A segmented total energy detector (sTED) for (n, γ) cross section measurements at n_TOF EAR2 Alcayne, V. Andrzejewski, J. Gawlik Ramiega, A. Perkowski, J. This work was supported in part by the I+D+i grant PGC2018-096717-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by the European Commission H2020 Framework Programme project SANDA (Grant agreement ID: 847552). The neutron time-of-flight facility n_TOF is characterised by its high instantaneous neutron intensity, high resolution and broad neutron energy spectra, specially conceived for neutron-induced reaction cross section measurements. Two Time-Of-Flight (TOR) experimental areas are available at the facility: experimental area 1 (EAR1), located at the end of the 185 m horizontal flight path from the spallation target, and experimental area 2 (EAR2), placed at 20 m from the target in the vertical direction. The neutron fluence in EAR2 is similar to 300 times more intense than in EARL in the relevant time-of-flight window. EAR2 was designed to carry out challenging cross-section measurements with low mass samples (approximately 1 mg), reactions with small cross-sections or/and highly radioactive samples. The high instantaneous fluence of EAR2 results in high counting rates that challenge the existing capture systems. Therefore, the sTED detector has been designed to mitigate these effects. In 2021, a dedicated campaign was done validating the performance of the detector up to at least 300 keV neutron energy. After this campaign, the detector has been used to perform various capture cross section measurements at n_TOF EAR2. 2023-10-18T12:20:54Z 2023-10-18T12:20:54Z 2023-05-26 conference output Alcayne, V. et al. A segmented total energy detector (sTED) for (n, γ) cross section measurements at n_TOF EAR2. EPJ Web of Conferences 284, 01043 (2023) ND2022. [https://doi.org/10.1051/epjconf/202328401043] https://hdl.handle.net/10481/85081 10.1051/epjconf/202328401043 eng info:eu-repo/grantAgreement/EC/H2020/847552 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional EDP Sciences