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Abstract 

The magnification factor for the steady-state response of a SDOF system under harmonic 

loading is described in many structural dynamics textbooks; the well known analytical 

solution is easily obtained from the solution to the damped equation of motion for harmonic 

loading. The complete and steady state solutions can differ significantly. An analytical 

expression for the maximum response to the complete solution (steady state plus transient) 

remains elusive; however, a simple analytical expression is identified herein for the 

undamped case. Differences in the magnification factors obtained for both solutions are 

discussed. 
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1. Introduction 

One of the fundamental topics in most if not all structural dynamics books is the well 

studied equation of motion for a damped harmonic oscillator [1-5], which for free vibration 

is given as:  

( ) ( ) ( ) 0⋅ + ⋅ + ⋅ =m x t c x t k x t  (1) 

where m , k , and c  are the mass, the stiffness and the coefficient of viscous damping, 

respectively. When subjected to an external force ( )p t , as presented in Figure 1, the equation 

of motion is: 

( ) ( ) ( ) ( )m x t c x t k x t p t⋅ + ⋅ + ⋅ =  (2) 

where ( )p t  is the force applied to the mass. 

 

Figure 1. Oscillator: (a) idealized physical configuration and (b) forces acting on the mass for 

acceleration 0>x . 

Customarily, two new parameters are defined as functions of m, c, and k. The undamped 

natural frequency, 0ω , is given by: 

0
k
m

ω =  (3) 

and the damping ratio,ξ , is given by: 
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c

m
ξ

ω
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⋅ ⋅
 (4) 

Introducing these two parameters allows (2) to be rewritten as: 

2
0 0

( )( ) 2 ( ) ( ) p tx t x t x t
m

ξ ω ω+ ⋅ ⋅ ⋅ + ⋅ =  (5) 

If the excitation is sinusoidal ( ( ) ( )0 sinp t p t= ⋅ Ω ⋅ ), where 0p  and Ω  are the amplitude and 

frequency of the applied force, respectively, the equation of motion can be solved 

analytically. The well-known solution is: 

( )0 1 1

2 2
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⎡ ⎤+ − Ω +Ω⎣ ⎦

 (6) 

where 

2
1 0 1ω ω ξ= −  (7) 

is the damped natural frequency of the system and 1c  and 2c  are two complex conjugated 

constants that can be evaluated once the boundary conditions have been specified. As 

indicated in (6), the response is composed of a transient term that vanishes with time and a 

steady-state term that is a harmonic function of time. 

This paper addresses the solution to (5) given by (6). The peak response (maximum of 

absolute value) is sought and is compared with the amplitude of the steady state portion of 

the response in (6). Results are considered as a function of a frequency ratio, β , where β  

the ratio of the frequency of the excitation (Ω ) and the undamped natural frequency of the 

system ( 0ω ). As will be seen, particularly forβ > 1, the peak response is significantly greater 

than the steady-state peak response. 
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2. Total response versus steady-state response 

At rest boundary conditions (i.e. (0) 0x =  and (0) 0x = ) are considered because those are 

the actual conditions under any earthquake motion or any other dynamic motion in structural 

engineering. For these boundary conditions, (6) becomes: 
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 (8) 

The transient and a steady-state components of (8) are identified by a I⋅  (meaning a times 

I) and a II⋅  respectively. The maximum of the steady-state component is easily computed 

since this part is a constant ( a ) multiplied by a function ( II ) whose peak value is 1. 

Therefore, the peak steady-state response is given by a : 

k
paxsteady

0
422 )21(21

1max
ββξ +−−

==  (9) 

The term of Eq. 9 that multiplies p0/k has been called the steady-state dynamic 

magnification factor in numerous textbooks. Figure 2 shows the steady-state dynamic 

magnification factor as function of β  for different values of the damping ratioξ .  

Resonance is easily appreciated in Figure 2. For the undamped case ( 0ξ = ) the resonant 

frequency is equal to the undamped natural frequency ( 0ω ). It will be apparent that the 

resonant frequencies are maintained even for the complete solution to (8), that is, where the 

transient portion is included in determining the peak response amplitude. 
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Figure 2. Variation of the steady-state dynamic magnification factor with ξ and β . 

Although a simple, explicit, function describing the peak response to (8) cannot be 

obtained easily, the value of the peak response does not depend on the value of 0ω , as 

should be apparent upon closer inspection of  Eq. (8). Consider that the responses of two 

systems having the same β  and ξ  but different undamped natural frequencies 0aω  and 0bω  

would be described by:  
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Let us substitute for time t  in Eq. (11) the modified time 0

0

a

b

tω
ω

: 

3.0 

0ξ =

1ξ =  
0.7ξ =  

0.5ξ =  

0.2ξ =  

2.5 2.0 1.5 1.0 0.5 

4.0 

3.0 

2.0 

1.0 

xmax/(p0/k) 

β 



Page 6 
 
 

( )[ ] ( )

( )txtx

ttek
p

tx

aa
b

a
b

aa

t

b

a
b

a

0
0

0

201
2

02422

0

0

0 cos1cos
12121

0

ω
ω
ω

φβωφξωβ
ξββξω

ω ξω

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⇒

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞⎜

⎝
⎛ −−

−

−

+−−

⎟
⎠
⎞⎜

⎝
⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

 

Therefore, the peak response (over all time) is independent of 0ω , and can be obtained 

using Eq. (8) for an arbitrary value of the undamped natural frequency (e.g. 0 1.0Hzω = ). 

Systems having other values of 0ω  will have the same peak, but occurring at a different time 

(see Figure 3). For a system having undamped natural frequency s,0ω  the time of the peak is 

delayed an amount  

0
0

11
s

t t
ω

⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠
 (13) 

where 0t  is the time corresponding to the maximum response for 0 1.0Hzω = , and 0sω  is the 

undamped natural frequency of the system being analyzed. 

(12) 
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Figure 3. Responses corresponding to 0.2ξ = , 1.2β =  for different natural frequencies. The same 

maximum occurs, but at different times as shown. 

Peak values of the response expression can be determined using various mathematical 

software programs. In the present case, the nonlinear constrained global optimization 

package function FindMaximum was used within the Mathematica® program.  

Plots of both steady-state and complete magnification factor (including both transient and 

steady-state responses) for different values of damping ratio are presented in Figure 4. 

Results were obtained using the undamped natural frequency set to 1 Hz ( 0 1.0Hzω = ). 

Figure 4 shows that the complete magnification factor is always greater than or equal to the 

steady-state magnification factor. The closer β  is to 1 0ω ω  the smaller the difference is 

between both magnification factors, except for the caseξ =1. Also, the lower the value of the 
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damping ratio (ξ ) the greater is the difference between the complete and steady-state 

maximum responses. For instance, in case of 0ξ = , with a value of 0.7β = , the complete 

magnification factor is 3.32  while the steady-state magnification factor is 1.96 . In this case 

the steady-state magnification factor represents only 60% of the complete maximum 

response. For 0.5ξ =  and 0.3=β , Figure 4 shows that the steady-state magnification factor 

is around the 45% of the complete magnification factor.  

 

Figure 4. Complete and steady-state magnification factors for ω0= 1 Hz. 

To further illustrate differences in the magnification factors obtained for the complete and 

steady-state solutions, the ratio of these magnification factors is plotted in Figure 5 as a 

function of β and ξ . Dashed lines in Figure 5 correspond to the ratio between peak response 

given by the complete solution (obtained from Eq. (8)) and the peak response given by the 

steady-state magnification factors (obtained from Eq. (9)) for different values of the ξ and β. 

Values of β vary from 0 to 3.0 in steps of 0.05. In case that the damping ratio is equal to zero 
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(ξ = 0) and the frequency ratio is equal to one (β = 1, i.e. resonance response) a 

discontinuity appear in Figure 5. 

 

Figure 5. Complete to steady-state magnification factors ratio. 

In case that β = 1 and ξ œ (0,1) the ratio of peaks response (complete over steady-state) is 

equal to one. This coincides with the observation given by Clough and Penzien (1993) in 

§3.3 of their book. For the case of β = 1 and ξ=0, the ratio of peaks response presents a 

discontinuity and two values are possible, as can be seen in Figure 5: 
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Clough and Penzien (1993) approached the solution imposing β = 1, so they got the first 

solution given by expression (14). 

 

It is apparent that the maximum ratios are obtained for the highest value of β and the lowest 

damping ratio, ξ. Inspection of the plots indicates that for the undamped case, the ratio of the 

magnification factors for the complete and steady-state solutions is almost linear. 

Irregularities in the ratio of magnification factors are apparent for ξ≤0.2.  

 

In the undamped case, a function that expresses the ratio of the complete and the steady-

state magnification factor as a function of β  can be simply adjusted. This function is given 

by (continuous thick grey line in Figure 5): 
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 (15) 

Thus, considering Eq. (9), an explicit expression for the complete maximum response for 

the undamped case is given by: 
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0 0

2 4
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p p
k k

x  (16) 

with the exception of of β = 1 and ξ=0, as it was shown in Eq. (14). 

 

Furthermore, Figure 5 demonstrates that Eq. (15) provides an upper bound to the ratio of 

complete and steady-state magnification factors. Thus, for any damping level (ξ ≤1),  the 

product of Eqs. (9) and (15) is an upper bound to the complete solution.  
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4. Conclusions 

The preceding demonstrates the significance of the transient part of the response of a 

SDOF system subjected to a harmonically varying load of sine-wave form. Near resonance, 

differences between peak transient and peak full responses are negligible; these differences 

become significant as the forcing frequency begins to deviate significantly from the 

undamped frequency of vibration of the oscillator.  

Traditionally, structural dynamics books define the maximum of the steady-state response 

of SDOF systems as the dynamic magnification factor. A better term for the conventional 

magnification factor is the steady-state magnification factor, since it represents an important 

component of the complete magnification factor.   

A new explicit expression for the maximum response for the complete solution for the 

undamped case (i.e. for the most unfavourable situation) was developed, and is given by Eq. 

(16), with the exception of the case of β = 1 and ξ=0 where two values are possible. An 

upper bound on the complete solution for cases with damping was identified. 
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