Hydroxytyrosol influences exercise-induced mitochondrial respiratory complex assembly into supercomplexes in rats Casuso, Rafael A. Al Fazazi, Saad Hidalgo Gutiérrez, Agustín López García, Luis Carlos Plaza Díaz, Julio Rueda Robles, Ascensión Rodríguez Huertas, Jesús Francisco Hydroxytyrosol (HT) has been demonstrated to improve mitochondrial function, both in sedentary and in exercised animals. Herein, we assessed the effects of two different doses of HT on exercise-induced mitochondrial respiratory complex (C) assembly into supercomplexes (SCs) and the relation of the potential results to OPA1 levels and oxidative stress. Wistar rats were allocated into six groups: sedentary (SED), sedentary consuming 20 mg/kg/d of HT (SED-20), sedentary consuming 300 mg/kg/d of HT (SED-300); exercised (EXE), exercised consuming 20 mg/kg/d of HT (EXE-20) and exercised consuming 300 mg/kg/d of HT (EXE-300). Animals were exercised and/or supplemented for 10 weeks, and assembly of SCs, mitochondrial oxidative status and expression of OPA1 were quantified in the gastrocnemius muscle. Both EXE and EXE-20 animals exhibited increased assembly of CI into SCs, but this effect was absent in EXE-300 animals. Levels of CIII2 assembled into SCs were only increased in EXE-20 animals. Notably EXE-300 animals showed a decreased relative expression of s- OPA1 isoforms. Therefore, HT exerted dose-dependent effects on SC assembly in exercised animals. Although the mechanisms leading to SCs assembly in response to exercise and HT are unclear, it seems that a high HT dose can prevent SCs assembly during exercise by decreasing the expression of the s-OPA1 isoforms. 2024-02-09T13:21:46Z 2024-02-09T13:21:46Z 2019 info:eu-repo/semantics/article https://hdl.handle.net/10481/88894 10.1016/j.freeradbiomed.2019.01.027 eng http://creativecommons.org/licenses/by-nc-nd/3.0/ info:eu-repo/semantics/embargoedAccess Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License Elsevier