A thorough investigation of the switching dynamics of TiN/Ti/10 nm-HfO2/W resistive memories Maldonado Correa, David Aldana Delgado, Samuel Cantudo Gómez, Antonio Jiménez Molinos, Francisco Roldán Aranda, Juan Bautista Resistive switching RRAM Operation dynamics Characterization Kinetic Monte Carlo Compact modeling The switching dynamics of TiN/Ti/HfO2/W-based resistive memories is investigated. The analysis consisted in the systematic application of voltage sweeps with different ramp rates and temperatures. The obtained results give clear insight into the role played by transient and thermal effects on the device operation. Both kinetic Monte Carlo simulations and a compact modeling approach based on the Dynamic Memdiode Model are considered in this work with the aim of assessing, in terms of their respective scopes, the nature of the physical processes that characterize the formation and rupture of the filamentary conducting channel spanning the oxide film. As a result of this study, a better understanding of the different facets of the resistive switching dynamics is achieved. It is shown that the temperature and, mainly, the applied electric field, control the switching mechanism of our devices. The Dynamic Memdiode Model, being a behavioral analytic approach, is shown to be particularly suitable for reproducing the conduction characteristics of our devices using a single set of parameters for the different operation regimes 2023-11-07T08:02:12Z 2023-11-07T08:02:12Z 2023-10-18 journal article D. Maldonado et al. A thorough investigation of the switching dynamics of TiN/Ti/10 nm-HfO2/W resistive memories. Materials Science in Semiconductor Processing 169 (2024) 107878[https://doi.org/10.1016/j.mssp.2023.107878] https://hdl.handle.net/10481/85489 10.1016/j.mssp.2023.107878 eng http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional Elsevier