TY - GEN AU - Camacho Páez, José AU - Smilde, A. K. AU - Saccenti, E. AU - Westerhuis, J. A. AU - Bro, R. PY - 2025 UR - https://hdl.handle.net/10481/106469 AB - Sparse Principal Component Analysis (sPCA) is a popular matrix factorization that combines variance maximization and sparsity with the ultimate goal of improving data interpretation. In this series of papers we show that the factorization with sPCA... LA - eng PB - Elsevier TI - All sparse PCA models are wrong, but some are useful. Part III: Model interpretation DO - 10.1016/j.chemolab.2025.105498 ER -