold only minor differences

that barely exceed 5 mm are obtained between future and present simulations.

Heaviest events (up to the 99th percentile) are subject to larger changes but still

within a range of 10 mm with respect to the present simulation. Regarding

the different scenarios, the projections using ECHAM5 as boundary conditions

do not differ considerably and indeed, the largest changes in each region can

be attributed to different scenarios (WEB1 in SE, WEA1B in SW, IN, NW, or

WEA2 in EC).

In the case of the simulations forced by CCSM, differences among scenarios are

larger in some regions (SI, SE and IS), but again they are generally quite similar

and there do not seem to be a clear relation between scenarios and changes in the

percentiles. By contrast with the ECHAM5-driven simulations, these runs project

almost no changes or a slight tendency to lighter heavy events (SI, CA, NC and

IS). In fact, only in certain regions the changes exceed 5 mm in the 95th percentile,

whereas in the rest of the IP, changes are negligible up to the 99th percentile. It

should also be stressed that owing to the severe underestimation of precipitation

percentiles by WRFCSSM along the Mediterranean and the southern regions, the

information downscaled from CCSM in this areas and with regard to precipitation

percentiles should be regarded with caution.

Everything considered, projections of changes in the magnitude of upper per-

centiles of daily precipitation are not overall important and critical changes in

the extremes might be rather related to the intensity of several-day events. Ad-

ditional facets of extreme precipitation that include the duration of dry and wet

periods might be also affected. To address the issue of extreme events from a

different point of view, some extreme indices are calculated for the future and

compared with present simulations.

Changes in precipitation extreme indices

The changes in the extremes of precipitation are studied using a selection of

the ETCCDI extremes indices just like in the model evaluation (sec. 6.2.4). The

excerpt of the ETCCDI extreme indices that was chosen to characterize high-

order statistics of precipitation in the present climate (see Table 6.1) has been

adopted here in an extended version1. Namely, the indices that describe the

1Note that the modified CDD* and CWD* indices are also employed here instead of the
original CDD and CWD.
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precipitation events above 20 mm/day (R20) and the average intensity of events

(SDII) have been added to explore future projections of extreme events (Table

7.2). These indices were calculated for the present climate, but were omitted in

the evaluation of the model because they did not provide additional information.

However, in the case of future climate projections they help to determine the

future regimes of precipitation with respect to present climate and have thus

been included here.

Table 7.2: Selection of ETCCDI extreme precipitation indices for future projections.

ID Description Units
Rx5day Maximum 5-day precipitation amount mm
R10 Number of days when precipitation exceeds 10 mm days
R20 Number of days when precipitation exceeds 20 mm days
SDII Simple daily intensity index. Total precipitation divided

by number of rain events
mm/day

R95T Percentage of total precipitation above the 95th daily
percentile

%

CWD* Annual mean maximum number of consecutive wet days
(>1 mm)

days

CDD* Annual mean maximum number of consecutive dry days
(< 1 mm)

days

The most remarkable feature of changes in the extreme events is related to

their spatial distribution, which tends to be fairly heterogeneous within the IP.

This emphasizes the necessity to study this facet of climate from a region point

of view. Differences between relatively closed areas are substantial and usually

governed by both large scale and topographical features.

The changes in the heaviest events during the period 2070-2099 with respect to

1970-1999 represented by changes in the Rx5day index are shown in Figure 7.101.

The 5-day maximum precipitation is projected to both increase and decrease

depending on the region, the boundary data and to a lesser extent, the emission

scenario. The central part of the Mediterranean coast is expected to be subject to

a significant increase in the maximum precipitation accumulated in 5 consecutive

days. Indeed, all simulations project changes that reach up to 150% near Cabo

de la Nao, except for WCB1 that project smaller changes in this area.

1Note that the scale extends below −100% to preserve its symmetry, even though the
maximum possible decrease is −100%
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Figure 7.10: Changes in the Rx5day index in percentage terms (2070-2099 vs. 1970-
1999). The simulations using different boundary data are placed in rows and the emis-
sion scenarios are placed in columns.

Overall, the ECHAM5-driven simulations project a decrease in the Southern

Central Plateau and areas of the Iberian System. Decreases of the Rx5day index

are also projected in certain areas across the IP (southwest, southeast coast,

and parts of the Iberian System and the Cantabrian Range), but they often

alternate with notable increases. In fact, the spatial distribution changes for

the different scenarios and only broad characteristics are common to all three.

For example, there seem that in areas of the Northern Central Plateau and the

northwest coast, the 5-day maximum precipitation is likely to increase up to 60%,

although the areas change in location and extension among the WEB1, WEA1B

and WEA2 simulations. Largest positive changes are found for the A1B scenario,

whereas under B1 and A2 the projections are generally negative in most of the

IP, except for the aforementioned regions in the Mediterranean coast and the

Northern Central Plateau.

The projections from the simulations forced by CCSM are slightly different,

apart from the tendency in the east coast that still appear in the CCSM-driven
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simulations, particularly for the WCA1B. The spatial patterns of Rx5day pro-

jections are somehow more consistent among these simulations. Indeed, certain

areas are systematically projected to be subject to a decrease in the Rx5day index.

For instance, the very extreme precipitation in the Cantabrian coast, the south

of the IP, the northeast coast and the Balearic Islands are expected to be less

severe than in the present, according to CCSM-downscaled information. Under

the A2 scenario, the lessen of the index is particularly marked in the north and

south extremes of the Mediterranean coast, with reductions that reach −70%. In

addition to the increases in the central east coast, the area limited by the Central

System and Sierra Morena seems to be affected by larger 5-day maximum precip-

itation in the future. This result can also be inferred from the ECHAM5-driven

simulations to a degree.

Regarding the moderate rainfall, all WRF simulations project a diminution in

the number of days with precipitation above 10 mm as deduced from the changes

in the R10 index (Fig. 7.11), although some simulations yield slight increases in

certain regions. In the south, the Galician Massif and the Cantabrian Coast all

runs project decreases that vary in magnitude depending on the boundary condi-

tions and the scenario. For example, all simulations project decreases that exceed

−40% (except WEB1). Over the Baetic System, the Southern Central Plateau

and the northernmost Mediterranean coast changes are particularly remarkable,

since the decreases in the R10 index arrive at −70% for the WCA2 simulation.

The number of days with precipitation over the 10m threshold are likely to de-

crease over the mountainous areas as well. Very few regions are expected to suffer

from increases in R10 and are mainly located in the central Mediterranean coast,

the Northern Central Plateau and the Ebro valley.

By contrast with the changes in R10, projections in the number of day with

precipitation above 20 mm suggest both substantial positive and negative changes

(Fig. 7.12). This results are in line with the analyses of the pseudo-PDF that

indicate displacement towards heavier rainfall in some areas. In particular, a

consistent projection of positive changes in the R20 index is obtained from all

simulations over the Northern Central Plateau (>30%). On the other hand, WRF

outputs systematically point in the direction of decreases over the Cantabrian

Range and the south, particularly in the case of CCSM-driven runs (up to −70%,

WCA2). In fact, most of the mountainous regions are affected by decrease in

the R20 index. ECHAM5-driven simulations also project an increase in heavy

precipitation over the Southern Central Plateau and parts of the Mediterranean

coast, where CCSM-driven project severe increases too. In addition, simulations
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Figure 7.11: As Fig. 7.10 but for R10.

forced by CCSM denote important decreases in the number of days with teeming

rain over the northeast and the islands.

A picture of the displacement towards heavy precipitation is provided by the

magnitude of the R95T. Changes in the total amount of precipitation explained

by events above the 95th percentile manifest the probability rise of extreme events

to occur. Figure 7.13 shows the changes in this index and illustrates the tendency

towards larger amounts of rainfall produced by downpours1.

Most changes fall in the range between 0 and 2 percentage units, but in many

regions the changes are projected to be about 4 percentage units. Bearing in

mind the R95T values obtained for the present (Fig. 6.8), changes projected

by WCA1B and WCA2 in the central Mediterranean coast would lead to R95T

values over the 35%. Other significative changes shared by most simulations are

found in areas of the Baetic System, the northwest and the Northern Central

Plateau, although the spatial distributions within this areas are not common to

all simulations.

1Note that unlike the rest of indices, R95T values are given in percentage and thus changes
are provided as differences instead of relative changes to present climate.
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Figure 7.12: As Fig. 7.10 but for R20.

The ECHAM5-driven simulations project positive changes all over the IP, ex-

cept for some limited regions (Ebro valley and parts of the very southeast). On

the other hand, CCSM-driven simulations project negative changes over large

areas in the south and in the northeast. Some isolated regions in the Mediter-

ranean, such as the north coast and the Balearic islands, are expected to suffer

from decreases that exceed 8 percentage units.

All in all, there are evidences of an overall tendency towards larger percentages

of precipitation accumulated in the furthest part of the distribution function. The

projections of the R95T index are similar among simulations and they are quite

consistent consistent over certain areas (positive in central Mediterranean coast,

northwest quarter of the IP, Baetic System and Pyrenees; and negative in the

south and northeast).

To provide further insight on the rainfall intensity, the changes in the simple

daily intensity index are plotted in Figure 7.14. In accordance with changes

in the previous indices explored, all simulations project positive changes in the

average intensity of rain events over the Northern Central Plateau, the Ebro valley

and below the Central System. Furthermore, most simulations suggest positive
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Figure 7.13: Difference of the percentage of precipitation accumulated in events above
the 95th percentile (R95T) between future and present simulations. Changes express
increments or decreases in these percentages and not relative changes to present climate.

changes in the central Mediterranean coast and the Balearic Islands. In addition,

ECHAM5-driven simulations also project positive changes in the southwest. The

magnitude of these changes varies from run to run, but most of them exceed

the 10% threshold. In the case of the Mediterranean coast, the increases often

arrive at 30%. In general, the ECHAM5-driven simulations show higher spatial

coherence, whereas those constrained buy

On the other hand, negative changes are very likely to occur in the Cantabrian

coast. Decreases in the SDII over this region seem to be rather consistent since

all simulations agree with projections between −20% and −10%. Simulations

nested in CCSM also project decreases in the south of the IP and in the northern

Mediterranean coast, and are of the same magnitude as those projected in the

north. In general, the ECHAM5-driven simulations show higher spatial coherence

than CCSM-driven ones.

Besides the intensity of precipitation events, it is interesting to address the

persistence of dry and wet periods. In areas where precipitation is not very fre-
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Figure 7.14: Changes in the average rainfall intensity (SDII) in percentage terms
(2070-2099 vs. 1970-1999). Simulations with different boundary data conditions are
arranged in rows and the emissions scenarios are placed in columns.

quent, the duration of dry spells might be of paramount importance. Two indices

describe the persistence of dry and wet conditions, the annual mean maximum

length of dry spell (CDD*) and the annual mean maximum length of wet spell

(CWD*).

Figure 7.15 illustrates the changes projected for the annual mean maximum

number of consecutive dry days. The spatial pattern of the changes from the

different simulations are rather consistent and all project a general increase in

the CDD* index.

Only very isolated areas are likely to have shorter dry spells, of which the

most noticeable is the area located near the French border in the northern coast.

Even under the A2 scenario that lead to most severe increases in CDD*, very

few places might also be expected to experience slight increases (WEA2, very

confined in the northwest). In the WCA2, values are positive but there is a clear

distinction between the Cantabrian coast and the rest of the northern IP. Largest

increases are projected in the surroundings of the Galician Massif, to the south
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Figure 7.15: As Fig. 7.14 but for CDD*.

of the Cantabrian Range and in the Pyrenees. In the WCB1 simulation, which

projects the more moderate changes, the CDD* might increase by up to a 60%,

whereas the rest of the IP changes remain in about a 20%. As the emission

scenario changes from B1 to A2, the changes are more acute. Actually, both

WEA2 and WCA2 projects changes that reach the 80% in a large portion of the

IP, being the north half part the most affected. Other areas that are likely to

suffer from important changes is the west (WEA1B and WEA2) and the Baetic

System (WCA2). On the other hand, there are regions that do not seem to be as

affected as the other by changes in the scenario, and the projections are similar

for all of them, such as the south (∼ 20-40%) .

The change in the annual mean maximum number of consecutive wet days

is shown in Figure 7.16. The spatial distribution of the changes is again fairly

similar among simulations. Despite the differences in the scale with respect to

the previous index, there seem to be more variability within the IP for the CWD*

since areas with considerable positive and negative values coexist.

By contrast with the CDD* index, the Cantabrian coast is one of the regions

that is likely to experience largest changes in the CWD*, reaching−50% in certain
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Figure 7.16: As Fig. 7.14 but for CWD*.

locations. In addition, the Baetic System and Sierra Morena, in the south, are

also projected to undergo important changes by all simulations (except WCB1),

particularly in the case of WCA1B and WCA2. Some areas in the Iberian System

and Central System might also be affected by changes that exceed −30%.

On the opposite side, the duration of the wet spells is projected to be larger

in areas of the Mediterranean coast (that vary depending on the simulation) and

to a lesser extent in the Ebro valley. The CWD* might also be expected to be

slightly higher in some areas in the interior and the northwest, but only accord-

ing to certain simulations. Changes in the Mediterranean coast are particularly

significant, and the increasing might reach values over 20% over specific locations

(WEB1 and WCB1). Nonetheless, as the projection in the GHG emissions in-

creases, these areas might reduced and the magnitude of the changes might be

more limited.

On average, the WRF simulations project larger dry spells and shorter wet

periods nearly almost the entire IP, with very few regions that are likely to behave

the contrary.
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7.3 Temperature changes

Changes in temperature is the most direct effect of the radiative forcing due

to the GHGs atmospheric concentration increase. Nonetheless, the magnitude of

the changes is likely to vary from region to region depending, for example, on the

distance to the sea. Moreover, not only a displacement of the temperature means

might be expected, but also changes in the distribution tails. Therefore, the

changes in both maximum and minimum temperatures are here address studying

both long-term means and high-order statistics. In fact, changes in the extremes

might have greater impact on human activities and natural environment than

mean climatic changes (Kunkel et al., 1999), leading to pollution episodes, altering

the biological cycle of plants, causing health problems or giving rise to high energy

demands.

7.3.1 Changes in annual mean temperature

According to all WRF simulations, the entire IP is likely to suffer from in-

creases in both Tmax and Tmin (Figs. 7.17 and 7.18) by the end of this century

(2070-2099) with respect to the period 1970-1999. Changes near the coast are

projected to be more moderate than in the interior of the IP due to the sea

thermal inertia. In the mountains temperature changes are projected to be par-

ticularly severe. Regarding differences between the two temperature extremes,

Tmax is likely to increase more than Tmin in all cases. The significance of the

changes obtained from a Student’s t-test at 95% of confidence is also illustrated

in Figures 7.17 and 7.18. To be specific, the locations where the changes are

non-significative are flagged with black dot. Nevertheless, the changes are signi-

ficative practically over the entire IP and thus the very few black dots are hardly

noticed. It must be stressed that the traditional criterion is to flag significative

changes, but the contrary is chosen here to enhance readability.

Changes in maximum temperature range on average over the IP from 2.0◦C

(WCB1) to 4.6◦C (WCA2). The WCA1B projects an average increase of 3.3◦C.

With respect to the ECHAM5-driven simulations, they yield increases of 2.9◦C

(WEB1), 4.2◦C (WEA1B) and 4.3◦C (WEA2).

Except for the WCB1 simulation that projects an homogeneous change be-

tween 1.0◦C to 2.0◦C in most of the IP, the rest of simulations suggest changes

that exceed 3.0◦C in large areas of the Peninsula. The largest changes are found

in the mountains, particularly in the Pyrenees and in Sierra Nevada (Baetic Sys-

tem), where Tmax might raise up to 6.1◦C (WEA2). According to most of the
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Figure 7.17: Projected changes for annual mean Tmax over the IP. The difference
between the annual mean for the period 2070-2099 and 1970-1999 are expressed in
degrees Celsius. The simulations using different boundary conditions are arranged in
columns, whereas the different scenarios are placed in rows. Black dots indicate points
where changes are not significitave acceding to a two-sided Student’s t-test with a 95%
of confidence. Please note that, contrary to what is usual, black dotes indicate non-
significative changes instead of significative ones.
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simulations (apart from WCB1), the mountainous areas are likely to be exposed

to Tmax increases larger than 3.5◦C. More generally, the interior of the IP might

be subject to the largest increases in temperature, whereas in the coasts and the

Ebro valley the changes are projected to be more moderate, but still significant

(up to 2.5◦C in WEA2 and 3.0◦C in WCA2).

Concerning the minimum temperature, the increases are not as large as for for

Tmax, and indeed the largest projected changes barely exceed 4.0◦C. On average,

the changes range from 1.4◦C (WCB1) to 3.4 ◦(WEA1B)1. The rest of simulations

project 2.2◦C (WEB1), 3.2◦C (WEA2), 2.4◦C (WCA1B) and 3.2◦C (WCA2).

In accordance with results for Tmax, the most affected regions are the moun-

tains, where all simulation project the greatest changes. In particular, the Pyre-

nees, the Baetic System, the Central System, the Iberian System and the north-

west mountains comprise the areas with the most significant increases. Both

WEA1B and WEA2 reveal increments that might exceed 4.0◦C, whereas only

the WCA2 project changes of such magnitude. Nevertheless, the area covered by

these changes is certainly limited to few locations. Changes over 3.0◦C are much

wider and cover a large portion of the IP for the simulations WEA1B, WEA2

and WCA2.

Conversely, the areas where changes are not as pronounced are the Northern

Central Plateau and the northern Atlantic coast. Indeed, the two simulations un-

der the B1 scenario and the WCA1B project changes below 2.0◦C in these regions.

Actually, according to WCB1 run most of the IP might be subject to changes

that hardly exceed 1.5◦C. Unlike what was found for Tmax, the Tmin changes

in the Mediterranean coast might be expected to be of the same magnitude as in

the interior.

1The fact that the largest change is found under the A1B scenario for the ECHAM5-driven
simulations might seem contradictory when considering the global projections of surface mean
temperature shown in Figure 4.9b. However, the mean surface global temperature directly
retrieved from ECHAM5 actually attains higher values in the period 2070-2099 for A1B than
for A2. This behavior might be explained by a largest inertia in the ECHAM5 model than in
the rest of GCMs, since the radiative forcing for the A1B scenario is larger than for the A2
until approximately 2065 (Fig. 4.9a). In fact, for the period 2070-2079, the ECHAM5 model
projects an increase in the global surface mean temperature of 3.3◦C under the A1B scenario
and 3.2◦C under the A2, whereas for the period 2090-2099 the changes are 4.0◦C under the
A1B and 4.5◦C under the A2.
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Figure 7.18: As Fig. 7.17 but for Tmin.
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7.3.2 Changes in seasonal temperature

The analysis of the Tmax projected changes at seasonal scales (Figs. 7.19

and 7.20) reveals that largest increases might be expected in the summer, except

for the WCB1, where differences with autumn and spring changes are negligible.

During the summer, the increase exceed 4.0◦C over large areas in the interior of

the IP and under the A2 scenario changes above 5◦C are projected over nearly

the entire IP. Similar changes are also projected by WEA1B for this season.

In the winter, the Tmax might experience changes considerably smaller than

for the rest of the seasons. In fact, according to WCB1, winter Tmax changes

are improbable to exceed the 1.5◦C threshold. In the east coast, WCB1 actu-

ally project changes below 1.0◦C that in some cases are even non-significative.

The WEB1 also project more moderate changes, within the range 1.5-2.0◦C that

slightly rises to 2.0-2.5◦C in the elevated regions. Indeed, the mountainous areas

are the most likely to be exposed to the largest changes that might reach up to

4.5◦C (WEA1B, WEA2 and WCA2) during the cold season.

Most substantial changes in Tmax during the spring might be found in the

half south of the peninsula. The information obtained from all simulations clearly

distinguish the south form the remaining IP. For example, the projections under

the A1B and A2 scenarios suggest changes above the 4.0◦C threshold in most

of the southwest quarter of the IP and over 4.5◦C in the Baetic System and

Sierra Morena. The Pyrenees and the northwestern mountains are also likely to

experience large changes in spring Tmax. On the other hand, the north Atlantic

and the Mediterranean coasts, the North Central Plateau and the Ebro valley

might be exposed to less severe changes. In particular, the coast changes are likely

to remain below 3.0◦C, whereas for the rest of the regions they might be slightly

higher. The projected changes from the WCA2 are somehow more pronounced,

and the Ebro valley and the Northern Central Plateau might undergo changes

above 4.0◦C.

During the autumn, most of the simulations project changes that are more

moderate than for the summer, especially in the CCSM-driven simulations. In the

WCB1, projected changes are in line with the rest of seasons and barely exceed

2.5◦C. However, for the rest of the runs, large areas are covered by projections

of increases above 3.5◦C, even exceeding 4.5◦C in WCA2, WEA1B and WEA2.

In the latter, a significant portion of the IP might be expected to suffer from

autumn Tmax increases over 5.0◦C.

The magnitude of Tmin changes at seasonal scales is significantly smaller than
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Figure 7.19: Projected changes for seasonal mean Tmax over the IP for simulations
nested in ECHAM5. In rows are displayed the seasons, whereas in columns, the different
scenarios. Differences between 2070-2099 and 1970-1999 seasonal means. Black dots
indicate non-significative changes at 95% of confidence (t-test).
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Figure 7.20: As Fig. 7.19 but for CCSM
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those projected for the Tmax in all WRF simulations (Figs 7.21 and 7.22). All

changes are significative except at some locations in the WCB1 for the winter.

Similarly to Tmax, largest changes are again projected for the summer and over

the mountainous areas.

Winter Tmin changes are projected to range from the most moderate in-

creases in the WCB1 simulation (0.5-1.5◦C) to the largest simulated changes in

the WEA1B (over 2.5◦C in the entire IP). Differences among regions are still as-

sociated to elevation, but distance to the sea does not seem to be as determinant

as for Tmax. Apart from the Pyrenees and some isolated locations in the moun-

tains, where Tmin increases might be expected to be larger than 4.0◦C (WEA1B,

WEA2 and WCA2), the changes are quite homogeneous in the peninsula. The

northwest, the Northern Central Plateau and the western river basins are subject

the smallest changes (<2.0◦C in the CCSM-driven simulations and < 3.0◦C in

the ECHAM5-driven runs).

The Tmin changes during the spring are fairly similar to winter ones in the

simulations forced by ECHAM5 and slightly larger in the CCSM-driven runs.

Indeed, in the WCA1B, increases between 1.5-2.5◦C are projected, and in the

WCA2, the range raises up to 2.5-3.5◦C. Overall, the southeastern area is likely

to suffer from large rises in temperature (>3.5◦C in WEA1B, WEA2 and WCA2).

Once more, the most severe changes are projected in the Pyrenees, the Central

System and the Baetic System.

Concerning the summer Tmin, the interior of the IP is likely to experience

changes in temperature over 4.0◦C in both simulations under the A2 scenario,

and changes over 4.5◦C might be expected over considerable extensive areas ac-

cording to the WEA1B simulation. On the opposite side, WCB1 project changes

between 1.5◦C and 2.0◦C over nearly the entire IP. The other two runs (WEB1

and WCA1B) indicate slightly larger increases for summer Tmin (2.5-3.5◦C in

most of the regions). The areas with most significant changes are limited to the

north by the Central System and the Iberian System, and extend down to the

Mediterranean coast, especially towards the east. The Galician Massif and the

Pyrenees are also among most affected regions. On the other hand, the northern

coast, the Northern Central Plateau and the main river basins are subject to

smaller increases.

Autumn Tmin changes are spatially very homogeneous for both WCB1 (1.5-

2.0◦C), WCA1B (∼2.5◦C in most cases) and WEB1 (∼2.5◦C). The rest of simu-

lations project larger changes in the Central System, the Pyrenees and the Baetic

System, except for WEA1B that extends these changes to the southern half of
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Figure 7.21: Projected changes for seasonal mean Tmin over the IP for simulations
nested in ECHAM5. In rows are displayed the seasons, whereas in columns, the different
scenarios. Differences between 2070-2099 and 1970-1999 seasonal means. Black dots
indicate non-significative changes at 95% of confidence (t-test).
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Figure 7.22: As Fig. 7.21 but for CCSM



7.3 Temperature changes 195

the IP. Most of the increases for these simulations are within the range 3.5-4.0◦C,

with areas that might raise up to 4.0-4.5◦C. The Baetic System is systematically

projected to suffer from severe changes in all simulations, although the magnitude

varies among scenarios.

In general, the behavior of seasonal Tmax and Tmin is similar to annual mean

changes in terms of the spatial distribution, although there might be expected

a disparity between different seasons. Winter is season when changes might be

more moderate, whereas during the summer the Tmax and Tmin changes attain

their maximum. The river basins, the Northern Central Plateau and the coasts

for Tmax, are the regions where temperature changes might be milder, whereas

the mountainous and internal areas are overall those most exposed to substan-

tial temperature changes. Nevertheless, it should be kept in mind that it was

precisely over high-elevated regions where the largest errors were found in the

model evaluation, and thus the projections over these areas should be taken with

caution.

7.3.3 Changes in monthly temperature

The changes in temperature might be different at different moments of the

year. To explore how these changes might vary through the year, the changes in

monthly mean Tmax and Tmin are calculated. Figures 7.23 and 7.24 illustrate

the changes of monthly Tmax for the period 2070-2099 with respect to 1970-1999

over the eight temperature regions according to ECHAM5- and CCSM-driven

simulations, respectively.

In accordance with previous results, Tmax changes are projected to be espe-

cially large during the central months of the year (May-October), although in the

simulations constrained by CCSM the changes are more pronounced in May and

September. In fact, the most prominent feature of Tmax changes in the annual

cycle is the generalized increase in May. In all the regions and under all the

scenarios, a peak in the Tmax monthly changes is observed during this month.

There are regions where this feature is particularly marked (GU, SW, PL, EI

and HI) and might be associated with earlier summer conditions. Less cloudiness

might be at the origin of this Tmax increases, which is supported by a negative

peak in monthly precipitation changes (Fig. 7.5).

On the other side, the most remarkable characteristic of the changes in the

Tmax annual cycle from the ECHAM5-driven simulations is the almost undistin-

guishable projections obtained for the A1B and A2 scenarios. This is in agreement
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with the discussion presented before about the evolution of radiative forcing for

different scenarios and the GCM inertia (Sec. 7.3.1). For these two scenarios,

the increases in temperature during the warmest months (July-September) often

exceed 5.0◦C. Under the B1 scenario, the changes exceed 3.0◦C in most of the

regions, except for the coastal AT. Smallest changes are systematically observed

in February-March, even though they still exceed 1.0◦C in all regions under the

B1 scenario. In the other two scenarios, changes during these months are slightly

below the 3.0◦C threshold.

As for the largest changes in the CCSM-driven runs, May Tmax changes reach

up to 7◦C in many regions under the most severe conditions of A2 scenario. Dif-

ferences between A2 and A1B scenarios are more marked in these runs and in fact,

under the A1B scenario, the projected increases are more moderate. Nonethe-

less, the changes still go beyond the 4.0◦C during the warmest months. Smallest

changes are projected in December-February, where monthly mean Tmax might

be expected to increase between 1.0◦C and 2.0◦C (except for ME region).

The annual cycle of monthly Tmin changes are also calculated. Figures 7.25

and 7.26 show the evolution of monthly Tmin changes through the year for sim-

ulations driven by ECHAM5 and CCSM, respectively.

The shape of the annual cycle for Tmin changes is quite similar to that

obtained for Tmax, although the projected changes for Tmin are considerably

smaller (note that the scale in the plots is different: 0-8◦C for Tmax and 0-5◦C

for Tmin). The maximum values are attained during the central months (May-

October) whereas the minimum are obtained for the coldest ones (December-

April).

Under the B1 scenario, the ECHAM5-driven simulation projects changes that

remain below 3.0◦C for monthly Tmin, except in the high-elevation areas. How-

ever, it should be mentioned once again that the errors were particularly large for

this region in the model evaluation and thus the projections should be regarded

with caution. Under the other two scenario, projected changes are vey similar,

as occurred for Tmax and range from about 2.0◦C in February to almost 5.0◦C

in August over certain regions (SW, PL, EI, and HI).

Regarding the information downscaled from CCSM, the changes are signif-

icantly smaller for the B1 scenario (between 1.0◦C and 2.0◦C in most of the

situations) and the A1B scenario (between 1.5◦C and 3.5◦C), whereas under the

A2 scenario, the projected changes are similar in magnitude to those yield by the

ECHAM5-driven simulation. Just like for Tmax, the most remarkable feature

in the annual cycle of Tmin changes is the maximum attained in May, which is
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Figure 7.23: Projected changes in the monthly mean Tmax annual cycle from the
ECHAM5-driven simulations. The changes are the differences between monthly cli-
matologies for the periods 2070-2099 and 1970-1999, and over the eight temperatures
Spain02 regions. All changes are significative (Student’s t-test, 95% confidence).
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Figure 7.24: As Fig. 7.23 but for CCSM.
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Figure 7.25: Projected changes in the monthly mean Tmin annual cycle from the
ECHAM5-driven simulations. The changes are the differences between monthly cli-
matologies for the periods 2070-2099 and 1970-1999, and over the eight temperatures
Spain02 regions. All changes are significative (Student’s t-test, 95% confidence).
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Figure 7.26: As Fig. 7.25 but for CCSM.
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clearly differentiated from the rest of the months in most of the regions.

The analysis of the projected changes for both Tmax and Tmin along the

year emphasizes the results obtained for seasonal changes and provide further

detail in the timescale. The warmest months are likely to be affected by largest

changes. Besides differences in radiation through the year, other aspects might be

at the source of these results. For example, an important decrease in precipitation

during spring and early summer might cause depletion of soil water during the

summer, changes of the surface heat flux partition and thus an enhanced increase

in temperature during these months.

In addition, the distance to the sea also plays an important role. In particular,

the distance to the Atlantic Ocean, which is expected to warm less than the

Mediterranean Sea due to thermal inertia. The effect of the Atlantic Ocean is

observed in the AT, where changes tend to be milder than for the rest of the IP.

7.3.4 Changes in daily temperature

The long-term means projected changes for both Tmax and Tmin have been

addressed so far. The picture of future changes is here completed through the

analysis and discussion of projected changes in daily temperature. The examina-

tion of future temperature PDFs, the study of percentiles using Q-Q plots and

the assessment of changes in extreme events will help to provide information to

describe future climate in terms of temperature.

Tmax and Tmin PDFs

The analysis of the temperature PDFs makes possible to project future changes

beyond the simple study of the means. The daily Tmax and Tmin PDFs are here

calculated for both present and future in order to to explore changes in the full

spectrum of events. Figures 7.27 and 7.28 illustrate the PDFs for Tmax calcu-

lated over the periods 1970-1999 and 2070-2099 to ascertain displacements of the

distribution or changes in their shape.

It should be stressed that these figures show absolute values of temperature

instead of changes with respect to present conditions. However, the deviations

between WRF estimates and observations described in Chapter 6 prevent from

drawing any conclusion about the probability of a particular event to occur.

In fact, the aim of these plots is not to determine the distribution of future

temperature, but compare between present and future distributions.
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Figure 7.27: Present (1970-1999) and future (2070-2099) daily Tmax PDFs from
ECHAM5-driven simulations over the eight temperature regions. The X-axis values are
only shown for guidance and the probability of particular events cannot be addressed
with this plot. The relative position and shape between present and future distribution
should be regarded instead.
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Figure 7.28: As Fig. 7.27 but for CCSM.
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At first sight, the most noteworthy differences between present and future

distributions for daily Tmax are the shift towards higher values and the largest

Tmax variability embodied in the flattening of the curves. All values of the

distribution are not equally shifted and highest values tend to be subject to largest

increases. Namely, not only the means are displaced, but also the distribution

expands towards higher temperatures. This behavior is observed for all WRF

simulations and over the entire IP.

The bimodal shape that characterizes temperature in certain regions of the

IP (Ch. 6) is likely to be enhanced in the future in some regions (GU, SW, PL

and EI), which reveals that transitions between warm and cold seasons might be

faster in the future.

This two features (the largest variability and the enhanced bimodality) seems

to be more intense as we move from the B1 to the A2 scenario in the CCSM-

driven simulations. Indeed, the differences between the scenarios for the lower

tails of the distribution are smaller than for the upper percentiles. And also the

two differentiated modes are more evident in the A2 scenario than in the B1.

In the case of ECHAM5-driven simulations, differences among scenarios are not

as significant, particularly between A1B and A2, for which the differences are

almost negligible.

The projected changes of the daily Tmin PDFs are characterized by the same

features that affect Tmax PDFs. Figure 7.29 and 7.30 show the present and

future Tmin PDFs obtained from the different WRF simulations (ECHAM5- and

CCSM-driven, respectively) over the eight temperature regions.

The main features that define the projected changes for Tmin PDFs are the

displacement of the entire distribution towards higher temperatures and the in-

crease of daily Tmin variability. The latter is evidenced in the flattening of the

curve, that results in a wider distribution and hence in a higher standard devia-

tion. This is particularly true for the upper tail of the distribution, which means

that higher values of Tmin might be subject to larger changes in the future. In-

deed, the lower values are projected to change significantly less than the higher

values in all regions and for all simulations.

Another feature observed for Tmax that is also observed in the Tmin PDF

projected changes is the enhancement of the bimodality, although it was more

noticeable in Tmax distributions. Nevertheless, for the CCSM-driven simulations,

the two modes are clearly identifiable over certain regions, particularly in the

south and east of the IP (ME, GU, SW and EI).

It is interesting to note that differences between A1B and A2 scenarios in the
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Figure 7.29: Present (1970-1999) and future (2070-2099) daily Tmin PDFs from
ECHAM5-driven simulations over the eight temperature regions. The X-axis values are
only shown for guidance and the probability of particular events cannot be addressed
with this plot. The relative position and shape between present and future distribution
should be regarded instead.
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Figure 7.30: As Fig. 7.29 but for CCSM.
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runs forced by ECHAM5 are nearly negligible in all regions. Conversely, the Tmin

distributions obtained from CCSM-downscaled information are dissimilar under

the different scenarios, and the two main features mentioned above (displacement

and increased variability) are more intense as we move from the B1 to the A2

scenarios. However, even under the B1, all simulations point to a clear increase

in the high Tmax and Tmin values.

Temperature percentiles

The previous section analyzes the changes in the distribution through the

PDF. Here a different approach is proposed and the percentiles of both Tmax

and Tmin are examined. To be specific a number of percentiles (0.1th, 1st, 5th,

10th, 25th, 50th, 75th, 90th, 95th, 99th and 99.9th) have been calculated and the

projected changes are depicted using a Q-Q plot that compares the future and

present percentiles.

Figures 7.31 and 7.32 illustrate the Tmax percentiles for future simulations un-

der the three different scenarios versus the percentiles obtained from the present

simulations for ECHAM5- and CCSM-driven simulations, respectively. The dis-

placement towards higher temperatures observed in the PDF analysis is here

confirmed since all the curves remain above the grey line that indicates no pro-

jected changes. The increased variability is also noticeable in these plots and in

most of the cases the lowest and highest percentiles are further from the grey

line than the central percentiles, which indicates that the distribution tails are

subject to more significant changes, especially the upper ones.

Indeed, the most extreme Tmax events (99.9th percentile) are likely to increase

in up to 7.0◦C under the A2 scenario for both ECHAM5- and CCSM- driven WRF

simulations under certain regions (PL, HI, NI and AT). Under the B1 scenario the

changes for the uppermost percentile are projected to be more moderate, although

they still reach about 5.0◦C in HI and 4.9◦C in NI, according to ECHAM5-driven

simulation and about 3.0◦C in the WRF simulations nested in CCSM over all

regions except GU and SW, where changes are projected to be about 2.0◦C.

The upper percentiles (90th, 95th and 99th) changes might be expected to be

of approximately the same magnitude as the uppermost one. At some locations

(GU, SW and PL) the WRF simulations constrained by CCSM project the largest

changes for the 75th. In general, the changes for the different percentiles in the

ECHAM5-driven simulations have the following pattern: moderate changes for

the lowest percentiles (0.1st and 1st percentiles), then they reach a minimum for
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Figure 7.31: Tmax percentiles from ECHAM5-driven future (2070-2099) simulations
versus WRFEH5 present (1970-1999) WRFEH5 percentiles. The grey line indicates no
projected changes and delimits increase and decrease in the projected percentiles. The
vertical lines determine the 1st, 5st, 50th, 95th and 99th percentiles as reference. The
plot extends from the 0.1st to the 99.9th percentile.
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Figure 7.32: As Fig. 7.31 but for CCSM.
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the next percentiles (5th, 10th and 25th) and start rising up to the maximum

attained in the 99th percentile (Fig. 7.33a). On the other hand, the percentile

projected changes for the CCSM-driven simulations are slightly different: a mod-

erate change in the lowest percentiles that again reach a minimum in the middle

ones (5th, 10th and 25th), but they increase up to the 75th percentile and then

stabilize. In fact, in some regions (GU, SW and PL) the maximum changes

are reached in this percentile and slightly smaller changes are projected for the

highest percentiles (Fig. 7.33b).
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Figure 7.33: Typical changes projected for
different Tmax percentiles as simulated by
ECHAM5-driven simulations over ME re-
gion (a) and by CCSM-driven simulations
over PL region (b).

According to WRF constrained by

ECHAM5 and with regard to Tmin

percentiles, the changes in the lowest

percentiles, which are actually the ex-

treme minimum temperatures, are pro-

jected to be as large as the higher per-

centiles or even larger in all regions,

except the ME, GU and SW, where

the upper percentiles are likely to suf-

fer from more significant changes (Fig.

7.34). All the Tmin percentiles are

projected to be higher in the future

(2070-2099).

The overall shape of the Q-Q plot

indicates that the lowest Tmin values

(0.1st percentile) might increase con-

siderably, then the smallest changes

might occur in the 5th and then they

remain quite constant until the 25th

percentile, to finally continue growing

until the 99.9th percentile. Exceptions are found for the HI region, where the

changes are very pronounced until the 25th percentile or the GU and ME regions,

where the changes continuously increase from the 0.1st to the 99.9th percentile.

The lowest extremes of temperature (0.1st percentile) might be expected to

rise up in even 6.5◦C under the A1B scenario in the NI region. Indeed, the largest

changes are systematically projected under this scenario, being the projections for

the A2 scenario more modest, although very similar. For the rest of the regions,

the largest changes in the lowest Tmin percentile are projected occur in the PL

(5.9◦C, A1B) and in the EI (4.7◦C, A1B). The southern regions (ME, GU and
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Figure 7.34: Tmin percentiles from ECHAM5-driven future (2070-2099) simulations
versus WRFEH5 present (1970-1999) WRFEH5 percentiles. The grey line indicates no
projected changes and delimits increase and decrease in the projected percentiles. The
vertical lines determine the 1st, 5st, 50th, 95th and 99th percentiles as reference. The
plot extends from the 0.1st to the 99.9th percentile.
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SW) might be subject to less substantial changes, ranging from 2.4◦C in the GU

to 3.1◦in the ME, both for the A1B. On the other hand, the projected changes

under the B1 scenario are much less severe for the lowest temperatures and are

between 1.0◦C for the GU region to 3.6◦C in the PL.

The warmest values of Tmin (99.9th) are also projected to vary considerably

in the future. In fact, the changes are within the range 4.9-5.6◦under the A2

scenario and 3.4-3.9◦C under the B1 scenario, in all regions except AT, where

changes are slightly smaller. Changes under the A1B scenario are very similar to

those obtained for the A2. For the rest of the upper percentiles (75th, 90th, 95th

and 99th), the changes progressively decrease but a very slow rate and actually

remain very similar to the changes of the uppermost percentile.

Regarding the CCSM-driven simulations, the projected changes for Tmin per-

centiles (Fig. 7.35) follow a similar pattern to that obtained for the ECHAM5-

driven simulations with some differences. The lowest Tmin values (0.1st per-

centile) are expected to be warmer in the future in up to 5.9◦C over the most

elevated areas (HI region) and about 1.9◦C in the GU region, both under the

A2 scenario. Conversely, under the B1 scenario, changes are expected to be less

important: from 1.2◦C in the GU and SW regions to 2.4◦C in the EI, with the

outlier regions of PL (3.3◦C) and HI (4.2◦C).

Most of the regions show minor changes for the next percentiles (1st, 5th, 10th

and 25th) and large changes in the upper percentiles of Tmin. Indeed, the changes

in the 1st percentile, which represent remarkably cold temperatures, remain below

2.5◦C in all regions except in HI (5.5◦C) and in ME (2.6◦C). Under the B1 scenario

none of the regions are expected to be subject to changes in the 1st percentile

that are larger than 1.5◦, excluding once again two regions: the HI (2.6◦C) and

NI (1.7◦C). For the warmest Tmin values, the changes exceed 4.0◦C under the

A2 scenario in all regions and reach up to 5.8◦C in the HI region. Under the B1

scenario the changes are projected to be from 1.3◦C (GU) to 2.6◦C (HI).

It must be stressed that although the mountains are expected to suffer from

changes in temperature that might be above the average (Christensen et al.,

2007a), the results obtained here for the HI region might be hampered by the

substantial errors found in the model validation for this region, and thus they

must be regarded with caution.
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Figure 7.35: As Fig. 7.34 but for CCSM.
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Changes in temperature extreme indices

To provide a further insight into the issue of future temperature extreme

events, changes in a number of extreme indices are analyzed. A selection of the

ETCCDI indices has been adopted as done in the model evaluation (Ch. 6). To

be specific the FD, ID, SU, TR, WSDI and CSDI are here examined. In addition,

the Diurnal Temperature Range (DTR) is calculated and its changes are shown

too. The DTR is the mean difference between the daily Tmax and Tmin. Finally,

the specifically defined HD index is also employed to characterize very hot days

(see Table 6.2 for further details).

Since some of the indices are defined as the number of days that exceed a

certain value, and thus employ directly the values of temperature, they must

be bias-corrected as done in Sec. 6.3.4. Bearing in mind that the biases are

calculated using the Spain02 dataset, the WRF outputs must be degraded to the

Spain02 grid using a bilinear interpolation and then bias-corrected. Therefore the

maps created to show changes in the extreme indices have a 0.2◦ spatial resolution

instead of the 10 km original one1. In addition, the nature of such indices makes

difficult to interpret maps that directly show changes (either in terms of days/year

or in percentage). For example, over large areas of the IP, the number of icing

days (ID) might not change in the future, however, Tmax always remains above

the freezing point in these areas even in the present climate (Fig. 6.20) and thus

the difference between future and present ID is zero. Hence it has been decided

to plot the absolute values of the indices calculated from the bias-corrected WRF

outputs and infer the changes from them.

As a consequence of the generalized increases in temperature, the aforemen-

tioned indices show a systematic tendency towards warmer extreme conditions.

For instance the number of days with Tmin below 0◦C is projected to decrease

over the entire IP (Fig. 7.36).

Areas with a significant number of frost days in the present will be likely

to suffer from severe reduction in this index, such as the northern mountains

(Pyrenees, Galician Massif, Cantabrian Range, and Iberian and Central Systems).

Indeed, the regions where FD exceeds 100 days/year are remarkably reduced

under the B1 scenario (WEB1 and WCB1) and they completely disappear under

the A1B and A2 scenarios (except for two tiny areas in the Iberian System and in

the Pyrenees under the A1B). Actually, under the most severe projected changes,

1Although not all indices are threshold-based, they are all represented over the Spain02 grid
for the sake of homogeneity.
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the mountain regions where the frozen days might be expected to come more than

40 days/year are considerably reduced. Furthermore, even under the B1 scenario,

the areas where Tmin drops down to 0◦C less than 10 days/year are projected to

widen markedly and cover most of the IP.

Figure 7.36: Number of days with Tmin<0◦C (FD). FD for present climate simula-
tions (1970-1999) are displayed in the first column (WRFEH5 and WRFCCSM) and
FD for future climate simulations (2070-2099) are arranged in the next three columns.

Regarding the number of days when temperature remains below the freez-

ing point (ID, Tmax<0◦C), nearly no region might be expected to exceed 0.2

days/year, no matter which scenario or simulation is considered (see Fig. 7.37).

The exception are the Pyrenees, where even under the warmest conditions there

are projected to be a number of days with Tmax<0◦C, although the ID index

is clearly reduced with respect to the present (note that the scale is not linear).

Areas located at high altitudes such as the Central System, the Iberian System

and the Cantabrian Range are projected to experience important decreases in the

ID index even under the B1 scenario. To be specific, locations where ID range

between 1.8 and 5 days/year in the present, the number of icing days might barely

reach 0.6 days/year in the future.

As for the indices that characterize the warm extremes, the SU index sig-

nificantly increases all over the IP (Fig. 7.38). In the Guadalquivir river basin

and over the southeast, it might be expected Tmax exceeds 25◦C more than 220

days/year (out of the scale), which contrast with present simulated SU values
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Figure 7.37: As Fig. 7.36 but for ID (number of days with Tmax<0◦C).

over these regions (140-170 days/year). In Sierra Morena and just to the north

of it, the SU values are projected to increase from the current ∼120 days/year

to about 180 days/year under the A1B and A2 scenarios. A large area in the

north presents SU values below 50 days/year for the 1970-1999 period, but it is

progressively reduced as we move from the B1 to the A2 scenario. Indeed, in the

WEA2 and WCA2 this area is confined to a very reduced region in the Atlantic

coast.

The TR index represents the number of days when Tmin exceeds 20◦C.

Present climate simulations yield TR values within the range 0-5 days/year in

most of the IP, with the only exception of the southwest and the Mediterranean

coast (Fig. 7.39). Future projections indicate that areas with values within this

range will be significantly smaller even under the B1 scenario, particularly in

the case of WEB1. Indeed, the number of tropical nights are likely to double in

southwest and at certain locations of the Mediterranean coast, reaching as much

as 75-80 days/year.

Under the A1B and A2 scenarios, these changes are likely to be much more

prominent and significant areas of the peninsula might be expected to experience

more than 80 days/year with Tmin above the 20◦C threshold. In the southern

extreme of the IP, the TR index could even exceed 120 days/year.

The Ebro valley and the interior might be subject to substantial increases in
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Figure 7.38: As Fig. 7.36 but for SU (number of days with Tmax>25◦C).

TR too. In these regions, the TR index hardly reach 10 days/year, whereas in the

future projections it might be expected to attain values of about 50 days/year.

The coldest regions in the north and over the Iberian System are likely to remain

in the level 0-5 days/year even under the warmest conditions.

Figure 7.39: As Fig. 7.36 but for TR (number of days with Tmin>20◦C).
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Taking into account the particular features of the IP in terms of Tmax ex-

tremes, an additional index was included in the model evaluation (Ch. 6) and is

here analyzed as well. The HD index represents the number of days when Tmax

exceeds the 35◦C threshold. In the present climate, only the southwest quarter of

the IP and the Ebro valley reach significant HD values. Very few regions sparse

all over the IP are projected to maintain low HD values (0-5 days/year), such

as the northern coast, the Pyrenees and the Baetic, the Iberian and the Central

Systems. In the rest of the regions, the number of days with temperature above

35◦C are likely to significantly increase (Fig. 7.40).

In the future B1 scenario, almost the entire IP be subjected to more than

30 days/year with Tmax larger than 35◦C according to WRF simulations. In

addition, in most of the future simulations (apart from WCB1), the Guadalquivir

valley is likely to undergo Tmax>35◦C more than 100 days/year. More generally,

the region bounded by the Central, the Iberian and the Baetic Systems might

be expected to exceed HD values of 80 days/year as simulated by all WRF runs,

except for WCB1 that yield slightly smaller values. The Ebro valley is likely

to be subjected to similar changes. Furthermore, the Northern Central Plateau

is also projected to suffer from remarkable increases in HD, changing from 0-15

days/year to even more than 60 days/year at certain locations (WEA1B, WEA2

and WCA2).

Figure 7.40: As Fig. 7.36 but for HD (number of days with Tmax>35◦C).
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Besides the so-called ‘threshold indices’ analyzed above, changes in three other

indices are also examined: DTR, WSDI and CSDI. Since they are not defined us-

ing thresholds they do not require to be bias-corrected. Furthermore, the changes

in DTR are easily interpreted directly using difference between future and present

values, because they are expressed in◦C. Therefore, their changes are explored

through the differences between future projections and present climate simula-

tions.

Figure 7.41 illustrate changes in the daily temperature range. Overall, the

variability of temperature within a day is projected to increase by all WRF simu-

lations. An exception is found for the Mediterranean coast, where slight decreases

in DTR might be expected (between 0◦C and −0.5◦C). In general, coastal regions

are likely to experience the smallest changes in DTR due to the thermal inertia

of the large water masses. On the other hand, the regions in the interior might

be subjected to changes in DTR of even 2.5◦C (WCA2). WEA2 also project

substantial increases in the daily temperature range (∼ 1.5◦C in the interior),

but smaller than WCA2. The WCA1B run suggests that DTR changes might

reach the 1.5◦C threshold only over limited areas and changes between 1.0◦C and

1.5◦are more likely to occur in most of the IP. In the eastern part, DTR pro-

jected changes barely exceed 1.0◦C for this simulation. Under the B1 scenario,

both ECHAM5- and CCSM-driven simulations project increases in DTR that

range 0.5-1.0◦C in the interior and 0-0.5◦C in the peripheral areas.

To characterize changes in the warm spells, the WSDI is calculated using a

calendar day percentile at each grid point (see Sec. 6.3.4), over the 1970-1999

reference period and using the present climate simulations (WRFEH5 and WR-

FCCSM). Future WSDI are calculated using the same percentiles to determine

possible changes.

The WSDI changes indicate an systematic increase in the number of consec-

utive warm days (Fig. 7.42). Under the B1 scenario, some areas are projected to

experience approximately the same WSDI (0-5 days/year, WCB1). However, the

rest of the regions are projected to suffer from very important increases in the

warm spells (>30 days/year for WEB1, and 10-20 days/year for WCB1). The

largest changes are expected to occur under the A2 scenario, with WSDI reaching

up to 80 days/year in many parts of the IP, particularly in the southwest and the

Pyrenees that seem to be the most affected regions. In line with previous results,

the WEA1B yields similar results to WEA2 in terms of WSDI changes, whereas

the WCA1B project WSDI changes that remain below 40 days/year in most of

the locations.
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Figure 7.41: Changes in the mean difference Tmax-Tmin (DTR): 2070-2099 minus
1970-1999 (in◦C). The simulations using different boundary data are placed in rows
and the emission scenarios are placed in columns.

Likewise, the cold spells are calculated using a calendar day percentile. The

comparison of future and present CSDI reveals that practically over the whole

IP the number of consecutive cold days are likely to decrease down to almost

zero (Fig. 7.43). Owing to the CSDI sensitivity to small changes in Tmin, even

under the most moderate changes (B1 scenario), it might be expected that no

cold spells will take place. Actually, all simulations project changes in CSDI

that would cancel present values and nearly the entire IP might be exposed to

very low CSDI values. It means that the cold spells (characterized using present

climate percentiles) are very unlikely to occur in the future in this region (<0.5

days/year).

7.4 Discusion

The results here presented helped to elucidate how might global warming

affect Iberian precipitation and temperature in the future. They indicate that
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Figure 7.42: The number of consecutive warm days (WSDI). WSDI for present cli-
mate simulations (1970-1999) are displayed in the first column (WRFEH5 and WR-
FCCSM) and WSDI for future climate simulations (2070-2099) are arranged in the
next three columns.

Figure 7.43: As Fig. 7.42 but for CSDI.

the changes in that substantial changes might be expected over the IP by the

end of this century. For instance, even under the B1 scenario, the changes in the
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mean Tmax and Tmin are for the period 2070-2099 are projected to be larger

than those observed for the last century (Brunet et al., 2007).

The changes in the means for both temperature and precipitation are fairly

consistent among the WRF simulations and agree with previous studies. For

example, (Christensen et al., 2007a) projected decreases of annual mean precip-

itation over the entire IP that ranged between −15% and −30% for the A1B

scenario, which are similar to the results obtained here with WRF. Other stud-

ies also projected similar diminutions of precipitation over the region (Gao et al.,

2006; Sánchez et al., 2009; Tapiador et al., 2009). However, the projections gener-

ated in this Thesis are able to provide much more spatial detail thanks to the high

resolution that suggested larger changes over certain mountainous areas (Baetic,

Central and Iberian Systems). In terms of temperature, the IP has already been

identified as one of the regions within Europe that might be more affected by

temperature increases, with warmings that might reach 6◦C in the interior of

the IP(Christensen et al., 2007c). Previous studies (Gallardo et al., 2001; Schär

et al., 2004) also found that interior areas might experience more severe warn-

ings, whereas in the coastal regions the changes might be milder. The WRF runs

provided a similar spatial pattern and made possible to go further and determine

that the mountainous areas might be particularly exposed to future warming.

Regarding the seasonal changes, the WRF simulations revealed that precipi-

tation tends to suffer from the largest decreases during the summer, accompanied

by more moderate decreases during the transition seasons. However, the winter

is projected to be wetter over some ares in the IP. Trigo and Palutikof (2001)

found a similar behavior which would concentrate precipitation in a shorter rain-

fall season, although they extend it to the entire IP . As for temperature, the

changes are systematically projected to be larger during the summer and lower

during the winter, which is in agreement with most of the other works (Giorgi

and Lionello, 2008; van der Linden and Mithchell, 2009). Once again, the WRF

simulations describe these changes at much higher detail and shed light on the

differences among the Iberian regions.

Although a significative decrease of annual precipitation is projected by most

regional climate simulations, the changes in the extreme events are not so clear.

Indeed both slight increases and decreases are observed across the IP. According

to WRF, the very extreme events are likely to be approximately the same in

the future, although their relative probability with respect to total rainy days

might increase because light-to-moderate events are projected to significantly

decrease. In previous studies, the extreme events are projected to decrease in
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the IP overall (Beniston et al., 2007; Christensen et al., 2007a), but during the

summer they might increase (Sánchez et al., 2004). The disparity among WRF

simulations generates uncertainty in terms of the extreme for the IP, a feature

that has already been emphasized by other authors (Frei et al., 2006).

With respect to the persistence of dry conditions, some authors have projected

very small changes over the Cantabrian coast (Beniston et al., 2007; Sánchez et al.,

2011) and longer dry spells over the south in the future. According to other

authors (Gao et al., 2006) the spatial distribution of the dry spell changes is not

that obvious and it varies substantially for the different seasons.despite the fact

that the dry spell indices are defined very differently in these studies, it should be

emphasized that they all agree in the smaller changes over the Cantabrian coast.

The WRF simulations show similar results with respect to this feature, but at

higher spatial detail, and there is a clear division between the northern coast and

the areas to the south of the Cantabrian Range.

The projections of temperature changes were provided separately for Tmax

and Tmin. The changes in Tmax tend to be always larger than for Tmin, except

in some coastal regions. Other authors also found that higher temperature values

are are projected to increase more than lower temperature values (Kjellström

et al., 2007; Sánchez et al., 2004). The assessment of very extreme values of

Tmax and Tmin was also carried out. The WRF simulations projected a clear

tendency towards more pronounced temperature extremes, particularly for the

Tmax ones. For example the number of days where Tmax is particularly high

is likely to increase significantly. Beniston et al. (2007) provided similar results,

although the areas exposed to higher changes were not exactly the same since

WRF simulations tend to project the largest changes in the southwest and over

the mountainous areas.

As exposed above, the climate change projections obtained with WRF are

overall consistent with previous studies, which indicates that the projected changes

are largely consistent. However, there are features of the climate, such as the

precipitation extreme events, that are projected differently by other authors.

Nonetheless, it should be stressed that high resolution has a beneficial impact

on the model estimates that tend to compare better with rainfall observations,

especially in terms of spatial distribution (Grubǐsić et al., 2005; Mass et al., 2002;

Sánchez et al., 2009), and hence the projections at higher resolution might be

more reliable. In any case, the differences with previous works are only mi-

nor, and the main advantage of the unprecedented resolution used to perform

the climate change projections in this Thesis are related to the spatial detail



224 7. Future climate (2070-2099): the projected changes

of the projected changes. Furthermore, the assessment of the changes has been

performed over a wide range of frequencies and hence the high spatial detail is

complemented with a full picture of the entire temporal spectrum, from long term

means to exceptional events.



Chapter 8

Conclusions

Si hay algo seguro en nuestros
conocimientos es la verdad de que todos
los conocimientos actuales son parcial o
totalmente equivocados.

Uno y el Universo
Ernesto Sábato

A number of climate 10-km resolution runs have been completed with WRF to

elucidate the impact of global warming on the Iberian climate at regional scales.

The climate change information provided by two GCMs has been dynamically

downscaled by means of WRF to generate high-resolution future (2070-2099)

projections of climate over the IP under different emission scenarios.

The motivation of this study relies on the necessity to asses the repercussion

of global warming on regional climate at scales that are of paramount impor-

tance for population and natural environment. Furthermore, the issue of climate

change at regional scales is seldom approached form a multi-temporal point of

view and the studies are often limited to either long-term or large-scale mean

values. In this Thesis, projected changes of precipitation, Tmax and Tmin have

been explored, including not only annual, seasonal and monthly means but also

high-order statistics.

Prior to perform the actual climate simulations (30 years), the model had to

be adequately configured to represent the climate of the IP, a region particularly

complex in terms of topography and spatio-temporal variability. To that purpose

a set of decadal simulations (1990-1999) were completed to build a physical en-

semble. In total, 12 simulations (of which 8 were fully examined) were carried

out and the model outputs were compared with observations to determine an
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appropriate model configuration for the region. In this first part of the study

(Chapters 4 and 5), different key parameterization schemes (cumulus, PBL and

microphysics) were tested and the model was suited to correctly simulate precip-

itation and temperature at climate scales. The main conclusions regarding the

model parameterizations and their configuration are:

• The selection of an appropriate combination of physics schemes is

of major importance and the model estimates vary dramatically

between different configurations. This especially applies to complex-

terrain regions where processes that are not adequately resolved by the

model dynamics play a crucial role in the simulation of local climate. Fur-

thermore, the results do not exclusively depend on single physics options

but on the overall combination of them, since the feedbacks between differ-

ent parameterized processes might be more decisive than the performance

of a particular scheme.

• There is no optimal configuration that outperforms the others

over the entire region, for all variables and at every timescale.

Indeed, the same configuration might simulate dissimilarly the mechanisms

that predominate over areas with clearly differentiated climate regimes, and

thus produce completely opposite results. Furthermore, not all variables are

equally affected by the parameterizations. A compromise solution has to be

attempted to reproduce main features of climate over most of the regions

under survey and considering its impact on each variable. For the IP, it has

been concluded that precipitation results should prevail over temperature

ones because the parameterization configuration has larger impact on the

former.

• Not all parameterizations are equally determining. The choice of

the cumulus and the PBL schemes are crucial to accurately describe precip-

itation. On the other hand, the microphysics option do not have significant

impact on the results and thus the use of higher-complexity and computa-

tionally demanding schemes might not be justified.

• Overall, the BA3 configuration is the most appropriate to study

the Iberian climate. The configuration that uses BMJ for cumulus,

ACM2 for the PBL and WSM3 for the microphysics was proposed to con-

duct the climate simulations. Nonetheless, other configurations showed
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good agreement with observations too. All combinations of BMJ cumu-

lus scheme, and YSU and ACM2 PBL schemes yielded better estimates

for precipitation. In the case of temperature, the local PBL scheme (MYJ)

compared better with Tmin observations because local schemes tend to sim-

ulate stable conditions more realistically. The mixed (local and non-local)

ACM2 also produced good results in terms of Tmin.

• WRF is able to clearly improve the information provided by the

boundary data. WRF generates significant added-value information with

respect to the ‘perfect boundary data’ (ERA-40 reanalysis). The model

estimates outperforms ERA-40 reanalysis outputs at every timescale. In

addition, WRF supplies with deeper detail of temperature and precipitation

spatial distribution. The use of WRF thus constitutes an important advance

in the simulation of regional climate.

The second part (Chapter 6) is devoted to simulate present climate (1970-

1999) and evaluate the WRF ability to reproduce a wide range of climate features

of the IP. Three climate simulations driven by ERA-40 reanalysis, ECHAM5

and CCSM3.0 were completed to ascertain the model reliability and generate a

baseline to quantify the future changes. The main findings of this evaluation are

outlined below:

• The WRF model is an extremely valuable tool to investigate the

climate and explore the regional implications of climate change

over the IP. WRF is able to resolve spatial scales that go unnoticed by

GCMs. The major benefit of using WRF is its ability to accurately dis-

tribute precipitation and temperature across the IP. It does not only capture

the broad gradients that characterized the large scale but also incorporates

the topographical effects on regional climate.

• WRF enables the study of both mean climate and extreme events.

The simulation of the upper percentiles and the extreme indices are among

WRF most remarkable strengths. The results obtained with respect to the

high-order statistics makes WRF a suitable tool to address changes in both

the long-term means and the extreme events.

• The description of precipitation is highly dependent on the bound-

ary conditions. The shape of the annual cycle is overall reproduced, but

differences between the GCM-driven simulations and the observations are
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sometimes noteworthy. When driven by ERA-40, the model provides ex-

cellent results and reproduces most of the annual cycle details over nearly

the entire IP. Some significant seasonal and annual biases were obtained for

certain regions. The misrepresentation of the SLP by the boundary condi-

tions might be at the origin of these biases, although the model dynamics

must also play a primary role, as observed in the spatial patterns of the

biases and the topographically-induced precipitation.

• In general, WRF produces too much light-to moderate precipita-

tion, whereas the heavy rainfall events are slightly underestimated

over most of the IP. In particular, the upper percentiles of precipitation

are markedly underestimated over the Mediterranean area, where the ex-

treme events are often caused by localized rainstorm. For the rest of the

IP, WRF is able to provide very good estimates of heavy rainfall episodes.

• Temperature is accurately simulated at all timescales, and most of

the errors between the model estimates and observations are characterized

by systematic deviations, which are probably the less troublesome errors to

deal with. These biases are mostly negative, except for some regions where

positive deviations were obtained for Tmin.

• WRF accurately represents the probability distribution of Tmax

and Tmin. It simulates most of the features that characterize the PDFs

at the different regions, such as the bimodality and skewness of the dis-

tributions, particularly when driven by ERA-40. The extreme events are

exceptionally well reproduced by WRF in nearly all situations, as evidenced

by the analysis of percentiles and extreme indices, which is essential to as-

sess the changes in the distribution tails.

In the third part (Chapter 7) the future climate projections are generated

and analyzed. A set of 6 future (2070-2099) runs driven by the aforementioned

GCMs and under three different emissions scenarios (B1, A1B and A2) conform

the high-resolution climate change projections. The spatial resolution adopted

in these simulations (10 km) together with the wide spectrum of timescales that

were examined, made possible to provide detailed information about the pro-

jected changes and build up a full picture of future climate. The main conclusion

drawn from these climate runs and concerning the changes with respect to present

climate (1970-1999) are summarized below:
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• Total annual precipitation is very likely to substantially decrease

by the end of the century over nearly the entire IP. All simulations

project important decreases over the IP that in average range from -18% to

-42%. The most affected regions are the mountainous areas with changes

that exceed -30%. Minor decreases or even slight increases in precipitation

are projected along the east coast, although they are not significative.

• Precipitation changes vary from season to season. Precipitation

decreases are more pronounced during the summer (between -32% and -

71%), whereas in the winter, minor decreases and marked increases are

projected. Nonetheless, winter changes are mostly non-significative except

for the Cantabrian range. Although spring and autumn changes are not as

significative as summer changes in percentage terms, their contribution to

total annual precipitation is larger. On average over the IP, spring precipi-

tation changes are projected to range between -24% to -58%, and autumn

changes between -23% and -50%.

• The frequency of extreme precipitation events is not projected to

change substantially. The precipitation events over the 95th percentiles

are likely to explain larger amounts of total precipitation, especially along

the east coast. However, this change is due to decreases in light-to-moderate

precipitation events rather than increases in the heavy rainfall. The evi-

dences of changes in the frequency and intensity of the extreme events are

weak and spatially inconsistent, except for the Northern Central Plateau,

where events above 20 mm/day are systematically projected to increase.

• Larger precipitation decreases are projected over the IP as the

radiative forcing increases. The changes might be expected to be more

significant under the assumptions of the A2 scenario. The changes are

progressively more moderate under the A1B and B1 scenarios. Annual,

seasonal and monthly precipitation changes show a large dependence on the

selected scenario, but changes in the distribution tails of daily precipitation

do not seem to be affected by the emission scenario.

• The length of dry (wet) periods are consistently projected to in-

crease (decrease). The CDD* index is projected to increase over the

entire IP (except confined locations along the Cantabrian coast), particu-

larly under the A2 scenario and over the northern half of the IP. On the

other hand, the CWD* index is likely to decrease in most of the IP, except
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places in the east coast, where increases are also projected. The largest

changes might be expected in the south (Baetic System) and over areas

near the northern coast.

• The entire IP is very likely to suffer from increases in both Tmax

and Tmin by the end of this century. On average over the IP, Tmax

changes (2.0◦C-4.3◦C) are projected to be larger than Tmin changes (1.4◦C-

3.4◦C).

• The interior of the IP might be exposed to the largest Tmax

changes, being particularly severe over the mountainous areas (> 3.5◦C),

whereas the coastal regions might be expected to experience more moderate

changes due to the sea thermal inertia. Tmin changes are also projected

to be more pronounced over the high-altitude regions, but there are plain

differences between the interior and the coast.

• The largest changes for both Tmax and Tmin are projected to

occur during the summer. Tmax summer changes are likely to exceed

4.0◦C in most of the IP. There is no clear tendency that indicates whether

the autumn or spring are prone to larger changes, but Tmax is projected

to increase substantially during both seasons. Winter changes are likely to

be much milder. On the other hand, Tmin summer changes are projected

to be much more moderate (between 2.0◦C and 4.5◦C). During the winter

and spring, Tmin changes barely exceed 3.0◦C.

• Both the mean and the variability of daily temperature might

increase in the future. Tmax and Tmin PDFs are projected to move

towards higher values. In addition, the variability is also projected to in-

crease, since PDFs are somehow flattened and the changes in the upper tail

of distribution are larger than in the lower one. The transition from cold

to warm seasons might also be faster in the future over the southern and

eastern regions, as indicated by the enhanced bimodality of distributions.

• Temperature extremes are likely to be substantially warmer in the

future over the entire IP. The upper percentiles of both Tmax and Tmin

are projected to change more than the means. The lower Tmin percentiles

show a similar behavior over most of the regions (except in the south).

Basically none of the regions is projected to experience daily Tmax values

below the freezing point (ID) and those days with Tmin below 0◦C are
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considerably reduced. On the other hand, the number of days when Tmax

exceeds 35◦C might be expected to reach up to 80 days/year over areas

in the southwest (Guadalquivir river basin) even under the least severe

scenario. The tropical nights (Tmin > 20◦C) are projected to increase

dramatically in the southern half of the IP, and more specifically at locations

in the southern coast.

• The warm spells are projected to markedly increase and the cold

spells are projected to decrease over the entire IP. The number

of consecutive warm days are projected to experience a remarkable in-

crease and more particularly over the southwest and the Pyrenees, where

the WSDI index could reach up to 90 days/year. Additionally, the number

of consecutive cold days might be dramatically reduced and the CSDI index

might drop to zero.

• The projected changes for temperature present a large depen-

dence on the emissions scenario. In general, the changes are larger

as the GHGs atmospheric concentrations increase and the radiative forc-

ing intensifies. Nonetheless the differences between A1B and A2 scenarios

highly depend upon the GCM used to drive the model. The A1B radia-

tive forcing exceeds that of the A2 until approximately 2065 and ECHAM5

tend to prolong its effect into de 2070-2079 decade producing about the

same conditions for both scenarios. On the other hand, the CCSM3.0 clear

differentiates between the three scenarios and the changes progressively in-

crease from B1 to A2. ECHAM5 also project the most moderate changes

under the B1 scenario.

Outlook and future research

This Thesis has revealed that use of WRF, and more generally the RCMs,

constitutes an extraordinary advance in the study of regional climate and the

regional implications of global warming. However, it should also be admitted

that dynamical downscaling by means of RCMs is not yet the definitive answer

to investigate the effects of climate change at fine scales. In fact, RCMs still suffer

from errors that must be identified in order understand current deficiencies of the

models and facilitate upcoming improvements.

Furthermore, current climate change projections are usually restricted to a

few variables (e.g. precipitation, temperature, wind) mainly because they have
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a direct impact on human activity. Nonetheless, other variables should be also

explored to shed light on the underlying processes that drive these changes. For

example, a brief analysis of annual and seasonal SLP was performed in this study,

but other fields such as relative humidity, upper-level pressure or SST would

provide a beneficial insight of the mechanisms that affect regional climate.

The increase in the spatial resolution is currently hampered by computational

resources, but finer grids are recently becoming more feasible. It would be very

interesting to explore the performance of the model at very high-resolution (up to

1 km) over climate periods, particularly in areas with complex terrain or frequent

convective precipitation. At such resolution, the cumulus scheme would not be

necessary and the model dynamics could be further tested.

The new GCMs have substantially increased their resolution, incorporated

new processes and feedbacks, and improved their simulation of certain features.

The outputs are now becoming available and further simulations driven by these

outputs could be performed in order to evaluate possible benefits and further

determine the model dependency on the boundary conditions.

As exposed at the beginning of this study, the major advantage of dynamical

downscaling is that the results are not limited to a few variables or locations, but

describe the entire simulated domain and provide a large number of variables.

Therefore, these outputs are of great value not only to explore the climate but also

to feed other models that simulate very local processes, such as the hydrological

model. The WRF outputs generated in this study are also aimed at driving a

hydrological model that would enable the study of changes in the Iberian river

flows.



Appendix A

Mathematical details of principal

components analysis

The multi-step regionalization is composed of three main stages: (1) a S-mode

PCA, (2) an agglomerative CA and (3) a non-hierarchical CA. A brief description

of the methods is provided in the text (Sec. 3.3) but the former might require

additional details to adequately understand the mathematical concepts behind

it.

Principal Component Analysis

The Principal Component Analysis (PCA) or Empirical Orthogonal Function

(EOF) analysis is a methodology that was mainly designed to reduce the dimen-

sions of an observational matrix. In particular, it facilitates the interpretation

of dependencies among large sets of variables that otherwise are very difficult to

comprehend. If we are interested in the variance of the variables and correlations

between them, PCA is a useful tool to generate illustrative information on the

matter.

Mathematically speaking, the PCA is an orthogonal linear transformation

that transform the original set of interrelated data to a new coordinate system

such that the new variables are uncorrelated and are ordered so that the first

few retain most of the variation present in the original dataset (Jolliffe, 2002).
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Therefore, if only the few first new variables are kept, most of the variation

is still retained and a considerable reduction of the dimensionality of the data

is achieved. As a consequence, the interpretation of the dependencies between

variables is much more straightforward. Another advantage that is significant

within the regionalization framework is that it helps to stabilize measurements for

additional statistical analysis such as cluster analysis (Timm, 2002) by reduction

of information redundancy.

Suppose a dataset containing K variables that have been measured M times.

Let us define a M by K matrix X where according to the standard nomenclature

for PCA, the rows represent measurements (or observations) and the columns the

different variables. In the particular case of S-Mode PCA, the rows might be the

times (days) and the columns the different locations (stations).

Let us also define the matrix of anomalies formed by the K column vectors

X ′k = Xk−Xk, where Xk are the means calculated over the M elements of column

k.

The new variables or principal components are then defined as linear combi-

nations of the K x’k that have certain properties:

um =
K∑

k=1

(ek,1 · x’k), m = 1...M (A.1)

The new base is composed by the em eigenvectors and the first one e1 is aligned

in the direction in which the data vectors jointly exhibit the most variability. This

the primary property of the principal components : the first linear combinations

is calculated so that it has the maximum variance, the second one is calculated

so that it is orthogonal to the previous principal component and explain as much

variance as possible, and so on.

Therefore, the largest eigenvalue λ1 corresponds to the first eigenvector e1.

The second-largest eigenvalue λ2 corresponds to the second eigenvector e2, which

is forced to be orthogonal to e1 and points to the direction in which x’k show

the next largest variations. Subsequent eigenvectors are defined similarly, asso-

ciated with eigenvalues of decreasing magnitude and orthogonal to the previous

eigenvectors. The matrix of the transformation can thus be written:

U = [E]TX ′ (A.2)

Owing to the fact that principal components are orthogonal and thus uncorre-

lated, the covariance matrix of U is diagonal. Taking into account this property,
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the covariance matrix for the principal components can be obtained by diagonal-

ization of the covariance matrix for the original dataset:

[Sx] = X ′X ′T

[Su] = [ET ][Sx][E] = [E−1][Sx][E] = [Λ] (A.3)

Which is equal to solve the equation:

det([Sx]− λ[I]) = 0 (A.4)

that allow us to determine the eigenvectors and then calculate the principal

components. In addition, the eigenvalues indicate the variance explained by each

of the principal components. The fraction of total variation in the original xk vec-

tors explained by a certain principal component is proportional to its eigenvalue:

Percentage of variance =
λm

K∑
k=1

(λk)

× 100% (A.5)

The transformation can be reverted and thus the original anomaly vectors can

be retrieved from the principal components :

X ′ = [E]U (A.6)

Truncation of the principal components

Bearing in mind that the objective of PCA is to reduce the information con-

tained in the original data, the number of principal components can be truncated

and keep only a fraction of the total variance. There are as many principal compo-

nents as elements in the vector x’m. However, atmospheric data usually contain

redundant information that is removed by approximating the original vectors by

linear combinations of K∗ eigenvectors, where K∗<K :

x’m ≈
K∗∑
k=1

(em,k · uk), m = 1...M (A.7)

The fraction of the total variance explained by the new reduced base of eigen-
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vectors is thus computed as:

Variance explained (%) =

K∗∑
k=1

(λk)

K∑
k=1

(λk)

(A.8)

In the atmospheric data, selecting K∗<<K usually leads to large variance ex-

plained and thus the original large dataset can be reduced to a base composed of

very few eigenvectors that explain a substantial proportion of the total variance

and thus are easier to interpret. The number of principal components to be re-

tained are still a matter of controversy and different method have been proposed.

A widespread method called the North Rule of Thumb (North et al., 1982) is

based the degeneration of eigenvalues. That is, if the spacing between two con-

secutive eigenvalues is smaller than the error of the the first one, then they cannot

be considered as different true eigenvalues, where the error of the eigenvalues is

calculated as:

∆λk ≈
√

2

K
λk (A.9)

Only principal components with non-degenerated eigenvalues are thus main-

tained.

Rotation of the principal components

Once the reduced number of principal components is selected, the eigenvectors

are normally plotted geographically and the corresponding principal components

are interpreted physically. However, bearing in mind that the atmospheric pro-

cesses are not independent, the orthogonality constraint might sometimes hamper

the physical interpretation because the examination of independent modes of vari-

ability might not be justified (North, 1984; Wilks, 2006). In order to circumvent

this problem, the retained eigenvectors after truncation are often rotated with

the aim to produce a simple structure in the results. Namely, the elements of

the resulting rotated vectors are either large or very close to zero, with few in-

termediate values.There are different techniques to rotate the eigenvectors (e.g.

varimax,orthomax,oblique) of which the details can be found in Richman (1986).
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Very good references that address the issue of PCA can be found in Preisendor-

fer (1988), Jolliffe (2002) or, more generally, Wilks (2006).





Appendix B

Description of statistical

parameters

In all these parameters M refers to model estimates, O to observed values

including both gridded and site-specific. Unless anything else is specified, the

index i refers to times and N to the total number of events, either days, months,

season or years. Additionally, Ō and M̄ represents the observational and the

modeled means.

Bias: The bias represents the difference between the model mean and the

observed mean.

BIAS = N−1

N∑
i=1

Mi −Oi = M̄ − Ō (B.1)

Relative Bias: The relative bias is the bias divided by the observed mean

and provides information of the differences in relative terms.

relative BIAS = N−1

∑N
i=1Mi −Oi∑N

i=1Oi

=
M̄ − Ō
Ō

(B.2)
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MAE: The mean absolute error represent the average of the absolute errors

between the model and the observations. It is very stable and little sensitive to

extremes.

MAE = N−1

N∑
i=1

|Mi −Oi| (B.3)

Correlation: The Pearson Correlation, also known as simply correlation,

evaluates the linear dependence between two variables. Therefore, it determines

if the model and the observations vary similarly in time, that is to say if the

model captures the observations timing.

CORR(M,O) =
Cov(M,O)

sMsO

=

=

1

(N − 1)

N∑
i=1

[(Mi − M̄)(Oi − Ō]

[
1

(N − 1)

N∑
i=1

(Mi − M̄)2]1/2[
1

(N − 1)

N∑
i=1

(Oi − Ō)2]1/2

(B.4)

=

N∑
i=1

(M ′
i O
′
i)

[
N∑

i=1

(M ′
i)

2]1/2[
N∑

i=1

(O′i)
2]1/2

The Pearson correlation is usually employed to compare how similar are two

time series, but it can also be used to compare two maps (snapshots) and is

calculated over the space. In that case, it is called Pattern correlation:

PattC(M,O) =

L∑
l=1

(M ′
l O
′
l)

[
L∑

l=1

(M ′
l )

2]1/2[
L∑

l=1

(O′l)
2]1/2

(B.5)

Where l covers all the locations (L) in the map. Alternatively, the pattern



241

correlations can be calculated using the anomalies in place of the absolute value.

A climatological value (CM and CO) is calculated for each location and the so-

called Anomaly spatial correlation reads

AC(M,O) ==

L∑
l=1

[(Ml − CM)(Ol − CO)]

[
L∑

l=1

(Ml − CM)2]1/2[
L∑

l=1

(Ol − CO)2]1/2

(B.6)

RMSE: The root-mean-squared error calculates an average of the squared

differences between the model and the observations that is then root-squared

to maintain the original units. It is interpretable as an error magnitude. Its

estimation of the model validity weights individual high errors in excess.

RMSE = (N−1

N∑
i=1

(Mi −Oi)
2)1/2 (B.7)

The relative RMSE is identical to RMSE except that the result is divided by

the observed mean. This provides an estimation of the error with respect to the

actual value of the variable.

relRMSE =
RMSE

Ō
(B.8)

Perkins Skill Score (SS) (Perkins et al., 2007): This skill score is a measure

of the common area between two PDFs. It is defined as:

SS =
N∑

i=1

min(Zm, Zo) (B.9)

where n are the number of bins used to describe the empirical PDF, Zm and

Zo are the frequency of values in a given bin from the model and the observations

respectively.
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A. Rinke, A. Sarr, and P. Whetton, 2007a: Regional Climate Projections. In:

Climate Change 2007: The Physical Science Basis. Contribution of Working

Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change. [Solomon, S. and D. Qin and M. Manning and Z. Chen and

M. Marquis and K.B. Averyt and M. Tignor and H.L. Miller(eds)]. Cambridge

University Press, Cambridge,United Kingdom and New York, NY, USA. 3, 7,

11, 21, 156, 212, 222, 223

Christensen, J. H., T. Carter, and M. Rummukainen, 2007b: Evaluating the

performance and utility of regional climate models: the PRUDENCE project.

Climatic Change, 81, 1–6. 10

Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007c:

A summary of the PRUDENCE model projections of changes in European

climate by the end of this century. Climatic Change, 81, 1–6. 10, 65, 222

Collins, W. D., C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A.

Carton, P. Chang, S. C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G.

Large, D. S. McKenna, B. D. Santer, and R. D. Smith, 2006: The Community

Climate System Model version 3 (CCSM3). Journal of Climate, 19, 2122–2143.

68, 70

Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L.

Williamson, J. T. Kiehl, B. Briegleb, C. Bitz, S.-J. Lin, M. Zhang, and Y. Dai,

2004: Description of the NCAR Community Atmosphere Model (CAM 3.0).

NCAR/TN-464+STR NCAR Technical Note, 1–226. 30

Compagnucci, R. H. and M. B. Richman, 2008: Can principal component anal-

ysis provide atmospheric circulation or teleconnection patterns? International

Journal of Climatology , 28, 703–726. 46
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