Symmetries of the squeeze-driven Kerr oscillator Iachello, Francesco Cortiñas, Rodrigo G. Pérez Bernal, Francisco Santos, Lea F. Kerr parametric oscillator Squeeze-driven Kerr oscillator Local symmetry We study the symmetries of the static effective Hamiltonian of a driven superconducting nonlinear oscillator, the so-called squeeze-driven Kerr Hamiltonian, and discover a remarkable quasi-spin symmetry su(2) at integer values of the ratio η = Δ/K of the detuning parameter Δ to the Kerr coefficient K. We investigate the stability of this newly discovered symmetry to high-order perturbations arising from the static effective expansion of the driven Hamiltonian. Our finding may find applications in the generation and stabilization of states useful for quantum computing. Finally, we discuss other Hamiltonians with similar properties and within reach of current technologies. 2024-04-23T09:05:57Z 2024-04-23T09:05:57Z 2023-11-20 journal article Francesco Iachello et al. Symmetries of the squeeze-driven Kerr oscillator. 2023 J. Phys. A: Math. Theor. 56 495305 [10.1088/1751-8121/ad09eb] https://hdl.handle.net/10481/91061 10.1088/1751-8121/ad09eb eng info:eu-repo/grantAgreement/EC/H2020/MSC 872081 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional IOP Publishing