Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects Khalouf Rivera, Jamil Gamito, Juan Pérez Bernal, Francisco Arias Peñalver, José María Pérez Fernández, Pedro The standard Lipkin-Meshkov-Glick (LMG) model undergoes a second-order ground-state quantum phase transition (QPT) and an excited-state quantum phase transition (ESQPT). The inclusion of an anharmonic term in the LMGHamiltonian gives rise to a second ESQPT that alters the static properties of the model [Gamito et al., Phys. Rev. E 106, 044125 (2022)]. In the present work, the dynamical implications associated to this new ESQPT are analyzed. For that purpose, a quantum quench protocol is defined on the system Hamiltonian that takes an initial state, usually the ground state, into a complex excited state that evolves on time. The impact of the new ESQPT on the time evolution of the survival probability and the local density of states after the quantum quench, as well as on the Loschmidt echoes and the microcanonical out-of-time-order correlator (OTOC) are discussed. The anharmonity-induced ESQPT, despite having a different physical origin, has dynamical consequences similar to those observed in the ESQPT already present in the standard LMG model. 2023-10-23T10:41:34Z 2023-10-23T10:41:34Z 2023-06-26 journal article Khalouf-Rivera, J., Gamito, J., Pérez-Bernal, F., Arias, J. M., & Pérez-Fernández, P. (2023). Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects. Physical Review E, 107(6), 064134.[DOI: 10.1103/PhysRevE.107.064134] https://hdl.handle.net/10481/85180 10.1103/PhysRevE.107.064134 eng info:eu-repo/grantAgreement/EC/EU/1380840 P20_01247 UNHU-15CE-2848 info:eu-repo/grantAgreement/EC/EU/PID2019-104002GB-C21 PY2000764 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional American Physical Society