
Universidad de Granada

Departamento de Ciencias de la Computación
e Inteligencia Artificial

Soft Computing based learning and

Data Analysis:

Missing Values and Data Complexity

Tesis Doctoral

Julián Luengo Mart́ın

Granada, Diciembre de 2010

Editor: Editorial de la Universidad de Granada
Autor: Julián Luengo Martín
D.L.: GR 1384-2011
ISBN: 978-84-694-0935-0

Universidad de Granada

Soft Computing based learning and

Data Analysis:

Missing Values and Data Complexity

MEMORIA QUE PRESENTA

Julián Luengo Mart́ın

PARA OPTAR AL GRADO DE DOCTOR EN INFORMÁTICA

Diciembre de 2010

DIRECTOR

Francisco Herrera Triguero

Departamento de Ciencias de la Computación
e Inteligencia Artificial

La memoria titulada “Soft Computing based learning and Data Analysis: Missing and Data
Complexity”, que presenta D. Julián Luengo Mart́ın para optar al grado de doctor, ha sido realizada
dentro del Máster Oficial de Doctorado “Soft Computing y Sistemas Inteligentes” del Departamento
de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada bajo la
dirección del doctor D. Francisco Herrera Triguero.

Granada, Diciembre de 2010

El Doctorando El Director

Fdo: Julián Luengo Mart́ın Fdo: Francisco Herrera Triguero

Tesis Doctoral Parcialmente Subvencionada por el Ministerio de Educación y Ciencia bajo los
Proyectos Nacionales TIN2005-08386-C05 y TIN2008-06681-C06-01. También ha sido Subvenciona-
da bajo el Programa de Becas de Formación de Profesorado Universitario, en la Resolución del 2
de Abril de 2007, bajo la referencia AP2006-01745.

Agradecimientos

Esta memoria está dedicada a aquellas personas que han hecho posible su realización, que me
han apoyado en los momentos dif́ıciles de este largo camino y que sin ellas dif́ıcilmente hubiese
llegado a buen puerto.

No puedo dejar de mencionar en primer lugar a mi familia. A mi padres Julián y Eloisa, que
siempre han hecho todo lo posible para que pudiese llegar a este punto y darme todas las oportu-
nidades que ellos siempre han deseado para mı́, con abnegación y siempre una sonrisa en los buenos
y malos momentos. A mi hermana Eli, que no le importa dedicarme unas risas para levantarme el
ánimo, no importa lo cansado o malhumorado que esté. Un agradecimiento especial a mi pareja
Laura, que siempre me ha dado ánimos aunque significase sacrificar tiempo juntos y ha comprendi-
do la importancia que este trabajo representa para mı́, siempre has sido mi apoyo. No puedo dejar
de sentir que esta memoria es en parte vuestra también.

Cualquier elogio para mi director de tesis Francico Herrera es poco, no sólo por su magńıfica
labor en la gúıa y tutela de mi corto recorrido como investigador, si no por su esfuerzo y dimensión
como persona. Conocerle fue un afortunado giro que no puedo dejar de agradecer, sin él esta tesis
no seŕıa lo que es, y me siento afortunado por poder contar con su apoyo en el futuro.

He tenido la suerte de conocer gente magńıfica, compañeros de viaje en el que cada uno recorre
su camino que a la vez compartimos todos. Me siento orgulloso de poder llamarlos amigos. En
primer lugar tengo que nombrar a Salva y Alberto, que comenzaron poco antes que yo y me han
dado mucho, tanto en lo académico como en lo personal. A los hermanos Jesús y Rafael Alcalá,
que siempre tienen una sonrisa y buenos consejos; a Antonio Gabriel, Sergio, Javi, Daniel Molina,
Alicia y Carlos Porcel siempre cercanos no importa el tiempo que haya pasado. A Óscar Cordón,
Enrique Herrera, Coral del Val, José Manuel Beńıtez, Jorge Casillas y Manuel Lozano que con
su conocimiento y experiencia siempre han estado dispuestos a facilitarme el camino. A los más
jóvenes: Manolo, Nacho Pérez, Joaqúın, Isaac, Nacho Robles, Victoria y Jose Antonio que empiezan
su recorrido y que deseo que mantengan la ilusión y alcancen y superen sus metas. A los compañeros
becarios y egresados con los que comparto magńıficos recuerdos y momentos: Aı́da, Maŕıa, Javi,
Mariló, Carlos Cano, Sergio, Pedro, Fernando Bobillo, Juĺıan Garrido, Soto y muchos más.

La vida académica te da la oportunidad de conocer muchas personas en multitud de reuniones,
congresos y seminarios, y que me han ayudado asimismo a estar donde estoy. En mi caso, tengo
la fortuna de poder llamar amigos a la inmensa mayoŕıa: Cristóbal, Macarena y Rosa de Jaén;
Luciano y Ana Palacios de Oviedo; Pedro Antonio y Juan Carlos de Córdoba; Ester, Albert y
Nuria de Barcelona; Humberto, Edurne, Josean y Mikel de Pamplona y recientemente a Jaume
Bacardit en Nottingham que me ayudó a extrañar menos mi Granada natal.

No quiero dejar de mencionar a mis amigos por lo que hemos compartido y lo que espero seguir
compartiendo con ellos: Migue, Jesús, Javito, Antonio, Laurilla, José Miguel, Elena, Maŕıa, Álvaro,
Pepe, Diego y todos los que sabéis que disfruto con vuestra compañ́ıa y seguiré haciéndolo.

Y finalmente, una última y gran mención a todos aquellos que no aparecen expĺıcitamente en
esta memoria, pero que siempre estarán en la mı́a. En este trabajo podéis encontrar vuestra huella
también.

GRACIAS A TODOS

Table of Contents

I. PhD dissertation 1

1. Introduction . 1

1.1. Missing Values in Classification . 5

1.2. Data Complexity Measures in Classification 6

1.3. Imbalanced Classes in Classification . 8

1.4. Fuzzy Rule Based Classification Systems . 9

2. Justification . 10

3. Objectives . 11

4. Discussion of Results . 12

4.1. Missing Data in Classification: An Analysis on the Most Suitable Imputation
Approach . 12

4.2. Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-
hoc and an Automatic Approach . 14

4.3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced
Problems using Data Complexity Measures 16

5. Concluding Remarks: Summary of the Obtained Results and Conclusions 16

5.1. Missing Data in Classification: An Analysis on the Most Suitable Imputation
Approach . 17

5.2. Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-
hoc and an Automatic Approach . 18

5.3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced
Problems using Data Complexity Measures 18

6. Future Work . 19

II. Publications: Published, Accepted and Submitted Papers 23

1. Missing Data in Classification: An Analysis on the Most Suitable Imputation Approach 23

1.1. A Study on the Use of Imputation Methods for Experimentation with Radial
Basis Function Network Classifiers Handling Missing Attribute Values: The
good synergy between RBFs and EventCovering method 23

vii

viii TABLE OF CONTENTS

1.2. On the choice of an imputation method for missing values. A study of three
groups of classification methods: rule induction learning, lazy learning and
approximate methods . 39

1.3. Missing data imputation for Fuzzy Rule Based Classification Systems 77

2. Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-hoc and
an Automatic Approach . 97

2.1. Domains of Competence of Fuzzy Rule Based Classification Systems with
Data Complexity measures: A case of study using a Fuzzy Hybrid Genetic
Based Machine Learning Method . 97

2.2. Shared Domains of Competence of Approximative Models using Measures of
Separability of Classes . 117

2.3. An Automatic Extraction Method of the Domains of Competence of Fuzzy
Rule Based Classification Systems using Data Complexity Measures 151

3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced Problems
using Data Complexity Measures . 189

Bibliograf́ıa 219

Part I. PhD dissertation

1. Introduction

The data acquisition and data processing is one of the hot topics in the digital world nowadays.
Continuous software and hardware developments have caused that enormous amount of information
is continually stored in data bases. The management and analysis of such a amount of data is beyond
of human possibilities. Only the automatic processing by a computer provides the opportunity to
obtain and extract useful knowledge from the stored data.

This automatic process is formerly known as Knowledge Discovery in Databases
(KDD)[FHOR05, Han05, WF05] which is the non-trivial process to identify useful, new and com-
prehensible patterns in the data. KDD involves multiple task, in which we can include:

Preprocessing of the data in order to correct and/or erase wrong, incomplete or inconsistent
data.

Analysis of the data in relation with the knowledge extraction task.

Interesting patterns search using a particular representation.

Interpretation of the extracted patterns even in a visual manner.

In this context there are many research fields which have contributed to the KDD process: data
bases, pattern recognition, statistics, artificial intelligence, super-computation, etc. Artificial Intel-
ligence has contributed to the KDD task with many techniques and resources.

The most important step in the KDD process is Data Mining (DM) [TSK05]. DM is the appli-
cation of specific algorithms for extracting patterns from data and it is a multidisciplinary field. Its
objective is to produce results and/or to discover relationships in the data. It can be either descrip-
tive, i.e. to discover patterns in the data, or predictive, i.e. to predict the model’s behavior based
on the available data. In the first type we can find techniques such clustering, association rules or
self-organizing maps. The latter type is usually referred to classification or regression algorithms.
Figure 1.(a) shows the whole KDD process, while Figure 1.(b) depicts the particularization to a
specific DM case.

A KDD algorithm has typically three components: the model, the preference or selection criteria
and the search algorithm. The model can have two possible typologies based on its function or

2 Part I. PhD dissertation

Data Knowledge

Problem

understanding

Problem

specifica"on

Data cleaning

Preprocessing Data Mining

Evalua"on

Results

interpreta"on

Results

exploita"on

Figure 1: (a) Whole KDD process Figure 2: (b) Particular application of one Data

Mining process in real world business data

representation. The first case can be classification, regression, clustering, rule generation, association
rules, dependence models or sequence analysis. Based on its representation it can be artificial neural
networks, decision trees, linear discrimination, support vector machines (SVMs), etc. Each model
has a bunch of parameters which must be determined by a search algorithm that will optimize such
models parameters based on the preference or selection criteria that better fits the model to the
data.

The Machine Learning is a primary and differentiator concept with respect to the classical sta-
tistical techniques. It was conceived approximately four decades ago for developing computational
methods which implement several learning forms, and in particular, mechanisms capable of induce
knowledge from the data. Because software development has become a major bottleneck in com-
puter technology today, the idea of introducing knowledge through examples seems particularly
attractive. Such knowledge induction is desirable in problems with no efficient algorithmic solution,
are vaguely defined, or informally specified. Examples of such problems may be medical diagnosis,
marketing problems, visual pattern recognition or the detection of regularities in huge amounts of
data.

Machine Learning algorithms can be divided onto two big categories:

Black box methods like artificial neural networks or bayesian methods.

Knowledge oriented methods, such as decision tress, association rules or decision rules.

The black box technique develops its own knowledge representation, which is not visible from the
outside. The knowledge oriented models, on the contrary, build up a symbolic knowledge structure
which tries to be useful from the point of view of the functionality, but also from the perspective of
interpretability. There are methods to extract understandable rules from the black boxes as well,
and therefore both categories can be useful for the knowledge extraction.

As we have mentioned, the DM process can be either descriptive or predictive. We enumerate
the basic disciplines in each process:

1. Introduction 3

Descriptive process: clustering, association rules obtention and subgroup discovery.

Predictive process: classification and regression.

In the context of DM we understand for classification the process in which, knowing of the
existence of certain class labels or categories, we establish a rule to locate new observations in any
of the existent classes (supervised learning). The classes are the product of a prediction problem,
where each class corresponds to the possible output of a function. This function must be predicted
from the attributes that we use to describe the elements of the data set. The necessity of a classifier
arises from the requirements of having an automatic procedure, faster than a human being and
able to avoid biases adopted by the expert. In this sense it allows us to avoid expensive actions in
time, and to help the human experts, especially in difficult cases.

A classifier can be evaluated by five criteria:

Accuracy: It represents the confidence level of the classifier, usually taken as the proportion
of correct classification ratio that it is capable of producing.

Speed: Classifier’s response time from introducing a new example to classify, to the instant
in which the classifier produces the predicted class. Usually, the speed is not as important as
the accuracy.

Interpretability: Clarity and credibility, from the human point of view, of the classification
rule. The higher the interpretability of the produced model is, the more knowledge can be
extracted from it.

Learning speed: Time required by the classifier in order to obtain the classification rule from
a data set.

Robustness: Minimum number of examples needed to obtain a precise and reliable classifica-
tion rule.

A classifier receives a data set as input, denoted as training set, and it learns the classification
rule with it. In the validation process of the classifier, an extra set of examples, not used in the
learning process, formerly known as test set is used in order to check the accuracy of the classifier.

DM techniques are very sensitive to quality of the information from which we intend to extract
knowledge. The higher the quality is, the higher the quality of the obtained models will be. In this
sense, the obtention of well-suited and quality data is a critical factor, and the quality of the data
can be improved prior to the application of the DM process by means of the data preparation step
[Pyl99]. We can consider as preprocessing or data preparation all those data analysis techniques
which improve the data quality. Therefore the DM methods can obtain better and a bigger amount
of knowledge [ZZY03]. Data preparation is relevant due to the fact that real data is usually impure,
leading to the extraction of unhelpful models. Such a circumstance can be originated by missing
data, noisy data or inconsistent data [KCH+03]. The data preparation provides quality data, which
leads to quality models. In order to do so, information retrieval, erroneous data elimination or data
integration mechanisms can be used. It can also help to deal with other aspects in the data, like
class imbalance, duplicate examples or reduce the data volume which leads to a better efficiency in
DM.

In this memory we will focus our attention in two problems which are solved by means of data
preprocessing:

4 Part I. PhD dissertation

The missing data problem and how it can be solved by means of using data imputation
preprocessing techniques. It appears when values in the data set are missing, formerly known
as Missing Values (MVs).

The class imbalance problem. It refers to those data sets in which one of the classes is described
by few examples while the other is represented by many of them in comparison. It has been
successfully solved by the use of data under-sampling and over-sampling preprocess data
techniques.

A related concept to DM is Soft Computing (also known as Computational Intelligence) [Kon05].
It includes most of the methodologies that can be applied in DM. Several of the most extended and
used methodologies are the genetics algorithms, fuzzy logic, neural networks, case based reasoning,
rough sets or hybridizations based on all of those. Particularly, we are interested in the Fuzzy Rule
Based Classification Systems (FRBCSs) [INN04] due to their high interpretability capabilities or
the possibility of easily introduce and/or extract expert knowledge in their output models.

One approach to address the difficulty of the data with respect to the accuracy of a classifier
is the use of data complexity measures. These measures try to capture different aspects or sources
of complexity which are considered complicated to the classification task [HB06]. Therefore it is
possible to establish when a problem is complicated for a classification algorithm before applying
it and to act in consequence. We will pay attention to this problem along the memory, analyzing
the data complexity usefulness for getting the domains of competence of different Soft Computing
based learning methods.

In order to carry out this study, this memory is divided in two parts. First one is devoted to the
problem statement and the discussion of the results. Second one corresponds to the publications
associated to this study.

In Part I we begin by developing the problem statement introduced in this section and the
techniques used to solve it with the following subsections: Subsection 1.1 introduces the problem of
MVs, Subsection 1.2 describes the data complexity measures and it use, Subsection 1.3 illustrate
the imbalanced classes problem and Subsection 1.4 presents the Fuzzy Rule Based Classification
Systems. Next we indicate the open problems which justify the realization of this memory in Section
2 “Justification”. The objectives pursued in this memory are described in Section 3 “Objectives”.
We include a section about the 4 “Joint Discussion of Results” which provides a summarized
information about the proposals and most interesting results obtained in each part. Section 5
“Concluding Remarks: Summary of the Obtained Results and Conclusions” summarizes the results
obtained in this memory and present several conclusions about them. Finally, in Section 6 “Future
Works” we point out several open future works which remain open from the results of the present
memory.

Finally, in order to develop the goals set, this memory is constituted by seven publications
distributed in three sections which will be developed in Part II. They are the following:

Missing Data in Classification: An Analysis on the Most Suitable Imputation Approach

Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-hoc and an
Automatic Approach

Analysis of Over-sampling and Under-sampling approaches for Imbalanced Problems using
Data Complexity Measures

1. Introduction 5

1.1. Missing Values in Classification

Many existing, industrial and research data sets contain MVs. There are various reasons for their
existence, such as manual data entry procedures, equipment errors and incorrect measurements.
The presence of such imperfections requires a preprocessing stage in which the data is prepared
and cleaned [Pyl99], in order to be useful to and sufficiently clear for the knowledge extraction
process. The simplest way of dealing with missing values is to discard the examples that contain
them. However, this method is practical only when the data contains a relatively small number
of examples with MVs and when analysis of the complete examples will not lead to serious bias
during the inference [LR87].

MVs make the performance of data analysis poor. The presence of missing values can also pose
serious problems for researchers. In fact, inappropriate handling of missing data in the analysis
may introduce bias and can result in misleading conclusions being drawn from a research study,
and can also limit the generalizability of the research findings [WW10]. Three types of problem are
usually associated with missing values in data mining [BM99]: 1) loss of efficiency; 2) complications
in handling and analyzing the data; and 3) bias resulting from differences between missing and
complete data.

In the case of classification, learning from incomplete data becomes even more important. In-
complete data in either the training set or test set or in both sets affect the prediction accuracy
of learned classifiers [GS10]. The seriousness of this problem depends in part on the proportion
of missing data. Most classification algorithms cannot work directly with incomplete data sets
and due to the high dimensionality of real problems it is possible that no valid (complete) cases
would be present in the data set [GLSGFV09]. Therefore, it is important to analyze which is the
best technique or preprocessing considered in order to treat the present MVs before applying the
classification methods as no other option is possible.

Usually the treatment of missing data in data mining can be handled in three different ways
[FKP07]:

The first approach is to discard the examples with missing data in their attributes. Therefore
deleting attributes with elevated levels of missing data is included in this category too.

Another approach is the use of maximum likelihood procedures, where the parameters of
a model for the complete data are estimated, and later used for imputation by means of
sampling.

In Section 1 we saw that within DM there exist a data preprocessing step [Pyl99, ZZY03], in
which the imputation of MVs is included. It consist of a class of procedures that aims to
fill in the MVs with estimated ones. In most cases, a data set’s attributes are not independent
from each other. Thus, through the identification of relationships among attributes, MVs can
be determined

We will focus our attention on the use of imputation methods. A fundamental advantage of this
approach is that the missing data treatment is independent of the learning algorithm used. For this
reason, the user can select the most appropriate method for each situation he faces. There is a wide
family of imputation methods, from simple imputation techniques like mean substitution, K-Nearest
Neighbour, etc.; to those which analyze the relationships between attributes such as: support vector
machines-based, clustering-based, logistic regressions, maximum-likelihood procedures and multiple
imputation [BM03, FKD08].

6 Part I. PhD dissertation

It is important to categorize the mechanisms which lead to the introduction of MVs [LR87]. The
assumptions we make about the missingness mechanism and the missing data pattern of missing
values can affect which imputation method could be applied, if any. As Little & Rubin [LR87]
stated, there are three different mechanisms for missing data induction.

1. Missing completely at random (MCAR), when the distribution of an example having a
missing value for an attribute does not depend on either the observed data or the missing
data.

2. Missing at random (MAR), when the distribution of an example having a missing value for
an attribute depends on the observed data, but does not depend on the missing data.

3. Not missing at random (NMAR), when the distribution of an example having a missing
value for an attribute depends on the missing values.

In the case of the MCAR mode, the assumption is that the underlying distributions of missing
and complete data are the same, while for the MAR mode they are different, and the missing
data can be predicted by using the complete data [LR87]. These two mechanisms are assumed by
the imputation methods so far. As stated in [FKD08] and [MPBM08], it is only in the MCAR
mechanism case where the analysis of the remaining complete data (ignoring the incomplete data)
could give a valid inference (classification in our case) due to the assumption of equal distributions.
That is, case and attribute removal with missing data should be applied only if the missing data is
MCAR, as both of the other mechanisms could potentially lead to information loss that would lead
to the generation of a biased/incorrect classifier (i.e. a classifier based on a different distribution).

Another approach is to convert the missing values to a new value (encode them into a new
numerical value), but such a simplistic method was shown to lead to serious inference problems
[Sch97]. On the other hand, if a significant number of examples contain missing values for a relatively
small number of attributes, it is beneficial to perform imputation (filling-in) of the missing values.
In order to do so, the assumption of MAR randomness is needed, as Little & Rubin [LR87] observed
in their analysis. In our case we will use single imputation methods, due to the time complexity of
the multiple imputation schemes, and the assumptions they make regarding data distribution and
MV randomness; that is, that we should know the underlying distributions of the complete data
and missing data prior to their application.

1.2. Data Complexity Measures in Classification

The first intuitive indicators of the complexity of a classification problems are the number of
instances in the data set, the number of features or the number of classes. However, these are very
simple indicators and rarely describe all the difficulty present in the problem. More intricate issues
such as the generality of the data, the inter-relationships among the variables and other factors are
key for the prediction capabilities of the classifiers. An emergent field has arisen that uses a set of
complexity measures [HB06] applied to quantify such particular aspects of the problem which are
considered relevant to the classification task [HB02].

As a general rule, the difficulty of a problem is considered to be proportional to the error ratio
obtained by a classifier. However, as the “No Free Lunch” theorem [WM97] states, it is impossible
to find one best algorithm for all the problems in terms of performance. Therefore we need to
establish a series of measures apart from the classification ratio in order to describe the complexity
of the problem. Ho & Basu [HB02] proposed and gathered together twelve data complexity measures
measures separated in three different categories:

1. Introduction 7

Measures of Overlaps in Feature Values from Different Classes: These measures are focused
on the effectiveness of a single feature dimension in separating the classes, or the composite
effects of a number of dimensions. They examine the range and spread of values in the data
set within each class, and check for overlaps among different classes.

Measures of Separability of Classes: These measures provide indirect characterizations of
class separability. They assume that a class is made up of single or multiple manifolds that
form the support of the probability distribution of the given class. The shape, position and
interconnectedness of these manifolds give hints on how well two classes are separated, but
they do not describe separability by design.

Measures of Geometry, Topology and Density of Manifolds: These measures evaluate to what
extent two classes are separable by examining the existence and shape of the class boundary.
The contributions of individual feature dimensions are combined and summarized in a single
score, usually a distance metric, rather than evaluated separately.

The data complexity measures consider geometric aspects of the data to identify the potential dif-
ficulties for classification. Figures 3, 4 and 5 depict some examples of the data complexity measures
in a binary data case, indicating how different geometrical characteristics are taken into account.

Figure 3: Degree of linear sep-

arability

Figure 4: Length of class

boundary by means of span-

ning trees

Figure 5: Shapes of class man-

ifolds

Using these measures previous studies have characterized the strengths and weaknesses of the
methods [BMH05] for a given data sets, constructing its domains of competence. The next natural
step would be to indicate if a classification method is well suited for the problem and if it will
perform well or bad based on these domains. This is not a new question in Machine Learning.

One of the best-known approaches to predict the classifier performance is the Meta-Learning
problem, which formalized this task [BGCSV09, PBGC00, BK01a]. Meta Learning is also intended
to select the best classifier for a given problem among several ones. A Meta Learning example most
often involves a pair (Machine Learning problem instance, Machine Learning algorithm), labeled
with the performance of the algorithm on the Machine Learning problem instance. Meta Learning
faces two big problems which have hindered its prediction capabilities:

How to represent an Machine Learning problem instance was tackled using diverse descriptors,
e.g. number of examples, number of attributes, percentage of missing values, landmarkers,

8 Part I. PhD dissertation

etc. [PBGC00]. The difficulty is due to the fact that the descriptors must take into account
the example distribution, which is not easily achieved in most cases.

A second difficulty concerns the selection of the Machine Learning problem instances. Kalousis
[Kal02] indicates that the representativity of the problems and the perturbation induce strong
biases in the Meta Learning classifier.

For these reasons among others, Meta Learning has achieved limited success.

We can also refer to the least known Phase Transition approach. Using the Phase Transition,
Baskiotis and Sebag [BS04] adapted the k-term DNF representation to classification problems, eval-
uating the C4.5 [Qui93] learning performance with respect to the underlying target concept. They
defined C4.5 competence maps by means of generating boolean data sets of different characteristics
(number of attributes, number of terms, etc.) based on a uniform distribution. C4.5 is then trained
on these data sets and C4.5’s error constitutes the complexity landscape (i.e. the competence map)
using different data sets’ configurations. However these competence maps are only defined for bina-
ry attributes and they are based on the assumption of a uniformly distributed sample space, which
is not usually true. Furthermore, the descriptive expressions obtained are not unique, hindering
their interpretability.

The data complexity measures presented can be used to carry out the characterization of the
methods. One direct approach is to analyze the relationship between the data complexity value for
a given data set and the performance obtained by the method. This approach does not suffer from
the previous approaches’ problems, as it is not dependent on a specific Machine Learning method
either in the data distribution or the kind of data set attributes.

1.3. Imbalanced Classes in Classification

The problem of imbalanced classes is one of the problems that emerged when Machine Learning
reached maturity, being a widely used technology in the world of business, industry and scientific
research. Its importance grew as researchers realized that the analyzed data sets contained many
more instances or examples from a class or classes with respect to the remaining ones [CJK04], and
the obtained classification models performed below the desired threshold in the minority classes.
Currently it is considered as a challenge by the Data Mining community [YW06].

Most of the learning algorithms aim to obtain a model with a high prediction accuracy and a
good generalization capability. However, this inductive bias towards such a model supposes a serious
challenge with the classification of imbalanced data [SWK09]. First, if the search process is guided by
the standard accuracy rate, it benefits the covering of the majority examples; second, classification
rules that predict the positive class are often highly specialized and thus their coverage is very low,
hence they are discarded in favor of more general rules, i.e. those that predict the negative class.
Furthermore, it is not easy to distinguish between noise examples and minority class examples and
they can be completely ignored by the classifier.

A number of solutions have been proposed to the problem of imbalanced class in two levels: at the
data level and at the algorithm level. At the data level, several re-sampling form are included, like
random over-sampling with replacement, random under-sampling [EJJ04], directed over-sampling
(where no new examples are created but the election of the samples to be replaced is informed rather
than random), informed over-sampling with artificial examples [CBHK02], informed under-sampling
[BPM04], evolutionary under-sampling [GH09] or the combination of these. At the algorithmic
level, solutions include the cost-sensitive adaptations to the different classes of the problem (thus

1. Introduction 9

the less represented class is the most costly one when making a prediction error), adaptation of the
likelihood estimation in decision trees [WP03], decision threshold adaptation and so on.

As stated in [CCHJ08], the treatment of the imbalanced problem at the data level by means of
preprocessing techniques has proven to be very useful, and it has the advantage of not needing to
make any changes to the classification algorithms.

1.4. Fuzzy Rule Based Classification Systems

Fuzzy systems are one of the most important areas of application of the Fuzzy Sets Theory. In the
classification framework, there is a model estructure in the form of the FRBCSs. FRBCSs constitute
an extension to the classic rule-based systems, as they use rules of the form “IF-THEN”. The
antecedents of the rule (and in some cases, the consequents as well) consist of fuzzy logic sentences
instead of classic crisp conditions. They have proven their ability for classification problems and
DM in a large number of situations [Kun00, INN04].

The most common type of FRBCSs is the linguistic FRBCSs or Mamdani [Mam74] type with
the following format:

Ri : IF Xi1 IS Ai1 AND · · · Y Xin IS Ain THEN Ck WITH PRik

where i = 1, . . . ,M , being Xi1 to Xin the input features and Ck the output class associated to the
rule, being Ai1 to Ain the antecedent labels, and PRik the rule weight [IY05] (usually the certainty
factor associated to the class).

In this memory we will also use FRBCSs in the form of Takagi-Sugeno Models (TSK) [TS85],
which are similar to Mamdani ones, but exhibit a polynomial function as output, instead of a
linguistic term.

Every FRBCSs is composed of two fundamental components: the Knowledge Base (KB) and
the inference module. The KB is in turn composed of two elements, the Data Base and the Rule
Base:

The DB contains the linguistic terms considered in the linguistic rules and the membership
functions which define the fuzzy label’s semantic. In this sense, each linguistic variable in-
cluded in the problem will have a fuzzy partition associated which each one of its linguistic
terms. Figure 6 shows an example of a fuzzy partition with five labels.

1

0.0

1.0

r

0.5

MP MP G MG

1

0.0

1.0

r

0.5

1

0.0

1.0

r

0.5

1

0.0

1.0

r

0.5

MP MP G MG

Figure 6: Fuzzy partition example

This can be considered as an approximation to the discretization for continuous domains for
which we establish a membership degree to the labels, where we must include an overlapping

10 Part I. PhD dissertation

between them, and the inference engine handles the matching between patterns and the
rules providing an output according to the consequents of the rules with positive matching.
The determination of the fuzzy partitions is crucial in the fuzzy modeling [ACW06], and the
granularity of the fuzzy partitions plays a fundamental role in the FRBCS’ behavior [CHV00].

The RB, composed of a collection of linguistic rules which are connected by means of a rule
connective. In other words, it is possible to activate several rules simultaneously from the
same input.

The module with the inference engine includes:

A fuzzification interface, which transforms crisp data into fuzzy sets.

An inference system, which through the data received by the fuzzification interface uses the
information contained in the KB in order to perform the inference from a Fuzzy Reasoning
System (FRS).

Specifically, if we consider a new pattern Xp = (Xp1, . . . , Xpn) and a RB composed of L fuzzy
rules, the classification inference engine will perform the following steps [CdJH99]:

1. Matching degree. To compute the activation strength of the “IF” part for all the rules in
the RB with the Xp pattern, using a conjunction operator (usually a T-norm).

µAj (Xp) = T (µAj1(Xp1), . . . , µAjn(Xpn)), j = 1, . . . , L. (I.1)

2. Association degree. To compute the association degree of pattern Xp with the M classes
according to each rule in the RB.When rules with only one consequent are considered (as
presented in this section) this association degree is only referre to the class consequent
of the rule (k = Cj).

bkj = h(µAj (Xp), RW k
j), k = 1, . . . ,M, j = 1, . . . , L. (I.2)

3. Degree of consistency of the pattern classification for all classes. We use an aggregation
function which combines the positive association grades computed in the previous step.

Yk = f(bkj , j = 1, . . . , L y bkj > 0), k = 1, . . . ,M. (I.3)

4. Classification. We apply a decision function F over the consistency degree of the system
for the classification pattern over all classes. This function will determine the class label
l corresponding to the maximum value.

F (Y1, . . . , YM) = l tal que Yl = {max(Yk), k = 1, . . . ,M}. (I.4)

Finally, the generic structure of a FRBCS is shown in Figure 7.

2. Justification

Once we have presented the main concepts which this memory refers to, we pose a number of
open problems which constitute the approach and justification of the current thesis memory.

3. Objectives 11

Figure 7: FRBCS structure

As we have pointed out in Section ??, the presence of MVs in the data is a common issue that
must be taken into account in real-world classification problems. There are many classification
algorithms which have been successful, but do not consider the presence of MVs in the data.
It would be too costly in time and effort to adapt them to manage MVs at the algorithmic
level. In addition to this, there are different kind of classifiers based on the model they build
as we have described in Section 1 and it is not clear how would be the MVs treatment be for
related classifier types. This is specially important in the case of FRBCSs, which are know by
being capable of handling imperfect data, but little work has been carried out to deal with
MVs.

The usual way to know if one classification method will perform well or poorly in a given
problem is to run it over the data. However, large amounts of data, complex parameter
configurations, slow model building and other problems may make the time necessary to
obtain results too long. It is also desirable to know the reasons of why the method performs
well or poorly, and if possible, in a fast and automatic process.

As we have seen above, one of the most common techniques to deal with imbalanced class
labels in classification is the use of preprocessing techniques. There are techniques based on
over-sampling and under-sampling of the data which increase the accuracy of the classifier
used afterwards. However, their application is not always beneficial. A first attempt to clarify
this question was the Imbalance Ratio [OPBM08], defined as the ratio of the number of
instances of the negative class and the positive class, but has proven to be limited to certain
degree. The use of data complexity measures can help to understand this issue better.

3. Objectives

As mentioned in the previous section, the present memory is organized around three main

12 Part I. PhD dissertation

objectives that involve the analysis of the best imputation approach for individual and related
classifiers, the diagnosis of the suitability of a classification algorithm for a classification problem
prior to its application and the study of the benefits obtained by the use of over-sampling and
under-sampling techniques in imbalanced data.

Specifically, the objectives that we propose are:

To find the best recommended imputation method for one or several classification methods.
When the missing data is found, the classification algorithms have to deal with it. Establishing
the best imputation procedure in each case would save time and avoid great losses in the
quality of the obtained model and its accuracy. Furthermore, knowing if the type of classifier
has relevance in the imputation method chosen would ease the imputation selection process
and the design of new imputation methods for specific problems or classifiers.

To determine the domains of competence of the classification methods based on data complexity
measures. The classification problems can have different complexity degrees depending of the
classifier used afterwards. Using this complexity instead of using the classifier directly provides
more information that can be used to characterize the regions in the complexity space in which
the method will perform adequately or not. This fact also allows to automatically analyze
classifiers jointly and to create automatic procedures to determine if a problem falls into the
good or bad domain of competence of the classifier.

To evaluate the effect of over-sampling and under-sampling preprocessing in imbalanced clas-
sification data scenarios by means of data complexity measures. The effects of preprocessing
for imbalanced data is widely recognized as beneficial, but it has barely investigated when this
occurs. The analysis of the data complexity prior to the application of the preprocessing can
provide hints on the future benefits of the preprocessing. This methodology can be applied
both to over-sampling and under-sampling preprocessing strategies.

4. Discussion of Results

This section shows a summary of the different proposals presented in this dissertation, and it
presents a brief discussion about the obtained results by each one.

4.1. Missing Data in Classification: An Analysis on the Most Suitable Imputa-

tion Approach

In Section II.1 the problem of MVs in the classification framework and the use of imputation
methods in order to overcome them is studied. The majority of Machine Learning algorithms do
not consider the presence of MVs in their building process. However, the presence of MVs in the
data is clearly patent and it cannot be ignored. The common approach in this context is to discard
the instances which contains MVs, but this action is not drawback-free [LR87]: useful information
can be discarded and data sets with high percentages of missing data can be reduced until no
generalizable information is available. On the other hand, redesigning all the available algorithms is
not affordable in a reasonable time. Several works have been carried out comparing new imputation

4. Discussion of Results 13

methods using classic Machine Learning algorithms like C4.5 [Qui93] or PART [FW98]. For this
reason we propose to analyze the effects of imputation methods in two cases: one single method
and several related classification algorithms.

In the first case we analyze the Radial Basis Function Networks. RBFNs are known to be
universal approximators and to have good generalization abilities [MAC+92, Buh03]. The number
of neurons selected is critical to obtain a good model for a given problem. We take into account
three different RBFN approaches which cover well this aspect: a static approach [BL88] in which
the number of neurons does not vary once the user specify it; a decremental [YSS97] approach,
which gradually reduce the number of neurons depending from the problem; and an incremental
[Pla91] approach which adds neurons when it needs to cover new regions of the problem space. One
big drawback of the RBFN models is that they are not capable of managing the MVs by their own.
A possible workaround is to nullify the input connecting when a MV is found [EFW01]. However,
this approach is too simple and far from being adequate in the majority of problems. With this
premises we analyze which is the best imputation approach for all the three variants of RBFN
considered. An experimental study is included, in which the experimental framework and results
are specified and a complete analysis is carried on supported by non-parametric statistical test.
The obtained results indicate that from all the imputation methods analyzed, the EventCovering
[WC87] stands out among all of them for the three RBFN variants with a significative margin. This
means that it is possible, in some cases, to find a good imputation procedure with a good synergy
with the classification method.

In the literature we can find several classification methods from the same family or which are
considered related in the models they build. We have seen that it is possible to select one impu-
tation procedure for a given classification method, but it would be also interesting to know which
imputation method is the best for a given type of classification methods. If obtained, this would
mean that a general recommendation can be made in advance to the use of the classifier building
process. We present a classification in three big categories, Rule Induction Learning, Approximate
Models and Lazy Learning :

The first group is the Rule Induction Learning category. This group refers to algorithms which
infer rules using different strategies. We consider C4.5 [Qui93], Ripper [Coh95], CN2 [CN89],
AQ [MML86], PART [FW98], Slipper [CS99], SRI [PA06], Ritio [WU99] and Rule-6 [PA05]
in this category.

The second group represents the Approximate Models. It includes Artificial Neural Networks,
Support Vector Machines and Statistical Learning. We consider C-SVM [FCL05], ν-SVM
[FCL05], SMO [Pla98], RBFN [BL88], RBFND [BL88], RBFNI [Pla91], Logistic classification
[lCvH92], Näıve-Bayes [DP97] and LVQ [BK01b] in this category.

The third and last group corresponds to the Lazy Learning category. This group incorporates
methods which do not create any model, but use the training data to perform the classifica-
tion directly. We consider 1-NN and 3-NN [McL04], LWL [AMS97] and LBR [ZW00] in this
category.

Many of these classifiers appear in previous studies in the literature for imputation methods, and
include the previous individual study with only RBFN models.

The study carried out uses several real-wold data sets with natural MVs, indicating the followed
methodology and the comparative results between classification algorithms of the same family and
a global analysis based on the Wilcoxon Signed Rank Test [Dem06, GH08]. The results obtained
indicate that there are always at most two or three best imputation strategies depending on the

14 Part I. PhD dissertation

type of classifier. The imputation quality produced is also studied based on the Wilson’s Noise
Ratio [Wil72] and Mutual Information measures [KC02b, KC02a, PLD05], obtaining results which
are concordant with those indicated for the classifiers categories.

The FRBCSs are a special case of classifiers which are known for their interpretability and
robustness to noisy data. However, in the literature are few studies of FRBCSs applied in the
presence of MVs. They produce models in form or rule sets, but the nature of the rules can be
linguistic (Mamdani based models) or approximative (TSK based models). Each type of FRBCSs
is based on a different learning process. It could be possible that these differences in the learning
process would lead to a different imputation procedures suitability. The only precedent in the
literature of FRBCSs learning in the case of MVs is a technique proposed to tolerate MVs in
the training of a FRBCS by Berthold & Huber [BH98]. This procedure was initially intended to
estimate the best approximation to the MV based on the core region of the fuzzy label associated
to the missing attribute. We present an analysis equivalent to that carried out for the classical
classification methods using three different FRBCSs which cover both Mamdani and TSK types,
with the same data sets and imputation methods. The results indicate that the nature of the
FRBCSs plays a significant role when choosing the most suited imputation procedure, and benefits
can be obtained without re-designing the inference process. It is also important to notice that the
best imputation methods for FRBCSs are the same which present best values for the Wilson’s Noise
Ratio and Mutual Information measures.

The associated journal articles to this part are:

J. Luengo, S. Garćıa, F. Herrera, A Study on the Use of Imputation Methods for Experimen-
tation with Radial Basis Function Network Classifiers Handling Missing Attribute Values:
The good synergy between RBFs and EventCovering method. Neural Networks 23 (2010)
406-418, doi:10.1016/j.neunet.2009.11.014

J. Luengo, S. Garćıa, F. Herrera, On the choice of an imputation method for missing values.
A study of three groups of classification methods: rule induction learning, lazy learning and
approximate methods. Submitted to Knowledge and Information Systems.

J. Luengo, J. Sáez, F. Herrera, Missing data imputation for Fuzzy Rule Based Classification
Systems. Submitted to Soft Computing.

4.2. Domains of Competence of Fuzzy Rule Based Classification Systems: An

Ad-hoc and an Automatic Approach

In Section II.2 the characterization of the good and bad behavior of FRBCSs by means of
the use of data complexity measures is presented. The data complexity measures give information
about the problem difficulty in relation with the predictive accuracy. This predicted difficulty is not
related to any specific classification method, but to the problem characteristics. Therefore, if the
relationship between the difficulty predicted by the data complexity measure can be established,
it would be possible to predict the performance of the FRBCS in advance. Using the FH-GBML
FRBCS [IYN05] which have a good average performance, we propose to obtain intervals of the data
complexity metrics in which such method behaves well or poorly over a big bunch of data sets.

An initial approach is made using an ad-hoc method, evaluating the performance and the
interesting intervals by the user. These intervals are constituted by the data sets in which the

4. Discussion of Results 15

FH-GBML has a prominent good or bad behavior. Therefore, it is straightforward to convert these
intervals to a rule set, indicating the support of the interval, the average training and test accuracy
achieved by FH-GBML. Combining these rules we are able to obtain to final rules which are capable
of characterize the 75% of the considered data sets with a differentiated behavior, constituting the
domains of competence of FH-GBML.

This approach can be also applied to groups of classification algorithms with ease. We con-
sider the use of three types of Artificial Neural Networks, Multi-Layer Perceptron [Mol93],
RBFN [BL88, Buh03] and Learning Vector Quantization [BK01b]; and a Support Vector Machine
[CV95, Pla98] in order to extract their domains of competence. They constitute a well-known family
of related classifiers, and we intend to extract common aspects about their behavior. We apply the
aforementioned methodology for all the for methods, but establishing one primordial limitation: all
the extracted intervals must be present in the four methods. Therefore, we intend to extract the
shared domains of competence of this family of classification algorithms. The results indicate that
it is possible to do so, resulting in a characterization based on two rules which covers the 65% of
the considered data sets. Then it is possible to indicate the shared strengths and weakness of this
kind of methods based on the data complexity measures.

This aforementioned approaches has some limitations:

1. The cut points which define the intervals were arbitrarily selected according to the graphics.

2. It is possible to omit intervals with similar characteristics to the extracted ones. That is, the
user is not using a formal description of the good or bad behavior intervals.

3. The resultant characterization is subjective.

These issues can be tackled by the rigorous definition of the good and bad intervals, and by creating
an automatic extraction method which extracts the domains of competence of the learning method.
The automatic extraction method decides which data complexity measures are useful (if they
contain significant intervals), and which measures are discarded (without providing any interval for
them). From the obtained intervals the construction of the rules is the same as the used for the
ad-hoc method. We present an extensive study based on this new automatic extraction method,
overcoming these limitations using two different FRBCSs: FH-GBML (linguistic type) and PDFC
(TSK type) [CW03]. We find that the characterization made by this automatic method is greatly
improved in comparison with the ad-hoc approach, obtaining a characterization of 99% of the
data sets. We also validate the obtained domains of competence using a fresh bunch of data sets
and compare it to related crisp classification algorithms, observing that the obtained domains of
competence generalize well.

The associated journal articles to this part are:

J. Luengo, F. Herrera, Domains of Competence of Fuzzy Rule Based Classification Systems
with Data Complexity measures: A case of study using a Fuzzy Hybrid Genetic Based Machine
Learning Method. Fuzzy Sets and Systems, 161 (1) (2010) 3-19 doi:10.1016/j.fss.2009.04.001.

J. Luengo, F. Herrera, Shared Domains of Competence of Approximative Models using Mea-
sures of Separability of Classes. Submitted to Information Sciences.

J. Luengo, F. Herrera, An Automatic Extraction Method of the Domains of Competence of
Fuzzy Rule Based Classification Systems using Data Complexity Measures. Submitted to
IEEE Transactions on Fuzzy Systems.

16 Part I. PhD dissertation

4.3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced

Problems using Data Complexity Measures

In Section II.3, we present the use of data complexity measures for preprocessing methods in
the imbalanced data framework in order to show the effects of such preprocessing step in the data
characteristics for two well-known classification algorithms: C4.5 [Qui93] and PART [FW98]. Two
preprocessing approaches are considered:

SMOTE [CBHK02] and SMOTE-ENN [BPM04] which are two over-sampling approaches.

EUSCHC [GH09] which is one evolutionary under-sampling approach.

The Imbalance Ratio (IR) [OPBM08] is an initial guess about the difficulty of the imbalanced
data, as for high IRs the use of a preprocessing technique is unavoidable. However, we can find
more information if we observe the changes in the data characteristics comparing the values of
the data complexity measures before and after the application of the preprocessing techniques.
We present an exhaustive study over a bunch of imbalanced data sets with different IRs and data
characteristics. We analyze the regions of good and bad behavior using the methodology described
in Section 4.2. From the obtained results we have observed that the application of the preprocessing
techniques allow to include more data sets in the region of good behavior of the method. These
data sets are those which lie near to the good region border when no preprocessing is applied.
Therefore we show how the application of the preprocessing methods increase the good region of
C4.5 and PART. Furthermore we show that the application of the preprocessing step is not always
beneficial, independently of the IR.

The associated journal articles to this part are:

J. Luengo, A. Fernandez, S. Garćıa, F. Herrera, Addressing Data Complexity for Imbalanced
Data Sets: Analysis of SMOTE-based Oversampling and Evolutionary Undersampling. Soft
Computing, doi:10.1007/s00500-010-0625-8, in press (2011).

5. Concluding Remarks: Summary of the Obtained Results and

Conclusions

We have addressed different problems and challenges in the MVs scope and the data com-
plexity topic, considering the imbalanced data framework as well. In particular referring to the
characterization of the performance of the classification algorithms and the analysis of the effect of
imbalanced data in data complexity. We have to note that the problems tackled are independent:
missing values imputation, performance characterization by data complexity and preprocessing for
imbalanced data sets evaluation by means of data complexity ; and they have been presented this
way in their respective sections. We have not posed a common study in this memory and so it is
raised in the future works, Section ??.

The objective is to point out that they are not connected works and for that reason we have
not described a relation between the different parts. The present section briefly summarizes the
obtained results and to point out the conclusions provided by this memory.

5. Concluding Remarks: Summary of the Obtained Results and Conclusions 17

We have studied the impact of MVs in different classification algorithms, and the suitability
of the use of imputation methods in order to overcome the associated problematic. We pretend to
indicate the best approach or approaches in each case for a wide family of classification algorithms
in order to improve the behavior of the latter based on the type of the classifier with a well founded
imputation method selection. We have used a wide range of well-known classification algorithms
from the literature, using the largest amount of them with respect a large selection of imputation
methods and real-world data sets with natural MVs. The special case of FRBCSs is also studied,
analyzed how the type of FRBCS influences in the selection of the best imputation schema, and
how they are related.

The performance of individual FRBCSs is also studied based on the characteristics of the data.
We have related the best regions of the data complexity with the good or bad performance of
the FRBCS, creating a rule set both in an ad-hoc and an automatic way. These rule set can
be summarized into two rules which describe the good and bad regions of the FRBCS. We have
observed particularities in the rules obtained for each FRBCS, but also many common regions.
These common regions have been exploited using a family of classification algorithms known for
being closely related: artificial neural networks and SVMs. We have analyzed the common regions
of good and bad behavior for these classifiers jointly, showing that they have related performance
in the complexity space.

Using the same data complexity measures we have observed the effect of over-sampling and
under-sampling approaches in the imbalanced data framework with respect to the C4.5 and PART
algorithms. We have studied that the use of the preprocessing techniques transform the domains
of competence of the classifier, widening the complexity region of good behavior and maintaining
the bad behavior one. These results illustrate to what the process is beneficial and the subtle dif-
ferences between the over-sampling and under-sampling approaches, being the latter more capable
of producing better results.

The following sections briefly summarize the obtained results and present several conclusions.

5.1. Missing Data in Classification: An Analysis on the Most Suitable Imputa-

tion Approach

In order to solve the problems derived from the presence of MVs in the data and to improve
the performance results, we have carried out an exhaustive experimental study to clarify the best
imputation strategy depending on the nature of the classifier. The results are informative and
significant due to the next factors:

We have been able to find a best imputation method for a specific type of classifiers, the
RBFN family, with statistical significance in both artificial and real MVs. This could be
applicable to other classifiers as well.

These recommendation has been extended to a several group of classifiers. Depending on
the classifier type, we have observed different best approaches. We have corroborated this
with respect to the effect of the imputation method on the data by means of two measures.
Therefore we are able now to recommend an imputation procedure depending on the type
of classifier used. We have checked the best imputation methods with respect to their effects
in the data, and corroborated that the best imputation methods induce less noise in the
preprocessed data.

18 Part I. PhD dissertation

In the case of FRBCSs we have analyzed that the type of rules used (Mamdani based or TSK
based) have influence in the imputation methods which should be recommended. We have
observed that the TSK models have close relation with the classic approximative methods
studied in the previous point.

5.2. Domains of Competence of Fuzzy Rule Based Classification Systems: An

Ad-hoc and an Automatic Approach

The question of knowing if a classification algorithm is appropriate for a given problem could
be solved by running the method on the problem. However, this is a trivial situation which is not
always possible due to multiple questions: execution time, large parameter set configuration, many
classification options available, etc. It is possible to determine if a given classification algorithm will
perform well or poorly in advance by means of the use of data complexity measures or when to use
a more complex parameter configuration for the difficult problems (or time-saving in the opposite
case). We should also note that the data complexity measures offer information about the nature
of the problem, so it is possible to improve the methods in order to improve their behavior in such
difficult regions of the complexity space. The obtained results allows us to establish the domains
of competence of the classifiers in different situations:

Using twelve data complexity measures [HB02], we have characterized the domains of com-
petence of the FH-GBML FRBCS by means of two simple rules. These rules are mutually-
exclusive and separate the problems well and badly suited for FH-GBML respectively.

The same twelve metrics have been used to extract the common domains of competence of
three artificial neural networks and one SVM. These models are usually referenced in the
specialized literature for being closely related. We have shown in fact that they share wide
regions in the complexity space by means of only two measures of separability of classes,
confirming these premises and characterizing the common problems for which these four
models behave well or poorly together.

We have proven that the characterization of the methods can be automatically done with
better results. That means that the concepts of good and bad behavior can be established
in the machine language and obtain even better results than when performing the same task
by a human. The automation of the process has been tested on new data sets proving the
generalization capabilities of the automatic extraction method, and compared to similar crisp
classification methods observing particularities and shared points with them. Therefore we
can characterize the classification methods in a fast and unattended manner.

5.3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced

Problems using Data Complexity Measures

The use of preprocessing techniques in order to tackle imbalanced problems are a common
practice. However, the effects of this step has not been studied apart from their positive influence
in the classification method’s behavior afterwards. The IR is a hint on when the preprocessing
should be applied, but we can obtain more information by means of the data complexity measures,

6. Future Work 19

observing when the application of over-sampling and under-sampling techniques make the problems
easier or not:

We have obtained two final rules which are simple and precise to describe both good and bad
performance of C4.5 and PART. These two rules are capable of identifying all good and bad
data sets for SMOTE, SMOTE-ENN, and EUSCHC independently of the IR value.

We show that the use of preprocessing techniques increase the region of good data sets for
C4.6 and PART. Those data sets which were near to the good region but not covered when
preprocessing was not applied, are covered now in the good regions if preprocessing is applied.

An interesting consequence of the characterization obtained by the rules is that the evolu-
tionary undersampling approach EUSCHC is capable of preprocessing successfully more data
sets for C4.5 and PART.

6. Future Work

Next we present the future lines of work raised from the proposals made in this memory.

Automatic recommendation of the best imputation procedure(s)

Once we have analyzed the best approaches for the different families of classifiers, both crisp
and FRBCSs, it would be possible to recommend the best imputation methods in each case. Using
the typology of the classifier it is possible to assume that the best imputation methods which were
the best for its type will work well. This recommendation can be wrapped in an automatic method
which offers the best imputation strategy depending on the type of classifier chosen. This kind of
recommendation would save huge amounts of time, as there are many imputation methods in the
literature.

It can be used as well in the case of ensemble imputation methods [FKD08]. In these ensembles,
several imputation methods and classifiers coexists, being the former used to impute the MVs,
while the seconds are simple and fast classification algorithms used to evaluate the goodness of
the imputation done. This search is no directed by any other information than the accuracy of the
wrapper methods, and it can possibly enhanced using the information obtained from the studies
presented in Section 4.1.

Adapting the Fuzzy Rule Based Classification Systems to use the imputed values
directly

Traditionally, the presence of MVs in the data has not been considered when building up the
FRBCS model. Although the FRBCS are capable of managing imperfect data, their abilities has
not been explicitly checked in this case. The only precedent in the literature of FRBCSs learning
in the case of MVs is a technique proposed to tolerate MVs in the training of a FRBCS [BH98].
This procedure was initially intended to estimate the best approximation to the MV based on the
core region of the fuzzy label associated to the missing attribute. This initial work was further
developed applying the initial technique to a particular fuzzy rule induction algorithm in [GB05].
The main idea was to avoid the use of the missing attribute in the rule operations when covering
new examples or specializing the rules.

20 Part I. PhD dissertation

We have observed that even this primary solution cannot overcome the imputation strategies.
Therefore, having observed that the Mamdani based FRBCSs benefit more from such a simple
imputation strategy like Mean/Mode substitution, it is straightforward to include it at the model
building. This would allow this type of FRBCSs to deal with MVs on its own with a very small
increase of the model building time. In the case of TSK based models, the best imputation strategy
is more complex and maybe it is not worthy to be included in the FRBCSs.

Examining the relationship of noisy and missing data for Fuzzy Rule Based Classifi-
cation Systems

MVs are one particular form of data corruption and/or imprecise data, but it is not the only
one [KCH+03]. Data alterations are also very common and they should have been taken into
account. The quality of any data set is determined by a large number of components as described
in [WSF95]. In the business world, data quality plays a critical role. Error rates in real-world data
sets are common both in classes and attributes and are typically around 5% or more [Wu96] and
actions must be taken in order to avoid or mitigate the errors consequences.

FRBCSs are known to be very robust against imprecise data, but a comprehensive study about
the level of the noise has not been carried out yet, while we have observed the effects of MVs at
different levels. Therefore, the analysis of the behavior of FRBCSs in this framework needs to be
analyzed jointly, in order to determine the capabilities of the FRBCSs in comparison with crisp
classifiers.

Using the domains of competence automatic extraction method in ensemble classifiers

Ensembles of classifiers usually take into account several and simpler classifiers, which generate
a final output (the chosen class for the example presented) based on several schemas. One the most
widely used and known is the voting mechanism, in which each classifier choose an output class,
and the most voted one is the final output. This scheme admits many variants and improvements.
One of them is to assign weights to the classifiers, giving more importance to those classifiers known
to be better. However, this weighting is context-free, that is, it is based on the assumption of that
the classifiers with more weighting power are always the best.

We have seen using the data complexity measures that it is possible to establish the domains of
competence of each classifier. Thus, using the domains of competence of every classifier considered
in the ensemble, we can establish when a vote made by the classifier will be significative or not.
That is, when training the ensemble classifier on a problem, using the a priori information of the
data complexity measures, those base classifiers which contain such data set in their domain of
competence of good behavior will have more decision power than the others.

Classifier accuracy and interpretability improving based on the data complexity mea-
sures information

The data complexity measures have a significance in their definition, as stated in [HB02]. There-
fore, when a classification algorithm does not work properly in a determined region of the complexity
space, we can translate it to a human understandable manner. This process was initially explored
in [BMH05] indicating the strengths and weakness of the XCS classifier, but it can be taken one
step further. It is possible to adequate the learning algorithm to use different learning strategies
depending on the complexity values of the data set.

6. Future Work 21

This procedure can be applied not only to improve the accuracy of the obtained model, but is
interpretability as well in determined classification algorithms, like rule learning classifiers, FRBC-
Ss, decision trees, etc. Indicating one measure representative of the interpretability of the model
from the literature (i.e. number of rules, number of antecedents, tree depth, etc.) the relationship
between the problems which produce poor interpretability and the values of data complexity can
be made patent. From here, the classification algorithm can be adapted to force simpler and more
interpretable models when a data set which is known to produce complex models is provided, as
its complexity values can be estimated in advance.

Characterization of the preprocessing usefulness for imbalanced problems

We have observed that the data complexity measures offer information about those data sets
which result more benefited from the over-sampling or under-sampling preprocessing. These regions
correspond to those complexity values which where adjacent to those in which the classifier obtains
good performance. On the other hand, the data sets characterized as bad for the classifier never
benefit from the use of the preprocessing step.

With this information we can elaborate on the premise that some data sets will benefit from the
preprocessing step, while others do not, and the complexity characteristics of each case. Therefore,
with the use of the data complexity measures, we can build rules which will define the cases in
which the classification algorithm will benefit from applying the preprocessing and when it will not.
This would result in the characterization of the over-sampling and under-sampling preprocessing
for imbalanced data sets. Such a characterization can save efforts and time, accurately indicating
the cases in which preprocessing has sense.

Part II. Publications: Published,

Accepted and Submitted Papers

1. Missing Data in Classification: An Analysis on the Most Suit-

able Imputation Approach

The journal papers associated to this part are:

1.1. A Study on the Use of Imputation Methods for Experimentation with Ra-

dial Basis Function Network Classifiers Handling Missing Attribute Values:

The good synergy between RBFs and EventCovering method

J. Luengo, S. Garćıa, F. Herrera, A Study on the Use of Imputation Methods for Experimen-
tation with Radial Basis Function Network Classifiers Handling Missing Attribute Values:
The good synergy between RBFs and EventCovering method. Neural Networks 23 (2010)
406-418, doi:10.1016/j.neunet.2009.11.014

• Status: Published.

• Impact Factor (JCR 2009): 1.879.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 37 / 103.

Neural Networks 23 (2010) 406–418

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A study on the use of imputation methods for experimentation with Radial Basis
Function Network classifiers handling missing attribute values: The good
synergy between RBFNs and EventCovering methodI

Julián Luengo a,∗, Salvador García b, Francisco Herrera a
a Department of Computer Science and Artificial Intelligence, CITIC-University of Granada, 18071, Granada, Spain
b Department of Computer Science, University of Jaen, 23071, Jaen, Spain

a r t i c l e i n f o

Article history:
Received 8 February 2009
Received in revised form 17 June 2009
Accepted 19 November 2009

Keywords:
Classification
Imputation methods
Missing values
Radial Basis Function Networks

a b s t r a c t

The presence of Missing Values in a data set can affect the performance of a classifier constructed using
that data set as a training sample. Several methods have been proposed to treat missing data and the one
used more frequently is the imputation of the Missing Values of an instance.
In this paper, we analyze the improvement of performance on Radial Basis Function Networks by

means of the use of several imputation methods in the classification task with missing values. The study
has been conducted using data sets with real Missing Values, and data sets with artificial Missing Values.
The results obtained show that EventCovering offers a very good synergy with Radial Basis Function
Networks. It allows us to overcome the negative impact of the presence of Missing Values to a certain
degree.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Real data are not usually perfect – they contain wrong data,
incomplete or vague (Pyle, 1999). Hence, it is usual to find missing
data in most of the information sources used. There are two main
reasonswhy an attribute value ismissing: either the valuewas lost
(e.g. it was erased) or the valuewas not important. The detection of
incomplete data is easy in most cases: we can look for null values
in the data set. However, this is not always true, since Missing
Values (MV) can appear with the form of outliers or even wrong
data (i.e. out of boundaries) (Pearson, 2005).
Missing data is a common problem in statistical analysis (Little

& Rubin, 1987). Rates of missing data less than 1% are generally
considered trivial, 1%–5% manageable. However, a rate of 5%–15%
requires sophisticatedmethods to handle, andmore than 15%may
have severe impact on any kind of interpretation and harm the
model’s results.
Missing data treatment should be carefully thought through,

otherwise bias might be introduced into the knowledge induced.
Depending on thewayMVs have been produced, our approachwill
be different. Several methods have been proposed in the literature

I Thisworkwas supported by the Project TIN2008-06681-C06-01. J. Luengo holds
a FPU scholarship from Spanish Ministry of Education and Science.
∗ Corresponding author. Tel.: +34 958240598; fax: +34 958243317.
E-mail addresses: julianlm@decsai.ugr.es (J. Luengo), sglopez@ujaen.es

(S. García), herrera@decsai.ugr.es (F. Herrera).

to treat missing data (Acuna & Rodriguez, 2004; Batista & Monard,
2003). Missing data can be treated in three different ways (Li,
Deogun, Spaulding, & Shuart, 2004):

• The first approach is to discard the examples with missing data
in their attributes. Moreover, the case of deleting attributes
with elevated levels of missing data is included in this category
too.
• Other approach is the use of maximum likelihood procedures,
where the parameters of a model for the complete data are
estimated, and used later for impute by means of sampling.
• Finally, the imputation of MVs is a class of procedures that aims
to fill in the MVs with estimated ones. In most cases, data sets
attributes are not independent from each other. Thus, through
the identification of relationships among attributes, MVs can be
determined. This is the most commonly used approach.

Missing data has a similar impact on neural networks as it
does on other types of classification algorithms, such as K-Nearest
Neighbour. These similarities include variance underestimation,
distribution distortion, and correlation depression. As Kros, Lin,
and Brown (2006) states: ‘‘By training the network with cases
containing complete data only, the internal weights developed
with this type of training set cannot be accurately applied to a test
set containing missing values later’’, and has been deeper studied
in Markey, Tourassi, Margolis, and DeLong (2006). So we must
impute both training and test data with the same method.
We assume that the MVs are well specified, and that we know

where they appear. The study has been conducted using data sets

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.11.014

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:julianlm@decsai.ugr.es
mailto:sglopez@ujaen.es
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.neunet.2009.11.014

J. Luengo et al. / Neural Networks 23 (2010) 406–418 407

with real MVs and data sets with artificial MVs. There is a wide
family of imputation methods, from mean imputation to those
which analyze the relationships between attributes. We analyze
the use of different imputation strategies versus deletion case and
the total lack of missing data treatment.
We will focus our attention on Radial Basis Function Networks

(RBFNs), in the task of classification with MVs and the use of
imputation methods for them. To this end, we present a snapshot
of the state-of-the-art in the literature about MVs and Artificial
Neural Networks. Moreover, a specific analysis of imputation
methods for the RBFN models is the main contribution, where the
EventCovering method stands out. From the results obtained we
can observe that:

• Imputation methods produce significant improvements in the
RBFNs results.
• A statistical analysis confirms a good synergy of RBFNs with the
EventCovering method (Wong & Chiu, 1987).

The rest of the paper is organised as follows. In Section 2,
we describe the imputation methods that we have used in the
study and the RBFN models. Section 3 describes the experimental
framework, along with the results and their analysis. Finally, in
Section 4 we discuss our conclusions.

2. Preliminaries:Missing values, imputationmethods and their
use in Neural Networks

In this section we briefly introduce the missing data random-
ness, describe the imputation methods used in the study, their
parameters, and present a short review on the use of imputation
methods for Neural Networks. We also describe the RBFN models
used in this paper.

2.1. Randomness of missing data

Depending on the reason why MVs have been produced,
our approach to handle them will be different. Missing data
randomness can be divided into three classes, as proposed by Little
and Rubin (1987):

• Missing completely at random (MCAR). This is the highest level
of randomness. It occurs when the probability of an instance
(case) having a missing value for an attribute depends neither
on the known values nor on the missing data.
• Missing at random (MAR). When the probability of an instance
having a missing value for an attribute may depend on the
known values, but not on the value of the missing data itself.
• Not missing at random (NMAR). When the probability of an
instance having a missing value for an attribute could depend
on the value of that attribute.

It is important to state the randomness of the MVs, since it
will allow the use of imputation methods. In particular, we only
consider MCAR and MAR situations (see Section 3.1), which are
consistent with imputation techniques.

2.2. Description of imputation methods

In this subsection, we briefly describe the imputation methods
that we have used. Imputation methods replace MVs with
estimated values based on information available in the data set.
There are many options varying from simplistic methods such
as the mean imputation, to more robust methods based on
relationships among attributes.
A short description of some widely used imputation methods

which we have employed follows.

• Do Not Impute (DNI). As its name indicates, all the missing data
remain un-replaced, so the networks must use their default
MVs strategies.Wewant to verifywhether imputationmethods
allow the Neural Networksto perform better than using the
original data sets. As a guideline,we find inGrzymala-Busse and
Hu (2000) a previous study of imputation methods. However,
no Machine Learning method is used after the imputation
process.
• Case deletion or Ignore Missing (IM). Using this method, all
instances with at least one MV are discarded from the data set.
• Global Most Common Attribute Value for Symbolic Attributes,
and Global Average Value for Numerical Attributes (MC)
(Grzymala-Busse & Goodwin, 2005). This method is very
simple: for nominal attributes, theMV is replacedwith themost
common attribute value; numerical values are replaced with
the average of all values of the corresponding attribute.
• Concept Most Common Attribute Value for Symbolic At-
tributes, and Concept Average Value for Numerical Attributes
(CMC) (Grzymala-Busse & Goodwin, 2005). As stated inMC, we
replace theMVby themost repeated one if nominal or themean
value if numerical, but considering only the instanceswith same
class as the reference instance.
• Imputationwith K-Nearest Neighbor (KNNI) (Batista &Monard,
2003). Using this instance-based algorithm, every time we find
aMV in a current instance, we compute the k nearest neighbors
and impute a value from them. For nominal values, the most
common value among all neighbors is taken, and for numerical
values we will use the average value. Indeed, we need to
define a proximitymeasure between instances.Wehave chosen
Euclidean distance (it is a case of a Lp norm distance), which is
usually used.
• Weighted imputationwith K-Nearest Neighbor (WKNNI) (Troy-
anskaya et al., 2001). TheWeightedK-NearestNeighbormethod
selects the instances with similar values (in terms of distance)
to a considered one, so it can impute asKNNI does. However, the
estimated value now takes into account the different distances
to the neighbors, using a weighted mean or the most repeated
value according to the distance.
• K-means Clustering Imputation (KMI) (Li et al., 2004). Given
a set of objects, the overall objective of clustering is to divide
the data set into groups based on similarity of objects, and to
minimize the intra-cluster dissimilarity. In K-means clustering,
the intra-cluster dissimilarity is measured by the addition of
distances among the objects and the centroid of the cluster
which they are assigned to. A cluster centroid represents the
mean value of the objects in the cluster. Once the clusters have
converged, the last process is to fill in all the non-reference
attributes for each incomplete object based on the cluster
information. Data objects that belong to the same cluster are
taken as nearest neighbors of each other, andwe apply a nearest
neighbor algorithm to replace missing data, in a way similar to
that of K-Nearest Neighbor Imputation.
• Imputation with Fuzzy K-means Clustering (FKMI) (Acuna &
Rodriguez, 2004; Li et al., 2004). In fuzzy clustering, each data
object xi has amembership functionwhich describes the degree
which this data object belongs to a certain cluster vk. In the
process of updating membership functions and centroids, we
take into account only complete attributes. In this process, we
cannot assign the data object to a concrete cluster represented
by a cluster centroid (as done in the basic K-mean clustering
algorithm), because each data object belongs to all K clusters
with different membership degrees. We replace non-reference
attributes for each incomplete data object xi based on the
information about membership degrees and the values of
cluster centroids.

408 J. Luengo et al. / Neural Networks 23 (2010) 406–418

• Support Vector Machines Imputation (SVMI) (Feng, Chen, Yin,
Yang, & Chen, 2005) is a SVM regression based algorithm to fill
inmissing data, i.e. set the decision attributes (output or classes)
as the condition attributes (input attributes) and the condition
attributes as the decision attributes, so we can use SVM
regression to predict the missing condition attribute values. In
order to do that, first we select the examples in which there
are no missing attribute values. In the next step we set one of
the condition attributes (input attribute), some of those values
are missing, as the decision attribute (output attribute), and
the decision attributes as the condition attributes by contraries.
Finally, we use SVM regression to predict the decision attribute
values.
• EventCovering (EC) (Wong & Chiu, 1987). Based on the work of
Wong et al., a mixed-mode probability model is approximated
by a discrete one. First, they discretize the continuous compo-
nents using a minimum loss of information criterion. Treating
a mixed-mode feature n-tuple as a discrete-valued one, the au-
thors propose a new statistical approach for synthesis of knowl-
edge based on cluster analysis. This method has the advantage
of requiring neither scale normalization nor ordering of dis-
crete values. By synthesis of the data into statistical knowledge,
they refer to the following processes: (1) synthesize and detect
from data inherent patterns which indicate statistical interde-
pendency; (2) group the given data into inherent clusters based
on these detected interdependency; and 3) interpret the under-
lying patterns for each clusters identified. The method of syn-
thesis is based on author’s event–covering approach. With the
developed inference method, we are able to estimate the MVs
in the data.
• Regularized Expectation-Maximization (EM) (Schneider, 2001).
Missing values are imputed with a regularized expectation
maximization (EM) algorithm. In an iteration of the EM
algorithm, given estimates of the mean and of the covariance
matrix are revised in three steps. First, for each record with
missing values, the regression parameters of the variables
with missing values on the variables with available values are
computed from the estimates of themean and of the covariance
matrix. Second, the missing values in a record are filled in
with their conditional expectation values given the available
values and the estimates of the mean and of the covariance
matrix, the conditional expectation values being the product of
the available values and the estimated regression coefficients.
Third, themean and the covariancematrix are re-estimated, the
mean as the sample mean of the completed data set and the
covariance matrix as the sum of the sample covariance matrix
of the completed data set and an estimate of the conditional
covariance matrix of the imputation error. The EM algorithm
starts with initial estimates of the mean and of the covariance
matrix and cycles through these steps until the imputed values
and the estimates of themean and of the covariancematrix stop
changing appreciably from one iteration to the next.
• Singular Value Decomposition Imputation (SVDI) (Troyanskaya
et al., 2001). In this method, we employ singular value decom-
position to obtain a set of mutually orthogonal expression pat-
terns that can be linearly combined to approximate the values
of all attributes in the data set. In order to do that, first we es-
timate the MVs with the EM algorithm, and then we compute
the Singular Value Decomposition and obtain the eigenvalues.
Now we can use the eigenvalues to apply a regression over the
complete attributes of the instance, to obtain an estimation of
the MV itself.
• Bayesian Principal Component Analysis (BPCA) (Oba et al.,
2003). This method is an estimationmethod for missing values,
which is based on Bayesian principal component analysis.
Although themethodology that a probabilisticmodel and latent

Table 1
Methods parameters.

Method Parameter

SVMI Kernel= RBF
C = 1.0
Epsilon= 0.001
Shrinking= No

KNNI, WKNNI K = 10

KMI K = 10
Iterations= 100
Error= 100

FKMI K = 3
Iterations= 100
Error= 100
m = 1.5

EC T = 0.05

EM Iterations= 30
Stagnation tolerance= 0.0001
Inflation factor= 1
Regression type=multiple ridge regression

SVDI Iterations= 30
Stagnation tolerance= 0.005
Inflation factor= 1
Regression type=multiple ridge regression
Singular vectors= 10

variables are estimated simultaneously within the framework
of Bayes inference is not new in principle, the actual BPCA
implementation that makes it possible to estimate arbitrary
missing variables is new in terms of statistical methodology.
Themissing value estimationmethod based on BPCA consists of
three elementary processes. They are (1) principal component
(PC) regression, (2) Bayesian estimation, and (3) an expectation
maximization (EM)-like repetitive algorithm.

A more extensive and detailed description of this method can
be found in the web page http://sci2s.ugr.es/MVDM, and a PDF file
with the original source paper descriptions is present in the web
page formerly named ‘‘Imputation of Missing Values. Methods’
Description’’.
There are more specialized methods, some derived from

Bioinformatics. In the reviews of Farhangfar, Kurgan, and Pedrycz
(2004); Grzymala-Busse and Hu (2000); Schafer and Graham
(2002) we can find a good compilation of imputationmethods that
are not considered in this study due to their specialization.

2.3. Parameters used

In Table 1 we show the parameters used by each imputation
method which has been used in this work (in the case of the
method would use them). The values chosen are recommended by
their respective authors.

2.4. A short review on the use of imputation methods for Neural
Networks

We can find a study of the influence of MVs on Neural
Networks in Ennett, Frize, and Walker (2001), where the MVs
were replaced with ‘‘normal’’ values (i.e. replaced by zero) as well.
In Yoon and Lee (1999) a specific method for training Neural
Networkswith incomplete data was proposed, called Training-
Estimation-Training (train with complete instances, impute the
MV with the network, and train with the whole data set).
Besides, it is possible to find some work in areas related to

Neural Networks. In Lim, Leong, and Kuan (2005) the authors
propose a hybrid Neural Networks, in which the missing values
are replaced with four Fuzzy C-Means technique based strategies.

http://sci2s.ugr.es/MVDM

J. Luengo et al. / Neural Networks 23 (2010) 406–418 409

After data set completion, the FAM module is applied. Self
Organizing Maps (SOMs) are not capable of handling MV as Wang
(2003) states. He proposes a SOM-based fuzzy map model for
data mining with incomplete data. This model has two key
components: translation of observations with missing data into
fuzzy observations, and histogram-style fuzzy maps. This is not
an imputation scheme, but a method which is capable of handling
MVs for itself. With SVMs, Pelckmans, De Brabanterb, Suykensa,
and De Moor (2005) contemplates an alternative approach where
no attempt is made to reconstruct the values which are missing,
but only the impact of the missingness on the outcome and the
expected risk of the SVM ismodeled explicitly. This is possible only
when MVs are MCAR.
Artificial Neural Networks have been used as imputation

methods as well in some specific applications. In Sun and Kardia
(2008), the authors employ an Artificial Neural Networks based
method for imputing the MVs artificially generated over genotype
data. Pisoni, Pastor, and Volta (2008) also use Artificial Neural
Networks for interpolating missing satellite data. A comparison
betweenAuto-associativeNeural Networkswith genetic algorithm
combination, and a variant of the Expectation-Maximization
algorithm can be found in Nelwamondo, Mohamed, and Marwala
(2007). Mileva-Boshkoska and Stankovski (2007) employ Radial
Basis Function Networks for imputing ozone concentrations and
SVMs as well.

2.5. Radial Basis Function Networks: Short outlook and description

The RBF architecture (Musavi, Ahmed, Chan, Faris, & Hummels,
1992) consists of a simple two layered network (a hidden layer and
an output layer), each layer is fully connected to the one following.
As we have mentioned, the hidden layer is composed of a

number of nodes, RBF nodes, with radial activation functions,
which shall be taken, in this analysis, as Gaussian functions. Two
parameters are associated with each RBF node, the ‘‘centre’’ and
‘‘width’’. Both of these quantities refer to properties of theGaussian
function. Associated with the hidden to output connections, are
conventional signal multipliers: the weights. The final output
processing unit merely yields a weighted sum of its inputs.
Their use in the literature is extensive, and its application varies

from face recognition (Er, Wu, Lu, & Hock-Lye, 2002) to time series
prediction (Harpham & Dawson, 2006). The RBFNs are under con-
tinuously research, sowe can find abundant literature about exten-
sions and improvements of RBFNs learning andmodeling (Billings,
Wei, & Balikhin, 2007; Ghodsi & Schuurmans, 2003; Lázaro, San-
tamaría, & Pantaleón, 2003; Wallace, Tsapatsoulis, & Kollias, 2005;
Wei & Amari, 2008). Recently, we can find some work analyzing
the behavior of RBFNs (Eickhoff & Ruckert, 2007; Liao, Fang, & Nut-
tle, 2003; Yeung, Ng, Wang, Tsang, & Wang, 2007) and improving
their efficiency (Arenas-Garcia, Gomez-Verdejo, & Figueiras-Vidal,
2007; Schwenker, Kestler, & Palm, 2001). As we can see from the
recent and past literature, we can conclude that RBFNs are awidely
employed and well-known model which is actually used. Regard-
ing MVs treatment in RBFNs there are some contributions, using
the RBFNs to predict the MVs (Uysal, 2007) or obtaining the Ra-
dial Basis Function from a Vector Quantization of the data set with
MVs (Lendasse, Francois, Wertz, & Verleysen, 2005). Also, the im-
pact of MVs in the RBFNs has been considered in Morris, Boddy,
and Wilkins (2001), but only in a case study.
The experimentation in this paper is conducted by using the

following models of RBFNs:

• Radial Basis Function Network (RBFN) (Broomhead & Lowe,
1988; Buhmann, 2003). It is well suited for function approx-
imation and pattern recognition due to its simple topological
structure and its ability to reveal how learning proceeds in an
explicit manner. A RBF is a function which has been built into

a distance criterion with respect to a centre. Different basis
functions like thin-plate spline functions, multiquadratic func-
tions, inverse multiquadratic functions and Gaussian functions
have been proposed for the hidden-layer neurons, but nor-
mally the selected one is the Gaussian function. Compared with
other types of Artificial Neural Networks (ANNs), such as feed-
forward networks, the RBFN requires less computation time for
learning and also has amore compact topology. RBFs have been
applied in the area of ANNs where they may be used as a re-
placement for the sigmoidal hidden layer transfer character-
istic in multi-layer perceptrons. The original RBF method has
been traditionally used for strict multivariate function interpo-
lation (Powell, 1987) and for this fact, it requires as many RBF
neurons as data points. Broomhead and Lowe (1988) removed
this strict interpolation restriction and provided a neural net-
work architecture where the number of RBF neurons can be far
less than the data points. A RBFN mainly consists of two layers,
one hidden-layer and one output layer.
Each input example x is applied to all hidden neurons. The

neuron i computes the function

hi(x) = exp
[
(x− ui)2

2σ 2i

]
(1)

where ui is the center of the neuron i, and hi the output of such
neuron. The RBFN has only one output (i.e. j has only one value),
and it is defined by

z(x) =

k∑
i
hi(x)wi

k∑
i
hi(x)

. (2)

The termwi refers to the neuron weight, and k is the number of
neurons in the hidden layer. In order to initialize the neurons in
the network, we use a K-means clustering algorithm. The centre
of the neuron is set equal to the centroid of the cluster, and
its radius equal to the mean of the distance between the given
center and the N = 2 nearest neurons:

σi =

N∑
j=1

d(ui, uj)
N

. (3)

The network is initialized with a K-means clustering algorithm.
In a similar fashion to the imputation method KMI, we set
the number of clusters equal to the number of neurons. The
initial centroids are set to random chosen examples, which are
all different. By successive iterations, the neurons are adjusted
using the Euclidean distance until the centroids (i.e. the
neurons) do not change.
Once the centers and radius of the neurons has been

initialized, the output’s weight matrix can be optimized by
means of supervised training. For each train example xi and
expected output ti, we compute the output of the hidden layer’s
neurons, the vector h. Next, we compute the output of the
network y and compare it with the expected output t , and
adjust each weight inw to reduce the Mean Square Error (MSE)
with the Least Mean Squares algorithm (LMS). This method
implies the use of gradient descent (delta rule) and adjusting
the weights:

wij(n+ 1) = wij(n)+ η(tj − yj)hi (4)

where η is the learning rate (η � 1.0). This process is repeated
for each train example, until the max iteration limit is reached.
The center and radius of the neurons is adjusted as well to
minimize the output error. We use the error derivative with
respect to these parameters, in a fashion similar to that of

410 J. Luengo et al. / Neural Networks 23 (2010) 406–418

backpropagation. With i = 1, . . . ,m hidden neurons, j =
1, . . . , p inputs and k = 1 output, we update both parameters
simultaneously from iteration n to n+ 1 with:

uij(n+ 1) = uij(n)+ ηc

[∑
k
(tk − yk)wik

]
hi(xj − uij(n))

(σi(n))2
(5)

σi(n+ 1) = σi(n)+ ησ

[∑
k
(tk − yk)wik

]
hi ‖ x− ui(n) ‖2

(σi(n))3
. (6)

The number of hidden-layer neurons is defined by the user a
priori. In our study, we have fixed the number of neurons at
50. The η is set to 0.3. Both ηc and ησ are set to 1

maxIterations .
The parameter maxIterations denote the maximum number of
iterations of the network training algorithm, and is established
to 10.
• RBFN Decremental (RBFND) (Yingwei, Sundararajan, &
Saratchandran, 1997). In the classical approach described
above, the number of hidden units is fixed a priori based
on the properties of input data. A significant contribution
that overcomes these drawbacks was made through the
development of an algorithm that adds hidden units to the
network based on the novelty of the new data. One drawback
of this approach is that once a hidden unit is created, it can
never be removed. The authors have proposed an algorithm
that adopts the basic idea of a pruning strategy. The pruning
strategy removes those hidden neurons which consistently
make little contribution to the network output. Pruning
becomes imperative for the identification of nonlinear systems
with changing dynamics, because failing to prune the network
in such cases will result in numerous inactive hidden neurons,
being present as the dynamics which cause their creation
initially, become nonexistent. If inactive hidden units can be
detected and removed while learning proceeds, a more well-
suited network topology can be constructed. Also, when the
neural networks are employed for control, the problem of over-
parametrization should be avoided.
The network initialization is the same that the simple RBFN

model described previously:We use a K-means algorithm to set
the initial position of the neurons in the problem space. Next,
we apply an initial adjust with the LMS algorithm explained in
the RBFN model with 10 iterations. This procedure allow us to
obtain a set of initial weights. We compute the mean wj of the
weights from all neurons for the output j as

wj =
1
N

N∑
i=1

wij. (7)

Since we are using the RBFN network for classification
problems, only one output is considered.
The pruning will be applied over the neurons with a low

weight compared to the computed mean. For every neuron, if
its weight wij is lower than the threshold ρ × wj, the neuron
is removed from the network. The threshold ρ should be a low
value. A high valuewill delete almost all neurons of the net, and
prevent the algorithm from finish.
Now we apply gradient descendent on the remaining

neurons over uij and wij. This will re-adjust the neurons
positions and their weights, trying to fill up the gaps produced
by the pruning strategy.
These combined pruning–adjusting steps are repeated over

the data set and the network. When the network stays with the
same neurons for λ iterations, the network training finishes.
In our study, we provide this model with 50 initial neurons,

a ρ percentage of 0.1 under the average of the weights used to

decide whether a neuron must be removed or not, and a learn-
ing factor α = 0.3 of the Least Mean Square (LMS) algorithm
for adjusting the neurons. The limit iteration λ to achieve con-
vergence has been empirically set to 15.
• RBFN Incremental (RBFNI) (Plat, 1991). This approach builds a
RBFN composed of one hidden layer and one output layer. This
topography is similar to non-incremental RBFN’s one, butwe do
not know the number of neurons of the hidden layer. This idea
is similar to RBFN Decremental, but in this model we will not
set any limit to the hidden layer’s neurons number. We use the
Resource-Allocating Network (RAN) algorithm, which consists
of a network, a strategy for allocating new units, and a learning
rule for refining the network. The units on the first layer store
a particular region in the input space. When the input moves
away from the stored region the response of the unit decreases.
As we mentioned in the RBFN model, we employ a Gaussian
function to achieve this behaviour. The Eq. (1) is used to obtain
the response of a single neuron, and (2) describes how to
compute the network output. In Plat (1991) the author employs
a default output γ parameter, which is added to the result of
Eq. (1), but we do not apply it to the classification problem.
The network starts with a blank slate: no patterns are yet

stored. As patterns are presented to it, the network chooses to
store some of them. At any given point the network has a cur-
rent state,which reflects the patterns that have been storedpre-
viously. The allocator identifies a pattern that is not currently
well represented by the network and allocates a new unit that
memorizes the pattern. The output of the new unit extends to
the second layer. After the new unit is allocated, the network
output is equal to the desired output y. Let the index of this new
unit be n.
The peak (center) of the response of the newly allocated unit

is set to the novel input example xi:

un = xi. (8)

Theweight associated to this neuron to the output layer is set to
the difference between the output of the network and the novel
output,

wn = y− z(xi). (9)

The width of response (the neuron’s radius) of the new unit is
proportional to the distance from the nearest stored neuron to
the novel input vector,

σn = κ ‖ xj − unearest ‖ (10)

where κ is an overlap factor. As κ grows larger, the responses of
the units overlapmore andmore. The RAN uses a two-part nov-
elty condition. An input–output pair (xj, yj) is considered novel
if the input is far away from existing centers,

‖ xj − unearest ‖> δ(t) (11)

and if the difference between the desired output and the output
of the network is large

‖ yj − z(xj) ‖> ε. (12)

Typically ε is a desired accuracy of output of the network. Er-
rors larger than ε are immediately corrected by the allocation
of a new unit, while errors smaller than ε gradually minimized
using gradient descent. The distance δ(t) is the scale of reso-
lution that the network is fitting at the tth input presentation.
The learning starts with δ(t) = δmax; which is the largest length
scale of interest, typically the size of the entire input space of
non-zero probability density. The distance δ(t) shrinks until the
it reaches δmin, which is the smallest length scale of interest. The
network will average over features that are smaller than δmin.
We used a function:

δ(t) = max(δmax exp(−t/τ), δmin) (13)

J. Luengo et al. / Neural Networks 23 (2010) 406–418 411

Table 2
Data sets used for experimentation.

Data set Abbreviation # Ex. # Atts. # Classes % MV % Ex. with MV

Horse-colic HOC 368 24 2 21.82 98.10
Bands BAN 540 40 2 4.63 48.70
Hepatitis HEP 155 20 2 5.39 48.39
House-Votes-84 HOV 434 17 2 5.30 46.54
Mammographic MAM 961 6 2 2.81 13.63
Mushroom MUS 8124 23 2 1.33 30.53
Autos AUT 205 26 6 1.11 22.44
Crx CRX 689 16 2 0.61 5.37
Post-operative POP 90 9 3 0.37 3.33
Breast BRE 286 10 2 0.31 3.15
Wisconsin WIS 699 10 2 0.23 2.29
Cleveland CLE 303 13 5 0.14 1.98
Iris+MV IRI 150 4 3 10.00 32.67
Pima+MV PIM 768 9 2 10.00 50.65
Wine+MV WIN 178 14 3 10.00 70.22
Australian+MV AUS 690 15 2 10.00 70.58
New-thyroid+MV NTH 215 6 3 10.00 35.35
Ecoli+MV ECO 336 8 8 10.00 48.21
Satimage+MV SAT 6435 37 7 10.00 87.80
German+MV GER 1000 21 2 10.00 80.00
Magic+MV MAG 1902 11 2 10.00 58.20
Shuttle+MV SHU 2175 10 7 10.00 55.95

where τ is a decay constant. At first, the system creates a coarse
representation of the function, then refines the representation
by allocating units with smaller and smaller widths. Finally,
when the system has learned the entire function to the desired
accuracy and length scale, it stops allocating new units alto-
gether.
The two-part novelty condition is necessary for creating a

compact network. If only condition (11) is used, then the net-
workwill allocate units instead of using gradient descent to cor-
rect small errors. If only condition (12) is used, then fine-scale
units may be allocated in order to represent coarse-scale fea-
tures, which is wasteful. By allocating new units the RAN even-
tually represents the desired function ever more closely as the
network is trained. Fewer units are needed for a given accuracy
if the hidden-layer outputs hi(xj), the output-level outcome
z(xi), and the thresholds γi are adjusted to decrease the error:

Ξ =‖ yj − z(xj) ‖2 . (14)

We use the Widrow-Hoff LMS algorithm to decrease the error
whenever a new unit is not allocated, as Yingwei states:

∆z(xj) = α(yj − z(xj))xj. (15)

In addition, we adjust the centers of the responses of units to
decrease error:

∆uj = 2
α

σj
(xk − uj)hj(xk)[(yj − z(xk)) · wj]. (16)

Eq. (16) is derived from the gradient descent and Eq. (1). Eq. (16)
also has an intuitive interpretation. Units whose outputs would
cancel the error have their centers pulled towards the input.
Units whose outputs would increase the error have their cen-
ters pushed away from the input.
This method tries to find the correct number of neurons for

a given data set, without an initial limitation such as in the
RBFNmodel (which has its neurons number fixed) and the RBFN
Decremental model (which also has a maximum number of
neurons fixed a priori). However, if δ is too low, we can find that
our network overfits the training data. The model that we have
used is set with α = 0.3, δmax = 0.5, δmin = 0.1 and ε = 0.1. κ
is set to 1.

The parameters of the RBFNmodels have been empirically esti-
mated in order to optimize the performance of RBFN in classifica-
tion problems analyzed, without tuning them individually for each
data set.

3. Experimental study: Imputation methods

In this sectionwe describe the experimentswe have performed.
First, the data sets used and the setup of our experiments are
described. Next, the obtained results are shown with an analysis
of them. Finally, a specific statistical study on the behavior of
EventCoveringmethod is done.We include a graphical study of this
EventCovering analysis.

3.1. Experimentation framework

We have selected a group of 22 data sets taken from the UCI
repository (Asuncion & Newman, 2007). In Table 2, we summarize
their properties. The column labeled as ‘‘% MV’’ indicates the
percentage of all values of the data set which are missing. The
column labeled as ‘‘% Ex. with MV’’ refers to the percentage of
examples in the data set which have at least one MV.
Their origin is described as follows:

• We have selected 12 data sets which have MVs in a ‘‘natural’’
way. The percentage range of MVs varies from 20% to 0.1%. We
cannot know anything about the randomness ofMVs in the first
12 data sets, so we assume they are distributed in aMARway.
• We have used 10 classical data sets with induced MVs (last ten
rows in the Table 2). We have generated a 10% of the data set
values as MVs in the training partition ‘‘artificially’’ in a MCAR
way. The reason for inducing MVs only in the training partition
is thatwe onlywant to discard information in the training stage,
and affect the test task the least. With this configuration we can
see how effective is the imputation to the unaffected instances
of test.

For the experiments, we have used 10-fold cross validation.
Since the training of the RBFNs is not deterministic, we have
repeated each experiment 5 times per partition, each time with
different seed, also randomly generated too. At the end, we have
50 executions of the model with each data set and imputation
method. The imputationmethod uses the training partition to infer
the required knowledge and relations between attributes. Then it
is applied in both training and test partitions. Therefore, the test
partition in each case is not used to impute the MVs.

412 J. Luengo et al. / Neural Networks 23 (2010) 406–418

Table 3
RBFN test accuracy

AUT BRE CLE CRX WIS BAN

IM 32.78± 10.03 71.92 ± 7.84 34.14± 10.59 66.09± 7.15 97.12± 2.50 69.41± 7.21
EC 41.20± 8.33 71.34± 6.45 46.92 ± 13.01 84.54 ± 4.54 97.43 ± 2.65 68.11± 4.92
KNNI 29.42± 8.09 70.72± 7.21 33.68± 10.68 67.18± 7.34 96.97± 2.76 71.93± 5.14
WKNNI 29.06± 7.09 69.74± 7.96 33.84± 9.63 66.11± 6.19 96.91± 2.83 71.78± 5.00
KMI 29.96± 8.87 70.76± 6.55 34.07± 9.84 65.81± 5.89 96.85± 2.86 72.26± 5.77
FKMI 28.46± 7.06 71.12± 7.53 33.82± 9.55 66.61± 6.43 96.97± 2.85 73.00± 4.16
SVMI 30.11± 6.99 71.49± 6.95 33.09± 10.06 67.30± 7.21 96.91± 2.80 73.41 ± 5.70
EM 43.32 ± 8.90 71.39± 5.91 34.01± 10.13 64.22± 6.01 96.82± 2.87 70.11± 4.64
SVDI 42.07± 9.74 71.58± 6.87 34.65± 10.22 62.10± 6.97 97.00± 2.70 70.63± 5.21
BPCA 40.41± 7.29 69.63± 4.65 26.32± 6.52 51.97± 6.33 45.38± 3.50 56.96± 3.79
MC 30.32± 7.67 70.39± 6.96 35.64± 10.54 66.90± 6.68 97.03± 2.78 72.41± 4.29
CMC 29.29± 7.37 71.63± 7.24 36.23± 10.60 66.71± 6.02 96.94± 2.83 71.89± 4.98
DNI 27.73± 7.72 71.06± 7.88 34.17± 10.51 66.81± 6.48 96.85± 2.89 71.70± 5.57

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 95.45± 4.40 79.62± 5.53 68.81± 11.22 81.71 ± 8.99 99.63 ± 0.39
EC 79.59 ± 7.64 95.15± 3.93 82.42 ± 4.98 70.00± 9.75 78.03± 7.57 99.59± 0.26
KNNI 59.50± 6.10 94.88± 3.63 79.36± 5.19 70.22± 11.43 75.24± 7.97 99.54± 0.27
WKNNI 59.55± 5.69 95.07± 3.67 78.88± 4.53 69.33± 9.57 76.03± 7.91 99.45± 0.49
KMI 59.13± 6.54 95.06± 4.04 79.15± 4.94 69.78± 10.43 77.25± 5.22 99.56± 0.30
FKMI 59.33± 6.10 94.97± 3.54 79.76± 4.80 68.89± 10.66 77.67± 4.52 99.57± 0.28
SVMI 59.06± 6.72 96.12 ± 3.48 80.98± 4.96 70.44 ± 9.06 79.89± 6.85 99.53± 0.29
EM 60.22± 6.90 91.86± 5.81 79.76± 5.59 68.67± 12.11 75.71± 5.55 99.44± 0.36
SVDI 59.84± 5.58 91.77± 5.49 79.34± 4.78 69.78± 10.90 75.13± 6.79 99.43± 0.34
BPCA 57.71± 6.27 49.51± 6.01 50.59± 5.39 56.44± 17.05 79.37± 2.25 50.84± 0.68
MC 60.17± 5.49 95.20± 3.72 79.07± 4.57 69.11± 9.76 77.35± 5.49 99.57± 0.26
CMC 59.66± 6.12 96.02± 4.17 81.13± 4.77 67.56± 11.51 77.08± 7.82 99.59± 0.21
DNI 59.07± 6.05 95.20± 3.76 79.92± 4.32 68.44± 11.19 74.78± 6.52 99.44± 0.33

IRI PIM WIN AUS NTH ECO

IM 90.27± 10.35 71.57± 3.69 65.29± 10.26 65.88± 5.39 87.65± 5.36 19.94± 3.87
EC 94.40 ± 6.16 71.89± 4.76 96.52 ± 4.01 85.71 ± 4.39 92.13 ± 4.26 51.43 ± 13.24
KNNI 93.87± 7.04 72.49 ± 5.40 66.69± 10.49 66.75± 5.66 90.45± 5.96 21.73± 3.11
WKNNI 92.40± 7.54 72.38± 4.83 65.65± 9.13 66.75± 4.85 88.40± 7.10 20.78± 3.67
KMI 91.73± 8.39 71.51± 5.39 67.82± 8.83 65.91± 4.77 89.48± 6.48 22.87± 2.33
FKMI 86.13± 10.65 71.80± 4.97 65.13± 10.77 66.29± 4.41 88.48± 6.55 22.02± 3.56
SVMI 94.40± 5.23 71.57± 4.67 69.79± 9.19 67.13± 4.85 90.82± 5.36 22.40± 3.38
EM 89.73± 8.45 71.24± 5.29 65.41± 9.33 63.36± 4.45 89.68± 6.38 25.43± 8.58
SVDI 88.53± 10.59 71.68± 4.43 62.88± 8.86 61.19± 4.42 89.02± 6.45 23.49± 5.62
BPCA 33.47± 1.63 65.04± 4.67 28.10± 2.57 51.10± 5.54 65.15± 3.18 22.15± 2.58
MC 94.27± 5.81 71.94± 5.44 68.12± 5.94 66.41± 5.29 88.69± 5.93 22.23± 2.71
CMC 94.40± 5.87 71.62± 4.68 67.25± 7.98 66.55± 4.67 90.93± 5.74 21.91± 2.89
DNI 91.47± 7.66 71.85± 4.53 67.55± 10.20 66.29± 5.72 89.52± 6.10 20.68± 3.80

SAT GER MAG SHU

IM 59.97± 4.77 62.54± 5.62 75.68± 3.37 88.81± 2.83
EC 62.67± 4.69 72.26 ± 3.39 77.13 ± 3.53 97.26 ± 3.00
KNNI 67.34± 2.73 67.52± 4.31 76.35± 2.85 90.26± 3.83
WKNNI 67.00± 3.01 68.26± 3.75 76.10± 2.55 90.14± 3.62
KMI 68.29± 2.95 67.96± 3.55 75.86± 3.37 89.77± 2.03
FKMI 69.68 ± 2.16 68.24± 3.42 75.84± 3.02 89.30± 4.45
SVMI 69.38± 2.74 67.44± 4.03 76.37± 2.74 89.45± 4.31
EM 17.28± 8.76 68.52± 3.45 74.11± 3.31 82.54± 5.13
SVDI 19.02± 8.15 68.12± 3.53 73.97± 3.01 82.06± 3.42
BPCA 16.53± 0.79 64.12± 5.19 61.96± 1.54 62.90± 3.61
MC 69.41± 2.83 67.92± 3.89 75.76± 2.58 87.81± 3.70
CMC 69.46± 2.30 66.60± 3.54 76.39± 2.97 88.95± 4.33
DNI 45.54± 5.22 67.36± 4.03 76.51± 2.97 86.50± 4.47

3.2. Experiments and analysis

In this sectionwe present the experimental results, and analyze
them. We have summarized the percentage of well-classified
instances in test. We have 50 runs of each problem (5 times
per partition), the mean of these 50 experiments is shown as
a representative value, and the standard deviations have been
computed. We present the obtained results in Tables 3–5, a table
per each RBFNmodel. The highest accuracy value is represented in
bold, emphasizing the best method of a given data set.
From our study, we can point out the following:
• DNI (Do Not Impute) method is almost never the best method.
This method informs us about the relevance of MV in the
attributes.

• IM (Ignore instances with MVs) method has a very poor
performance aswell. Sometimes, the deletion of instances leads
the RBFN method not to adjust itself to certain classes, since
the information that describes them has been erased from the
data set. In these situations, the results of the test accuracy are
even poorer than the DNI method. However, data sets with a
low percentage ofMVs show a low disadvantage of this method
from the rest.
• Simple methods as MC and CMC are competitive and can
surpass more sophisticatedmethods. However, the use of these
methods introduces bias in the data, thus the RBFN model can
be penalized.
• The clustering methods based on K-Means and K-NN have
an average performance, not always better than DNI or

J. Luengo et al. / Neural Networks 23 (2010) 406–418 413

Table 4
RBFN decremental test accuracy.

AUT BRE CLE CRX WIS BAN

IM 29.09± 12.13 62.01± 10.92 34.99± 13.70 59.32± 8.15 88.15± 11.11 56.03± 10.32
EC 46.82 ± 13.71 62.16± 10.42 43.78 ± 15.53 76.39 ± 7.57 92.73 ± 6.03 58.74± 8.94
KNNI 25.41± 11.22 62.89± 11.00 34.00± 11.47 59.72± 6.40 86.41± 12.50 60.41± 9.42
WKNNI 25.02± 9.51 64.50± 8.40 31.52± 11.34 59.16± 7.59 85.00± 16.21 60.70± 9.03
KMI 25.08± 10.49 62.53± 7.85 34.87± 12.51 59.29± 8.02 87.58± 11.75 62.81± 5.92
FKMI 25.18± 9.91 62.92± 9.49 33.61± 11.61 59.56± 7.86 88.27± 10.18 60.52± 8.45
SVMI 25.07± 9.77 64.54± 9.06 35.02± 12.41 60.79± 7.06 91.71± 5.46 62.67± 6.38
EM 33.87± 12.08 64.76± 8.90 34.90± 12.63 58.18± 7.29 91.13± 5.45 60.67± 7.06
SVDI 33.73± 12.35 62.95± 9.64 33.98± 11.91 59.81± 7.68 86.84± 10.99 63.00± 8.66
BPCA 29.87± 11.00 70.99 ± 8.52 33.08± 9.61 49.61± 6.23 46.33± 5.69 50.67± 6.97
MC 26.91± 11.38 62.84± 10.30 35.05± 11.31 57.11± 8.86 87.23± 10.15 60.44± 9.01
CMC 29.19± 9.42 65.19± 8.01 35.83± 11.44 59.46± 8.65 88.42± 11.98 63.00 ± 8.41
DNI 23.44± 11.43 62.86± 10.61 38.40± 12.30 60.42± 7.80 90.79± 8.53 59.30± 8.51

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 87.98± 10.74 78.15± 5.49 59.89± 16.53 81.20 ± 10.05 84.26± 15.62
EC 66.80 ± 11.15 88.07± 11.54 78.94± 5.29 58.00± 15.76 74.45± 11.95 86.59± 15.00
KNNI 60.98± 5.66 88.92± 9.33 76.49± 4.75 52.00± 17.84 62.01± 16.16 86.71± 13.28
WKNNI 59.46± 5.30 87.40± 13.08 76.34± 6.25 59.33± 16.72 65.09± 15.24 85.93± 13.89
KMI 58.58± 6.24 86.69± 10.86 76.49± 5.84 60.89 ± 13.74 63.74± 15.60 86.31± 10.61
FKMI 60.87± 6.01 90.21 ± 9.65 77.44± 5.22 56.67± 16.37 66.19± 12.51 84.14± 14.29
SVMI 58.55± 6.69 88.14± 12.66 77.55± 5.34 53.78± 17.69 71.37± 15.76 88.40 ± 11.39
EM 61.20± 4.73 83.37± 12.07 77.38± 5.46 58.44± 14.37 60.93± 18.23 85.56± 11.71
SVDI 60.75± 7.12 84.43± 12.08 77.61± 5.94 56.00± 14.22 62.68± 15.89 86.63± 12.34
BPCA 55.11± 7.50 50.99± 6.38 51.03± 4.71 46.67± 17.36 70.33± 12.54 50.81± 1.17
MC 60.72± 6.22 83.09± 16.46 76.55± 5.00 54.44± 18.36 64.97± 13.58 86.64± 12.25
CMC 59.41± 6.23 85.75± 14.19 79.25 ± 4.74 57.11± 16.48 69.64± 17.33 86.85± 13.80
DNI 58.86± 6.04 86.33± 11.81 76.82± 4.89 60.44± 15.74 66.67± 13.93 86.39± 13.15

IRI PIM WIN AUS NTH ECO

IM 92.93± 6.02 63.44± 9.37 66.84± 11.65 57.48± 6.02 77.30± 12.25 38.94± 11.65
EC 94.40 ± 5.05 68.74 ± 5.31 89.75 ± 9.91 78.35 ± 10.44 82.77± 16.19 43.38± 13.38
KNNI 93.73± 5.40 67.92± 6.36 66.89± 12.66 57.83± 7.57 80.01± 12.33 41.53± 7.54
WKNNI 92.27± 6.02 65.79± 6.77 66.01± 11.90 58.29± 7.28 79.52± 12.01 38.37± 11.02
KMI 91.47± 7.55 67.51± 7.36 68.90± 11.56 57.80± 6.95 79.60± 11.16 37.85± 12.02
FKMI 92.93± 6.72 66.04± 6.93 64.65± 12.31 56.06± 6.76 78.95± 10.81 39.04± 11.13
SVMI 94.27± 5.50 63.98± 8.21 69.20± 10.80 58.78± 6.09 81.76± 10.67 41.06± 10.42
EM 90.27± 9.35 66.19± 9.48 52.78± 13.09 54.46± 8.13 78.12± 15.60 40.02± 9.17
SVDI 91.07± 7.61 67.11± 5.93 57.88± 12.85 55.97± 6.86 77.61± 13.88 44.46 ± 9.24
BPCA 33.33± 0.00 66.59± 8.31 28.78± 3.51 49.65± 5.55 64.86± 8.15 38.44± 7.69
MC 94.27± 6.11 65.24± 5.55 64.04± 12.96 58.64± 7.72 83.31 ± 13.40 39.07± 11.14
CMC 93.73± 5.56 66.12± 7.74 67.85± 10.30 59.25± 7.22 81.03± 9.78 42.29± 8.22
DNI 92.40± 8.11 63.93± 9.11 63.63± 10.17 56.49± 7.41 78.46± 12.87 36.42± 14.05

SAT GER MAG SHU

IM 33.25± 8.05 60.26± 5.12 64.56± 9.94 75.42± 17.14
EC 35.55± 12.40 63.32± 7.26 69.09 ± 10.17 87.45 ± 11.38
KNNI 38.47± 9.37 68.68 ± 2.49 63.74± 10.47 76.42± 16.53
WKNNI 36.84± 9.26 68.04± 3.19 62.75± 10.38 74.02± 16.85
KMI 37.93± 10.11 67.54± 4.15 63.95± 9.63 69.13± 18.36
FKMI 33.50± 9.02 66.92± 5.44 64.90± 8.77 73.45± 15.11
SVMI 38.82 ± 10.82 67.10± 3.67 64.46± 8.64 73.73± 12.91
EM 23.63± 10.36 67.10± 3.40 64.13± 8.11 66.84± 16.96
SVDI 24.36± 10.27 66.50± 6.01 64.59± 9.26 61.22± 21.72
BPCA 15.63± 3.04 64.40± 8.63 57.78± 7.18 50.98± 12.03
MC 36.86± 10.08 66.80± 5.39 62.58± 9.75 70.51± 14.42
CMC 37.35± 8.98 67.86± 3.14 64.74± 8.36 78.16± 12.78
DNI 30.43± 9.83 67.98± 6.73 62.66± 11.28 65.05± 19.37

IM, and sometimes surpassed by simple methods like mean
substitution.
• SVMI method does not perform very well, despite of the
RBF Kernel we have chosen. This method appears to be very
dependent on the data set.
• EM method does not perform as well as the best method, but
it also never leads to the worse accuracy. Compared to SVDI, it
obtains better results, although SVDI is based on EM imputation
method.
• BPCA has a very poor performance sometimes. Except for RBFN
Incremental in certain cases, their results are below the average.

• Finally, EC is the best method in many data sets. It is the best
13 times for RBFN, 11 times for RBFND and 13 times for RBFNI.
It offers good stability in each data set, and can surpass the
accuracy in more than 10% in some data sets respect to other
imputation methods.

As a summary from the previous analysis we can observe
that DNI is not the best option, since it can be improved by
many methods, which are capable of capture the relationships
between values of the instance. The use of case deletion (i.e. IM)
is discouraged too, since it rarely outperforms the results of the
imputation methods, and can seriously harm the test accuracy.

414 J. Luengo et al. / Neural Networks 23 (2010) 406–418

Table 5
RBFN incremental test accuracy.

AUT BRE CLE CRX WIS BAN

IM 36.69± 10.01 66.45± 8.48 35.33± 10.74 62.94± 5.38 96.02± 3.31 74.02± 7.61
EC 67.65± 9.77 61.75± 7.87 54.00 ± 8.05 81.49 ± 4.08 96.23 ± 2.71 75.96 ± 5.97
KNNI 34.52± 8.59 63.76± 7.13 35.89± 8.07 63.38± 5.18 95.66± 2.75 74.93± 6.43
WKNNI 34.56± 12.16 65.83± 8.87 35.46± 9.40 62.28± 5.95 95.77± 2.80 75.59± 5.96
KMI 34.23± 12.90 65.05± 6.19 34.61± 9.00 63.90± 4.93 96.20± 2.52 75.59± 6.30
FKMI 35.27± 11.66 65.63± 7.37 34.59± 9.96 63.69± 5.17 95.54± 4.02 74.70± 5.18
SVMI 36.60± 11.01 64.72± 7.88 35.74± 7.78 63.56± 6.29 96.20± 2.61 75.22± 6.05
EM 46.58± 10.17 64.33± 7.10 35.57± 9.61 63.15± 5.72 96.03± 2.46 75.41± 5.34
SVDI 46.56± 12.12 64.16± 8.27 35.75± 9.78 61.23± 5.42 95.88± 3.13 75.74± 6.57
BPCA 76.96 ± 9.51 94.39 ± 3.85 37.48± 8.95 51.97± 3.42 45.21± 3.25 57.41± 5.98
MC 34.45± 10.05 63.42± 8.13 36.10± 8.89 63.75± 5.44 95.83± 2.92 75.15± 5.12
CMC 36.72± 10.80 63.62± 7.37 36.60± 8.22 64.42± 5.74 95.85± 2.46 75.67± 6.73
DNI 32.52± 10.81 65.86± 7.36 35.36± 9.46 63.41± 5.64 96.00± 3.04 75.78± 4.88

HOC HOV MAM POP HEP MUS

IM 40.00± 48.99 95.42± 3.90 76.19± 4.49 59.44± 17.51 77.70 ± 13.04 100.00 ± 0.00
EC 75.71 ± 6.13 94.78± 4.04 79.46 ± 6.15 60.00± 15.56 75.33± 11.08 100.00 ± 0.02
KNNI 57.41± 5.70 94.23± 4.06 75.40± 4.20 59.11± 16.40 58.65± 13.77 100.00 ± 0.00
WKNNI 56.40± 8.25 94.50± 4.37 75.65± 4.41 62.67 ± 16.14 61.15± 14.23 100.00 ± 0.02
KMI 60.84± 8.31 94.64± 3.73 75.19± 4.85 60.89± 13.74 61.41± 13.15 99.99± 0.03
FKMI 58.02± 8.21 94.46± 3.65 75.73± 4.83 60.00± 16.33 58.11± 13.04 100.00 ± 0.02
SVMI 55.94± 7.59 94.73± 4.07 76.41± 4.57 60.89± 16.52 74.87± 13.53 100.00 ± 0.00
EM 60.12± 7.37 90.76± 6.33 75.40± 5.09 60.00± 17.07 63.25± 13.89 100.00 ± 0.00
SVDI 57.90± 6.99 90.66± 5.89 76.20± 4.53 58.89± 15.60 67.30± 12.19 99.99± 0.04
BPCA 54.59± 5.09 50.20± 7.36 50.11± 4.39 43.78± 17.41 73.67± 3.25 50.84± 0.68
MC 57.90± 6.82 94.64± 4.16 74.97± 4.09 60.22± 17.08 62.88± 13.56 100.00 ± 0.02
CMC 60.10± 8.51 95.66 ± 3.76 76.92± 5.13 58.44± 16.60 73.21± 10.39 99.99± 0.03
DNI 57.96± 8.16 94.18± 3.67 76.05± 4.36 62.00± 16.04 62.19± 13.19 100.00 ± 0.00

IRI PIM WIN AUS NTH ECO

IM 94.67± 5.66 65.98± 6.38 64.87± 11.53 59.68± 5.55 87.10± 7.87 50.34± 12.45
EC 94.13± 4.92 70.26 ± 4.73 87.06 ± 17.67 82.43 ± 4.79 90.91± 5.09 67.70 ± 7.18
KNNI 94.67± 4.42 67.44± 6.70 71.40± 8.20 59.83± 6.72 87.80± 8.28 54.26± 10.69
WKNNI 94.53± 4.36 65.08± 7.59 70.65± 8.89 60.72± 5.89 87.67± 6.69 54.40± 10.10
KMI 95.20± 5.17 65.94± 6.37 68.90± 9.18 58.81± 6.77 87.36± 7.65 54.16± 12.20
FKMI 95.20± 5.34 65.83± 5.57 69.92± 10.18 59.57± 6.14 88.02± 7.03 49.53± 11.89
SVMI 94.67± 6.11 64.72± 5.87 72.65± 8.85 59.25± 5.91 88.84± 6.05 57.06± 10.95
EM 94.67± 5.96 67.31± 5.13 56.69± 13.34 59.97± 5.38 86.32± 7.70 52.04± 10.02
SVDI 94.00± 7.45 64.56± 6.03 58.42± 14.04 60.00± 5.55 86.08± 8.08 51.65± 10.10
BPCA 33.33± 0.00 99.19± 0.82 33.06± 2.10 47.80± 6.56 69.62± 1.86 35.48± 5.83
MC 95.60± 4.54 63.93± 6.10 72.66± 9.29 59.74± 5.73 86.37± 7.72 50.87± 12.55
CMC 94.67± 5.33 67.30± 5.23 72.83± 9.31 61.10± 5.78 90.93 ± 5.89 56.11± 9.75
DNI 95.73 ± 4.57 66.73± 6.69 68.51± 10.59 60.17± 5.24 88.19± 6.47 53.55± 13.18

SAT GER MAG SHU

IM 60.94± 3.16 53.98± 5.00 71.42± 3.63 93.23± 3.47
EC 76.82± 1.51 66.74 ± 5.18 76.20 ± 3.97 97.57 ± 5.32
KNNI 76.46± 2.74 55.64± 5.42 71.03± 3.25 95.42± 2.50
WKNNI 76.86± 2.50 57.30± 4.79 72.84± 3.20 95.58± 1.54
KMI 77.03± 2.82 56.06± 6.03 71.22± 3.39 95.17± 2.05
FKMI 77.44± 3.49 56.98± 4.14 71.58± 3.54 95.71± 1.78
SVMI 79.35± 2.17 57.02± 5.75 72.87± 3.32 95.68± 1.54
EM 57.45± 6.68 55.64± 7.36 69.48± 3.60 92.35± 3.72
SVDI 57.54± 7.01 56.94± 5.11 70.82± 3.84 93.82± 2.93
BPCA 18.38± 0.88 59.74± 4.30 64.85± 0.32 65.37± 1.96
MC 77.19± 2.19 56.74± 5.79 71.62± 3.15 95.31± 1.72
CMC 79.62 ± 1.74 57.12± 5.41 71.82± 4.10 95.73± 1.53
DNI 64.04± 3.00 56.90± 5.47 72.60± 3.92 95.11± 1.87

EC has been capable of offering an outstanding performance in
comparison with the other imputation models.

3.3. Statistical and graphical analysis of the EventCovering method

We have proceeded to a statistical analysis in order to establish
the significance degree of differences in performance between the
EC method and the other imputation methods. We have applied
a non-parametric statistical test (Děmsar, 2006; García & Herrera,
2008), theWilcoxon Signed Rank Test.We distinguish between the
results obtained by the data sets with natural MVs and the data
setswith inducedMVs. The obtained results for EC versus the other
methods can be found in Table 6 for the data setswith naturalMVs,
and Table 7 for the data sets with induced MVs.

As we can see from Tables 6 and 7, EC is the best method in
almost all comparisons with statistical significance of α = 0.05.
There exist some exceptions:

• IM has no significant differencewith EC for the RBFN and RBFNI
models in the data sets with natural MVs.
• SVMI has no significant difference with EC for RBFN in the data
sets with natural MVs. It also has a statistical significance with
α = 0.1 in RBFNDmethod in both natural and artificialMV data
sets.
• MC presents no significant difference with EC in the RBFN
method for the data setswith naturalMVs. For the artificial data
sets,MC has statistical significance with α = 0.1 in the RBFND
method.

J. Luengo et al. / Neural Networks 23 (2010) 406–418 415

Table 6
Wilcoxon signed rank test results for EC (natural MVs).

RBFN RBFN decremental RBFN incremental
R− R+ p-value R− R+ p-value R− R+ p-value

IM 57 21 0.158 66 12 0.034 59.5 18.5 0.110
KNNI 68 10 0.023 68 10 0.023 71.5 6.5 0.013
WKNNI 70 8 0.015 66 12 0.034 65.5 12.5 0.041
KMI 70 8 0.015 65 13 0.041 67 11 0.028
FKMI 70 8 0.015 68 10 0.023 69.5 8.5 0.022
SVMI 53 25 0.272 61 17 0.084 64.5 13.5 0.050
EM 66 12 0.034 66 12 0.034 67.5 10.5 0.013
SVDI 64 14 0.050 69 9 0.019 71.5 6.5 0.008
BPCA 76 2 0.004 75 3 0.005 67 11 0.028
MC 68 10 0.230 72 6 0.010 68.5 9.5 0.021
CMC 63.5 14.5 0.050 64 14 0.050 68 10. 0.023
DNI 69 9 0.019 66 12 0.034 63.5 12.5 0.041

Table 7
Wilcoxon signed rank test results for EC (artificial MVs).

RBFN RBFN decremental RBFN incremental
R− R+ p-value R− R+ p-value R− R+ p-value

IM 55 0 0.005 55 0 0.005 54 1 0.007
KNNI 48 7 0.037 43 12 0.114 53 2 0.009
WKNNI 48 7 0.037 49 6 0.028 52 3 0.013
KMI 49 6 0.028 48 7 0.037 52 3 0.013
FKMI 50 5 0.022 51 4 0.017 52 3 0.013
SVMI 48.5 6.5 0.038 46 9 0.059 50 5 0.022
EM 55 0 0.005 52 3 0.013 54 1 0.007
SVDI 55 0 0.005 51 4 0.017 55 0 0.005
BPCA 55 0 0.005 54 1 0.007 51 4 0.017
MC 48 7 0.037 46 9 0.059 52 3 0.013
CMC 48.5 6.5 0.038 44 11 0.093 48 7 0.037
DNI 55 0 0.005 52 3 0.013 54 1 0.007

40.00
RBFN RBFN Decremental RBFN Incremental

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

Fig. 1. EC vs. IM.

• Finally, CMC has a statistical significance with α = 0.1 for the
artificial data sets in the RBFND method.

These results confirm the previous analysis obtained from the
result tables and figures, ECmethod is the best among all presented
imputationmethods inmost cases for theRBFNmodels considered.

Finally we show graphically that EC method has got an
outstanding performance with RBFNs. In Figs. 1–12 we use the
test set accuracy as a performance measure, and the vertical bars
represent the difference in accuracy between EC and the other
methods for each data set.
• The positive values (bars above the baseline) represent the
advantage of EC method. That is, the larger the bar, the higher
the difference between EC method and the indicated one.
• Anegative bar under the baseline indicates that the RBFNmodel
for EC method has lower accuracy than the other imputation
method.

RBFN RBFN Decremental RBFN Incremental

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

Fig. 2. EC vs. KNNI.

RBFN RBFN Decremental RBFN Incremental

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

Fig. 3. EC vs. WKKNI.

416 J. Luengo et al. / Neural Networks 23 (2010) 406–418

RBFN RBFN Decremental RBFN Incremental

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

Fig. 4. EC vs. KMI.

RBFN RBFN Decremental RBFN Incremental

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

Fig. 5. EC vs. FKMI.

RBFN RBFN Decremental RBFN Incremental

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

Fig. 6. EC vs. SVMI.

The best behavior of EC over all methods is present for almost
every data set, since there aremore ‘‘positive’’ bars, andwithhigher
positive value. We can distinguish three different situations:

• The data sets AUT, CLE, CRX, HOC, HEP,WIN, AUS, ECO, AUS, GER
and SHUpresent positive differences over the 5% for at least two
models of the RBFNs.
• The data sets WIS, HAM, POP, MUS, IRI, PIM, NTH and MAG
present little positive difference for EC, under the 5%, for at least
two RBFN methods.
• Only the data sets BRE, BAN and SAT show a lower accuracy for
the RBFN models in the case of EC method respect to the rest
with a negative bar.

RBFN RBFN Decremental RBFN Incremental

50.00

40.00

30.00

20.00

10.00

0.00

-10.00

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

Fig. 7. EC vs. EM.

RBFN RBFN Decremental RBFN Incremental

50.00

40.00

30.00

20.00

10.00

0.00

-10.00

A
U

T

B
R

E

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

P
IM

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

Fig. 8. EC vs. SVDI.

RBFN RBFN Decremental RBFN Incremental

A
U

T

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

IR
I

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

65.00

45.00

25.00

5.00

-15.00

-35.00

P
IM

B
R

E

Fig. 9. EC vs. BPCA.

The behavior of the RBFN models in the different data sets is
homogeneous, and we can find that the EC method outperforms
the rest in the same data sets for all the three RBFN models.
Therefore, from the figures we can observe that only for the 14% of
the data sets, the EC imputation method is performing worse than
the rest. From the remaining 86%, on the 36% of the data sets the
EC method behaves better than the rest with little difference, and
in the remaining 50% the improvements of accuracy are notorious.

4. Concluding remarks

We have studied the use of imputation techniques for the anal-
ysis of RBFN in classification problems, presenting a comparison

J. Luengo et al. / Neural Networks 23 (2010) 406–418 417

RBFN RBFN Decremental RBFN Incremental

IR
I

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

A
U

T

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

P
IM

B
R

E

Fig. 10. EC vs. MC.

RBFN RBFN Decremental RBFN Incremental

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00
IR

I

A
U

T

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

P
IM

B
R

E

Fig. 11. EC vs. CMC.

RBFN RBFN Decremental RBFN Incremental

IR
I

A
U

T

C
LE

C
R

X

W
IS

B
A

N

H
O

C

H
O

V

M
A

M

P
O

P

H
E

P

M
U

S

W
IN

A
U

S

N
T

H

E
C

O

S
AT

G
E

R

M
A

G

S
H

U

P
IM

B
R

E

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

Fig. 12. EC vs. DNI.

between: (1)imputation, (2)do not impute, and (3)ignore cases
with MVs.
When comparing the results of these three options, the need

for using imputation methods is clear when analyzing RBFN for
classification, since improvements in performance of the results
are often achieved.
We must point out that the EC method is the best choice for

carrying out an imputation of MVs when working with RBFNs in
three considered variants of this model. Therefore, we can confirm
the good synergy between RBFN models and the EventCovering
method.

References

Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect in
the classifier accuracy. In D. Banks, L. House, F. R. McMorris, P. Arabie, &
W. Gaul (Eds.), Classification, clustering and data mining applications
(pp. 639–648). Berlin, Germany: Springer-Verlag Berlin-Heidelberg.

Arenas-Garcia, J., Gomez-Verdejo, V., & Figueiras-Vidal, A. R. (2007). Fast evaluation
of neural networks via confidence rating. Neurocomputing , 70, 2775–2782.

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository [WWW
Page]. Irvine, CA: University of California, School of Information and Computer
Science. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.

Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data
treatment methods for supervised learning. Applied Artificial Intelligence, 17,
519–533.

Billings, S. A.,Wei, H.-L., & Balikhin, M. A. (2007). Generalizedmultiscale radial basis
function networks. Neural Networks, 20(10), 1081–1094.

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and
adaptive networks. Complex Systems, 2, 321–355.

Buhmann, M. D. (2003). Cambridge monographs on applied and computational
mathematics. Radial basis functions: Theory and implementations.

Děmsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Eickhoff, R., & Ruckert, U. (2007). Robustness of radial basis functions. Neurocom-
puting , 70, 2758–2767.

Ennett, C.M., Frize,M., &Walker, C. R. (2001). Influence ofmissing values on artificial
neural network performance.Medinfo, 10, 449–453.

Er, M. J., Wu, S., Lu, J., & Hock-Lye, T. (2002). Face recognition with radial basis
function (RBF) neural networks. IEEE Transactions on Neural Networks, 13,
697–710.

Farhangfar, A., Kurgan, L., & Pedrycz, W. (2004). Experimental analysis of methods
for imputation ofmissing values in databases. In K. L. Priddy (Ed.). SPIE.Vol. 5421.
Intelligent computing: Theory and applications II. Michigan (pp. 172–182).

Feng, H. A. B., Chen, G. C., Yin, C. D., Yang, B. B., & Chen, Y. E. (2005). A SVM
regression based approach to filling inmissing values. In R. Khosla, R. J. Howlett,
& L. C. Jain (Eds.), Lecture notes in artificial intelligence: Vol. 3683. Knowledge-
based intelligent information and engineering systems (KES 2005) (pp. 581–587).
Springer.

García, S., &Herrera, F. (2008). An extension on ‘‘Statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons. Journal of Machine
Learning Research, 9, 2677–2694.

Ghodsi, A., & Schuurmans, D. (2003). Automatic basis selection techniques for RBF
networks. Neural Networks, 16(5–6), 809–816.

Grzymala-Busse, J. W., & Hu, M. (2000). A comparison of several approaches to
missing attribute values in data mining. In W. Ziarko, & Y. Y. Yao (Eds.), Lecture
notes in computer science: Vol. 2005. Rough sets and current trends in computing :
Second international conference (RSCTC 2000) (pp. 378–385). Canada: Springer.

Grzymala-Busse, J. W., & Goodwin, L. K. (2005). Handlingmissing attribute values in
preterm birth data sets. In D. Slezak, J. Yao, J. F. Peters, W. Ziarko, & X. Hu (Eds.),
Lecture notes in computer science: Vol. 3642. Rough sets, fuzzy sets, data mining,
and granular computing (RSFDGrC 2005) (pp. 342–351). Canada: Springer.

Harpham, C., & Dawson, C. W. (2006). The effect of different basis functions on a
radial basis function network for time series prediction: A comparative study.
Neurocomputing , 69, 2161–2170.

Kros, J. F., Lin, M., & Brown, M. L. (2006). Effects of the neural network s-Sigmoid
function on KDD in the presence of imprecise data. Computers and Operations
Research, 33, 3136–3149.

Lázaro, M., Santamaría, I., & Pantaleón, C. (2003). A new EM-based training
algorithm for RBF networks. Neural Networks, 16(1), 69–77.

Lendasse, A., Francois, D., Wertz, V., & Verleysen, M. (2005). Vector quantization:
A weighted version for time-series forecasting. Future Generation Computer
Systems, 21, 1056–1067.

Li, D., Deogun, J., Spaulding, W., & Shuart, B. (2004). Towards missing data
imputation: A study of fuzzy K-means clustering method. In S Tsumoto,
R. Slowinski, J. Komorowski, & J. W. Grzymala-Busse (Eds.), Lecture notes in
computer science: Vol. 3066. Rough sets and current trends in computing (RSCTC
2004) (pp. 573–579). Sweden: Springer-Verlag.

Liao, Y., Fang, S.-C., & Nuttle, H. L. W. (2003). Relaxed conditions for radial-
basis function networks to be universal approximators. Neural Networks, 16(7),
1019–1028.

Lim, C. P., Leong, J. H., & Kuan, M. M. (2005). A hybrid neural network system for
pattern classification tasks with missing features. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27, 648–653.

Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data. New York:
John Wiley and Sons.

Markey, M. K., Tourassi, G. D., Margolis, M., & DeLong, D. M. (2006). Impact of
missing data in evaluating artificial neural networks trained on complete data.
Computers in Biology and Medicine, 36, 516–525.

Mileva-Boshkoska, B., & Stankovski, M. (2007). Prediction of missing data for ozone
concentrations using support vectormachines and radial basis neural networks.
Informatica (Ljubljana), 31, 425–430.

Morris, C.W., Boddy, L., &Wilkins,M. F. (2001). Effects ofmissing data on RBF neural
network identification of biological taxa: Discrimination of microalgae from
flow cytometry data. International Journal of Smart Engineering System Design,
3, 195–202.

Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the
training of radial basis function classifiers. Neural Networks, 5, 595–603.

http://www.ics.uci.edu/~mlearn/MLRepository.html

418 J. Luengo et al. / Neural Networks 23 (2010) 406–418

Nelwamondo, F. V., Mohamed, S., &Marwala, T. (2007). Missing data: A comparison
of neural network and expectation maximization techniques. Current Science,
93, 1514–1521.

Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., & Ishii, S. (2003). A
Bayesian missing value estimation method for gene expression profile data.
Bioinformatics, 19, 2088–2096.

Pearson, R. K. (2005).Mining imperfect data. SIAM.
Pelckmans, K., De Brabanterb, J., Suykensa, J. A. K., & De Moor, B. (2005). Handling
missing values in support vector machine classifiers. Neural Networks, 18,
684–692.

Pisoni, E., Pastor, F., & Volta, M. (2008). Artificial neural networks to reconstruct
incomplete satellite data: Application to the mediterranean sea surface
temperature. Nonlinear Processes in Geophysics, 15, 61–70.

Plat, J. (1991). A resource allocating network for function interpolation. Neural
Computation, 3, 213–225.

Powell,M. J. D. (1987). Radial basis function formultivariate interpolation: A review.
In J. C. Mason, & M. G. Cox (Eds.), Algorithm for approximation (pp. 143–168).
Oxford, England: Clarendon Press.

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann Publishers.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.
Psychol Methods, 7, 147–177.

Schneider, T. (2001). Analysis of incomplete climate data: Estimation ofmean values
and covariancematrices and imputation ofmissing values. Journal of Climate, 14,
853–871.

Schwenker, F., Kestler, H. A., & Palm, G. (2001). Three learning phases for radial-
basis-function networks. Neural Networks, 14(4–5), 439–458.

Sun, Y. V., & Kardia, S. L. R. (2008). Imputing missing genotypic data of single-
nucleotide polymorphisms using neural networks. European Journal of Human
Genetics, 16, 487–495.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., & Altman, R. B. (2001). Missing value estimation methods for DNA
microarrays. Bioinformatics, 17, 520–525.

Uysal, M. (2007). Reconstruction of time series data with missing values. Journal of
Applied Sciences, 7, 922–925.

Wallace,M., Tsapatsoulis, N., &Kollias, S. (2005). Intelligent initialization of resource
allocating RBF networks. Neural Networks, 18(2), 117–122.

Wang, S. (2003). Application of self-organising maps for data mining with
incomplete data sets. Neural Computation & Applications, 12, 42–48.

Wei, H., & Amari, S.-i. (2008). Dynamics of learning near singularities in radial basis
function networks. Neural Networks, 21(7), 989–1005.

Wong, A. K. C., & Chiu, D. K. Y. (1987). Synthesizing statistical knowledge from
incompletemixed-mode data. IEEE Transactions on Pattern Analysis andMachine
Intelligence, 9, 796–805.

Yeung, D. S., Ng, W. W. Y., Wang, D., Tsang, E. C. C., & Wang, X.-Z. (2007). Localized
generalization error model and its application to architecture selection for
radial basis function neural network. IEEE Transactions on Neural Networks, 18,
1294–1305.

Yingwei, L., Sundararajan, N., & Saratchandran, P. (1997). A sequential learning
scheme for function approximation using minimal radial basis function neural
networks. Neural Computation, 9, 361–478.

Yoon, S. Y., & Lee, S. Y. (1999). Training algorithm with incomplete data for feed-
forward neural networks. Neural Processing Letters, 10, 171–179.

Missing Data in Classification: An Analysis on the Most Suitable Imputation Approach 39

1.2. On the choice of an imputation method for missing values. A study of three

groups of classification methods: rule induction learning, lazy learning and

approximate methods

J. Luengo, S. Garćıa, F. Herrera, On the choice of an imputation method for missing values.
A study of three groups of classification methods: rule induction learning, lazy learning and
approximate methods. Submitted to Knowledge and Information Systems.

• Status: Submitted.

• Impact Factor (JCR 2009): 2.211.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 27 / 103.

• Subject Category: Computer Science, Information Systems. Ranking 24 / 116.

 Editorial Manager(tm) for Knowledge and Information Systems
 Manuscript Draft

Manuscript Number: KAIS-2083R2

Title: On the choice of an imputation method for missing values. A study of three groups of
classification methods: rule induction learning, lazy learning and approximate methods

Article Type: Regular Paper

Keywords: Approximate Models; Classification; Imputation; Rule Induction Learning; Lazy Learning;
Missing Values; Single Imputation

Corresponding Author: Mr. Julian Luengo,

Corresponding Author's Institution: University of Granada

First Author: Julian Luengo

Order of Authors: Julian Luengo; Salvador García, Dr.; Francisco Herrera, Dr.

Abstract: In real-life data, information is frequently lost in data mining, caused by the presence of
missing values in attributes. Several schemes have been studied to overcome the drawbacks produced
by missing values in data mining tasks; one of the most well known is based on preprocessing,
formerly known as imputation. In this work we focus on a classification task with twenty-three
classification methods and fourteen different approaches to Missing attribute Values treatment that
are presented and analyzed. The analysis involves a group-based approach, in which we distinguish
between three different categories of classification methods.
Each category behaves differently, and the evidence obtained shows that the use of determined
Missing Values imputation methods could improve the accuracy obtained for these methods.

In this study, the convenience of using imputation methods for pre-processing data sets with Missing
Values is stated. The analysis suggests that
the use of particular imputation methods conditioned to the groups is required.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On the choice of an imputation method for

missing values. A study of three groups of

classification methods: rule induction learning,

lazy learning and approximate methods

Julián Luengo1, Salvador Garćıa2, Francisco Herrera1

1Dept. of Computer Science and Artificial Intelligence,

CITIC-University of Granada, 18071, Granada, Spain.

e-mail: {julianlm,herrera}@decsai.ugr.es
2Dept. of Computer Science,

University of Jaén, 23071, Jaén, Spain.

e-mail: sglopez@ujaen.es

Abstract

In real-life data, information is frequently lost in data mining, caused

by the presence of missing values in attributes. Several schemes have

been studied to overcome the drawbacks produced by missing values in

data mining tasks; one of the most well known is based on preprocessing,

formerly known as imputation. In this work we focus on a classification

task with twenty-three classification methods and fourteen different ap-

proaches to Missing attribute Values treatment that are presented and

analyzed. The analysis involves a group-based approach, in which we

distinguish between three different categories of classification methods.

Each category behaves differently, and the evidence obtained shows that

the use of determined Missing Values imputation methods could improve

the accuracy obtained for these methods.

In this study, the convenience of using imputation methods for pre-

processing data sets with Missing Values is stated. The analysis suggests

that the use of particular imputation methods conditioned to the groups

is required.

Keywords: Approximate Models; Classification; Imputation; Rule

Induction Learning; Lazy Learning; Missing Values; Single Imputation

1 Introduction

Many existing, industrial and research data sets contain Missing Values (MVs).
There are various reasons for their existence, such as manual data entry pro-
cedures, equipment errors and incorrect measurements. The presence of such

1

*Manuscript
Click here to download Manuscript: kais imputation.tex Click here to view linked References

http://www.editorialmanager.com/kais/download.aspx?id=40310&guid=8527f2dd-9ecd-4d44-a487-d3be15909321&scheme=1
http://www.editorialmanager.com/kais/viewRCResults.aspx?pdf=1&docID=1002&rev=2&fileID=40310&msid={2153129D-8064-4818-9DB0-47B733F76AD8}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

imperfections requires a preprocessing stage in which the data is prepared and
cleaned (Pyle, 1999), in order to be useful to and sufficiently clear for the knowl-
edge extraction process. The simplest way of dealing with missing values is to
discard the examples that contain them. However, this method is practical only
when the data contains a relatively small number of examples with MVs and
when analysis of the complete examples will not lead to serious bias during the
inference (Little and Rubin, 1987).

MVs make the performance of data analysis difficult. The presence of missing
values can also pose serious problems for researchers. In fact, inappropriate
handling of missing data in the analysis may introduce bias and can result in
misleading conclusions being drawn from a research study, and can also limit the
generalizability of the research findings (Wang and Wang, 2010). Three types of
problem are usually associated with missing values in data mining (Barnard and
Meng, 1999): 1) loss of efficiency; 2) complications in handling and analyzing
the data; and 3) bias resulting from differences between missing and complete
data.

In the particular case of classification, learning from incomplete data be-
comes even more important. Incomplete data in either the training set or test
set or in both sets affect the prediction accuracy of learned classifiers (Gheyas
and Smith, 2010). The seriousness of this problem depends in part on the pro-
portion of missing data. Most classification algorithms cannot work directly
with incomplete data sets and due to the high dimensionality of real problems
it is possible that no valid (complete) cases would be present in the data set
(Garćıa-Laencina, Sancho-Gómez and Figueiras-Vidal, 2009). Therefore, it is
important to analyze which is the best technique or preprocessing considered in
order to treat the present MVs before applying the classification methods as no
other option is possible.

Usually the treatment of missing data in data mining can be handled in
three different ways (Farhangfar, Kurgan and Pedrycz, 2007):

• The first approach is to discard the examples with missing data in their
attributes. Therefore deleting attributes with elevated levels of missing
data is included in this category too.

• Another approach is the use of maximum likelihood procedures, where the
parameters of a model for the complete data are estimated, and later used
for imputation by means of sampling.

• Finally, the imputation of MVs is a class of procedures that aims to fill
in the MVs with estimated ones. In most cases, a data set’s attributes
are not independent from each other. Thus, through the identification of
relationships among attributes, MVs can be determined

We will focus our attention on the use of imputation methods. A fundamental
advantage of this approach is that the missing data treatment is independent
of the learning algorithm used. For this reason, the user can select the most
appropriate method for each situation he faces. There is a wide family of im-
putation methods, from simple imputation techniques like mean substitution,

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

K-Nearest Neighbour, etc.; to those which analyze the relationships between
attributes such as: support vector machines-based, clustering-based, logistic
regressions, maximum-likelihood procedures and multiple imputation (Batista
and Monard, 2003; Farhangfar, Kurgan and Dy, 2008).

The literature on imputation methods in Data Mining employs well-known
Machine Learning methods for their studies, in which the authors show the
convenience of imputing the MVs for the mentioned algorithms, particularly for
classification. The vast majority of MVs studies in classification usually ana-
lyze and compare one imputation method against a few others under controlled
amounts of MVs, and induce them artificially with known mechanisms and prob-
ability distributions (Acuna and Rodriguez, 2004; Batista and Monard, 2003;
Farhangfar et al., 2008; Hruschka, Hruschka and Ebecken, 2007; Li, Deogun,
Spaulding and Shuart, 2004).

We want to analyze the effect of the use of a large set of imputation methods
on all the considered classifiers. Most of the considered classification methods
have been used previously in MVs studies. However, they have been considered
all together. In this work we will establish three groups of classifiers to categorize
them, and we will examine the best imputation strategies for each group. The
former groups are as follows:

• The first group consists of the Rule Induction Learning category. This
group refers to algorithms which infer rules using different strategies.
Therefore, we can identify as belonging to this category those methods
that produce a set of more or less interpretable rules. These rules include
discrete and/or continuous features, which will be treated by each method
depending on their definition and representation.

• The second group represents the Approximate Models. It includes Artifi-
cial Neural Networks, Support Vector Machines and Statistical Learning.
In this group we include the methods which act like a black box. Therefore,
those methods which do not produce an interpretable model fall under this
category. Although the Näıve Bayes method is not a completely black box
method, we have considered that this is the most appropriate category for
it.

• The third and last group corresponds to the Lazy Learning category. This
group includes methods which do not create any model, but use the train-
ing data to perform the classification directly. This process implies the
presence of measures of similarity of some kind. Thus, the methods which
use a similarity function to relate the inputs to the training set are con-
sidered as belonging to this category.

In order to perform the analysis, we use a large bunch of data sets, twenty-
one in total, with natural MVs. All the data sets have their proper MVs and we
do not induce them, as we want to stay as close to the real world data as possi-
ble. First, we analyze the use of the different imputation strategies versus case
deletion and the total lack of missing data treatment, for a total of fourteen im-
putation methods. Therefore, each one of the twenty-three imputation methods

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

is used over the fourteen imputation results. All the imputation and classi-
fication algorithms are publicly available in the KEEL software1 (Alcalá-fdez,
Sánchez, Garćıa, Jesus, Ventura, Garrell, Otero, Bacardit, Rivas, Fernández
and Herrera, 2009). These results are compared using the Wilcoxon Signed
Rank test (Demšar, 2006; Garćıa and Herrera, 2008) in order to obtain the best
method(s) for each classifier. With this information we can extract the best
imputation method for the three groups, and indicate the best global option
using a set of average rankings.

We have also analyzed two metrics related to the data characteristics, for-
merly known as Wilson’s noise ratio and Mutual Information. Using these mea-
sures, we have observed the influence of the imputation procedures on the noise
and on the relationship of the attributes with the class label as well. This pro-
cedure tries to quantify the quality of each imputation method independently
of the classification algorithm.

The obtained results will help us to explain how imputation may be a useful
tool to overcome the negative impact of missing data, and the most suitable im-
putation method for each classifier, each group and all the classification methods
together.

The rest of the paper is organized as follows. In Section 2 we present the
basis of the application of the imputation methods, the description of the impu-
tation methods we have used and a brief review of the current state of the art
in imputation methods. In Section 3, the experimental framework, the classifi-
cation methods and the parameters used for both imputation and classification
methods are presented. In Section 4, the results obtained are analyzed. In Sec-
tion 5 we use two measures to quantify the influence of the imputation methods
in the data sets, both in the instances and in the features. Finally, in Section 6
we make some concluding remarks.

2 Imputation background

In this section we first set the basis of our study in accordance with the MV
literature. The rest of this section is organized as follows: In Subsection 2.1 we
have summarized the imputation methods that we have used in our study; in
Subsection 2.2 we show a brief snapshot of the latest advances in imputation
methods.

A more extensive and detailed description of these methods can be found
on the web page http://sci2s.ugr.es/MVDM, and a PDF file with the original
source paper descriptions is present on the web page formerly named “Imputa-
tion of Missing Values. Methods’ Description”. A more complete bibliography
section is also available on the mentioned web page.

It is important to categorize the mechanisms which lead to the introduction
of MVs (Little and Rubin, 1987). The assumptions we make about the missing-
ness mechanism and the missing data pattern of missing values can affect which

1http://keel.es

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

imputation method could be applied, if any. As Little and Rubin (1987) stated,
there are three different mechanisms for missing data induction.

1. Missing completely at random (MCAR), when the distribution of an
example having a missing value for an attribute does not depend on either
the observed data or the missing data.

2. Missing at random (MAR), when the distribution of an example having
a missing value for an attribute depends on the observed data, but does
not depend on the missing data.

3. Not missing at random (NMAR), when the distribution of an example
having a missing value for an attribute depends on the missing values.

In the case of the MCAR mode, the assumption is that the underlying dis-
tributions of missing and complete data are the same, while for the MAR mode
they are different, and the missing data can be predicted by using the com-
plete data (Little and Rubin, 1987). These two mechanisms are assumed by the
imputation methods so far. As Farhangfar et al. (2008) and Matsubara, Prati,
Batista and Monard (2008) state, it is only in the MCAR mechanism case where
the analysis of the remaining complete data (ignoring the incomplete data) could
give a valid inference (classification in our case) due to the assumption of equal
distributions. That is, case and attribute removal with missing data should be
applied only if the missing data is MCAR, as both of the other mechanisms
could potentially lead to information loss that would lead to the generation of
a biased/incorrect classifier (i.e. a classifier based on a different distribution).

Another approach is to convert the missing values to a new value (encode
them into a new numerical value), but such a simplistic method was shown
to lead to serious inference problems (Schafer, 1997). On the other hand, if
a significant number of examples contain missing values for a relatively small
number of attributes, it may be beneficial to perform imputation (filling-in) of
the missing values. In order to do so, the assumption of MAR randomness is
needed, as Little and Rubin (1987) observed in their analysis.

In our case we will use single imputation methods, due to the time com-
plexity of the multiple imputation schemes, and the assumptions they make
regarding data distribution and MV randomness; that is, that we should know
the underlying distributions of the complete data and missing data prior to their
application.

2.1 Description of the imputation methods

In this subsection, we briefly describe the imputation methods that we have
used.

• Do Not Impute (DNI). As its name indicates, all the missing data re-
mains unreplaced, so the networks must use their default MVs strategies.
The objective is to verify whether imputation methods allow the classifi-
cation methods to perform better than when using the original data sets.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

As a guideline, in Grzymala-Busse and Hu (2000) a previous study of
imputation methods is presented.

• Case deletion or Ignore Missing (IM). Using this method, all instances
with at least one MV are discarded from the data set.

• Global Most Common Attribute Value for Symbolic Attributes, and Global
Average Value for Numerical Attributes (MC)(Grzymala-Busse, Good-
win, Grzymala-Busse and Zheng, 2005). This method is very simple: for
nominal attributes, the MV is replaced with the most common attribute
value, and numerical values are replaced with the average of all values of
the corresponding attribute.

• Concept Most Common Attribute Value for Symbolic Attributes, and
Concept Average Value for Numerical Attributes (CMC)(Grzymala-Busse
et al., 2005). As stated in MC, the MV is replaced by the most repeated
one if nominal or the mean value if numerical, but considering only the
instances with the same class as the reference instance.

• Imputation with K-Nearest Neighbor (KNNI)(Batista andMonard, 2003).
Using this instance-based algorithm, every time an MV is found in a cur-
rent instance, KNNI computes the k nearest neighbors and a value from
them is imputed. For nominal values, the most common value among all
neighbors is taken, and for numerical values the average value is used.
Therefore, a proximity measure between instances is needed for it to be
defined. The euclidean distance (it is a case of a Lp norm distance) is the
most commonly used in the literature.

• Weighted imputation with K-Nearest Neighbor (WKNNI)(Troyanskaya,
Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein and Altman, 2001).
The Weighted K-Nearest Neighbor method selects the instances with sim-
ilar values (in terms of distance) to a considered one, so it can impute
as KNNI does. However, the estimated value now takes into account the
different distances from the neighbors, using a weighted mean or the most
repeated value according to the distance.

• K-means Clustering Imputation (KMI)(Li et al., 2004). Given a set of
objects, the overall objective of clustering is to divide the data set into
groups based on the similarity of objects, and to minimize the intra-cluster
dissimilarity. KMI measures the intra-cluster dissimilarity by the addition
of distances among the objects and the centroid of the cluster which they
are assigned to. A cluster centroid represents the mean value of the objects
in the cluster. Once the clusters have converged, the last process is to fill
in all the non-reference attributes for each incomplete object based on
the cluster information. Data objects that belong to the same cluster are
taken to be nearest neighbors of each other, and KMI applies a nearest
neighbor algorithm to replace missing data, in a similar way to KNNI.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Imputation with Fuzzy K-means Clustering (FKMI)(Acuna and Rodriguez,
2004; Li et al., 2004). In fuzzy clustering, each data object has a member-
ship function which describes the degree to which this data object belongs
to a certain cluster. In the process of updating membership functions and
centroids, FKMI’s only take into account complete attributes. In this pro-
cess, the data object cannot be assigned to a concrete cluster represented
by a cluster centroid (as is done in the basic K-mean clustering algorithm),
because each data object belongs to all K clusters with different member-
ship degrees. FKMI replaces non-reference attributes for each incomplete
data object based on the information about membership degrees and the
values of cluster centroids.

• Support Vector Machines Imputation (SVMI)(Feng, Guoshun, Cheng,
Yang and Chen, 2005) is an SVM regression based algorithm to fill in
missing data, i.e. set the decision attributes (output or classes) as the
condition attributes (input attributes) and the condition attributes as the
decision attributes, so SVM regression can be used to predict the missing
condition attribute values. In order to do that, first SVMI selects the
examples in which there are no missing attribute values. In the next step
the method sets one of the condition attributes (input attribute), some of
those values that are missing, as the decision attribute (output attribute),
and the decision attributes as the condition attributes by contraries. Fi-
nally, an SVM regression is used to predict the decision attribute values.

• Event Covering (EC)(Wong and Chiu, 1987). Based on the work of Wong
et al., a mixed-mode probability model is approximated by a discrete
one. First, EC discretizes the continuous components using a minimum
loss of information criterion. Treating a mixed-mode feature n-tuple as
a discrete-valued one, a new statistical approach is proposed for the syn-
thesis of knowledge based on cluster analysis. The main advantage of this
method is that it does not require either scale normalization or the order-
ing of discrete values. By synthesizing the data into statistical knowledge,
the EC method involves the following processes: 1) synthesize and detect
from data inherent patterns which indicate statistical interdependency;
2) group the given data into inherent clusters based on this detected in-
terdependency; and 3) interpret the underlying patterns for each cluster
identified. The method of synthesis is based on the author’s event–covering
approach. With the developed inference method, EC is able to estimate
the MVs in the data.

• Regularized Expectation-Maximization (EM)(Schneider, 2001). Missing
values are imputed with a regularized expectation maximization (EM)
algorithm. In an iteration of the EM algorithm, given estimates of the
mean and of the covariance matrix are revised in three steps. First, for
each record with missing values, the regression parameters of the vari-
ables with missing values among the variables with available values are
computed from the estimates of the mean and of the covariance matrix.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Second, the missing values in a record are filled in with their conditional
expectation values given the available values and the estimates of the mean
and of the covariance matrix, the conditional expectation values being the
product of the available values and the estimated regression coefficients.
Third, the mean and the covariance matrix are re-estimated, the mean as
the sample mean of the completed data set and the covariance matrix as
the sum of the sample covariance matrix of the completed data set and
an estimate of the conditional covariance matrix of the imputation error.
The EM algorithm starts with initial estimates of the mean and of the
covariance matrix and cycles through these steps until the imputed values
and the estimates of the mean and of the covariance matrix stop changing
appreciably from one iteration to the next.

• Singular Value Decomposition Imputation (SVDI)(Troyanskaya et al.,
2001). In this method, singular value decomposition is used to obtain
a set of mutually orthogonal expression patterns that can be linearly com-
bined to approximate the values of all attributes in the data set. In order
to do that, first SVDI estimates the MVs within the EM algorithm, and
then it computes the Singular Value Decomposition and obtains the eigen-
values. Now SVDI can use the eigenvalues to apply a regression to the
complete attributes of the instance, to obtain an estimation of the MV
itself.

• Bayesian Principal Component Analysis(BPCA)(Oba, aki Sato, Take-
masa, Monden, ichi Matsubara and Ishii, 2003). This method is an esti-
mation method for missing values, which is based on Bayesian principal
component analysis. Although the methodology that a probabilistic model
and latent variables are estimated simultaneously within the framework of
Bayesian inference is not new in principle, actual BPCA implementation
that makes it possible to estimate arbitrary missing variables is new in
terms of statistical methodology. The missing value estimation method
based on BPCA consists of three elementary processes. They are (1)
principal component (PC) regression, (2) Bayesian estimation, and (3) an
expectationmaximization (EM)-like repetitive algorithm.

• Local Least Squares Imputation (LLSI)(Kim, Golub and Park, 2005).
With this method, a target instance that has missing values is represented
as a linear combination of similar instances. Rather than using all available
genes in the data, only similar genes based on a similarity measure are
used. The method has the “local” connotation. There are two steps in the
LLSI. The first step is to select k genes by the L2-norm. The second step
is regression and estimation, regardless of how the k genes are selected. A
heuristic k parameter selection method is used by the authors.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2.2 An overview of the analysis of imputation methods in

the literature for classification

This section tries to present a snapshot of the general studies of analysis of
MVs that we can find in the literature for classification involving the imputation
procedure.

• Grzymala-Busse and Hu (2000) compares the performance of the LERS
classification method with the application of nine different methods for
MVs: the C4.5 probability-based mechanism, MC, CMC, LEM2 based,
EC and assigns all possible values. Their results state that the use of
imputation methods show that, on average, imputation helps to improve
classification accuracy, and the best imputation for LERS was achieved
with the C4.5 internal method.

• Batista and Monard (2003) tested the classification accuracy of two pop-
ular classifiers (C4.5 and CN2) and two imputation methods: KNNI and
MC. Both CN2 and C4.5 (like (Grzymala-Busse and Hu, 2000)) algorithms
have their own MV estimation. From their study, KNNI results in good
accuracy, but only when the attributes are not highly correlated to each
other.

• Acuna and Rodriguez (2004) have investigated the effect of four methods
that deal with MVs. As in (Batista and Monard, 2003), they use KNNI
and two other imputation methods (MC and median imputation). They
also use the K-NN and Linear Discriminant Analysis classifiers. The re-
sults of their study show that no significant harmful effect in accuracy is
obtained from the imputation procedure. In addition to this, they state
that the KNNI method is more robust in the increment of MVs in the
data set in respect to the other compared methods.

• Li et al. (2004) apply Soft Computing to MVs using a fuzzy clustering
method. They compare the FKMI with Mean substitution and KMI.
Using a Root Mean Square Error error analysis, they state that the basic
KMI algorithm outperforms the MC method. Experiments also show that
the overall performance of the FKMI method is better than the basic KMI
method, particularly when the percentage of missing values is high.

• Feng et al. (2005) use the SVMI for filling in MVs. They do not compare
this with any other imputation methods. Furthermore, they state that we
should select enough complete examples where there is no missing data as
the training data set.

• Nogueira, Santos and Zárate (2007) presented a comparison of techniques
used to recover values in a real imbalanced database, with a massive oc-
currence of missing data. This makes the process of obtaining a set of
representative records, used for the recovering techniques, difficult. They
used C4.5, Näıve-Bayes, K-NN and Multi-Layer Perceptron as classifiers.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

To treat the MVs, they applied several techniques: default value substi-
tution or related attribute recovery. The latter tries to obtain the missing
value from the information of another attribute. In addition to this, clean-
ing of instances/attributes with too many MVs was also carried out.

• Saar-Tsechansky and Provost (2007) compare several different methods
(predictive value imputation, the distribution-based imputation used by
C4.5 and using reduced models) for applying classification trees to in-
stances with missing values. They distinguish between MVs in “training”
(usual MVs), and MVs in “prediction” time (i.e. test partition), and
adapt the novel reduced-models to this scenario. The results show that
for the predictive value imputation and C4.5 distribution-based, both can
be preferable under different conditions. Their novel technique (reduced
models) consistently outperforms the other two methods based on their
experimentation.

• Hruschka et al. (2007) propose two imputation methods based on Bayesian
networks. They compare them with 4 classical imputation methods: EM,
Data Augmentation, C4.5 and the CMC method, using 4 nominal data
sets from the UCI repository (Asuncion and Newman, 2007) with natural
MVs (but inducing MVs in them as well). In their analysis, they employ 4
classifiers: One-Rule, Näıve-Bayes, C4.5 and PART. As performance mea-
sures, the authors measure the prediction value (i.e. the similarity of the
imputed value to the original removed one) and the classification accuracy
obtained with the four mentioned models. Computing times consumed to
perform the imputations are also reported. From the results, the authors
state that better prediction results do not imply better classification re-
sults.

• Farhangfar et al. (2007) take as the objective of their paper to develop a
unified framework supporting a host of imputation methods. Their study
inserts some imputation methods into their framework (Näıve-Bayes and
Hot Deck) and compares this with other basic methods: Mean, Linear
Discriminant Analysis, Logreg, etc. All their experimentation is based on
discrete data, so they use the “accuracy” of imputed values against ran-
domly generated missing data. The relation of this imputation accuracy
to classification accuracy is not studied.

• Farhangfar et al. (2008) perform a comprehensive study on imputation
for discrete data sets, comparing with classical imputation methods and
the framework they proposed in (Farhangfar et al., 2007). This study
uses a representative method of several classifiers’ types: Decision Trees,
Instance-Based Learning, Rule-Based classifier, Probabilistic methods and
SVMs. The missing data is produced artificially in a wide ranging amount
for each of the data sets, and the results obtained from the classification
of imputed data are compared with the ones on missing data. This study
shows that the impact of the imputation varies among different classifiers,

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and that imputation is beneficial for most amounts of missing data above
5% and that the amount of improvement does not depend on the amount
of missing data. The performed experimental study also shows that there
is no universally best imputation method.

• Matsubara et al. (2008) present an adaptation of a semi-supervised learn-
ing algorithm for imputation. They impute the MV using the C4.5 and
Näıve-Bayes classifiers by means of a ranking aggregation to select the
best examples. They compare the method with three qualitative UCI
(Asuncion and Newman, 2007) data sets applying artificial MVs, and per-
form a similar study to the one presented by Batista and Monard (2003),
comparing with the KNNI and MC methods. Using a non-parametric sta-
tistical test they demonstrate the better performance of the new method
over the other two in some cases.

• Song, Shepperd, Chen and Liu (2008) study the relationship between the
use of the KNNI method, and the C4.5 performance (counting with its
proper MV technique) over 6 data sets of software projects. They em-
phasize the different MVs’ mechanisms (MCAR, MAR and NMAR), and
the amount of MVs introduced. From their analysis, they found results
which agree with Batista and Monard (2003): KNNI can improve the C4.5
accuracy. They ran a Mann-Whitney statistical test to obtain significant
differences in this statement. They also show that the missingness mecha-
nism and pattern affect the classifier and imputation method performance.

• Garćıa-Laencina et al. (2009) evaluate the influence of imputing miss-
ing values into the classification accuracy obtained by an artificial neural
network (multi-layer perceptron). Four imputation techniques are con-
sidered: KNNI, SOM imputation, MLP imputation, and EM over one
synthetic and two real data sets, varying the amount of MVs introduced.
They conclude that in real-life scenarios a detailed study is required in
order to evaluate which missing data estimation can help to enhance the
classification accuracy.

• Twala (2009) empirically analyzes 7 different procedures to treat artifi-
cial MVs for decision trees over 21 real data sets. From the study it can
be concluded that listwise deletion is the worst choice, while the multi-
ple imputation strategy performs better than the rest of the imputation
methods (particularly those with high amounts of MVs), although there
is no outstanding procedure.

• Wang and Wang (2010) take an example of a marketing survey to explain
how the complete instances subset of the data set can be used to train a
classification method in order to obtain information about the MVs. Using
the trained classifier, artificial imputation values are generated. Those
artificial values make the artificial complete observations more predictable
by the trained classifier than other artificial values do, then this value are
more likely to be true than the others.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Ding and Simonoff (2010) investigate eight different missingness patterns,
depending on the relationship between the missingness and three types of
variables, the observed predictors, the unobserved predictors (the missing
values) and the response variable. They focus on the case of classification
trees for binary data (C4.5 and CART) using a modeling bankruptcy
database, showing that the relationship between the missingness and the
dependent variable, as well as the existence or non-existence of missing
values in the testing data, are the most helpful criteria to distinguish
different missing data methods.

• Merlin, Sorjamaa, Maillet and Lendasse (2010) propose a a new method
for the determination of missing values in temporal databases based on
self-organizing maps. Using two classifiers for the spatial and temporal
dependencies, improvements in respect to the EM method in a hedge fund
problem are shown.

• Luengo, Garćıa and Herrera (2010) study several imputation methods for
RBFNs classifiers, both for natural and artificial (MCAR) MVs. From
their results can be seen that the EventCovering method has a good syn-
ergy with respect to the RBFN methods, as it provides better improve-
ments in classification accuracy.

• Gheyas and Smith (2010) propose a single imputation method and a mul-
tiple imputation method, both of them based on a generalized regression
neural network (GRNN). Their proposal is compared with 25 imputation
methods of different natures, from Machine Learning methods to several
variants of GRNNs. 98 data sets are used in order to introduce MVs with
MCAR, MAR and NMAR mechanisms. Then the results of the imputa-
tion methods are compared by means of 3 different criteria, using three
classifiers: MLP, logistic regression and a GRNN-based classifier, showing
the advantages of the proposal.

As we can appreciate from the mentioned studies they present heterogeneity.
There are many different approaches to the treatment of MVs, which use many
different methods (to classify and to impute MVs), but they produce similar
conclusions about the convenience of using imputation methods. Therefore,
in spite of the variety of studies presented, the necessity of using imputation
methods for MVs is demonstrated.

3 Experimental framework

When analyzing imputation methods, a wide range of set ups can be observed.
The data sets used, their type (real or synthetic), the origin and amount of
MVs, etc. must be carefully described, as the results will strongly depend on
them. All these aspects are described in Subsection 3.1.

The good or bad estimations performed by the imputation method will be
analyzed with regard to the accuracy obtained by many classification methods.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

They are presented in Subsection 3.2, grouped in the different families that
we have considered, so that we can extract specialized conclusions relating the
imputation results to similar classification methods.

Not all the classification methods are capable of managing the MVs on their
own. It is important to indicate which methods can, and the strategy that we
follow when the contrary case occurs. In Subsection 3.3 we tackle the different
situations which appear when using Do Not Impute.

The results obtained by the classification methods depend on the previous
imputation step, but also on the parameter configuration used by both the im-
putation and classification methods. Therefore they must be indicated in order
to be able to reproduce any results obtained. In Subsection 3.4 the parameter
configurations used by all the methods considered in this study are presented.

3.1 Data sets description

The experimentation has been carried out using 21 benchmark data sets from the
UCI repository (Asuncion and Newman, 2007). Each data set is described by a
set of characteristics such as the number of data samples, attributes and classes,
summarized in Table 1. In this table, the percentage of MVs is indicated as well:
the percentage of values which are missing, and the percentage of instances with
at least one MV.

Data set Acronym # instances. # attributes # classes % MV % inst. with MV
Cleveland CLE 303 14 5 0.14 1.98
Wisconsin WIS 699 10 2 0.23 2.29
Credit CRX 689 16 2 0.61 5.37
Breast BRE 286 10 2 0.31 3.15
Autos AUT 205 26 6 1.11 22.44

Primary tumor PRT 339 18 21 3.69 61.06
Dermatology DER 365 35 6 0.06 2.19

House-votes-84 HOV 434 17 2 5.3 46.54
Water-treatment WAT 526 39 13 2.84 27.76

Sponge SPO 76 46 12 0.63 28.95
Bands BAN 540 40 2 4.63 48.7

Horse-colic HOC 368 24 2 21.82 98.1
Audiology AUD 226 71 24 1.98 98.23

Lung-cancer LUN 32 57 3 0.27 15.63
Hepatitis HEP 155 20 2 5.39 48.39
Mushroom MUS 8124 23 2 1.33 30.53

Post-operative POS 90 9 3 0.37 3.33
Echocardiogram ECH 132 12 4 4.73 34.09

Soybean SOY 307 36 19 6.44 13.36
Mammographic MAM 961 6 2 2.81 13.63

Ozone OZO 2534 73 2 8.07 27.11

Table 1: Data sets used

We cannot know anything about the randomness of MVs in the data sets,
so we assume they are distributed in an MAR way, so the application of the
imputation methods is feasible.

Most of the previous studies in Section 2.2 discard any previous natural
missing data, if any, and then generate random MVs for their experiments with
different percentages and MV distributions.

In our study we want to deal with the original MVs and therefore obtain the

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

real accuracy values of each data set with our imputation methods. Further-
more, the amount of data sets we have used is the largest of all missing data
studies of Section 2.2. In addition to this, we use all kinds of data sets, which
includes nominal data sets, numeric data sets and mixed-mode data sets.

In order to carry out the experimentation, we have used a 10-fold cross
validation scheme. All the classification algorithms use the same partitions, to
perform fair comparisons. We take the mean accuracy of training and test of
the 10 partitions as a representative measure of the method’s performance.

All these data sets have natural MVs, and we have imputed them with
the following scheme. With the training partition, we apply the imputation
method, extracting the relationships between the attributes, and filling in this
partition. Next, with the information obtained, we fill in the MVs in the test
partition. Since we have 14 imputation methods, we will obtain 14 instances of
each partition of a given data set once they have been preprocessed. All these
partitions will be used to train the classification methods used in our study, and
then we will perform the test validation with the corresponding test partition. If
the imputation method works only with numerical data, the nominal values are
considered as a list of integer values, starting from 1 to the amount of different
nominal values in the attribute.

3.2 Classification methods

In order to test the performance of the imputation methods, we have selected
a set of representative classifiers. We can group them in three sub-categories.
In Table 2 we summarize the classification methods we have used, organized in
these three categories. The description of the former categories is as follows:

• The first group is the Rule Induction Learning category. This group refers
to algorithms which infer rules using different strategies.

• The second group represents the Approximate Models. It includes Artifi-
cial Neural Networks, Support Vector Machines and Statistical Learning.

• The third and last group corresponds to the Lazy Learning category. This
group incorporates methods which do not create any model, but use the
training data to perform the classification directly.

Many of these classifiers appear in previous studies mentioned in Section 2.2.
We have included an increased number of methods in our study (classical and
currently most-used), so we can generalize better from the obtained results.

On the other hand, some methods do not work with numerical attributes
(CN2, AQ and Näıve-Bayes). In order to discretize the numerical values, we
have used the well-known discretizer proposed by Fayyad and Irani (1993).

For the SVM methods (C-SVM, ν-SVM and SMO), we have applied the
usual preprocessing in the literature to these methods (Fan et al., 2005). This
preprocessing consists of normalizing the numerical attributes to the [0, 1] range,
and binarizing the nominal attributes.

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Method Acronym Refence
Rule Induction Learning

C4.5 C4.5 (Quinlan, 1993)
Ripper Ripper (Cohen, 1995)
CN2 CN2 (Clark and Niblett, 1989)
AQ-15 AQ (Michalksi, , Mozetic and Lavrac, 1986)
PART PART (Frank and Witten, 1998)
Slipper Slipper (Cohen and Singer, 1999)
Scalable Rule Induction Induction SRI (Pham and Afify, 2006)
Rule Induction Two In One Ritio (Wu and Urpani, 1999)
Rule Extraction System version 6 Rule-6 (Pham and Afify, 2005)

Approximate Models
Multi-Layer Perceptron MLP (Moller, 1990)
C-SVM C-SVM (Fan, Chen and Lin, 2005)
ν-SVM ν-SVM (Fan et al., 2005)
Sequential Minimal Optimization SMO (Platt, 1999)
Radial Basis Function Network RBFN (Broomhead and Lowe, 1988)
RBFN Decremental RBFND (Broomhead and Lowe, 1988)
RBFN Incremental RBFNI (Plat, 1991)
Logistic LOG (le Cessie and van Houwelingen, 1992)
Näıve-Bayes NB (Domingos and Pazzani, 1997)
Learning Vector Quantization LVQ (Bezdek and Kuncheva, 2001)

Lazy Learning
1-NN 1-NN (McLachlan, 2004)
3-NN 3-NN (McLachlan, 2004)
Locally Weighted Learning LWL (Atkeson, Moore and Schaal, 1997)
Lazy Learning of Bayesian Rules LBR (Zheng and Webb, 2000)

Table 2: Classifiers used by categories

3.3 Particular missing values treatment of the classifica-

tion methods

Some of the presented classification methods in the previous section have their
own MVs treatment:

• C4.5 uses a probabilistic approach to handling missing data. If there are
missing values in an attribute X , C4.5 uses the subset with all known
values of X to calculate the information gain. Once a test based on an
attribute X is chosen, C4.5 uses a probabilistic approach to partition the
instances with missing values in X . If the instance has an unknown value,
this instance is assigned to all partitions with different weights for each
one. The weight for the partition Ti is the probability that the instance
belongs to Ti. This probability is estimated to be the sum of the weights
of instances in T known to satisfy the test with outcome Oi, divided by
the sum of weights of the cases in T with known values in the attribute
X .

• CN2 algorithm uses a rather simple imputation method to treat missing
data. Every missing value is filled in with its attribute’s most common
known value, before calculating the entropy measure.

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Therefore, when using the DNI method, both C4.5 and CN2 will use their impu-
tation abilities to treat the MVs. Therefore, we can compare their internal MVs
treatment methods against the rest of the imputation methods from Section 2.1.

In the case of Neural Networks (MLP and RBFN variants), there are some
interesting proposals for this case. Ennett, Frize and Walker (2001) proposed
in their study to replace the MVs with “normal” values (i.e. replaced by zero)
. This means that the MVs do not trigger the corresponding neuron which
the MV is applied to, and the network can be trained on data with MVs, and
evaluate instances with MVs as well.

The previously mentioned methods can handle the MVs in the case of the
DNI method. On the other hand, the rest of the classification methods cannot
handle the MVs. Thus we set the training and test accuracy to zero, as the
method cannot build a model or compute a distance to the test instance.

3.4 Parameters used by the imputation and classification

methods

In Table 3 we show the parameters used by each imputation method described in
Section 2.1, in cases where the method needs a parameter. The values chosen are
those recommended by their respective authors. Please refer to their respective
papers for further descriptions of the parameters’ meaning.

Method Parameters
SVMI Kernel= RBF

C= 1.0
Epsilon= 0.001
shrinking= No

KNNI, WKNNI K= 10
KMI K= 10

iterations = 100
error = 100

FKMI K= 3
iterations = 100

error = 100
m = 1.5

EC T= 0.05
EM iterations = 30

stagnation tolerance = 0.0001
inflation factor = 1

regression type = multiple ridge regression
SVDI iterations = 30

stagnation tolerance = 0.005
inflation factor = 1

regression type = multiple ridge regression
singular vectors = 10

LLSI max number of nearest neighbor = 200

Table 3: Methods Parameters

In Table 4 the parameters used by the different classification methods are
presented. All these parameters are the recommended ones that have been

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Method Parameters
C4.5 prune=true, confidence=0.25,instances per leaf=2

Ripper grow percentage=0.66,K=2
CN2 percentage ex. To cover=0.95,star size=5,disjunt selectors=no
AQ star size=5, disjunt selector=no

PART confidence=0.25,intemsets per leaf=2
Slipper grow percentage=0.66,K=2
SRI beam width=8,min positives=2,min negatives=1
Ritio -
Rule-6 beam width=5,min positives=2,min negatives=1
MLP hidden layers=1, neurons per layer = 10

C-SVM Kernel=poly.,C=100,eps=0.001,degree=1,gamma=0.01,coef0=0,p=1,shrink=yes
Nu-SVM Kernel=poly.,nu=0.1,eps=0.001,degree=1,gamma=0.01,coef0=0,p=1,shrink=yes
SMO C=1,tolerance=0.001,eps=1e-12,Kernel=polynomial,exp=1,lowerOrder=no
RBFN neurons=50
RBFND percent=0.1,initial neurons=20,alpha=0.3
RBFNI epsilon=0.1,alpha=0.3,delta=0.5
LOG ridge=1e-8,iteration limit=none
NB -
LVQ iterations=100,neurons=20,alpha=0.3,nu=0.8
1-NN K=1,distance function=euclidean
3-NN K=3,distance function=euclidean
LWL K=3,Kernel function=constant
LBR -

Table 4: Parameters used by the classification methods

extracted from the respective publications of the methods. Please refer to the
associated publications listed in Table 2 to obtain the meaning of the different
parameters.

4 Experimental results

In this section we analyze the experimental results obtained. We have created
an associated webpage with all the results related to our analysis. The rea-
son for this is to avoid long appendices, due to the size of the combination
of all the imputation methods with the classification methods. The address
is http://sci2s.ugr.es/KAIS-MVDM/. We have also included on this webpage
the partitions of the used data sets for further comparisons. In order to compare
the algorithms and MV methods we have used the Wilcoxon Signed Rank test,
to support our analysis with a statistical test that provides us with statistical
evidence of the good behavior of any approach. Therefore, the mentioned web
page contains the following two documents:

• A document with all the accuracy results both in training and test for all
the classification methods, each one with the 14 imputation methods.

• A document with a table summarizing the Wilcoxon test for all the im-
putation methods in respect to a determined classification method. The
outcomes of the tables are based directly on the test accuracy results of
the previous document.

The rest of the analysis is organized in two parts. First, we analyze all the
methods together, without differentiating the groups. This approach is similar

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to previous studies on the topic. Then, we have analyzed the methods organized
by the different groups, obtaining different results. Therefore, the rest of this
section is organized as follows:

• In Section 4.1 we introduce the comparison methodology used in the sub-
sequent subsections.

• In Section 4.2 we show first the global results of the imputation methods
for all the groups together.

• In Section 4.3 we study the behavior of the Rule Induction Learning clas-
sification methods.

• In Section 4.4 we analyze the Approximate methods.

• In Section 4.5 we compare the results of the imputation methods for the
Lazy Learning algorithms.

• In Section 4.6 we summarize the suitability and performance of the impu-
tation methods restricted to each group. In this way we intend to extract
the best imputation method for each type of classifier, and analyze whether
there is any kind of relation between them.

4.1 Comparison methodology

In order to appropriately analyze the imputation and classification methods, we
use the Wilcoxon tables directly from the web page. These tables provide us
with an average ranking for each imputation method. The content of the tables
and its interpretation is as follows:

1. We create an n× n table for each classification method. In each cell, the
outcome of the Wilcoxon signed rank test is shown.

2. In the aforementioned tables, if the p-value obtained by the Wilcoxon
tests for a pair of imputation methods is higher than our α level, formerly
0.1, then we establish that there is a tie in the comparison (no significant
difference was found), represented by a D.

3. If the p-value obtained by the Wilcoxon tests is lower than our α level,
formerly 0.1, then we establish that there is a win (represented by a W) or
a loss (represented by an L) in the comparison. If the method presented
in the row has a better ranking than the method presented in the column
in the Wilcoxon test then there is a win, otherwise there is a loss.

With these columns, we have produced an average ranking for each classifier.
We have computed the number of times that an imputation methods wins, and
the number of times that an imputation method wins and ties. Then we obtain
the average ranking by putting those imputation methods which have a higher
“wins + ties” sum first among the rest of the imputation methods. If a draw

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

is found for “wins + ties”, we use the “wins” to establish the rank. If some
methods obtain a draw for both “wins + ties” and “wins”, then an average
ranking is assigned for all of them.

In order to compare the imputation methods for the classification methods
considered in each situation (global or family case), we have added two more
final columns in the tables contained in the next subsections. In the first new
column, we compute the mean of the rankings for each imputation method
across all the classifiers of the correspondent group (column “Avg.”), that is,
the mean of every row. By doing so, we can obtain a new rank (final column
RANKS), in which we propose a new ordering for the imputation methods for
a given classifier’s group, using the values of the column “Avg.” to sort the
imputation methods.

4.2 Results for all the classification methods

In this section, we analyze the different imputation approaches for all the im-
putation methods as a first attempt to obtain an “overall best” imputation
method. Following the indications given in the previous subsection, in Table 5
the obtained average ranks and final imputation methods’ rankings can be seen.

When comparing all the classifiers together, we find that it is difficult to
establish differences between the imputation methods and to select the best one.
The FKMI method obtains the best final ranking. However, the EC method has
a very similar average ranking (5.70 for EC, 5.26 for FKMI). There are some
additional methods that obtain a very similar average ranking, and they are not
far from FKMI and EC. SVMI, KMI, MC and CMC have an average ranking
between 6.09 and 6.28. Therefore we cannot firmly establish one best method
from among all of them, and in this initial case we must consider a range of good
possible imputation methods for the treatment of the MVs from the mentioned
ones.

The DNI and IM methods do not obtain a good rank. In particular, the
DNI method obtains a very high ranking (10.61) only exceeded by the BPCA
imputation method which performs very badly. The IM method has an average
rank, and it is situated in the middle of the ranking. Thus, we can consider
discarding the examples with MVs, or not processing them, to be inadvisable,
as expected from previous studies.

We must point out that the results obtained by the IM method should be
considered with caution. Since several instances are discarded, the test and
training partition tend to be smaller than the original ones. This allows the
classifiers to obtain better results in training, since there are less instances and
less noise from the MVs. In tests the classifier can achieve better results for
some data sets if the remaining instances are well separated in the feature space,
since a hit in the test partition counts for more in accuracy than in the other
imputation methods (with complete test partitions).

From these results it is clear that we need to reduce the amount of classifiers
when trying to obtain the best imputation method. In the following subsections

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

R
B
F
N

R
B
F
N
D

R
B
F
N
I

C
4
.5

1
-N

N
L
O
G

L
V
Q

M
L
P

N
B

ν
-S
V
M

C
-S
V
M

R
ip
p
er

IM
9

6
.5

4
.5

5
5

6
3
.5

1
3

1
2

1
0

5
.5

8
.5

E
C

1
1

1
2
.5

9
.5

3
7

8
.5

1
0

1
3

1
8
.5

K
N
N
I

5
6
.5

1
0
.5

9
2
.5

9
7

1
1

6
.5

8
5
.5

2
.5

W
K
N
N
I

1
3

6
.5

4
.5

1
1

4
1
0

1
0

4
.5

6
.5

4
.5

5
.5

2
.5

K
M
I

3
.5

2
7

5
1
2

3
1
1

3
4
.5

8
5
.5

2
.5

F
K
M
I

1
2

6
.5

1
0
.5

7
.5

6
3

1
.5

4
.5

1
1

4
.5

5
.5

2
.5

S
V
M
I

2
1
1
.5

2
.5

1
9
.5

7
.5

3
.5

1
.5

1
3

8
1
1

5
.5

E
M

3
.5

6
.5

1
3

1
3

1
1

1
2

1
2
.5

1
0

4
.5

4
.5

1
0

1
2

S
V
D
I

9
6
.5

7
1
1

1
3

1
1

1
2
.5

8
.5

3
1
1
.5

1
2

1
1

B
P
C
A

1
4

1
4

1
4

1
4

1
4

1
3

7
1
4

2
2

1
3

1
3

L
L
S
I

6
6
.5

1
0
.5

1
1

7
.5

7
.5

7
6
.5

9
4
.5

5
.5

5
.5

M
C

9
6
.5

1
0
.5

7
.5

7
.5

3
7

6
.5

8
1
1
.5

5
.5

8
.5

C
M
C

9
1
3

2
.5

5
1

3
1
.5

1
.5

1
4

1
4

5
.5

8
.5

D
N
I

9
1
1
.5

7
2
.5

2
.5

1
4

1
4

1
2

1
1

1
4

1
4

P
A
R
T

S
li
p
p
er

3
-N

N
A
Q

C
N
2

S
M
O

L
B
R

L
W

L
S
R
I

R
it
io

R
u
le
-6

A
v
g
.

R
A
N
K
S

1
4

1
1

6
.5

1
0

5
.5

5
8

6
.5

6
5

6
.8
3

7
6
.5

1
1
3

6
.5

5
.5

2
9

8
6
.5

6
1

5
.7
0

2
6
.5

1
1

5
.5

1
1

5
.5

5
.5

9
8

1
1
.5

1
1

1
1

7
.7
6

1
0

6
.5

7
5
.5

6
.5

1
5
.5

9
8

1
1
.5

6
1
1

6
.9
6

8
6
.5

3
5
.5

6
.5

5
.5

9
9

2
.5

9
.5

1
2

7
.5

6
.2
4

5
6
.5

1
0

1
.5

2
5
.5

3
9

2
.5

1
2

3
5
.2
6

1
6
.5

7
9

1
5
.5

9
3

8
6
.5

6
2

6
.0
9

3
6
.5

7
5
.5

1
2

1
3

1
1
.5

9
2
.5

3
6

4
8
.3
7

1
1

6
.5

1
2

1
2

1
0

1
2

1
1
.5

1
1
2

9
.5

1
0

1
1

9
.7
2

1
2

1
3

7
1
4

1
3

1
4

1
3

1
3

1
3

1
3

1
3

1
3

1
1
.8
7

1
4

6
.5

7
5
.5

6
.5

1
1

9
9

8
3

6
7
.5

7
.2
2

9
6
.5

2
1
.5

6
.5

5
.5

5
.5

3
2
.5

3
6

7
.5

6
.1
1

4
1
2

1
3

5
.5

3
5
.5

1
3

8
6
.5

1
7
.5

6
.2
8

6
1
4

1
4

1
0

1
4

5
.5

1
4

1
4

1
4

1
4

1
4

1
4

1
0
.6
1

1
3

T
a
b
le

5
:
A
v
er
a
g
e
ra
n
k
s
fo
r
a
ll
th
e
cl
a
ss
ifi
er
s

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

we have focused on the different types of classification methods in order to avoid
the high ranking variation observed in Table 5.

4.3 Results for the Rule Induction Learning methods

In this section, we present the results of the Rule Induction classification meth-
ods. In Table 6 we show the ranking for each classification method belonging to
this group. This table’s structure is the same as that described in Subsection
4.1. Therefore, we only perform the average between the rankings obtained for
the classification algorithms belonging to this group.

C45 Ripper PART Slipper AQ CN2 SRI Ritio Rules-6 Avg. RANKS
IM 5 8.5 1 4 6.5 10 6.5 6 5 5.83 4
EC 2.5 8.5 6.5 1 6.5 5.5 6.5 6 1 4.89 3

KNNI 9 2.5 6.5 11 11 5.5 11.5 11 11 8.78 11
WKNNI 11 2.5 6.5 7 6.5 1 11.5 6 11 7.00 8

KMI 5 2.5 6.5 3 6.5 5.5 9.5 12 7.5 6.44 6
FKMI 7.5 2.5 6.5 10 2 5.5 1 2 3 4.44 1
SVMI 1 5.5 6.5 7 1 5.5 6.5 6 2 4.56 2
EM 13 12 6.5 7 12 13 3 6 4 8.50 10

SVDI 11 11 6.5 12 10 12 9.5 10 11 10.33 12
BPCA 14 13 13 7 13 14 13 13 13 12.56 14
LLSI 11 5.5 6.5 7 6.5 11 3 6 7.5 7.11 9
MC 7.5 8.5 6.5 2 6.5 5.5 3 6 7.5 5.89 5

CMC 5 8.5 12 13 3 5.5 6.5 1 7.5 6.89 7
DNI 2.5 14 14 14 14 5.5 14 14 14 11.78 13

Table 6: Average ranks for the Rule Induction Learning methods

We can observe that, for the Rule Induction Learning classifiers, the imputa-
tion methods FKMI, SVMI and EC perform best. The differences between these
three methods in average rankings are low. Thus we can consider that these
three imputation methods are the most suitable for this kind of classifier. They
are well separated from the other imputation methods and we cannot choose a
best method from among these three. This is in contrast to the global results
presented in Subsection 4.2, where little differences could be found among the
first ranked imputation methods. Both FKMI and EC methods were also con-
sidered among the best in the global first approach presented in the previous
subsection.

On the other hand, BPCA and DNI are the worst methods. The BPCA
method usually performs badly for all the classifiers. As DNI is also a bad
option, this means that the Rule Induction Learning algorithms would greatly
benefit from the use of the imputation methods, despite some of them being
capable of dealing with MVs on their own.

The rest of the imputation methods span between an average rank of 5.8 to
9, with a great difference between the BPCA and DNI methods in ranking. The
IM method is fourth, and that could mean that the Rule Induction Learning
algorithms perform better with complete instances in training and test, but they
do not work well with test instances with imputed MVs. However, avoiding test
cases with MVs is not always possible.

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.4 Results for the Approximate methods

In this section we present the obtained results for the Approximate models. In
Table 7 we can observe the rankings associated with the methods belonging to
this group. Again, this table structure is the same as described in Subsection
4.1.

RBFN RBFND RBFNI LOG LVQ MLP NB ν-SVM C-SVM SMO Avg. RANKS
IM 9 6.5 4.5 6 3.5 13 12 10 5.5 5.5 7.55 10
EC 1 1 1 3 7 8.5 10 13 1 2 4.75 1

KNNI 5 6.5 10.5 9 7 11 6.5 8 5.5 5.5 7.45 9
WKNNI 13 6.5 4.5 10 10 4.5 6.5 4.5 5.5 5.5 7.05 6

KMI 3.5 2 7 3 11 3 4.5 8 5.5 9 5.65 2
FKMI 12 6.5 10.5 3 1.5 4.5 11 4.5 5.5 3 6.20 3
SVMI 2 11.5 2.5 7.5 3.5 1.5 13 8 11 9 6.95 5
EM 3.5 6.5 13 12 12.5 10 4.5 4.5 10 11.5 8.80 11

SVDI 9 6.5 7 11 12.5 8.5 3 11.5 12 11.5 9.25 12
BPCA 14 14 14 13 7 14 2 2 13 13 10.60 14
LLSI 6 6.5 10.5 7.5 7 6.5 9 4.5 5.5 9 7.20 7
MC 9 6.5 10.5 3 7 6.5 8 11.5 5.5 5.5 7.30 8

CMC 9 13 2.5 3 1.5 1.5 14 14 5.5 1 6.50 4
DNI 9 11.5 7 14 14 12 1 1 14 14 9.75 13

Table 7: Average ranks for the Approximate methods

In the case of the Approximate models, the differences between imputation
methods are even more evident. We can select the EC method as the best
solution, as it has a difference of ranking of almost 1 with KMI, which stands
as the second best. This difference increases when considering the third best,
FKMI. No other family of classifiers present this gap in the rankings. Therefore,
in this family of classification methods we could, with some confidence, establish
the EC method as the best choice. This is in contrast with the global results,
from which there is no outstanding method.

The DNI and IM methods are among the worst. This means that for the
Approximate methods the use of some kind of MV treatment is mandatory,
whereas the EC method is the most suitable one. As with the Rule Induction
Learning methods, the BPCA method is the worst choice, with the highest
ranking.

4.5 Results for the Lazy Learning methods

The results for the last group are presented in Table 8. Again, this table struc-
ture is the same as described in Subsection 4.1.

For the Lazy Learning models, the MC method is the best with the lowest
average ranking. The CMC method, which is relatively similar to MC, also
obtains a low rank very close to MC’s. Only the FKMI method obtains a low
enough rank to be compared with the MC and CMC methods. The rest of
the imputation methods are far from these lowest ranks with almost two points
of difference in the ranking. This situation is similar to the Rule Induction
Learning methods’ family, in which we could find three outstanding methods
with a difference of 1 between the 3rd and 4th ones.

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1-NN 3-NN LBR LWL Avg. RANKS
IM 5 11 5 8 7.25 7
EC 9.5 13 9 8 9.88 12

KNNI 2.5 5.5 9 8 6.25 4
WKNNI 4 5.5 9 8 6.63 5

KMI 12 5.5 9 2.5 7.25 8
FKMI 6 1.5 9 2.5 4.75 3
SVMI 9.5 9 3 8 7.38 9

EM 11 5.5 9 2.5 7.00 6
SVDI 13 12 1 12 9.50 11
BPCA 14 14 13 13 13.50 14
LLSI 7.5 5.5 9 8 7.50 10
MC 7.5 1.5 3 2.5 3.63 1

CMC 1 5.5 3 8 4.38 2
DNI 2.5 10 14 14 10.13 13

Table 8: Average ranks for the Lazy Learning methods

Again, the DNI and IM methods obtain high rankings. The DNI method is
one of the worst, with only the BPCA method performing worse. As with the
Approximate models, the imputation methods produce a significant improve-
ment in the accuracy of these classification methods and they should always be
considered prior to their application.

4.6 Summary of the group-based results

In the previous Subsections 4.3, 4.4 and 4.5 we have observed that when compar-
ing the imputation methods to similar classifiers, more significant information
about the best ones can be extracted. In this section we summarize these best
imputation methods for each group, and we analyze the similarity between them.
For the Wilcoxon tables with their rankings from Subsections 4.3 to 4.5, we have
built Table 9 with the best three methods of each group. We have stressed in
bold those rankings equal to or below three.

Rule I. Learning Approx. models Lazy L. models

RANKING RANKING RANKING
EC 3 1 12

KMI 6 2 8
FKMI 1 3 3

SVMI 2 5 9
MC 5 8 1

CMC 7 4 2

Table 9: Best imputation methods for each group

From Table 9 we can observe some interesting aspects:

• The Rule Induction Learning category and the Approximate models share
the EC and FKMI methods in their top 3 best imputation algorithms.

• The Lazy Learning models only share the FKMI method in common with

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the rest. This means that the best method obtained in the general analysis
in Section 4.2 is the only one present in all of the three groups as one of
the best.

• The CMC and MC methods do not perform outstandingly in the Rule
Induction Learning methods and Approximate models. Thus, we can con-
sider that such a simple imputation strategy is only useful when we do
not have to build any model from the data.

From these results, we can obtain a set of imputation methods for each group
that represent the best option(s) for them. Notice that the results for all of the
three groups do not correspond to the global result from the previous section.
However, the FKMI imputation method is a good option in all three groups,
even if it is not the winner. The EC method is also a good option except for
the Lazy Learning methods. Therefore, we can establish that the consideration
of different imputation methods is required in each case

It is important to notice that DNI and IM methods are never the best or
among the best imputation methods for any group. Only in the case of the Rule
Induction Learning methods does the IM imputation method obtain a relatively
low rank (4th place) as we have previously mentioned. This fact indicates that
the imputation methods usually outperform the non-imputation strategies.

As a final remark, we can state that the results obtained in our study co-
here with those mentioned in Subsection 2.2, and particularly with Acuna and
Rodriguez (2004), Batista and Monard (2003), Farhangfar et al. (2008), Feng
et al. (2005), Garćıa-Laencina et al. (2009), Twala (2009) and Li et al. (2004);
that is:

• The imputation methods which fill in the MVs outperform the case dele-
tion (IM method) and the lack of imputation (DNI method).

• There is no universal imputation method which performs best for all clas-
sifiers.

Please note that we have tackled the second point by adding a categorization and
a wide benchmark bed, obtaining a group of recommended imputation methods
for each family.

5 Influence of the imputation on the instances

and individual features

In the previous section we have analyzed the relationship between the use of
several imputation methods with respect to the classifiers’ accuracy. However,
it would be interesting to relate the influence of the imputation methods to
the information contained in the data set. In order to study the influence
and the benefits/drawbacks of using the different imputation methods, we have
considered the use of two different measures. They are described as follows:

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Wilson’s Noise Ratio: This measure proposed by Wilson (1972) observes
the noise in the data set. For each instance of interest, the method looks
for the K nearest neighbors (using the euclidean distance), and uses the
class labels of such neighbors in order to classify the considered instance. If
the instance is not correctly classified, then the variable noise is increased
by one unit. Therefore, the final noise ratio will be

Wilson’s Noise =
noise

instances in the data set

In particular, we only compute the noise for the imputed instances con-
sidering K = 5.

• Mutual Information: Mutual information (MI) is considered to be a good
indicator of relevance between two random variables (Cover and Thomas,
1991). Recently, the use of the MI measure in feature selection has become
well-known and seen to be successful (Kwak and Choi, 2002b; Kwak and
Choi, 2002a; Peng, Long and Ding, 2005). The use of the MI measure
for continuous attributes has been tackled by (Kwak and Choi, 2002a),
allowing us to compute the MI measure not only in nominal-valued data
sets.
In our approach, we calculate the MI between each input attribute and
the class attribute, obtaining a set of values, one for each input attribute.
In the next step we compute the ratio between each one of these values,
considering the imputation of the data set with one imputation method
in respect to the not imputed data set. The average of these ratios will
show us if the imputation of the data set produces a gain in information:

Avg. MI Ratio =

∑

xi∈X
MIα(xi)+1
MI(xi)+1

|X |

where X is the set of input attributes, MIα(i) represents the MI value of
the ith attribute in the imputed data set and MI(i) is the MI value of
the ith input attribute in the not imputed data set. We have also applied
the Laplace correction, summing 1 to both numerator and denominator,
as an MI value of zero is possible for some input attributes.
The calculation of MI(xi) depends on the type of attribute xi. If the at-
tribute xi is nominal, the MI between xi and the class label Y is computed
as follows:

MInominal(xi) = I(xi;Y) =
∑

z∈xi

∑

y∈Y

p(z, y)log2
p(z, y)

p(z)p(y)
.

On the other hand, if the attribute xi is numeric, we have used the Parzen
window density estimate as shown in (Kwak and Choi, 2002a) considering
a Gaussian window function:

MInumeric(xi) = I(xi;Y) = H(Y)−H(C|X);

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where H(Y) is the entropy of the class label

H(Y) = −
∑

y∈Y

p(y)log2p(y);

and H(C|X) is the conditional entropy

H(Y |xi) = −
∑

z∈xi

∑

y∈Y

p(z, y)log2p(y|z).

Considering that each sample has the same probability, applying the
Bayesian rule and approximating p(y|z) by the Parzen window we get:

Ĥ(Y |xi) = −

n
∑

j=1

1

n

N
∑

y=1

p̂(y|zj)log2p̂(y|zj)

where n is the number of instances in the data set, N is the total number
of class labels and p̂(c|x) is

p̂(y|z) =

∑

i∈Ic
exp

(

− (z−zi)Σ
−1(z−zi)

2h2

)

∑N

k=1

∑

i∈Ik
exp

(

− (z−zi)Σ−1(z−zi)
2h2

) .

In this case, Ic is the set of indices of the training examples belonging to
class c, and Σ is the covariance of the random variable (z − zi).

Comparing with Wilson’s noise ratio we can observe which imputation methods
reduce the impact of the MVs as a noise, and which methods produce noise
when imputing. In addition the MI ratio allows us to relate the attributes to
the imputation results. A value of the MI ratio higher than 1 will indicate that
the imputation is capable of relating more of the attributes individually to the
class labels. A value lower than 1 will indicate that the imputation method is
adversely affecting the relationship between the individual attributes and the
class label.

In Table 10 we have summarized the Wilson’s noise ratio values for the
21 data sets considered in our study. We must point out that the results of
Wilson’s noise ratio are related to a given data set. Hence, the characteristics
of the proper data appear to determine the values of this measure.

In Table 11 we have summarized the average MI ratios for the 21 data sets.
In the results we can observe that the average ratios are usually close to 1; that
is, the use of imputation methods appears to harm the relationship between the
class label and the input attribute little or not at all, even improving it in some
cases. However, the mutual information considers only one attribute at a time
and therefore the relationships between the input attributes are ignored. The
imputation methods estimate the MVs using such relationships and can afford
improvements in the performance of the classifiers. Hence the highest values of
average MI ratios could be related to those methods which can obtain better

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 10: Wilson’s noise ratio values
Data-set Imp. % Wilson’s Data-set Imp. % Wilson’s Data-set Imp. % Wilson’s

Method Noise Ratio Method Noise Ratio Method Noise Ratio

CLE MC 50.0000 HOV MC 7.9208 HEP MC 17.3333

CMC 50.0000 CMC 5.4455 CMC 16.0000

KNNI 50.0000 KNNI 7.4257 KNNI 20.0000

WKNNI 50.0000 WKNNI 7.4257 WKNNI 20.0000

KMI 50.0000 KMI 7.4257 KMI 20.0000

FKMI 50.0000 FKMI 7.9208 FKMI 17.3333

SVMI 50.0000 SVMI 6.9307 SVMI 17.3333

EM 66.6667 EM 11.8812 EM 22.6667
SVDI 66.6667 SVDI 8.9109 SVDI 21.3333

BPCA 50.0000 BPCA 6.9307 BPCA 21.3333

LLSI 50.0000 LLSI 4.9505 LLSI 18.6667

EC 33.3333 EC 7.4257 EC 16.0000

WIS MC 18.7500 WAT MC 31.5068 MUS MC 0.0000

CMC 12.5000 CMC 21.2329 CMC 0.0000

KNNI 12.5000 KNNI 27.3973 KNNI 0.0000

WKNNI 12.5000 WKNNI 27.3973 WKNNI 0.0000

KMI 12.5000 KMI 27.3973 KMI 0.0000

FKMI 12.5000 FKMI 31.5068 FKMI 0.0000

SVMI 12.5000 SVMI 23.9726 SVMI 0.0000

EM 12.5000 EM 46.5753 EM 0.0000

SVDI 12.5000 SVDI 49.3151 SVDI 0.0000

BPCA 12.5000 BPCA 26.0274 BPCA 0.0000

LLSI 12.5000 LLSI 25.3425 LLSI 0.0000

EC 12.5000 EC 22.6027 EC 0.0000

CRX MC 18.9189 SPO MC 27.2727 POS MC 33.3333

CMC 18.9189 CMC 22.7273 CMC 33.3333

KNNI 21.6216 KNNI 27.2727 KNNI 33.3333

WKNNI 21.6216 WKNNI 27.2727 WKNNI 33.3333

KMI 21.6216 KMI 27.2727 KMI 33.3333

FKMI 18.9189 FKMI 27.2727 FKMI 33.3333

SVMI 13.5135 SVMI 27.2727 SVMI 33.3333

EM 32.4324 EM 36.3636 EM 33.3333

SVDI 27.0270 SVDI 31.8182 SVDI 33.3333

BPCA 21.6216 BPCA 27.2727 BPCA 33.3333

LLSI 18.9189 LLSI 27.2727 LLSI 33.3333

EC 13.5135 EC 27.2727 EC 33.3333

BRE MC 55.5556 BAN MC 25.4753 ECH MC 40.0000

CMC 55.5556 CMC 24.3346 CMC 40.0000

KNNI 55.5556 KNNI 23.1939 KNNI 46.6667

WKNNI 55.5556 WKNNI 22.8137 WKNNI 44.4444
KMI 55.5556 KMI 25.4753 KMI 46.6667

FKMI 55.5556 FKMI 24.3346 FKMI 40.0000

SVMI 55.5556 SVMI 21.2928 SVMI 44.4444

EM 44.4444 EM 26.2357 EM 51.1111

SVDI 44.4444 SVDI 22.4335 SVDI 48.8889
BPCA 66.6667 BPCA 23.9544 BPCA 44.4444

LLSI 66.6667 LLSI 24.7148 LLSI 37.7778

EC 66.6667 EC 23.5741 EC 48.8889

AUT MC 45.6522 HOC MC 19.3906 SOY MC 2.4390

CMC 41.3043 CMC 10.2493 CMC 2.4390

KNNI 41.3043 KNNI 20.2216 KNNI 2.4390

WKNNI 41.3043 WKNNI 19.1136 WKNNI 2.4390

KMI 41.3043 KMI 21.8837 KMI 2.4390

FKMI 45.6522 FKMI 20.4986 FKMI 2.4390

SVMI 43.4783 SVMI 20.2216 SVMI 2.4390

EM 58.6957 EM 21.0526 EM 2.4390

SVDI 52.1739 SVDI 21.0526 SVDI 7.3171
BPCA 43.4783 BPCA 19.3906 BPCA 7.3171

LLSI 45.6522 LLSI 20.4986 LLSI 2.4390

EC 30.4348 EC 20.7756 EC 2.4390

PRT MC 71.0145 AUD MC 38.7387 MAM MC 21.3740

CMC 60.8696 CMC 32.8829 CMC 13.7405

KNNI 69.5652 KNNI 38.7387 KNNI 25.9542

WKNNI 69.5652 WKNNI 38.7387 WKNNI 25.9542
KMI 71.0145 KMI 38.7387 KMI 24.4275

FKMI 71.0145 FKMI 38.7387 FKMI 20.6107

SVMI 68.1159 SVMI 37.8378 SVMI 16.7939

EM 88.4058 EM 53.6036 EM 20.6107

SVDI 91.7874 SVDI 46.3964 SVDI 27.4809

BPCA 71.4976 BPCA 40.5405 BPCA 25.1908
LLSI 69.5652 LLSI 36.9369 LLSI 26.7176

EC 66.1836 EC 37.8378 EC 18.3206

DER MC 0.0000 LUN MC 80.0000 OZO MC 4.8035

CMC 0.0000 CMC 80.0000 CMC 3.6390

KNNI 0.0000 KNNI 80.0000 KNNI 4.3668

WKNNI 0.0000 WKNNI 80.0000 WKNNI 4.5124

KMI 0.0000 KMI 80.0000 KMI 4.9491
FKMI 0.0000 FKMI 80.0000 FKMI 4.0757

SVMI 0.0000 SVMI 80.0000 SVMI 3.7846

EM 0.0000 EM 20.0000 EM 4.8035

SVDI 0.0000 SVDI 40.0000 SVDI 4.8035

BPCA 0.0000 BPCA 80.0000 BPCA 4.3668
LLSI 0.0000 LLSI 80.0000 LLSI 4.2213

EC 0.0000 EC 80.0000 EC 4.8035

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

estimates for the MVs, and maintaining the relationship degree between the
class labels and the isolated input attributes. It is interesting to note that when
analyzing the MI ratio, the values do not appear to be as highly data dependant
as Wilson’s noise ratio, as the values for all the data sets are more or less close
to each other.

If we count the methods with the lowest Wilson’s noise ratios in each data
set in Table 10, we find that the CMC method is first, with 12 times the lowest
one, and the EC method is second with 9 times the lowest one. If we count the
methods with the highest mutual information ratio in each data set in Table 11,
the EC method has the highest ratio for 7 data sets and is therefore the first
one. The CMC method has the highest ratio for 5 data sets and is the second
one in this case. Considering the analysis of the previous Subsection 4.6 with
these two methods:

• The EC method is the best method obtained for the Approximative mod-
els, and the third best for the Rule Induction Learning methods. In the
latter case, the average ranking of EC is 4.89, very close to the average
ranking 4.44 and 4.56 of FKMI and SVMI respectively.

• The CMCmethod is the second best method for the Lazy Learning models,
and very close to the first one (MC) with an average ranking of 3.63.

Next, we rank all the imputation methods according to the values presented
in Tables 10 and 11. In order to do so, we have calculated the average rankings
of each imputation method for all the data sets, for both Wilson’s noise ratio
and the mutual information ratio. The method to compute this average ranking
is the same as that presented in Subsection 4.2. In Table 12 we have gathered
together these average rankings, as well as their relative position in parentheses.

From the average rankings shown in Table 12, we can observe that the CMC
method is the first for both rankings. The EC method is the second for the
mutual information ratio, and the third one for Wilson’s noise ratio. The SVMI
method obtains the second lowest ranking for Wilson’s noise ratio, and the
fourth lowest ranking for the MI ratio. The SVMI method is the second best
method for the Rule Induction Learning algorithms with average rankings close
to EC.

With the analysis performed we have quantified the noise induced by the
imputation methods and how the relationship between each input attribute and
the class is maintained. We have discovered that the CMC and EC methods
show good behavior for these two measures, and they are two methods that
provide good results for an important range of learning methods, as we have
previously analyzed. In short, these two approaches introduce less noise and
maintain the mutual information better. They can provide us with a first char-
acterization of imputation methods and a first step for providing us with tools
for analyzing the imputation method’s behavior.

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 11: Average mutual information ratio
Data-set Imp. Avg. MI Data-set Imp. Avg. MI Data-set Imp. Avg. MI

Method ratio Method ratio Method ratio

CLE MC 0.998195 HOV MC 0.961834 HEP MC 0.963765

CMC 0.998585 CMC 1.105778 CMC 0.990694

KNNI 0.998755 KNNI 0.965069 KNNI 0.978564
WKNNI 0.998795 WKNNI 0.965069 WKNNI 0.978343

KMI 0.998798 KMI 0.961525 KMI 0.980094

FKMI 0.998889 FKMI 0.961834 FKMI 0.963476

SVMI 0.998365 SVMI 0.908067 SVMI 1.006819

EM 0.998152 EM 0.891668 EM 0.974433
SVDI 0.997152 SVDI 0.850361 SVDI 0.967673

BPCA 0.998701 BPCA 1.091675 BPCA 0.994420

LLSI 0.998882 LLSI 1.122904 LLSI 0.995464

EC 1.000148 EC 1.007843 EC 1.024019

WIS MC 0.999004 WAT MC 0.959488 MUS MC 1.018382

CMC 0.999861 CMC 0.967967 CMC 1.018382

KNNI 0.999205 KNNI 0.961601 KNNI 0.981261
WKNNI 0.999205 WKNNI 0.961574 WKNNI 0.981261

KMI 0.999322 KMI 0.961361 KMI 1.018382

FKMI 0.998923 FKMI 0.961590 FKMI 1.018382

SVMI 0.999412 SVMI 0.967356 SVMI 0.981261

EM 0.990030 EM 0.933846 EM 1.142177

SVDI 0.987066 SVDI 0.933040 SVDI 1.137152

BPCA 0.998951 BPCA 0.964255 BPCA 0.987472

LLSI 0.999580 LLSI 0.964063 LLSI 0.977275

EC 1.000030 EC 1.027369 EC 1.017366

CRX MC 1.000883 SPO MC 0.997675 POS MC 1.012293

CMC 1.000966 CMC 1.022247 CMC 1.012293

KNNI 0.998823 KNNI 0.999041 KNNI 1.012293

WKNNI 0.998870 WKNNI 0.999041 WKNNI 1.012293
KMI 1.001760 KMI 0.998464 KMI 1.012293

FKMI 1.000637 FKMI 0.997675 FKMI 1.012293

SVMI 0.981878 SVMI 1.015835 SVMI 1.012293

EM 0.985609 EM 0.982325 EM 1.012293

SVDI 0.976398 SVDI 0.979187 SVDI 1.014698
BPCA 0.999934 BPCA 1.006236 BPCA 1.012293

LLSI 1.001594 LLSI 1.004821 LLSI 1.018007

EC 1.008718 EC 1.018620 EC 0.997034

BRE MC 0.998709 BAN MC 1.012922 ECH MC 0.981673

CMC 0.998709 CMC 1.070857 CMC 0.995886

KNNI 0.992184 KNNI 0.940369 KNNI 0.997912

WKNNI 0.992184 WKNNI 0.940469 WKNNI 0.998134

KMI 0.998709 KMI 1.016101 KMI 0.967169

FKMI 0.998709 FKMI 1.020989 FKMI 0.983606

SVMI 0.998709 SVMI 1.542536 SVMI 0.987678

EM 1.013758 EM 1.350315 EM 0.967861

SVDI 0.999089 SVDI 1.365572 SVDI 0.935855
BPCA 1.000201 BPCA 1.010596 BPCA 0.972327

LLSI 1.000201 LLSI 1.015033 LLSI 0.988591

EC 1.001143 EC 1.102328 EC 0.970029

AUT MC 0.985610 HOC MC 0.848649 SOY MC 1.056652

CMC 0.991113 CMC 2.039992 CMC 1.123636

KNNI 0.986239 KNNI 0.834734 KNNI 1.115818

WKNNI 0.985953 WKNNI 0.833982 WKNNI 1.115818
KMI 0.985602 KMI 0.821936 KMI 1.056652

FKMI 0.984694 FKMI 0.849141 FKMI 1.056652

SVMI 0.991850 SVMI 0.843456 SVMI 1.772589

EM 0.970557 EM 0.775773 EM 1.099286

SVDI 0.968938 SVDI 0.750930 SVDI 1.065865

BPCA 0.986631 BPCA 0.964587 BPCA 1.121603
LLSI 0.985362 LLSI 0.926068 LLSI 1.159610

EC 1.007652 EC 0.911543 EC 1.222631

PRT MC 0.949896 AUD MC 0.990711 MAM MC 0.974436

CMC 1.120006 CMC 1.032162 CMC 1.029154

KNNI 0.976351 KNNI 0.993246 KNNI 0.965926

WKNNI 0.976351 WKNNI 0.993246 WKNNI 0.965926

KMI 0.949896 KMI 1.000235 KMI 0.966885
FKMI 0.949896 FKMI 0.990711 FKMI 0.974228

SVMI 1.038152 SVMI 1.007958 SVMI 1.272993

EM 0.461600 EM 1.129168 EM 0.980865

SVDI 0.485682 SVDI 1.065091 SVDI 1.052790

BPCA 0.987598 BPCA 1.156676 BPCA 0.978209
LLSI 1.016230 LLSI 1.061197 LLSI 0.994349

EC 1.053185 EC 1.209608 EC 1.269505

DER MC 1.000581 LUN MC 0.996176 OZO MC 0.982873

CMC 1.002406 CMC 1.008333 CMC 0.989156

KNNI 0.999734 KNNI 0.996176 KNNI 0.982759

WKNNI 0.999734 WKNNI 0.996176 WKNNI 0.982721

KMI 1.000581 KMI 0.996176 KMI 0.982495
FKMI 1.000581 FKMI 0.996176 FKMI 0.982951

SVMI 1.001566 SVMI 1.006028 SVMI 0.988297

EM 1.000016 EM 1.067844 EM 0.979977

SVDI 0.999691 SVDI 1.076334 SVDI 0.979958

BPCA 0.999633 BPCA 0.996447 BPCA 0.983318

LLSI 0.999170 LLSI 1.007612 LLSI 0.983508
EC 1.000539 EC 1.002385 EC 0.944747

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 12: Average rankings for Wilson’s noise ratio and Mutual information
ratio

Avg. Rankings

Wilson’s noise ratio Mutual information
MC 6.98 (8) 8.05 (11)

CMC 3.79 (1) 3.60 (1)
KNNI 6.43 (7) 7.69 (8)

WKNNI 6.17 (5) 7.79 (9)
KMI 7.38 (10) 7.60 (6)

FKMI 6.36 (6) 7.62 (7)
SVMI 4.67 (2) 4.90 (4)
EM 8.93 (12) 7.90 (10)

SVDI 8.86 (11) 8.48 (12)
BPCA 7.17 (9) 5.79 (5)
LLSI 5.98 (4) 4.74 (3)
EC 5.31 (3) 3.86 (2)

6 Lessons learned

This study is a general comparison of classification methods not previously
considered in MV studies, arranged into three different groups. The results
obtained agree with previous studies:

• The imputation methods which fill in the MVs outperform the case dele-
tion (IM method) and the lack of imputation (DNI method).

• There is no universal imputation method which performs best for all clas-
sifiers.

As a global imputation method, from the results seen in Section 4.2, the use of
the FKMI and EC imputation methods are the best choices.

From the obtained results in Section 4.6, the particular analysis of the MVs
treatment methods conditioned to the classification methods’ groups is neces-
sary. Thus, we can stress particular imputation algorithms based on the classifi-
cation groups, as in the case of the FKMI method for the Rule Induction Learn-
ing group, the EC method for the Approximate Models and the MC method
for the Lazy Learning model. Therefore, we can confirm the positive effect
of the imputation methods and the classifiers’ behavior, and the presence of
more suitable imputation methods for some particular classifier categories than
others.

Moreover, in Section 5 we have analyzed the influence of the imputation
methods in respect to two measures. These two measures are the Wilson’s noise
ratio and the average mutual information difference. The first one quantifies the
noise induced by the imputation method in the instances which contain MVs.
The second one examines the increment or decrement in the relationship of the

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

isolated input attributes with respect to the class label. We have observed that
the CMC and EC methods are the ones which introduce less noise and maintain
the mutual information better.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology
under Project TIN2008-06681-C06-01. J. Luengo holds a FPU scholarship from
Spanish Ministry of Education and Science.

References

Acuna, E. and Rodriguez, C. (2004), Classification, Clustering and Data Mining
Applications, Springer-Verlag Berlin-Heidelberg, pp. 639–648.

Alcalá-fdez, J., Sánchez, L., Garćıa, S., Jesus, M. J. D., Ventura, S., Garrell,
J. M., Otero, J., Bacardit, J., Rivas, V. M., Fernández, J. C. and Herrera,
F. (2009), ‘Keel: A software tool to assess evolutionary algorithms for data
mining problems’, Soft Computing 13(3), 307–318.

Asuncion, A. and Newman, D. (2007), ‘UCI machine learning repository’.
URL: http://archive.ics.uci.edu/ml/

Atkeson, C. G., Moore, A. W. and Schaal, S. (1997), ‘Locally weighted learning’,
Artificial Intelligence Review 11, 11–73.

Barnard, J. and Meng, X. (1999), ‘Applications of multiple imputation in med-
ical studies: From aids to nhanes’, Stat. Methods Med. Res. 8(1), 17–36.

Batista, G. and Monard, M. (2003), ‘An analysis of four missing data treatment
methods for supervised learning’, Applied Artificial Intelligence 17(5), 519–
533.

Bezdek, J. and Kuncheva, L. (2001), ‘Nearest prototype classifier designs:
An experimental study’, International Journal of Intelligent Systems
16(12), 1445–1473.

Broomhead, D. and Lowe, D. (1988), ‘Multivariable functional interpolation and
adaptive networks’, Complex Systems 11, 321–355.

Clark, P. and Niblett, T. (1989), ‘The cn2 induction algorithm’, Machine Learn-
ing Journal 3(4), 261–283.

Cohen, W. and Singer, Y. (1999), A simple and fast and and effective rule
learner, in ‘Proceedings of the Sixteenth National Conference on Artificial
Intelligence’, pp. 335–342.

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cohen, W. (1995), Fast effective rule induction, in ‘Machine Learning: Proceed-
ings of the Twelfth International Conference’, pp. 1–10.

Cover, T. M. and Thomas, J. A. (1991), Elements of Information Theory, 2
edn, John Wiley.

Demšar, J. (2006), ‘Statistical comparisons of classifiers over multiple data sets’,
Journal of Machine Learning Research 7, 1–30.

Ding, Y. and Simonoff, J. S. (2010), ‘An investigation of missing data methods
for classification trees applied to binary response data’, Journal of Machine
Learning Research 11, 131–170.

Domingos, P. and Pazzani, M. (1997), ‘On the optimality of the simple bayesian
classifier under zero-one loss’, Machine Learning 29, 103–137.

Ennett, C. M., Frize, M. and Walker, C. R. (2001), ‘Influence of missing val-
ues on artificial neural network performance’, Stud Health Technol Inform
84, 449–453.

Fan, R.-E., Chen, P.-H. and Lin, C.-J. (2005), ‘Working set selection using
second order information for training support vector machines’, Journal of
Machine Learning Research 6, 1889–1918.

Farhangfar, A., Kurgan, L. A. and Pedrycz, W. (2007), ‘A novel framework for
imputation of missing values in databases’, IEEE Transactions on Systems,
Man, and Cybernetics, Part A 37(5), 692–709.

Farhangfar, A., Kurgan, L. and Dy, J. (2008), ‘Impact of imputation of
missing values on classification error for discrete data’, Pattern Recogn.
41(12), 3692–3705.

Fayyad, U. and Irani, K. (1993), Multi-interval discretization of continuous-
valued attributes for classification learning, in ‘13th International Joint
Conference on Uncertainly in Artificial Intelligence(IJCAI93)’, pp. 1022–
1029.

Feng, H., Guoshun, C., Cheng, Y., Yang, B. and Chen, Y. (2005), A svm
regression based approach to filling in missing values, in R. Khosla, R. J.
Howlett and L. C. Jain, eds, ‘KES (3)’, Vol. 3683 of Lecture Notes in
Computer Science, Springer, pp. 581–587.

Frank, E. and Witten, I. (1998), Generating accurate rule sets without global
optimization, in ‘Proceedings of the Fifteenth International Conference on
Machine Learning’, pp. 144–151.

Garćıa-Laencina, P., Sancho-Gómez, J. and Figueiras-Vidal, A. (2009), ‘Pat-
tern classification with missing data: a review’, Neural Computation &
Applications 9(1), 1–12.

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Garćıa, S. and Herrera, F. (2008), ‘An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons’, Journal of
Machine Learning Research 9, 2677–2694.

Gheyas, I. A. and Smith, L. S. (2010), ‘A neural network-based framework for
the reconstruction of incomplete data sets’, Neurocomputing In Press,

Corrected Proof, –.

Grzymala-Busse, J., Goodwin, L., Grzymala-Busse, W. and Zheng, X. (2005),
Handling missing attribute values in preterm birth data sets, in ‘10th In-
ternational Conference of Rough Sets and Fuzzy Sets and Data Mining and
Granular Computing(RSFDGrC0́5)’, pp. 342–351.

Grzymala-Busse, J. W. and Hu, M. (2000), A comparison of several approaches
to missing attribute values in data mining., in W. Ziarko and Y. Y. Yao,
eds, ‘Rough Sets and Current Trends in Computing’, Vol. 2005 of Lecture
Notes in Computer Science, Springer, pp. 378–385.

Hruschka, Jr., E. R., Hruschka, E. R. and Ebecken, N. F. (2007), ‘Bayesian
networks for imputation in classification problems’, J. Intell. Inf. Syst.
29(3), 231–252.

Kim, H., Golub, G. H. and Park, H. (2005), ‘Missing value estimation for dna
microarray gene expression data: local least squares imputation’, Bioinfor-
matics 21(2), 187–198.

Kwak, N. and Choi, C.-H. (2002a), ‘Input feature selection by mutual infor-
mation based on parzen window’, IEEE Transactions on Pattern Analysis
and Machine Intelligence 24(12), 1667–1671.

Kwak, N. and Choi, C.-H. (2002b), ‘Input feature selection for classification
problems’, IEEE Transactions on Neural Networks 13(1), 143–159.

le Cessie, S. and van Houwelingen, J. (1992), ‘Ridge estimators in logistic re-
gression’, Applied Statistics 41(1), 191–201.

Little, R. J. A. and Rubin, D. B. (1987), Statistical Analysis with Missing Data,
Wiley Series in Probability and Statistics, 1st edn, Wiley, New York.

Li, D., Deogun, J., Spaulding, W. and Shuart, B. (2004), Towards missing
data imputation: A study of fuzzy k-means clustering method, in ‘4th
International Conference of Rough Sets and Current Trends in Comput-
ing(RSCTC0́4)’, pp. 573–579.

Luengo, J., Garćıa, S. and Herrera, F. (2010), ‘A study on the use of imputation
methods for experimentation with Radial Basis Function Network classi-
fiers handling missing attribute values: The good synergy between RBFNs
and EventCovering method’, Neural Networks 23(3), 406–418.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Matsubara, E. T., Prati, R. C., Batista, G. E. A. P. A. and Monard, M. C.
(2008), Missing value imputation using a semi-supervised rank aggregation
approach, in G. Zaverucha and A. C. P. L. da Costa, eds, ‘SBIA’, Vol. 5249
of Lecture Notes in Computer Science, Springer, pp. 217–226.

McLachlan, G. (2004), Discriminant Analysis and Statistical Pattern Recogni-
tion, John Wiley and Sons.

Merlin, P., Sorjamaa, A., Maillet, B. and Lendasse, A. (2010), ‘X-SOM and
L-SOM: A double classification approach for missing value imputation’,
Neurocomputing 73(7-9), 1103–1108.

Michalksi, R., , Mozetic, I. and Lavrac, N. (1986), The multipurpose incre-
mental learning system aq15 and its testing application to three medical
domains, in ‘5th INational Conference on Artificial Intelligence ((AAAI8́6).
)’, pp. 1041–1045.

Moller, F. (1990), ‘A scaled conjugate gradient algorithm for fast supervised
learning’, Neural Networks 6, 525–533.

Nogueira, B. M., Santos, T. R. A. and Zárate, L. E. (2007), Comparison of clas-
sifiers efficiency on missing values recovering: Application in a marketing
database with massive missing data., in ‘CIDM’, IEEE, pp. 66–72.

Oba, S., aki Sato, M., Takemasa, I., Monden, M., ichi Matsubara, K. and Ishii,
S. (2003), ‘A bayesian missing value estimation method for gene expression
profile data.’, Bioinformatics 19(16), 2088–2096.

Peng, H., Long, F. and Ding, C. (2005), ‘Feature selection based on mu-
tual information: Criteria of max-dependency, max-relevance, and min-
redundancy’, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 27(8), 1226–1238.

Pham, D. T. and Afify, A. A. (2005), Rules-6: a simple rule induction algorithm
for supporting decision making, in ‘Industrial Electronics Society, 2005.
IECON 2005. 31st Annual Conference of IEEE’, pp. 2184–2189.

Pham, D. T. and Afify, A. A. (2006), Sri: A scalable rule induction algorithm,
in ‘Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science’, Vol. 220, pp. 537–552.

Platt, J. C. (1999), Fast training of support vector machines using sequen-
tial minimal optimization, in ‘Advances in kernel methods: support vector
learning’, MIT Press, Cambridge, MA, USA, pp. 185–208.

Plat, J. (1991), ‘A resource allocating network for function interpolation’, Neural
Computation 3(2), 213–225.

Pyle, D. (1999), Data Preparation for Data Mining, Morgan Kaufmann.

34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Quinlan, J. (1993), C4.5: Programs for Machine Learning, Morgan Kauffman.

Saar-Tsechansky, M. and Provost, F. (2007), ‘Handling missing values when
applying classification models’, Journal of Machine Learning Research
8, 1623–1657.

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, Chapman &
Hall, London.

Schneider, T. (2001), ‘Analysis of incomplete climate data: Estimation of mean
values and covariance matrices and imputation of missing values’, Journal
of Climate 14, 853–871.

Song, Q., Shepperd, M., Chen, X. and Liu, J. (2008), ‘Can k-NN imputation
improve the performance of C4.5 with small software project data sets? a
comparative evaluation’, Journal of Systems and Software 81(12), 2361–
2370.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D. and Altman, R. B. (2001), ‘Missing value estimation methods
for dna microarrays.’, Bioinformatics 17(6), 520–525.

Twala, B. (2009), ‘An empirical comparison of techniques for handling incom-
plete data using decision trees’, Applied Artificial Intelligence 23, 373–405.

Wang, H. and Wang, S. (2010), ‘Mining incomplete survey data through classi-
fication’, Knowledge and Information Systems 24(2), 221–233.

Wilson, D. (1972), ‘Asymptotic properties of nearest neighbor rules using edited
data’, IEEE Transactions on Systems and Man and Cybernetics 2(3), 408–
421.

Wong, A. K. C. and Chiu, D. K. Y. (1987), ‘Synthesizing statistical knowledge
from incomplete mixed-mode data’, IEEE Trans. Pattern Anal. Mach. In-
tell. 9(6), 796–805.

Wu, X. and Urpani, D. (1999), ‘Induction by attribute elimination’, IEEE
Transactions on Knowledge and Data Engineering 11(5), 805–812.

Zheng, Z. and Webb, G. I. (2000), ‘Lazy learning of bayesian rules’, Machine
Learning 41(1), 53–84.

35

Missing Data in Classification: An Analysis on the Most Suitable Imputation Approach 77

1.3. Missing data imputation for Fuzzy Rule Based Classification Systems

J. Luengo, J. Sáez, F. Herrera, Missing data imputation for Fuzzy Rule Based Classification
Systems. Submitted to Soft Computing.

• Status: Submitted.

• Impact Factor (JCR 2009): 1.328.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 51 / 103.

• Subject Category: Computer Science, Interdisciplinary Applications. Ranking 41 / 95.

Noname manuscript No.
(will be inserted by the editor)

Missing data imputation for Fuzzy Rule Based
Classification Systems

Julián Luengo · José A. Sáez · Francisco Herrera

Received: date / Accepted: date

Abstract Fuzzy Rule Based Classification Systems are
known due to their ability to treat with low quality data

and obtain good results in this scenarios. However, their
application in problems with missing data are uncom-
mon while in real-life data, information is frequently

incomplete in data mining, caused by the presence of
missing values in attributes. Several schemes have been
studied to overcome the drawbacks produced by miss-

ing values in data mining tasks; one of the most well
known is based on preprocessing, formerly known as
imputation.

In this work we focus on Fuzzy Rule Based Classifi-

cation Systems considering fourteen different approaches
to Missing attribute Values treatment that are pre-
sented and analyzed. The analysis involves a three dif-

ferent methods, in which we distinguish between Mam-
dani and TSK models. From the obtained results the
convenience of using imputation methods for Fuzzy Rule

Based Classification Systems with Missing Values is
stated. The analysis suggests that each type behaves
differently while the use of determined Missing Values

imputation methods could improve the accuracy ob-
tained for these methods. Thus the use of particular

Julián Luengo
Dept. of Computer Science and Artificial Intelligence, University
of Granada, 18071, Granada, Spain
E-mail: julianlm@decsai.ugr.es

José A. Sáez
Dept. of Computer Science and Artificial Intelligence, University
of Granada, 18071, Granada, Spain

E-mail: smja@decsai.ugr.es

Francisco Herrera
Dept. of Computer Science and Artificial Intelligence, University

of Granada, 18071, Granada, Spain
E-mail: herrera@decsai.ugr.es

imputation methods conditioned to the type of Fuzzy
Rule Based Classification System is required.

Keywords: Classification; Missing Values; Fuzzy

Rule Based Classification Systems; Imputation

1 Introduction

Many existing, industrial and research data sets con-
tain Missing Values (MVs). There are various reasons

for their existence, such as manual data entry proce-
dures, equipment errors and incorrect measurements.
The presence of such imperfections requires a prepro-

cessing stage in which the data is prepared and cleaned
(Pyle 1999), in order to be useful to and sufficiently
clear for the knowledge extraction process. The sim-

plest way of dealing with missing values is to discard
the examples that contain them. However, this method
is practical only when the data contains a relatively

small number of examples with MVs and when anal-
ysis of the complete examples will not lead to serious
bias during the inference (Little and Rubin 1987).

Fuzzy Rule Based Classification Systems (FRBCSs)

(Ishibuchi et al 2004; Kuncheva 2000) are widely em-
ployed due to their capability to build a linguistic model
interpretable to the users with the possibility of mixing

different information. They are also well known for be-
ing able to deal with imprecise data. However, few anal-
ysis have been carried out considering the presence of

MVs (Berthold and Huber 1998; Gabriel and Berthold
2005) for FRBCSs and usually the presence of MVs is
not usually taken into account and they are usually dis-

carded, maybe inappropriately. Incomplete data in ei-
ther the training set or test set or in both sets affect the
prediction accuracy of learned classifiers (Gheyas and

Smith 2010). The seriousness of this problem depends

2

in part on the proportion of missing data. Most FR-

BCSs cannot work directly with incomplete data sets
and due to the high dimensionality of real problems
it is possible that no valid (complete) cases would be

present in the data set (Garćıa-Laencina et al 2009).
This inappropriate handling of missing data in the

analysis may introduce bias and can result in mislead-

ing conclusions being drawn from a research study, and
can also limit the generalizability of the research find-
ings (Wang and Wang 2010). Three types of problem

are usually associated with missing values in data min-
ing (Barnard and Meng 1999): 1) loss of efficiency; 2)
complications in handling and analyzing the data; and

3) bias resulting from differences between missing and
complete data.

Therefore the treatment of missing data in data

mining is necessary and it can be handled in three dif-
ferent ways normally (Farhangfar et al 2007):

– The first approach is to discard the examples with
missing data in their attributes. Therefore deleting
attributes with elevated levels of missing data is in-

cluded in this category too.
– Another approach is the use of maximum likelihood

procedures, where the parameters of a model for

the complete data are estimated, and later used for
imputation by means of sampling.

– Finally, the imputation of MVs is a class of proce-

dures that aims to fill in the MVs with estimated
ones. In most cases, a data set’s attributes are not
independent from each other. Thus, through the

identification of relationships among attributes, MVs
can be determined.

We will focus our attention on the use of imputation
methods. A fundamental advantage of this approach is

that the missing data treatment is independent of the
learning algorithm used without erasing any example.
For this reason, the user can select the most appropri-

ate method for each situation he faces. There is a wide
family of imputation methods, from simple imputation
techniques like mean substitution, K-Nearest Neigh-

bour, etc.; to those which analyze the relationships be-
tween attributes such as: support vector machines-based,
clustering-based, logistic regressions, maximum-likelihood

procedures and multiple imputation (Batista and Monard
2003; Farhangfar et al 2008).

The literature on imputation methods in Data Min-

ing employs well-known Machine Learning methods for
their studies, in which the authors show the convenience
of imputing the MVs for the mentioned algorithms, par-

ticularly for classification. The vast majority of MVs
studies in classification usually analyze and compare
one imputation method against a few others under con-

trolled amounts of MVs, and induce them artificially

with known mechanisms and probability distributions

(Acuna and Rodriguez 2004; Batista and Monard 2003;
Farhangfar et al 2008; Jr. et al 2007; Li et al 2004; Lu-
engo et al 2010).

We want to analyze the effect of the use of a large
set of imputation methods on FRBCSs, trying to ob-
tain the best imputation procedure for each one. We

consider three representative FRBCSs of different na-
ture which have proven to perform well.

– The Fuzzy Hybrid Genetic Based Machine Learning
(FH-GBML) method proposed by Ishibuchi et al.

(Ishibuchi et al 2005) which is a Mamdani based
FRBCS.

– The Fuzzy Rule Learning Model proposed by Chi et

al. (Chi) (Chi et al 1996) which is a Mamdani based
FRBCSs as well.

– The Positive Definite Fuzzy Classifier (PDFC) pro-

posed by Chen and Wang (Chen and Wang 2003)
which is a Takagi-Sugeno (TSK) based FRBCS.

In order to perform the analysis, we use a large
bunch of data sets, twenty-one in total, with natural

MVs. All the data sets have their proper MVs and we
do not induce them, as we want to stay as close to
the real world data as possible. First, we analyze the

use of the different imputation strategies versus case
deletion and the total lack of missing data treatment,
for a total of fourteen imputation methods. Therefore,

each FRBCS is used over the fourteen imputation re-
sults. All the imputation and classification algorithms
are publicly available in the KEEL software1 (Alcalá-

Fdez et al 2009). These results are compared using the
Wilcoxon Signed Rank test (Demšar 2006; Garćıa and
Herrera 2008) in order to obtain the best method(s)

for each FRBCS. With this information we can extract
the best imputation method for each FRBCS, and in-
dicate if there is a common best option depending on

the FRBCS type.
We have also analyzed two metrics related to the

data characteristics, formerly known as Wilson’s noise

ratio and Mutual Information. Using these measures,
we have observed the influence of the imputation pro-
cedures on the noise and on the relationship of the at-

tributes with the class label as well. This procedure
tries to quantify the quality of each imputation method
independently of the classification algorithm.

The rest of the paper is organized as follows. Section
2 introduces the descriptions of the FRBCSs considered
and a brief review of the current state of the art in MVs

for FRBCSs. In Section 3 we present the basis of the
application of the imputation methods and the descrip-
tion of the imputation methods we have used. In Sec-

1 http://keel.es

3

tion 4, the experimental framework, the classification

methods and the parameters used for both imputation
and classification methods are presented. In Section 5,
the results obtained are analyzed. In Section 6 we use

two measures to quantify the influence of the imputa-
tion methods in the data sets, both in the instances
and in the features. Finally, in Section 7 we make some

concluding remarks.

2 Fuzzy Rule Based Classification Systems

In this section we describe the basis of the three mod-
els that we have used in our study. First we introduce

the basic notation that we will use later. Next we de-
scribe the Chi method (Subsection 2.1), the FH-GBML
method (Subsection 2.2) and the PDFC method (Sub-

section 2.3). In Subsection 2.4 we describe the contri-
butions made to the MVs treatment for FRBCSs and
we tackle the different situations which apply for the

three FRBCSs considered when MVs appear.

Any classification problem consists of w training

patterns xp = (xp1, . . . , xpn), p = 1, 2, . . . ,m from M
classes where xpi is the ith attribute value (i = 1, 2, . . . , n)
of the p-th training pattern.

In this work we use fuzzy rules in the following form:

Rule Rj : If x1 is A1
j and . . . and xn is An

j then Class = Cj

with RWj(1)

where Rj is the label of the jth rule, x = (x1, . . . , xn)
is an n-dimensional pattern vector, Ai

j is an antecedent
fuzzy set, Cj is a class label or a numeric value, and

RWj is the rule weight. We always use triangular mem-
bership functions as antecedent fuzzy sets.

2.1 Chi et al. Approach

This FRBCSs design method (Chi et al 1996) is an
extension of the well-known Wang and Mendel method
(Wang and Mendel 1992) for classification problems.

To generate the fuzzy Rule Base (RB), it determines
the relationship between the variables of the problem
and establishes an association between the space of the

features and the space of the classes by means of the
following steps:

Step 1: Establishment of the linguistic partitions.Once

the domain of variation of each feature Ai is deter-
mined, the fuzzy partitions are computed.

Step 2: Generation of a fuzzy rule for each example

xp = (xp1, . . . , xpn, Cp). To do this it is necessary:

Step 2.1: To compute the matching degree µ(xp)

of the example to the different fuzzy regions us-
ing a conjunction operator (usually modeled with
a minimum or product T-norm).

Step 2.2: To assign the example xp to the fuzzy
region with the greatest membership degree.

Step 2.3: To generate a rule for the example, whose

antecedent is determined by the selected fuzzy
region and whose consequent is the label of class
of the example.

Step 2.4: To compute the rule weight.

We must remark that rules with the same antecedent
can be generated during the learning process. If they
have the same class in the consequent we just remove

one of the duplicated rules, but if they have a different
class only the rule with the highest weight is kept in
the RB.

2.2 Fuzzy Hybrid Genetic Based Machine Learning
Rule Generation Algorithm

The basis of the algorithm described here (Ishibuchi
et al 2005), consists of a Pittsburgh approach where
each rule set is handled as an individual. It also contains

a Genetic Cooperative-Competitive Learning (GCCL)
approach (an individual represents a unique rule), which
is used as a kind of heuristic mutation for partially mod-

ifying each rule set, because of its high search ability to
efficiently find good fuzzy rules.

The system defines 14 possible linguistic terms for
each attribute, as shown in Figure 1, which correspond

to Ruspini’s strong fuzzy partitions with two, three,
four, and five uniformly distributed triangular-shaped
membership functions. Furthermore, the system also

uses “don’t care” as an additional linguistic term, which
indicates that the variable matches any input value with
maximum matching degree.

Fig. 1 Four fuzzy partitions for each attribute membership func-
tion

The main steps of this algorithm are described be-

low:

Step 1: Generate Npop rule sets with Nrule fuzzy rules.
Step 2: Calculate the fitness value of each rule set in

the current population.

4

Step 3: Generate (Npop -1) rule sets by selection, crossover

and mutation in the same manner as the Pittsburgh-
style algorithm. Apply a single iteration of the GCCL-
style algorithm (i.e., the rule generation and the re-

placement) to each of the generated rule sets with
a pre-specified probability.

Step 4: Add the best rule set in the current population

to the newly generated (Npop -1) rule sets to form
the next population.

Step 5: Return to Step 2 if the pre-specified stopping

condition is not satisfied.

Next, we will describe every process of the algo-
rithm:

– Initialization: Nrule training patterns are randomly

selected. Then, a fuzzy rule from each of the selected
training patterns is generated by choosing proba-
bilistically (as shown in (2)) an antecedent fuzzy

set from the 14 candidates Bk(k = 1, 2, . . . , 14) (see
Figure 1) for each attribute. Then each antecedent
fuzzy set of the generated fuzzy rule is replaced with

don’t care using a pre-specified probability Pdon′t care.

Pdon′t care(Bk) =
µBk

(xpi)∑14
j=1 µBj (xpi)

(2)

– Fitness computation: The fitness value of each rule
set Si in the current population is calculated as the
number of correctly classified training patterns by

Si. For the GCCL approach the computation follows
the same scheme.

– Selection: It is based on binary tournament.

– Crossover: The substring-wise and bit-wise uniform
crossover are applied in the Pittsburgh part. In the
case of the GCCL part only the bit-wise uniform

crossover is considered.
– Mutation: Each fuzzy partition of the individuals is

randomly replaced with a different fuzzy partition

using a pre-specified mutation probability for both
approaches.

2.3 Positive Definite Function Classifier

The PDFC learning method (Chen and Wang 2003)

uses a Support Vector Machine (SVM) approach to
build up the model. PDFC considers a fuzzy model
with m + 1 fuzzy rules of the form given in Equation

(1) where Ak
j is a fuzzy set with membership function

akj : R → [0, 1], RWj = 1 and Cj = bj ∈ R. There-
fore PDFC is a FRBCS with constant THEN-parts. If

we choose product as the fuzzy conjunction operator,
addition for fuzzy rule aggregation and center of area
defuzzification, then the model becomes a special form

of the Takagi-Sugeno fuzzy model.

PDFC considers the use of membership functions

generated from a reference function ak through location
transformation (Dubois and Prade 1978). In (Chen and
Wang 2003) well-known types of reference functions can

be found, like the symmetric triangle and the gaussian
function. As a consequence of the presented formula-
tion,

K(xp, zj) =

n∏
k=1

ak(xk
p − zkj) (3)

is a Mercer Kernel (Cristianini and Shawe-Taylor 2000),
if it has nonnegative Fourier transform. Thus, the deci-

sion rule of a binary fuzzy classifier is

f(xp) = sign

b0 +
m∑
j=1

bj

n∏
k=1

akj (x
k
p)

 . (4)

So the remaining question is how to find a set of
fuzzy rules ({z1, . . . , zm} and {b0, . . . , bm}). It is well-
known that the SVM algorithm finds a separating hy-

perplane with good generalization by reducing the em-
pirical risk and, at the same time, controlling the hy-
perplane margin (Vapnik 1998). Thus we can use the

SVM algorithm to find an optimal hyperplane in F.
Once we get such a hyperplane, fuzzy rules can easily
be extracted. The whole procedure is described next:

Step 1: Construct a Mercer kernel, K, from the given

positive-definite reference functions according to (3).
Step 2: Construct an SVM to get a decision rule of

the form

f(x) = sign

(∑
i∈S

yiαiK(x, xi) + b

)
,

with S as the index set of the support vectors:
Step 2.1: Assign some positive number to the cost

C, and solve the quadratic program defined by

the proper SVM to get the Lagrange multipliers
αi.

Step 2.2: Find b (details can be found in, for

example, (Platt 1999)).
Step 3: Extract fuzzy rules from the decision rule of

the SVM:

Step 3.1: b0 is the constant parameter of the hy-
perplane, that is b0 ← b

Step 3.2: For each support vector create a fuzzy

rule where: we center the reference functions on
the support vector zj ← xi and we assign the
rule consequent bj ← yiαi

2.4 Missing values treatment for Fuzzy Rule Based

Classification Systems

Traditionally, the presence of MVs in the data has not

been considered when building up the FRBCS model.

5

Although the FRBCS are capable of managing imper-

fect data, their abilities has not been explicitly checked
in this case. The only precedent in the literature of FR-
BCSs learning in the case of MVs is a technique pro-

posed to tolerate MVs in the training of a FRBCS by
Berthold and Huber (1998). This procedure was ini-
tially intended to estimate the best approximation to

the MV based on the core region of the fuzzy label as-
sociated to the missing attribute.

This initial work was further developed applying the

initial technique to a particular fuzzy rule induction al-
gorithm in (Gabriel and Berthold 2005). The main idea
was to avoid the use of the missing attribute in the rule

operations when covering new examples or specializing
the rules. This is a simple and easy to implement idea,
but its extension is limited to few fuzzy rule induction

algorithms, like FH-GBML.

As we can appreciate from the mentioned studies

there is a lack of research in this area. There are many
different approaches to the treatment of MVs, which
use many different methods (to classify and to impute

MVs), but they have not been considered with FR-
BCSs. Therefore, in spite of the variety of studies pre-
sented, the necessity of analyze the use of imputation

methods for FRBCSs is demonstrated.

Only one of the presented classification methods in

the previous section have its own MVs treatment. We
have applied the procedure indicated in (Gabriel and
Berthold 2005) using the “don’t care” label, but this

extension is not easy to apply to Chi et al. and PDFC
algorithms due to their different nature. For this reason
PDFC and Chi et al. FRBCSs are not able to deal with

MVs. Thus we set the training and test accuracy to zero
in the presence of MVs, as the methods cannot build a
model or compute a distance to the instance.

3 Imputation background

In this section we first set the basis of our study in ac-
cordance with the MV literature. The rest of this sec-

tion is organized as follows: In Subsection 3.1 we in-
dicate the fundamental aspects in the MVs treatment
based on the MV introduction mechanism. In Subsec-

tion 3.2 we have summarized the imputation methods
that we have used in our study.

A more extensive and detailed description of these
methods can be found on the web page http://sci2s.
ugr.es/MVDM, and a PDF file with the original source

paper descriptions is present on the web page formerly
named “Imputation of Missing Values. Methods’ De-
scription”. A more complete bibliography section is also

available on the mentioned web page.

3.1 Missing values introduction mechanisms

It is important to categorize the mechanisms which lead
to the introduction of MVs (Little and Rubin 1987).

The assumptions we make about the missingness mech-
anism and the missing data pattern of missing values
can affect which imputation method could be applied, if

any. As Little and Rubin (1987) stated, there are three
different mechanisms for missing data induction:

1. Missing completely at random (MCAR), when the
distribution of an example having a missing value
for an attribute does not depend on either the ob-

served data or the missing data.
2. Missing at random (MAR), when the distribution

of an example having a missing value for an at-

tribute depends on the observed data, but does not
depend on the missing data.

3. Not missing at random (NMAR), when the distri-

bution of an example having a missing value for an
attribute depends on the missing values.

In the case of the MCAR mode, the assumption is
that the underlying distributions of missing and com-

plete data are the same, while for the MAR mode they
are different, and the missing data can be predicted by
using the complete data (Little and Rubin 1987). These

two mechanisms are assumed by the imputation meth-
ods so far. As Farhangfar et al (2008) and Matsubara
et al (2008) state, it is only in the MCAR mechanism

case where the analysis of the remaining complete data
(ignoring the incomplete data) could give a valid infer-
ence (classification in our case) due to the assumption of

equal distributions. That is, case and attribute removal
with missing data should be applied only if the miss-
ing data is MCAR, as both of the other mechanisms

could potentially lead to information loss that would
lead to the generation of a biased/incorrect classifier
(i.e. a classifier based on a different distribution).

Another approach is to convert the missing values to
a new value (encode them into a new numerical value),
but such a simplistic method was shown to lead to se-

rious inference problems (Schafer 1997). On the other
hand, if a significant number of examples contain miss-
ing values for a relatively small number of attributes, it

may be beneficial to perform imputation (filling-in) of
the missing values. In order to do so, the assumption of
MAR randomness is needed, as Little and Rubin (1987)

observed in their analysis.
In our case we will use single imputation methods,

due to the time complexity of the multiple imputa-

tion schemes, and the assumptions they make regarding
data distribution and MV randomness; that is, that we
should know the underlying distributions of the com-

plete data and missing data prior to their application.

6

3.2 Description of the imputation methods

In this subsection, we briefly describe the imputation
methods that we have used.

– Do Not Impute (DNI). As its name indicates, all
the missing data remains unreplaced, so the FR-
BCSs must use their default MVs strategies. The

objective is to verify whether imputation methods
allow the classification methods to perform better
than when using the original data sets. As a guide-

line, in Grzymala-Busse and Hu (2000) a previous
study of imputation methods is presented.

– Case deletion or Ignore Missing (IM). Using this

method, all instances with at least one MV are dis-
carded from the data set.

– Global Most Common Attribute Value for Symbolic

Attributes, and Global Average Value for Numerical
Attributes (MC)(Grzymala-Busse et al 2005). This
method is very simple: for nominal attributes, the

MV is replaced with the most common attribute
value, and numerical values are replaced with the
average of all values of the corresponding attribute.

– Concept Most Common Attribute Value for Sym-
bolic Attributes, and Concept Average Value for
Numerical Attributes (CMC)(Grzymala-Busse et al

2005). As stated in MC, the MV is replaced by the
most repeated one if nominal or the mean value if
numerical, but considering only the instances with

the same class as the reference instance.
– Imputation with K-Nearest Neighbor (KNNI)

(Batista and Monard 2003). Using this instance-

based algorithm, every time an MV is found in a cur-
rent instance, KNNI computes the k nearest neigh-
bors and a value from them is imputed. For nominal

values, the most common value among all neighbors
is taken, and for numerical values the average value
is used. Therefore, a proximity measure between in-

stances is needed for it to be defined. The euclidean
distance (it is a case of a Lp norm distance) is the
most commonly used in the literature.

– Weighted imputation with K-Nearest Neighbor
(WKNNI)(Troyanskaya et al 2001). The Weighted
K-Nearest Neighbor method selects the instances

with similar values (in terms of distance) to a con-
sidered one, so it can impute as KNNI does. How-
ever, the estimated value now takes into account

the different distances from the neighbors, using a
weighted mean or the most repeated value according
to the distance.

– K-means Clustering Imputation (KMI)(Li et al 2004).
Given a set of objects, the overall objective of clus-
tering is to divide the data set into groups based on

the similarity of objects, and to minimize the intra-

cluster dissimilarity. KMI measures the intra-cluster

dissimilarity by the addition of distances among the
objects and the centroid of the cluster which they
are assigned to. A cluster centroid represents the

mean value of the objects in the cluster. Once the
clusters have converged, the last process is to fill in
all the non-reference attributes for each incomplete

object based on the cluster information. Data ob-
jects that belong to the same cluster are taken to be
nearest neighbors of each other, and KMI applies a

nearest neighbor algorithm to replace missing data,
in a similar way to KNNI.

– Imputation with Fuzzy K-means Clustering (FKMI)

(Acuna and Rodriguez 2004; Li et al 2004). In fuzzy
clustering, each data object has a membership func-
tion which describes the degree to which this data

object belongs to a certain cluster. In the process
of updating membership functions and centroids,
FKMI’s only take into account complete attributes.

In this process, the data object cannot be assigned
to a concrete cluster represented by a cluster cen-
troid (as is done in the basic K-mean clustering al-
gorithm), because each data object belongs to all K

clusters with different membership degrees. FKMI
replaces non-reference attributes for each incomplete
data object based on the information about mem-

bership degrees and the values of cluster centroids.
– Support Vector Machines Imputation (SVMI)(Feng

et al 2005) is an SVM regression based algorithm to

fill in missing data, i.e. set the decision attributes
(output or classes) as the condition attributes (in-
put attributes) and the condition attributes as the

decision attributes, so SVM regression can be used
to predict the missing condition attribute values. In
order to do that, first SVMI selects the examples in

which there are no missing attribute values. In the
next step the method sets one of the condition at-
tributes (input attribute), some of those values that

are missing, as the decision attribute (output at-
tribute), and the decision attributes as the condition
attributes by contraries. Finally, an SVM regression

is used to predict the decision attribute values.
– Event Covering (EC)(Wong and Chiu 1987). Based

on the work of Wong and Chiu (1987), a mixed-

mode probability model is approximated by a dis-
crete one. First, EC discretizes the continuous com-
ponents using a minimum loss of information cri-

terion. Treating a mixed-mode feature n-tuple as
a discrete-valued one, a new statistical approach is
proposed for the synthesis of knowledge based on

cluster analysis. The main advantage of this method
is that it does not require either scale normalization
or the ordering of discrete values. By synthesizing

7

the data into statistical knowledge, the EC method

involves the following processes: 1) synthesize and
detect from data inherent patterns which indicate
statistical interdependency; 2) group the given data

into inherent clusters based on this detected interde-
pendency; and 3) interpret the underlying patterns
for each cluster identified. The method of synthesis

is based on the author’s event–covering approach.
With the developed inference method, EC is able to
estimate the MVs in the data.

– Regularized Expectation-Maximization (EM)
(Schneider 2001). Missing values are imputed with
a regularized expectation maximization (EM) algo-

rithm. In an iteration of the EM algorithm, given
estimates of the mean and of the covariance ma-
trix are revised in three steps. First, for each record

with missing values, the regression parameters of
the variables with missing values among the vari-
ables with available values are computed from the

estimates of the mean and of the covariance matrix.
Second, the missing values in a record are filled in
with their conditional expectation values given the
available values and the estimates of the mean and

of the covariance matrix, the conditional expecta-
tion values being the product of the available values
and the estimated regression coefficients. Third, the

mean and the covariance matrix are re-estimated,
the mean as the sample mean of the completed data
set and the covariance matrix as the sum of the

sample covariance matrix of the completed data set
and an estimate of the conditional covariance matrix
of the imputation error. The EM algorithm starts

with initial estimates of the mean and of the covari-
ance matrix and cycles through these steps until the
imputed values and the estimates of the mean and

of the covariance matrix stop changing appreciably
from one iteration to the next.

– Singular Value Decomposition Imputation (SVDI)

(Troyanskaya et al 2001). In this method, singular
value decomposition is used to obtain a set of mu-
tually orthogonal expression patterns that can be

linearly combined to approximate the values of all
attributes in the data set. In order to do that, first
SVDI estimates the MVs within the EM algorithm,

and then it computes the Singular Value Decompo-
sition and obtains the eigenvalues. Now SVDI can
use the eigenvalues to apply a regression to the com-

plete attributes of the instance, to obtain an estima-
tion of the MV itself.

– Bayesian Principal Component Analysis(BPCA)

(Oba et al 2003). This method is an estimation method
for missing values, which is based on Bayesian prin-
cipal component analysis. Although the methodol-

ogy that a probabilistic model and latent variables

are estimated simultaneously within the framework
of Bayesian inference is not new in principle, actual
BPCA implementation that makes it possible to es-

timate arbitrary missing variables is new in terms
of statistical methodology. The missing value esti-
mation method based on BPCA consists of three

elementary processes. They are (1) principal compo-
nent (PC) regression, (2) Bayesian estimation, and
(3) an expectationmaximization (EM)-like repeti-

tive algorithm.
– Local Least Squares Imputation (LLSI)(Kim et al

2005). With this method, a target instance that has

missing values is represented as a linear combination
of similar instances. Rather than using all available
genes in the data, only similar genes based on a simi-

larity measure are used. The method has the “local”
connotation. There are two steps in the LLSI. The
first step is to select k genes by the L2-norm. The

second step is regression and estimation, regardless
of how the k genes are selected. A heuristic k pa-
rameter selection method is used by the authors.

4 Experimental framework

When analyzing imputation methods, a wide range of
set ups can be observed. The data sets used, their type
(real or synthetic), the origin and amount of MVs, etc.

must be carefully described, as the results will strongly
depend on them. All these aspects are described in Sub-
section 4.1.

The results obtained by the classification methods

depend on the previous imputation step, but also on
the parameter configuration used by both the imputa-
tion and classification methods. Therefore they must be
indicated in order to be able to reproduce any results

obtained. In Subsection 4.2 the parameter configura-
tions used by all the methods considered in this study
are presented.

4.1 Data sets description

The experimentation has been carried out using 21 bench-
mark data sets from the KEEL-Dataset repository2.

Each data set is described by a set of characteristics
such as the number of data samples, attributes and
classes, summarized in Table 1. In this table, the per-

centage of MVs is indicated as well: the percentage
of values which are missing, and the percentage of in-
stances with at least one MV.

2 http://sci2s.ugr.es/keel/datasets.php

8

Table 1 Data sets used

Data set Acronym # instances. # attributes # classes % MV % inst. with MV
Cleveland CLE 303 14 5 0.14 1.98
Wisconsin WIS 699 10 2 0.23 2.29
Credit CRX 689 16 2 0.61 5.37
Breast BRE 286 10 2 0.31 3.15
Autos AUT 205 26 6 1.11 22.44

Primary tumor PRT 339 18 21 3.69 61.06
Dermatology DER 365 35 6 0.06 2.19

House-votes-84 HOV 434 17 2 5.3 46.54
Water-treatment WAT 526 39 13 2.84 27.76

Sponge SPO 76 46 12 0.63 28.95
Bands BAN 540 40 2 4.63 48.7

Horse-colic HOC 368 24 2 21.82 98.1
Audiology AUD 226 71 24 1.98 98.23

Lung-cancer LUN 32 57 3 0.27 15.63
Hepatitis HEP 155 20 2 5.39 48.39
Mushroom MUS 8124 23 2 1.33 30.53

Post-operative POS 90 9 3 0.37 3.33
Echocardiogram ECH 132 12 4 4.73 34.09

Soybean SOY 307 36 19 6.44 13.36
Mammographic MAM 961 6 2 2.81 13.63

Ozone OZO 2534 73 2 8.07 27.11

We cannot know anything about the randomness of
MVs in the data sets, so we assume they are distributed

in an MAR way, so the application of the imputation
methods is feasible. In our study we want to deal with
the original MVs and therefore obtain the real accu-

racy values of each data set with our imputation meth-
ods. In addition to this, we use all kinds of data sets,
which includes nominal data sets, numeric data sets and

mixed-mode data sets.

In order to carry out the experimentation, we have
used a 10-fold cross validation scheme. All the classifi-
cation algorithms use the same partitions, to perform

fair comparisons. We take the mean accuracy of train-
ing and test of the 10 partitions as a representative
measure of the method’s performance.

All these data sets have natural MVs, and we have
imputed them with the following scheme. With the train-

ing partition, we apply the imputation method, extract-
ing the relationships between the attributes, and filling
in this partition. Next, with the information obtained,

we fill in the MVs in the test partition. Since we have
14 imputation methods, we will obtain 14 instances of
each partition of a given data set once they have been

preprocessed. All these partitions will be used to train
the classification methods used in our study, and then
we will perform the test validation with the correspond-

ing test partition. If the imputation method works only
with numerical data, the nominal values are considered
as a list of integer values, starting from 1 to the amount

of different nominal values in the attribute.

4.2 Parameter configuration

In Table 2 we show the parameters used by each impu-
tation method described in Section 3.2, in cases where

the method needs a parameter. The values chosen are
those recommended by their respective authors. Please
refer to their respective papers for further descriptions

of the parameters’ meaning.

Table 2 Imputation Methods Parameters

Method Parameters

SVMI Kernel= RBF
C= 1.0

Epsilon= 0.001
shrinking= No

KNNI, WKNNI K= 10

KMI K= 10
iterations = 100

error = 100

FKMI K= 3
iterations = 100

error = 100
m = 1.5

EC T= 0.05

EM iterations = 30
stagnation tolerance = 0.0001

inflation factor = 1
regression type = multiple ridge regression

SVDI iterations = 30
stagnation tolerance = 0.005

inflation factor = 1
regression type = multiple ridge regression

singular vectors = 10

LLSI max number of nearest neighbor = 200

In Table 3 the parameters used by the different FR-
BCSs are presented. All these parameters are the rec-
ommended ones that have been extracted from the re-

spective publications of the methods. Please refer to the
associated publications and the KEEL platform to ob-
tain further details about the meaning of the different

parameters.

9

Table 3 Parameters used by the FRBCSs (p is the number of
attributes in the data set)

FH-GBML

Number of fuzzy rules: 5× p rules.
Number of rule sets (Npop): 200 rule sets.
Crossover probability: 0.9.

Mutation probability: 1/p.
Number of replaced rules: All rules except the best-one
(Pittsburgh-part, elitist approach), number of rules/5 (Michigan-part).
Total number of generations: 1,000 generations.

Don’t care probability: 0.5.
Probability of the application of the Michigan iteration: 0.5

PDFC

C =100

d = 0.25
Positive definite function type: symmetric triangle

Chi

Number of Labels: 3
T-norm: product

Rule weight: penalized certainty factor
Fuzzy reasoning method: winning rule

5 Analysis of the imputation methods for
Fuzzy Rule Based Classification Systems

In this section we analyze the imputation results ob-
tained for the FRBCSs and study the best imputation
choices in each case. We first show the test accuracy

results for the three FRBCSs using the 14 imputation
methods in Subsection 5.1 and indicate the best ap-
proaches using this initial criteria. In order to establish

a more robust and significant comparison we have used
the Wilcoxon Signed Rank test in Subsection 5.2, to
support our analysis with a statistical test that pro-

vides us with statistical evidence of the good behavior
of any imputation approach for the FRBCSs.

5.1 Results for all the classification methods

In this section, we analyze the different imputation ap-
proaches for all the imputation methods as a first at-
tempt to obtain an “overall best” imputation method
for each FRBCS. Following the indications given in the

previous subsection, in Table 4 we depict the average
test accuracy for the three FRBCSs for each imputa-
tion method and data set. The best imputation method

in each case is stressed in bold face. We include a final
column with the average accuracy across all data sets
for each imputation method.

Attending to the average test accuracy obtained, the
best imputation methods are:

– DNI for FH-GBML. The use of the “don’t care”
option when MVs appear obtains good results in

comparison with the rest of imputation methods.
This is specially appreciable in the case of HOC and
AUD data sets. The CMC method is also close in

the final average, while it presents less differences

with the best method when it is not the best one

unlike DNI.
– BPCA for Chi et al. Although BPCA presents an

irregular behavior, its superior performance in DER,

HOV, BAN, LUN and HEP data sets allows it to
obtain a better average. Again, CMC is the second
best method and its behavior is more similar to the

rest of the methods with less variations.
– EC for PDFC. The results for PDFC are less irregu-

lar, and EC is consistently better in the majority of

them. In contraposition with FH-GBML and Chi et
al., in this case the best imputation method obtains
a clear difference with the second best, SVMI in this

case.

From these results an initial recommendation of the
best imputation procedures for each FRBCS can be

made. However, the high variations in the results dis-
courages to use the accuracy as the criteria to select
them, specially for FH-GBML and Chi et al. methods.

Therefore a more robust procedure must be used in
the comparisons in order to obtain the best imputation
method for each FRBCS. This is discussed in the next

subsection.

5.2 Statistical analysis

In order to appropriately analyze the imputation and
classification methods, we apply the Wilcoxon Signed
rank test comparing the imputation methods for each

FRBCS separately. With the results of the test we cre-
ate one table per FRBCS in which we provide an aver-
age ranking for each imputation method indicating the

best ones. The content of the tables and its interpreta-
tion is as follows:

1. We create an n×n table for each classification method.

In each cell, the outcome of the Wilcoxon signed
rank test is shown.

2. In the aforementioned tables, if the p-value obtained

by the Wilcoxon tests for a pair of imputation meth-
ods is higher than our α level, formerly 0.1, then we
establish that there is a tie in the comparison (no

significant difference was found), represented by a
D.

3. If the p-value obtained by the Wilcoxon tests is

lower than our α level, formerly 0.1, then we es-
tablish that there is a win (represented by a W) or
a loss (represented by an L) in the comparison. If

the method presented in the row has a better rank-
ing than the method presented in the column in the
Wilcoxon test then there is a win, otherwise there

is a loss.

10

T
a
b
le

4
T
est

a
ccu

ra
cy

resu
lts

fo
r
F
H
-G

B
M
L

F
R
B
C
S

Im
p
u
ta
tio

n
C
L
E

W
IS

C
R
X

B
R
E

A
U
T

P
R
T

D
E
R

H
O
V

W
A
T

S
P
O

B
A
N

H
O
C

A
U
D

L
U
N

H
E
P

M
U
S

P
O
S

E
C
H

S
O
Y

M
A
M

O
Z
O

A
v
era

g
e

M
eth

o
d

IM
5
2
.2
1

9
6
.9
2

8
5
.2
5

7
0
.7
9

5
0
.3
1

2
1
.6
1

2
9
.4
7

9
1
.7
9

6
7
.7
0

1
6
.3
8

6
5
.5
9

0
.0
0

2
0
.0
0

0
.0
0

8
1
.8
2

8
5
.8
1

6
2
.3
6

5
2
.3
9

1
8
.4
8

8
3
.1
8

8
4
.9
1

5
4
.1
4

E
C

5
2
.8
1

9
4
.5
7

8
5
.2
1

7
4
.1
0

3
3
.7
4

2
8
.5
7

2
6
.5
8

9
3
.7
7

2
8
.3
5

1
9
.2
9

6
7
.4
1

7
6
.6
4

3
6
.3
4

0
.0
0

7
5
.5
0

8
0
.0
9

6
4
.4
4

4
5
.4
4

1
7
.6
2

8
2
.6
3

5
.9
6

5
1
.8
6

K
N
N
I

4
9
.8
2

9
5
.8
6

8
4
.1
9

6
9
.2
2

4
1
.7
2

2
1
.4
3

3
3
.9
6

9
3
.5
3

6
2
.5
5

1
6
.9
6

5
7
.7
8

4
9
.8
9

1
8
.6
8

0
.0
0

7
4
.9
2

8
1
.4
3

6
8
.8
9

5
9
.8
9

1
2
.3
3

8
3
.6
7

8
6
.9
4

5
5
.4
1

W
K
N
N
I

5
3
.1
1

9
6
.1
4

8
3
.7
6

7
1
.0
8

4
3
.7
3

2
1
.6
0

2
1
.4
0

9
2
.6
3

6
4
.6
5

8
.9
3

5
8
.1
5

4
5
.7
8

1
1
.1
1

0
.0
0

7
8
.0
8

8
1
.3
0

6
5
.5
6

5
9
.0
7

1
5
.6
2

8
2
.7
3

8
3
.3
5

5
4
.1
8

K
M
I

5
3
.7
8

9
6
.2
9

8
4
.4
8

7
2
.7
5

4
5
.9
1

2
3
.7
8

2
1
.9
9

9
2
.8
5

6
6
.5
4

6
.6
1

5
5
.9
3

7
1
.4
3

2
0
.5
9

0
.0
0

7
7
.3
8

8
0
.7
0

6
1
.1
1

5
3
.6
3

1
9
.4
8

8
3
.4
6

8
4
.3
7

5
5
.8
6

F
K
M
I

5
2
.7
5

9
6
.7
1

8
4
.6
3

7
0
.9
4

4
1
.6
0

2
0
.9
9

2
2
.7
9

9
2
.6
1

6
0
.8
5

1
4
.1
1

6
2
.7
8

7
6
.3
4

1
9
.8
6

0
.0
0

7
8
.7
5

8
1
.6
5

6
3
.3
3

5
2
.9
7

2
6
.3
9

8
3
.6
7

8
1
.4
9

5
6
.4
4

F
H
-G

B
M
L

S
V
M
I

5
4
.4
8

9
6
.4
3

8
4
.4
8

7
5
.5
1

4
2
.5
8

2
5
.0
0

3
1
.2
8

9
3
.7
7

6
4
.8
2

1
4
.8
2

5
7
.7
8

4
5
.2
9

2
0
.4
7

0
.0
0

8
1
.8
3

8
0
.1
1

6
3
.3
3

5
2
.2
0

1
7
.8
5

8
2
.9
4

8
6
.7
4

5
5
.8
0

E
M

5
1
.8
3

9
6
.1
4

8
4
.9
1

7
3
.1
1

4
5
.3
1

8
.4
3

2
7
.6
5

8
6
.8
7

5
4
.9
6

1
4
.4
6

5
3
.1
5

7
5
.7
3

0
.0
0

0
.0
0

7
7
.4
6

8
3
.1
5

6
5
.5
6

5
6
.1
5

1
0
.4
2

8
2
.6
2

7
6
.9
5

5
3
.5
7

S
V
D
I

5
2
.8
2

9
6
.4
2

8
3
.4
7

7
3
.0
7

4
5
.8
9

1
4
.7
6

2
7
.9
1

8
9
.1
7

5
7
.8
2

1
3
.0
4

5
0
.1
9

7
7
.4
5

0
.0
0

0
.0
0

8
3
.1
7

7
8
.0
6

6
6
.6
7

5
0
.6
0

1
4
.7
4

8
1
.6
9

7
4
.5
0

5
3
.8
8

B
P
C
A

4
8
.4
9

4
3
.7
8

4
7
.3
1

7
8
.0
3

4
9
.3
7

3
4
.2
6

8
.2
4

4
9
.9
7

4
6
.7
5

2
.5
0

5
2
.7
8

5
6
.2
8

1
2
.7
7

2
5
.0
0

7
8
.0
8

4
3
.0
0

5
1
.1
1

3
6
.3
7

0
.0
0

5
1
.1
9

8
0
.6
7

4
2
.6
6

L
L
S
I

5
6
.0
8

9
6
.5
7

8
3
.7
6

7
2
.7
1

4
4
.7
1

2
4
.1
5

2
4
.9
2

9
4
.9
3

6
1
.6
1

1
4
.4
6

5
5
.7
4

6
3
.8
3

2
9
.5
8

0
.0
0

7
3
.3
3

8
3
.6
8

6
3
.3
3

5
7
.6
9

1
4
.3
5

8
3
.1
5

8
3
.3
9

5
6
.2
8

M
C

5
3
.4
5

9
6
.4
3

8
4
.3
4

7
2
.7
1

4
2
.4
8

2
5
.4
3

3
0
.4
0

9
1
.4
6

6
4
.8
3

1
4
.6
4

5
9
.8
1

7
6
.3
0

2
1
.7
6

0
.0
0

7
8
.0
4

8
1
.4
3

6
2
.2
2

5
0
.0
0

1
5
.6
6

8
3
.4
6

8
4
.1
0

5
6
.6
2

C
M
C

5
3
.7
7

9
6
.4
3

8
5
.6
5

7
1
.0
3

4
6
.1
1

2
5
.3
6

3
1
.5
3

9
4
.0
1

6
4
.2
8

1
6
.9
6

5
5
.5
6

7
0
.1
7

1
4
.6
4

0
.0
0

7
8
.6
3

8
2
.6
2

6
3
.3
3

6
1
.5
9

1
5
.0
4

8
3
.6
7

8
6
.9
4

5
7
.0
2

D
N
I

5
4
.4
5

9
6
.1
4

8
4
.7
7

7
3
.4
8

4
2
.2
1

2
3
.3
6

2
6
.0
0

9
4
.7
0

5
5
.9
2

2
1
.7
9

6
2
.5
9

8
4
.7
7

4
2
.0
2

0
.0
0

7
4
.8
8

7
5
.7
0

6
3
.3
3

5
2
.2
0

2
4
.0
4

8
1
.9
0

6
5
.0
3

5
7
.1
1

IM
3
9
.6
9

9
1
.5
1

8
1
.7
7

6
6
.8
8

6
1
.9
9

9
.9
7

5
.0
7

4
2
.2
5

6
4
.4
2

1
4
.9
5

3
5
.6
9

0
.0
0

2
0
.0
0

0
.0
0

1
8
.7
0

9
9
.4
7

2
3
.1
9

6
1
.9
2

1
0
.2
0

7
8
.8
9

9
1
.4
6

4
3
.7
1

E
C

4
4
.1
7

7
5
.1
1

5
0
.0
9

6
5
.0
9

4
8
.8
0

1
0
.2
7

4
.9
3

4
6
.5
5

1
.9
0

1
0
.5
4

3
7
.2
2

6
.5
7

5
.3
8

0
.0
0

2
3
.2
5

9
9
.6
1

2
2
.2
2

4
9
.1
8

9
.1
1

7
8
.9
8

2
.9
2

3
2
.9
5

K
N
N
I

3
9
.8
9

9
1
.4
2

8
0
.7
1

6
5
.4
5

5
9
.5
1

1
1
.3
8

4
.9
3

4
1
.9
3

6
4
.6
6

1
1
.7
9

3
8
.5
2

1
.3
5

0
.9
1

0
.0
0

3
0
.9
6

9
3
.6
1

2
2
.2
2

5
8
.9
6

9
.4
3

7
8
.6
7

9
2
.7
0

4
2
.8
1

W
K
N
N
I

3
9
.8
9

9
1
.4
2

8
0
.7
1

6
5
.4
5

5
9
.5
1

1
1
.3
8

4
.9
3

4
1
.9
3

6
4
.6
6

1
1
.7
9

3
8
.5
2

1
.3
5

0
.9
1

0
.0
0

3
0
.9
6

9
3
.6
1

2
2
.2
2

5
8
.9
6

9
.4
3

7
8
.6
7

9
2
.7
8

4
2
.8
1

K
M
I

3
9
.8
9

9
1
.4
2

8
1
.1
4

6
5
.4
5

5
9
.5
5

1
2
.7
0

4
.9
3

4
1
.4
9

6
5
.0
3

1
1
.7
9

2
9
.4
4

4
.0
6

5
.3
4

0
.0
0

2
2
.2
9

9
9
.7
4

2
2
.2
2

5
4
.5
6

1
0
.4
0

7
8
.2
5

9
2
.2
6

4
2
.4
7

F
K
M
I

3
9
.8
9

9
1
.2
8

8
1
.1
4

6
5
.4
5

5
9
.5
5

1
2
.3
8

4
.9
3

4
2
.1
7

6
4
.0
7

1
1
.7
9

3
7
.2
2

5
.1
7

0
.9
1

0
.0
0

3
0
.9
6

9
9
.7
4

2
2
.2
2

5
6
.0
4

1
1
.7
0

7
8
.0
4

9
1
.9
1

4
3
.1
7

C
h
i
et

a
l.

S
V
M
I

4
0
.2
3

9
1
.5
6

8
0
.8
5

6
5
.4
5

5
8
.9
3

9
.3
4

4
.9
3

4
1
.9
3

6
4
.6
5

1
1
.7
9

3
8
.5
2

1
.6
2

5
.4
5

0
.0
0

3
0
.2
9

9
9
.7
4

2
2
.2
2

6
0
.3
8

1
0
.4
2

8
0
.8
5

9
2
.7
8

4
3
.4
3

E
M

3
9
.8
8

9
1
.1
3

8
0
.7
1

6
6
.1
2

6
8
.8
2

4
.9
3

4
.9
3

4
4
.4
7

6
2
.0
0

1
0
.5
4

2
9
.6
3

2
9
.3
7

0
.9
1

0
.0
0

2
5
.1
3

9
9
.2
9

2
2
.2
2

5
8
.4
1

8
.7
8

7
9
.6
1

9
1
.9
5

4
3
.7
5

S
V
D
I

4
0
.8
8

9
1
.2
8

8
0
.5
6

6
6
.1
2

6
7
.3
6

5
.8
6

4
.9
3

4
5
.6
2

5
8
.9
6

1
0
.5
4

2
7
.7
8

2
6
.9
2

0
.9
1

0
.0
0

2
4
.4
6

9
6
.5
5

2
2
.2
2

5
6
.9
2

8
.7
8

7
8
.7
7

9
1
.5
9

4
3
.1
9

B
P
C
A

3
9
.6
0

4
4
.7
8

4
9
.4
9

7
8
.4
2

8
2
.2
1

6
7
.0
3

1
9
.5
0

5
0
.2
0

5
0
.1
9

3
.7
5

5
6
.1
1

5
4
.3
7

1
8
.1
2

2
8
.3
3

7
3
.5
4

5
0
.8
4

4
2
.2
2

3
6
.3
7

3
.2
6

5
1
.9
2

8
7
.4
1

4
7
.0
3

L
L
S
I

3
9
.8
9

9
1
.2
8

8
0
.8
5

6
5
.0
9

5
4
.7
6

8
.2
9

4
.9
3

4
7
.4
5

5
9
.7
1

1
1
.9
6

3
2
.9
6

2
.1
7

1
2
.3
9

0
.0
0

3
1
.5
8

9
7
.3
8

2
2
.2
2

5
5
.1
6

8
.7
8

7
9
.6
1

9
2
.3
4

4
2
.8
0

M
C

3
9
.8
9

9
1
.2
8

8
1
.0
0

6
5
.4
5

5
7
.9
0

1
2
.3
8

4
.9
3

4
2
.1
7

6
4
.2
7

1
1
.7
9

3
8
.7
0

2
.4
7

0
.9
1

0
.0
0

3
1
.5
8

9
9
.7
4

2
2
.2
2

5
9
.0
7

1
1
.7
0

7
8
.0
4

9
1
.9
9

4
3
.2
1

C
M
C

3
9
.8
9

9
1
.4
2

8
0
.7
1

6
5
.4
5

6
0
.4
0

1
0
.7
4

4
.9
3

4
7
.9
3

6
5
.7
9

1
1
.7
9

3
7
.9
6

1
1
.9
8

0
.9
1

0
.0
0

3
1
.5
8

9
9
.7
4

2
2
.2
2

5
9
.7
3

1
0
.4
1

8
1
.0
6

9
2
.8
2

4
4
.1
6

D
N
I

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

IM
5
2
.5
4

9
6
.4
8

8
3
.4
0

7
3
.6
5

8
0
.9
6

4
2
.4
6

8
8
.8
4

9
4
.9
2

7
4
.3
9

7
0
.0
5

7
5
.3
9

4
0
.0
0

2
0
.0
0

3
6
.6
7

8
3
.2
5

1
0
0
.0
0

5
2
.5
0

5
6
.5
4

9
1
.2
6

8
3
.1
3

9
2
.6
5

7
0
.9
1

E
C

5
8
.4
3

9
6
.2
8

8
3
.0
3

7
2
.3
6

8
5
.6
1

4
2
.7
0

8
8
.8
1

9
4
.4
7

7
3
.7
8

7
2
.6
8

7
9
.0
7

8
2
.6
2

7
5
.3
6

4
0
.0
0

8
2
.5
8

1
0
0
.0
0

5
5
.5
6

6
3
.5
7

9
1
.2
4

8
2
.6
2

9
3
.4
9

7
6
.8
7

K
N
N
I

5
3
.1
0

9
5
.5
7

8
3
.6
1

7
1
.6
3

7
6
.7
1

4
3
.3
8

8
8
.8
1

9
4
.2
3

7
6
.6
5

7
2
.6
8

7
7
.2
2

8
0
.9
9

7
5
.7
3

4
0
.0
0

7
7
.5
0

1
0
0
.0
0

5
4
.4
4

5
2
.6
9

8
9
.2
8

8
2
.9
4

9
3
.7
7

7
5
.2
8

W
K
N
N
I

5
3
.1
0

9
5
.5
7

8
3
.6
1

7
1
.6
3

7
6
.7
1

4
3
.0
2

8
8
.8
1

9
4
.2
3

7
7
.0
3

7
2
.6
8

7
7
.2
2

8
1
.2
6

7
5
.7
3

4
0
.0
0

7
7
.5
0

1
0
0
.0
0

5
3
.3
3

5
1
.9
2

8
9
.6
0

8
2
.9
4

9
3
.7
7

7
5
.2
2

K
M
I

5
2
.1
2

9
5
.7
1

8
2
.6
0

6
9
.8
8

7
6
.2
3

4
3
.7
3

8
8
.8
1

9
4
.6
9

7
6
.2
7

7
2
.6
8

7
6
.8
5

8
3
.4
3

7
6
.6
6

4
0
.0
0

7
9
.4
6

1
0
0
.0
0

5
5
.5
6

5
3
.2
4

9
1
.2
4

8
2
.5
2

9
4
.1
6

7
5
.5
2

F
K
M
I

5
2
.1
2

9
5
.5
7

8
2
.7
4

6
9
.8
8

7
6
.7
1

4
3
.4
0

8
8
.8
1

9
4
.9
3

7
5
.9
0

7
2
.6
8

7
7
.7
8

8
3
.4
5

7
6
.2
3

4
0
.0
0

8
0
.0
4

1
0
0
.0
0

5
4
.4
4

5
7
.0
9

9
1
.2
4

8
2
.9
4

9
3
.8
0

7
5
.7
0

P
D
F
C

S
V
M
I

5
3
.1
2

9
5
.4
2

8
3
.4
6

6
9
.8
8

7
7
.6
4

4
1
.8
3

8
8
.8
1

9
3
.7
8

7
8
.3
6

7
2
.6
8

7
8
.8
9

8
0
.9
8

7
6
.2
3

4
0
.0
0

8
2
.5
8

1
0
0
.0
0

5
6
.6
7

5
4
.8
4

9
0
.9
1

8
2
.7
3

9
4
.0
4

7
5
.8
5

E
M

5
3
.4
3

9
5
.5
7

8
3
.1
7

7
1
.2
6

8
3
.0
5

3
1
.0
4

8
9
.0
8

9
0
.1
2

7
0
.0
1

7
2
.6
8

7
4
.6
3

7
7
.6
5

2
2
.6
1

4
0
.0
0

8
1
.3
8

1
0
0
.0
0

5
4
.4
4

5
8
.5
2

8
8
.6
2

8
3
.0
4

9
3
.2
5

7
2
.0
7

S
V
D
I

5
3
.1
3

9
5
.7
1

8
2
.7
4

7
2
.6
6

8
3
.5
2

3
2
.3
3

8
9
.0
8

9
0
.5
7

7
0
.5
8

7
2
.6
8

7
4
.6
3

7
7
.9
3

2
4
.8
6

4
0
.0
0

7
9
.4
6

1
0
0
.0
0

5
4
.4
4

5
5
.4
4

8
8
.6
2

8
2
.3
1

9
3
.3
7

7
2
.1
0

B
P
C
A

3
8
.9
4

4
3
.9
2

5
3
.8
5

9
3
.1
0

9
0
.5
8

6
9
.7
8

1
9
.5
0

5
0
.2
0

5
0
.3
7

3
.7
5

5
7
.2
2

5
4
.3
7

1
8
.1
2

2
8
.3
3

7
3
.5
4

5
0
.8
4

4
3
.3
3

3
6
.3
7

3
.2
6

5
0
.3
6

8
5
.0
0

4
8
.3
2

L
L
S
I

5
2
.4
3

9
5
.5
7

8
3
.1
8

6
9
.5
3

7
7
.6
8

3
8
.3
8

8
8
.8
1

9
4
.7
0

7
3
.8
0

7
2
.6
8

7
8
.3
3

8
2
.3
4

7
2
.7
1

4
0
.0
0

7
8
.7
1

1
0
0
.0
0

5
3
.3
3

5
3
.9
6

8
6
.6
9

8
2
.8
3

9
3
.7
3

7
4
.7
3

M
C

5
3
.1
1

9
5
.7
1

8
2
.7
5

6
9
.8
8

7
5
.8
4

4
3
.4
6

8
8
.8
1

9
4
.9
3

7
5
.6
9

7
2
.6
8

7
7
.2
2

8
2
.9
1

7
6
.2
3

4
0
.0
0

7
7
.5
0

1
0
0
.0
0

5
5
.5
6

5
5
.5
5

9
1
.2
4

8
2
.9
4

9
3
.3
7

7
5
.4
9

C
M
C

5
2
.1
0

9
5
.4
2

8
3
.0
3

6
9
.8
8

7
6
.7
1

4
1
.7
1

8
8
.8
1

9
5
.1
6

7
7
.8
0

7
2
.6
8

7
3
.7
0

8
5
.8
9

7
5
.3
6

4
0
.0
0

8
0
.7
1

1
0
0
.0
0

5
4
.4
4

5
4
.0
7

9
1
.8
8

8
3
.7
7

9
4
.2
0

7
5
.5
9

D
N
I

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

11

With these columns, we have produced an average rank-

ing for each FRBCS. We have computed the number of
times that an imputation methods wins, and the num-
ber of times that an imputation method wins and ties.

Then we obtain the average ranking by putting those
imputation methods which have a higher “wins + ties”
sum first among the rest of the imputation methods. If

a draw is found for “wins + ties”, we use the “wins” to
establish the rank. If some methods obtain a draw for
both “wins + ties” and “wins”, then an average ranking

is assigned for all of them.

In order to compare the imputation methods for the

FRBCS considered in each we have added one more fi-
nal column with the mean ranking for each imputation
method across all the data sets, that is, the mean of

every row. By doing so, we can obtain a new rank (fi-
nal column RANKING), in which we propose a new
ordering for the imputation methods for a given FR-

BCS, using the values of the column “Avg.” to sort the
imputation methods.

Table 5 depicts the results for FH-GBML. The best
imputation method is CMC, while DNI is the sixth
best. That means that although DNI is capable of ob-

taining very good results in few data sets, it is a very
irregular MV treatment strategy. CMC is capable of
obtaining good results in every data set and even being

the best on some of them. SVMI and MC imputation
methods are also good alternatives for FH-GBML. Case
deletion (IM) is an affordable option due to the good

generalization abilities of FH-GBML, but it obtains a
lower mean accuracy than SVMI and MC.

Table 6 summarize the results for Chi et al. Again
we find that CMC is the best imputation choice, while
BPCA was the preferred one considering only the ac-

curacy results. The behavior of BPCA is even more
irregular for Chi et al. than DNI for FH-GBML. CMC
is better than most of the imputation strategies, with 9

wins, making it a clear imputation choice for this FR-
BCS.

Table 7 shows the results for PDFC. In this case, the
ranking using the Wilcoxon statistical comparison is in

concordance with the results obtained using the test
accuracy: EC is the best imputation method for PDFC
with 10 wins out of 14 methods. We can conclude that

EC is the best imputation method for PDFC.

For the Wilcoxon tables with their rankings we have

built Table 8 with the best three methods of each FR-
BCS. We have stressed in bold those rankings equal to
or below three. An important outcome of the results is

that both FH-GBML and Chi et al. FRBCSs share the
same best imputation method, while PDFC has a dif-
ferent choice. We must stress that FH-GBML and Chi

et al. are Mamdani based FRBCSs, while PDFC is an T
a
b
le

5
A
v
er
a
g
e
ra
n
k
s
fo
r
F
H
-G

B
M
L

IM
E
C

K
N
N
I

W
K
N
N
I

K
M
I

F
K
M
I

S
V
M
I

E
M

S
V
D
I

B
P
C
A

L
L
S
I

M
C

C
M
C

D
N
I

T
ie
s+

W
in

s
W

in
s

R
A
N
K
IN

G

IM
D

D
W

D
D

D
W

W
W

D
D

D
D

1
3

4
3

E
C

D
D

D
D

D
D

D
D

W
D

D
D

L
1
2

1
9
.5

K
N
N
I

D
D

D
D

D
D

W
D

W
D

D
D

D
1
3

2
6

W
K
N
N
I

L
D

D
D

D
L

D
D

W
D

L
L

D
9

1
1
1

K
M
I

D
D

D
D

D
D

D
D

W
D

D
D

D
1
3

1
8

F
K
M
I

D
D

D
D

D
D

D
W

W
D

D
D

D
1
3

2
6

S
V
M
I

D
D

D
W

D
D

W
W

W
D

D
D

D
1
3

4
3

E
M

L
D

L
D

D
D

L
D

W
D

L
L

D
8

1
1
2
.5

S
V
D
I

L
D

D
D

D
L

L
D

W
D

L
L

D
8

1
1
2
.5

B
P
C
A

L
L

L
L

L
L

L
L

L
L

L
L

L
0

0
1
4

L
L
S
I

D
D

D
D

D
D

D
D

D
W

D
L

D
1
2

1
9
.5

M
C

D
D

D
W

D
D

D
W

W
W

D
D

D
1
3

4
3

C
M
C

D
D

D
W

D
D

D
W

W
W

W
D

D
1
3

5
1

D
N
I

D
W

D
D

D
D

D
D

D
W

D
D

D
1
3

2
6

12

T
a
b
le

6
A
v
era

g
e
ra
n
k
s
fo
r
C
h
i
et

a
l.

IM
E
C

K
N
N
I

W
K
N
N
I

K
M
I

F
K
M
I

S
V
M
I

E
M

S
V
D
I

B
P
C
A

L
L
S
I

M
C

C
M
C

D
N
I

T
ie
s+

W
in

s
W

in
s

R
A
N
K
IN

G

IM
W

D
D

D
D

D
D

D
D

W
D

D
W

1
3

3
3

E
C

L
L

L
L

L
L

L
L

L
L

L
L

W
1

1
1
3

K
N
N
I

D
W

D
D

D
L

D
D

D
D

D
L

W
1
1

2
1
0
.5

W
K
N
N
I

D
W

D
D

D
L

D
D

D
D

D
L

W
1
1

2
1
0
.5

K
M
I

D
W

D
D

D
D

D
D

D
D

D
L

W
1
2

2
7
.5

F
K
M
I

D
W

D
D

D
D

D
D

D
D

D
L

W
1
2

2
7
.5

S
V
M
I

D
W

W
W

D
D

D
D

D
D

D
D

W
1
3

4
2

E
M

D
W

D
D

D
D

D
W

D
D

D
L

W
1
2

3
4

S
V
D
I

D
W

D
D

D
D

D
L

D
D

D
L

W
1
1

2
1
0
.5

B
P
C
A

D
W

D
D

D
D

D
D

D
D

D
D

W
1
3

2
5
.5

L
L
S
I

L
W

D
D

D
D

D
D

D
D

D
L

W
1
1

2
1
0
.5

M
C

D
W

D
D

D
D

D
D

D
D

D
D

W
1
3

2
5
.5

C
M
C

D
W

W
W

W
W

D
W

W
D

W
D

W
1
3

9
1

D
N
I

L
L

L
L

L
L

L
L

L
L

L
L

l
0

0
1
4

T
a
b
le

7
A
v
era

g
e
ra
n
k
s
fo
r
P
D
F
C

IM
E
C

K
N
N
I

W
K
N
N
I

K
M
I

F
K
M
I

S
V
M
I

E
M

S
V
D
I

B
P
C
A

L
L
S
I

M
C

C
M
C

D
N
I

T
ie
s+

W
in

s
W

in
s

R
A
N
K
IN

G

IM
L

D
D

D
D

D
D

D
W

D
D

D
W

1
2

2
7
.5

E
C

W
W

W
D

W
D

W
W

W
W

D
W

W
1
3

1
0

1

K
N
N
I

D
L

D
D

D
L

D
D

W
D

D
D

W
1
1

2
9
.5

W
K
N
N
I

D
L

D
D

D
D

D
D

W
D

D
D

W
1
2

2
7
.5

K
M
I

D
D

D
D

D
D

D
W

W
D

D
D

W
1
3

3
6

F
K
M
I

D
L

D
D

D
D

D
W

W
W

D
D

W
1
2

4
4
.5

S
V
M
I

D
D

W
D

D
D

W
W

W
W

D
D

W
1
3

6
2

E
M

D
L

D
D

D
D

L
D

W
D

D
D

W
1
1

2
9
.5

S
V
D
I

D
L

D
D

L
L

L
D

W
D

L
L

W
7

2
1
2

B
P
C
A

L
L

L
L

L
L

L
L

L
L

L
L

W
1

1
1
3

L
L
S
I

D
L

D
D

D
L

L
D

D
W

L
L

W
8

2
1
1

M
C

D
D

D
D

D
D

D
D

W
W

W
D

W
1
3

4
3

C
M
C

D
L

D
D

D
D

D
D

W
W

W
D

W
1
2

4
4
.5

D
N
I

L
L

L
L

L
L

L
L

L
L

L
L

L
0

0
1
4

13

special form of TSK model. Therefore, the kind of FR-

BCS considered appears to have influence on the best
imputation strategy when considering other FRBCSs
than those analyzed in this work.

FH-GBML Chi et al. PDFC
RANKING RANKING RANKING

IM 3 3 2

EC 9.5 13 1

SVMI 3 2 2

MC 3 5.5 3

CMC 1 1 4.5

Table 8 Best imputation methods for FRBCS

As a final remark, we can state that:

– The imputation methods which fill in the MVs out-

perform the case deletion (IM method) and the lack
of imputation (DNI method). Only in the case of
the IM imputation method obtain a relatively low

rank (2nd and 3th place) but these results can be al-
tered when new examples are presented to the model
learned with less data. This fact indicates that the

imputation methods usually outperform the non-
imputation strategies.

– There is no universal imputation method which per-

forms best for all type of FRBCS.

Please note that we have tackled the second point by

adding a categorization and a wide benchmark bed, ob-
taining a group of recommended imputation methods
for each family.

6 Influence of the imputation on the instances
and individual features

In the previous section we have analyzed the relation-
ship between the use of several imputation methods
with respect to the FRBCS’s accuracy. However, it would

be interesting to relate the influence of the imputation
methods to the information contained in the data set. In
order to study the influence and the benefits/drawbacks

of using the different imputation methods, we have con-
sidered the use of two different measures. They are de-
scribed as follows:

– Wilson’s Noise Ratio: This measure proposed by
Wilson (1972) observes the noise in the data set.
For each instance of interest, the method looks for

the K nearest neighbors (using the euclidean dis-
tance), and uses the class labels of such neighbors
in order to classify the considered instance. If the

instance is not correctly classified, then the variable

noise is increased by one unit. Therefore, the final

noise ratio will be

Wilson’s Noise =
noise

instances in the data set

In particular, we only compute the noise for the im-
puted instances considering K = 5.

– Mutual Information: Mutual information (MI) is con-

sidered to be a good indicator of relevance between
two random variables (Cover and Thomas 1991).
Recently, the use of the MI measure in feature selec-

tion has become well-known and seen to be success-
ful (Kwak and Choi 2002b,a; Peng et al 2005). The
use of the MI measure for continuous attributes has

been tackled by (Kwak and Choi 2002a), allowing
us to compute the MI measure not only in nominal-
valued data sets.

In our approach, we calculate the MI between each
input attribute and the class attribute, obtaining a
set of values, one for each input attribute. In the

next step we compute the ratio between each one
of these values, considering the imputation of the
data set with one imputation method in respect to

the not imputed data set. The average of these ra-
tios will show us if the imputation of the data set
produces a gain in information:

Avg. MI Ratio =

∑
xi∈X

MIα(xi)+1
MI(xi)+1

|X|

where X is the set of input attributes, MIα(i) rep-
resents the MI value of the ith attribute in the im-
puted data set and MI(i) is the MI value of the

ith input attribute in the not imputed data set. We
have also applied the Laplace correction, summing 1
to both numerator and denominator, as an MI value

of zero is possible for some input attributes.
The calculation of MI(xi) depends on the type of
attribute xi. If the attribute xi is nominal, the MI

between xi and the class label Y is computed as
follows:

MInominal(xi) = I(xi;Y) =
∑
z∈xi

∑
y∈Y

p(z, y)log2
p(z, y)

p(z)p(y)
.

On the other hand, if the attribute xi is numeric,
we have used the Parzen window density estimate

as shown in (Kwak and Choi 2002a) considering a
Gaussian window function:

MInumeric(xi) = I(xi;Y) = H(Y)−H(C|X);

where H(Y) is the entropy of the class label

H(Y) = −
∑
y∈Y

p(y)log2p(y);

14

Table 9 Wilson’s noise ratio values

Data-set Imp. % Wilson’s Data-set Imp. % Wilson’s Data-set Imp. % Wilson’s
Method Noise Ratio Method Noise Ratio Method Noise Ratio

CLE MC 50.0000 HOV MC 7.9208 HEP MC 17.3333
CMC 50.0000 CMC 5.4455 CMC 16.0000
KNNI 50.0000 KNNI 7.4257 KNNI 20.0000

WKNNI 50.0000 WKNNI 7.4257 WKNNI 20.0000
KMI 50.0000 KMI 7.4257 KMI 20.0000

FKMI 50.0000 FKMI 7.9208 FKMI 17.3333
SVMI 50.0000 SVMI 6.9307 SVMI 17.3333

EM 66.6667 EM 11.8812 EM 22.6667
SVDI 66.6667 SVDI 8.9109 SVDI 21.3333

BPCA 50.0000 BPCA 6.9307 BPCA 21.3333
LLSI 50.0000 LLSI 4.9505 LLSI 18.6667

EC 33.3333 EC 7.4257 EC 16.0000

WIS MC 18.7500 WAT MC 31.5068 MUS MC 0.0000
CMC 12.5000 CMC 21.2329 CMC 0.0000
KNNI 12.5000 KNNI 27.3973 KNNI 0.0000

WKNNI 12.5000 WKNNI 27.3973 WKNNI 0.0000
KMI 12.5000 KMI 27.3973 KMI 0.0000

FKMI 12.5000 FKMI 31.5068 FKMI 0.0000
SVMI 12.5000 SVMI 23.9726 SVMI 0.0000

EM 12.5000 EM 46.5753 EM 0.0000
SVDI 12.5000 SVDI 49.3151 SVDI 0.0000

BPCA 12.5000 BPCA 26.0274 BPCA 0.0000
LLSI 12.5000 LLSI 25.3425 LLSI 0.0000

EC 12.5000 EC 22.6027 EC 0.0000

CRX MC 18.9189 SPO MC 27.2727 POS MC 33.3333
CMC 18.9189 CMC 22.7273 CMC 33.3333
KNNI 21.6216 KNNI 27.2727 KNNI 33.3333

WKNNI 21.6216 WKNNI 27.2727 WKNNI 33.3333
KMI 21.6216 KMI 27.2727 KMI 33.3333

FKMI 18.9189 FKMI 27.2727 FKMI 33.3333
SVMI 13.5135 SVMI 27.2727 SVMI 33.3333

EM 32.4324 EM 36.3636 EM 33.3333
SVDI 27.0270 SVDI 31.8182 SVDI 33.3333

BPCA 21.6216 BPCA 27.2727 BPCA 33.3333
LLSI 18.9189 LLSI 27.2727 LLSI 33.3333

EC 13.5135 EC 27.2727 EC 33.3333

BRE MC 55.5556 BAN MC 25.4753 ECH MC 40.0000
CMC 55.5556 CMC 24.3346 CMC 40.0000
KNNI 55.5556 KNNI 23.1939 KNNI 46.6667

WKNNI 55.5556 WKNNI 22.8137 WKNNI 44.4444
KMI 55.5556 KMI 25.4753 KMI 46.6667

FKMI 55.5556 FKMI 24.3346 FKMI 40.0000
SVMI 55.5556 SVMI 21.2928 SVMI 44.4444

EM 44.4444 EM 26.2357 EM 51.1111
SVDI 44.4444 SVDI 22.4335 SVDI 48.8889

BPCA 66.6667 BPCA 23.9544 BPCA 44.4444
LLSI 66.6667 LLSI 24.7148 LLSI 37.7778

EC 66.6667 EC 23.5741 EC 48.8889

AUT MC 45.6522 HOC MC 19.3906 SOY MC 2.4390
CMC 41.3043 CMC 10.2493 CMC 2.4390
KNNI 41.3043 KNNI 20.2216 KNNI 2.4390

WKNNI 41.3043 WKNNI 19.1136 WKNNI 2.4390
KMI 41.3043 KMI 21.8837 KMI 2.4390

FKMI 45.6522 FKMI 20.4986 FKMI 2.4390
SVMI 43.4783 SVMI 20.2216 SVMI 2.4390

EM 58.6957 EM 21.0526 EM 2.4390
SVDI 52.1739 SVDI 21.0526 SVDI 7.3171

BPCA 43.4783 BPCA 19.3906 BPCA 7.3171
LLSI 45.6522 LLSI 20.4986 LLSI 2.4390

EC 30.4348 EC 20.7756 EC 2.4390

PRT MC 71.0145 AUD MC 38.7387 MAM MC 21.3740
CMC 60.8696 CMC 32.8829 CMC 13.7405
KNNI 69.5652 KNNI 38.7387 KNNI 25.9542

WKNNI 69.5652 WKNNI 38.7387 WKNNI 25.9542
KMI 71.0145 KMI 38.7387 KMI 24.4275

FKMI 71.0145 FKMI 38.7387 FKMI 20.6107
SVMI 68.1159 SVMI 37.8378 SVMI 16.7939

EM 88.4058 EM 53.6036 EM 20.6107
SVDI 91.7874 SVDI 46.3964 SVDI 27.4809

BPCA 71.4976 BPCA 40.5405 BPCA 25.1908
LLSI 69.5652 LLSI 36.9369 LLSI 26.7176

EC 66.1836 EC 37.8378 EC 18.3206

DER MC 0.0000 LUN MC 80.0000 OZO MC 4.8035
CMC 0.0000 CMC 80.0000 CMC 3.6390
KNNI 0.0000 KNNI 80.0000 KNNI 4.3668

WKNNI 0.0000 WKNNI 80.0000 WKNNI 4.5124
KMI 0.0000 KMI 80.0000 KMI 4.9491

FKMI 0.0000 FKMI 80.0000 FKMI 4.0757
SVMI 0.0000 SVMI 80.0000 SVMI 3.7846

EM 0.0000 EM 20.0000 EM 4.8035
SVDI 0.0000 SVDI 40.0000 SVDI 4.8035

BPCA 0.0000 BPCA 80.0000 BPCA 4.3668
LLSI 0.0000 LLSI 80.0000 LLSI 4.2213

EC 0.0000 EC 80.0000 EC 4.8035

and H(C|X) is the conditional entropy

H(Y |xi) = −
∑
z∈xi

∑
y∈Y

p(z, y)log2p(y|z).

Considering that each sample has the same proba-

bility, applying the Bayesian rule and approximat-

ing p(y|z) by the Parzen window we get:

Ĥ(Y |xi) = −
n∑

j=1

1

n

N∑
y=1

p̂(y|zj)log2p̂(y|zj)

where n is the number of instances in the data set,

N is the total number of class labels and p̂(c|x) is

15

Table 10 Average mutual information ratio

Data-set Imp. Avg. MI Data-set Imp. Avg. MI Data-set Imp. Avg. MI
Method ratio Method ratio Method ratio

CLE MC 0.998195 HOV MC 0.961834 HEP MC 0.963765
CMC 0.998585 CMC 1.105778 CMC 0.990694
KNNI 0.998755 KNNI 0.965069 KNNI 0.978564

WKNNI 0.998795 WKNNI 0.965069 WKNNI 0.978343
KMI 0.998798 KMI 0.961525 KMI 0.980094

FKMI 0.998889 FKMI 0.961834 FKMI 0.963476
SVMI 0.998365 SVMI 0.908067 SVMI 1.006819

EM 0.998152 EM 0.891668 EM 0.974433
SVDI 0.997152 SVDI 0.850361 SVDI 0.967673

BPCA 0.998701 BPCA 1.091675 BPCA 0.994420
LLSI 0.998882 LLSI 1.122904 LLSI 0.995464

EC 1.000148 EC 1.007843 EC 1.024019

WIS MC 0.999004 WAT MC 0.959488 MUS MC 1.018382
CMC 0.999861 CMC 0.967967 CMC 1.018382
KNNI 0.999205 KNNI 0.961601 KNNI 0.981261

WKNNI 0.999205 WKNNI 0.961574 WKNNI 0.981261
KMI 0.999322 KMI 0.961361 KMI 1.018382

FKMI 0.998923 FKMI 0.961590 FKMI 1.018382
SVMI 0.999412 SVMI 0.967356 SVMI 0.981261

EM 0.990030 EM 0.933846 EM 1.142177
SVDI 0.987066 SVDI 0.933040 SVDI 1.137152

BPCA 0.998951 BPCA 0.964255 BPCA 0.987472
LLSI 0.999580 LLSI 0.964063 LLSI 0.977275

EC 1.000030 EC 1.027369 EC 1.017366

CRX MC 1.000883 SPO MC 0.997675 POS MC 1.012293
CMC 1.000966 CMC 1.022247 CMC 1.012293
KNNI 0.998823 KNNI 0.999041 KNNI 1.012293

WKNNI 0.998870 WKNNI 0.999041 WKNNI 1.012293
KMI 1.001760 KMI 0.998464 KMI 1.012293

FKMI 1.000637 FKMI 0.997675 FKMI 1.012293
SVMI 0.981878 SVMI 1.015835 SVMI 1.012293

EM 0.985609 EM 0.982325 EM 1.012293
SVDI 0.976398 SVDI 0.979187 SVDI 1.014698

BPCA 0.999934 BPCA 1.006236 BPCA 1.012293
LLSI 1.001594 LLSI 1.004821 LLSI 1.018007

EC 1.008718 EC 1.018620 EC 0.997034

BRE MC 0.998709 BAN MC 1.012922 ECH MC 0.981673
CMC 0.998709 CMC 1.070857 CMC 0.995886
KNNI 0.992184 KNNI 0.940369 KNNI 0.997912

WKNNI 0.992184 WKNNI 0.940469 WKNNI 0.998134
KMI 0.998709 KMI 1.016101 KMI 0.967169

FKMI 0.998709 FKMI 1.020989 FKMI 0.983606
SVMI 0.998709 SVMI 1.542536 SVMI 0.987678

EM 1.013758 EM 1.350315 EM 0.967861
SVDI 0.999089 SVDI 1.365572 SVDI 0.935855

BPCA 1.000201 BPCA 1.010596 BPCA 0.972327
LLSI 1.000201 LLSI 1.015033 LLSI 0.988591

EC 1.001143 EC 1.102328 EC 0.970029

AUT MC 0.985610 HOC MC 0.848649 SOY MC 1.056652
CMC 0.991113 CMC 2.039992 CMC 1.123636
KNNI 0.986239 KNNI 0.834734 KNNI 1.115818

WKNNI 0.985953 WKNNI 0.833982 WKNNI 1.115818
KMI 0.985602 KMI 0.821936 KMI 1.056652

FKMI 0.984694 FKMI 0.849141 FKMI 1.056652
SVMI 0.991850 SVMI 0.843456 SVMI 1.772589

EM 0.970557 EM 0.775773 EM 1.099286
SVDI 0.968938 SVDI 0.750930 SVDI 1.065865

BPCA 0.986631 BPCA 0.964587 BPCA 1.121603
LLSI 0.985362 LLSI 0.926068 LLSI 1.159610

EC 1.007652 EC 0.911543 EC 1.222631

PRT MC 0.949896 AUD MC 0.990711 MAM MC 0.974436
CMC 1.120006 CMC 1.032162 CMC 1.029154
KNNI 0.976351 KNNI 0.993246 KNNI 0.965926

WKNNI 0.976351 WKNNI 0.993246 WKNNI 0.965926
KMI 0.949896 KMI 1.000235 KMI 0.966885

FKMI 0.949896 FKMI 0.990711 FKMI 0.974228
SVMI 1.038152 SVMI 1.007958 SVMI 1.272993

EM 0.461600 EM 1.129168 EM 0.980865
SVDI 0.485682 SVDI 1.065091 SVDI 1.052790

BPCA 0.987598 BPCA 1.156676 BPCA 0.978209
LLSI 1.016230 LLSI 1.061197 LLSI 0.994349

EC 1.053185 EC 1.209608 EC 1.269505

DER MC 1.000581 LUN MC 0.996176 OZO MC 0.982873
CMC 1.002406 CMC 1.008333 CMC 0.989156
KNNI 0.999734 KNNI 0.996176 KNNI 0.982759

WKNNI 0.999734 WKNNI 0.996176 WKNNI 0.982721
KMI 1.000581 KMI 0.996176 KMI 0.982495

FKMI 1.000581 FKMI 0.996176 FKMI 0.982951
SVMI 1.001566 SVMI 1.006028 SVMI 0.988297

EM 1.000016 EM 1.067844 EM 0.979977
SVDI 0.999691 SVDI 1.076334 SVDI 0.979958

BPCA 0.999633 BPCA 0.996447 BPCA 0.983318
LLSI 0.999170 LLSI 1.007612 LLSI 0.983508

EC 1.000539 EC 1.002385 EC 0.944747

p̂(y|z) =

∑
i∈Ic

exp
(
− (z−zi)Σ

−1(z−zi)
2h2

)
∑N

k=1

∑
i∈Ik

exp
(
− (z−zi)Σ−1(z−zi)

2h2

) .
In this case, Ic is the set of indices of the training ex-
amples belonging to class c, and Σ is the covariance

of the random variable (z − zi).

Comparing with Wilson’s noise ratio we can observe

which imputation methods reduce the impact of the
MVs as a noise, and which methods produce noise when
imputing. In addition the MI ratio allows us to relate

the attributes to the imputation results. A value of the
MI ratio higher than 1 will indicate that the imputation
is capable of relating more of the attributes individually

to the class labels. A value lower than 1 will indicate

16

that the imputation method is adversely affecting the

relationship between the individual attributes and the
class label.

In Table 9 we have summarized the Wilson’s noise

ratio values for the 21 data sets considered in our study.
We must point out that the results of Wilson’s noise
ratio are related to a given data set. Hence, the char-

acteristics of the proper data appear to determine the
values of this measure.

In Table 10 we have summarized the average MI

ratios for the 21 data sets. In the results we can ob-
serve that the average ratios are usually close to 1; that
is, the use of imputation methods appears to harm the

relationship between the class label and the input at-
tribute little or not at all, even improving it in some
cases. However, the mutual information considers only

one attribute at a time and therefore the relationships
between the input attributes are ignored. The impu-
tation methods estimate the MVs using such relation-

ships and can afford improvements in the performance
of the FRBCSs. Hence the highest values of average
MI ratios could be related to those methods which can
obtain better estimates for the MVs, and maintaining

the relationship degree between the class labels and the
isolated input attributes. It is interesting to note that
when analyzing the MI ratio, the values do not appear

to be as highly data dependant as Wilson’s noise ratio,
as the values for all the data sets are more or less close
to each other.

If we count the methods with the lowest Wilson’s
noise ratios in each data set in Table 9, we find that the
CMC method is first, with 12 times the lowest one, and

the EC method is second with 9 times the lowest one. If
we count the methods with the highest mutual informa-
tion ratio in each data set in Table 10, the EC method

has the highest ratio for 7 data sets and is therefore the
first one. The CMC method has the highest ratio for 5
data sets and is the second one in this case. Considering

the analysis of the previous Subsection 5.2 with these
two methods:

– The EC method is the best method obtained for
PDFC, and the third best for the Rule Induction

Learning methods while is one of the worst for Chi et
al. and PDFC methods. Therefore the TSK models
seems to benefit more from those imputation meth-

ods which produce gain in the MI.
– The CMC method is the best method for the Mam-

dani models (Chi et al. and FH-GBML), and not

very bad for PDFC. Mamdani FRBCSs benefit from
the imputation method which induce less noise in
the resultant imputed data set.

Next, we rank all the imputation methods according

to the values presented in Tables 9 and 10. In order to

do so, we have calculated the average rankings of each

imputation method for all the data sets, for both Wil-
son’s noise ratio and the mutual information ratio. The
method to compute this average ranking is the same

as that presented in Subsection 5.2. In Table 11 we
have gathered together these average rankings, as well
as their relative position in parentheses.

Table 11 Average rankings for Wilson’s noise ratio and Mutual
information ratio

Avg. Rankings

Wilson’s noise ratio Mutual information

MC 6.98 (8) 8.05 (11)

CMC 3.79 (1) 3.60 (1)

KNNI 6.43 (7) 7.69 (8)

WKNNI 6.17 (5) 7.79 (9)

KMI 7.38 (10) 7.60 (6)

FKMI 6.36 (6) 7.62 (7)

SVMI 4.67 (2) 4.90 (4)

EM 8.93 (12) 7.90 (10)

SVDI 8.86 (11) 8.48 (12)

BPCA 7.17 (9) 5.79 (5)

LLSI 5.98 (4) 4.74 (3)

EC 5.31 (3) 3.86 (2)

From the average rankings shown in Table 11, we
can observe that the CMC method is the first for both

rankings. The EC method is the second for the mu-
tual information ratio, and the third one for Wilson’s
noise ratio. The SVMI method obtains the second low-

est ranking for Wilson’s noise ratio, and the fourth low-
est ranking for the MI ratio. The SVMI method is the
second best method for the Rule Induction Learning

algorithms with average rankings close to EC.
With the analysis performed we have quantified the

noise induced by the imputation methods and how the

relationship between each input attribute and the class
is maintained. We have discovered that the CMC and
EC methods show good behavior for these two mea-

sures, and they are two methods that the best results for
the FRBCSs as we have previously analyzed. In short,
these two approaches introduce less noise and main-

tain the mutual information better. They can provide
us with a first characterization of imputation methods
and a first step for providing us with tools for analyzing

the imputation method’s behavior.

7 Concluding remarks

This study is a general comparison of FRBCSs not pre-

viously considered in MV studies. We have studied the
use of imputation techniques for the analysis of three
representative FRBCSs, presenting an analysis among

imputation, do not impute and ignore cases with MVs.

17

We have used a large bunch of data sets with real MVs

to do so.

From the obtained results in Section 5.2, the par-
ticular analysis of the MVs treatment methods condi-
tioned to the FRBCS nature is necessary. Thus, we can

stress particular imputation algorithms based on the
classification groups, as in the case of the CMC method
for the Mamdami FRBCSs and the EC method for the

TSK models. Therefore, we can confirm the positive
effect of the imputation methods and the FRBCS’ be-
havior, and the presence of more suitable imputation
methods for some particular FRBCS categories than

others.

Moreover, we have analyzed the influence of the im-
putation methods in respect to two measures. These
two measures are the Wilson’s noise ratio and the aver-

age mutual information difference. The first one quan-
tifies the noise induced by the imputation method in
the instances which contain MVs. The second one ex-

amines the increment or decrement in the relationship
of the isolated input attributes with respect to the class
label. We have observed that the CMC and EC meth-

ods are the ones which introduce less noise and main-
tain the mutual information better, which correspond
to the best imputation methods observed for each FR-

BCS types.

Acknowledgements

This work was supported by the Spanish Ministry of
Science and Technology under Project TIN2008-06681-
C06-01. J. Luengo and J.A. Sáez hold a FPU scholar-

ship from Spanish Ministry of Education and Science.

References

Acuna E, Rodriguez C (2004) The treatment of missing values
and its effect in the classifier accuracy. In: Banks D, House L,
McMorris F, Arabie P, Gaul W (eds) Classification, Cluster-

ing and Data Mining Applications, Springer-Verlag Berlin-
Heidelberg, pp 639–648

Alcalá-Fdez J, Sánchez L, Garćıa S, Jesus MJD, Ventura S,

Garrell JM, Otero J, Bacardit J, Rivas VM, Fernández JC,
Herrera F (2009) Keel: A software tool to assess evolution-
ary algorithms for data mining problems. Soft Computing
13(3):307–318

Barnard J, Meng X (1999) Applications of multiple imputation in
medical studies: From AIDS to NHANES. Statistical Meth-
ods in Medical Research 8(1):17–36

Batista G, Monard M (2003) An analysis of four missing data

treatment methods for supervised learning. Applied Artificial
Intelligence 17(5):519–533

Berthold MR, Huber KP (1998) Missing values and learning of
fuzzy rules. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems 6:171–178

Chen Y, Wang JZ (2003) Support vector learning for fuzzy rule-
based classification systems. IEEE Transactions on Fuzzy

Systems 11(6):716–728
Chi Z, Yan H, Pham T (1996) Fuzzy algorithms with applications

to image processing and pattern recognition. World Scientific

Cover TM, Thomas JA (1991) Elements of Information Theory,
2nd edn. John Wiley

Cristianini N, Shawe-Taylor J (2000) An introduction to support
vector machines and other kernel-based learning methods.

Cambridge University Press, New York, NY, USA
Demšar J (2006) Statistical comparisons of classifiers over multi-

ple data sets. Journal of Machine Learning Research 7:1–30
Dubois D, Prade H (1978) Operations on fuzzy numbers. Inter-

national Journal of Systems Sciences 9:613–626
Farhangfar A, Kurgan LA, Pedrycz W (2007) A novel framework

for imputation of missing values in databases. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A 37(5):692–

709
Farhangfar A, Kurgan L, Dy J (2008) Impact of imputation of

missing values on classification error for discrete data. Pat-

tern Recognition 41(12):3692–3705
Feng H, Guoshun C, Cheng Y, Yang B, Chen Y (2005) A SVM

regression based approach to filling in missing values. In:
Khosla R, Howlett RJ, Jain LC (eds) 9th International Con-

ference on Knowledge-Based & Intelligent Information & En-
gineering Systems (KES 2005), Springer, Lecture Notes in
Computer Science, vol 3683, pp 581–587

Gabriel TR, Berthold MR (2005) Missing values in fuzzy rule

induction. In: Anderson G, Tunstel E (eds) 2005 IEEE Con-
ference on Systems, Man and Cybernetics, IEEE Press

Garćıa S, Herrera F (2008) An extension on “Statistical Compar-
isons of Classifiers over Multiple Data Sets” for all pairwise

comparisons. Journal of Machine Learning Research 9:2677–
2694

Garćıa-Laencina P, Sancho-Gómez J, Figueiras-Vidal A (2009)
Pattern classification with missing data: a review. Neural

Computation & Applications 9(1):1–12
Gheyas IA, Smith LS (2010) A neural network-based framework

for the reconstruction of incomplete data sets. Neurocomput-

ing 73(16-18):3039–3065
Grzymala-Busse J, Goodwin L, Grzymala-Busse W, Zheng X

(2005) Handling missing attribute values in preterm birth
data sets. In: 10th International Conference of Rough Sets

and Fuzzy Sets and Data Mining and Granular Comput-
ing(RSFDGrC’05), pp 342–351

Grzymala-Busse JW, Hu M (2000) A comparison of several ap-
proaches to missing attribute values in data mining. In:

Ziarko W, Yao YY (eds) Rough Sets and Current Trends
in Computing, Springer, Lecture Notes in Computer Science,
vol 2005, pp 378–385

Ishibuchi H, Nakashima T, Nii M (2004) Classification and Mod-

eling with Linguistic Information Granules: Advanced Ap-
proaches to Linguistic Data Mining. Springer-Verlag New
York, Inc.

Ishibuchi H, Yamamoto T, Nakashima T (2005) Hybridization

of fuzzy GBML approaches for pattern classification prob-
lems. IEEE Transactions on System, Man and Cybernetics B
35(2):359–365

Jr ERH, Hruschka ER, Ebecken NFF (2007) Bayesian networks
for imputation in classification problems. Journal of Intelli-
gent Information Systems 29(3):231–252

Kim H, Golub GH, Park H (2005) Missing value estimation for

DNA microarray gene expression data: local least squares
imputation. Bioinformatics 21(2):187–198

Kuncheva L (2000) Fuzzy Classifier Design. Springer, Berlin

18

Kwak N, Choi CH (2002a) Input feature selection by mutual
information based on parzen window. IEEE Transactions on

Pattern Analysis and Machine Intelligence 24(12):1667–1671
Kwak N, Choi CH (2002b) Input feature selection for classi-

fication problems. IEEE Transactions on Neural Networks

13(1):143–159
Li D, Deogun J, Spaulding W, Shuart B (2004) Towards miss-

ing data imputation: A study of fuzzy k-means clustering
method. In: 4th International Conference of Rough Sets and

Current Trends in Computing(RSCTC0́4), pp 573–579
Little RJA, Rubin DB (1987) Statistical Analysis with Missing

Data, 1st edn. Wiley Series in Probability and Statistics, Wi-
ley, New York

Luengo J, Garćıa S, Herrera F (2010) A study on the use of
imputation methods for experimentation with radial basis
function network classifiers handling missing attribute val-
ues: The good synergy between RBFNs and EventCovering

method. Neural Networks 23:406–418
Matsubara ET, Prati RC, Batista GEAPA, Monard MC (2008)

Missing value imputation using a semi-supervised rank aggre-

gation approach. In: Zaverucha G, da Costa ACPL (eds) 19th
Brazilian Symposium on Artificial Intelligence (SBIA 2008),
Springer, Lecture Notes in Computer Science, vol 5249, pp
217–226

Oba S, aki Sato M, Takemasa I, Monden M, ichi Matsubara K,
Ishii S (2003) A bayesian missing value estimation method
for gene expression profile data. Bioinformatics 19(16):2088–
2096

Peng H, Long F, Ding C (2005) Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(8):1226–1238

Platt JC (1999) Fast training of support vector machines us-
ing sequential minimal optimization. In: Advances in kernel
methods: support vector learning, MIT Press, Cambridge,
MA, USA, pp 185–208

Pyle D (1999) Data Preparation for Data Mining. Morgan Kauf-
mann

Schafer JL (1997) Analysis of Incomplete Multivariate Data.

Chapman & Hall, London
Schneider T (2001) Analysis of incomplete climate data: Estima-

tion of mean values and covariance matrices and imputation
of missing values. Journal of Climate 14:853–871

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tib-
shirani R, Botstein D, Altman RB (2001) Missing value
estimation methods for dna microarrays. Bioinformatics
17(6):520–525

Vapnik VN (1998) Statistical Learning Theory. Wiley-
Interscience

Wang H, Wang S (2010) Mining incomplete survey data
through classification. Knowledge and Information Systems

24(2):221–233
Wang LX, Mendel JM (1992) Generating fuzzy rules by learning

from examples. IEEE Transactions on Systems, Man, and
Cybernetics 25(2):353–361

Wilson D (1972) Asymptotic properties of nearest neighbor rules
using edited data. IEEE Transactions on Systems and Man
and Cybernetics 2(3):408–421

Wong AKC, Chiu DKY (1987) Synthesizing statistical knowl-
edge from incomplete mixed-mode data. IEEE Transactions
on Pattern Analysis and Machine Intelligence 9(6):796–805

2. Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-hoc and an Automatic
Approach 97

2. Domains of Competence of Fuzzy Rule Based Classification

Systems: An Ad-hoc and an Automatic Approach

The journal papers associated to this part are:

2.1. Domains of Competence of Fuzzy Rule Based Classification Systems with

Data Complexity measures: A case of study using a Fuzzy Hybrid Genetic

Based Machine Learning Method

J. Luengo, F. Herrera, Domains of Competence of Fuzzy Rule Based Classification Systems
with Data Complexity measures: A case of study using a Fuzzy Hybrid Genetic Based Machine
Learning Method. Fuzzy Sets and Systems, 161 (1) (2010) 3-19 doi:10.1016/j.fss.2009.04.001.

• Status: Published.

• Impact Factor (JCR 2009): 2.138.

• Subject Category: Computer Science, Theory & Methods. Ranking 14 / 92.

• Subject Category: Mathematics, Applied. Ranking 8 / 204.

• Subject Category: Statistics & Probability. Ranking 13 / 100.

Fuzzy Sets and Systems 161 (2010) 3–19
www.elsevier.com/locate/fss

Domains of competence of fuzzy rule based classification systems
with data complexity measures: A case of study using a fuzzy

hybrid genetic based machine learning method�

Julián Luengo∗, Francisco Herrera
Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain

Available online 15 April 2009

Abstract

The analysis of data complexity is a proper framework to characterize the tackled classification problem and to identify domains
of competence of classifiers. As a practical outcome of this framework, the proposed data complexity measures may facilitate the
choice of a classifier for a given problem. The aim of this paper is to study the behaviour of a fuzzy rule based classification system
and its relationship to data complexity. We use as a case of study the fuzzy hybrid genetic based machine learning method presented
in [H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy GBML approaches for pattern classification problems, IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 35 (2) (2005) 359–365]. We examine several metrics of data
complexity over a wide range of data sets built from real data and try to extract behaviour patterns from the results. We obtain rules
which describe both good or bad behaviours of the fuzzy rule based classification system. These rules use values of data complexity
metrics in their antecedents, so we try to predict the behaviour of the method from the data set complexity metrics prior to its
application. Therefore, we can establish the domains of competence of this fuzzy rule based classification system.
© 2009 Elsevier B.V. All rights reserved.

Keywords: Classification; Data complexity; Fuzzy rule based systems; Genetic fuzzy systems

1. Introduction

Fuzzy rule based classification systems (FRBCSs) [17,19] are a very useful tool in the ambit of machine learning
since they are capable of building a linguistic model clearly interpretable by human beings. There is a vast literature in
the field of FRBCSs [19], which is very active at this time.
The prediction capabilities of classifiers are strongly dependent on the problem’s characteristics. An emergent field

has recently arisen, that uses a set of complexity measures applied to the problem to describe its difficulty. These
measures quantify particular aspects of the problem which are considered complicated to the classification task [15].
Studies of data complexity metrics applied to particular classification algorithms can be found in [15,3,2,22].

� Supported by the Spanish Ministry of Science and Technology under Project TIN2008-06681-C06-01. J. Luengo holds an FPU scholarship from
Spanish Ministry of Education and Science.

∗Corresponding author. Tel.: +34958240598.
E-mail addresses: julianlm@decsai.ugr.es (J. Luengo), herrera@decsai.ugr.es (F. Herrera).

0165-0114/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2009.04.001

http://www.elsevier.com/locate/fss
mailto:julianlm@decsai.ugr.es
mailto:herrera@decsai.ugr.es

4 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

The complexity in the data can be used for characterizing FRBCS performance and it can be considered a new trend
in the use of FRBCSs in pattern recognition. We understand that no data complexity metrics have been analysed with
FRBCSs up to now.
In this work we are interested in analysing the relationship between FRBCSs and the complexity measures, consider-

ing a case of study using the fuzzy hybrid genetic based machine learning (FH-GBML) method proposed by Ishibuchi
and Yamamoto [18]. In particular we consider three types of data complexity measures based on the overlaps in feature
values from different classes; separability of classes; and measures of geometry, topology, and density of manifolds.
To perform this study, we have created 438 binary classification data sets from real world problems, and computed

the value of eight metrics proposed by Ho and Basu [14]. We have analysed the intervals of the complexity measure
values related to the created data sets, in which FH-GBML method performs well or badly, and then formulated a rule
for such intervals. The rules try to describe the ranges where some information and conclusions about the behaviour
of the FH-GBML method can be stated.
The paper is organized as follows. In Section 2 we describe the FRBCS we have used. In Section 3 the considered

complexity measures are introduced as well as the most recent literature on the topic. In Section 4 we show the process
used to build up the bunch of data sets used and the validation scheme. In Section 5 we include the experimental set-up
and the results obtained and rules extracted, along with their analysis. Finally, in Section 6 some concluding remarks
are pointed out.

2. Preliminaries: fuzzy rule based classification systems

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn), p = 1, 2, . . . ,m from M classes
where xpi is the ith attribute value (i = 1, 2, . . . , n) of the p-th training pattern.
In this work we use fuzzy rules of the following form:

Rule R j : If x1 is A j1 and . . . and xn is A jn then Class = C j with RWj , (1)

where R j is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector, A ji is an antecedent fuzzy
set, C j is a class label, and RWj is the rule weight. We use triangular membership functions as antecedent fuzzy sets.
As learning method we use FH-GBML [18], which belongs to the genetic fuzzy system (GFS) [8]. In the following

three subsections we include the fuzzy reasoning model, a complete description of the algorithm, and a short review
on the GFSs topic.

2.1. Fuzzy reasoning model

Considering a new pattern xp = (xp1, . . . , xpn) and a rule base (RB) composed of L fuzzy rules, the steps followed
by the reasoning model are the following [7]:

1. Matching degree. To calculate the strength of activation of the if-part for all rules in the RB with the pattern xp,
using a conjunction operator (usually a T-norm):

�A j
(xp) = T (�A j1

(xp1), . . . , �A jn
(xpn)), j = 1, . . . , L . (2)

In this work we will use the product T-norm.
2. Association degree. To compute the association degree of the pattern xp with the M classes according to each rule

in the RB. When using rules with the form of (1), this association degree only refers to the consequent class of the
rule (i.e., k = C j):

bkj = h(�A j
(xp), RWk

j), k = 1, . . . , M, j = 1, . . . , L . (3)

We model function h as the product T-norm in every case.
3. Pattern classification soundness degree for all classes. We use an aggregation function that combines the positive

degrees of association calculated in the previous step:

Yk = f (bkj , j = 1, . . . , L and bkj > 0), k = 1, . . . , M. (4)

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 5

1.0

0.0
0.0 1.0

1.0

0.0
0.0 1.0

1.0

0.0
0.0 1.0

1.0

0.0
0.0 1.0

Fig. 1. Four fuzzy partitions for each attribute membership function.

As fuzzy reasoning method we use the winner rule method (classical approach) for classifying new patterns with
the rule set. Every new pattern is classified as the consequent class of a single winner rule which is determined as

Yk = max{bkj , j = 1, . . . , L and k = C j }. (5)

4. Classification. We apply a decision function F over the soundness degree of the system for the pattern classification
for all classes. This function will determine the class label l corresponding to the maximum value:

F(Y1, . . . , YM) = l such that Yl = {max(Yk), k = 1, . . . , M}. (6)

2.2. Learning approach: fuzzy hybrid genetic based machine learning method

The basis of this algorithm described here, FH-GBML, consists of a hybrid Pittsburgh andMichigan genetic learning
approach [18]:

• The Pittsburgh approach in which each rule set is handled as an individual.
• TheMichigan approach (where an individual represents an unique rule), which is used as a kind of heuristic mutation
for partially modifying each rule set, because of its high search ability to efficiently find good fuzzy rules.

This method simultaneously uses four fuzzy set partitions for each attribute, as shown in Fig. 1. As a result, each
antecedent attribute is initially associated with 14 fuzzy sets generated by these four partitions as well as a special “do
not care” set (i.e., 15 in total).
The main steps of this algorithm are described below:
Step 1: Generate Npop rule sets with Nrule fuzzy rules.
Step 2: Calculate the fitness value of each rule set in the current population.
Step 3: Generate (Npop − 1) rule sets by the selection, crossover and mutation in the same manner as the Pittsburgh-

style algorithm. Apply a single iteration of the Michigan-style algorithm (i.e., the rule generation and the replacement)
to each of the generated rule sets with a pre-specified probability.
Step 4: Add the best rule set in the current population to the newly generated (Npop − 1) rule sets to form the next

population.
Step 5: Return to Step 2 if the pre-specified stopping condition is not satisfied.
Next, we will describe every step of the algorithm:

• Initialization: Nrule training patterns are randomly selected. Then, a fuzzy rule from each of the selected training
patterns is generated by choosing probabilistically (as shown in (7)) an antecedent fuzzy set from the 14 candidates
Bk(k = 1, 2, . . . , 14) (see Fig. 1) for each attribute. Then each antecedent fuzzy set of the generated fuzzy rule is
replaced by the don’t care condition using a pre-specified probability Pdon’t care:

P(Bk) = �Bk (xpi)∑14
j=1 �Bj

(xpi)
. (7)

6 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

• Fitness computation: The fitness value of each rule set Si in the current population is calculated as the number of
correctly classified training patterns by Si . For the Michigan approach the computation follows the same scheme.

• Selection: It is based on binary tournament.
• Crossover: The substring-wise and bit-wise uniform crossover is applied in the Pittsburgh part. In the case of the
Michigan part only the bit-wise uniform crossover is considered.

• Mutation: Each fuzzy partition of the individuals is randomly replaced by a different fuzzy partition using a pre-
specified mutation probability for both approaches.

In our study, we have used the following parameters’ values for the Ishibuchi and Yamamoto’s FH-GBML method:

• Number of fuzzy rules: 5 × p rules (where p is the number of examples in the data set).
• Number of rule sets (Npop): 200 rule sets.
• Crossover probability: 0.9.
• Mutation probability: 1/p (where p is the number of examples in the data set).
• Number of replaced rules: All rules except the best-one (Pittsburgh-part, elitist approach), number of rules/5
(Michigan-part).

• Total number of generations: 1000 generations.
• Don’t care probability: 0.5.
• Probability of the application of the Michigan iteration: 0.5.

For more details about this proposal, please refer to [18].

2.3. Genetic fuzzy systems

A GFS is basically a fuzzy system augmented by a learning process based on evolutionary computation, which
includes genetic algorithms, genetic programming, and evolutionary strategies, among other evolutionary algorithms
(EAs) [11].

The automatic definition of a fuzzy rule based system (FRBS) can be seen as an optimization or search problem. EAs
are a well known and widely used global search technique with the ability to explore a large search space for suitable
solutions only requiring a performance measure. In addition to their ability to find near optimal solutions in complex
search spaces, the generic code structure and independent performance features of EAs make them suitable candidates
to incorporate a priori knowledge. In the case of FRBSs, this a priori knowledge may be in the form of linguistic
variables, fuzzy membership function parameters, fuzzy rules, number of rules, etc. These capabilities extended the
use of EAs in the development of a wide range of approaches for designing FRBSs over the last few years, as has been
pointed out in the last international journal special issues on GFSs [4,5,9,6].
Finally, an extensive review of the most recent developments of GFS and FRBS can be found in [12]. The web site

http://sci2s.ugr.es/gfs/ provides complete information and material on the topic.

3. Data complexity measures

In the following subsections, we first present a short review on recent studies on data complexity metrics (Section
3.1), and then we describe the measures of overlapping (Section 3.2), measures of separability of classes (Section 3.3)
and measures of geometry (Section 3.4) used in our study.

3.1. Recent studies on data complexity

As we have mentioned, data complexity measures are a series of metrics that quantify data set characteristics which
imply some difficulty to the classification task. In the following we gather several recent publications related to these
complexity measures and their applications. They can show a picture of the most recent developments in the topic:

• In [14], Ho and Basu propose some complexity measures for binary classification problems, gathering metrics of
three types: overlaps in feature values from different classes; separability of classes; and measures of geometry,
topology, and density of manifolds.

• In [23], Singh offers a review of data complexity measures and proposes two new ones.

http://sci2s.ugr.es/gfs/

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 7

Table 1
Complexity metrics used in this study.

Measure Description

F2 Volume of overlap region
F3 Maximum (individual) feature efficiency
L1 Minimized sum of error distance by linear programming
L2 Error rate of linear classifier by linear programming
N2 Ratio of average intra/inter class NN distance
N3 Error rate of 1-NN classifier
N4 Nonlinearity of 1-NN classifier
T2 Average number of points per dimension

• In [3], Bernadó-Mansilla and Ho investigate the domain of competence of XCS by means of a methodology that
characterizes the complexity of a classification problem by a set of geometrical descriptors.

• In [20], Li et al. analyse some omnivariate decision trees using the measure of complexity based in data density
proposed by Ho and Basu.

• Baumgartner and Somorjai define specific measures for regularized linear classifiers in [2], using Ho and Basu’s
measures as reference.

• Sánchez et al. analyse the effect of the data complexity in the nearest neighbours (NNs) classifier in [22].
• Dong and Kothari propose in [10] a feature selection algorithm based on a complexity measure defined by Ho and
Basu.

• Mollineda et al. in [21] extend some of Ho and Basu’s measure definitions for problems with more than two classes.
They analyse these generalized measures in two classic prototype selection algorithms and remark that Fisher’s
discriminant ratio is the most effective for prototype selection.

In our study we will study eight of the measures proposed in [14] which offer information for the FH-GBMLmethod.
They are summarized in Table 1.
In the following subsections we describe the measures we have used, classified by their family.

3.2. Measures of overlaps in feature values from different classes

These measures focus on the effectiveness of a single feature dimension in separating the classes, or the composite
effects of a number of dimensions. They examine the range and spread of values in the data set within each class, and
check for overlaps among different classes.
F2: Volume of overlap region. Let the maximum and minimum values of each feature fi in class C j be max(fi ,C j)

and min(fi ,C j), then the overlap measure F2 is defined as

F2 =
∏
i

MINMAXi − MAXMINi

MAXMAXi − MINMINi
,

where i = 1, . . . , d for a d-dimensional problem, and

MINMAXi =MIN(max(fi ,C1),max(fi ,C2)),

MAXMINi =MAX(min(fi ,C1),min(fi ,C2)),

MAXMAXi =MAX(max(fi ,C1),max(fi ,C2)),

MINMINi =MIN(min(fi ,C1),min(fi ,C2)).

F2 measures the amount of overlap of the bounding boxes of two classes. It is the product of per-feature overlap ratios,
each of which is the width of the overlap interval normalized by the width of the entire interval encompassing the two
classes. The volume is zero as long as there is at least one dimension in which the value ranges of the two classes are
disjoint.

8 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

F3: Maximum (individual) feature efficiency. In a procedure that progressively removes unambiguous points falling
outside the overlapping region in each chosen dimension [13], the efficiency of each feature is defined as the fraction of
all remaining points separable by that feature. To represent the contribution of the most useful feature in this sense, we
use the maximum feature efficiency (largest fraction of points distinguishable with only one feature) as a measure (F3).
This measure considers only separating hyperplanes perpendicular to the feature axes. Therefore, even for a linearly
separable problem, F3 may be less than 1 if the optimal separating hyperplane is oblique.

3.3. Measures of separability of classes

These measures give indirect characterizations of class separability. They assume that a class is made up of a single
or multiple manifolds that form the support of the probability distribution of the given class. The shape, position and
interconnectedness of these manifolds give hints on how well two classes are separated, but they do not describe
separability by design. Some examples are shown as follows:
L1: Minimized sum of error distance by linear programming (LP). Linear classifiers can be obtained by a linear

programming formulation proposed by Smith [24]. The method minimizes the sum of distances of error points to the
separating hyperplane (subtracting a constant margin):

minimize att

subject to Ztw + t�b,

t�0,

where a, b are arbitrary constant vectors (both chosen to be 1), w is the weight vector to be determined, t is an error
vector, and Z is a matrix where each column z is defined on an input vector x (augmented by adding one dimension
with a constant value 1) and its class C (with value C1 or C2) as follows:{

z = +x if C = C1,

z = −x if C = C2.

The value of the objective function in this formulation is used as a measure (L1). The measure has a zero value for
a linearly separable problem. Its value can be heavily affected by outliers located in the wrong side of the optimal
hyperplane. The measure is normalized by the number of points in the problem and also by the length of the diagonal of
the hyperrectangular region enclosing all training points in the feature space. It is zero for a linearly separable problem.
We should notice that this measure can be heavily affected by the presence of outliers in the data set.
L2: Error rate of linear classifier by linear programming. This measure is the error rate of the linear classifier defined

for L1, measured with the training set. With a small training set this can be a severe underestimate of the true error
rate.
N2: Ratio of average intra/inter class nearest neighbour distance. For each input instance xp, we calculate the

distance to its nearest neighbour within the class (intraDist(xp)) and the distance to nearest neighbour of any other
class (inter Dist(xp)). Then, the result is the ratio of the sum of the intra-class distances to the sum of the inter-class
distances for each input example, i.e.,

N2 =
∑m

i=0 intraDist(xi)∑m
i=0 interDist(xi)

,

where m is the number of examples in the data set. This metric compares the within-class spread with the distances
to the nearest neighbours of other classes. Low values of this metric suggest that the examples of the same class lay
closely in the feature space. Large values indicate that the examples of the same class are disperse. It is sensitive to the
classes of the closest neighbours to a point, and also to the difference in magnitude of the between-class distances and
that of the within-class distances.
N3: Error rate of 1-NN classifier. This is simply the error rate of a nearest neighbour classifier measured with the

training set. The error rate is estimated by the leave-one-out method. The measure denotes how close the examples of
different classes are. Low values of this metric indicate that there is a large gap in the class boundary.

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 9

3.4. Measures of geometry, topology, and density of manifolds

These measures evaluate to what extent two classes are separable by examining the existence and shape of the class
boundary. The contributions of individual feature dimensions are combined and summarized in a single score, usually
a distance metric, rather than evaluated separately. Two measures from this family are described as follows:
N4: Nonlinearity of 1-NN classifier. This is the nonlinearity measure, as defined by linear programming. Hoekstra

and Duin [16] proposed a measure for the nonlinearity of a classifier with respect to a given data set. Given a training
set, the method first creates a test set by linear interpolation (with random coefficients) between randomly drawn pairs
of points from the same class. Then the error rate of the classifier (trained by the given training set) on this test set is
measured. Here we use such a nonlinearity measure for the linear classifier defined for L1. In the case of N4, error is
calculated for a nearest neighbour classifier. This measure is for the alignment of the nearest neighbour boundary with
the shape of the gap or overlap between the convex hulls of the classes.
T2: Average number of points per dimension. This is a simple ratio of the number of points in the data set over the

number of feature dimensions, i.e.,

T 2 = m

n
,

where m is the number of examples in the data set and n is the number of attributes of the data set. This measure is
included mostly for connection with prior studies on sample sizes. Because the volume of a region scales exponentially
with the number of dimensions, a linear ratio between the two is not a good measure of sampling density.

4. Data sets choice for the experimental study

We evaluate FH-GBML on a set of 438 binary classification problems. These problems are generated from pairwise
combinations of the classes of 21 problems from the University of California, Irvine (UCI) repository [1]. The selected
ones are iris, wine, new-thyroid, solar-flare, led7digit, zoo, yeast, tae, balanced, car, contraceptive, ecoli, hayes-roth,
shuttle, australian, pima, monks, bupa, glass, haberman, and vehicle.
In order to do that, first we take each data set and extract the examples belonging to each class. Then we construct

a new data set with the combination of the examples from two different classes. This will result in a new data set with
only two classes and the examples which have two such classes as output. For example, one data set obtained from iris
with this procedure could contain only the examples of Iris-setosa and Iris-virginica and not those from Iris-versicolor.
We perform this process for every possible pairwise combination of classes. However, if a data set obtained with

this procedure proves to be linearly separable, we discard it. If the data set proves to be linearly separable, then we
could classify it with a linear classifier with no error, so such a data set would not be a representative problem. The
complexity measure L1 indicates if a problem is linearly separable when its value is zero, so every data set with a L1
value of zero will be discarded.
This method for generating binary data sets is limited by the combinatorics itself, and we can only obtain over 200

new data sets with the original 20 data sets with this first approach. In order to obtain additional data sets, we take the
next step to combine the classes from a data set: we group the classes two by two, that is, we create a new binary data
set, and each of its two classes are the combination of two original classes each. For this second approach we have used
ecoli, glass, and flare data sets, since they have a high number of class labels. For example, using ecoli we can create a
new binary data set combining cp and im classes into a new one (say class “A”), and pp and imU (say new class “B”).
The new data set would contain only the examples of classes cp, im, pp, and imU, but their class label now would be
“A” if their original class was cp or im, and “B” if it was pp or imU. Again, those data sets with an L1 value of 0 are
discarded.
Finally, these pairwise combinations resulted in 438 binary classification problems which are used as our test-bed.

Although simple, these two methods for creating binary data sets produce a wide range of values for the complexity
measures, even from the same original data set.
To estimate the classifiers’ error, we use a 10-fold cross validation test once all the measures are computed. We take

the mean accuracy of training and test of the 10 partitions as a representative measure of the method’s performance.
Fig. 2 contains the results of FH-GBML showing the training and test accuracy over all the 438 data sets, plotted in

ascending training accuracy value. We would like to point out how over-fitting is continuously present in Fig. 2.

10 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

100

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350 400 450

FH-GBML %Accuracy Training FH-GBML %Accuracy Test

Fig. 2. Accuracy in training/test for FH-GBML sorted by training accuracy.

5. Experimental study: analysis of the FH-GBMLmethod with data complexity measures

This study begins with the obtained results of the FH-GBML for the data sets considered. For each complexity
measure, the data sets are sorted by its value, and put altogether in a figure. From these figures we obtain useful
intervals which represent a good or bad behaviour of the classification method for the mentioned eight complexity
measures. From these intervals we construct several rules that model the performance of the used FRBCS.
In order to do this analysis, we divide this section into the following two studies:

1. Determination of rules based on FH-GBML method’s behaviour in Section 5.1.
2. Analysis of the collective evaluation of the set of rules in Section 5.2.

5.1. Determination of rules based on FH-GBML method’s behaviour

First, we must point out what we understand for good and bad behaviour of FH-GBML:

• We understand for good behaviour an average high test accuracy in the interval as well as the absence of over-fitting.
• By bad behaviour we refer to the presence of over-fitting and/or average low test accuracy in the interval.

In the following we present the results of the execution over the 438 data sets summarized in Figs. 3–10. In each
figure the results obtained by the FH-GBMLmethod are sorted by the ascending value of the corresponding complexity
measure. In the X axis we represent the data sets, not the complexity measure value, and the Y axis depicts the accuracy
obtained both in training and test. The reason to do so is to give each data set the same space in the graphic representation.
For those measures where we can find different ad hoc intervals which present good or bad behaviour of the FH-GBML,
we use a vertical line to delimit the interval of the region of interest.
In Table 2 we have summarized the intervals found ad hoc from Figs. 3–10.
Once we have defined the ad hoc intervals, in Table 3 we have summarized the rules derived from them. Given a

particular data set X, we get the complexity measure (CM) of X with the notation CM[X]. Table 3 is organized with
the following columns:

• The first column corresponds to the identifier of the rule for further references.
• The “Rule” column presents the rule itself.
• The third column “Support” presents the percentage of data sets which verify the antecedent part of the rule.

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 11

100
90
80
70
60
50
40
30
20
10
0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
good

behaviour

FH-GBML %Accuracy Training FH-GBML %Accuracy Test

Data set

Fig. 3. Accuracy in training/test sorted by F2.

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
bad

behaviour

FH-GBML %Accuracy Training

FH-GBML %Accuracy Test

Data set

Fig. 4. Accuracy in training/test sorted by F3.

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
good behaviour

FH-GBML %Accuracy Training

FH-GBML %Accuracy Test

Data set

Fig. 5. Accuracy in training/test sorted by N2.

12 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
bad

behaviour
bad behaviour

FH-GBML %Accuracy Training

FH-GBML %Accuracy Test

Data set

Fig. 6. Accuracy in training/test sorted by N3.

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
bad

behaviour
bad behaviour

FH-GBML %Accuracy Training

FH-GBML %Accuracy Test

Data set

Fig. 7. Accuracy in training/test sorted by N4.

100
90
80
70
60
50
40
30
20
10
0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
good behaviour

FH-GBML
%Accuracy
Training

FH-GBML
%Accuracy
Test

Data set

Fig. 8. Accuracy in training/test sorted by L1.

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 13

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
good behaviour bad behaviour

FH-GBML %Accuracy
Training
FH-GBML %Accuracy
Test

Data set

Fig. 9. Accuracy in training/test sorted by L2.

100
90
80
70
60
50
40
30
20
10

0

%
 A

cc
ur

ac
y

0 50 100 150 200 250 300 350 400 450
bad

behaviour

FH-GBML %Accuracy Training

FH-GBML %Accuracy Test

Data set

Fig. 10. Accuracy in training/test sorted by T2.

Table 2
Significant intervals.

Interval FH-GBML behaviour

N2 < 0.23 good behaviour
L1 < 0.2231 good behaviour
F2 = 1 good behaviour
L2 < 0.125 good behaviour

N3 = 0 bad behaviour
N3 > 0.1631 bad behaviour
N4 = 0 bad behaviour
N4 > 0.1743 bad behaviour
1 < F3 < 1.83 bad behaviour
L2 > 0.2834 bad behaviour
T 2 < 12.29 bad behaviour

• The column “% training, Std. Dev.” shows the average accuracy in training of all the examples which are covered
by the rule. The standard deviation of the average training accuracy is computed as well.

• The column “Training diff.” contains the difference between the training accuracy of the rule and the training accuracy
across all 438 data sets.

14 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

Table 3
One metric rules with obtained from the intervals.

Id. Rule Support (%) % training, Std. Dev. Training diff. (%) % test, Std. Dev. Test diff. (%)

R1+ If N2[X] < 0.23 25.342 99.283, 1.340 5.713 96.854, 3.371 8.612
then good behaviour

R2+ If L1[X] < 0.2231 22.603 98.764, 1.868 5.195 95.754, 3.868 7.512
then good behaviour

R3+ If F2[X] = 1 11.187 96.060, 4.050 2.490 91.829, 5.475 3.588
then good behaviour

R4+ If L2[X] < 0.125 35.616 98.388, 2.271 4.818 95.094, 4.176 6.852
then good behaviour

R1− If 1 < F3[X] < 1.83 16.210 88.480, 31.537 −5.090 84.305, 30.937 −3.937
then bad behaviour

R2− If N3[X] = 0 8.676 89.325, 30.643 −4.244 85.460, 30.272 −2.782
then bad behaviour

R3− If N3[X] > 0.1631 21.005 83.531, 16.633 −10.038 74.521, 15.463 −13.721
then bad behaviour

R4− If N4[X] = 0 12.557 87.083, 33.262 −6.487 82.941, 32.390 −5.301
then bad behaviour

R5− If N4[X] > 0.1743 24.201 87.250, 11.239 −6.319 80.741, 12.707 −7.501
then bad behaviour

R6− If L2[X] > 0.2834 22.146 85.917, 19.422 −7.652 76.114, 18.050 −12.128
then bad behaviour

R7− If T 2[X] < 12.29 17.580 87.7356, 30.143 −5.834 79.431, 28.609 −8.811
then bad behaviour

Table 4
Average FH-GBML training and test accuracy.

FH-GBML global % accuracy training 93.56955

FH-GBML global % accuracy test 88.24174

• The column “% test, Std. Dev.” shows the average accuracy in test of all the examples which are covered by the rule.
The standard deviation of the average test accuracy is computed as well.

• The column “Test diff.” contains the difference between the test accuracy of the rule and the test accuracy across all
438 data sets.

In Table 4 we show the global training and test accuracy obtained by the FH-GBMLmethod across all 438 data sets.
As we can see in Table 3, the positive rules (denoted with a “+” symbol in their identifier) always show a positive

difference with the global average, both in training and test accuracy. The negative ones (with a “−” symbol in their
identifier) verify the opposite case. The support of the rules shows us that we can characterize a wide range of data sets
and obtain significant differences in accuracy, as we can see from rules R1+, R2+, R4+, R3− and R5−. Notice also
that the standard deviations for the positive rules are always lower than those for the negative ones. The robustness of
the method is higher in those data sets which have been covered by a positive rule. FH-GBML performs worse in the
data sets under a negative rule, due usually to method’s over-fitting.
From this set of rules we can state that:

• FH-GBML performs well in those data sets in which the examples of the same class lay closely in the feature space,
since a low N2 offers good results.

• When the problem is linear or almost linearly separable, we obtain good results, as can be drawn from low values
of L1.

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 15

Table 5
Disjunction and intersection rules from all simple rules.

Id. Rule Support % training, Training diff. % test, Std. Dev. Test diff.
(%) Std. Dev. (%)

PRD If R1+ or R2+ or R3+ 42.694 98.360, 3.241 4.791 95.170, 6.213 6.929
or R4+ good behaviour

NRD If R1− or R2− or R3− or R4− 55.479 90.325, 18.168 −3.245 83.864, 18.46784 −4.378
or R5− or R6− or R7− bad behaviour

PRD∧ NRD If PRD and NRD then good behaviour 22.602 98.319, 3.316 4.750 95.048, 5.424 6.806
PRD∧�NRD If PRD and not NRD then good behaviour 20.091 98.406, 1.837 4.837 95.308, 3.455 7.067
NRD∧�PRD If NRD and not PRD then bad behaviour 32.877 84.829, 21.801 −8.741 76.175, 20.254 −12.066

Not characterized If not PRD and not (NRD and 24.429 96.960, 2.097 3.391 92.372, 3.036 4.130
not PRD) then good behaviour

• A low error rate of the LP classifier in the classification, defined by L1 and measured by L2, results in an acceptable
good behaviour of FH-GBML. On the other hand, when the error rate of the LP classifier grows sufficiently, the
behaviour of FH-GBML becomes bad with a difference of −12.13%.

• When the volume of overlap (F2) is 1, the FH-GBML obtains acceptable good results with an improvement of 6.85%
with respect to the global average.

• When the error obtained by the 1-NN method (N3) is 0, the FH-GBML method usually does not perform well as
well as when the nonlinearity of the 1-NN method (N4) is 0. With these conditions, FH-GBML obtains a relative
bad behaviour with differences of −2.78% and −5.30%, respectively.

• The parallel behaviour of N3 and N4 measures is present when they have high values as well. In particular when the
error obtained by the 1-NN method (N3) is above 0.1631 and when the non-linearity of the 1-NN method (N4) is
above 0.1743.With these conditions, FH-GBML obtains a bad behaviour with differences of−13.72% and−7.50%,
respectively.

• An interesting fact is that a ratio between the number of examples and the number of attributes (T2) lower than 12.29
generally results in bad performance.

Although we have obtained some interesting rules, we can extend our study by considering the combination of these
complexity metrics in order to obtain more precise and descriptive rules.

5.2. Collective evaluation of the set of rules

The objective of this section is to jointly analyse the good rules, as well as the bad rules. Thus we can arrive at a more
general description, with a wider support, of the behaviour of the FH-GBMLmethod with these joint rules. We perform
the disjunctive combination of all the positive rules to obtain a single rule. The same is done with all the negative ones,
so we obtain another rule. The new disjunctive rule will be activated if any of the component rules’ antecedents are
verified.
Since the support of the joint rules will be high, we also compute the intersection of these disjunctive rules (the data

sets which activate both disjunctive rules). With the intersection of the disjunction, we try to see the global relations
and competence between positive and negative intervals.
Thus we obtain three different kinds of intersections:

• Intersection of positive disjunction and not the negative disjunction.
• Intersection of positive disjunction and the negative disjunction.
• Intersection of negative disjunction and not the positive disjunction.

In Table 5 we summarize both disjunctions and the three intersections.

16 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

100
90
80
70
60
50
40
30
20
10

0
0 50 100 150 200

FH-GBML % Accuracy Training

FH-GBML % Accuracy Test

Fig. 11. Accuracy results for data sets covered by PRD.

100
90
80
70
60
50
40
30
20
10

0
0 50 100 150 200 250

FH-GBML % Accuracy Training

FH-GBML % Accuracy Test

Fig. 12. Accuracy results for data sets covered by NRD.

From the new obtained rules, we can point out that:

• The positive rule disjunction (PRD) offers a high support (almost the half of the considered data sets), and it gives a
good test accuracy (over the 95%). In spite of its wide support, it presents a low standard deviation of 6.21. Fig. 11
shows FH-GBML’s results for data sets covered by this rule.

• The negative rule disjunction (NRD) obtains a wide support as well (over the 50%). However, it is not very accurate
in indicating the data sets with low FH-GBMLmethods’s performance as we can see from its high standard deviation
and low difference. Fig. 12 shows FH-GBML’s results for the data sets included in the support of this rule.

• The positive and negative rule disjunction (PRD∧NRD) is more specific than PRD in isolation. However, it presents
a similar standard deviation. It is also similar to PRD in the training and test accuracy difference. Fig. 13 shows
the FH-GBML accuracy results of the data sets covered by this latter rule. The Positive and Not Negative Rule
Disjunction (PRD∧�NRD) has a lower support than PRD∧NRD and a lower standard deviation, but its difference is
somewhat higher, since the data sets with low accuracy for FH-GBML have been removed by PRD∧NRD. Fig. 14
shows the accuracy results of FH-GBML for the data sets covered by this rule.

• The negative and not positive rule disjunction (NRD∧�PRD) is a good rule to describe the bad behaviour of FH-
GBML. It has a decent support and both a high difference in training and test sets. Fig. 15 shows the FH-GBML
accuracy results for the data sets in the support of this rule.

From all these new rules, we can present PRD as a representative description of good data sets, and NRD∧�PRD as
a representative description for bad data sets, when using FH-GBML. We can consider three blocks of data sets with

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 17

100
90
80
70
60
50
40
30
20
10

0
0 20 40 60 80 100

FH-GBML % Accuracy Training

FH-GBML % Accuracy Test

Fig. 13. Accuracy results for data sets covered by PRD∧NRD.

100
90
80
70
60
50
40
30
20
10
0

0 20 40 60 80 100

FH-GBML % Accuracy Training

FH-GBML % Accuracy Test

Fig. 14. Accuracy results for data sets covered by PRD∧�NRD.

100
90
80
70
60
50
40
30
20
10

0
0 20 40 60 80 100 120 140 160

FH-GBML %
Accuracy
Training

FH-GBML %
Accuracy
Test

Fig. 15. Accuracy results for data sets covered by NRD∧�PRD.

their respective support, as depicted in Fig. 17 (with no particular data set order within each block):

• The first block (the left-side one) represents those data sets covered by the PRD rule. They are the data sets recognized
as being those in which FH-GBML has good accuracy.

• The second block (themiddle one) plots the data sets for the rule NRD∧�PRD,which are bad data sets for FH-GBML.

18 J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19

100
90
80
70
60
50
40
30
20
10

0
0 20 40 60 80 100 120

FH-GBML % Accuracy Training

FH-GBML % Accuracy Test

Fig. 16. Accuracy results for data sets not covered either by PRD and NRD∧�PRD.

100

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350 400 450

PRD - good behaviour
42.69%

FH-GBML %Accuracy
Training

FH-GBML %Accuracy
Test

NRD^¬PRD -
bad behaviour

32.88%

not characterized
24.43%

Fig. 17. Three blocks representation for PRD, NRD∧�PRD and not covered data sets.

• The third and last block (the right-side one) contains the unclassified data sets by the previous two rules. This
uncovered bunch of data sets is represented in the last row of Table 5. Fig. 16 also depicts these data sets.

We can see that the 75% of the analysed data sets are covered by these two rules, and hence the good behaviour and
bad behaviour consequents properly represent the accuracy obtained by the FH-GBML method.

6. Conclusions

We have performed a study over a set of binary data sets with the FH-GBML method. We have computed some data
complexity measures for the data sets in order to obtain intervals of such metrics in which the method’s performance is
significantly good or bad. We have constructed descriptive rules as well as studied the interaction between the intervals
and the proper rules.

J. Luengo, F. Herrera / Fuzzy Sets and Systems 161 (2010) 3–19 19

We have obtained two rules which are simple, interpretable and precise to describe both good and bad performance
of the FH-GBML method. Furthermore, we present the possibility of determining which data sets would be prove to
FH-GBML to perform well or badly prior to their execution, using the Data Complexity measures.
We must point out that this is a particular study for one specific method, the FH-GBML. On the other hand, this

work presents a new challenge that could be extended to other FRBCSs, to analyse their domains of competence,
and to develop new measures which could provide us with more information on the behaviour of FRBCSs for pattern
recognition.

References

[1] A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine,
CA, 2007 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.

[2] R. Baumgartner, R.L. Somorjai, Data complexity assessment in undersampled classification, Pattern Recognition Letters 27 (2006) 1383–1389.
[3] E. Bernadó-Mansilla, T.K. Ho, Domain of competence of XCS classifier system in complexity measurement space, IEEE Transactions on

Evolutionary Computation 9 (1) (2005) 82–104.
[4] B. Carse, A.G. Pipe, Introduction: genetic fuzzy systems, International Journal of Intelligent Systems 22 (9) (2007) 905–907.
[5] J. Casillas, F. Herrera, R. Pérez, M.J. del Jesus, P. Villar, Special issue on genetic fuzzy systems and the interpretability—accuracy trade-

off—editorial, International Journal of Approximate Reasoning 44 (1) (2007) 1–3.
[6] J. Casillas, B. Carse, Preface: genetic fuzzy systems: recent developments and future directions, Special issue on genetic fuzzy systems: recent

developments and future directions, Soft Computing 13 (2009) 417–418.
[7] O. Cordón, M.J. del Jesus, F. Herrera, A proposal on reasoning methods in fuzzy rule-based classification systems, International Journal of

Approximate Reasoning 20 (1) (1999) 21–45.
[8] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy

Sets and Systems 141 (1) (2004) 5–31.
[9] O. Cordón, R. Alcalá, J. Alcalá-Fdez, I. Rojas, Genetic fuzzy systems, Special issue on genetic fuzzy systems: What’s next?—editorial, IEEE

Transactions on Fuzzy Systems 15 (4) (2007) 533–535.
[10] M. Dong, R. Kothari, Feature subset selection using a new definition of classificability, Pattern Recognition Letters 24 (2003) 1215–1225.
[11] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computation, Springer, Berlin, 2003.
[12] F. Herrera, Genetic fuzzy systems: taxonomy, current research trends and prospects, Evolutionary Intelligence 1 (2008) 27–46.
[13] T.K. Ho, H.S. Baird, Pattern classification with compact distribution maps, Computer Vision and Image Understanding 70 (1) (1998) 101–110.
[14] T.K. Ho,M. Basu, Complexity measures of supervised classification problems, IEEE Transactions on Pattern Analysis andMachine Intelligence

24 (3) (2002) 289–300.
[15] M. Basu, T.K. Ho, Data Complexity in Pattern Recognition, Springer, Berlin, 2006.
[16] A. Hoekstra, R.P.W, Duin, On the nonlinearity of pattern classifiers, in: Proc. 13th Internat. Conf. on Pattern Recognition, Vienna, 1996, pp.

271–275.
[17] H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic

Data Mining, Springer, Berlin, 2004.
[18] H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy GBML approaches for pattern classification problems, IEEE Transactions

on Systems, Man, and Cybernetics—Part B: Cybernetics 35 (2) (2005) 359–365.
[19] L. Kuncheva L, Fuzzy Classifier Design, Springer, Berlin, 2000.
[20] Y. Li, M. Dong, R. Kothari, Classificability-based omnivariate decision trees, IEEE Transactions on Neural Networks 16 (6) (2005) 1547–1560.
[21] R.A. Mollineda, J.S. Sánchez, J.M. Sotoca, Data characterization for effective prototype selection, in: First Edition of the Iberian Conf. on

Pattern Recognition and Image Analysis (IbPRIA 2005), Lecture Notes in Computer Science, vol. 3523, Springer, Berlin, 2005, pp. 27–34.
[22] J.S. Sánchez, R.A.Mollineda, J.M. Sotoca, An analysis of how training data complexity affects the nearest neighbor classifiers, Pattern Analysis

and Applications 10 (3) (2007) 189–201.
[23] S. Singh, Multiresolution estimates of classification complexity, IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (12)

(2003) 1534–1539.
[24] F.W. Smith, Pattern classifier design by linear programming, IEEE Transactions on Computers 17 (4) (1968) 367–372.

http://www.ics.uci.edu/~mlearn/MLRepository.html

Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-hoc and an Automatic
Approach 117

2.2. Shared Domains of Competence of Approximative Models using Measures

of Separability of Classes

J. Luengo, F. Herrera, Shared Domains of Competence of Approximative Models using Mea-
sures of Separability of Classes. Submitted to Information Sciences.

• Status: Submitted.

• Impact Factor (JCR 2009): 3.291.

• Subject Category: Computer Science, Information Systems. Ranking 6 / 116.

 Elsevier Editorial System(tm) for Information Sciences
 Manuscript Draft

Manuscript Number:

Title: Shared Domains of Competence of Approximative Models using Measures of Separability of
Classes

Article Type: Full length article

Keywords: Classification; Data Complexity; Domains of Competence; Multi
Layer Perceptron; Radial Basis Function Network; Support Vector Machine; Learning Vector
Quantization

Corresponding Author: Mr. Julian Luengo, M.D.

Corresponding Author's Institution: University of Granada

First Author: Julian Luengo, M.D.

Order of Authors: Julian Luengo, M.D.; Francisco Herrera, Full professor

Suggested Reviewers: Ester Bernado
esterb@salle.url.edu

Yusuke Nojima
nojima@cs.osakafu-u.ac.jp

Luciano Sanchez
luciano@uniovi.es

Shared Domains of Competence of Approximative

Models using Measures of Separability of Classes✩

Julián Luengoa,∗, Francisco Herreraa

aDept. of Computer Science and Artificial Intelligence, CITIC-UGR, 18071, Granada,

Spain.

Abstract

In this work we jointly analyze the behavior of three classic Artificial Neural
Network models and one Support Vector Machine with respect to a series of data
complexity measures known as measures of separability of classes. In particu-
lar, we consider a Radial Basis Function Network, a Multi-Layer Perceptron,
a Learning Vector Quantization, while the Sequential Minimal Optimization
method is used to model the Support Vector Machine.

We consider five measures of separability of classes over a wide range of
data sets built from real data which have proved to be very informative when
analyzing the performance of classifiers. We find that two of them allow us to
extract common behavior patterns for the four learning methods due to their
related nature. We obtain rules using these two metrics that describe both
good or bad behaviors of the Artificial Neural Networks and the Support Vector
Machine.

With the obtained rules, we characterize the behavior of the methods from
the data set complexity metrics and therefore their common domains of compe-
tence are established. Using these domains of competence the shared good and
bad capabilities of these four models can be used to know if the approximative
models will perform well or poorly or if a more complex configuration of the
model is needed for a given problem in advance.

Keywords: Classification, Data Complexity, Domains of Competence, Multi
Layer Perceptron, Radial Basis Function Network, Support Vector Machine,
Learning Vector Quantization

✩Supported by the Spanish Ministry of Science and Technology under Project TIN2008-
06681-C06-01. J. Luengo holds a FPU scholarship from Spanish Ministry of Education and
Science.

∗Corresponding author
Email addresses: julianlm@decsai.ugr.es (Julián Luengo), herrera@decsai.ugr.es

(Francisco Herrera)

Preprint submitted to Information Sciences November 7, 2010

Manuscript
Click here to view linked References

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=11678&rev=0&fileID=277703&msid={086F142C-6ACC-4964-A07A-0A8DBE94D970}

1. Introduction

The use of Artificial Neural Networks (ANNs) in several tasks and fields is
very common nowadays. Due their excellent adjusting capabilities, they have
been successfully applied in the Data Mining ambit among many others[29],
becoming a referent. In particular, ANNs have been succeeded in the clas-
sification task, within the Data Mining field. More recently, Support Vector
Machines (SVMs) have become very popular in the same task due their high
precision capabilities and their fast learning rate[10]. They share some common
properties with respect to the ANNs, and it is usual to find them related in the
specialized literature.

The research on ANNs in classification is very active nowadays as there are
many recent contributions in this topic. Improvements in the weight adjusting
for MLP in classification is a recurrent topic[1], even in challenging scenarios like
imbalanced data[11, 33]. RBFNs have been applied to incremental learning[28]
and their adjustment is subject to recent enhancements[13]. Villmann et al.[35]
exploit the synergy between fuzzy classification models and Learning Vector
Quantization (LVQ) models. We can find from extensive comparisons of the
LVQ models[16] to the study of the initial values in the MLP backpropagation
scheme[38], including improvements on the RBFN learning methodology based
on kernels[25]. Even the use of non-parametric statistics in the classification
framework have been studied for MLPs and RBFNs models[20].

The use of SVMs is also very prolific in the same topic. Recent contri-
butions include new developments in classification assuming fixed probability
distributions of the data[36], the use of recursive SVMs to tackle the dimen-
sionality problem[34], the study of formulations of the loss function in order to
deal with imbalanced data sets directly[37] or simultaneously selects relevant
features during classifier construction [22]. SVMs and ANNs are very related
in their foundations and their integration has been already studied [9], and the
analysis on the different properties they model and their advantages have been
studied [14].

It is well-known that the prediction capabilities of ANNs and SMVs in clas-
sification are dependent on the problem’s characteristics. Moreover determining
the adequate topology or parameters of these models is usually determined by
the intrinsic characteristic of the data set and it is difficult to estimate them
a priori. An emergent field, that uses a set of data complexity measures ap-
plied to the problem to try to capture different aspects or sources of complex-
ity which are considered complicated to the classification task[3]. Studies of
data complexity metrics applied to particular classification’s algorithms can be
found[5, 4, 30, 21].

In this work we are interested in to determine the domains of competence of
ANNs and SVMs using a particular set of metrics formerly known as measures
of separability of classes[3]. We consider three classic models of ANNs, RBFN,
MLP and LVQ; and the well-known Sequential Minimal Optimization (SMO)
as a representative SVM model solving procedure. We want to describe and
to analyze the shared strengths and weakness of these four models, by means

2

of establishing their domains of competence. The measures of separability of
classes in the data can be used to characterize this shared behavior, as they
have proven to be very informative describing the domains of competence of
rule-based classification methods[5, 21].

In order to perform this analysis, we create several binary classification data
sets from real world problems, 438 in total, and compute the value of 5 measures
of separability of classes proposed by Ho and Basu[17]. We have analyzed the
intervals of measure values related to the created data sets, in which all the four
methods perform well or bad, and then formulated a rule for such intervals.
The obtained rules describe the ranges where some information and conclusions
about the performance of ANN methods can be stated. Therefore the domains
of competence[21] of the learning method are defined, that is, the intervals of the
measures where the learning method performs well or badly. The generalization
abilities of these domains of competence are checked using a fresh bunch of 200
data sets.

The rest of this paper is organized as follows. In Section 2 we briefly describe
the ANNs and the SVM models used. In Section 3 the considered complexity
metrics are summarized as well as the state-of-the-art literature in the topic.
In Section 4 we show the process used to build up the bunch of data sets used
and the parameter adjusting process for the four models. Next, in Section 5 we
introduce the motivation for the use of the measures of separability of classes
and the analysis related to the extraction of the learning method’s domains of
competence. Finally, in Section 6 some concluding remarks are pointed out.

2. Preliminaries: ANN and SVM details

In this section, we will briefly describe the most important details of the
particular implementations of ANN and SVM models that we have used. In
Subsection 2.1 the Multi-layer perceptron model used is presented. Next in
Subsection 2.2 the details of the RBFN model are described. Subsection 2.3
depicts the details of the LVQ model used. Finally, in Subsection 2.4 the SVM
used is described. All the models described in this section are implemented in
the KEEL software package1. Please refer to the associated references in order
to obtain further details.

2.1. Multi-Layer Perceptron

A Multi-Layer Perceptron[23] is a classical model which consists of multiple
layers of computational units, usually interconnected in a feed-forward way.
Each neuron in a layer has directed connections to the neurons of the subsequent
layer. The units of these networks apply a sigmoid function as an activation
function. Each connection of the units are related to a weight. Therefore we

1http://keel.es

3

can define a weight vector as vector in the real euclidean space R
N where N is

the number of weights and biases in the network.

−→w = (. . . , xl
ij , w

l
i+1j , . . .) (1)

where wl
ij is the weight from unit number i in layer number l to unit number j

in layer number l + 1.
The neural network has attached a global error function E(−→w) depending

on all weights and biases, for example the standard least square function, and
its gradient descendent E′(−→w).

There are many algorithms for feedforward neural networks, like the stan-
dard back propagation algorithm. Most of the optimization methods used to
minimize the error function are a local iterative process in which an approxi-
mation to the function in a neighborhood of the current point in the space is
minimized, given by a first or second order Taylor expansion of the function.
First a initial weight vector −→w 1 is chosen. Then a search direction p̃k and a step
size αk are determined in step k so that E(−→w k + αkp̃k) < E(−→w k). If the final
condition is not fulfilled then the weight vector is updated −→w k+1 = −→w k + αkp̃k
and a new step k + 1 begins.

However, more recent and scalable approaches can be used and with better
convergence. The scaled conjugate gradient (SCG) avoids the line search per
learning iteration. In the case of the back propagation algorithm, the seach
direction p̃k is set to the negative gradient −E′(−→w) and the step size αk to a
constant ε, considering the linear approximation E(−→w +−→y) ≈ E(−→w)+E(−→w)T y.
An attempt to improve the convergence rate for back propagation is the addition
of the momentum term, but also increases the user-dependant parameters.

The SCG employs the above general optimization strategy but choose the
search direction more carefully by using information from the second order ap-
proximation

E(−→w +−→y) ≈ E(−→w) + E(−→w)T−→y +
1

2
yTE′′(−→w−→y). (2)

The step size s̃k = E′′(−→w k)p̃k is estimated as

s̃k = E′′(−→w k)p̃k ≈
E′(−→w k + σkp̃)− E′(−→w k)

σk

+ λkp̃k.

0 < σk ≪ 1. (3)

which tends in the limit to the true value of E′′(−→w k)p̃k, and λk is adjusted in
each iteration depending on the sign of δk = p̃Tk s̃k. If λk ≤ 0 then the Hessian
matrix E′′(−→w) is not positive definite and λk is raised and s̃k estimated again.
The λk value scales the step size en each iteration, giving the name to the
algorithm.

2.2. Radial Basis Function Network

Radial Basis Function Networks[7, 8] are well suited for function approxi-
mation and pattern recognition due to their simple topological structure and

4

their ability to reveal how learning proceeds in an explicit manner. A RBF
is a function which has been built into a distance criterion with respect to a
centre. Different basis functions like thin-plate spline functions, multiquadratic
functions, inverse multiquadratic functions and Gaussian functions have been
proposed for the hidden-layer neurons, but normally the selected one is the
Gaussian function. Compared with other types of Artificial Neural Networks,
such as feed-forward networks, the RBFN requires less computation time for
learning and also has a more compact topology. RBFs have been applied in the
area of ANNs where they may be used as a replacement for the sigmoidal hid-
den layer transfer characteristic in multi-layer perceptrons. The original RBF
method has been traditionally used for strict multivariate function interpolation
[27] and for this fact, it requires as many RBF neurons as data points. Broom-
head and Lowe removed this strict interpolation restriction[7] and provided a
neural network architecture where the number of RBF neurons can be far less
than the data points. A RBFN mainly consists of two layers, one hidden-layer
and one output layer.

Each input example x ∈ X is applied to all hidden neurons. The neuron i

computes the function

hi(x) = exp

[

(x− vi)
2

2σ2
i

]

(4)

where vi is the center of the neuron i, and hi the output of such neuron. The
RBFN has only one output (i.e. j has only one value), and it is defined by

z(x) =

∑k

i hi(x)wi
∑k

i hi(x)
(5)

The term wi refers to the neuron weight, and k is the number of neurons in the
hidden layer. In order to initialize the neurons in the network, we use a K-means
clustering algorithm. The centre of the neuron is set equal to the centroid of
the cluster, and its radius equal to the mean of the distance between the given
center and the N = 2 nearest neurons:

σi =

N
∑

j=1

d(vi, vj)

N
(6)

The network is initialized with a K-means clustering algorithm, setting the
number of clusters equal to the number of neurons. The initial centroids are set
to random chosen examples, which are all different. By successively iterations,
the neurons are adjusted using the Euclidean distance till the centroids (i.e. the
neurons) do not change.

Once the centers and radius of the neurons has been initialized, the output’s
weight matrix can be optimized by means of supervised training. For each
train example xi and expected output ti, we compute the output of the hidden
layer’s neurons, the vector h. Next, we compute the output of the network y and
compare it with the expected output t, and adjust each weight in w to reduce
the Mean Square Error (MSE) with the Least Mean Squares algorithm (LMS).

5

This method implies the use of gradient descent (delta rule) and adjusting the
weights:

wij(n+ 1) = wij(n) + η(tj − yj)hi (7)

where η is the learning rate (η << 1.0). This process is repeated for each
train example, until the max iteration limit is reached. The center and radius
of the neurons is adjusted as well to minimize the output error. We use the
error derivative with respect to these parameters, in a fashion similar to that
of backpropagation. With i = 1, ...,m hidden neurons, j = 1, ..., p inputs and
k = 1 output, we update both parameters simultaneously from iteration n to
n+ 1 with:

vij(n+ 1) = vij(n) + ηc
[
∑

k(tk − yk)wik]hi(xj − vij(n))

(σi(n))2
(8)

σi(n+ 1) = σi(n) + ησ
[
∑

k(tk − yk)wik]hi ‖ x− vi(n) ‖
2

(σi(n))3
(9)

The number of hidden-layer neurons is defined by the user a priori. In
our study, we have fixed the number of neurons at 50. The η is set to 0.3.
Both ηc and ησ are set to 1

maxIterations
. The parameter maxIterations denote

the maximum number of iterations of the network training algorithm, and is
established to 10.

2.3. Learning Vector Quantization

The Learning Vector Quantization (LVQ)[6] family comprises a large spec-
trum of competitive learning schemes. One of the basic designs that can be used
for classification is the LVQ1 algorithm.

An initial set of labeled prototypes is picked by first specifying np ≥ c.
Then np elements are randomly selected from X to be the initial prototypes, so
each class is represented by at least one prototype. LVQ1 has three additional
parameters specified by the user: the learning rate αk ∈ (0, 1), a constant
η ∈ (0, 1), and the terminal number of iterations T. The standard competitive
learning update equation is then used to alter the prototype set. If the closed
prototype for input x is the vector vi,old, the LVQ1 update strategy is

vi,new = vi,old + αk(x− vi,old) when ℓ(vi,old) = ℓ(x) (10)

or
vi,new = vi,old − αk(x− vi,old) when ℓ(vi,old) 6= ℓ(x) (11)

Equation 10 rewards the winning prototype for getting the correct label by
letting it migrate towards the input vector, while Equation 11 punishes the
winning prototype for not labeling the current input correctly by repelling it
away from the input vector. In our experiments, the learning rate was updated
after each presentation of a new vector using the formula αk+1 = ηαk, k =
1, . . . , n−1; and was restored to the initial, user specified value of α1 at the end of
each pass through X . Before each pass through LVQ1, X is randomly permuted

6

to avoid dependence of the extracted prototypes on the order of inputs. LVQ1
terminates when either (i) there is no misclassifications in a whole pass through
X (and hence, the extracted prototypes are a consistent reference set); or (ii)
the prespecified terminal number of iterations is reached.

2.4. Support Vector Machine

A support vector machine (SVM)[10] constructs a hyperplane or set of hy-
perplanes in a high-dimensional space. A good separation is achieved by the
hyperplane that has the largest distance to the nearest training datapoints of
any class (so-called functional margin), since in general the larger the margin
the lower the generalization error of the classifier. In order to solve the quadratic
programming (QP) problem that arises from SVMs, there are many techniques
mostly reliant on heuristics for breaking the problem down into smaller, more-
manageable chunks.

The QP problem to train an SVM is shown below:

maxαW (α) =

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

yiyjk(xi, xj)αiαj ,

0 ≤ αi ≤ C, ∀i,

l
∑

i=1

yiαi = 0.

(12)

where xi, xj ∈ R
n.

A point is an optimal point of (12) if and only if the Karush-Kuhn-Tucker
(KKT) conditions are fulfilled and Qij = yiyjk(xixj) is positive semi-definite.
The KKT conditions are simple; the QP problem is solved when, for all i:

αi = 0 ⇒ yif(xi) ≥ 1,

0 < αi < C ⇒ yif(xi) = 1,

αi = C ⇒ yif(xi) ≤ 1,

(13)

There are several proposal in the literature used to solve this problem. Initial
ones like the projected conjugate gradient (PCG) use a “chunking” algorithm
based on the fact that the value of the quadratic form is the same if you re-
move the rows and columns of the matrix that correspond to zero Lagrange
multipliers. Therefore, the large QP problem can be broken down into a series
of smaller QP problems, whose ultimate goal is to identify all of the non-zero
Lagrange multipliers and discard all the Lagrange multipliers. At every step,
chunking procedures solves a QP problem that consists of the every non-zero
Lagrange multiplier from the last step, and the M worst examples that violate
the KKT conditions (13). However, modern procedures suggest a new strategy,
avoiding the “chunking” process and speeding up the whole process. A common
method for solving the QP problem is the Platt’s Sequential Minimal Optimiza-
tion algorithm considered in this paper[26]. It breaks the problem down into

7

2-dimensional sub-problems that may be solved analytically, eliminating the
need for a numerical optimization algorithm as done in PCG.

In order to solve for the two Lagrange multipliers α1 and α2, SMO first com-
putes the constraints on these multipliers and then solves for the constrained
maximum. The bound constraints in Equation (12) cause the Lagrange multi-
pliers to lie within a box, while the linear equality constraint in Equation (12)
causes the Lagrange multipliers to lie on a diagonal line.

The ends of the diagonal line segment can be expressed quite simply. With-
out loss of generality, the algorithm first computes the second Lagrange multi-
plier α2 and computes the ends of the diagonal line segment in terms of α2. If
the target y1 does not equal the target y2, then the following bounds apply to
α2:

L = max(0, αold
2 − αold

1), H = min(C,C + αold
2 − αold

1) (14)

If the target y1 equals the target y2, then the following bounds apply to α2:

L = max(0, αold
2 + αold

1 − C), H = min(C,αold
2 + αold

1) (15)

The second derivative of the objective function along the diagonal line can be
expressed as:

η = 2k(x1, x2)− k(x1, x1)− k(x2, x2) (16)

The next step of SMO is to compute the location of the constrained maxi-
mum of the objective function in Equation (12) while allowing only two Lagrange
multipliers to change. Under normal circumstances, there will be a maximum
along the direction of the linear equality constraint, and η will be less than zero.
In this case, SMO computes the maximum along the direction of the constraint.

Therefore SMO will always optimize two Lagrange multipliers at every step,
with one of the Lagrange multipliers having previously violated the KKT condi-
tions before the step. That is, SMO will always alter two Lagrange multipliers
to move uphill in the objective function projected into the one-dimensional fea-
sible subspace. SMO will also always maintain a feasible Lagrange multiplier
vector. Therefore, the overall objective function will increase at every step and
the algorithm will converge asymptotically.

3. Data Complexity: Measures of Separability of Classes

In this section we first present a short review on recent studies on data
complexity in Subsection 3.1, then we describe the data complexity measures
that we have used in this work in Subsection 3.2.

3.1. Recent studies in data complexity

As we have mentioned, data complexity measures are a series of metrics that
quantify characteristics which imply some difficulty to the classification task. In
the following we gather several recent publications related to these complexity
measures and their applications. They can show a picture of the most recent
developments in the topic.

8

• Ho and Basu propose some complexity measures for binary classification
problems[17], gathering metrics of three types: overlaps in feature values
from different classes; separability of classes; and measures of geometry,
topology, and density of manifolds

• Singh offers a review of data complexity measures and proposes two new
ones[31].

• Bernadó and Ho investigate the domain of competence of XCS by means of
a methodology that characterizes the complexity of a classification prob-
lem by a set of geometrical descriptors[5].

• Li et al.[19] analyze some omnivariate decision trees using the measure of
complexity based on data density proposed by Ho and Basu.

• Baumgartner and Somorjai define specific measures for regularized linear
classifiers[4], using Ho and Basu’s measures as reference.

• Sánchez et al. analyze the effect of data complexity on the nearest neigh-
bors classifier[30].

• Dong and Kothari propose[12] a feature selection algorithm based on a
complexity measure defined by Ho and Basu.

• Mollineda et al.[24] extend some of Ho and Basu’s measure definitions
for problems with more than two classes. They analyze these generalized
measures in two classic Prototype Selection algorithms and remark that
Fisher’s discriminant ratio is the most effective for Prototype Selection.

• Sang-Woon and Oommen[18] analyze how to use prototype selection in
order to decrease the computation time of several data complexity mea-
sures, without severely affecting the outcome with respect to the complete
data set.

• Garćıa et al.[15] analyze the behavior of the evolutionary prototype selec-
tion strategy, considering a complexity measure for classification problems
based on overlapping.

• Luengo and Herrera[21] characterized the behavior of the FH-GBML Fuzzy
Rule Based Classification System by means of ad-hoc intervals of the data
complexity measures[17].

3.2. Measures of Separability of Classes

For our study, we will consider five measures of separability of classes, from
the total twelve as described by Ho and Basu[17]. These measures have proven
to be the most informative in the classification task[5, 21] due to their high
relationship with the class separability and overlapping characteristics. Please
note that most of these data complexity measures are only well defined for
binary problems.

9

The measures of separability of classes provide indirect characterizations of
class separability. They assume that a class is made up of single or multiple
manifolds that form the support of the probability distribution of the given
class. The shape, position and interconnectedness of these manifolds give hints
on how well two classes are separated, but they do not describe separability by
design. The particular descriptions of the measures follows:

L1: minimized sum of error distance by linear programming. Linear classi-
fiers can be obtained by a linear programming formulation proposed by Smith[32].
The method minimizes the sum of distances of error points to the separating
hyperplane (subtracting a constant margin):

minimize att

subject to Ztw+ t ≥ b

t ≥ 0

where a, b are arbitrary constant vectors (both chosen to be 1), w is the weight
vector to be determined, t is an error vector, and Z is a matrix where each
column z is defined on an input vector x (augmented by adding one dimension
with a constant value 1) and its class C (with value C 1 or C 2) as follows:

{

z = +x if C = C1,

z = −x if C = C2.

The value of the objective function in this formulation is used as a measure. The
measure has a zero value for a linearly separable problem. We should notice
that this measure can be heavily affected by the presence of outliers in the data
set.

L2: error rate of linear classifier by Linear Programming (LP). This measure
is the error rate of the linear classifier defined for L1, measured with the training
set. With a small training set this can be a severe underestimate of the true
error rate.

N1: fraction of points on class boundary. This method constructs a class-
blind minimum spanning tree over the entire data set, and counts the number
of points incident to an edge going across the two classes. The fraction of such
points over all points in the data set is used as a measure.

N2: ratio of average intra/inter class Nearest Neighbor (NN) distance. For
each input instance xp, we calculate the distance to its nearest neighbor within
the class (intraDist(xp)) and the distance to nearest neighbor of any other class
(interDist(xp)). Then, the result is the ratio of the sum of the intra-class dis-
tances to the sum of the inter-class distances for each input example, i.e.,

N2 =

∑m

i=0
intraDist(xi)

∑m

i=0
interDist(xi)

,

where m is the number of examples in the data set. This metric compares the
within-class spread with the distances to the nearest neighbors of other classes.
Low values of this metric suggest that the examples of the same class lie closely

10

in the feature space. Large values indicate that the examples of the same class
are disperse.

N3: error rate of 1-NN classifier. This is simply the error rate of a nearest-
neighbor classifier measured with the training set. The error rate is estimated
by the leave-one-out method. The measure denotes how close the examples of
different classes are. Low values of this metric indicate that there is a large gap
in the class boundary.

4. Experimental framework

In order to obtain the characterization of the behavior of the ANNs models
and the SVM in subsequent sections, their parameters and the problems used as
test-bed must be stated. Therefore in this section we first provide details of the
data sets used for the experimentation in Subsection 4.1. Next the parameter
configuration for the methods studied is presented in Subsection 4.2.

4.1. Data sets generation

We first evaluate the ANNs and the SVM over a set of 438 binary classifica-
tion problems, in order to obtain their domains of competence. A big quantity
of data sets is required because we need to obtain a rich variety of values for each
measure of separability of classes. It is not possible to generate data sets with
specific values of data complexity measures at this point, so we create many
data sets from different original problems in order to fill the value range of each
measure.

These first 438 problems are generated from pairwise combinations of the
classes of 21 problems from the University of California, Irvine (UCI) reposi-
tory [2]. These are iris, wine, new-thyroid, solar-flare, led7digit, zoo, yeast, tae,
balanced, car, contraceptive, ecoli, hayes-roth, shuttle, australian, pima, monks,
bupa, glass, haberman and vehicle. In order to do that, we construct several
new data sets with the combination of the examples from two different classes.
This will result in a new data set with only 2 classes and with the original ex-
amples which had two such classes as output. We perform this process for every
possible pairwise combination of classes, and we compute the five measures of
separability of classes for every data set. If an obtained data set with this pro-
cedure proves to be linearly-separable, we discard it. The complexity measure
L1 indicates if a problem is linearly-separable when its value is equal to zero.

This method for generating binary data sets is limited by the proper com-
binatorics, and we can only obtain over 200 new data sets with the original 21
data sets with this first approach. In order to obtain more data sets, we group
the classes two by two, that is, we create a new binary data set, and each of
its two classes are the combination of two original classes each. For this second
approach we have used ecoli, glass and flare data sets, since they have a high
number of class labels, obtaining 238 new ones. Again, those data sets with a
L1 value of zero are discarded.

A second bunch of data sets will be considered in order to validate the results
obtained in our analysis. We have applied the same methodology of grouping

11

the classes two by two to the yeast, flare and car data sets. With these last
three data sets we have obtained another 200 non-linearly separable data sets
used for validating the rules obtained in our analysis, for a total of 638 data
sets.

In order to measure the ANNs and the SVM accuracy performance in each
data set, we have applied a 10-fcv validation scheme.

4.2. Parameter settings

The parameter selection for ANN and SVM models is a key question in order
to obtain a good performance and avoid over-learning. The common process
implies to train the model with different topologies and learning parameters over
the problems (i.e. using a parameter grid) and to chose the best configuration.

When analyzing the performance of these models with respect to the mea-
sures of separability of classes we consider to use the same configuration for all
the data sets in order to relate results across all the data sets. Different param-
eter configurations of the models may produce very different outcomes, and we
want to relate the good or bad outputs to the measures of separability of classes
values as independently of external factors as possible. Moreover, a particular
configuration of the models for each data set built as indicated in the previous
section would be very time consuming.

Therefore, we have selected the same parameters for all the 438 initial data
sets in each model, trying to obtain a good overall performance. These param-
eters have been chosen from a range possibilities, finally using those which offer
the best average performance all over the initial 438 data sets. These ranges
follows:

• MLP, RBFN and LVQ number of neurons: from 10 to 50, using increments
of 10.

• SVM C parameter: from 1 to 100, using increments of 10.

• MLP, RBFN, LVQ and SVM learning parameters (α, η, ω, σ): from 0.1
to 1, using increments of 0.1.

The final best overall parameter configuration as required by KEEL software
for each model is summarized in Table 1.

Table 1: Parameters used for the models
MLP Hidden Layers = 1, Neurons per Layer = 40
RBFN Neurons = 50
LVQ np = 40, α = 0.3, η = 0.8
SVM C = 1, tolerance = 0.001, kernel = Puk, ǫ = 1−12, ω = 1, σ = 1

In Table 2 we have summarized the global Training and Test accuracy for
the initial 438 data sets obtained by the ANN methods and the SVM with these
parameter configuration.

12

Table 2: Global Average Training and Test Accuracy/std. dev. for RBFN, MLP, LVQ and
SVM

Global % Accuracy Training Global % Accuracy Test
Global Training std. dev. Global Test std. dev.

RBFN 93.12% 90.65%
7.99 10.42

MLP 96.82% 87.02%
4.40 11.68

LVQ 86.44% 86.35%
11.93 12.46

SVM 94.72% 91.99%
6.07 9.13

5. Analysis of the Learning Methods with Measures of Separability

of Classes

In this study, our aim is to analyze the characterization of the behavior
of the for learning methods by means of the data complexity measures. In
order to do this analysis, we divide this section into the following subsections.
First we introduce the motivation for the use of the measures of separability
of classes in order to characterize the models’ performance in Subsection 5.1.
In Subsection 5.2 we describe the process used in order to discriminate the
informative measures of separability of classes. Next we determine several rules
based on intervals of the selected data complexity measures for the ANNs and
SVM in Subsection 5.3. Then we determine the domains of competence of the
four models from the single rules in Subsection 5.4 and validate these domains
in Subsection 5.5.

5.1. Motivation

One first indicator of the performance of the ANN or SVM considered could
be the average accuracy obtained in the training partitions. However, it is
well known that it is possible to increase such accuracy in detriment of the test
accuracy. This phenomena is usually known as over-learning in the classification
topic, and it discourages the use of the training accuracy as a precise indicator
of the true performance of the model.

Figures 1 to 4 contains the results of the four models showing the training
and test accuracy over all the initial 438 data sets, plotted in ascending training
accuracy value for the RBFN, MLP, LVQ and SVM models respectively. The
dark line in these figures represent the training values, and the variability in
test values is patent. We want to point out that we can find over-learning in all
four Figures 1 to 4, especially in the highest training values.

An alternative option is to use the measures of separability of classes to
analyze when the model produces a good or bad outcome for the data set.
Since these metrics measure aspects on the class separability of the data set,
the good or bad outcome of the method for a given configuration can be stated
independently of the learning method used afterwards.

13

���������������������������������������	����
����������
� �� ��� ��� ��� ��� ��� ��� ��� ��������������� ���� ������������ ��������

Figure 1: Accuracy in Training/Test for
RBFN sorted by training accuracy

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

MLP %Accuracy Test MLP %Accuracy Training

Figure 2: Accuracy in Training/Test for MLP
sorted by training accuracy

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

LVQ %Accuracy Test LVQ %Accuracy Training

Figure 3: Accuracy in Training/Test for LVQ
sorted by training accuracy

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

SVM %Accuracy Test SVM %Accuracy Training

Figure 4: Accuracy in Training/Test for SVM
sorted by training accuracy

5.2. Selection of the informative measures of separability of classes

Given the initial 438 data sets described in Subsection 4.1, we will obtain
438 values of each measure of separability of classes. We try to extract regions of
these measures in which all the four models behave well or badly. In order to do
so, for each complexity measure the data-sets are sorted by the ascending value
of such complexity measure, and put altogether in a figure. In the X axis the
data sets are depicted with the same distance between them. The reason to do
so is to avoid huge gaps between metric values to distort the interval extraction
procedure described next. The Y axis depicts the accuracy obtained both in
training and test for the model.

Once the data set have been arranged as described above, we have extracted
different ad-hoc intervals which present good or bad behavior for the ANNs and
the SVM simultaneously. The considered criteria for this analysis follows as a
representative example of good and bad behavior in classification. Nevertheless
it must be stated that it can be adjusted to each one’s necessities.

• We understand for good behavior an average high test accuracy in the
interval, at least 90%.

14

• By bad behavior we refer to the presence of over-fitting and/or average
low test accuracy in the interval (under 80%).

These intervals must also contain a significative number of data sets in order
to avoid biases introduced by small good/bad intervals located in bad/good
regions respectively. On the other hand, if only a few data sets do not verify
these indications, the interval can be extracted as well, as these data sets would
act as outliers in this case.

Not always is possible to extract shared intervals in the figures for all the
four models with the mentioned characteristics. For example, in Figure 5 we
show an example of a figure without any quality interval.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

MLP %Accuracy Training MLP %Accuracy Test

Figure 5: MLP accuracy in Training/Test sorted by L2

For some data complexity measures, there are one or more intervals of either
good or bad behavior for all the four learning methods. In particular for the
N1 and N3 measures of separability of classes we can extract common intervals
of good and bad behavior for the four learning methods. These two measures
are specially designed to estimate both the proximity of examples of different
classes in their boundaries and to indicate wide gaps between such boundaries.

In Figures 6 to 13 we present the figures for the N1 and N3 measures in which
we have extracted the ad-hoc intervals which present good or bad behavior for
all the ANNs and SVM with the same size, using a vertical line to delimit them.

5.3. Determination of Rules Based on the Learning Methods’ Behavior

In Table 3 we summarize the particular boundary values of the ad-hoc in-
tervals depicted in Figures 6 to 13 for the N1 and N3 complexity measures.

From these ad-hoc intervals is possible to construct several rules that model
the performance of the ANNs and the SVM. In Table 4 we have summarized the
rules derived from Table 3 using the intervals as the antecedents of the rules.
Given a particular data set X , we get the complexity measure of X with the
notation CM [X]. Table 4 is organized with the following columns.

• The first column corresponds to the identifier of the rule for further refer-
ences.

15

��������� ����!����"����#����$����%����&����'����������

� #� ��� �#� �� #� !�� !#� "�� "#�()*+,-../01.2 30145456 ()*+,-../01.23789 bad behaviourgoodbehaviour

Figure 6: RBFN accuracy in Training/Test sorted by N1

:;::<:;::=:;::>:;::?:;::@:;::A:;::B:;::C:;::D:;::<::;::

: @: <:: <@: =:: =@: >:: >@: ?:: ?@:EFGHIJKKLMNKOPMNQRQRS EFGHIJKKLMNKO PTUVgoodbehaviour bad behaviour

Figure 7: RBFN accuracy in Training/Test sorted by N3

16

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

MLP %Accuracy Training MLP %Accuracy Test

bad behaviourgood behaviour

Figure 8: MLP accuracy in Training/Test sorted by N1

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

MLP %Accuracy Training MLP %Accuracy Test

good behaviour bad behaviour

Figure 9: MLP accuracy in Training/Test sorted by N3

17

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

LVQ %Accuracy Training LVQ %Accuracy Test

bad behaviourgood behaviour

Figure 10: LVQ accuracy in Training/Test sorted by N1

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

LVQ %Accuracy Training LVQ %Accuracy Test

good behaviour bad behaviour

Figure 11: LVQ accuracy in Training/Test sorted by N3

18

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

SVM %Accuracy Training SVM %Accuracy Test

bad behaviourgood behaviour

Figure 12: SVM accuracy in Training/Test sorted by N1

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

SVM %Accuracy Training SVM %Accuracy Test

good behaviour bad behaviour

Figure 13: SVM accuracy in Training/Test sorted by N3

19

Table 3: Significant intervals

Interval ANNs behavior
N1 < 0.08 good behavior
N3 < 0.029 good behavior

N1 > 0.25 bad behavior
N3 > 0.108 bad behavior

• The “Rule‘” column presents the rule itself.

• The third column “Support” presents the percentage of data sets which
verifies the antecedent of the rule.

• The column “Model“ identifies the classification model to which this row
refers to.

• The column “% Training” shows the average accuracy in training of all
the examples which are covered by the rule.

• The column “Training Diff.” contains the difference between the training
accuracy of the rule and the training accuracy across all 438 data sets
presented in Table 2.

• The column “% Test” shows the average accuracy in test of all the exam-
ples which are covered by the rule.

• The column “Test Diff.” contains the difference between the test accuracy
of the rule and the test accuracy across all 438 data sets presented in Table
2.

The positive rules (denoted with a “+” symbol in their identifier) always
show a positive difference with the global average, both in training and test
accuracy. The negative ones (with a “-” symbol in their identifier) verify the
opposite case. The support of the rules shows us that we can characterize a
wide range of data sets and obtain significant differences in accuracy.

From this set of rules we can state the following:

• A low value of N1 results in a good behavior of all the learning models
considered. That means that those problems with a low percentage of
instances of different classes that are closer than to examples of their own
class are adequate for the ANNs and SVM. They are characterized by a
good separation of examples in the class boundaries.

• A low value of N3 results in a good behavior of all the learning models
considered. When a wide gap between the class boundary is present, it
is easy to shape the separation between the classes and to obtain a good
model for the problem.

20

Table 4: Rules with one metric obtained from the intervals
Id. Rule Support Model %Training Training % Test Test

Diff. Diff.
RBFN 98.03% 4.91% 97.20% 6.55%

R1+ If N1[X] < 0.08 29.22% MLP 97.72% 1.69% 95.95% 7.56%
then good behavior LVQ 95.65% 10.26% 95.86% 10.47%

SVM 98.45% 6.91% 97.93% 8.15%
RBFN 98.18% 5.06% 97.28% 6.63%

R2+ If N3[X] < 0.029 26.71% MLP 97.31% 1.33% 96.02% 7.63%
then good behavior LVQ 95.67% 10.28% 95.83% 10.44%

SVM 98.66% 7.12% 98.09% 8.31%

RBFN 83.64% -9.48% 78.22% -12.43%
R1- If N1[X] > 0.25 24.43% MLP 93.68% -2.30% 76.74% -11.65%

then bad behavior LVQ 70.53% -14.86% 70.02% -15.37%
SVM 80.38% -11.16% 76.81% -12.97%
RBFN 85.33% -7.79% 80.64% -10.01%

R2- If N3[X] > 0.108 31.51% MLP 93.80% -2.18% 78.47% -9.92%
then bad behavior LVQ 72.87% -12.52% 72.63% -12.76%

SVM 82.34% -9.20% 79.03% -10.75%

• A high value of N1 results in a bad behavior of all the learning models con-
sidered. Those problems with a high percentage of instances being close
to other class instances are difficult to model by the considered learning
methods.

• A high value of N3 results in a bad behavior of all the learning models
considered. When the boundaries of the two classes are getting closer, the
performance of the learning model decreases significatively.

With this information is possible to know in advance when the problem will
be difficult for the ANN o the SVM model calculating the N1 and N3 measures
before building the model. Therefore, it could be possible to relate the good or
bad behavior consequents of the rules with the necessity of a more sophisticated
topology of the net, or with the use of more complex kernels for the SVM. The
contrary case would be also verified, saving time in the model configuration and
construction.

Although we have obtained some interesting individual rules, we can extend
our study by considering the combination of these complexity metrics in order
to obtain more interpretable, extensive and descriptive rules.

5.4. Collective Evaluation of the Set of Rules

The objective of this section is to analyze the good and bad rules jointly. We
have considered the disjunctive combination (we use the or operator) of all the
positive rules to obtain a single rule (Positive Rule Disjunction -PRD-). The
same procedure is performed with all the negative ones so we obtain another rule
(Negative Rule Disjunction -NRD-). The new disjunctive rules will be activated
if any of the component rules’ antecedents are verified.

By means of merging the individual rules we can arrive at a more general
description, with a wider support, of the behavior of the learning models. In
Table 5 we summarize both disjunctions, and a third rule representing those
data sets which are not characterized by either one.

21

Table 5: Disjunctive rules obtained from single rules
Id. Rule Support Model %Training Training % Test Test

Diff. Diff.
RBFN 98.16% 5.04% 97.11% 6.46%

PRD If R1+ or R2+ 32.65% MLP 97.29% 0.47% 95.17% 8.15%
then good behaviour LVQ 95.52% 9.08% 95.58% 9.23%

SMO 99.27% 7.00% 98.30% 8.12%
RBFN 85.50% -7.62% 80.81% -9.84%

NRD If R1- or R2- 31.96% MLP 96.12% -0.70% 75.68% -11.34%
then bad behaviour LVQ 74.04% -12.40% 73.73% -12.62%

SMO 87.67% -8.99% 82.68% -10.59%
RBFN 95.35% 2.23% 93.59% 2.94%

not charac- If not PRD and not NRD 35.39% MLP 97.03% 0.21% 89.74% 2.72%
terized then good behaviour LVQ 89.26% 2.82% 89.24% 2.89%

SMO 96.89% 1.64% 94.57% 2.08%

From the collective rules we can observe that the support has been increased
from the single rules for PRD. NRD obtains similar support with respect to the
single rules which conform it. It is also important to notice that the Test and
Training Accuracy Differences are maintained with respect to the single rules
from Table 4 despite the increment in support.

Since no data sets are shared by PRD and NRD, we can consider three blocks
of data sets with their respective support, as depicted in Figures 14 to 17 (with
no particular data set order within each block):

• The first block (the left-side one) represents the data sets covered by the
PRD rule. They are the data sets recognized as being those in which the
ANNs and the SVM have good behavior.

• The second block (the middle one) plots the data sets for the NRD rule,
which are bad data sets for the methods considered.

• The third and last block (the right-side one) contains the unclassified data
sets by the previous two rules.

We can see that almost the 65% of the analyzed data sets are covered by
these two rules with significant differences. Hence the PRD and NRD rules can
be used to define the shared domains of competence of the ANNs and SVM
models.

5.5. Domains of competence validation

In this section the domains of competence obtained by means of the PRD
and NRD rules are validated by means of a fresh bunch of 200 data sets. In
Table 6 we have summarized the average training and test accuracy values for
these new data sets (using the same parameters as before).

Table 7 presents the PRD and NRD rules average training and test accuracy
for the validation data sets for each learning model, as well as the difference from
the global average depicted in Table 6.

The three blocks figure representation of the data of Table 7 for the MLP,
RBFN, LVQ and SVM methods are depicted in Figures 18, 19, 20 and 21 re-
spectively.

From these results we can observe the following:

22

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

RBFN %Accuracy Training RBFN %Accuracy Test

PRD - good behaviour

32.65%

not characterized

35.39%

NRD - bad behaviour

31.96%

Figure 14: Three blocks representation for PRD, NRD and not covered data sets for RBFN

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

MLP %Accuracy Training MLP %Accuracy Test

PRD - good behaviour

32.65%

not characterized

35.39%

NRD - bad behaviour

31.96%

Figure 15: Three blocks representation for PRD, NRD and not covered data sets for MLP

23

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

LVQ %Accuracy Training LVQ %Accuracy Test

PRD - good behaviour

32.65%

not characterized

35.39%

NRD - bad behaviour

31.96%

Figure 16: Three blocks representation for PRD, NRD and not covered data sets for LVQ

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

SVM %Accuracy Training SVM %Accuracy Test

PRD - good behaviour

32.65%

not characterized

35.39%

NRD - bad behaviour

31.96%

Figure 17: Three blocks representation for PRD, NRD and not covered data sets for SVM

24

Table 6: Global Average Training and Test Accuracy/std. dev. for RBFN, MLP, LVQ and
SVM over the validation data sets

Global % Accuracy Training Global % Accuracy Test
Global Training std. dev. Global Test std. dev.

RBFN 85.23% 84.84%
11.51 11.57

MLP 93.09% 88.89%
6.90 9.11

LVQ 83.12% 83.28%
13.56 13.63

SVM 91.57% 90.35%
9.11 9.77

Table 7: Validation results for PRD and NRD rules
Id. Rule Support Model %Training Training % Test Test

Diff. Diff.
PRD 34.50% RBFN 92.88% 7.65% 92.82% 7.98%

If R1+ or R2+ MLP 96.50% 3.41% 95.33% 6.44%
then good behaviour LVQ 93.63% 10.51% 93.71% 10.43%

SMO 97.96% 7.00% 97.70% 8.12%
NRD 37.50% RBFN 76.29% -8.94% 75.48% -9.36%

If R1- or R2- MLP 88.01% -5.08% 80.28% -8.61%
then bad behaviour LVQ 69.79% -13.33% 69.98% -13.30%

SMO 83.38% -8.99% 80.82% -10.59%
not charac- 28.00% RBFN 87.78% 2.55% 87.53% 2.69%

terized If not PRD and not NRD MLP 95.71% 2.62% 92.46% 3.57%
then good behaviour LVQ 88.02% 4.90% 88.23% 4.95%

SMO 94.67% 1.64% 94.04% 2.08%

• The bad behavior characterized by NRD is maintained in this new set of
data sets. The data sets covered by this rule show a bad performance for
the learning methods considered.

• The PRD rule covers the new data sets for which the four learning methods
perform remarkably well. Only in the case of LVQ appear some isolated
outliers with test values below the 70%.

• The differences for these two rules for the four models in training and test
are similar to those obtained in the previous section when extracting the
characterization.

• The support of the PRD and NRD rules are similar to the “training” case.
The support of the not characterized region is also similar.

• The test accuracy differences of the not characterized data sets are posi-
tive, but clearly below than the obtained by the PRD rule.

From these statements, it is possible to conclude that the obtained domains
of competence and their interpretation can indicate the characteristics of the
data sets for which the ANNs and the SVM models considered would perform
well or badly.

25

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

RBFN %Accuracy Training RBFN %Accuracy Test

PRD - good behaviour

34.50%

NRD - bad behaviour

37.50%

not characterized

28.00%

Figure 18: Three blocks representation for PRD, NRD and not covered data sets for RBFN
considering validation data sets

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

MLP %Accuracy Training MLP %Accuracy Test

PRD - good behaviour

34.50%

NRD - bad behaviour

37.50%

not characterized

28.00%

Figure 19: Three blocks representation for PRD, NRD and not covered data sets for MLP
considering validation data sets

26

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

LVQ %Accuracy Training LVQ %Accuracy Test

PRD - good behaviour

34.50%

NRD - bad behaviour

37.50%

not characterized

28.00%

Figure 20: Three blocks representation for PRD, NRD and not covered data sets for LVQ
considering validation data sets

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

SVM %Accuracy Training SVM %Accuracy Test

PRD - good behaviour

34.50%

NRD - bad behaviour

37.50%

not characterized

28.00%

Figure 21: Three blocks representation for PRD, NRD and not covered data sets for SVM
considering validation data sets

27

6. Concluding Remarks

We have performed a study over a set of binary data sets with three ANN
methods and one SVMmodel. We have computed five data complexity measures
for the data sets known as measures of separability of classes in order to obtain
intervals of such metrics in which the method’s performance is significantly good
or bad. We have obtained descriptive rules for two measures, and studied the
interaction between them.

We have obtained two final rules which are simple, interpretable and pre-
cise to describe the common good and bad performance of the ANNs and the
SVM models considered in this work, thus establishing their shared domains of
competence. These domains of competence have been validated using an extra
amount of data sets, observing that they generalize well and describe the behav-
ior of the four models appropriately. Furthermore, we present the possibility of
determining for which data sets RBFN, MLP LVQ and SVM will perform well
or badly prior to their execution using the obtained domains of competence.

We must point out that this is a particular study for four specific methods.
On the other hand, this work presents a new challenge that could be extended
to other ANN models or SVM methods, to analyze the relation between their
domains of competence and parameter adjustment, and to develop new measures
which could give more information on the behaviors of ANNs and SVMs for
pattern recognition.

References

[1] M. Asaduzzaman, M. Shahjahan, K. Murase, Faster training using fusion of
activation functions for feed forward neural networks, International Journal
of Neural Systems 19 (2009) 437–448.

[2] A. Asuncion, D. Newman, UCI machine learning repository, 2007.

[3] M. Basu, T.K. Ho, Data Complexity in Pattern Recognition (Advanced
Information and Knowledge Processing), Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[4] R. Baumgartner, R.L. Somorjai, Data complexity assessment in undersam-
pled classification of high-dimensional biomedical data, Pattern Recogni-
tion Letters 12 (2006) 1383–1389.

[5] E. Bernadó-Mansilla, T.K. Ho, Domain of competence of XCS classifier sys-
tem in complexity measurement space, IEEE Transactions on Evolutionary
Computation 9 (2005) 82–104.

[6] J.C. Bezdek, L. Kuncheva, Nearest prototype classifier designs: An ex-
perimental study, International Journal of Intelligent Systems 16 (2001)
1445–1473.

28

[7] D. Broomhead, D. Lowe, Multivariable functional interpolation and adap-
tive networks, Complex Systems 2 (1988) 321–355.

[8] M. Buhmann, Radial Basis Functions: Theory and Implementations, Cam-
bridge Monographs on Applied and Computational Mathematics, 2003.

[9] R. Capparuccia, R. De Leone, E. Marchitto, Integrating support vector
machines and neural networks, Neural Networks 20 (2007) 590–597.

[10] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995)
273–297.

[11] G. Daqi, L. Chunxia, Y. Yunfan, Task decomposition and modular single-
hidden-layer perceptron classifiers for multi-class learning problems, Pat-
tern Recognition 40 (2007) 2226–2236.

[12] M. Dong, R. Kothari, Feature subset selection using a new definition of
classificabilty, Pattern Recognition Letters 24 (2003) 1215–1225.

[13] D. Du, K. Li, M. Fei, A fast multi-output rbf neural network construction
method, Neurocomputing 73 (2010) 2196–2202.

[14] D. Fisch, B. Kühbeck, B. Sick, S.J. Ovaska, So near and yet so far: New
insight into properties of some well-known classifier paradigms, Information
Sciences 180 (2010) 3381–3401.

[15] S. Garćıa, J.R. Cano, E. Bernadó-Mansilla, F. Herrera, Diagnose of ef-
fective evolutionary prototype selection using an overlapping measure, In-
ternational Journal of Pattern Recognition and Artificial Intelligence 23
(2009) 2378–2398.

[16] A. Ghosh, M. Biehl, B. Hammer, Performance analysis of lvq algorithms:
a statistical physics approach, Neural Networks 19 (2006) 817–829.

[17] T.K. Ho, M. Basu, Complexity measures of supervised classification prob-
lems, IEEE Transactions on Pattern Analysis and Machine Intelligence 24
(2002) 289–300.

[18] S.W. Kim, B.J. Oommen, On using prototype reduction schemes to en-
hance the computation of volume-based inter-class overlap measures, Pat-
tern Recognition 42 (2009) 2695–2704.

[19] Y. Li, M. Dong, R. Kothari, Classifiability-based omnivariate decision trees,
IEEE Transactions on Neural Networks 16 (2005) 1547–1560.

[20] J. Luengo, S. Garćıa, F. Herrera, A study on the use of statistical tests
for experimentation with neural networks: Analysis of parametric test con-
ditions and non-parametric tests, Expert Systems with Applications 36
(2009) 7798–7808.

29

[21] J. Luengo, F. Herrera, Domains of competence of fuzzy rule based clas-
sification systems with data complexity measures: A case of study using
a fuzzy hybrid genetic based machine learning method, Fuzzy Sets and
Systems 161 (2010) 3–19.

[22] S. Maldonado, R. Weber, J. Basak, Simultaneous feature selection and
classification using kernel-penalized support vector machines, Information
Sciences 181 (2010) 115–128.

[23] M.F. Moller, A scaled conjugate gradient algorithm for fast supervised
learning, Neural Networks 6 (1993) 525–533.

[24] R.A. Mollineda, J.S. Sánchez, J.M. Sotoca, Data characterization for ef-
fective prototype selection, in: Proc. of the 2nd Iberian Conf. on Pattern
Recognition and Image Analysis, Springer, 2005, pp. 27–34.

[25] Y.J. Oyang, S.C. Hwang, Y.Y. Ou, C.Y. Chen, Z.W. Chen, Data classifi-
cation with radial basis function networks based on a novel kernel density
estimation algorithm, IEEE Transactions on Neural Networks 16 (2005)
225–236.

[26] J.C. Platt, Fast training of support vector machines using sequential mini-
mal optimization, in: Advances in kernel methods: support vector learning,
MIT Press, Cambridge, MA, USA, 1999, pp. 185–208.

[27] M.J. Powell, Algorithm for approximation, Algorithm for approximation,
Clarendon Press, Oxford, 1987, pp. 143–168.

[28] C. Renjifo, D. Barsic, C. Carmen, K. Norman, G.S. Peacock, Improving
radial basis function kernel classification through incremental learning and
automatic parameter selection, Neurocomputing 72 (2008) 3–14.

[29] R. Rojas, Neural Networks: A Systematic Introduction, Springer, 1996.

[30] J.S. Sánchez, R.A. Mollineda, J.M. Sotoca, An analysis of how training
data complexity affects the nearest neighbor classifiers, Pattern Analysis &
Applications 10 (2007) 189–201.

[31] S. Singh, Multiresolution estimates of classification complexity, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2003) 1534–
1539.

[32] F.W. Smith, Pattern classifier design by linear programming, IEEE Trans-
actions on Computers 17 (1968) 367–372.

[33] S. Suresh, N. Sundararajan, P. Saratchandran, Risk-sensitive loss functions
for sparse multi-category classification problems, Information Sciences 178
(2008) 2621–2638.

[34] Q. Tao, D. Chu, J. Wang, Recursive support vector machines for dimension-
ality reduction, IEEE Transactions on Neural Networks 19 (2008) 189–193.

30

Domains of Competence of Fuzzy Rule Based Classification Systems: An Ad-hoc and an Automatic
Approach 151

2.3. An Automatic Extraction Method of the Domains of Competence of Fuzzy

Rule Based Classification Systems using Data Complexity Measures

J. Luengo, F. Herrera, An Automatic Extraction Method of the Domains of Competence of
Fuzzy Rule Based Classification Systems using Data Complexity Measures. Submitted to
IEEE Transactions on Fuzzy Systems.

• Status: Submitted.

• Impact Factor (JCR 2009): 3.291.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 6 / 103.

• Subject Category: Engineering, Electrical & Electronic. Ranking 10 / 246.

For Review
 O

nly

An Automatic Extraction Method of the Domains of
Competence of Fuzzy Rule Based Classification Systems

using Data Complexity Measures

Journal: Transactions on Fuzzy Systems

Manuscript ID: TFS-2010-0520

Manuscript Type: Full Papers

Keywords:
Classification, Data Complexity, Fuzzy Rule Based Systems,

Domains of Competence

IEEE Transactions on Fuzzy Systems Proof

For Review
 O

nly

1

An Automatic Extraction Method of the

Domains of Competence of Fuzzy Rule

Based Classification Systems using Data

Complexity Measures

Julián Luengo and Francisco Herrera

Abstract

When dealing with problems using Fuzzy Rule Based Classification Systems it is difficult to

know in advance whether the model will perform well or poorly. It would be useful to have a

procedure which indicates, prior to the application of the Fuzzy Rule Based Classification System,

if the outcome will be good or bad.

In this work we present an automatic extraction method to determine the domains of competence

of Fuzzy Rule Based Classification Systems by means of data complexity measures. It uses twelve

metrics of data complexity acting over a large benchmark of data sets in order to analyze the

behavior patterns of the method, obtaining intervals of data complexity measures with good or bad

performance. The Fuzzy Hybrid Genetic Based Machine Learning and the Positive Definite Fuzzy

Classifier domains of competence are extracted by means of the automatic extraction method.

From these intervals we obtain rules that describe both good or bad behaviors of the Fuzzy

Rule Based Classification Systems mentioned, allowing us to characterize the response quality of

the methods from the data set complexity metrics of a given data set. Thus, we can establish the

domains of competence of the Fuzzy Rule Based Classification Systems considered, making it

possible to establish when the method will perform well or poorly prior to its application.

J. Luengo is with the Department of Computer Science and Artificial Intelligence, University of Granada, Granada, 18071,
Granada, Spain. e-mail: julianlm@decsai.ugr.es.

F. Herrera is with the Department of Computer Science and Artificial Intelligence, University of Granada, Granada,
18071, Granada, Spain. e-mail: herrera@decsai.ugr.es.

November 29, 2010 DRAFT

Page 1 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2

Index Terms

Classification, Data Complexity, Fuzzy Rule Based Systems, Domains of Competence

I. INTRODUCTION

Fuzzy Rule Based Classification Systems (FRBCSs) [23], [27] are widely employed due

to their capacity to build a linguistic model interpretable to the users with the possibility

of integrating different information such as that which comes from expert knowledge, from

mathematical models or empiric measures.

New FRBCS models have been proposed on standard classification [21], [22], [31] and

data streams [2] among others. They have been also applied widely including, but not limited

to, the detection of intrusions [39], medical applications [1], [36], [40] and to the imbalanced

data framework [16].

Issues such as the generality of the data, the inter-relationships among the variables and

other factors are key for the prediction capabilities of the classifiers. An emergent field has

arisen that uses a set of complexity measures [5] applied to quantify such particular aspects

of the problem which are considered relevant to the classification task [19]. Studies of data

complexity metrics applied to particular classification learning methods can be found in [6],

[8], [17], [35].

The complexity of the data can be used to characterize FRBCSs’ performance and it can

be considered a new trend in the use of FRBCSs in pattern recognition. Different aspects of

the data can be analyzed, relating those which indicate the easy and difficult problems for

FRBCSs. No data complexity metrics have been analyzed together with FRBCSs up to now,

except in our previous study [30].

In this work we propose a novel automatic extraction method for characterizing the do-

mains of competence of FRBCSs by means of data complexity measures. These domains

of competence characterize the range of data sets for which the FRBCSs obtains a good or

bad performance on average. This allows the user to predict the FRBCS’ behavior prior to

its application, and to have in mind suitable parameter configurations or hints for improving

the FRBCS. We consider twelve data complexity measures for each data set proposed by Ho

and Basu [19] based on the overlaps in feature values from different classes; separability of

November 29, 2010 DRAFT

Page 2 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

3

classes; and measures of geometry, topology, and density of manifolds. Each measure takes

into account different properties of the data. Thus the proposal will be capable of analyzing

different characteristics of the data and relating them to the performance of the FRBCSs.

In order to analyze and check the automatic extraction method, we consider two FRBCSs

of different natures which have proven to perform well.

• The Positive Definite Fuzzy Classifier (PDFC) proposed by Chen and Wang [11] which

is a Takagi-Sugeno based FRBCS.

• The Fuzzy Hybrid Genetic Based Machine Learning (FH-GBML) method proposed by

Ishibuchi et al. [24] which is a Mamdani based FRBCS.

An initial set of 430 binary classification data sets created from real world problems is used

to obtain the domains of competence of the two FRBCSs. Another set of 472 data sets is

used to validate the domains of competence obtained by the automatic method.

Obtaining the FRBCSs’ domains of competence by means of the automatic extraction

method involves the following steps:

• It obtains intervals that describe when the FRBCSs perform well or poorly according to

the data complexity values, using the initial 430 data sets.

• One rule for each interval is formulated, where some information and conclusions about

the behavior of these methods can be stated.

• The individual rules are combined in order to improver their support and interpretability.

• Finally, two rules which discriminate the FRBCS’s good or bad behavior each are

obtained and validated with the extra 472 data sets.

The intervals which describe the performance of the FRBCSs are based on the following

average values:

• Classification ratio, considering the average interval test accuracy, and its difference to

the average global test accuracy (across all the initial 430 data sets) with respect to a

specified threshold.

• Detection of the overfitting, by means of the difference between the training accuracy

and test accuracy ratio.

From these intervals we define the domains of competence of the two FRBCSs. Both

November 29, 2010 DRAFT

Page 3 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4

descriptions are similar, which suggest that the FRBCSs are suitable for the same kind of

problems, in spite of their different nature. Furthermore we compare the FRBCSs with three

non-fuzzy classification methods: C4.5 [34] and Ripper [12] which are related to the FH-

GBML rule induction; and SVM [13] which shares common learning steps with respect

to PDFC. It can be seen that the domains of competence obtained generalize well and the

FRBCSs are well characterized with respect to C4.5, Ripper and SVM.

The rest of this paper is organized as follows. In Section II the considered complexity

measures are introduced as well as the most recent literature on the topic. Section III defines

the domains of competence used, their related approach in the literature and their motivation.

Section IV describes the automatic extraction method proposed in this work. In Section V we

summarize the experimental framework, in which we show the data sets used, the FRBCSs’

details and their parameters. In Section VI we include the experimental results obtained with

the automatic extraction method and the domains of competence extracted, along with their

analysis. Section VII contains the comparison between the FRBCSs and the crisp methods

for the obtained domains of competence. Finally, in Section VIII some concluding remarks

are made.

II. DATA COMPLEXITY MEASURES

In the following subsections, we first present a short review of recent studies of Data

Complexity Metrics (Subsection II-A), and then we describe the measures of overlapping

(Subsection II-B), measures of separability of classes (Subsection II-C) and measures of

geometry (Subsection II-D) used in our study.

A. Recent Studies on Data Complexity

As mentioned above, data complexity measures are a series of metrics that quantify data

set characteristics which imply some difficulty for the classification task. In the following we

gather several recent publications related to these complexity measures and their applications.

They can show a picture of the most recent developments in the topic:

• In [19], Ho and Basu propose some complexity measures for binary classification prob-

lems, gathering metrics of three types: overlaps in feature values from different classes;

November 29, 2010 DRAFT

Page 4 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

5

separability of classes; and measures of geometry, topology, and density of manifolds

• In [37], Singh offers a review of data complexity measures and proposes two new ones.

• In [8], Bernadó and Ho investigate the domain of competence of XCS by means of a

methodology that characterizes the complexity of a classification problem by a set of

geometrical descriptors.

• In [29], Li et al. analyze some omnivariate decision trees using the measure of complexity

based on data density proposed by Ho and Basu.

• Baumgartner and Somorjai define specific measures for regularized linear classifiers in

[6], using Ho and Basu’s measures as reference.

• Sánchez et al. analyze the effect of data complexity on the nearest neighbors classifier

in [35].

• Dong and Kothari propose in [14] a feature selection algorithm based on a complexity

measure defined by Ho and Basu.

• Mollineda et al. in [32] extend some of Ho and Basu’s measure definitions for problems

with more than two classes. They analyze these generalized measures in two classic

Prototype Selection algorithms and remark that Fisher’s discriminant ratio is the most

effective for Prototype Selection.

• Sang-Woon and Oommen [26] analyze how to use prototype selection in order to

decrease the computation time of several data complexity measures, without severely

affecting the outcome with respect to the complete data set.

• Garcı́a et al. in [17] analyze the behavior of the evolutionary prototype selection strategy,

considering a complexity measure for classification problems based on overlapping.

• Luengo and Herrera [30] characterized the behavior of the FH-GBML FRBCS by means

of ad-hoc intervals of the data complexity measures from [19].

In our study we will use the twelve measures proposed in [19] which offer information

for the FH-GBML and PDFC methods. They are summarized in Table I.

In the following Subsections we briefly describe these twelve measures, classified by their

respective types.

November 29, 2010 DRAFT

Page 5 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6

TABLE I
DATA COMPLEXITY MEASURES

Type Id. Description
Measures of F1 maximum Fisher’s discriminant ratio

Overlaps in Feature F2 volume of overlap region
Values from F3 maximum (individual) feature efficiency

Different Classes
L1 minimized sum of error distance by linear programming

Measures of L2 error rate of linear classifier by Linear Programming
Separability N1 fraction of points on class boundary
of Classes N2 ratio of average intra/inter class NN distance

N3 error rate of 1NN classifier
L3 nonlinearity of linear

Measures of classifier by linear programming
Geometry, Topology N4 non-linearity of 1NN classifier

and Density T1 fraction of points with associated
of Manifolds adherence subsets retained

T2 average number of points per dimension

B. Measures of Overlaps in Feature Values from Different Classes

These measures are focused on the effectiveness of a single feature dimension in separating

the classes, or the composite effects of a number of dimensions. They examine the range and

spread of values in the data set within each class, and check for overlaps among different

classes.

F1: maximum Fisher’s discriminant ratio. Fisher’s discriminant ratio for one feature di-

mension is defined as:

f =
(µ1 − µ2)

2

σ2
1 + σ2

2

where µ1, µ2, σ2
1 , σ2

2 are the means and variances of the two classes respectively, in that

feature dimension. We compute f for each feature and take the maximum as measure F1.

For a multidimensional problem, not all features have to contribute to class discrimination.

The problem is easy as long as there is only one discriminating feature. Therefore, we can

just take the maximum f over all feature dimensions in discussing class separability.

F2: volume of overlap region. Let the maximum and minimum values of each feature fi

in class Cj be max(fi, Cj) and min(fi, Cj), then the overlap measure F2 is defined as

F2 =
∏
i

MINMAXi −MAXMINi

MAXMAXi −MINMINi

where i = 1, . . . , d for a d-dimensional problem, and

MINMAXi = MIN(max(fi, C1),max(fi, C2))

November 29, 2010 DRAFT

Page 6 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

7

MAXMINi = MAX(min(fi, C1),min(fi, C2))

MAXMAXi = MAX(max(fi, C1),max(fi, C2))

MINMINi = MIN(min(fi, C1),min(fi, C2))

F2 measures the amount of overlap of the bounding boxes of two classes. It is the product

of a per-feature overlap ratio. The volume is zero as long as there is at least one dimension

in which the value ranges of the two classes are disjointed.

F3: maximum (individual) feature efficiency. In a procedure that progressively removes

unambiguous points falling outside the overlapping region in each chosen dimension [18],

the efficiency of each feature is defined as the fraction of all remaining points separable by

that feature. To represent the contribution of the most useful feature in this sense, we use the

maximum feature efficiency as a measure. This measure considers only separating hyperplanes

perpendicular to the feature axes. Therefore, even for a linearly separable problem, F3 may

be less than 1 if the optimal separating hyperplane is oblique.

C. Measures of Separability of Classes

These measures provide indirect characterizations of class separability. They assume that

a class is made up of single or multiple manifolds that form the support of the probability

distribution of the given class. The shape, position and interconnectedness of these manifolds

give hints on how well two classes are separated, but they do not describe separability by

design. Some examples are shown as follows:

L1: minimized sum of error distance by linear programming. Linear classifiers can be ob-

tained by a linear programming formulation proposed by Smith [38]. The method minimizes

the sum of distances of error points to the separating hyperplane (subtracting a constant

margin):

minimize att

subject to Ztw + t ≥ b

t ≥ 0

November 29, 2010 DRAFT

Page 7 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

8

where a and b are arbitrary constant vectors (both chosen to be 1), w is the weight vector to

be determined, t is an error vector, and Z is a matrix where each column z is defined on an

input vector x (augmented by adding one dimension with a constant value 1) and its class C

(with value C1 or C2) as follows: z = +x if C = C1,

z = −x if C = C2.

The value of the objective function in this formulation is used as a measure. The measure

has a zero value for a linearly separable problem. We should notice that this measure can be

heavily affected by the presence of outliers in the data set.

L2: error rate of linear classifier by Linear Programming (LP). This measure is the error

rate of the linear classifier defined for L1, measured with the training set. With a small

training set this can be a severe underestimate of the true error rate.

N1: fraction of points on class boundary. This method constructs a class-blind minimum

spanning tree over the entire data set, and counts the number of points incident to an edge

going across the two classes. The fraction of such points over all points in the data set is

used as a measure.

N2: ratio of average intra/inter class Nearest Neighbor (NN) distance. For each input

instance xp, we calculate the distance to its nearest neighbor within the class (intraDist(xp))

and the distance to nearest neighbor of any other class (interDist(xp)). Then, the result is the

ratio of the sum of the intra-class distances to the sum of the inter-class distances for each

input example, i.e.,

N2 =

∑m
i=0 intraDist(xi)∑m
i=0 interDist(xi)

,

where m is the number of examples in the data set. This metric compares the within-class

spread with the distances to the nearest neighbors of other classes. Low values of this metric

suggest that the examples of the same class lie closely in the feature space. Large values

indicate that the examples of the same class are disperse.

N3: error rate of 1-NN classifier. This is simply the error rate of a nearest-neighbor

classifier measured with the training set. The error rate is estimated by the leave-one-out

November 29, 2010 DRAFT

Page 8 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

9

method. The measure denotes how close the examples of different classes are. Low values

of this metric indicate that there is a large gap in the class boundary.

D. Measures of Geometry, Topology and Density of Manifolds

These measures evaluate to what extent two classes are separable by examining the exis-

tence and shape of the class boundary. The contributions of individual feature dimensions are

combined and summarized in a single score, usually a distance metric, rather than evaluated

separately. Three measures from this family are described as follows:

L3: nonlinearity of linear classifier by LP. Hoekstra and Duin [20] proposed a measure

for the nonlinearity of a classifier with respect to a given data set. Given a training set,

the method first creates a test set by linear interpolation (with random coefficients) between

randomly drawn pairs of points from the same class. Then the error rate of the classifier

(trained by the given training set) on this test set is measured. Here we use a nonlinearity

measure for the linear classifier defined for L1. This measure is sensitive to the smoothness

of the classifier’s decision boundary as well as to the overlap of the convex hulls of the

classes.

N4: nonlinearity of 1-NN classifier. Following the same procedure presented for the L3

measure, in the case of N4 the error is calculated for a nearest neighbor classifier. This

measure is for the alignment of the nearest-neighbor boundary with the shape of the gap or

overlap between the convex hulls of the classes.

T1: fraction of points with associated adherence subsets retained. This measure originated

from a work on describing shapes of class manifolds using the notion of adherence subsets

in pretopology [28]. Simply speaking, it counts the number of balls needed to cover each

class, where each ball is centered at a training point and grown to the maximum size before

it touches another class. Redundant balls lying completely in the interior of other balls are

removed. We normalize the count by the total number of points. In a problem where each

point is closer to points of the other class than points of its own class, each point is covered

by a distinctive ball of a small size, resulting in a high value of the measure.

T2: average number of points per dimension. This is a simple ratio of the number of points

November 29, 2010 DRAFT

Page 9 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

10

in the data set over the number of feature dimensions, i.e.

T2 =
m

n
,

where m is the number of examples in the data set, and n is the number of attributes of the

data set.

III. DOMAINS OF COMPETENCE OF CLASSIFIERS

In this section the motivation behind the proposal is presented in Subsection III-A. The

concept of the domains of competence of the FRBCS used in this paper is given in Subsection

III-B.

A. Approaches on the classifier performance characterization

To determine when a learning method will perform well or poorly is not a trivial task,

considering accuracy as the performance measure. One primary indicative of the method’s

performance is the training accuracy. However, this is not always a precise measure. Figures

1 and 2 contain the accuracy results in training and test for FH-GBML, PDFC methods over

all the initial 430 data sets (see Subsection V-A), plotted in ascending training accuracy value.

We would like to point out how overfitting is continuously present in them. Therefore the

necessity of other kinds of tools for characterizing the behavior of the methods appears.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

FH-GBML %Accuracy Training FH-GBML %Accuracy Test

Fig. 1. Accuracy in Training/Test for FH-GBML sorted
by training accuracy

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400 450

PDFC %Acierto Train PDFC %Acierto Test

Fig. 2. Accuracy in Training/Test for PDFC sorted by
training accuracy

One of the best-known approaches to predict the classifier performance is the Meta-

Learning problem, which formalized this task [7], [9], [33]. Meta Learning is also intended to

November 29, 2010 DRAFT

Page 10 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

11

select the best classifier for a given problem among several ones. A Meta Learning example

most often involves a pair (Machine Learning problem instance, Machine Learning algorithm),

labeled with the performance of the algorithm on the Machine Learning problem instance.

The two main problems of Meta Learning are the problem of the selection and the

representation of Meta Learning examples.

• How to represent an Machine Learning problem instance was tackled using diverse

descriptors, e.g. number of examples, number of attributes, percentage of missing values,

landmarkers, etc. [33]. The difficulty is due to the fact that the descriptors must take

into account the example distribution, which is not easily achieved in most cases.

• A second difficulty concerns the selection of the Machine Learning problem instances.

Kalousis [25] indicates that the representativity of the problems and the perturbation

induce strong biases in the Meta Learning classifier.

For these reasons among others, Meta Learning has achieved limited success.

We can also refer to the least known Phase Transition approach. The Phase Transition

paradigm was initially developed to better understand the performances of Constraint Satisfac-

tion algorithms indicating where the really hard problems are [10]. By means of this paradigm,

a regular complexity landscape can be observed: the actual complexity is negligible in two

wide regions, the YES and NO region, where the probability of satisfiability is respectively

close to 1 and close to 0. These regions are separated by the so-called phase transition, where

the hardest problems on average concentrate.

Using the Phase Transition, Baskiotis and Sebag [4] adapted the k-term DNF representation

to classification problems, evaluating the C4.5 learning performance with respect to the

underlying target concept. They defined C4.5 competence maps by means of generating

boolean data sets of different characteristics (number of attributes, number of terms, etc.)

based on a uniform distribution. C4.5 is then trained on these data sets and C4.5’s error

constitutes the complexity landscape (i.e. the competence map) using different data sets’

configurations.

However these competence maps are only defined for binary attributes and they are based

on the assumption of a uniformly distributed sample space, which is not usually true. Fur-

thermore, the descriptive expressions obtained are not unique, hindering their interpretability.

November 29, 2010 DRAFT

Page 11 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

12

The data complexity measures presented in the previous section are a recent and promising

option and they can be used to carry out the characterization of the methods. One direct

approach is to analyze the relationship between the data complexity value for a given data

set and the performance obtained by the method. This approach does not suffer from the

previous approaches’ problems, as it is not dependent on a specific Machine Learning method

either in the data distribution or the kind of data set attributes.

Following the criteria in [30] a series of rules are created to predict the regions a priori

to the learning algorithm’s behavior. Using enough data sets sorted by a particular data

complexity measure, we can observe regions in which the method is performing noticeably

well or poorly. In Figure 3, which shows the PDFC method’s accuracy sorted by the N1 data

complexity measure, good and bad results can be distinguished easily. However, this case

does not usually apply when considering all the data complexity measures. Figure 4 shows

an example of a data complexity measure in which no significant regions could be found for

either good or bad behavior for the FH-GBML method.

0,00000

10,00000

20,00000

30,00000

40,00000

50,00000

60,00000

70,00000

80,00000

90,00000

100,00000

0 50 100 150 200 250 300 350 400 450

%
 A

cc
u

ra
cy

Data set

FH-GBML %Accuracy Training FH-GBML %Accuracy Test

Fig. 3. Accuracy in Training/Test for PDFC sorted by N1

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

%
 A

c
c
u

r
a

c
y

Data set

FH-GBML %Accuracy Training FH-GBML %Accuracy Test

Fig. 4. Accuracy in Training/Test for FH-GBML sorted
by T1

In this work an automatic extraction method capable of determining the domains of

competence of the FRBCSs is proposed and presented in the next section. It is based on

the good and bad behavior definitions initially explored in [30].

B. Domains of competence using data complexity measures

The concept of domains of competence involves the characterization of the range of

problems for which a particular learning method is well suited or not. These problems share

some aspects that explain the good or bad behavior of the method on them. There are some

November 29, 2010 DRAFT

Page 12 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

13

previous approaches in the literature which define the domains of competence of a learning

method based on the data complexity measures. As mentioned, this may be a key question

when training a classification method takes a long time, due to the complexity of the learning

algorithm or the size of the data. Problems denoted as difficult a priori may also require a

different parameter configuration in respect to simpler ones. The data complexity measures

also give hints on the nature of the data, and specific efforts can be made in order to improve

the method’s performance in the difficult regions.

Bernadó and Ho [8] initially defined the concept of domains of competence for the XCS

classifier. Their domains of competence indicate the “region” of the complexity space of

problems adequate to the learning method characteristics. Such a characterization could be

useful for focusing the efforts of the learning algorithm’s improvements on those difficult

areas. In order to establish such limits, they used six of the twelve data complexity measures

presented in Table I, and related the error rate of XCS to high or low values of the data

complexity metrics. They also observed which kind of metrics best discriminate between

difficult and easy problems for XCS.

In [30] their notion of domains of competence for the FH-GBML FRBCS is extended,

using all of the twelve data complexity measures and eliminating the constraints on the low

or high values. Specific intervals of the measures in which the FH-GBML method performs

well or poorly (instead of relating its performance to “high” or “low” values) are extracted

ad-hoc. These intervals were coded as rules which constitute the domains of competence of

the learning method.

This concept of domains of competence can be related to other approaches in the literature

presented in the previous subsection. The competence maps described by the Phase Transi-

tion paradigm can be considered as a limited version of these domains of competence. As

mentioned in the previous subsection, they suffer from severe limitations that have not been

overcome: the real-world data sets are rarely completely binary and uniformly distributed.

The domains of competence of two different classifiers cannot be compared in order

to determine the best classifier. Only their shared strengths and weakness can be pointed

out. The comparison between classifiers is directly related to the Meta Learning approach.

As mentioned, many problems arise when trying to determine the best algorithm and no

November 29, 2010 DRAFT

Page 13 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

14

satisfactory solution has been proposed. For these reasons the comparative model selection

is out of the scope of this paper and we focus on the characterization of the domains of

competence of individual FRBCSs. Only the independent recommendation of individual (or

several) classifiers can be made on this basis.

It can be argued that, instead of extracting the domains of competence, it would be more

useful to simply train and test the classifier over the considered data set. Nevertheless this

same criticism can be applied to the Meta Learning and Phase Transition approaches and

simply running the classifier is not always possible or desirable. For example, big data sets

may cause the FRBCS to take too much time to train or the adequate parameter configuration

may not be obvious. These issues can be addressed by means of the data complexity measures,

as they work directly with the data and they give information on the data characteristics. This

information cannot be extracted from the Meta Learning or Phase Transition approaches.

IV. AUTOMATIC EXTRACTION METHOD

In the study performed in [30] an ad-hoc method used for extracting intervals for the

FH-GBML was proposed. The intervals were extracted over the sorted data sets as described

in Subsection III-A. This ad-hoc method was based on the selection of intervals of data

complexity metrics’ values, with some significance for the user according to a visual criteria

for the good results.

Three main problems were found when dealing with the ad-hoc process of extracting

intervals in [30]:

• The cut points which define the intervals were arbitrarily selected according to the

graphics.

• It is possible to omit intervals with similar characteristics to the extracted ones. That is,

the user is not using a formal description of the good or bad behavior intervals.

• The resultant characterization is subjective.

These issues can be tackled by the rigorous definition of the good and bad intervals, and by

creating an automatic search method which extracts the domains of competence of the learning

method. The automatic extraction method decides which data complexity measures are useful

(if they contain significant intervals), and which measures are discarded (without providing

November 29, 2010 DRAFT

Page 14 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

15

any interval for them). In Subsection IV-A the initial considerations for the definition of the

good or bad behavior elements and intervals’ is provided. Subsections IV-B and IV-C give the

good and bad behavior elements and intervals definitions respectively. Finally the automatic

extraction method is described in Subsection IV-D.

A. Initial considerations

The automatic extraction method analyzes a list of data sets where each complete data set

has an associated performance measure of the FRBCS considered (typically the training and

test accuracy rates) and the values of the twelve data complexity measures.

Definition 1. Let U = {u1, u2, . . . , un} be a list of n different data sets. Each data set ui has

associated a tuple Tui
= (utra

i , utst
i , uF1

i , uF2
i , . . . , uT2

i) where utra
i is the training accuracy

value associated with the data set ui for a specific FRBCS, utst
i is the test accuracy value

associated with the data set ui for the same FRBCS, and the set CMui
= {uF1

i , uF2
i , . . . , uT2

i }

contains the values for the twelve data complexity measures.

Definition 2. Given a list of data sets U = {u1, u2, . . . , un}, we define the average training

accuracy over U as Ū tra = 1
n

∑n
i=1 u

tra
i and the average test accuracy as Ū tst = 1

n

∑n
i=1 u

tst
i .

In order to define the domains of competence of an FRBCS, intervals of values of the

data complexity measures need to be stated. The intervals are defined over the list U of data

sets, sorting the list U by one data complexity measure CMj of the twelve data complexity

measures represented in the T tuple, defined as follows.

Definition 3. A sorted list of data sets UCMj
with respect to the data complexity CMj is

such that ∀uCMj

i , u
CMj

j ∈ UCMj
;u

CMj

i ≤ u
CMj

j , if i < j.

Definition 4. Given a list of sorted data sets UCMj
= {u1, u2, . . . , un} by the data complexity

measure CMj ∈ T , we consider an interval V = {ui, ui+1, . . . , ul} ⊆ UCMj
where the lower

and upper bound values of V immediately follows:

• Mlow(V) = mink{u
CMj

k ∈ V } = ui.

• Mup(V) = maxk{u
CMj

k ∈ V } = ul.

November 29, 2010 DRAFT

Page 15 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

16

In our proposal, we distinguish between good and bad behavior elements (data sets), and

good and bad behavior intervals. The latter ones are obtained using the former ones, and

they are described in the next subsections.

B. Good and bad behavior elements

The distinction between good and bad behavior elements is based upon the absence or

presence of overfitting, respectively, as well as the test accuracy value obtained. These are

the two most common elements to determine when a classification algorithm performs well

or poorly. The automatic method works with specific values, depending on the data sets, so

we need to parameterize these two subjective indicators.

The former aspect is evaluated comparing the element’s difference between training and test

accuracy with respect to the global average. This global average difference is straightforwardly

defined as

Ūdiff =
1

n

n∑
j=1

utra
j − utst

j . (1)

An element with a difference between training and test accuracy above this average is

considered to be overfitted, while the opposite case is not.

On the other hand any good behavior element ui must present a minimum test accuracy

value utest
i , represented by the minGoodElementTest. By contrast a bad behavior element uj

shows a test accuracy value utest
i under the same threshold minGoodElementTest.

With the aforementioned parameters, the definitions of the good and bad behavior elements

are as follows.

Definition 5. A good behavior element ui is such that

1) utest
i ≥ minGoodElementTest; and

2) utra
i − utst

i ≤ 1
n

∑n
j=1 u

tra
j − utst

j .

Definition 6. A bad behavior element ui is such that

1) utest
i < minGoodElementTest; and

2) utra
i − utst

i > 1
n

∑n
j=1 u

tra
j − utst

j .

November 29, 2010 DRAFT

Page 16 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

17

Due to the first item of both definitions, no element can be considered as a good behavior

and bad behavior element simultaneously.

C. Good and bad behavior intervals

The good or bad behavior intervals V shows the good or bad performance of the classifier

over a range of elements on average. Thus, for intervals, the definition of good or bad behavior

is different with respect to individual elements, although they share the same underlying

concepts: overfitting and test accuracy.

We consider the average difference across every element covered as a criteria to discrim-

inate between good and bad behavior. The average interval V difference is defined as

V̄ diff =
1

|V |

n∑
uj∈V

utra
j − utst

j . (2)

A good interval must have a lower average difference than the global average Ūdiff defined

in Equation (1). A bad interval must verify the opposite case.

We also establish a threshold between the average test accuracy of the interval V̄ tst and

the global average Ū tst. An interval of good behavior must have an average test accuracy

above this threshold plus Ū tst, while a bad behavior interval must verify the opposite case:

Ū tst minus the threshold. This condition reflects the behavior difference of the classifier with

respect to the average.

In the case of good behavior intervals, we also establish that no element can have a test

accuracy below minGoodIntervalTest percent. The reason for this is to avoid very bad

elements being covered by the interval due to the latter still having a good test average. This

aspect is not crucial when defining bad intervals.

The definition of the good and bad behavior intervals using these parameters is as follows.

Definition 7. An interval of good behavior V = {ui, . . . , uj} is such that

• V̄ diff ≤ Ūdiff ; and

• V̄ tst ≥ Ū tst + threshold; and

• ∀uj ∈ U ;utst
j ≥ minGoodIntervalTest

November 29, 2010 DRAFT

Page 17 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

18

Definition 8. An interval of bad behavior V = {ui, . . . , uj} is such that

• V̄ diff > Ūdiff ; and

• Ū tst < Ū tst − threshold.

D. Automatic Extraction Method Description

The automatic extraction method obtains a series of good or bad behavior intervals (as

indicated in Definitions 7 and 8 respectively) from a list of data sets U . Each data set ui ∈ U

has the associated tuple T containing the training and test accuracy values for a particular

FRBCS (FH-GBML or PDFC in this case) and its twelve data complexity values.

In order to extract the good and bad behavior intervals, the automatic extraction method

arranges the data sets in U by sorting them with one of the data complexity measures

CMj, j = 1, . . . , 12, obtaining a new sorted list UCMj
. Then the sorted list UCMj

is explored

from the lowest to highest values of CMj . When a good or bad behavior element ui ∈ UCMj

is found (Definitions 5 and 6 respectively), the exploration stops. The found element ui is

considered as an initial interval V = {ui}, which is extended by adding the adjacent elements

to ui. This growing process continues while the interval V verifies the definitions of good

or bad behavior intervals accordingly. A final interval V = {ui−r, . . . , ui, . . . , ui+s}; r, s ∈ N

is obtained when the corresponding definition is not met.

When all the possible intervals have been extracted, a final cleaning process is applied,

in order to merge overlapped or slightly separated intervals of the same type, provided that

the corresponding definition of a good or bad interval is maintained. Finally, a filtering is

applied in order to avoid non-significant intervals. Those intervals with a support under 15%

of the total data sets are discarded.

We present the main outline of the automatic extraction method described in Algorithm 1.

The software can be downloaded from http://sci2s.ugr.es/DC-FRBCS-automatic-method.

The functions used in the algorithm are described as follows:

• nextImportantGoodPoint(ui, U): Looks for the index k of the next good behavior

point uk in the subset V = {ui, . . . , un} ⊆ U . If no good behavior point can be found

it returns −1.

November 29, 2010 DRAFT

Page 18 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

19

Algorithm 1 Automatic Extraction Method
Input: A list of data sets U = {u1, u2, . . . , un}. Each data set ui has associated a tuple T containing the training and test

accuracy values for a particular learning method and its twelve data complexity values.
Output: A set of intervals G in which the learning method shows good or behavior, and a set of intervals B where the

learning method shows bad behavior
Steps:
G← {}
B ← {}
for each CMj ∈ T do

//Sort the list U by each data complexity measure CMj

UCMj ← sort(U,CMj)
//Search for good behavior intervals
i← 1
while i < n do

pos← nextImportantGoodPoint(ui, UCMj)
if pos ̸= −1 then

V ← extendGoodInterval(pos, UCMj)
G← G ∪ {V }
ui ←Mup(V)

end if
end while
//Search for bad behavior intervals
i← 1
while i < n do

pos← nextImportantBadPoint(ui, UCMj)
if pos ̸= −1 then

V ← extendBadInterval(pos, UCMj)
B ← B ∪ {V }
ui ←Mup(V)

end if
end while

end for
//Merge and filter the intervals if necessary
G← mergeOverlappedIntervals(G)
G← dropSmallIntervals(G)
B ← mergeOverlappedIntervals(B)
G← dropSmallIntervals(B)
return {G,B}

• nextImportantBadPoint(ui, U): Looks for the index k of the next bad behavior point

uk in the subset V = {ui, . . . , un} ⊆ U . If no bad behavior point can be found it returns

−1.

• extendGoodInterval(pos, U): From the reference point upos this method creates a new

interval of good behavior V = {upos−r, . . . , upos, . . . , upos+s} ⊆ U , maintaining the

element’s order in U .

• extendBadInterval(pos, U): From the reference point upos this method creates a new

interval of bad behavior V = {upos−r, . . . , upos, . . . , upos+s} ⊆ U , maintaining the

element’s order in U .

• mergeOverlappedIntervals(A): In this function, an interval Vk is dropped from A if

∃Vm ∈ A;Mup(Vm) ≥ Mup(Vk) and Mlow(Vm) ≤ Mlow(Vk). Moreover it tries to merge

overlapped intervals Vk, Vm;Vk ∩ Vm ̸= ∅; or intervals separated by a maximum gap of

November 29, 2010 DRAFT

Page 19 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

20

5 elements (data sets), provided that the new merged intervals satisfy Definition 7 and

8 of good or bad behavior respectively.

• dropSmallIntervals(A): This function discards the intervals Vk ∈ A which contains a

number of data sets less than 0.15 · n.

The data sets used in this study are the same as were used in the ad-hoc study in [30]. Thus

we have previous reference values for the threshold and the minimum acceptable accuracy

ratio. We observe from [30] that the minimum threshold obtained by the ad-hoc rules was 6,

and most of the data sets covered by the good intervals had 90% test accuracy. Consequently

the values of the three parameters for the automatic method are as follows.

• minGoodElementTest = 90.

• minGoodIntervalTest = 60

• threshold = 6.

Please note that the parameters could be adjusted to the particular bunch of data sets used.

That is, the concept of good or bad behavior varies according to the user and it can be tuned

depending on the context.

V. EXPERIMENTAL FRAMEWORK

In this section we first describe the data sets considered for the domains of competence

extraction and evaluation in Subsection V-A. Next in Subsection V-B the basic notions of the

the FH-GBML method and the PDFC method are depicted. Finally we show the parameters

used for both FRBCSs and crisp classifiers used in Subsection V-C.

More detailed FRBCS descriptions can be obtained from the webpage http://sci2s.ugr.

es/DC-FRBCS-automatic-method. All the data sets’ generation details and their download

packages are also available.

A. Data sets choice for the experimental study

In this paper a set of binary classification problems have been used. Initially, these problems

were generated from pairwise combinations of the classes of 21 problems from the University

of California, Irvine (UCI) repository [3]. We take each data set and extract the examples

belonging to each class. Then we construct a new data set with the combination of the

November 29, 2010 DRAFT

Page 20 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

21

examples from two different classes. This will result in a new data set with only 2 classes

and the examples which have two such classes as output. In order to obtain additional data

sets we also group the classes two by two.

If the data set proves to be linearly-separable, then we can classify it with a linear classifier

with no error and such a data set would not be a representative problem. The complexity

measure L1 indicates if a problem is linearly-separable when its value is zero, so every

data set with an L1 value of zero is discarded. Finally, all these combinations resulted in 430

binary classification problems which are used as our training-bed for the automatic extraction

method.

In order to validate the results obtained in our analysis, we have applied the same method-

ology of grouping the classes two by two to the yeast, flare and car data sets, due to their

high number of classes. With these last three data sets we have obtained another 472 data

sets used for validating the rules obtained in our analysis, for a total of 902 data sets.

B. Fuzzy Rule Based Classification Systems

Any classification problem consists of w training patterns xp = (xp1, . . . , xpn), p =

1, 2, . . . , w from M classes where xpi is the ith attribute value (i = 1, 2, . . . , n) of the

p-th training pattern.

In this work we use fuzzy rules in the following form:

Rule Rj : If x1 is A1
j and . . . and xn is An

j then Class = Cj with RWj (3)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector,

Ai
j is an antecedent fuzzy set, Cj is a class label or a numeric value, and RWj is the rule

weight. We always use triangular membership functions as antecedent fuzzy sets.

The FH-GBML method [24] consists of a Pittsburgh approach where each rule set is han-

dled as an individual. It also contains a Genetic Cooperative-Competitive Learning approach

(an individual represents a unique rule). The system defines 14 possible linguistic terms for

each attribute which correspond to Ruspini’s strong fuzzy partitions with two, three, four, and

five uniformly distributed triangular-shaped membership functions. Furthermore, the system

also uses “don’t care” as an additional linguistic term.

November 29, 2010 DRAFT

Page 21 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

22

The PDFC learning method [11] uses a Support Vector Machine (SVM) approach to build

up the model. PDFC considers a fuzzy model with m + 1 fuzzy rules of the form given in

Equation (3) where Ak
j is a fuzzy set with membership function akj : R → [0, 1], RWj = 1

and Cj = bj ∈ R. Therefore PDFC is an FRBCS with constant THEN-parts. PDFC considers

the use of membership functions generated from a reference function ak through location

transformation [15], like the symmetric triangle and the gaussian function. With these kind of

membership functions a Mercer Kernel can be constructed and we can use the SVM algorithm

to find an optimal separating hyperplane. Once we get such a hyperplane, the fuzzy rules

can easily be extracted.

C. Parameters of the Methods

In this section we present the parameters used for all the data sets, adjusted empirically to

obtain a good performance over all the 430 initial data sets. We use fixed parameters in all

cases due to the necessity of analyzing the characterization of the methods independently of

the procedure of adjusting the parameters, focusing only on the complexity of the data. The

crisp classifiers used to compare with the FRBCSs are included as well, using the parameter

configuration recommended by the authors. In Table II we have summarized the parameters

used by the methods.
TABLE II

PARAMETERS USED BY THE METHODS (p IS THE NUMBER OF ATTRIBUTES IN THE DATA SET)

FRBCSs Crips classifiers
FH-GBML Ripper
Number of fuzzy rules: 5× p rules. growing subset percentage = 0.66
Number of rule sets (Npop): 200 rule sets. K = 2
Crossover probability: 0.9. C4.5
Mutation probability: 1/p. confidence level = 0.25
Number of replaced rules: All rules except the best-one minimum item-sets per leaf = 2
(Pittsburgh-part, elitist approach), number of rules/5 (Michigan-part). pruning for the final tree = yes
Total number of generations: 1,000 generations. SVM
Don’t care probability: 0.5. C =1
Probability of the application of the Michigan iteration: 0.5 tolerance Parameter = 0.001
PDFC epsilon = 10−12

C =100 Kernel type = Puk
d = 0.25 ω = 1.0
Positive definite function type: symmetric triangle σ = 1.0

VI. EXPERIMENTAL STUDY

In this section the analysis of the automatic extraction method is presented. This study

begins by presenting the intervals obtained by the automatic extraction method for the two

November 29, 2010 DRAFT

Page 22 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

23

FRBCSs for the initial 430 data sets, and the the rules obtention from the intervals in

Subsection VI-A. The analysis of the disjunctive rules and their conjunctive combination is

presented in Subsection VI-B. Finally the rules which represent the domains of competence

of the FRBCSs are validated with the extra amount of 472 data sets in Subsection VI-C.

In order to estimate the learning methods’ accuracy we use a 10-fold cross validation

scheme for the data sets presented in Subsection V-A. We take the average accuracy of

training and test of the 10 partitions as a representative measure of the FRBCSs’ performance.

In Table III we summarize the global Training and Test accuracy obtained by the FRBCSs

for the initial 430 data sets. All the results can be downloaded from the webpage http:

//sci2s.ugr.es/DC-FRBCS-automatic-method.
TABLE III

GLOBAL AVERAGE TRAINING AND TEST ACCURACY/STD. DEV. FOR FH-GBML AND PDFC OVER THE 430 DATA SETS

Global % Accuracy Training Global % Accuracy Test
Global Training std. dev. Global Test std. dev.

FH-GBML 95.31% 89.88%
6.01 8.68

PDFC 94.08% 91.66%
7.57 8.65

A. Intervals and Rule Extraction with the Automatic Extraction Method

Once we have obtained the average accuracy in training and test of each FRBCS for every

data set, we use the automatic extraction method described above in order to obtain a series of

intervals of such data complexity measures in which each FRBCS has obtained significantly

good or bad behavior with respect to the global performance. The precise concept of a good

or bad behavior interval for the learning method has already been defined in Section IV.

In Table IV we summarize the intervals obtained by the automatic extraction method. We

must point out that some of the intervals are shared among the FRBCSs, if not completely,

at least in part of their supported data sets. It is also interesting to note how the automatic

extraction method is capable of extracting different intervals for the different FRBCSs, due

to the differences in performance and the common good and bad behavior definitions they

share. The automatic extraction method has been capable of extracting more intervals of

good behavior for the PDFC method than for FH-GBML. In the case of the intervals of bad

behavior of the methods, the two FRBCS have the same number of bad intervals with similar

data complexity measures.

November 29, 2010 DRAFT

Page 23 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

24

TABLE IV
INTERVALS OBTAINED BY THE AUTOMATIC EXTRACTION METHOD FOR THE 430 DATA SETS

FH-GBML PDFC
Good behavior Bad behavior Good behavior Bad behavior

Measure Range Measure Range Measure Range Measure Range
N1 [0.00117,0.1359] F1 [0.2031,0.8689] N1 [0.02759,0.08] F3 [0.05674,0.3869]
N2 [0.00883,0.2976] N1 [0.2582,0.66] N2 [0.00883,0.1966] N1 [0.2582,0.5714]
L1 [0.03021,0.1999] N2 [0.5754,0.9256] N3 [0.0,0.05714] N2 [0.5754,0.9256]
L2 [0.0,0.09449] N3 [0.07339,0.5426] L1 [0.03021,0.1621] N3 [0.07328,0.5426]
T1 [0.21,0.8779] N4 [0.1227,0.4868] L2 [0.0,0.07543] N4 [0.1673,0.4868]

L1 [0.5543,4.481] T1 [0.21,0.8819] L2 [0.3095,0.494]
L2 [0.2822,0.494] T1 [0.9539,0.9967]

We can derive a set of rules from the intervals. For these rules we consider the support of

the rules over the 430 data sets, the average training and test accuracy of the covered data

sets, and the difference with the global accuracy shown in Table III.

In Table V we depict the rules derived from the intervals obtained by the automatic

extraction method for FH-GBML and Table VI shows the rules for PDFC.
TABLE V

RULES OBTAINED FOR FH-GBML FROM THE AUTOMATIC INTERVALS

Good behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1+ N1 ∈ [0.00117,0.1359] 49.77 99.02 3.71 95.9 6.01
R2+ N2 ∈ [0.00883,0.2976] 37.44 98.97 3.66 95.94 6.06
R3+ N3 ∈ [0.0,0.05769] 43.72 99.25 3.94 95.88 6.00
R4+ L1 ∈ [0.03021,0.2201] 21.16 98.91 3.6 95.92 6.03
R5+ L2 ∈ [0.0,0.09449] 34.19 98.92 3.61 95.89 6
R6+ T1 ∈ [0.21,0.8779] 22.79 99.51 4.2 95.92 6.04

Bad behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1- F1 ∈ [0.2031,0.8689] 19.53 90.9 -4.41 83.85 -6.03
R2- N1 ∈ [0.2582,0.66] 23.72 87.06 -8.25 78.1 -11.78
R3- N2 ∈ [0.5754,0.9256] 16.51 87.47 -7.85 78.43 -11.46
R4- N3 ∈ [0.07339,0.5426] 46.74 91.17 -4.14 83.87 -6.02
R5- N4 ∈ [0.1227,0.4868] 37.91 90.26 -5.05 83.87 -6.01
R6- L1 ∈ [0.5543,4.481] 31.40 91.22 -4.1 83.87 -6.01
R7- L2 ∈ [0.2822,0.494] 22.09 89.68 -5.63 79.59 -10.3

Tables V and VI are organized with the following columns:

• The first column corresponds to the identifier of the rule for further references.

• The “Range” column presents the domain of the rule.

• The third column “Support” presents the percentage of data sets which verify the

antecedent part of the rule.

• The column “% Training, Std. Dev.” shows the average accuracy in training of all the

examples which are covered by the rule. The standard deviation of the average training

accuracy is also computed.

• The column “Training Difference” contains the difference between the training accuracy

November 29, 2010 DRAFT

Page 24 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

25

TABLE VI
RULES OBTAINED FOR PDFC FROM THE AUTOMATIC INTERVALS

Good behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1+ N1 ∈ [0.00117,0.1039] 39.07 98.81 4.73 97.66 6.01
R2+ N2 ∈ [0.00883,0.1966] 22.33 98.77 4.69 97.67 6.01
R3+ N3 ∈ [0.0,0.05714] 43.26 98.85 4.77 97.68 6.02
R4+ L1 ∈ [0.03021,0.1621] 15.12 98.64 4.56 97.7 6.04
R5+ L2 ∈ [0.0,0.07543] 28.37 98.58 4.5 97.66 6.01
R6+ T1 ∈ [0.21,0.8819] 23.26 98.8 4.72 97.7 6.04

Bad behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1- F3 ∈ [0.05674,0.3869] 23.02 89.23 -4.85 85.35 -6.3
R2- N1 ∈ [0.2768,0.66] 22.56 83.86 -10.22 79.68 -11.98
R3- N2 ∈ [0.5754,0.9256] 16.51 84.35 -9.73 80.4 -11.26
R4- N3 ∈ [0.07328,0.5426] 46.98 89.07 -5.01 85.64 -6.02
R5- N4 ∈ [0.1673,0.4868] 26.28 86.74 -7.34 83.4 -8.25
R6- L2 ∈ [0.3095,0.494] 17.44 85.86 -8.22 80.9 -10.75
R7- T1 ∈ [0.9539,0.9967] 34.19 89.18 -4.9 85.62 -6.04

of the rule and the training accuracy across all 430 data sets.

• The column “% Test, Std. Dev.” shows the average accuracy in test of all the examples

which are covered by the rule. The standard deviation of the average test accuracy is

computed as well.

• The column “Test Difference” contains the difference between the test accuracy of the

rule and the test accuracy across all 430 data sets.

As we can observe in these tables, the positive rules (denoted with a “+” symbol in their

identifier) always show a positive difference with the global average, both in training and test

accuracy. The negative ones (with a “-” symbol in their identifier) verify the opposite case.

The support of the rules shows us that we can characterize a wide range of data sets and

obtain significant differences in accuracy. The differences for the good behavior rules in test

are very close to 6, the threshold parameter value given in Section IV-D. This is not the case

for all the bad behavior rules. This means that the overfitting limit is more determinant for

the bad behavior rules, while in the good behavior ones it is less so.

An interesting fact is that the automatic method uses the same data complexity measures

in order to characterize the good data sets for the two FRBCSs. Most of the data complexity

measures used to describe the good behavior of the FRBCSs belong to the measures of

separability of classes category. Therefore the two FRBCSs appear to share most of the

complexity space in which they perform well.

November 29, 2010 DRAFT

Page 25 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

26

The region of the complexity space in which the FRBCSs perform badly is very similar as

well. However some differences appear, as FH-GBML needs the description given by the F1

and L1 measures while PDFC does not. On the other hand, PDFC bad behavior is described

by F3 and T1 but PDFC is not.

With these simple and individual rules, an initial characterization of the data sets for which

good or bad behavior is obtained for the FRBCSs can be considered. From these statements,

we can conclude that the FRBCSs depend on very similar characteristics of the data when

they perform well, but more particularities appear when they perform poorly. This is due to

the close nature of the FRBCSs and it is well indicated by the automatic method.

B. Combination of the Individual Rules

The objective of this section is to analyze the effect of combining the rules. We consider

the disjunctive combination (we use the or operator) of all the positive rules to obtain a

single rule (Positive Rule Disjunction -PRD-). The same procedure is performed with all

the negative ones so we obtain another rule (Negative Rule Disjunction -NRD-). The new

disjunctive rules will be activated if any of the component rules’ antecedents are verified.

By means of merging the individual rules we can arrive at a more general description, with

a wider support, of the behavior of the FRBCSs’ methods.

The PRD and NRD rules may present overlapping in their support and a mutually exclusive

description of the good and bad regions is desirable [30]. In order to tackle this issue we

consider the conjunctive operator and and the difference operator and not between the PRD

and NRD rules. The difference will remove the data sets for which the FRBCSs present

good or bad behavior from the disjunctive negative or positive rules, respectively. That is,

by means of the difference we try to remove the data sets of the opposite type from the

considered disjunctive rule. Thus we obtain three different kinds of intersection and an extra

region:

• Intersection of positive disjunction and the negative disjunction (PRD∧NRD).

• Intersection of positive disjunction and not the negative disjunction (PRD∧qNRD).

• Intersection of negative disjunction and not the positive disjunction (NRD∧qPRD).

• Not characterized region, in which no rule covers its data sets.

November 29, 2010 DRAFT

Page 26 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

27

TABLE VII
DISJUNCTIVE RULES FROM ALL SIMPLE RULES FOR FH-GBML AND PDFC

FH-GBML
Id. Range % Support % Training Training % Test Test

If R1+ or R2+ or R3+ 58.60 98.64 3.33 94.76 4.88
PRD or R4+ or R5+ or R6+

then good behavior
If R1- or R2- or R3- or R4- 64.65 93.27 -2.04 87.02 -2.86

NRD or R5- or R6- or R7-
then bad behavior

If PRD and NRD then 24.41 97.98 2.67 93.98 4.10
PRD ∧NRD good behavior

If PRD and not NRD then 34.19 99.12 3.81 95.32 5.44
PRD ∧q NRD good behavior

If NRD and not PRD then 36.81 90.42 -4.89 82.79 -7.09
NRD∧qPRD bad behavior

not If not (PRD or NRD) 1.06 96.61 1.30 89.33 -0.55
characterized then bad behavior

PDFC
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
If R1+ or R2+ or R3+ 53.49 98.28 4.20 96.91 5.25

PRD or R4+ or R5+ or R6+
then good behavior

If R1- or R2- or R3- or R4- 61.40 91.09 -2.99 88.06 -3.60
NRD or R5- or R6- or R7-

then bad behavior
If PRD and NRD then 16.28 96.99 2.91 95.63 3.97

PRD ∧NRD good behavior
If PRD and not NRD then 37.21 98.85 4.77 97.47 5.81

PRD ∧q NRD good behavior
If NRD and not PRD then 45.12 88.96 -5.12 85.33 -6.33

NRD∧qPRD bad behavior
not If not (PRD or NRD 1.40 98.51 4.43 94.79 3.13

characterized then good behavior

In Table VII we depict the new collective rules for the FRBCSs. From them, we can point

out the following for the two FRBCSs:

• The Positive Rule Disjunction (PRD) offers a high support for both the two FRBCSs,

and it also gives a good training and test accuracy (over 97% and 91% respectively).

• The Negative Rule Disjunction (NRD) obtains a wide support as well (over 62%).

However, the differences in both training and test have decreased due to this increment

in support with respect to the single rules of bad behavior.

• The Positive and Negative Rule Disjunction (PRD∧NRD) is more specific than PRD in

isolation. It is also similar to PRD in the training and test accuracy difference. This rule

obtains positive differences in training and test accuracy, representing the good data sets

for the FRBCSs covered by the rules of bad behavior.

• The Positive and Not Negative Rule Disjunction (PRD∧qNRD) has a lower support than

PRD∧NRD except in the case of the PDFC method. Its difference is higher than PRD

and PRD∧NRD rules, since the data sets with low accuracy for the FRBCSs present in

November 29, 2010 DRAFT

Page 27 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

28

PRD have been removed by PRD∧NRD.

• The Negative and Not Positive Rule Disjunction (NRD∧qPRD) is a good rule to describe

the bad behavior of the FRBCSs. It has a high support and a high difference in both

training and test sets. When removing the good data sets of PRD∧NRD, the NRD∧qPRD

rule becomes more accurate.

• The data sets not characterized by either the PRD rule or the NRD rule always present

a small difference from the global accuracy both in training and test. Therefore they

cannot be classified as good or bad, but they constitute a low percentage of the data

sets.

From all the disjunctive and new conjunctive rules, we can present PRD as a representative

description of good data sets, and NRD∧qPRD as a representative description for bad data

sets, when using the FRBCSs. As these rules are mutually exclusive, we can consider three

blocks of data sets with their respective support. In Figures 5 and 6 we depict the three block

regions for the FH-GBML method and the PDFC method respectively. On the left, the data

sets covered by PRD are depicted. On the right the data sets covered by NRD∧qPRD are

plotted. The small regions in the center correspond to the not characterized data sets.

From Figures 5 and 6 we can observe that more than 99% of the analyzed data sets are char-

acterized in both cases. Using the ad-hoc extraction method in [30] the PRD and NRD∧qPRD

rules covered 75% of the 430 data sets for the FH-GBML method, approximately 25% less.

Thus, the use of the automatic extraction method clearly outperforms the ad-hoc approach,

improving the characterization of the data sets using the data complexity measures. Hence the

domains of competence of good behavior and bad behavior characterization for the FRBCSs

can be achieved by the PRD and NRD∧qPRD rules.

C. Validation of the Collective Rules

Once we have obtained a set of descriptive rules of the domains of competence for

the two FRBCSs with the automatic extraction method, their domains of competence have

been established. In order to validate and evaluate how well these domains of competence

generalize we should use an extra bunch of data sets which have not been used previously.

As described in Subsection V-A, we validate the PRD and NRD∧qPRD rules using a set

November 29, 2010 DRAFT

Page 28 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

29

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

% Training Accuracy FH-GBML % Test Accuracy FH-GBML

PRD - good behavior

58.60%

NRD^¬PRD - bad behavior

40.23%

Fig. 5. FH-GBML block representation for PRD, not characterized and NRD∧qPRD covered data sets

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%Training Accuracy PDFC % Test Accuracy PDFC

PRD - good behavior

53.49%

NRD^¬PRD - bad behavior

45.12%

Fig. 6. PDFC block representation for PRD, not characterized and NRD∧qPRD covered data sets

of 472 fresh data sets. In Table VIII we summarize the average training and test accuracy

values for each classifier.
TABLE VIII

GLOBAL AVERAGE TRAINING AND TEST ACCURACY/STD. DEV. FOR FH-GBML AND PDFC OVER THE VALIDATION
DATA SETS

Global % Accuracy Training Global % Accuracy Test
Global Training std. dev. Global Test std. dev.

FH-GBML 91.33% 89.03%
7.61 8.44

PDFC 91.87% 90.19%
7.49 8.19

We present Table IX with the average training and test accuracy of the data set covered by

the PRD and NRD∧qPRD rules for each FRBCS, and the difference from the global average

of the new 472 data sets.

November 29, 2010 DRAFT

Page 29 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

30

TABLE IX
VALIDATION RESULTS FOR PRD AND NRD∧qPRD RULES

FH-GBML
Id. % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
PRD 52.54 95.62 4.29 94.03 5.01

NRD∧qPRD 47.46 86.57 -4.76 83.50 -5.53
not characterized 0 - - - -

PDFC
Id. % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
PRD 47.46 95.79 3.92 94.18 3.99

NRD∧qPRD 52.54 87.31 -4.56 84.38 -5.81
not characterized 0 - - - -

The two blocks figure representation of the data of Table IX for the FH-GBML method

and the PDFC method are depicted in Figures 7 and 8 respectively.

From these results we can observe the following:

• The good behavior characterized by PRD is maintained in this new set of data sets. The

bad behavior characterized by NRD∧qPRD is also obtained.

• All the validation data sets are characterized, showing the good generalization of the

domains of competence obtained.

For the FRBCSs considered, their particular PRD and NRD∧qPRD rules has a support of

around 50% for each one, which indicates a good balance in the characterization of the good

and bad domains of competence obtained. The definitions of good and bad behavior intervals

given in Subsection IV can be applied to different methods to obtain robust rules. The PRD

and NRD∧qPRD rules obtained from the use of the automatic extraction method can predict

the behavior of the FRBCSs, defining their domains of competence.

VII. COMPARISON OF THE DOMAINS OF COMPETENCE WITH CRISP MODELS

In this section we analyze the domains of competence of the FRBCSs in comparison with

three crisp models related to them. We consider the C4.5 [34] and Ripper [12] as a crisp

methods related to FH-GBML as both of them are rule learners. An SVM algorithm [13] is

compared with the PDFC algorithm, as the latter adjusts its rules using the same procedure.

The parameters used for their execution are shown in Subsection V-C.

Table X summarizes the average test accuracy of FH-GBML versus C4.5 and Ripper;

and PDFC versus SVM for the 472 validation data sets. It depicts the global average test

November 29, 2010 DRAFT

Page 30 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

31

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%Training Accuracy FH-GBML % Test Accuracy FH-GBML

PRD - good behaviour

52.54%

NRD^¬PRD - bad behaviour

47.46%

Fig. 7. FH-GBML block representation for PRD and NRD∧qPRD for validation data sets

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%Training Accuracy PDFC % Test Accuracy PDFC

PRD - good behaviour

47.46%

NRD^¬PRD - bad behaviour

52.54%

Fig. 8. PDFC block representation for PRD and NRD∧qPRD for validation data sets

accuracy of each method, as well as the average test accuracy in each good and bad domain

of competence of the FRBCSs.

C4.5 has a better average performance than FH-GBML while Ripper has a lower average

test accuracy. However the differences between the methods are small, particularly for C4.5

and FH-GBML. Both C4.5 and Ripper have homogeneous behavior, presenting improvement

in the FH-GBML domain of competence for good data sets and behaving worse in the

opposite case. Thus the three rule based methods (both crisp and FRBCSs) show common

behavior and a comparison between them cannot be established, as indicated in Subsection

III-B.

November 29, 2010 DRAFT

Page 31 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

32

TABLE X
AVERAGE TEST ACCURACY FOR FH-GBML VS. C4.5 AND RIPPER; AND PDFC VS. SVM IN THEIR DOMAINS OF

COMPETENCE

Test accuracy
FH-GBML C4.5 Ripper

Global 89.03 89.18 86.17
PRD 94.03 94.11 91.61
NRD∧qPRD 83.50 83.73 80.15

Test accuracy
PDFC SVM

Global 90.19 90.16
PRD 95.06 94.75
NRD∧qPRD 85.78 86.02

PDFC and SVM methods perform approximately the same on average. In the case of

considering the data sets covered by the PRD rule, this difference is increased in favor of

PDFC. For the data sets covered by the NRD∧qPRD rule, SVM performs better than PDFC.

Thus for the PDFC method a different behavior is shown with respect to SVM.

The rule based methods, C4.5 and Ripper, show a behavior concordant with the rule

obtained for the FRBCSs: better performance for the PRD rule, worse performance for

the NRD∧qPRD rule. The approximate model, SVM, shows an opposite behavior when

compared with these rules. Thus rule based methods are characterized by similar domains

of competence. This is not verified for the approximate method (SVM) which has different

nature.

VIII. CONCLUDING REMARKS

We have proposed a new automatic extraction method to characterize the domains of

competence of FRBCSs. In order to analyze it, we have performed a study over a large set

of binary data sets with two FRBCSs, formally named the FH-GBML method and the PDFC

method. First we have computed twelve data complexity measures for each data set. Next we

have used the automatic extraction method and we have obtained a different set of intervals

for each FRBCS in which the method’s performance is significantly good or bad. Then we

have built descriptive rules from these intervals and we have studied the interaction between

the proper rules.

We have obtained two rules which are precise to describe the both good and bad perfor-

mance of each of the two FRBCSs. We have validated these rules with an extra benchmark of

independent data sets in order to check their generalization and prediction capabilities. The

November 29, 2010 DRAFT

Page 32 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

33

definition of the domains of competence of good or bad behavior is therefore provided and

it has been compared with three crisp methods, showing that these domains of competence

are not only related between FRBCSs, but also with crisp rule based models due to their

related nature. Finally, we present the possibility of determining automatically which data

sets would prove to be good or bad for the two FRBCSs prior to their execution, using the

data complexity measures.

We must point out that this is a study that uses two specific methods. These two methods

are very different in their nature so we can confirm the capabilities of this methodology.

This work presents a new challenge that could be extended to other learning methods, to

automatically analyze their domains of competence, and to develop new measures which

could provide us with more information on the behavior of FRBCSs for pattern recognition.

ACKNOWLEDGMENT

Supported by the Spanish Ministry of Science and Technology under Project TIN2008-

06681-C06-01. J. Luengo holds a FPU scholarship from Spanish Ministry of Education and

Science.

REFERENCES

[1] M. R. Akbarzadeh-Totonchi and M. Moshtagh-Khorasani, “A hierarchical fuzzy rule-based approach to aphasia

diagnosis,” Journal of Biomedical Informatics, vol. 40, no. 5, pp. 465–475, 2007.

[2] P. P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from data streams,” IEEE Transactions on Fuzzy

Systems, vol. 16, no. 6, pp. 1462–1475, 2008.

[3] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007. [Online]. Available: http://archive.ics.uci.

edu/ml/

[4] N. Baskiotis and M. Sebag, “C4.5 competence map: a phase transition-inspired approach,” in ICML ’04: Proceedings

of the twenty-first international conference on Machine learning. New York, NY, USA: ACM, 2004, p. 8.

[5] M. Basu and T. K. Ho, Data Complexity in Pattern Recognition (Advanced Information and Knowledge Processing).

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[6] R. Baumgartner and R. L. Somorjai, “Data complexity assessment in undersampled classification of high-dimensional

biomedical data,” Pattern Recognition Letters, vol. 12, pp. 1383–1389, 2006.

[7] H. Bensusan and A. Kalousis, “Estimating the predictive accuracy of a classifier,” in EMCL ’01: Proceedings of the

12th European Conference on Machine Learning. London, UK: Springer-Verlag, 2001, pp. 25–36.

[8] E. Bernadó-Mansilla and T. K. Ho, “Domain of competence of XCS classifier system in complexity measurement

space,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 82–104, 2005.

November 29, 2010 DRAFT

Page 33 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

34

[9] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Metalearning: Applications to Data Mining, ser. Cognitive

Technologies. Springer, January 2009.

[10] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the really hard problems are,” in IJCAI’91: Proceedings of the

12th international joint conference on Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1991, pp. 331–337.

[11] Y. Chen and J. Z. Wang, “Support vector learning for fuzzy rule-based classification systems,” IEEE Transactions on

Fuzzy Systems, vol. 11, no. 6, pp. 716–728, 2003.

[12] W. Cohen, “Fast effective rule induction,” in Machine Learning: Proceedings of the Twelfth International Conference,

1995, pp. 1–10.

[13] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp. 273–297, 1995.

[14] M. Dong and R. Kothari, “Feature subset selection using a new definition of classificabilty,” Pattern Recognition

Letters, vol. 24, pp. 1215–1225, 2003.

[15] D. Dubois and H. Prade, “Operations on fuzzy numbers,” International Journal of Systems Sciences, vol. 9, pp.

613–626, 1978.

[16] A. Fernández, S. Garcı́a, M. J. del Jesús, and F. Herrera, “A study of the behaviour of linguistic fuzzy rule based

classification systems in the framework of imbalanced data-sets,” Fuzzy Sets and Systems, vol. 159, no. 18, pp. 2378–

2398, 2008.

[17] S. Garcı́a, J. R. Cano, E. Bernadó-Mansilla, and F. Herrera, “Diagnose of effective evolutionary prototype selection

using an overlapping measure,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 8,

pp. 2378–2398, 2009.

[18] T. K. Ho and H. S. Baird, “Pattern classification with compact distribution maps,” Computer Vision and Image

Understanding, vol. 70, no. 1, pp. 101–110, 1998.

[19] T. K. Ho and M. Basu, “Complexity measures of supervised classification problems,” IEEE Transactions on Pattern

Analysins and Machine Intelligence, vol. 24, no. 3, pp. 289–300, 2002.

[20] A. Hoekstra and R. P. Duin, “On the nonlinearity of pattern classifiers,” in ICPR ’96: Proceedings of the International

Conference on Pattern Recognition (ICPR ’96) Volume IV-Volume 7472. Washington, DC, USA: IEEE Computer

Society, 1996, pp. 271–275.

[21] J. Hühn and E. Hüllermeier, “FR3: A fuzzy rule learner for inducing reliable classifiers,” IEEE Transactions on Fuzzy

Systems, vol. 17, no. 1, pp. 138–149, 2009.

[22] ——, “FURIA: an algorithm for unordered fuzzy rule induction,” Data Mining and Knowledge Discovery, vol. 19,

no. 3, pp. 293–319, 2009.

[23] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling with Linguistic Information Granules: Advanced

Approaches to Linguistic Data Mining. Springer-Verlag New York, Inc., 2004.

[24] H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Hybridization of fuzzy GBML approaches for pattern classification

problems,” IEEE Transactions on System, Man and Cybernetics B, vol. 35, no. 2, pp. 359–365, 2005.

[25] A. Kalousis, “Algorithm selection via meta-learning,” Ph.D. dissertation, Université de Geneve, 2002.

[26] S.-W. Kim and B. J. Oommen, “On using prototype reduction schemes to enhance the computation of volume-based

inter-class overlap measures,” Pattern Recognition, vol. 42, no. 11, pp. 2695–2704, 2009.

[27] L. Kuncheva, Fuzzy Classifier Design. Springer, Berlin, 2000.

November 29, 2010 DRAFT

Page 34 of 35IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

35

[28] F. Lebourgeois and H. Emptoz, “Pretopological approach for supervised learning,” in ICPR ’96: Proceedings of the

International Conference on Pattern Recognition (ICPR ’96) Volume IV-Volume 7472. Washington, DC, USA: IEEE

Computer Society, 1996, pp. 256–260.

[29] Y. Li, S. Member, M. Dong, R. Kothari, and S. Member, “Classifiability-based omnivariate decision trees,” IEEE

Transactions on Neural Networks, vol. 16, pp. 1547–1560, 2005.

[30] J. Luengo and F. Herrera, “Domains of competence of fuzzy rule based classification systems with data complexity

measures: A case of study using a fuzzy hybrid genetic based machine learning method,” Fuzzy Sets and Systems,

vol. 161, no. 1, pp. 3–19, 2010.

[31] E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, “SGERD: A steady-state genetic algorithm for extracting fuzzy

classification rules from data,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 1061–1071, 2008.

[32] R. A. Mollineda, J. S. Sánchez, and J. M. Sotoca, “Data characterization for effective prototype selection,” in Proc.

of the 2nd Iberian Conf. on Pattern Recognition and Image Analysis. Springer, 2005, pp. 27–34.

[33] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier, “Meta-learning by landmarking various learning algorithms,”

in ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2000, pp. 743–750.

[34] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo–California: Morgan Kaufmann Publishers, 1993.

[35] J. S. Sánchez, R. A. Mollineda, and J. M. Sotoca, “An analysis of how training data complexity affects the nearest

neighbor classifiers,” Pattern Analysis & Applications, vol. 10, no. 3, pp. 189–201, 2007.

[36] G. Schaefer, M. Zavisek, and T. Nakashima, “Thermography based breast cancer analysis using statistical features

and fuzzy classification,” Pattern Recognition, vol. 42, no. 6, pp. 1133–1137, 2009.

[37] S. Singh, “Multiresolution estimates of classification complexity,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 25, no. 12, pp. 1534–1539, 2003.

[38] F. W. Smith, “Pattern classifier design by linear programming,” IEEE Transactions on Computers, vol. 17, no. 4, pp.

367–372, 1968.

[39] C. Tsang, S. Kwong, and H. Wang, “Genetic-fuzzy rule mining approach and evaluation of feature selection techniques

for anomaly intrusion detection,” Pattern Recognition, vol. 40, no. 9, pp. 2373–2391, 2007.

[40] S. A. Vinterbo, E.-Y. Kim, and L. Ohno-Machado, “Small, fuzzy and interpretable gene expression based classifiers,”

Bioinformatics, vol. 21, no. 9, pp. 1964–1970, 2005.

November 29, 2010 DRAFT

Page 35 of 35 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3. Analysis of Over-sampling and Under-sampling approaches for Imbalanced Problems using Data
Complexity Measures 189

3. Analysis of Over-sampling and Under-sampling approaches for

Imbalanced Problems using Data Complexity Measures

The journal papers associated to this part are:

J. Luengo, A. Fernandez, S. Garćıa, F. Herrera, Addressing Data Complexity for Imbalanced
Data Sets: Analysis of SMOTE-based Oversampling and Evolutionary Undersampling. Soft
Computing, doi:10.1007/s00500-010-0625-8, in press (2011).

• Status: In press.

• Impact Factor (JCR 2009): 1.328.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 51 / 103.

• Subject Category: Computer Science, Interdisciplinary Applications. Ranking 41 / 95.

FOCUS

Addressing data complexity for imbalanced data sets: analysis
of SMOTE-based oversampling and evolutionary undersampling

Julián Luengo • Alberto Fernández •

Salvador Garcı́a • Francisco Herrera

� Springer-Verlag 2010

Abstract In the classification framework there are prob-

lems in which the number of examples per class is not

equitably distributed, formerly known as imbalanced data

sets. This situation is a handicap when trying to identify the

minority classes, as the learning algorithms are not usually

adapted to such characteristics. An usual approach to deal

with the problem of imbalanced data sets is the use of a

preprocessing step. In this paper we analyze the usefulness

of the data complexity measures in order to evaluate the

behavior of undersampling and oversampling methods.

Two classical learning methods, C4.5 and PART, are

considered over a wide range of imbalanced data sets built

from real data. Specifically, oversampling techniques and

an evolutionary undersampling one have been selected for

the study. We extract behavior patterns from the results in

the data complexity space defined by the measures, coding

them as intervals. Then, we derive rules from the intervals

that describe both good or bad behaviors of C4.5 and

PART for the different preprocessing approaches, thus

obtaining a complete characterization of the data sets and

the differences between the oversampling and undersam-

pling results.

Keywords Classification � Evolutionary algorithms �
Data complexity � Imbalanced data sets � Oversampling �
Undersampling � C4.5 � PART

1 Introduction

The problem of imbalanced classes is one of the problems

that emerged when Machine Learning (ML) reached

maturity, being a widely used technology in the world of

business, industry, and scientific research. Its importance

grew as researchers realized that the analyzed data sets

contained many more instances or examples from a class or

classes with respect to the remaining ones (Chawla et al.

2004), and the obtained classification models performed

below the desired threshold in the minority classes. Cur-

rently it is considered as a challenge by the Data Mining

Community (Yang and Wu 2006).

The main handicap of this type of problem is that

standard learning algorithms minimize a global measure of

error, and this supposes a bias towards the majority class

(Sun et al. 2009). Hence, to tackle this issue, the use of

preprocessing techniques is a good solution in order to

balance the training set before the learning process (Batista

et al. 2004; Estabrooks et al. 2004; He and Garcia 2009).

On the other hand, it is well known that the prediction

capabilities of the classifiers are also dependent on the

problem’s characteristics as well. An emergent field, that

uses a set of complexity measures applied to the problem to

describe its difficulty, has recently arisen. These measures

try to capture different aspects or sources of complexity

which are considered complicated to the classification task

(Basu and Ho 2006). Studies of data complexity metrics

applied to particular classification’s algorithms can be

found (Basu and Ho 2006; Bernadó-Mansilla and Ho 2005;

J. Luengo (&) � F. Herrera

Department of Computer Science and Artificial Intelligence,

University of Granada, 18071 Granada, Spain

e-mail: julianlm@decsai.ugr.es

F. Herrera

e-mail: herrera@decsai.ugr.es

A. Fernández � S. Garcı́a

Department of Computer Science, University of Jaén,

23071 Jaén, Spain

e-mail: alberto.fernandez@ujaen.es

S. Garcı́a

e-mail: sglopez@ujaen.es

123

Soft Comput

DOI 10.1007/s00500-010-0625-8

Baumgartner and Somorjai 2006; Sánchez et al. 2007;

Garcı́a et al. 2009c).

Our objective is to show that the data complexity

measures are adequate to analyze the effect of the pre-

processing in imbalanced data for classification. We will

consider two main preprocessing approaches: oversam-

pling and undersampling of the data. We will identify the

regions in the data complexity space in which the prepro-

cessing works well, and the bad performance regions as

well. In a related approach (Garcı́a et al. 2008) the rela-

tionship between the Imbalance Ratio (IR) (Orriols-Puig

and Bernadó-Mansilla 2008) and the overlapping of the

class labels with respect to the performance of several

learning methods was studied. However, no preprocessing

approach was analyzed in this study.

In order to analyze the oversampling and undersampling

by means of the data complexity measures, we will use the

‘‘Synthetic Minority Over-sampling Technique’’ (SMOTE)

and its variant with the Wilson’s Edited Nearest Neighbor

Rule (ENN) as representative oversampling preprocesing

methods. SMOTE is a classical oversampling method,

whereas SMOTE-ENN was shown in Batista et al. (2004)

to achieve a very good behavior with the C4.5 decision

tree. The Evolutionary Undersampling with CHC (EUS-

CHC) method proposed by Garcı́a and Herrera (2009a) will

be included as a representative evolutionary undersampling

approach. It has been proved to be very competitive with

respect to SMOTE and SMOTE-ENN, and to be the best

among other representative techniques from the family of

undersampling as shown in their study.

The effect of these three preprocessing techniques will

be analyzed with respect to two well-known learning

methods. The first one is the C4.5 decision tree (Quinlan

1993), which has been used in many recent analyses of

imbalanced data (Su and Hsiao 2007; Garcı́a et al. 2009b;

Drown et al. 2009). The second one is the PART algorithm

(Frank and Witten 1998) also used by Garcı́a et al. (2009b)

in the imbalanced data framework.

Following the methodology proposed by Luengo and

Herrera (2010), three of the data complexity measures

proposed by Ho and Basu (2002) are informative in order

to create intervals of their values over the data sets in

which C4.5 and PART perform well or bad on average

after applying each preprocessing technique. We will use a

large collection of data sets with different degrees of

imbalance from the UCI repository (Asuncion and New-

man 2007) in order to sample the data complexity space.

Then we will formulate rules for such intervals, comparing

the support (number of data sets included in the interval)

and average learning method’s performance for the three

preprocessing techniques. Therefore, we can evaluate the

performance of C4.5 and PART when using the oversam-

pling and undersampling approaches by means of

observing differences in the covered data sets by the

obtained rules. These differences will provide information

about the behavior of the three considered preprocessing

approaches for C4.5 and PART.

This paper is organized as follows: first, Sect. 2 pre-

sents the problem of imbalanced data sets, describing its

features, the preprocessing methods used, and the metric

we have employed in this context. Next, Sect. 3 intro-

duces the data complexity metrics we have used along

with recent studies in the topic. In Sect. 4 the background

on the use of data complexity for imbalanced data and the

experimental framework used in this study are presented.

In Sect. 5 the analyses of the methodology used and the

experimental results are performed. Section 6 summarizes

and concludes the work. Appendix 1 contains the figures

with the intervals extracted in the study. Appendix 2

depicts the tables with the average results obtained for

each data set in the study.

2 Imbalanced data sets in classification

In this section, the problem of imbalanced data sets in

Sect. 2.1 is introduced first. The SMOTE and SMOTE-

ENN are described in Sect. 2.2. The EUSCHC method is

described in Sect. 2.3. Finally, Sect. 2.4 presents the

evaluation metrics for this kind of classification problems.

2.1 The problem of imbalanced data sets

In the classification problem field, the scenario of imbal-

anced data sets appears when the number of examples that

represent the different classes are very different among

them (Chawla et al. 2004). We focus on the binary-class

imbalanced data sets, where there is only one positive

(minority) and one negative (majority) class. In this work

we consider the IR (Orriols-Puig and Bernadó-Mansilla

2008), defined as the number of negative class instances

divided by the number of positive class instances. The IR

can be used to organize the different data sets according to

their degree of imbalance.

Most of the learning algorithms aim to obtain a model

with a high prediction accuracy and a good generalization

capability. However, this inductive bias towards such a

model supposes a serious challenge with the classification

of imbalanced data (Sun et al. 2009). First, if the search

process is guided by the standard accuracy rate, it benefits

the covering of the majority examples; second, classifica-

tion rules that predict the positive class are often highly

specialized and thus their coverage is very low; hence they

are discarded in favor of more general rules, i.e., those that

predict the negative class. Furthermore, it is not easy to

distinguish between noise examples and minority class

J. Luengo et al.

123

examples and they can be completely ignored by the

classifier.

In recent years regarding real world domains the

importance of the imbalance learning problem grows since

it is a recurring problem in many applications, such as

remote-sensing (Williams et al. 2009), pollution detection

(Lu and Wang 2008) and especially medical diagnosis

(Kilic et al. 2007; Mazurowki et al. 2008; Celebi et al.

2007; Peng and King 2008).

For this reason, a large number of approaches have been

previously proposed to deal with the class imbalance

problem. These approaches can be categorized into two

groups: the internal approaches that create new algorithms

or modify existing ones to take the class imbalance prob-

lem into consideration (Barandela et al. 2003; Diamantini

an Potena 2009) and external approaches that preprocess

the data in order to diminish the effect cause by their class

imbalance (Fernández et al. 2008; Drown et al. 2009; Tang

et al. 2009). Furthermore, cost-sensitive learning solutions

incorporating both the data and algorithmic level approa-

ches assume higher misclassification costs with samples in

the minority class and seek to minimize the high cost errors

(Domingos 1999; Sun et al. 2007; Zhou and Liu 2006).

The great advantage of the external approaches is that

they are more versatile, since their use is independent of

the classifier selected. Furthermore, we may preprocess all

data sets before-hand in order to use them to train different

classifiers. In this manner, the computation time needed to

prepare the data is only used once.

2.2 Oversampling approaches: the SMOTE

and SMOTE-ENN algorithms

As mentioned before, applying a preprocessing step in

order to balance the class distribution is a positive solution

to the imbalance data set problem (Batista et al. 2004).

Specifically, in this work we have chosen an over-sampling

method which is a reference in this area: the SMOTE

algorithm (Chawla et al. 2002), and a variant called

SMOTE-ENN (Batista et al. 2004).

In SMOTE the minority class is over-sampled by taking

each minority class sample and introducing synthetic

examples along the line segments joining any/all of the k

minority class nearest neighbors. Depending upon the

amount of oversampling required, neighbors from the k-

nearest neighbors are randomly chosen. This process is

illustrated in Fig. 1, where xi is the selected point, xi1 to xi4

are some selected nearest neighbors and r1 to r4 the synthetic

data points created by the randomized interpolation. The

implementation employed in this work uses the euclidean

distance, and balances both classes to the 50% distribution.

Synthetic samples are generated in the following way:

take the difference between the feature vector (sample)

under consideration and its nearest neighbor. Multiply this

difference by a random number between 0 and 1, and add it

to the feature vector under consideration. This causes the

selection of a random point along the line segment between

two specific features. This approach effectively forces the

decision region of the minority class to become more

general. An example is detailed in Fig. 2.

In short, its main idea is to form new minority class

examples by interpolating between several minority class

examples that lie together. Thus, the overfitting problem is

avoided and causes the decision boundaries for the minority

class to spread further into the majority class space.

On the other hand, class clusters could not be well

defined since some minority class examples might be

invading the majority class space. This situation can occur

when interpolating minority class examples can expand the

minority class clusters, introducing artificial minority class

examples too deeply in the majority class space. Inducing a

classifier under such a situation can lead to overfitting.

Batista et al. proposed to apply ENN to the over-sampled

training set as a data cleaning method. ENN removes any

example whose class label differs from the class of at least

two of its three nearest neighbors. Thus, any example that is

misclassified by its three nearest neighbors is removed from

the training set. We refer to this technique as SMOTE-ENN.

2.3 Undersampling approach: the EUSCHC algorithm

Instead of creating new examples of the minority class, the

undersampling approach selects a subset of the examples

which represents the initial problem better, and avoids the

r4

r2
r1

r3

xi3

xi1

xi2

xi4

x i

r

Fig. 1 An illustration on how to create the synthetic data points in the

SMOTE algorithm

Fig. 2 Example of the SMOTE application

Addressing data complexity for imbalanced data sets

123

bias to the minority class by removing redundant examples.

This approach has also the advantage of creating a reduced

set of examples to the induction process, making it less

costly.

The search for the optimal subset of examples which

affect the learning method’s performance the less can be

considered as a search problem in which evolutionary

algorithms can be applied. In this work the EUSCHC

technique (Garcı́a and Herrera 2009a) is considered.

EUSCHC is an evolutionary undersampling technique,

which removes redundant noisy and redundant examples.

EUSCHC uses the well-known CHC evolutionary

algorithm (Eshelman 1991) as a base for the selection of

the subset of the examples, considering a binary codifica-

tion for the subset membership. EUSCHC can also use any

performance measure as fitness, weighting positively the

correctly classified examples which are outside the selected

subset.

2.4 Evaluation in imbalanced domains

The measures of the quality of classification are built from

a confusion matrix (shown in Table 1) which records

correctly and incorrectly recognized examples for each

class. The most used empirical measure, accuracy (1), does

not distinguish between the number of correct labels of

different classes, which in the framework of imbalanced

problems may lead to erroneous conclusions. As a classical

example, if the ratio of imbalance presented in the data is

10:100, i.e., there is ten positive instance versus ninety

negatives, then a classifier that obtains an accuracy rate of

90% is not truly accurate if it does not correctly cover the

single minority class instance

Acc ¼ TPþ TN

TPþ FPþ TNþ FN
ð1Þ

One appropriate metric that could be used to measure

the performance of classification over imbalanced data sets

is the Receiver Operating Characteristic (ROC) graphics

(Bradley 1997). In these graphics the tradeoff between the

benefits and costs can be visualized. They show that any

classifier cannot increase the number of true positives

without also increasing the false positives. The Area Under

the ROC Curve (AUC) (Huang and Ling 2005)

corresponds to the probability of correctly identifying

which of the two stimuli is noise and which is signal plus

noise. AUC provides a single-number summary for the

performance of learning algorithms.

The way to build the ROC space is to plot on a two-

dimensional chart the true positive rate (Y axis) against the

false positive rate (X axis) as shown in Fig. 3. The points

(0, 0) and (1, 1) are trivial classifiers in which the output

class is always predicted as negative and positive, respec-

tively, while the point (0, 1) represents perfect classifica-

tion. To compute the AUC we just need to obtain the area

of the graphic as

AUC ¼ 1þ TPrate � FPrate

2
; ð2Þ

where TPrate and FPrate are the percentage of correctly and

wrongly classified cases belonging to the positive class,

respectively.

3 Data complexity

In this section we first present a short review on recent

studies in data complexity in Sect. 3.1. The data com-

plexity measures considered in this paper are described in

Sect. 3.2.

3.1 Recent studies on data complexity measures

One direct approach to deal with data complexity is to

obtain indicators about it by means of some measures. In

particular, Ho and Basu (2002) proposed some complexity

measures for binary classification problems, gathering

metrics of three types: overlaps in feature values from

different classes; separability of classes and measures of

geometry, topology, and density of manifolds. Shortly

after, Singh (2003) offered a review of data complexity

measures of different nature [from Bayes error-based to

nonparametric methods of Ho and Basu (2002)] and pro-

posed two new ones.

Table 1 Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

(Random Classif ier)

Fig. 3 Example of a ROC plot. Two classifiers are represented: the

solid line is a good performing classifier whereas the dashed line
represents a random classifier

J. Luengo et al.

123

These two studies, especially (Ho and Basu 2002), have

been widely used afterwards. In the field of classification,

we can find recent works using the measures of Ho and

Basu. Bernadó-Mansilla and Ho (2005) investigated the

domain of competence of XCS by means of a methodology

that characterizes the complexity of a classification prob-

lem by a set of geometrical descriptors. Li et al. (2005)

analyzed some omnivariate decision trees using the mea-

sure of complexity based in data density. Baumgartner and

Somorjai (2006) defined specific measures for regularized

linear classifiers. Sánchez et al. (2007) analyzed the effect

of the data complexity in the nearest neighbors classifier,

while Garcı́a et al. (2009c) studied the relationship of the

Fisher’s discriminant ratio with respect to an evolutionary

instance selection method in the classification task.

Focusing on how some data complexity measures affect

the practical accuracy of these classification algorithms,

they show which data complexity measures appear to better

describe the behavior of the classifiers. More recently,

Luengo and Herrera (2010) analyzed the domains of

competence of a Fuzzy Rule-Based Classification System

with respect to eight data complexity measures from Ho

and Basu (2002). In the latter work, descriptive rules of

good and bad behaviors of the method were defined based

on the characteristics of the data sets characterized by the

data complexity measures.

On the other hand, there exist proposals which do not

use the measures of Ho and Basu with respect to a clas-

sification method directly, but taking into account a pre-

processing technique. Dong and Kothari (2003) proposed a

feature selection algorithm based on a complexity measure

defined by Ho and Basu. Mollineda et al. (2005) extend

some of Ho and Basu’s measure definitions for problems

with more than two classes. They analyzed these general-

ized measures in two classic Prototype Selection algo-

rithms and remarked that Fisher’s discriminant ratio is the

most effective for Prototype Selection. Considering the

opposite case, Kim and Oommen (2009) analyzed how to

use prototype selection in order to decrease the computa-

tion time of several data complexity measures, without

severely affecting the outcome with respect to the complete

data set.

3.2 Data complexity measures

As we have mentioned, data complexity measures are a set

of metrics that quantify characteristics which imply some

difficulty to the classification task. In our analysis we will

initially consider the 12 measures used in Ho and Basu

(2002) for standard classification in the imbalanced

framework used in this paper. The 12 measures are sum-

marized in Table 2.

In our analysis, only F1, N4, and L3 measures of the 12

presented in Table 2 proved to be informative following

the methodology described in Sect. 5.1 and observed in the

experimental results in Sect. 5.2. The description of these

three measures is included next.

F1: maximum Fisher’s discriminant ratio. Fisher’s dis-

criminant ratio for one feature dimension is defined as

f ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

where l1, l2, r2
1, r2

2 are the means and variances of the two

classes, respectively, in that feature dimension. We com-

pute f for each feature and take the maximum as measure

F1. For a multidimensional problem, not all features have

to contribute to class discrimination. The problem is easy

as long as there exists one discriminating feature. There-

fore, we can just take the maximum f over all feature

dimensions in discussing class separability.

L3: nonlinearity of linear classifier by LP. Hoekstra and

Duin (1996) proposed a measure for the nonlinearity of a

Table 2 Data complexity measures names and acronyms proposed by Ho and Basu

Type Id. Description

Measures of overlaps in feature

values from different classes

F1 Maximum Fisher’s discriminant ratio

F2 Error rate of linear classifier by linear programming

F3 Maximum (individual) feature efficiency

Measures of separability of classes L1 Minimized sum of error distance by linear programming

L2 Error rate of linear classifier by linear programming

N1 Fraction of points on class boundary

N2 Ratio of average intra/inter class NN distance Ms Cercanos intra/inter-clases

N3 Error rate of 1NN classifier

Measures of geometry, topology

and density of manifolds

L3 Nonlinearity of linear classifier by linear programming

N4 Non-linearity of 1NN classifier

T1 Fraction of points with associated adherence subsets retained

T2 Average number of points per dimension

Addressing data complexity for imbalanced data sets

123

classifier with respect to a given data set. Given a training

set, the method first creates a test set by linear interpolation

(with random coefficients) between randomly drawn pairs

of points from the same class. Then the error rate of the

classifier (trained by the given training set) on this test set

is measured. Here, we use such a nonlinearity measure for

the linear classifier defined for L1. In particular, we con-

sider a Support Vector Machine with a linear Kernel, which

acts as a linear discriminant in this case. This measure is

sensitive to the smoothness of the classifier’s decision

boundary as well as the overlap of the convex hulls of the

classes. For linear classifiers and linearly separable prob-

lems, it measures the alignment of the decision surface

with the class boundary. It carries the effects of the training

procedure in addition to those of the class separation.

N4: nonlinearity of 1NN classifier. This measure follows

the same procedure described for L3. In the case of N4,

error is calculated for a nearest neighbor classifier. This

measure is for the alignment of the nearest-neighbor

boundary with the shape of the gap or overlap between the

convex hulls of the classes.

4 On the use of data complexity measures

for imbalanced data

In this section we first present the imbalanced data con-

sidered in this study and the configuration used for the

calculation of the data complexity measures in Sect. 4.1,

then reasons which motivates their use are introduced in

Sect. 4.2.

4.1 Data sets and configuration of the methods

In order to analyze the preprocessing of the SMOTE,

SMOTE-ENN and EUSCHC methods, we have selected 44

data sets from UCI repository (Asuncion and Newman

2007). The data are summarized in Table 3, showing the

number of examples (#Ex.), attributes (#Atts.), name of

each class (minority and majority), class attribute distri-

bution, IR and F1, N4, and L3 data complexity values

associated.

For every binary data set generated, we computed the 12

data complexity measures of Ho and Basu (2002) over the

complete data set before preprocessing and splitting the

data. Table 3 contains the F1, N4, and L3 measures’ values

for each original data set, as they proved to be the infor-

mative ones in our study. This will provide us information

about the nature of the complete data set before prepro-

cessing and applying the validation scheme.

The calculation of the data complexity measures supports

some variants. The particular details of the computation of

the measures that we have followed are detailed next.

• The instances with missing values are discarded

previously to the measures calculation.

• The measures calculation over the data sets is per-

formed with the original values, without any kind of

normalization.

• The distance function used for continuous values is the

normalized Euclidean distance function, i.e., the dis-

tance of each attribute is normalized by its range.

• The distance function used for nominal values is the

overlap distance function. That is, if two nominal

attributes are equal, the distance between them is 0.

Otherwise the distance is 1.

It is essential to maintain this configuration for all the

data sets, as any change in it has proven to produce changes

in the estimated complexity obtained. Therefore, altera-

tions in the distance functions used, for example, can dis-

turb the analysis done and the conclusions obtained from it.

In order to carry out the different experiments we consider

a 5-folder cross-validation model, i.e., 5 random partitions of

data with a 20%, and the combination of 4 of them (80%) as

training and the remaining one as test. For each data set we

consider the average results of the five partitions.

Then, in order to reduce the effect of imbalance, we will

employ the SMOTE and SMOTE-ENN preprocessing

method for all our experiments balancing both classes to

the 50% distribution in the training partition (Batista et al.

2004). EUSCHC aims at reducing the data in the training

partition as much as possible while the performance in

AUC is not decreased.

The C4.5 and PART algorithms were run using KEEL1

software (Alcalá-Fdez et al. 2009) following the recom-

mended parameter values given in this platform, which

must also correspond to the ones given by the authors in the

original papers:

• For C4.5 the minimum number of item-sets per leaf

was set to 2, and a pruning step is applied for the final

tree with a confidence level of 0.25.

• For PART the minimum number of item-sets per leaf

was also set to 2, and a pruning step is applied for the

final tree with a confidence level of 0.25 as well.

In Table 4 we have summarized the global average for

training and test AUC and the corresponding standard

deviation obtained by C4.5 with SMOTE, SMOTE-ENN

and EUSCHC preprocessing. These two tables are mean to

be used for further reference in the analysis of the behavior

of the preprocessing techniques in the following sections.

As a general comment, SMOTE and SMOTE-ENN pro-

duce C4.5 and PART have a better training adjustment,

while EUSCHC allows C4.5 and PART to generalize

1 http://keel.es.

J. Luengo et al.

123

http://keel.es

Table 3 Summary description for imbalanced data sets

Data set #Ex. #Atts. Class (min., maj.) %Class

(min.; maj.)

IR F1 N4 L3

Glass1 214 9 (build-win-non oat-proc; remainder) (35,51; 64,49) 1.82 0.1897 0.3084 0.5000

Ecoli0vs1 220 7 (im; cp) (35,00; 65,00) 1.86 9.7520 0.0136 0.1182

Wisconsin 683 9 (malignant; benign) (35,00; 65,00) 1.86 3.5680 0.0432 0.0066

Pima 768 8 (tested-positive; tested-negative) (34,84; 66,16) 1.90 0.5760 0.2754 0.5000

Iris0 150 4 (Iris-Setosa; remainder) (33,33; 66,67) 2.00 16.8200 0.0000 0.0000

Glass0 214 9 (build-win-oat-proc; remainder) (32,71; 67,29) 2.06 0.6492 0.2009 0.5000

Yeast1 1484 8 (nuc; remainder) (28,91; 71,09) 2.46 0.2422 0.3201 0.5000

Vehicle1 846 18 (Saab; remainder) (28,37; 71,63) 2.52 0.3805 0.1761 0.2311

Vehicle2 846 18 (Bus; remainder) (28,37; 71,63) 2.52 0.1691 0.3304 0.3682

Vehicle3 846 18 (Opel; remainder) (28,37; 71,63) 2.52 0.1855 0.3747 0.3511

Haberman 306 3 (Die; Survive) (27,42; 73,58) 2.68 0.1850 0.3431 0.4967

Glass0123vs456 214 9 (non-window glass; remainder) (23,83; 76,17) 3.19 3.3240 0.0561 0.3294

Vehicle0 846 18 (Van; remainder) (23,64; 76,36) 3.23 1.1240 0.1734 0.1219

Ecoli1 336 7 (im; remainder) (22,92; 77,08) 3.36 2.6500 0.1265 0.5000

New-thyroid2 215 5 (hypo; remainder) (16,89; 83,11) 4.92 3.5790 0.0233 0.2791

New-thyroid1 215 5 (hyper; remainder) (16,28; 83,72) 5.14 3.5790 0.0209 0.2721

Ecoli2 336 7 (pp; remainder) (15,48; 84,52) 5.46 1.8260 0.0685 0.5000

Segment0 2308 19 (brickface; remainder) (14,26; 85,74) 6.01 1.7980 0.0358 0.5000

Glass6 214 9 (headlamps; remainder) (13,55; 86,45) 6.38 2.3910 0.0537 0.5000

Yeast3 1484 8 (me3; remainder) (10,98; 89,02) 8.11 2.7510 0.1122 0.5000

Ecoli3 336 7 (imU; remainder) (10,88; 89,12) 8.19 1.5790 0.1652 0.5000

Page-blocks0 5472 10 (remainder; text) (10,23; 89,77) 8.77 0.5087 0.2069 0.3332

Yeast2vs4 514 8 (cyt; me2) (9,92; 90,08) 9.08 1.5790 0.1333 0.5000

Yeast05679vs4 528 8 (me2; mit, me3, exc, vac, erl) (9,66; 90,34) 9.35 1.0510 0.2509 0.5000

Vowel0 988 13 (hid; remainder) (9,01; 90,99) 10.10 2.4580 0.2034 0.5000

Glass016vs2 192 9 (ve-win-oat-proc; build-win-oat-proc,

build-win-non oat-proc,headlamps)

(8,89; 91,11) 10.29 0.2692 0.2891 0.5000

Glass2 214 9 (Ve-win-oat-proc; remainder) (8,78; 91,22) 10.39 0.3952 0.3364 0.5000

Ecoli4 336 7 (om; remainder) (6,74; 93,26) 13.84 3.2470 0.0506 0.5000

Yeast1vs7 459 8 (nuc; vac) (6,72; 93,28) 13.87 12.9700 0.0016 0.0019

Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6,72; 93,28) 13.87 0.3534 0.3137 0.5000

Glass4 214 9 (containers; remainder) (6,07; 93,93) 15.47 1.4690 0.1285 0.5000

Page-blocks13vs2 472 10 (graphic; horiz.line, picture) (5,93; 94,07) 15.85 1.5470 0.0540 0.0678

Abalone9vs18 731 8 (18; 9) (5,65; 94,25) 16.68 0.6320 0.3324 0.5000

Glass016vs5 184 9 (tableware; build-win-oat-proc,

build-win-non oat-proc, headlamps)

(4,89; 95,11) 19.44 1.8510 0.0788 0.5000

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4,65; 95,35) 20.50 12.1300 0.0155 0.0000

Yeast1458vs7 693 8 (vac; nuc, me2, me3, pox) (4,33; 95,67) 22.10 0.1757 0.3752 0.5000

Glass5 214 9 (tableware; remainder) (4,20; 95,80) 22.81 1.0190 0.0724 0.5000

Yeast2vs8 482 8 (pox; cyt) (4,15; 95,85) 23.10 1.1420 0.2261 0.5000

Yeast4 1484 8 (me2; remainder) (3,43; 96,57) 28.41 0.7412 0.2342 0.5000

Yeast1289vs7 947 8 (vac; nuc, cyt, pox, erl) (3,17; 96,83) 30.56 0.3660 0.3627 0.5000

Yeast5 1484 8 (me1; remainder) (2,96; 97,04) 32.78 4.1980 0.1216 0.5000

Ecoli0137vs26 281 7 (pp, imL; cp, im, imU, imS) (2,49; 97,51) 39.15 1.9670 0.1701 0.5000

Yeast6 1484 8 (exc; remainder) (2,49; 97,51) 39.15 2.3020 0.1157 0.5000

Abalone19 4174 8 (19; remainder) (0,77; 99,23) 128.87 0.5295 0.4534 0.5000

Addressing data complexity for imbalanced data sets

123

better. In Table 5 we present the same AUC averages for

PART. The complete tables of results are shown in

Appendix 2.

4.2 Motivation of the use of complexity measures

In Sect. 2, the necessity of the use of instance prepro-

cessing in the framework of imbalanced data has been

shown. The IR measure has been also used in order to

classify the different imbalanced problems based on their

imbalanced degree. However, we have observed empiri-

cally that this measure has not a clear relationship with the

performance obtained with the preprocessing techniques.

In this sense, Fig. 4 depicts the results for C4.5 in the case

of preprocessing the 44 data sets with SMOTE and EUS-

CHC, sorting the data sets by their IR value. We can

observe that the good and bad results of both learning

methods with respect to the preprocessing are not related

with the IR value, nor the improvements achieved with

such preprocessing step.

Therefore, the use of the IR as a unique measure to

identify the improvement of the preprocessing appears to

be insufficient, and we need to consider other measures to

characterize the good or bad behavior of the preprocessing,

like the data complexity measures presented in Sect. 3.2.

To the best of our knowledge there is no analysis on the

relationship of the data complexity and the application of

preprocessing techniques for imbalanced data. Garcı́a et al.

(2008) built a bunch on synthetic data sets with a wide

range of overlapping present in the two classes. Using this

framework, the response of local and global learning

methods (the k-NN classifier and several others, C4.5

among them) is studied when varying the IR and the

overlapping between the class labels. Albeit they do not

explicitly used the data complexity measures of Ho and

Basu (2002), the class overlapping and IR can be consid-

ered as related to them. Results showed that the more

represented class in overlapped regions tends to be better

classified by methods based on global learning, while the

less class represented in such regions tends to be better

classified by local methods.

However, in Garcı́a et al.’s (2008) study no prepro-

cessing was performed. In this paper we will analyze the

mentioned the undersampling and oversampling prepro-

cessing approaches by means of the data complexity

measures.

We emphasize that this study does not attempt to

establish the best preprocessing method for a given

Table 4 Global average Training and Test AUC for C4.5

Global %

AUC Training

Global % AUC

Test

C4.5 with SMOTE

preprocessing

0.9546 ± 0.0551 0.8217 ± 0.1375

C4.5 with SMOTE-ENN

preprocessing

0.9438 ± 0.0635 0.8362 ± 0.1309

C4.5 with EUSCHC

preprocessing

0.9241 ± 0.0859 0.8914 ± 0.1035

Table 5 Global average Training and Test AUC for PART

Global %

AUC Training

Global %

AUC Test

PART with SMOTE

preprocessing

0.9440 ± 0.0727 0.8298 ± 0.1368

PART with SMOTE-ENN

preprocessing

0.9353 ± 0.0727 0.8372 ± 0.1313

PART with EUSCHC

preprocessing

0.9172 ± 0.0796 0.8900 ± 0.0899

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0 5 10 15 20 25 30 35 40 45

C45-SMOTE Training C45-SMOTE Test

C45-EUSCHC Training C45-EUSCHC Test

Fig. 4 C4.5 AUC in Training/

Test sorted by IR

J. Luengo et al.

123

problem. This estimation problem has been already for-

malized as a new learning problem in the Meta-Learning

approach (MetaL) (Brazdil et al. 2009). The MetaL

approach faces two important drawbacks:

• How to represent an ML problem instance was tackled

using diverse descriptors, e.g., number of examples,

number of attributes, percentage of missing values, and

landmarkers (Pfahringer et al. 2000). The difficulty is

due to the fact the descriptors must take into account

the example distribution, which is not easily achieved

in most cases.

• A second difficulty concerns the selection of the ML

problem instances. Kalousis (2002) indicates that the

representativity of the problems and the perturbation

induce strong biases in the Metal classifier.

Due to the several difficulties already studied in the

specialized literature, the attempt to indicate the best pre-

processing method is out of the scope of this paper.

5 Analysis of the influence of preprocessing

in imbalanced data

In this study, our aim is to analyze the suitability of the use

of data complexity measures to evaluate the behavior of

SMOTE, SMOTE-ENN, and EUSCHC using C4.5 and

PART in the scenario of imbalanced data sets.

Fig. 5 C4.5 AUC with SMOTE

in Training/Test sorted by F2

Fig. 6 C4.5 AUC with SMOTE

in Training/Test sorted by F1

Table 6 Significant intervals for C4.5 and PART

With SMOTE and

SMOTE-ENN Interval

With EUSCHC

Interval

Behavior

C4.5

F1 C 1.469 F1 C 0.6492 Good

N4 B 0.2069 N4 B 0.2509 Good

L3 B 0.3332 L3 B 0.3332 Good

F1 B 0.366 F1 B 0.3534 Bad

N4 C 0.2261 N4 C 0.2754 Bad

PART

F1 C 1.469 F1 C 0.632 Good

N4 B 0.2069 N4 B 0.2509 Good

L3 B 0.3332 L3 B 0.3332 Good

F1 B 0.366 F1 B 0.3534 Bad

N4 C 0.2261 N4 C 0.2754 Bad

Addressing data complexity for imbalanced data sets

123

In the remaining of this section, we will first show the

methodology followed in this study in Sect. 5.1. Next the

empirical study for both C4.5 and PART in imbalanced

data sets with data complexity measures is shown in

Sect. 5.2. Finally, in Sect. 5.3 the collective evaluation of

the set of rules for both learning models is carried out.

5.1 Methodology

In order to characterize the results of C4.5 and PART when

using undersampling and oversampling preprocessing in

imbalanced data, we will follow the methodology proposed

in (Luengo and Herrera 2010) for characterizing the per-

formance of a learning method in standard classification,

which is briefly described next.

We consider intervals of data complexity measures’

values in which C4.5 and PART perform good or bad,

calculated for every data set of Sect. 4.1.

• We understand for good behavior an average high test

AUC in the interval (at least 0.8 approximately), as well

as the absence of over-fitting (less than a 0.1 difference

in Training and Test AUC approximately).

• By bad behavior we refer to the presence of over-fitting

and/or average low test AUC in the interval.

Table 7 Rules with one metric obtained from the intervals for C4.5

Id. Rule Preprocess Support Avg. AUC Train Train diff. Avg. AUC Test Test diff.

R1? If F1 C 1.469 then good behavior SMOTE 52.27 0.9826 0.028 0.9103 0.0886

SMOTE-ENN 0.9785 0.0347 0.9234 0.0872

If F1 C 0.6482 then good behavior EUSCHC 65.91 0.9687 0.0515 0.9450 0.1632

R2? If L3 B 0.3332 then good behavior SMOTE 27.27 0.9929 0.0383 0.9641 0.1424

SMOTE-ENN 0.9876 0.0438 0.9610 0.1248

EUSCHC 0.9877 0.0636 0.9688 0.0774

R3? If N4 B 0.2069 then good behavior SMOTE 63.63 0.9823 0.0277 0.9077 0.086

SMOTE-ENN 0.9756 0.0318 0.9196 0.0834

If N4 B 0.2509 then good behavior EUSCHC 70.45 0.9692 0.0451 0.9460 0.0546

R1– If F1 B 0.366 then bad behavior SMOTE 20.45 0.9021 –0.0525 0.6748 –0.1469

SMOTE-ENN 0.8613 –0.0825 0.6762 –0.1600

If F1 B 0.3534 then bad behavior EUSCHC 18.18 0.8186 –0.1055 0.7519 –0.1395

R2– If N4 C 0.2261 then bad behavior SMOTE 36.36 0.9062 –0.0484 0.6712 –0.1505

SMOTE-ENN 0.8881 –0.0557 0.6903 –0.1459

If N4 C 0.2754 then bad behavior EUSCHC 29.55 0.8166 –0.1075 0.7613 –0.1301

Table 8 Rules with one metric obtained from the intervals for PART

Id. Rule Preprocess Support Avg. AUC Train Train diff. Avg. AUC Test Test diff.

R1? If F1 C 1.469 then good behavior SMOTE 52.27 0.9817 0.0377 0.9194 0.0896

SMOTE-ENN 0.9764 0.0411 0.9259 0.0887

If F1 C 0.632 then good behavior EUSCHC 68.18 0.9538 0.0366 0.9322 0.0422

R2? If L3 B 0.3332 then good behavior SMOTE 27.27 0.9932 0.0492 0.9646 0.1348

SMOTE-ENN 0.9857 0.0504 0.9687 0.1315

EUSCHC 0.9716 0.0544 0.9514 0.0614

R3? If N4 B 0.2069 then good behavior SMOTE 63.63 0.9805 0.0365 0.9162 0.0864

SMOTE-ENN 0.9736 0.0383 0.9203 0.0831

If N4 B 0.2509 then good behavior EUSCHC 70.45 0.9564 0.0392 0.9349 0.0449

R1– If F1 B 0.366 then bad behavior SMOTE 20.45 0.8637 –0.0803 0.6687 –0.1611

SMOTE-ENN 0.8364 –0.0989 0.6618 –0.1754

If F1 B 0.3534 then bad behavior EUSCHC 18.18 0.7914 –0.1258 0.7459 –0.1441

R2– If N4 C 0.2261 then bad behavior SMOTE 36.36 0.8801 –0.0639 0.6788 –0.1510

SMOTE-ENN 0.8684 –0.0669 0.6917 –0.1455

If N4 C 0.2754 then bad behavior EUSCHC 29.55 0.8236 –0.0936 0.7831 –0.1069

J. Luengo et al.

123

The intervals are extracted by means of a particular

graphic representation of the AUC results for C4.5 or PART

considering the three preprocessing methods. The AUC

results for the preprocessed data sets are arranged equidis-

tantly in an ordered series, sorting them by one of the data

complexity measures computed over the original data sets.

Therefore, the X axis contains the data sets with a constant

separation (and not related with the values of the considered

data complexity), and the Y axis depicts the AUC obtained

both in Training and Test for the particular data set. The

reason to use this constant separation is to give each data set

the same space in the graphic representation.

For those measures where we can find different ad-hoc

intervals which present good or bad behavior of C4.5 or

PART, we use a vertical line to delimit the interval of the

region of interest.

Following the process described, not every data com-

plexity measure can be used in order to select an interval of

good or bad behavior of the methods. Figure 5 depicts an

example in which no interval could be extracted for the F2

measure. Figure 6 shows an example in which both good

and bad behavior intervals could be extracted, indicated by

vertical lines for the F1 measure using the same prepro-

cessing technique.

As mentioned in Sect. 3.2, only F1, N4 and L3 data

complexity measures can be used to extract significative

intervals with enough support following this methodology.

Table 9 Data sets sorted by F1 covered by the R1? and R1– rules Table 10 Data sets sorted by N4 covered by the R3? and R2– rules

Table 11 Data sets sorted by L3 covered by the R2? rule

Addressing data complexity for imbalanced data sets

123

Our objective is to analyze the data sets covered by a

good or bad behavior interval considering the different

preprocessing methods. These data sets will be char-

acterized as those which the preprocessing technique

used allows C4.5 and PART to obtain good or bad

results.

5.2 Single intervals extraction

As we have previously indicated, only the F1, N4

and L3 measures offered significant intervals follow-

ing the process described in Sect. 5.1. In Appendix 1,

Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

Table 12 Disjunction Rules from all simple rules for C4.5

Id. Rule Preprocess Support

(%)

Avg. AUC

Train

Train

diff.

Avg. AUC

Test

Test

diff.

PRD-S If R1? or R2? R3? then good

behavior

SMOTE 63.63 0.9823 0.0277 0.9077 0.0861

PRD-S-ENN SMOTE-

ENN

0.9756 0.0318 0.9196 0.0834

PRD-EUS EUSCHC 70.45 0.9692 0.0451 0.9460 0.0546

NRD-S If R1– or R2– then bad behavior SMOTE 36.36 0.9062 –0.0484 0.6712 –0.1504

NRD-S-ENN SMOTE-

ENN

0.8881 –0.0557 0.6903 –0.1459

NRD^qPRD-

EUS

EUSCHC 29.55 0.8166 –0.1075 0.7613 –0.1301

Table 13 Disjunction Rules from all simple rules for PART

Id. Rule Preprocess Support

(%)

Avg. AUC

Train

Train

diff.

Avg. AUC

Test

Test

diff.

PRD-S If R1? or R2? R3? then good

behavior

SMOTE 63.63 0.9805 0.0365 0.9162 0.0864

PRD-S-ENN SMOTE-

ENN

0.9736 0.0383 0.9203 0.0831

PRD-EUS EUSCHC 72.73 0.9549 0.0377 0.9337 0.0437

NRD-S If R1– or R2– then bad behavior SMOTE 36.36 0.8801 –0.0639 0.6788 –0.1510

NRD-S-ENN SMOTE-

ENN

0.8684 –0.0669 0.6917 –0.1455

NRD^qPRD-

EUS

EUSCHC 27.27 0.8167 –0.1005 0.7736 –0.1164

Fig. 7 Three blocks

representation for C4.5 with

SMOTE

J. Luengo et al.

123

26, 27, 28, 29, 30 depict the results for C4.5 and

PART considering these three data complexity

measures.

In Table 6 we have summarized the intervals found ad-

hoc from the aforementioned figures for C4.5 and PART.

The intervals are the same for C4.5 and PART. The

intervals obtained for SMOTE and SMOTE-ENN are also

always the same, therefore we will not find differences

between the two versions of SMOTE considered, except in

the average AUC, from now on.

All the extracted intervals can be translated into rules,

using them as the antecedents of the rules. In Table 7 we

have summarized the rules derived from the individual

intervals for C4.5 and in Table 8 we show the equivalent

rules for PART. Both tables are organized with the fol-

lowing columns:

• The first column corresponds to the identifier of the rule

for further references.

• The ‘‘Rule’’ column presents the rule itself.

• The third column shows the type of preprocessing

carried out.

• The fourth column ‘‘Support’’ presents the percentage

of data sets which verifies the antecedent of the rule.

• The column ‘‘% Training’’ shows the average AUC in

training of all the data sets covered by the rule.

• The column ‘‘Training diff.’’ contains the difference

between the training AUC of the rule and the global

training AUC across all 44 data sets showed in Tables 4

and 5 for the preprocessing case of the row (SMOTE,

SMOTE-ENN or EUSCHC).

• The column ‘‘% Test’’ shows the average AUC in test

of all the data sets covered by the rule.

Fig. 8 Three blocks

representation for PART with

SMOTE

Fig. 9 Three blocks

representation for C4.5 with

SMOTE-ENN

Addressing data complexity for imbalanced data sets

123

Fig. 10 Three blocks

representation for PART with

SMOTE-ENN

Fig. 11 Three blocks

representation for C4.5 with

EUSCHC

Fig. 12 Three blocks

representation for PART with

EUSCHC

J. Luengo et al.

123

• The column ‘‘Test diff.’’ contains the difference

between the test AUC of the rule and the global test

AUC across all 44 data sets showed in Tables 4 and 5

for the preprocessing case of the row (SMOTE,

SMOTE-ENN or EUSCHC).

The positive rules (denoted with a ‘‘?’’ symbol in their

identifier) always show a positive difference with the glo-

bal average, both in training and test AUC. The negative

ones (with a ‘‘–’’ symbol in their identifier) verify the

opposite case. The support of the rules shows us that we

can characterize a wide range of data sets and obtain sig-

nificant differences in AUC both inf with and without

preprocessing cases.

In Tables 9, 10 and 11 the specific data sets arranged by

the F1, N4, and L3 measures, respectively, are depicted.

The data sets covered by each rule is indicated by means of

the adjacent columns, considering the three different sup-

port cases obtained from the rules: SMOTE and SMOTE-

ENN for both C4.5 and PART; EUSCHC for C4.5, and

EUSCHC for PART.

If we compare the equivalent rules and the covered data

sets in the different cases of SMOTE, SMOTE-ENN and

EUSCHC preprocessing we can observe the following:

• With the use of EUSCHC the support of R1? and R3?

rules with this preprocessing method is wider than the

SMOTE–based approaches.

• The support of the R1– and R2– is also smaller for

EUSCHC, as less data sets can be identified as bad for

C4.5 or PART. These differences with respect to

SMOTE and SMOTE-ENN has been properly charac-

terized by the rules.

• The R2? rules is invariant with respect to the

preprocessing. It represents the good data sets for

Table 14 Data sets covered by the PRD and NRD rules

Fig. 13 C4.5 with SMOTE

AUC in Training/Test sorted by

F1

Addressing data complexity for imbalanced data sets

123

C4.5 and PART considering any preprocessing

technique.

• SMOTE and SMOTE-ENN behave equal for C4.5 and

PART. The differences with respect to the global

training and test AUC are similar, and the support is

equal in every case.

• EUSCHC behaves equally for C4.5 and PART when

considering the N4 and L3 data complexity measures.

However, for the F1 measure, EUSCHC is slightly

better for PART, as the support of R1? for this learning

method is a 3% higher.

5.3 Combination of the single rules

The objective of this section is to analyze the effect of

combining the rules of good and behavior independently.

By means of merging the individual rules we can arrive at a

Fig. 14 PART with SMOTE

AUC in Training/Test sorted by

F1

Fig. 15 C4.5 with SMOTE

AUC in Training/Test sorted by

N4

J. Luengo et al.

123

more general description, with a wider support, of the

preprocessing methods’ effect.

First, we have considered the disjunctive combination of

all the positive rules to obtain a single rule (Positive Rule

Disjunction -PRD-), that is, we use the or operator to

combine the individual positive rules. The same procedure

is done with all the negative ones so we obtain another rule

(Negative Rule Disjunction -NRD-). The new disjunctive

rules will be activated if any of the component rules’

antecedents are verified.

In the case of PART with EUSCHC preprocessing,

overlapping between the data sets covered by PRD and

NRD appears. Following the same methodology pre-

sented by Luengo and Herrera (2010) the PRD rule is

kept as representative of the good behavior, and the set

difference between the NRD and PRD rules is

Fig. 16 PART with SMOTE

AUC in Training/Test sorted by

N4

Fig. 17 C4.5 with SMOTE

AUC in Training/Test sorted by

L3

Addressing data complexity for imbalanced data sets

123

considered as representative of the bad behavior. This

difference will remove the data sets for which C4.5 and

PART presents good behavior from the NRD rule,

naming this new rule as NRD^qPRD.

In Table 12 we summarize the new rules obtained for

C4.5. In Table 13 the equivalent rules for PART are

depicted. In these two tables, we have added the

following suffixes to the rule identifier in order to dis-

tinguish them:

• In the case of SMOTE preprocessing, we add the ‘‘-S’’

suffix.

• In the case of SMOTE-ENN preprocessing, we add the

‘‘-S-ENN’’ suffix.

Fig. 18 PART with SMOTE

AUC in Training/Test sorted by

L3

Fig. 19 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by F1

J. Luengo et al.

123

• In the case of EUSCHC preprocessing, we add the ‘‘-

EUS’’ suffix.

From the collective rules for both learning methods, it is

observed that the support has been increased from the

single rules for PRD, while NRD (and NRD^qPRD for

EUSCHC) obtains similar support. On the other hand, the

training and test AUC differences are similar to the single

rules from Tables 7 and 8 in both with and without pre-

processing situations.

With the PRD and NRD (NRD^qPRD-EUS for PART)

there is no uncovered data sets by the rules for C4.5 and

Fig. 20 PART with SMOTE-

ENN AUC in Training/Test

sorted by F1

Fig. 21 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by N4

Addressing data complexity for imbalanced data sets

123

PART in combination with SMOTE, SMOTE-ENN, and

EUSCHC preprocessing methods. Therefore, we can con-

sider a two block representation of the data sets.

• The first block (the left-side one) will represent the data

sets covered by the correspondent PRD rule. They are

the data sets recognized as being those in which C4.5

and PART have good AUC when preprocessing.

• The second (the right-side one) will plot the data sets

for the correspondent NRD (NRD^qPRD-EUS for

PART) rule, which are bad data sets for C4.5 and

PART after preprocessing.

In Figs. 7, 9 and 11 we have depicted the two block

representation for C4.5 considering the three cases of

preprocessing. In Figs. 8, 10 and 12 we have depicted the

Fig. 22 PART with SMOTE-

ENN AUC in Training/Test

sorted by N4

Fig. 23 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by L3

J. Luengo et al.

123

same representations for PART. The data sets have the

same order in the X axis in all the figures to facilitate the

comparisons.

Table 14 represents the data sets following the order of

the latter figures indicating those data sets which are cov-

ered by the PRD and NRD (NRD^qPRD-EUS for PART)

rules as indicate by the vertical lines in the two blocks

representation.

We can observe that the 100% of the analyzed data sets

are covered by the two considered rules for each prepro-

cessing method. Since SMOTE and SMOTE-ENN

obtained the same intervals in the previous subsection, the

Fig. 24 PART with SMOTE-

ENN AUC in Training/Test

sorted by L3

Fig. 25 C4.5 with EUSCHC

AUC in Training/Test sorted by

F1

Addressing data complexity for imbalanced data sets

123

support of the PRD and NRD rules are the same, and they

cover the same data sets.

The EUSCHC approach obtains a wider support for

the PRD rule with respect to the SMOTE and SMOTE-

ENN approaches. This is due to the wider support of the

individual intervals which conform the PRD rule. This

difference indicates that the undersampling approach is

more beneficial for C4.5 and PART, since more data sets

are characterized as good for these two learning

methods.

From these results we can point out that the data com-

plexity measures are useful to evaluate the behavior of the

undersampling and oversampling approaches. Differences

in their results have been characterized, finding that

Fig. 26 PART with EUSCHC

AUC in Training/Test sorted by

F1

Fig. 27 C4.5 with EUSCHC

AUC in Training/Test sorted by

N4

J. Luengo et al.

123

EUSCHC is more robust than SMOTE-based approaches

due to its wider region of good behavior.

There is a bunch of data sets for which both under-

sampling and oversampling techniques do not work well

(indicated in Table 14), as the data set covered by all NRD

and the NRD^qPRD-EUS rule. These data sets are there-

fore opened to improvements by means of these or other

techniques, but already identified by the rules.

6 Concluding remarks

In this work we have analyzed the preprocessing effect

in the framework of imbalanced data sets by means

of data complexity measures. We have considered

two oversampling methods: SMOTE and SMOTE-

ENN, and an evolutionary undersampling approach:

EUSCHC.

Fig. 28 PART with EUSCHC

AUC in Training/Test sorted by

N4

Fig. 29 C4.5 with EUSCHC

AUC in Training/Test sorted by

L3

Addressing data complexity for imbalanced data sets

123

We have observed that the IR considered as a measure

of data complexity is not enough to predict when C4.5

and PART perform good or bad. As an alternative

approach, we have computed the data complexity mea-

sures over the imbalanced data sets in order to obtain

intervals of such metrics in which C4.5 and PART per-

formance is significantly good and bad when using the

three preprocessing methods. From these intervals we

have built descriptive rules, which have a wide support

and a significative difference with respect to the global

methods’ performance.

We have obtained two final rules from the initial ones,

which are simple and precise to describe both good and bad

performance of C4.5 and PART. These two rules are

capable of identifying all good and bad data sets for

SMOTE, SMOTE-ENN, and EUSCHC. An interesting

consequence of the characterization obtained by the rules is

that the evolutionary undersampling approach is capable of

preprocessing successfully more data sets for C4.5 and

PART.

As a final note, it is interesting to indicate that the

Fisher’s Discriminant Ratio (F1) was also found interesting

by the studies of Mollineda et al. (2005); Kim and Oom-

men (2009) considering prototype selection, and it is

informative for our analysis in the imbalance framework as

well.

Acknowledgments This work has been supported by the Spanish

Ministry of Education and Science under Project TIN2008-06681-

C06-(01 and 02). J. Luengo holds a FPU scholarship from Spanish

Ministry of Education.

Appendix 1: Figures with the intervals of PART

and C4.5

In this appendix, the figures sorted by the F1, N4 and L3

data complexity measures are depicted. We have used a

two-column representation for the figures, so in each row

we present the results for C4.5 and PART for the same case

of type of preprocessing and data complexity measure

used.

• Figures from 13, 14, 15, 16, 17, 18 represents the

figures for the case of SMOTE preprocessing.

• Figures from 19, 20, 21, 22, 23, 24 represents the

figures for the case of SMOTE-ENN preprocessing.

• Figures from 25, 26, 27, 28, 29, 30 represents the

figures for the case of EUSCHC preprocessing.

Appendix 2: Tables of results

In this appendix we present the average AUC results for

C4.5 and PART in Tables 15 and 16 respectively.

Fig. 30 PART with EUSCHC

AUC in Training/Test sorted by

L3

J. Luengo et al.

123

Table 15 Average AUC results for C4.5

Data sets SMOTE Training SMOTE Test SMOTE-ENN Training SMOTE-ENN Test EUSCHC Training EUSCHC Test

Ecoli0vs1 0.9927 0.9796 0.9870 0.9832 0.9909 0.9864

Haberman 0.7426 0.6309 0.6999 0.6003 0.7190 0.5914

Iris0 1.0000 0.9900 1.0000 0.9900 1.0000 0.9800

Pima 0.8411 0.7145 0.8089 0.7312 0.7966 0.6966

Vehicle2 0.9895 0.9492 0.9890 0.9611 0.9793 0.9586

Wisconsin 0.9832 0.9545 0.9784 0.9467 0.9802 0.9546

Yeast2 0.8049 0.7109 0.7744 0.6904 0.7411 0.7257

Glass0 0.9433 0.7856 0.8950 0.8143 0.9089 0.8085

Glass1 0.8978 0.7577 0.8563 0.7141 0.8633 0.7571

Vehicle1 0.9551 0.7030 0.8866 0.7335 0.7952 0.7258

Vehicle3 0.9493 0.7444 0.8844 0.7304 0.8035 0.7601

Ecoli1 0.9631 0.7755 0.9313 0.8979 0.9353 0.9019

Glass0123vs456 0.9908 0.9032 0.9721 0.9078 0.9720 0.9063

New-Thyroid1 0.9922 0.9802 0.9888 0.9433 0.9942 0.9767

New-Thyroid2 0.9957 0.9659 0.9895 0.9520 0.9965 0.9674

Page-Blocks0 0.9846 0.9485 0.9737 0.9421 0.9763 0.9644

Segment0 0.9985 0.9927 0.9985 0.9927 0.9859 0.9861

Vehicle0 0.9897 0.9118 0.9775 0.9192 0.9651 0.9433

Ecoli2 0.9517 0.9162 0.9610 0.9002 0.9673 0.9287

Yeast3 0.9565 0.8876 0.9500 0.9016 0.9513 0.9434

Ecoli3 0.9815 0.8921 0.9474 0.7980 0.9301 0.8928

Glass6 0.9959 0.8450 0.9825 0.9257 0.9836 0.9299

Abalone9-18 0.9531 0.6215 0.9539 0.6322 0.8167 0.7812

Abalone19 0.8544 0.5202 0.9245 0.5246 0.6751 0.6736

Ecoli4 0.9769 0.8310 0.9839 0.8544 0.9873 0.9643

Glass2 0.9571 0.5424 0.9139 0.7148 0.9124 0.8640

Yeast4 0.9101 0.7004 0.9484 0.7960 0.8770 0.8551

Vowel0 0.9967 0.9494 0.9965 0.9733 1.0000 0.9929

Yeast2vs8 0.9125 0.8066 0.9677 0.8078 0.9217 0.9149

Glass4 0.9844 0.8508 0.9844 0.8794 0.9883 0.9580

Glass5 0.9976 0.8829 0.9753 0.8732 0.9965 0.9907

Yeast5 0.9777 0.9233 0.9851 0.9635 0.9870 0.9798

Yeast6 0.9242 0.8280 0.9549 0.8647 0.9491 0.9380

Ecoli0137vs26 0.9678 0.8136 0.9660 0.8136 0.9813 0.9572

Shuttle0vs4 0.9999 0.9997 0.9999 0.9997 1.0000 0.9995

YeastB1vs7 0.9351 0.7003 0.9066 0.7278 0.8567 0.7996

Shuttle2vs4 0.9990 0.9917 1.0000 1.0000 1.0000 0.9923

Glass016vs2 0.9716 0.6062 0.9430 0.6840 0.9296 0.8806

Glass016vs5 0.9921 0.8129 0.9879 0.8686 0.9986 0.9784

Page-Blocks13vs4 0.9975 0.9955 0.9952 0.9865 0.9984 0.9957

Yeast05679vs4 0.9526 0.7602 0.9401 0.7527 0.8778 0.8429

Yeast1289vs7 0.9465 0.6832 0.9323 0.6955 0.8659 0.8659

Yeast1458vs7 0.9158 0.5367 0.8685 0.5102 0.8405 0.7750

Yeast2vs4 0.9814 0.8588 0.9659 0.8953 0.9664 0.9377

Global 0.9546 0.8217 0.9438 0.8362 0.9241 0.8914

Addressing data complexity for imbalanced data sets

123

Table 16 Average AUC results for PART

Data sets SMOTE Training SMOTE Test SMOTE-ENN Training SMOTE-ENN Test EUSCHC Training EUSCHC Test

Ecoli0vs1 0.9958 0.9694 0.9870 0.9832 0.8625 0.8500

Haberman 0.6540 0.6086 0.6909 0.6183 0.7067 0.6305

Iris0 1.0000 0.9900 1.0000 0.9900 1.0000 0.9867

Pima 0.7769 0.7312 0.7836 0.7209 0.7900 0.7409

Vehicle2 0.9942 0.9628 0.9917 0.9642 0.9752 0.9574

Wisconsin 0.9848 0.9584 0.9800 0.9559 0.9802 0.9561

Yeast2 0.7468 0.7049 0.7288 0.6858 0.7350 0.7156

Glass0 0.9176 0.7250 0.8861 0.7720 0.9019 0.8503

Glass1 0.9151 0.6927 0.8485 0.6880 0.8750 0.7477

Vehicle1 0.8484 0.7377 0.8475 0.7153 0.7861 0.7518

Vehicle3 0.8757 0.7519 0.8314 0.7144 0.7949 0.7683

Ecoli1 0.9480 0.8923 0.9226 0.9151 0.9256 0.8810

Glass0123vs456 0.9939 0.9104 0.9695 0.9262 0.9825 0.9157

New-Thyroid1 0.9930 0.9659 0.9874 0.9690 0.9802 0.9674

New-Thyroid2 0.9915 0.9516 0.9845 0.9861 0.9663 0.9302

Page-Blocks0 0.9774 0.9439 0.9529 0.9322 0.9657 0.9556

Segment0 0.9987 0.9911 0.9978 0.9932 0.9880 0.9848

Vehicle0 0.9916 0.9382 0.9815 0.9328 0.9743 0.9456

Ecoli2 0.9681 0.8533 0.9521 0.9164 0.9427 0.9137

Yeast3 0.9377 0.8966 0.9277 0.9005 0.9456 0.9373

Ecoli3 0.9693 0.8611 0.9361 0.8359 0.8974 0.8779

Glass6 0.9905 0.9090 0.9939 0.9369 0.9802 0.9344

Abalone9-18 0.9581 0.7006 0.9559 0.6794 0.8567 0.8139

Abalone19 0.8831 0.5401 0.9362 0.5434 0.9066 0.8979

Ecoli4 0.9757 0.8639 0.9804 0.8544 0.9859 0.9524

Glass2 0.9571 0.5878 0.9218 0.7742 0.9497 0.9066

Yeast4 0.8936 0.7486 0.9228 0.8316 0.8738 0.8625

Vowel0 0.9950 0.9228 0.9967 0.9711 0.9868 0.9757

Yeast2vs8 0.9182 0.7599 0.9384 0.7915 0.9227 0.8901

Glass4 0.9901 0.8508 0.9832 0.8718 0.9872 0.9670

Glass5 0.9927 0.9354 0.9909 0.8707 0.9977 0.9907

Yeast5 0.9721 0.9132 0.9905 0.9403 0.9826 0.9771

Yeast6 0.9424 0.8008 0.9767 0.8115 0.9422 0.9340

Ecoli0137vs26 0.9678 0.8172 0.9474 0.8209 0.9208 0.8969

Shuttle0vs4 0.9999 0.9997 0.9999 0.9997 1.0000 0.9997

YeastB1vs7 0.8954 0.7576 0.9147 0.7207 0.8246 0.8061

Shuttle2vs4 0.9980 0.9917 0.9980 1.0000 1.0000 0.9840

Glass016vs2 0.9800 0.5479 0.9323 0.5921 0.8397 0.7969

Glass016vs5 0.9929 0.9686 0.9864 0.8714 1.0000 0.9784

Page-Blocks13vs4 0.9986 0.9932 0.9958 0.9854 0.9725 0.9681

Yeast05679vs4 0.9204 0.7748 0.9076 0.7704 0.8546 0.8221

Yeast1289vs7 0.9433 0.6815 0.8992 0.6427 0.8735 0.8543

Yeast1458vs7 0.9151 0.5351 0.8343 0.5783 0.7688 0.7503

Yeast2vs4 0.9765 0.8762 0.9642 0.8607 0.9548 0.9377

Global 0.9440 0.8298 0.9353 0.8372 0.9172 0.8900

J. Luengo et al.

123

References

Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus MJ, Ventura S, Garrell

JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC,

Herrera F (2009) KEEL: A software tool to assess evolutionary

algorithms to data mining problems. Soft Comput 13(3):307–318

Asuncion A, Newman D (2007) UCI machine learning repository.

http://www.ics.uci.edu/*mlearn/MLRepository.html

Barandela R, Sánchez JS, Garcı́a V, Rangel E (2003) Strategies for

learning in class imbalance problems. Pattern Recognit

36(3):849–851

Basu M, Ho TK (2006) Data complexity in pattern recognition

(advanced information and knowledge processing). Springer-

Verlag New York, Inc., Secaucus

Batista GEAPA, Prati RC, Monard MC (2004) A study of the

behaviour of several methods for balancing machine learning

training data. SIGKDD Explor 6(1):20–29

Baumgartner R, Somorjai RL (2006) Data complexity assessment in

undersampled classification of high-dimensional biomedical

data. Pattern Recognit Lett 12:1383–1389

Bernadó-Mansilla E, Ho TK (2005) Domain of competence of XCS

classifier system in complexity measurement space. IEEE Trans

Evol Comput 9(1):82–104

Bradley AP (1997) The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern Recognit

30(7):1145–1159

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2009) Metalearning:

applications to data mining. Cognitive Technologies, Springer.

http://10.255.0.115/pub/2009/BGSV09

Celebi M, Kingravi H, Uddin B, Iyatomi H, Aslandogan Y, Stoecker

W, Moss R (2007) A methodological approach to the classifi-

cation of dermoscopy images. Comput Med Imaging Graphics

31(6):362–373

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote:

synthetic minority over-sampling technique. J Artif Intell Res

16:321–357

Chawla NV, Japkowicz N, Kolcz A (2004) Editorial: special issue on

learning from imbalanced data sets. SIGKDD Explor 6(1):1–6

Diamantini C, Potena D (2009) Bayes vector quantizer for class-

imbalance problem. IEEE Trans Knowl Data Eng 21(5):638–651

Domingos P (1999) Metacost: a general method for making classifiers

cost sensitive. In: Advances in neural networks, Int J Pattern

Recognit Artif Intell, pp 155–164

Dong M, Kothari R (2003) Feature subset selection using a new

definition of classificabilty. Pattern Recognit Lett 24:1215–1225

Drown DJ, Khoshgoftaar TM, Seliya N (2009) Evolutionary sampling

and software quality modeling of high-assurance systems. IEEE

Trans Syst Man Cybern A 39(5):1097–1107

Eshelman LJ (1991) Foundations of genetic algorithms, chap The

CHC adaptive search algorithm: how to safe search when

engaging in nontraditional genetic recombination, pp 265–283

Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling

method for learning from imbalanced data sets. Comput Intell

20(1):18–36

Fernández A, Garcı́a S, del Jesus MJ, Herrera F (2008) A study of the

behaviour of linguistic fuzzy rule based classification systems in

the framework of imbalanced data-sets. Fuzzy Sets Syst

159(18):2378–2398

Frank E, Witten IH (1998) Generating accurate rule sets without

global optimization. In: ICML ’98: Proceedings of the fifteenth

international conference on machine learning, Morgan Kauf-

mann Publishers Inc., San Francisco, pp 144–151

Garcı́a S, Herrera F (2009a) Evolutionary undersampling for classi-

fication with imbalanced datasets: proposals and taxonomy. Evol

Comput 17(3):275–306

Garcı́a S, Fernández A, Herrera F (2009b) Enhancing the effective-

ness and interpretability of decision tree and rule induction

classifiers with evolutionary training set selection over imbal-

anced problems. Appl Soft Comput 9(4):1304–1314

Garcı́a S, Cano JR, Bernadó-Mansilla E, Herrera F (2009c) Diagnose

of effective evolutionary prototype selection using an overlap-

ping measure. Int J Pattern Recognit Artif Intell 23(8):2378–

2398

Garcı́a V, Mollineda R, Sánchez JS (2008) On the k–NN performance

in a challenging scenario of imbalance and overlapping. Pattern

Anal Appl 11(3–4):269–280

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans

Knowl Data Eng 21(9):1263–1284

Ho TK, Basu M (2002) Complexity measures of supervised

classification problems. IEEE Trans Pattern Anal Mach Intell

24(3):289–300

Hoekstra A, Duin RP (1996) On the nonlinearity of pattern classifiers.

In: ICPR ’96: Proceedings of the international conference on

pattern recognition (ICPR ’96) Volume IV-Volume 7472, IEEE

Computer Society, Washington, DC, pp 271–275

Huang J, Ling CX (2005) Using AUC and accuracy in evaluating

learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

Kalousis A (2002) Algorithm selection via meta-learning. PhD thesis,

Université de Geneve

Kilic K, Uncu O, Türksen IB (2007) Comparison of different

strategies of utilizing fuzzy clustering in structure identification.

Inform Sci 177(23):5153–5162

Kim SW, Oommen BJ (2009) On using prototype reduction schemes

to enhance the computation of volume-based inter-class overlap

measures. Pattern Recognit 42(11):2695–2704

Li Y, Member S, Dong M, Kothari R, Member S (2005) Classifi-

ability-based omnivariate decision trees. IEEE Trans Neural

Netw 16(6):1547–1560

Lu WZ, Wang D (2008) Ground-level ozone prediction by support

vector machine approach with a cost-sensitive classification

scheme. Sci Total Environ 395(2–3):109–116

Luengo J, Herrera F (2010) Domains of competence of fuzzy rule

based classification systems with data complexity measures: A

case of study using a fuzzy hybrid genetic based machine

learning method. Fuzzy Sets Syst 161(1):3–19

Mazurowski M, Habas P, Zurada J, Lo J, Baker J, Tourassi G (2008)

Training neural network classifiers for medical decision making:

the effects of imbalanced datasets on classification performance.

Neural Netw 21(2–3):427–436

Mollineda RA, Sánchez JS, Sotoca JM (2005) Data characterization

for effective prototype selection. In: First edition of the Iberian

conference on pattern recognition and image analysis (IbPRIA

2005), Lecture Notes in Computer Science 3523, pp 27–34

Orriols-Puig A, Bernadó-Mansilla E (2008) Evolutionary rule-based

systems for imbalanced data sets. Soft Comput 13(3):213–225

Peng X, King I (2008) Robust BMPM training based on second-order

cone programming and its application in medical diagnosis.

Neural Netw 21(2–3):450–457

Pfahringer B, Bensusan H, Giraud-Carrier CG (2000) Meta-learning

by landmarking various learning algorithms. In: ICML ’00:

Proceedings of the seventeenth international conference on

machine learning, Morgan Kaufmann Publishers Inc., San

Francisco, pp 743–750

Quinlan JR (1993) C4.5: Programs for machine learning. Morgan

Kaufmann Publishers, San Mateo–California

Sánchez J, Mollineda R, Sotoca J (2007) An analysis of how training

data complexity affects the nearest neighbor classifiers. Pattern

Anal Appl 10(3):189–201

Singh S (2003) Multiresolution estimates of classification complexity.

IEEE Trans Pattern Anal Mach Intell 25(12):1534–1539

Addressing data complexity for imbalanced data sets

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://10.255.0.115/pub/2009/BGSV09

Su CT, Hsiao YH (2007) An evaluation of the robustness of MTS for

imbalanced data. IEEE Trans Knowl Data Eng 19(10):1321–

1332

Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost–sensitive

boosting for classification of imbalanced data. Pattern Recognit

40:3358–3378

Sun Y, Wong AKC, Kamel MS (2009) Classification of imbalanced

data: A review. Int J Pattern Recognit Artif Intell 23(4):687–719

Tang Y, Zhang YQ, Chawla N (2009) SVMs modeling for highly

imbalanced classification. IEEE Trans Syst Man Cybern B

Cybern 39(1):281–288

Williams D, Myers V, Silvious M (2009) Mine classification with

imbalanced data. IEEE Geosci Remote Sens Lett 6(3):528–532

Yang Q, Wu X (2006) 10 challenging problems in data mining

research. Int J Inform Tech Decis Mak 5(4):597–604

Zhou ZH, Liu XY (2006) Training cost-sensitive neural networks

with methods addressing the class imbalance problem. IEEE

Trans Knowl Data Eng 18(1):63–77

J. Luengo et al.

123

Bibliography

[ACW06] Au W.-H., Chan K. C. C., y Wong A. K. C. (2006) A fuzzy approach to partitioning
continuous attributes for classification. IEEE Transactions on Knowledge and Data
Engineering 18(5): 715–719.

[AMS97] Atkeson C. G., Moore A. W., y Schaal S. (1997) Locally weighted learning. Artificial
Intelligence Review 11: 11–73.

[BGCSV09] Brazdil P., Giraud-Carrier C., Soares C., y Vilalta R. (January 2009) Metalearning:
Applications to Data Mining. Cognitive Technologies. Springer.

[BH98] Berthold M. R. y Huber K.-P. (April 1998) Missing values and learning of fuzzy
rules. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
6: 171–178.

[BK01a] Bensusan H. y Kalousis A. (2001) Estimating the predictive accuracy of a classifier.
In EMCL ’01: Proceedings of the 12th European Conference on Machine Learning,
pp. 25–36. Springer-Verlag, London, UK.

[BK01b] Bezdek J. C. y Kuncheva L. (2001) Nearest prototype classifier designs: An experi-
mental study. International Journal of Intelligent Systems 16(12): 1445–1473.

[BL88] Broomhead D. y Lowe D. (1988) Multivariable functional interpolation and adaptive
networks. Complex Systems 2: 321–355.

[BM99] Barnard J. y Meng X. (1999) Applications of multiple imputation in medical studies:
From AIDS to NHANES. Statistical methods in medical research 8(1): 17–36.

[BM03] Batista G. y Monard M. (2003) An analysis of four missing data treatment methods
for supervised learning. Applied Artificial Intelligence 17(5): 519–533.

[BMH05] Bernadó-Mansilla E. y Ho T. K. (2005) Domain of competence of xcs classifier system
in complexity measurement space. IEEE Transactions on Evolutionary Computation
9(1): 82–104.

[BPM04] Batista G. E. A. P. A., Prati R. C., y Monard M. C. (2004) A study of the behavior of
several methods for balancing machine learning training data. SIGKDD Explorations
Newsletter 6(1): 20–29.

[BS04] Baskiotis N. y Sebag M. (2004) C4.5 competence map: a phase transition-inspired
approach. In ICML ’04: Proceedings of the twenty-first international conference on
Machine learning. ACM, New York, NY, USA.

219

220 BIBLIOGRAPHY

[Buh03] Buhmann M. D. (2003) Radial Basis Functions: Theory and Implementations. Brooks
Cole.

[CBHK02] Chawla N. V., Bowyer K. W., Hall L. O., y Kegelmeyer W. P. (2002) Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16: 321–
357.

[CCHJ08] Chawla N. V., Cieslak D. A., Hall L. O., y Joshi A. (2008) Automatically counter-
ing imbalance and its empirical relationship to cost. Data Mining and Knowledge
Discovery 17(2): 225–252.

[CdJH99] Cordón O., del Jesus M., y Herrera F. (1999) A proposal on reasoning methods in
fuzzy rule-based classification systems. International Journal of Approximate Rea-
soning 20(1): 21–45.

[CHV00] Cordón O., Herrera F., y Villar P. (2000) Analysis and guidelines to obtain a good
uniform fuzzy partition granularity for fuzzy rule-based systems using simulated an-
nealing. International Journal on Approximate Reasoning 25(3): 187–215.

[CJK04] Chawla N. V., Japkowicz N., y Kolcz A. (2004) Special issue on learning from im-
balanced datasets. SIGKDD Explorations Newsletter 6(1).

[CN89] Clark P. y Niblett T. (1989) The cn2 induction algorithm. Machine Learning Journal
3(4): 261–283.

[Coh95] Cohen W. W. (1995) Fast effective rule induction. In Machine Learning: Proceedings
of the Twelfth International Conference, pp. 115–123. Morgan Kaufmann.

[CS99] Cohen W. y Singer Y. (1999) A simple and fast and and effective rule learner. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 335–
342.

[CV95] Cortes C. y Vapnik V. (1995) Support vector networks. Machine Learning 20: 273–
297.

[CW03] Chen Y. y Wang J. Z. (2003) Support vector learning for fuzzy rule-based classifica-
tion systems. IEEE Transactions on Fuzzy Systems 11(6): 716–728.

[Dem06] Demšar J. (2006) Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7: 1–30.

[DP97] Domingos P. y Pazzani M. (1997) On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning 29: 103–137.

[EFW01] Ennett C. M., Frize M., y Walker C. R. (2001) Influence of missing values on artificial
neural network performance. Studies in health technology and informatics 84: 449–
453.

[EJJ04] Estabrooks A., Jo T., y Japkowicz N. (2004) A multiple resampling method for
learning from imbalanced data sets. Computational Intelligence 20(1): 18–36.

[FCL05] Fan R.-E., Chen P.-H., y Lin C.-J. (2005) Working set selection using second or-
der information for training support vector machines. Journal of Machine Learning
Research 6: 1889–1918.

BIBLIOGRAPHY 221

[FHOR05] Ferri C., Hernández-Orallo J., y Ramı́rez M. J. (2005) Introducción a la Mineŕıa de
Datos. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[FKD08] Farhangfar A., Kurgan L., y Dy J. (2008) Impact of imputation of missing values on
classification error for discrete data. Pattern Recognition 41(12): 3692–3705.

[FKP07] Farhangfar A., Kurgan L. A., y Pedrycz W. (2007) A novel framework for impu-
tation of missing values in databases. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 37(5): 692–709.

[FW98] Frank E. y Witten I. (1998) Generating accurate rule sets without global optimiza-
tion. In Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 144–151.

[GB05] Gabriel T. R. y Berthold M. R. (2005) Missing values in fuzzy rule induction. In
Anderson G. y Tunstel E. (Eds.) 2005 IEEE Conference on Systems, Man and Cy-
bernetics. IEEE Press.

[GH08] Garćıa S. y Herrera F. (2008) An extension on “statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons. Journal of Machine Learning
Research 9: 2677–2694.

[GH09] Garćıa S. y Herrera F. (2009) Evolutionary undersampling for classification with
imbalanced datasets: Proposals and taxonomy. Evolutionary Computation 17(3):
275–306.

[GLSGFV09] Garćıa-Laencina P., Sancho-Gómez J., y Figueiras-Vidal A. (2009) Pattern classifi-
cation with missing data: a review. Neural Computation & Applications 9(1): 1–12.

[GS10] Gheyas I. A. y Smith L. S. (2010) A neural network-based framework for the recon-
struction of incomplete data sets. Neurocomputing In Press.

[Han05] Han J. (2005) Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[HB02] Ho T. K. y Basu M. (2002) Complexity measures of supervised classification prob-
lems. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3): 289–
300.

[HB06] Ho T. K. y Basu M. (2006) Data Complexity. Springer-Verlag New York, Inc.

[INN04] Ishibuchi H., Nakashima T., y Nii M. (2004) Classification and modeling with linguis-
tic information granules: Advanced approaches to linguistic Data Mining. Springer–
Verlag.

[IY05] Ishibuchi H. y Yamamoto T. (2005) Rule weight specification in fuzzy rule-based
classification systems. IEEE Transactions on Fuzzy Systems 13: 428–435.

[IYN05] Ishibuchi H., Yamamoto T., y Nakashima T. (2005) Hybridization of fuzzy GBML
approaches for pattern classification problems. IEEE Transactions on System, Man
and Cybernetics B 35(2): 359–365.

[Kal02] Kalousis A. (2002) Algorithm selection via meta-learning. PhD thesis, Université de
Geneve.

222 BIBLIOGRAPHY

[KC02a] Kwak N. y Choi C.-H. (2002) Input feature selection by mutual information based on
parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence
24(12): 1667–1671.

[KC02b] Kwak N. y Choi C.-H. (2002) Input feature selection for classification problems. IEEE
Transactions on Neural Networks 13(1): 143–159.

[KCH+03] Kim W., Choi B.-J., Hong E.-K., Kim S.-K., y Lee D. (2003) A taxonomy of dirty
data. Data Mining and Knowledge Discovery 7(1): 81–99.

[Kon05] Konar A. (2005) Computational Intelligence: Principles, Techniques and Applica-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Kun00] Kuncheva L. (2000) Fuzzy classifier design. Springer, Berlin.

[lCvH92] le Cessie S. y van Houwelingen J. (1992) Ridge estimators in logistic regression.
Applied Statistics 41(1): 191–201.

[LR87] Little R. J. A. y Rubin D. B. (1987) Statistical Analysis with Missing Data. Wiley
Series in Probability and Statistics. Wiley, New York, 1st edition.

[MAC+92] Musavi M. T., Ahmed W., Chan K. H., Faris K. B., y Hummels D. M. (1992) On
the training of radial basis function classifiers. Neural Networks 5(4): 595–603.

[Mam74] Mamdani E. (1974) Applications of fuzzy algorithm for control a simple dynamic
plant. Proceedings of the IEEE 121(12): 1585–1588.

[McL04] McLachlan G. (2004) Discriminant Analysis and Statistical Pattern Recognition.
John Wiley and Sons.

[MML86] Michalksi R., , Mozetic I., y Lavrac N. (1986) The multipurpose incremental learning
system aq15 and its testing application to three medical domains. In 5th INational
Conference on Artificial Intelligence ((AAAI’86).), pp. 1041–1045.

[Mol93] Moller M. F. (1993) A scaled conjugate gradient algorithm for fast supervised learn-
ing. Neural Networks 6(4): 525–533.

[MPBM08] Matsubara E. T., Prati R. C., Batista G. E. A. P. A., y Monard M. C. (2008) Missing
value imputation using a semi-supervised rank aggregation approach. In Zaverucha
G. y da Costa A. C. P. L. (Eds.) SBIA, volumen 5249 of Lecture Notes in Computer
Science, pp. 217–226. Springer.

[OPBM08] Orriols-Puig A. y Bernadó-Mansilla E. (2008) Evolutionary rule-based systems for
imbalanced data sets. Soft Computing 13(3): 213–225.

[PA05] Pham D. T. y Afify A. A. (2005) Rules-6: a simple rule induction algorithm for
supporting decision making. In Industrial Electronics Society, 2005. IECON 2005.
31st Annual Conference of IEEE, pp. 2184–2189.

[PA06] Pham D. T. y Afify A. A. (2006) SRI: A scalable rule induction algorithm. Pro-
ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 220(4): 537–552.

BIBLIOGRAPHY 223

[PBGC00] Pfahringer B., Bensusan H., y Giraud-Carrier C. G. (2000) Meta-learning by land-
marking various learning algorithms. In ICML ’00: Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, pp. 743–750. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

[Pla91] Platt J. (1991) A resource-allocating network for function interpolation. Neural
Computation 3: 213–225.

[Pla98] Platt J. (1998) Fast training of support vector machines using sequential minimal
optimization. In Schlkopf B., Burges C., y Smola A. (Eds.) Advances in Kernel
Methods – Support Vector Learning, pp. 42–65. MIT Press, Cambridge, MA.

[PLD05] Peng H., Long F., y Ding C. (2005) Feature selection based on mutual information:
Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27(8): 1226–1238.

[Pyl99] Pyle D. (1999) Data preparation for data mining. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[Qui93] Quinlan J. R. (1993) C4.5: Programs for Machine Learning (Morgan Kaufmann Se-
ries in Machine Learning). Morgan Kaufmann.

[Sch97] Schafer J. L. (1997) Analysis of Incomplete Multivariate Data. Chapman & Hall,
London.

[SWK09] Sun Y., Wong A. K. C., y Kamel M. S. (2009) Classification of imbalanced data:
A review. International Journal of Pattern Recognition and Artificial Intelligence
23(4): 687–719.

[TS85] Takagi T. y Sugeno M. (1985) Fuzzy identification of systems and its applications to
modeling and control. IEEE transactions on Systems Man and Cybernetics 15(1):
116–132.

[TSK05] Tan P.-N., Steinbach M., y Kumar V. (2005) Introduction to Data Mining. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

[WC87] Wong A. K. C. y Chiu D. K. Y. (1987) Synthesizing statistical knowledge from
incomplete mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. 9(6): 796–
805.

[WF05] Witten I. H. y Frank E. (2005) Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Wil72] Wilson D. (1972) Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems and Man and Cybernetics 2(3): 408–421.

[WM97] Wolpert D. y Macready W. G. (1997) No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1): 67–82.

[WP03] Weiss G. M. y Provost F. J. (2003) Learning when training data are costly: The effect
of class distribution on tree induction. Journal of Artificial Intelligence Research 19:
315–354.

224 BIBLIOGRAPHY

[WSF95] Wang R. Y., Storey V. C., y Firth C. P. (1995) A framework for analysis of data
quality research. IEEE Transactions on Knowledge and Data Engineering 7: 623–640.

[Wu96] Wu X. (1996) Knowledge acquisition from databases. Ablex Publishing Corp., Nor-
wood, NJ, USA.

[WU99] Wu X. y Urpani D. (1999) Induction by attribute elimination. IEEE Transactions
on Knowledge and Data Engineering 11(5): 805–812.

[WW10] Wang H. y Wang S. (2010) Mining incomplete survey data through classification.
Knowledge and Information Systems 24(2): 221–233.

[YSS97] Yingwei L., Sundararajan N., y Saratchandran P. (1997) A sequential learning scheme
for function approximation using minimal radial basis function neural networks. Neu-
ral Computation 9: 461–478.

[YW06] Yang Q. y Wu X. (2006) 10 challenging problems in data mining research. Interna-
tional Journal of Information Technology and Decision Making 5(4): 597–604.

[ZW00] Zheng Z. y Webb G. I. (2000) Lazy learning of bayesian rules. Machine Learning
41(1): 53–84.

[ZZY03] Zhang S., Zhang C., y Yang Q. (2003) Data preparation for data mining. Applied
Artificial Intelligence 17(5-6): 375–381.

