TY - GEN AU - Canizo, Mikel AU - Triguero Velázquez, Isaac AU - Conde, Angel AU - Onieva, Enrique PY - 2019 SN - 0925-2312 SN - 1872-8286 UR - https://hdl.handle.net/10481/109577 AB - Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of... LA - eng PB - Elsevier KW - Deep Learning KW - Anomaly detection KW - Convolutional neural networks TI - Multi-Head CNN-RNN for Multi-Time Series Anomaly Detection: An industrial case study DO - 10.1016/j.neucom.2019.07.034 ER -