Low-degree spline quasi-interpolants in the Bernstein basis Barrera Rosillo, Domingo Eddargani, Salah Ibáñez Pérez, María José Remogna, Sara Quasi-interpolation Bernstein basis Bézier ordinates Publicado el 15-11-2023 . Dos años de embargo. In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C1 and C2 smoothness, specific polynomial reproduction properties and different sets of evaluation points. The splines are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, imposing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods. 2024-01-30T11:10:16Z 2024-01-30T11:10:16Z 2023-11-15 journal article D. Barrera, S. Eddargani, M.J. Ibáñez, S. Remogna, Low-degree spline quasi-interpolants in the Bernstein basis, Applied Mathematics and Computation 457 (2023), https://doi.org/10.1016/j.amc.2023.128150 https://hdl.handle.net/10481/87625 10.1016/j.amc.2023.128150 eng embargoed access Elsevier