Electrically tunable lateral spin-valve transistor based on bilayer CrI3 Marian, Damiano Soriano, David Cannavó, Emmanuele González Marín, Enrique Fiori, Gianluca The authors gratefully acknowledge Graphene Flagship Core 3 (Contract No. 881603). Work partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the FoReLab project (Departments of Excellence). The authors thank Efren Navarro-Moratalla for useful discussions. The online version contains supplementary material available at https://doi.org/10.1038/s41699-023-00400-5. The recent discovery of two-dimensional (2D) magnetic materials has opened new frontiers for the design of nanoscale spintronic devices. Among 2D nano-magnets, bilayer CrI3 outstands for its antiferromagnetic interlayer coupling and its electrically-mediated magnetic state control. Here, leveraging on CrI3 magnetic and electrical properties, we propose a lateral spin-valve transistor based on bilayer CrI3, where the spin transport is fully controlled via an external electric field. The proposed proof-of-concept device, working in the ballistic regime, is able to both filter (>99%) and select ON/OFF the spin current up to a ratio of & AP;10(2), using a double split-gate architecture. Our results obtained exploiting a multiscale approach ranging from first-principles to out-of-equilibrium transport calculations, open unexplored paths towards the exploitation of bilayer CrI3 or related 2D nano-magnets, as a promising platform for future electrically tunable, compact, and scalable spintronic devices. 2023-07-18T10:18:39Z 2023-07-18T10:18:39Z 2023-06-26 journal article Marian, D., Soriano, D., Cannavó, E. et al. Electrically tunable lateral spin-valve transistor based on bilayer CrI3. npj 2D Mater Appl 7, 42 (2023). [https://doi.org/10.1038/s41699-023-00400-5] https://hdl.handle.net/10481/83836 10.1038/s41699-023-00400-5 eng http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional Springer Nature