Scintillation light in SBND: simulation, reconstruction, and expected performance of the photon detection system Abratenko, P. Bueno Villar, Antonio García Gámez, Diego Nicolás Arnaldos, Francisco Javier Pelegrina Gutiérrez, Luis Sáncehz Castillo, Alejandro Sánchez Lucas, Patricia Vázquez Ramos, Alicia Zamorano García, Bruno SBND Collaboration SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to theBooster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist.We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds. 2024-11-18T09:41:03Z 2024-11-18T09:41:03Z 2024-10-10 journal article Abratenko, P. & Bueno Villar, A. & SNDB Collaboration. et. al. Eur. Phys. J. C (2024) 84:1046. [https://doi.org/10.1140/epjc/s10052-024-13306-3] https://hdl.handle.net/10481/96993 10.1140/epjc/s10052-024-13306-3 eng info:eu-repo/grantAgreement/EC/H2020/101004761 info:eu-repo/grantAgreement/EC/MSC/822185 info:eu-repo/grantAgreement/EC/MSC/892933 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional Springer Nature