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Introduction

In [19, 1955], J. P. Serre raised the question of whether any finitely generated pro-
jective module over the ring of commutative polynomials k[X1, . . . , Xn] over a field k
is free. After almost 20 years of attempts, Suslin [26] and Quillen [14] independently
(and using different methods) obtained an affirmative answer to Serre’s question.

The situation in the non-commutative case is completely different: there were con-
structed counterexamples, for instance, stably free non-free modules in several classes
of noncommutative rings.

Here we will study the category of finitely generated projective modules proj(R),
the group K0(R) of stably isomorphism classes and the monoid V (R) of the isomor-
phism classes of these modules over some non-commutative noetherian domains. In
particular we will study polynomial rings over noncommutative division rings and
Weyl algebras over a field or more generally over noncommutative division ring of
characteristic zero.

In Section (2), the general structure of stably free R-modules, their characteriza-
tions and their direct sums will be studied. Indeed stably free right R-modules are
equivalence to the right invertible rectangular matrices over R. In addition a char-
acterization when the stably free modules are free will be given by two versions,
module and matrix versions.

In Section (3), if D is a division ring with center the field k,and A = D[X1, . . . , Xn],
B = k[X1, . . . , Xn] the polynomial rings over commutative indeterminatesX1, . . . , Xn.
Then B is the center of A.

We will show the following result concerns the two–sided ideals of A.

Let I be a two–sided ideal of A, then I = A(I ∩ B), i. e., I is generated by a
Groebner basis constituted of central elements.

In Section (4), as a consequence of the following result due to Stafford: [23, Theorem
2.9]:

Every finitely generated projective right A–module is either free or isomorphic to a
non–free projective right ideal of A.
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We compute the K0 group of A, it is isomorphic to Z. We give examples of non-
free stably free R-modules, and we found its two generators as a right ideal of R.
Therefore the monoid V (R) fails to satisfy separative cancelation.

Also we study an examples of non-free projective right ideals I = (y2 + 1)A+ (y +
j)(x− ti)A of H[X, Y ], where H is the quaternion division ring, which due to R. G.
Swan. In this case simple criterion were given for I to be free. Moreover under some
conditions, these right ideals were classified up to isomorphism. As a consequence
of this classification we can show that: There are an infinite number of isomorphism
classes of such modules over A = H[X, Y ]

In section (5), also as a consequence of the following results due to Stafford: [20,
Theorem 2.2]:

All finitely generated projective right An(D)-modules are stably free.

and [22, Theorem 3.6(b)]:

Every finitely generated projective right An(k)-module is either free or isomorphic
to a non–free projective right ideal of A.

we compute the K0 group of the n− th Weyl algebra over a commutative field and
over noncommutative division ring. In the two cases it has shown that K0

∼= Z. We
give an example of stably free non-free right ideal of A1(k).

In section (6), in the classification of projective right ideals of A1(k). R. Cannings
and M. P. Holland established in [5] a bijection correspondence between primary
decomposable subspaces of R = k[t] and projective right ideals I of A1(k) which
have non-trivial intersection with k[t].

[5, Theorem 0.5] (Bijective correspondence theorem):

Γ : V 7→ D(R, V ) , Γ−1 : I 7→ I ? 1.

Indeed this bijection had been founded only when the field k is algebraically closed
field and of characteristic zero.

M. K. Kouakou and A. Tchoudjem in [9], generalized the definition of primary
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decomposable subspaces of k[t] when k is any field of characteristic zero, particulary
for Q and R, and it has shown that R. Cannings and M. P. Holland correspondence
theorem holds. Thus projective right ideals of A1(Q), A1(R) are also described by
this theorem.

In this section, we will reanalyze the main theory of this classification and describe
the isomorphism classes of the projective right ideals of A1 and we restrict this
theorem for some particular classes of these ideals, as a consequence we get the
following result:

Reducible polynomials with the same degree and same roots correspond to the same
isomorphic class of projective right ideals of A1(k).

In Section (7), we get the following result that have bothAn(k) andA = D[X1, . . . , Xn]:

They are 3-Hermite rings and the have stable range rank 2.

In addition, we give a description of the isomorphism classes of the non-free stably
free right A-modules of rank 1 depending on two crucial facts, each projective module
generated by two elements and looking to them as an A-submodules of A2. We
determine these isomorphism classes by a structure of matrices given in the end of
this section.

In Section (8), we show that the monoid V (A) has only the two trivial archimedean
components, therefore it has only the two trivial prime ideals, and hence A has only
the two trivial trace ideals A and {0}.
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1 Projective modules

Let R be a ring. A right R–module P is projective if the functor HomR(P,−) :
Mod–R −→ Ab is exact, or equivalently, if for every epimorphism ε : M → M ′′

any map f : P → M ′′ can be lifted to M , i.e., there exists a map f ′ : P → M such
that f = ε ◦ f ′.

P

f
��

f ′

wwo o o o o o o

M
ε // M ′′ // 0

Projective right R–modules are also characterized as direct summand of free right
modules.

Projective modules carry a lot of information on the ring R and its modules. Indeed,
every right R–module M is a epimorphic image of a free, hence projective, right
module P0. Thus many properties of M may be deduced from the short exact
sequence

0 // K1
// P0

// M // 0,

where K1 is the kernel of the epimorphism P0 →M . Now to study M it is sufficient
to study P0 and K1. But for K1 we can find a similar construction:

0 // K2
// P1

// K1
// 0.

Following in this way we find that all information about M is in the exact sequence

· · · // P2
// P1

// P0,

i.e., in a projective resolution of M .

For that reason to know as must as possible on the structure and behavior of pro-
jective modules is interesting to know more on the ring R itself. We observe that
direct sums of projective modules are projective modules. Thus we have a class of
modules: the class of projective right R–modules, which is closed under direct sums.
The first question is: which kind of information provides this class?

First may we observe that in order to have a set instead a proper class of modules,
we may consider the isomorphism equivalence relation, i.e., P1 and P2 are related
if there is an isomorphism, g : P1

∼= P2. Hence in the quotient set of projective
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modules up to this equivalence relation, say M(R), we have a monoid structure
induced by the direct sum of modules.

Again the monoidM(R) carries a information on R. For instance if R is a division
ring, this monoid contains a submonoid isomorphic to the additive monoid N of
all natural numbers. Indeed this submonoid is the monoid of all cosets of finitely
generated projective right R–modules. This is because every projective right R–
module is free.

When we consider a different ring, for instance R[X], the polynomial ring over a
division ring R, we get the same result as every finitely generated projective right
R[X]–module is free. When we consider a general ring R, this submonoid is not
necessarily isomorphic to N, even it may exist non-free finitely generated right R–
modules; this is the case of R[X, Y ], the polynomial ring in two indeterminates over
some a division ring R.

The monoid M(R) may be studied through a group if we define in M(R)×M(R)
the equivalence relation

(a1, b1) ∼ (a2, b2), if there exists c ∈M such that a1 + b2 + c = a2 + b1 + c.

and call G(R) := (M(R)×M(R))/ ∼. In G(R) we define a binary inner operation
as follows

[(a1, b1)] + [(a2, b2)] = [(a1 + a2, b1 + b2)],

hence (G(R).+) is an abelian group.

The group G(R) is of null interest, for instance if we consider an arbitrary element
[(a, b)], such that a and b are classes of free right R–modules, and define c, free right
R–module of infinite dimension and bigger that the dimensions of a and b, we get
the relationship 0 + b + c = 0 + a + c, hence [(a, b)] = [(0, 0)]. In particular the
submonoid generated by the class of R goes to zero in G(R).

To overlap this we restrict ourselves to consider only finitely generated projective
right R–modules. If we denote by V(R) the corresponding monoid of cosets, the
associated group is the Grothendieck group of R and is denoted by K0(R).

In the particular case of a finitely generated projective right R–module P we always
may find a split short exact sequence

0 // Rn
f // Rm // P // 0.

Projective modules Iyad K. Y. Alhribat
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Hence P is an epimorphic image of a finitely generated free R–module and its kernel
is also a finitely generated free R–module. In particular P is a finitely presented
right R–module and the map f , may be described, after fixing bases in Rn and Rm,
by a m× n-matrix.

We represent by n the coset of Rn in V(R), then:

(1) It may be [Rn] = [Rm] and n 6= m. For instance we may consider the ring R =
EndK(V ), being K a field and V a vector space with numerable dimension. In
this case it happens that R2 ∼= R. Rings satisfying n = m whenever [Rn] = [Rm]
are called invariant basis number rings or IBN rings. Every non trivial
commutative ring is IBN, as is every right noetherian ring.

(2) For any a ∈ V(R) there exists b ∈ V(R) and n such that a+b = n. Of particular
interest are those a such that there exists m such that a + m = n. Them will
be studied in Section (2).

Granada, 2010 Projective modules





2 Stably Free Modules

Let R be any ring, we will study the general structure of stably free right R-modules
and their direct sums, showing their equivalence to the right invertible rectangular
matrices over R. Indeed, as we will see in the following, stably free modules play an
important role in K0-theory.

A right R-module P is stably free of type m with (0 ≤ m <∞) if P ⊕Rm is free.
A module is stably free if it is stably free of type m for some m ∈ N. (Stably free
modules are, of course, projective.)

Thus, a projective right R-module P is stably free of type m and rank = n −m if
P ⊕Rm ∼= Rn, i.e., if, and only if,

P ∼= Ker(Rn f→ Rm)

for some suitable epimorphism f , which automatically splits.

If M is the m × n–matrix associated with f , then M is right invertible, i.e., there
exist an n × m matrix N such that MN = Idm. Conversely any right invertible
m × n-matrix M defines a finitely generated stably free right R-module P of type
m, namely the solution space of M ,

P =

α =

a1...
an

 | Mα = 0

 .

In this way the study of finitely generated stably free right R- modules is equivalent
to the study of right invertible rectangular matrices over R.

Proposition. 2.1.
The kernel P of an epimorphism f : Rn → Rm is free if, and only if, f can be lifted
to an isomorphism f ′ : Rn → Rm ⊕Rr for some r, such that pr1 ◦ f ′ = f .

Proof. Suppose P is free,then there exists an r such that g : P → Rr is an
isomorphism. We can write Rn = Q⊕ P in such a way that the restriction of f to
Q gives an isomorphism f0 : Q → Rm. Then f0 ⊕ g : Rn → Rm ⊕ Rr clearly gives
the desired isomorphism.
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Conversely suppose that an isomorphism f ′ with pr1 ◦ f ′ = f exists. Then P =
Ker(f) ∼= Ker(pr1) = Rr is free. �

Let M denotes the m×n–matrix corresponding to f and let N the (m+r)×n–matrix
corresponding to f ′, if f ′ exists. The condition: pr1 ◦ f ′ = f , says that M is the
sub-matrix of N , consisting of its first m rows. The condition: f́ is an isomorphism,
says that N is a, not necessarily square, right and left invertible matrix, i.e., there
exists another matrix N ′ of size n× (m+ r) such that

NN ′ = Idm+r, N ′N = Idn .

The following is the matrix theoretic version of the above proposition.

Proposition. 2.2.
For any right invertible m×n–matrix M , m < n, the (stably free) solution space of
M is free if, and only if, M can be completed to an invertible matrix by adding a
suitable number of new rows.

Let R be a commutative ring, n ∈ N is in the general linear range of R provided
that P ⊕R ∼= Rn+1 implies that P ∼= Rn. If n−m in the general linear range of R,

then 0 −→ P −→ Rn φ→ Rm −→ 0, for m < n, implies that P ∼= Rn−m. Now we
will extend this fact to non-commutative rings.

Lemma. 2.3. (M. Gabel)
Let φ : Rn → Rm be an epimorphism and let P = Ker(φ). If there exists a basis
{d1, . . . , dn} of Rn such that Rm can be generated by {φ(d1), . . . , φ(dk)}, for some
k ≤ n−m, then P ∼= Rn−m.

Proof. Let F =
∑k

i=1Rdi
∼= Rk. Since {φ(d1), . . . , φ(dk)} generates Rm, then

P + F = Rn. If K denotes the kernel of φ|P : P → Rn, then K = P ∩ F . Since
k ≤ n−m, then n−m = k + s for some s. We have two exact sequences.

0 // K // F
φ // Rm // 0,

0 // K // P // P/K // 0,

where P/K ∼= P/(P ∩ F ) ∼= (P + F )/F = Rn/F ∼= Rn−k ∼= Rm+s. Thus,

P ∼= K ⊕Rm+s ∼= K ⊕Rm ⊕Rs ∼= F ⊕Rs ∼= Rk+s ∼= Rn−m

Projective modules Iyad K. Y. Alhribat
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as claimed. �

Indeed this lemma characterizes when stably free modules are free. The following
is the matrix theoretic version.

Lemma. 2.4. ([6, lemma 3.2])
Let φ : Rn → Rm be an epimorphism and P = Ker(φ). Let A = [B,D] be
the matrix representing φ with respect to the standard basis of Rn and Rm. If
there exists U ∈ GLm(R) and V ∈ GLn(R) such that UAV = [Bm×k, 0] for some
k ≤ n−m, then P ∼= Rn−m.

Lemma. 2.5. (Whitehead´s Lemma for Rectangular Matrices)
Let A ∈ Mm,n(R), B ∈ Ms,t(R). Assume B has a right inverse. Let A = (M,V )
with M ∈ Mm,s(R), V ∈ Mm,n−s(R). Let P,Q denotes the solution space of A,B,
respectively. Then P ⊕Q is isomorphic to the solution space of (MB,V ).

Proof. Let C ∈ Mt,s(R) with BC = Is, Q ⊕ P is the solution space of

(
B 0
0 A

)
.

By elementary transformations we have:(
B 0
0 A

)
=

(
B 0 0
0 M V

)
7→
(
B−BC 0
0 M V

)
=

(
B−Is 0
0 M V

)
7→
(
B −Is 0
MB 0 V

)
7→
(

0 −Is 0
MB 0 V

)
.

It is clear that the last matrix has solution space isomorphic to that of (MB,V ).
�

Corollary. 2.6.
Let A ∈ Mm,n(R), B ∈ Mn,t(R) such that B has a right inverse. Then the solution
space of AB is isomorphic to the direct sum of the solution spaces of A and B.

Thus we can see that the study of stably free modules is equivalent to study of right
invertible rectangular matrices, such that the direct sum of stably free modules
corresponds to the product of right invertible rectangular matrices, and in general
two stably free modules are isomorphic if, and only if, they corresponds to two
matrices with the same solution space.

Granada, 2010 Projective modules





3 Polynomials over Division Rings

Let D be a division ring with center the field k, and let A = D[X1, . . . , Xn], B =
k[X1, . . . , Xn] be the polynomial rings over commutative indeterminates X1, . . . , Xn.
Then B is the center of A.

Let F ∈ A, we may write F as the sum of its monomials in this way F =
∑

α dαX
α,

where α = (α1, . . . , αn) ∈ Nn, Xα = Xα1
1 · · ·Xαn

n and the dα ∈ D are almost all
zero. In order to write F in a unique way as a sum of monomials it is enough to
introduce a well founded order in Nn which compatible with the addition in Nn and
such that 0 ≤ α for every α ∈ Nn.

If we denote by � such a well founded order then every F 6= 0 can be written
F = dα1Xα1

+ · · ·+ dαtXαt
being α1 � . . . � αt with dαi 6= 0 for any i = 1, . . . , n.

As a consequence this expression is unique in the sense that if F = dβ1Xβ1
+ · · ·+

dβsXβs
satisfies the same properties, then s = t, αi = βi for i = 1, . . . , t and dαi = dβi

for i = 1, . . . , t.

We call α1 the exponent of F , it is represented by exp(F ), dα1 the leader coef-
ficient of F , it is represented by lc(F ) and {α1, . . . , αt} the Newton diagram of
F , it is represented by N (F ).

Observe that if F,G ∈ A are nonzero, then exp(FG) = exp(F ) + exp(G) and
lc(FG) = lc(F ) lc(G). If F = 0, we can extend to it the definition of exponent and
leader coefficient, but it is not useful at this moment.

Let F ∈ A and {G1, . . . , Gt} ⊆ A, we may perform the division of F by {G1, . . . , Gt}
as follows. First we define

∆1 = exp(G1) + Nn,

and

∆i = exp(Gi) + Nn \ ∪i−1j=1∆
j, if i = 2, . . . , t.

Finally we define

∆ = Nn \ ∪tj=1∆
j.

Thus {∆1, . . . ,∆t,∆} is a partition of Nn.
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We define F0 = F and continuous as follows: for any h ≥ 1,

Fh = Fh−1 − lc(Fh−1) lc(Fjh)−1GjhX
exp(Fh−1)−exp(Gjh

)

where Gjh ∈ {G1, . . . , Gt}, whenever exp(Fh−1) ∈ ∆jh or

Fh = Fh−1 − lc(Fh−1)X
exp(Fh−1),

whenever exp(Fh−1) ∈ ∆.

This process finishes as Nn is well founded with respect to �.

If we have a division algorithm, then we may have a Groebner basis theory, and, as
consequence, it is easy to prove that every two–sided ideal I has a finite Groebner
basis as a right A–module. See [4] and [8].

Theorem. 3.1.
Let I be a two–sided ideal of A, then I = A(I∩B). As a consequence I is generated
by a Groebner basis constituted of central elements.

Proof. Indeed, let G = {G1, . . . , Gt} a system of generators of I as left A–module.
We may assume that G satisfies the following properties:

(1) {G1, . . . , Gr} is a system of generators (Groebner basis) of I ∩ B as B–module
and {Gr+1, . . . , Gt} ⊆ I \ A(I ∩B).

(2) All Gi are monic polynomials.

(3) exp(G1) < · · · < exp(Gr) and exp(Gr+1) < . . . < exp(Gt).

(4) exp(G1) = min(exp(I ∩ B)), exp(Gr+1) = min({exp(F ) | F ∈ I \ A(I ∩B)})
and exp(G1) < exp(Gr+1).

Proof of (4). For any 0 6= d ∈ D, we have exp(dGr+1 − Gr+1d) < exp(Gr+1) and
dGr+1 −Gr+1d ∈ A(I ∩B). Therefore exp(G1) ≤ exp(dGr+1 −Gr+1d) < exp(Gr+1)
and exp(G1) < exp(Gr+1). M

Let us assume r < t, then the set Y = {exp(f) | f ∈ I \ A(I ∩B)} is nonempty as
exp(Gr+1) ∈ Y . By assumption exp(Gr+1) = min(Y). For any 0 6= d ∈ D we obtain

Projective modules Iyad K. Y. Alhribat
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exp(dGr+1 −Gr+1d) < exp(Gr+1) hence dGr+1 −Gr+1d ∈ A(I ∩B). If the division
of Gr+1 by {G1, . . . , Gr} is

Gr+1 =
r∑
i=1

QiGi +R, Qi ∈ A,

then either N (R) ⊆ ∆ or R = 0. If R 6= 0, then exp(R) ≤ exp(Gr+1). We may
assume that R is monic. For any 0 6= d ∈ D, we obtain exp(dR−Rd) < exp(R) hence
dR − Rd ∈ A(I ∩B); since N (R) ⊆ ∆, then dR − Rd = 0, i,e, R ∈ Cen(A) = B.
Hence and Gr+1 ∈ A(I ∩B), which is a contradiction. �

Granada, 2010 Projective modules





4 Projective modules and K0(A)

Now we compute K0(A), the Grothendieck group of A = D[X1, . . . , Xn]. In the case
of B we have K0(B) = Z as a consequence of Quillen–Suslin’s theorem. Therefore
every finitely generated projective B–module is free. In the case of A, we have the
following result due to Stafford.

Theorem. 4.1. ([23, Theorem 2.9])
Every finitely generated projective right A–module is either free or isomorphic to
a non–free projective right ideal of A whenever the centre of A is infinite. If A =
D[X, Y ] condition on the centre can be removed.

In addition, in some cases, we may find non–free projective right ideals in A.

Example. 4.2.
Let H be the quaternion division ring. The center of H is R. Indeed, H is a 4–
dimensional R–vector space generated, as an algebra, by i, j satisfying: i2 = j2 =
(ij)2 = −1 and ij = −ji. If we take A = H[X, Y ], hence B = R[X, Y ]. We will find
in A a non–free finitely generated projective right ideal.

Proof. Observe A = H[X, Y ] is an IBN ring, it is enough to consider the eval-
uation map ε0,0 : H[X, Y ] −→ H defined ε0,0(X) = 0 = ε0,0(Y ). It is a right
noetherian ring as a consequence of Hilbert basis theorem. The map f : A2 −→ A,
defined f(λ.µ) = (X+j)λ−(Y + i)µ, is an A–linear map. In addition it is surjective
as f(Y + i,X + j) = ij − ji = −2ij is an invertible element in A. Let K = Ker(f),
i.e.,

K = Ker(f) = {(λ, µ) | (X + j)λ− (Y + i)µ = 0}.

Since Y +i is a non–zero divisor in A we find an isomorphic map K = Ker(f) −→ A,
defined (λ, µ) 7→ λ. The image is the right ideal J = {λ ∈ A | (X+j)λ ∈ (Y + i)A}.
Then the short exact sequence

0 // Ker(f) // A2 // A // 0,

splits and we have A2 ∼= Ker(f)⊕ Im(f) ∼= K ⊕ A ∼= J ⊕ A. We claim J is non–free.
Otherwise, since A is IBN then J ∼= A; in this case there exists Z ∈ J such that
J = ZA. We have:

(X + j)(X − j)(Y + i) = (X2 − j2)(Y + i) = (X2 + 1)(Y + i) = (Y + i)(X2 + 1),
(X + j)(Y 2 + 1) = (Y 2 + 1)(X + j) = (Y + i)(Y − i)(X + j).
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Hence (X−j)(Y +i) ∈ J and Z has Y –degree less or equal than 1. If it is equal to 1,
let Z = F1Y +F0, where F1, F0 ∈ H[X]. Since Y 2 + 1 ∈ J , there are G1, G0 ∈ H[X]
such that

Y 2 + 1 = (F1Y + F0)(Y G1 +G0) = F1G1Y
2 + (F0G1 + F1G0)Y + F0G0.

Hence F1, F0 ∈ H, and we may assume F1 = 1. Otherwise (X− j)(Y + i) ∈ J , hence
there is G ∈ H[X] such that

(X − j)(Y + i) = (Y + F0)G.

Thus X − j = G and (X − j)i = F0G. Therefore (X − j)i = F0(X − j), and we
obtain F0 = i and −ji = −F0j. This implies −ij = −ji, which is a contradiction.

As a consequence J is non–free. �

This example is an extension of:

Theorem. 4.3. ([13, Proposition 1])
Let D be a non commutative division ring. Then A = D[X, Y ] contains a non-free
projective right ideal P such that P ⊕ A ∼= A2.

The basic construction idea in this case is the following: let a, b ∈ A be such that the
additive commutator c = ab− ba ∈ U(A), (the group of units of A). For any central
elements x, y ∈ A, we define φ : A2 → A by the rectangular matrix (x + a, y + b),
i.e., φ(e1) = x + a and φ(e2) = y + b for the unit vectors e1, e2.The map φ is onto
since

φ

(
y + b
−(x+ a)

)
= (x+ a, y + b)

(
y + b
−(x+ a)

)
= ab− ba = c

is invertible. Thus the solution space P = P (x+ a, y + b) = Ker(φ) is stably free of
type 1 (since the splitting of φ leads to P ⊕A ∼= A2). Under suitable assumption on
a, b, x, y ∈ A it can be shown that P is isomorphic to a non free right ideal J of A.

Let us assume that x + a and y + b are not 0-divisors in A. Then the second
coordinate projection π2 : A2 → A maps P isomorphically onto the the right ideal

J = {β ∈ A| (y + b)β ∈ (x+ a)A}

and left multiplication by y + b defines an isomorphism from J onto the very nicely
expressed right ideal (x+ a)A ∩ (y + b)A.

Since P ⊕R ∼= R2, then J has two generators f1, f2. We will find them.
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Lemma. 4.4.
J = f1A+ f2A, where f1 = (x+ a)c−1(x+ a) and f2 = 1 + (x+ a)c−1(y + b).

Proof. The epimorphism φ splits by the map ψ : R→ R2 defined by

ψ(1) =

(
(y + b)c−1

−(x+ a)c−1

)
.

Thus P is the image of the projection Id− ψφ on R2. So

f1 = π2(Id− ψϕ)(e1) = π2(e1 − ψϕ(e1)) = π2(e1 − ψ(x+ a))

= π2((1, 0)− ((x+ b)c−1(y + a),−(x+ a)c−1(x+ a))) = (x+ a)c−1(x+ a),

and

f2 = π2(Id− ψϕ)(e2) = π2(e2 − ψϕ(e2)) = π2(e2 − ψ(y + b))

= π2((0, 1)− ((y + b)c−1(y + b),−(x+ a)c−1(y + b))) = 1 + (x+ a)c−1(y + b).

�

In the special case when a, b ∈ D the set of non-zero commutators c = [a, b] = ab−ba
produces non-free stably free right ideals I = (f1, f2)A by the same way. In addition
I is non–free if, and only if, c 6= 0.

Thus for the module P = P (x + a, y + b) in the previous theorem, for instance, we
have automatically P ⊕P ∼= A2, P ⊕P ⊕P ∼= A3, etc., provided that D has infinite
center. In this case, one say that proj(A) fails to satisfy separative cancelation, in
that we have modules P,Q in proj(A) (here Q = A) such that

P ⊕ P ∼= P ⊕Q ∼= Q⊕Q,

but P � Q.

Although we have the non–cancelation in proj(A), we will show that the group
K0(A) is “trivial”.

Corollary. 4.5.
K0(A) ∼= Z.
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Proof. By Grothendieck’s theorem [1, Theorem XII.3.1] every finitely generated
projective right A-module P is stably free and hence by Stafford’s result [23, The-
orem 2.9], P ∼= An ⊕ I, for some projective non-free right ideal I of A with stable
rank 1. Hence there is an isomorphism I ⊕ A ∼= A2. Therefore, as a consequence,
we obtain K0(A) ∼= Z. �

For that reason in order to study the ideal structure of A it is of interest to develop
a particular study of the monoid V(A) of isomorphism classes of right ideals. It
contains more information than K0(A) on the structure of A.

In the problem of classification of stably free non-free right ideals of A, we will see
the following case which was studied by R. G. Swan. In particular examples of
stably free non-free right ideals over H[X, Y ], where H is the quaternion division
ring, are obtained.

Let A = H[X, Y ], where H is the quaternion division ring. The center of H is R,
then the center of A = H[X, Y ] is B = R[X, Y ]. Let t ∈ R? and consider the stably
free module P = P (X + ti, Y + j) over A. We will assume that Y 2 + 1 is regular
in A so that Y + j is regular and, therefore the π2 : P → A maps P isomorphically
onto the right ideal I = (Y 2 + 1)A+ (X − ti)(Y + j)A. Now we will give two simple
criterion for I to be principal.

Lemma. 4.6. ([27, Lemma 6.2])
Assume that 1 + Y 2 is regular. Let f ∈ A. Then I = fA if, and only if, f ∈ I and

ff = u(1 + Y 2) for some u ∈ B?.

Corollary. 4.7. ([27, Corollary 6.3])
Assume that 1 + Y 2 is regular. Let f ∈ A. Then I = fA if, and only if, ff =
u(1 + Y 2) for some u ∈ B? and (X − ti)(Y + j) ≡ 0 (mod fA).

Theorem. 4.8. ([27, Theorem 7.1])
Suppose that for an infinite set S of real numbers such that U(A/A(Y − s)) = H?

for any s ∈ S. Then the stably free A-modules P (X + ti, Y + j) with t 6= 0 are all
non-free and P (X + ri, Y + j) ∼= P (X + ti, Y + j) if and only if r = ±t.

As a consequence of this theorem we have:

Corollary. 4.9.
There are infinitely many isomorphism classes of such modules over A = H[X, Y ].
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However, the classification of all stably free non-free right ideals of this ring is still
open.

Question. 4.10.
For instance when the non-free projective right ideals P = P (X + a1, Y + b1) and
Q = Q(X + a2, Y + b2) of A = D[X, Y ] are isomorphic for any noncommutative
division ring D?
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5 K0 of Weyl Algebras

LetD be a division ring of characteristic zero, then the n-th Weyl Algebra An(D) is
the associative D-algebra with 1 generated by the 2n elements x1, . . . , xn, y1, . . . , yn
with relations [xi, xj] = [yi, yj] = 0 and [xi, yj] = δij (the Kronecker’s delta), where
[a, b] = ab− ba. It is well known that An(D) is simple right noetherian domain.

For n = 1, we have the first Weyl algebra A1(D). It is the associative D-algebra
generated by elements x and y subject to the relation xy − yx = 1. This algebra
has been much studied in the case when D is a field of characteristic zero.

The existence of non-free stably free right ideals for R = A1(k), where k is a field
of characteristic zero, was first pointed out by Webber [28]. In fact, Webber proved
that all right ideals in R are stably free, also it has been shown that, any right ideal
can be generated by two elements, and that any projective right module is either
free or isomorphic to a right ideal, while Rinehart [16] had noted earlier that R is
not a principal right ideal domain.

We will give an example of stably free non-free left ideal of A1(k).

Example. 5.1.
The left ideal I of R = A1(k) generated by y2 and 1 + xy is non-free.

Proof. Assume, on the contrary, that I = Rf , where f ∈ R. We think of f as a
polynomial of the form

∑
i fi(y)xi, so we can define degx(f) to be max{i| fi 6= 0}.

Write y2 = gf , xy + 1 = hf where g, h ∈ R. Since degx(y
2) = 0 and f cannot be a

constant, we must have f = ay or f = ay2 for some a ∈ k. But then xy + 1 = hf ∈
Ry, and hence 1 ∈ Ry, which is a contradiction. �

The results of the first Weyl algebra were generalized by Stafford. He has shown
that the same results are true for An(k), where the structure of finitely generated
projective modules over An(k) over a commutative field k or a non-commutative
division ring D of characteristic 0 has been studied in separate series of his papers.

Theorem. 5.2. ([21, Theorem 2.2])
All finitely generated projective right An(D)-modules are stably free.

Theorem. 5.3. ([22, Theorem 3.6(b)])
Any finitely generated projective right R = An(k)-module is either free or isomorphic
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to a right ideal.

Corollary. 5.4.
K0(An(k)) ∼= Z.

Proof. Let P be finitely generated projective right R = An(k)-module, then
P ∼= Rn ⊕ J , for some stably free non-free right ideal of R such that J ⊕ R ∼= R2,
following with this we get K0(R) ∼= Z. �

Now for non-commutative division ring D,we have:

Theorem. 5.5. ([20, corollary 6.4])
Any finitely generated projective right R = An(D)-module of rank ≥ 5 is free.

In addition Stafford conjectured that this bound could be reduced to 2.

In this case also we can compute the K0 group, since An(D) is stably free and since
it is left noetherian, so it is IBN, this implies that K0(R) ∼= Z.
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6 Projective right ideals of A1(k)

In the classification of projective right ideals of A1(k). R. Cannings and M. P.
Holland established in [5] a bijective correspondence between primary decomposable
subspaces of R = k[t] and projective right ideals I of A1(k) which have non-trivial
intersection with k[t]. Indeed this bijection had been founded only when the field k
is algebraically closed field of characteristic zero.

M. K. Kouakou and A. Tchoudjem in [9], generalized the definition of primary
decomposable subspaces of k[t] when k is any field of characteristic zero. Particulary
for Q, R, and it has shown that R. Cannings and M. P. Holland correspondence
theorem holds. Thus projective right ideals of A1(Q), A1(R) are also described by
this theorem.

Now we will reanalyze the main theory of this classification and describe the iso-
morphism classes of the projective right ideals of A1.

First we will introduce the relation between A1(k) and differential operators. Let
A1(k) = k[t, ∂]. A1 contains the subring R = k[t] and S = k[∂]. It is well known
that A1 is an integral domain, two sided noetherian and since the characteristic of
k is zero, A1 is hereditary that every right ideal is projective. In particular, A1 has
a quotient division ring denoted by Q1.

Q1 contains the subrings D = k(t)[∂] and D = k(∂)[t]. The elements of D are
k-linear endomorphisms of k(t).Precisely if, d = an∂

n+ ...+a1∂+a0 where ai ∈ k(t)
and h ∈ k(t), then

d(h) = anh
(n) + ...+ a1h

1 + a0h

where h(i) denote the i− th derivative of h.

For V and W two vector subspaces of k(t), we set:

D(V,W ) = {d ∈ k(t)[∂] : d(V ) ⊂ W}

D(V,W ) is called the set of differential operators from V to W . Note that D(R, V ) is
an A1-right submodule of Q1 and D(V,R) is an A1-left submodule of Q1. If V ⊆ R,
one note that D(R, V ) is a right ideal of A1. When V = R,thenD(R,R) = A1.

If I is a right ideal of A1, we set I ? 1 = {d(1), d ∈ I}. Clearly I ? 1 is a vector
subspace of k[t] and I ⊆ D(R, I ? 1).
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The following theorem of Stafford is the first step in the classification of right ideals
of the first Weyl algebra A1

Theorem. 6.1. ([25, lemma 4.2])
Let I be a non-zero right ideal of A1, then there exist x, e ∈ Q1 such that :

(1) xI ⊂ A1 and xI ∩ k[t] 6= {0}

(2) eI ⊂ A1 and eI ∩ k[∂] 6= {0}

Corollary. 6.2.
Every non-zero right ideal I of A1 is isomorphic to another right ideal J with a
non-trivial intersection with k[t].

Proof. As a consequence of (1) in the previous theorem, we can choose J = xI,
for some x ∈ Q1, therefore I ∼= J and J ∩ k[t] 6= {0}. �

We denote It the set of right ideals I of A1 such that I ∩ k[t] 6= {0}.

Now let C be algebraically closed field of characteristic zero. Cannings and Holland
have defined primary decomposable subspaces of C[t] as finite intersections
of primary subspaces which are vector subspaces of C[t] containing a power of
a maximal ideal M of C[t]. Since C is algebraically closed field, maximal ideals
of C[t] are generated by one polynomial of degree one: M = (t − λ)C[t]. So, a
vector subspace V is primary decomposable subspaces if V =

⋂n
i=1 Vi, where each

Vi contains a power of a maximal ideal Mi of C[t].

They have established the nice well-known bijective correspondence between primary
decomposable subspaces of C[t] and It by:

Theorem. 6.3. ([5, Theorem 0.5] (Bijective correspondence theorem))

Γ : V 7→ D(R, V ) , Γ−1 : I 7→ I ? 1.

The proof of Cannings and Holland´s theorem one can see in [5].

Now we will give some definitions: Let b, h ∈ R = k[t] and V a k-subspace of k[t].
We set

O(b) = {a ∈ R : a′ ∈ bR} and O(b, h) = {a ∈ R : a′ + ah ∈ bR}
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where a′ denote the formal derivative of a.

S(V ) = {a ∈ R : aV ⊆ V } and C(R, V ) = {a ∈ R : aR ⊆ V }

It is clear that O(b) and S(V ) are k-subalgebras of k[t]. The set C(R,V)is an ideal
of R contained in both S(V ) and V .

Definition. 6.4.
A k-vector subspace V of k[t] is said to be primary decomposable if S(V ) contains
a k-subalgebra O(b) of k[t], with b 6= 0.

Example. 6.5.
O(b) ⊆ S(O(b, h)) in particular O(b, h) is primary decomposable subspace when
b 6= 0.

Proof. Let a ∈ O(b), then a′ ∈ bR. We need to show that a ∈ S(o(b, h)),
i.e., aO(b, h) ⊆ O(b, h). Let x ∈ aO(b, h), then x = ay for some y ∈ O(b, h), so
y′ + yh ∈ bR. Now x′ + xh = ay′ + ya′ + ayh = a(y′ + yh) + ya′ ∈ bR. Therefore
x ∈ O(b, h). �

Now we will show that classical primary decomposable subspaces are primary de-
composable in the new way.

Lemma. 6.6.
Let k be a field of characteristic zero and λ1, . . . , λn finite distinct elements of k.
Suppose that V1, . . . , Vn are k-vector subspaces of k[t], and each Vi contains (t −
λi)

rik[t] for some ri ∈ N?. Then

O((t− λ1)r1−1, . . . , (t− λn)rn−1) ⊆ S(
n⋂
i=1

Vi).

Proof. We have O((t − λi)ri−1) = k + (t − λi)rik[t]. And since O(lcm(a, b)) =
O(a) ∩O(b), then one has

O((t− λ1)r1−1, . . . , (t− λn)rn−1) =
n⋂
i=1

O((t− λi)ri−1 =
n⋂
i=1

k + (t− λi)rik[t]

⊆
n⋂
i=1

Vi ⊆ S(
n⋂
i=1

Vi).
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�

As a consequence of this lemma we have:

Corollary. 6.7.
In the above hypothesis of lemma (6.6.), let V =

⋂n
i=1 Vi. If q ∈ C(R, V ), then

O(q) ∈ S(V ).

Proof. If q ∈ bk[t], then O(q) ⊆ O(b). Let b = (t − λ1)r1 , . . . , (t − λn)rn . In the
above hypothesis, we have

C(R, V ) =
n⋂
i=1

C(R, Vi) =
n⋂
i=1

(t− λi)rik[t] = (
n∏
i=1

(t− λi)ri)k[t] = bk[t].

Since b ∈ (t − λ1)r1−1, . . . , (t − λn)rn−1k[t] = b0k[t], then O(b0)Vi ⊆ Vi for all i, so
O(b0) ⊆ S(V ) and O(q) ⊆ O(b) ⊆ O(b0). �

The two definitions are the same when k is algebraically closed field of characteristic
zero.

Proposition. 6.8. ([9, Lemma 4])
Let k be algebraically closed field of characteristic zero and V be a k-vector subspace
of k[t] such that S(V ) contains a k-subalgebra O(b) where b 6= 0. Then V is a finite
intersection of subspaces which contains a power of a maximal ideal of k[t]

Now we can see that the Bijective correspondence theorem is still true according to
the new definition of the primary decomposable subspaces of k[t].

Indeed Cannings and Holland´s theorem use the Lemma (6.9.), which holds even
the field is just of characteristic zero, and Proposition (6.10.), of M. K. Kouakou
and A. Tchoudjem which has been shown according to the new definition; also the
converse of this proposition can be given, but with more conditions added. Hence
we obtain a characterization of primary decomposable subspaces of k[t].

Lemma. 6.9. ([5, corollary 3.5])
Let I ∈ It and V = I ? 1. Then I = D(R, V ).

Proposition. 6.10. ([9, Proposision 7])
Let k be field of characteristic zero and V a k-vector subspace of k[t] such that S(V )
contains a k-subalgebra O(b). Then D(R, V ) ? 1 = V .
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Theorem. 6.11. ([9, Theorem 8])
Let k be a field of characteristic zero and V a k-vector subspace of k[t] such that:
C(R, V ) = qk[t] with q 6= 0 and D(R, V ) ? 1 = V . Then S(V ) contains some
k-subalgebra O(b) with b 6= 0.

We give an example of a subspace of k[t] that is not primary decomposable.

Example. 6.12.
Suppose the field k is of characteristic zero and one can find q ∈ k[t] such that: q is
irreducible and deg(q) ≥ 2. Then the vector subspace V = k + qk[t] is not primary
decomposable.

Proof. Since q is irreducible, then it can be shown by a direct calculations that the
right ideal qA1 is maximal. Clearly one has qA1 ⊆ D(R, V ), and D(R, V ) 6= A1 since
1 /∈ D(R, V ). So one has qA1 = D(R, V ). Suppose V is primary decomposable.
Applying R = k[t] on the both sides, we get V = qk[t], hence V is not primary
decomposable. �

Lemma. 6.13.
Let k be field of characteristic zero, V and W be primary decomposable subspaces
of k[t].

(1) V +W and V ∩W are primary decomposable subspaces.

(2) If q ∈ k(t) such that qV ⊆ k[t], the qV is primary decomposable subspace.

Proof. (1). It is clear that O(ab) ⊆ O(a) ∩O(b) for all a, b ∈ k[t].So the result is
a consequence of this.

(2). As V is primary decomposable subspaces,then O(b) ⊆ S(V ) for some b 6= 0.That
is O(b)V ⊆ V ,hence qO(b)V ⊆ qV ,implies O(b)qV ⊆ qV .Therefore O(b) ⊆ S(qV ).

�

Theorem. 6.14.
The set of primary decomposable subspaces of k[t] ordered by inclusion form a
Lattice.

Proof. It is clear that it is a partially ordered set and by (1) in the above lemma
we have V +W and V ∩W are primary decomposable subspaces moreover they are
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respectively the join and the meet for any primary decomposable subspaces V and
W of k[t]. �

It is well known that the ring of differential operators on R is defined inductively
D(R) =

⋃∞
i=0D

i(R),where D0(R) = EndR(R) ⊆ Endk(R) and Di(R) = {θ ∈
Endk(R) : [θ, R] ⊆ Di−1(R)}, for i ≥ 1. By convention Di(R) = 0 if i < 0 and we
will identify R = D0(R).

Now we are ready to classify the projective right ideals of A1 up to isomorphism.
For that, we introduce an equivalence relation on Decomp(R), the set of the primary
decomposable subspace of k[t]. Let V,W ∈ Decomp(R).Then V ∼ W if, and only
if, W = qV ,for some 0 6= q ∈ k(t). Denote the equivalence class of V by [V ].

Theorem. 6.15. (Classification projective right ideals)
There is a bijection Decomp(R)/ ∼−→ It/ ∼= defined by [V ] 7→ [D(R, V )].

Proof. Let φ be the given map. It well defined if 0 6= q ∈ k(t) and V, qV ∈
Decomp(R), then

D(R, qV ) = qD(R, V ) ∼= D(R, V ).

That φ is surjective follows from Proposition (6.10.). Suppose that D(R, V ) =
D(R,W ) for some V,W ∈ Decomp(R). Then there exist 0 6= q ∈ Q1 with
qD(R, V )] = D(R,W )]. Multiplying on the right by D = k(t)[∂] = D1(k(t)) we
see that q ∈ D, say q ∈ Dn(k(t))\Dn−1(k(t)). This means that if 0 6= θ ∈ qD(R, V )
then θ ∈ D\Dn−1(k(t)). But D(R,W ) ∩R 6= 0. Thus n = 0 and q ∈ k(t). Evaluat-
ing at R = k[t], we have qV = W . �

Finally one can note that the correspondence theorem [5, Theorem 0.5], holds for
D[k[t1, ..., tn] = An(k). But the classification theorem doesn’t hold for An(k) when
n ≥ 2. This is because A1(k) is hereditary that every right ideal is projective, while
An(k) is not. So the problem of classification of projective right ideals of An(k) up
to isomorphism still open and not treated completely.

Now we will study a particular case of this work. The set of right projective ideals
of A1(k) that appears as a consequence of Example (6.12.), namely the right ideals
that correspond to the primary decomposable subspaces V = k + qk[t] of k[t].

Let k be a field. A polynomial f ∈ k[x] is associated of a polynomial g ∈ k[x]
if f = cg for some nonzero c ∈ k. A nonconstant polynomial p ∈ k[x] is said
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to be irreducible if its only divisors are its associates and the nonzero constants
polynomials (i.e., the invertible elements of k[x]). A nonconstant polynomial that
is not irreducible is said to be reducible.

As a consequence of Example (6.12.), we have the following:

Corollary. 6.16.
For all q ∈ k[t],if V = k+qk[t] is primary decomposable subspace of k[t], then either
q is reducible or deg(q) < 2.

We define on k[t] the relation p � q if and only if p|q ( p divides q).It is clear that
k[t] with this order is a partially ordered set poset.

Also we can define on k[t] the following binary operations. For any p, q ∈ k[t].

p ∧ q = gcd(p, q), (a greatest common divisor), and

p ∨ q = lcm(p, q), (a least common multiple).

One can see that k[t], with these two binary operations, form a lattice.

On the other hand we have S = {Vq| Vq = k + qk[t], q ∈ k[t]} is a set of subspaces
of k[t]. Clearly S is a poset if its elements are ordered by inclusion. Moreover S
will be a lattice under the following two binary operations.

Vp ∧ Vq = k + lcm(p, q)k[t],

Vp ∨ Vq = k + gcd(p, q)k[t].

Let A = {q ∈ k[t] : q is reducible or deg(q) < 2}. Then AV = {Vq| Vq = k+qk[t], q ∈
A} is a set of primary decomposable subspaces of k[t]. Our aim is to classify the
right projective ideals that associated to this subspaces.

Proposition. 6.17.
q|p if and only if Vp ⊆ Vq

Proof. Suppose q|p, then there exist f ∈ k[t] such that qf = p. Therefore

Vp = k + pk[t] = k + qfk[t] ⊆ k + qk[t] = Vq.

Conversely, suppose k+pk[t] ⊆ k+ qk[t]. It is clear that p ∈ k+ qk[t], so p = β+ qf
for some β ∈ k and f ∈ k[t]. Moreover for all α ∈ k and g ∈ k[t], we have
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α + pg ∈ k + qk[t], but α + pg = α + (β + qf)g = α + βg + qfg. Therefore
βg ∈ k + qk[t], so βg = γ + qh for some γ ∈ k and h ∈ k[t]. Now if β 6= 0,then
g = α

β
+ q h

β
, but this is for all g ∈ k[t],which is not possible, thus we must have

β = 0 and therefore p = qf . �

In the general problem of classification of projective right ideals of A1(k), an equiv-
alence relation was defined on the primary decomposable subspaces of k[t] as the
following: for any V,W ∈ Decomp(R), V ∼ W if and only if W = αV ,for some
0 6= α ∈ k(t). We can restrict this relation to the set AV in order to get the
classification of the corresponding projective right ideals up to isomorphism.

Lemma. 6.18.
Vp ∼ Vq if, and only if, Vp = αVq, for some α ∈ k?.

Corollary. 6.19.
(1) αVp = Vαp, for all α ∈ k?.

(2) Vp ∼ Vq if and only if p = δq for some δ ∈ k? .

Proof. (1). αVp = α(k + pk[t]) = αk + αpk[t] ⊆ k + αpk[t] = Vαp. On the other
hand we have Vαp = k + αpk[t] ⊆ αk + αpk[t] = αVp.

(2). Vp ∼ Vq ⇐⇒ Vp = αVq, for some α ∈ k? ⇐⇒ Vp = Vαq ⇐⇒ p|αq and αq|p
⇐⇒ pg = αq for some g ∈ k[t] and αqf = p for some f ∈ k[t]. We get gf = 1, so
f, g ∈ k?. �

One can see that there is a 1-1 correspondence between A and AV defined by
q 7→ Vq = k + qk[t] and hence by Cannings and Holland´s theorem there is a 1-
1 correspondence between A and {D(R, Vq) : q ∈ A} defined by q 7→ D(R, Vq)

Corollary. 6.20.
D(R, Vp) ∼= D(R, Vq) if, and only if, p = δq for some δ ∈ k? .

Proof.
D(R, Vp) ∼= D(R, Vq)⇐⇒ Vp ∼ Vq ⇐⇒ p = δq

for some δ ∈ k? �

This means that reducible polynomials with the same degree and same roots corre-
spond to the same isomorphic class of projective right ideals of A1(k).
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7 The monoid V (A)

In this section we will consider the ring A of polynomials over non commutative
division ring D[X1, . . . , Xn] and the n-th Weyl Algebra An(k) where k is a field
of characteristic zero. Since in each case we have the same structure of finitely
generated projective modules and stably free modules of stable rank > 1 are free,
the structure of the monoid V (A) could be studied by the same way.

In fact a general structure of the monoid V (A) of isomorphism classes of finitely
generated right projective A-modules can be given as the following.

V (A) ∼= N ∪ CI(A),

where CI(A) = {[I]| [I] + [A] = 2, [I] 6= [A]} is the set of all isomorphism classes of
the non-free right ideals of A.

Lemma. 7.1.
For any two elements [I], [J ] ∈ CI(A),we have [I] + [J ] = 2.

Proof. We have I⊕A ∼= A2 and J⊕A ∼= A2. It follows that I⊕J⊕A2 ∼= A4, but
I⊕J is stably free module of rank 2, then it is free and so we get I⊕J ∼= A2. �

Let R be any ring; a stably free projective R-module P such that P ⊕ Rr ∼= Rm

has an m-element generating set, so it is called stably m-free. If every stably m-free
module over R is free of unique rank, for all m ≤ n then R is said to be n-Hermite.
If R is n-Hermite, for all n, then every stably free module is free, of unique rank, in
other words, R is Hermite.

A row (a1, ..., an) over a ring R is called right unimodular if a1R+ · · ·+anR = R.
If (a1, ..., an) is a right unimodular n-row over a ring R then we say that (a1, . . . , an)
is reducible if there exists an (n− 1)-row (b1, . . . , bn−1) such that the (n− 1)-row
(a1 + anb1, . . . , an−1 + anbn−1) is right unimodular. A ring R is said to have stable
range n if n is the least positive integer such that every right unimodular (n+1)-row
is reducible. This number n will be denoted by s.r.(R).

A ring which satisfies the following properties is called a (right) Hermite ring.

Proposition. 7.2.
For any ring R, the following statements are equivalent.
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(1) Any finitely generated stably free right R-module is free.

(2) Any finitely generated stably free right R-module of type 1 is free.

(3) Any right unimodular row over R can be completed to an invertible matrix (by
adding a suitable number of new rows).

Proof. (2) ⇔ (3). It follows from Proposition (2.2.).

(1) ⇒ (2). It is obvious.

(2) ⇒ (1). We prove the result by induction on m. This is clear for m = 1 by (2).
Assume the result for m− 1, and let P be finitely generated stably free of type m.
Then P ⊕ Rm ∼= Rn, i.e., (P ⊕ Rm−1) ⊕ R ∼= Rn. This implies P ⊕ Rm−1 is stably
free of type 1. By (2) it is free. Thus P ⊕ Rm−1 ∼= Rk for some k. By induction P
is free. �

A right unimodular row which satisfies condition (3) above is called completable.

More generally we can give a characterization for the right (n+ 1)–Hermite rings

Corollary. 7.3.
The following properties of a ring R are equivalent:

(1) Any finitely generated stably free right R-module of rank ≥ n is free.

(2) Any finitely generated stably free right R-module of rank ≥ n and of type 1 is
free.

(3) Any unimodular row of length ≥ n+ 1 is completable.

Example. 7.4.
D[X1, . . . , Xn] and An(k) are 3-Hermite rings.

The set of all (right) unimodular rows of length n with entries in R is denoted by
Umn(R).

The group GLn(R) of invertible n×n square matrices over R acts on the set Umn(R)
of unimodular rows in the following natural manner: If v ∈ Umn(R), σ ∈ GLn(R),
then v 7→ vσ.
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Note that if w ∈ M1,r(R) is such that vwt = 1, then vσ(w(σ−1)t)t = 1, and so
vσ ∈ Umn(R). Thus, the above map defines an action of GLn(R) on Umn(R).

If v′ = vσ for some σ ∈ GLn(R), then we write this as v ∼ v′ or v ∼GLn(R) v
′.

Proposition. 7.5. ([15, proposition 3.3.1])
The orbits of Umn(R) under the GLn(R)-action are in one to one correspondence
with the isomorphism classes of right R modules P for which P ⊕ R ∼= Rn. Under
this correspondence orbit of (1, 0, . . . , 0) corresponds to the free module Rn−1.

Corollary. 7.6.
Let (b1, . . . , bn) ∈ Umn(R). The following statements are equivalent:

(1) (b1, . . . , bn) is completable;

(2) P (b1, . . . , bn) ∼= Rn−1.

(3) (b1, . . . , bn) ∼ (1, 0, . . . , 0)

Proof. (2) ⇔ (3). It follows from Proposition (7.5.)

(1) ⇒ (3). (b1, . . . , bn) ∈ Umn(R) is completable to an invertible matrix M ′ ∈
GLn(R). IfM ′M = In, then e1M

′M = (b1, . . . , bn)M = e1In = e1, i.e., (b1, . . . , bn) ∼
e1.

(3) ⇒ (1). Suppose (b1, . . . , bn) = (1, 0, . . . , 0)M . Then M is a completion of
(b1, . . . , bn) to a square invertible matrix. �

Proposition. 7.7.
If R is a right(left) n-Hermite ring then R has stable range ≤ n.

Proof. Let a1R + ... + anR + an+1R = R. Since R is a right n-Hermite ring,
(a1, . . . , an)P = (d, 0, ..., 0) for some d ∈ R, P = (pij) ∈ GLn(R).

Let P−1 = (αij) ∈ GLn(R).We claim that

(a1 + an+1αn1) + ...+ (an + an+1αnn)

is a right unimodular row. We have (a1 + an+1αn1)p1n + · · ·+ (an + an+1αnn)pnn =
a1p1n + · · · + anpnn + an+1(αn1p1n + · · · + αnnpnn) = 0 + an+1.1 = an+1 and (a1 +

Granada, 2010 Projective modules



32 Sec. 7. The monoid V (A)

an+1αn1)p11 + · · · + (an + an+1αnn)pn1 = a1p11 + · · · + anpn1 + an+1(αn1p11 + · · · +
αnnpn1) = d+ an+1.0 = d. Therefore,

an+1, d ∈ (a1 + an+1αn1)R + · · ·+ (an + an+1αnn)R.

Since (a1, . . . , an)P = (d, 0, . . . , 0), we obtain a1R + · · ·+ anR = dR.

On the other hand, we have a1R+ ...+anR+an+1R = R then dR+an+1R = R.Since
an+1, d ∈ (a1 +an+1αn1)R+ ...+ (an+an+1αnn)R,we see that (a1 +an+1αn1)R+ ...+
(an + an+1αnn)R = R and s.r.(R) = n. �

Corollary. 7.8.
Any stably free right R-module M with rank(M) ≥ s.r(R) is free

Example. 7.9.
s.r.(D[X1, . . . , Xn]) = 2,and s.r.(An(k)) = 2

Thus the right invertible 1 × 2 matrices over A cannot be completable in general.
Only the matrices that associated to free modules are. So to determine the structure
of the monoid V (A) we need to study the isomorphism classes of the stably free non
free modules of rank 1.

We will determine the isomorphism classes of the these modules depending on two
crucial facts, each projective module generated by two elements and looking to them
as R-submodules of R2.

let I and J are two non-free stably free R-modules of stable rank 1, then we have
I ⊕R ∼= R2 and J ⊕R ∼= R2, so I and J are generated by two elements.

Suppose I = 〈g1, g2〉 ⊆ R2 = 〈e1, e2〉, then

g1 = d11e1 + d12e2 =
(
d11 d12

)(e1
e2

)
g2 = d21e1 + d22e2 =

(
d21 d22

)(e1
e2

)
let x ∈ I, then x = a1g1 + a2g2 =

(
a1 a2

)(d11 d12
d21 d22

)(
e1
e2

)
.

Similarly if J = 〈h1, h2〉 ⊆ A2 = 〈e1, e2〉, then

h1 = f11e1 + f12e2 =
(
f11 f12

)(e1
e2

)
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h2 = f21e1 + f22e2 =
(
f21 f22

)(e1
e2

)
and for y ∈ J , y = b1h1 + b2h2 =

(
b1 b2

)(f11 f12
f21 f22

)(
e1
e2

)
.

Suppose I ∼= J ,then there exist a left R-isomorphism α : I → J where α(gi) =
ai1h1 + ai2h2,so

α(x) =
(
a1 a2

)
α

(
g1
g2

)
=
(
a1 a2

)(a11 a12
a21 a22

)(
h1
h2

)

=
(
a1 a2

)(a11 a12
a21 a22

)(
f11 f12
f21 f22

)(
e1
e2

)
Also there is a a left A-isomorphism β : J → I where β(hi) = bi1g1 + bi2g2, and so

β(y) =
(
b1 b2

)
β

(
h1
h2

)
=
(
b1 b2

)(b11 b12
b21 b22

)(
g1
g2

)

=
(
b1 b2

)(b11 b12
b21 b22

)(
d11 d12
d21 d22

)(
e1
e2

)
Now we have: αβ(y) = y where y =

(
b1 b2

)(h1
h2

)

y =
(
b1 b2

)(h1
h2

)
β→
(
b1 b2

)(b11 b12
b21 b22

)(
g1
g2

)
α→
(
b1 b2

)(b11 b12
b21 b22

)(
a11 a12
a21 a22

)(
h1
h2

)

⇒
(
b1 b2

)(h1
h2

)
=
(
b1 b2

)(b11 b12
b21 b22

)(
a11 a12
a21 a22

)(
h1
h2

)
⇒
(
b1 b2

)(f11 f12
f21 f22

)(
e1
e2

)
=
(
b1 b2

)(b11 b12
b21 b22

)(
a11 a12
a21 a22

)(
f11 f12
f21 f22

)(
e1
e2

)
⇒
(
b1 b2

)(f11 f12
f21 f22

)
=
(
b1 b2

)(b11 b12
b21 b22

)(
a11 a12
a21 a22

)(
f11 f12
f21 f22

)
⇒
(
b1 b2

)
F =

(
b1 b2

)
BAF. (1)

Similarly βα(x) = x implies (
a1 a2

)
D =

(
a1 a2

)
ABD. (2)
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Where,

F =

(
f11 f12
f21 f22

)
, D =

(
d11 d12
d21 d22

)
, A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

As a result of this calculation we have:

Theorem. 7.10.
I ∼= J if and only if there exist a structure of matrices satisfying equations (1) and
(2).

Now an equivalent conditions under which every finitely generated stably free module
of positive rank over an associative ring is power-free has given by the following result
due to Chen.

A stably free (finitely generated) right R-module P of rank s is power–free if there
exists some n ∈ N such that P n = Rns

For any R epimorphism σ : Rm −→ Rn, we have a matrix A ∈ Mn×m(R) corre-
sponding to σ . Let A = (aij) ∈ Mn×m(R), and let Is = diag(1, . . . , 1) ∈ Ms(R).
We use the Kronecker product A⊗ Is to stand for the matrix (aijIs) ∈Mns×ms(R).

Theorem. 7.11. ([6, Theorem 2.1])
Let R be a ring. Then the following are equivalent:

(1) Every finitely generated stably free right R-module of positive rank is power-free.

(2) For any right invertible rectangular matrix (aij), there exists s ∈ N such that
(aijIs) can be completed to an invertible matrix.

Since the stably free right A modules are power-free, then we can get the following
result concerns to the completion of the right invertible rectangular matrices over
A. Indeed s can be chosen such that s ≥ 2

Corollary. 7.12.
Let (aij) be a right invertible rectangular matrix over a A. Then there exists s ∈ N
such that (aijIs) can be completed to an invertible matrix.

Proof. Since every finitely generated stably free right A-module of rank ≥ 2 is
free, and the non-free stably free right A-modules P with rank 1 have the relation
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P ⊕P ∼= R2. So every finitely generated stably free right A-module of positive rank
is power-free. In view of Theorem (7.11.), we get the result. �

For instance, the right invertible rectangular matrices (aij) over A correspond to the
non-free stably free right A-modules P with the relation P ⊕ P ∼= R2 can not be
completed to an invertible matrix, while the matrices (aijIs) can be completed to
an invertible matrix for s ≥ 2.
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8 More about the structure of V (A)

We will introduce the basic properties and a general structure of the monoid V (R)
for any ring R, and we will apply one of the main results for D[X1, . . . , Xn] and
An(k). In particular we can get information about the ring R comes from the
monoid V (R).

Let M be a commutative monoid, we denote by U(M) the set of all elements a ∈M
with an opposite −a ∈M , and we say that M is reduced if U(M) = 0.

There is a natural pre-order (reflexive and transitive relation) on any commutative
additive monoid M , called the algebraic pre-order on M , defined by x ≤ y if there
exist z ∈M such that x+ z = y. An element u of M is an order–unit if for every
x ∈M there exists an integer n ≥ 0 such that x ≤ nu.

Theorem. 8.1. ([2, Theorem 6.2 and 6.4] and [[3, p.315]])
A monoid M is isomorphic to the monoid V (R) for some ring R if, and only if, it is
a commutative monoid that is reduced and has an order-unit.

V (R) describes the behavior of direct-sum decomposition of finitely generated pro-
jective R-modules up to isomorphism,in the sense that to every decomposition of
a projective module AR ∈ proj(R) as a direct sum of finitely many submodules
there corresponds a decomposition of element 〈AR〉 of the monoid V (R) as a sum
of elements of V (R), and two direct-sum decomposition of AR are isomorphic in the
sense of the Krull-Schmidt theorem if and only if they correspond to the same sum
decomposition of 〈AR〉 in the monoid V (R) up to the order of summands.

A submonoid N of a commutative monoid M is said to be divisor–closed if x ∈M ,
y ∈ N and x ≤ y in M implies x ∈ N .For each x ∈M we denote by [x] the smallest
divisor-closed submonoid of M containing x. It is the set of all y ∈M with y ≤ nx
for some n ≥ 0.The order units of M are exactly the elements u ∈ M such that
M = [u].

A commutative semigroup S is archimedean if for every pair (x, y) of elements
of S there exist a positive integer n with x ≤ ny. More generally, let M be a
commutative monoid. For x, y ∈ M , define x � y if there exist positive integers n
and m such that x ≤ ny and y ≤ mx. Thus x � y if, and only if, [x] = [y].

Granada, 2010 Projective modules



38 Sec. 8. More about the structure of V (A)

The relation � is the least congruence relation on M such that every element in the
quotient monoid M/ � is idempotent.The equivalence classes of M modulo � are
additively closed subsets of M , called the archimedean components of M .

Let R be a ring. For any subclass U of proj(R), the ideal TrR(U) will denote the
trace of U in R, that is, the sum of all images f(AR) where AR ranges in the
modules AR ∈ U and f ranges in the homomorphisms from AR into RR.

If U has a unique elements AR, we write TrR(AR) instead of TrR(U). The trace
TrR(U) is characterized as the smallest two-sided ideal I of R such that ARI = AR
for every AR ∈ U .

We call trace ideals of R all two-sided ideals of R equal to TrR(U) for some
subclass U of proj(R),finitely generated trace ideals the ideals equal to TrR(U)
for some finite subset U of proj(R), and maximal trace ideals the trace ideals of
R that are maximal in the set of all proper trace ideals of R partially ordered by set
inclusion.Every trace ideal contained in a maximal trace ideal.

We will denote the set of all finitely generated trace ideals of R and trace ideals of
R by Tfg(R) and T (R) respectively.

A prime ideal of a commutative monoid M is a proper subset P of M such that,
for any x, y ∈ M we have x + y ∈ P if, and only if, either x ∈ P or y ∈ P . The
empty set Φ is the smallest prime ideal of every commutative monoid.

Finally we denote add(MR) to the subcategory of Mod − R whose objects are all
R-modules isomorphic to direct summand of finite direct sums Mn

R of copies of M .

Proposition. 8.2. ([7, Proposision 1.1])
Let R be a ring and AR, BR ∈ proj(R). The following conditions are equivalent:

(1) 〈AR〉 and 〈BR〉 belongs to the same archimedean component of V (R).

(2) add(AR) = add(BR).

(3) Tr(AR) = Tr(BR).

Thus there is a one-to-one correspondence between:

1. the set of all archimedean components of V (R).
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2. the set Tfg(R) of all finitely generated trace ideals of R.

3. The set of all prime ideals P of V (R) of the type P = V (R) \ (〈AR〉) for some
〈AR〉 ∈ V (R).

Corollary. 8.3.
The monoid V (A) has only the two trivial archimedean components.

Proof. For the ring A we have seen that V (A) ∼= N ∪ {[I]| I ⊕ R ∼= R2}, it
is clear that all the non-zero elements of V (A) belong to the same archimedean
component,hence it has exactly two archimedean components, one with only the
zero element, and the other with all non-zero, and then by the correspondence V (A)
has only the two trivial prime ideals 0 and V (R) \ {0}, and therefore A has only the
two trivial trace ideals A and {0}. �
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