Comprehensive mobility study of silicon nanowire transistors using multi-subband models Medina Bailón, Cristina Spatial confinement is important in advanced More Moore devices, such as nanowire transistors (NWTs), where the basic charge transport properties must be revised beyond the bulk crystal assumptions. This work presents a comprehensive and general overview of the electron mobility in aggressively-scaled SiNWTs in order to demonstrate the effect of quantum confinement on this topic, establishing its dependence on numerous physical factors (shape, diameter, and orientation). The mobility evaluation makes use of a unique simulation framework and innovative multi-subband calculations of the scattering rates.Weshow that (1) the effect of surface roughness scattering is more pronounced at higher sheet densities, (2) ionized impurity scattering seriously degrades the mobility in highly-doped NWTs, and (3) the cross-section shape affects directly the subband parameters and the mobility, with the ellipticalNWTsgiving the best performance for the same cross-sectional area. 2023-07-17T10:42:48Z 2023-07-17T10:42:48Z 2023-06-20 journal article Cristina Medina-Bailon et al 2023 Nano Ex. 4 025005[DOI 10.1088/2632-959X/acdb8a] https://hdl.handle.net/10481/83818 10.1088/2632-959X/acdb8a eng info:eu-repo/grantAgreement/EC/H2020/688 101 SUPERAID7 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional IOP Science