Empirical Validation of a Class of Ray-Based Fading Models Galeote Cazorla, Juan E. Ramírez Arroyo, Alejandro López Martínez, Francisco Javier Valenzuela Valdes, Juan Francisco channel characterization stochastic fading IFTR As new wireless standards are developed, the use of higher operation frequencies comes in hand with new use cases and propagation effects that differ from the well-established state of the art. Numerous stochastic fading models have recently emerged under the umbrella of generalized fading conditions to provide a fine-grain characterization of propagation channels in the mmWave and sub-THz bands. For the first time in literature, this work carries out an experimental validation of a class of such ray-based models in a wide range of propagation conditions (anechoic, reverberation and indoor scenarios) at mmWave bands. These models allow to characterize the communication channel with a reduced number of physically interpretable parameters. In specific, we show that the independent fluctuating two-ray (IFTR) model has good capabilities to recreate rather dissimilar environments with high accuracy and only four parameters. We also put forth that the key limitations of the IFTR model arise in the presence of reduced diffuse propagation, and also due to a limited phase variability for the dominant specular components. 2024-12-12T07:31:31Z 2024-12-12T07:31:31Z 2024-12-11 journal article J. E. Galeote-Cazorla, A. Ramírez-Arroyo, F. Javier Lopez-Martinez and J. F. Valenzuela-Valdés, "Empirical Validation of a Class of Ray-Based Fading Models," in IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2024.3509738 https://hdl.handle.net/10481/97918 10.1109/TWC.2024.3509738 eng http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional IEEE