TY - GEN AU - Severiche Maury, Zurisaddai AU - Arrubla Hoyos, Wilson AU - Ramírez-Velarde, Raúl AU - Cama Pinto, Dora AU - Holgado Terriza, Juan Antonio AU - Damas Hermoso, Miguel AU - Cama Pinto, Alejandro PY - 2024 UR - https://hdl.handle.net/10481/94594 AB - This study aims to develop and evaluate an LSTM neural network for predicting household energy consumption. To conduct the experiment, a testbed was created consisting of five common appliances, namely, a TV, air conditioner, fan, computer, and... LA - eng PB - MDPI KW - Home energy management system (HEMS) KW - Artificial intelligence KW - Deep learning TI - LSTM Networks for Home Energy Efficiency DO - 10.3390/designs8040078 ER -